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Abstract

Two possible ways of modifying the linear tearing mode ind&ex active magnetic feed-
back and by drift kinetic effects of deeply trapped pars¢lare analytically investigated. Mag-
netic feedback schemes, studied in this work, are foundrginetabilizing forA’. The drift
kinetic effects from both thermal particles and hot iongdtém reduce the power of the large
solution from the outer region. This generally leads to datskzation ofA’ for the toroidal
analytic equilibria considered here.
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l. INTRODUCTION

The tearing mode is one of the most important magneto-hyaraaiic (MHD) instabilities in fu-
sion devices. In tokamaks, the onset of neoclassical ggamode (NTM) is one of the major
obstacles in achieving high performance, high pressusnpda [1], in particular for ITER [2]. In
reversed field pinch (RFP) devices, simultaneous presengrilbiple tearing modes is thought
responsible for reaching the force-free configuration. eweev, passive or active control of these
modes may lead to a new regime in RFPs, in which only a singfewitearing mode is unsta-
ble, creating a so-called (quasi) single helicity state43,with significantly improved plasma
confinement in certain regions of the plasma.

Theoretically, the tearing mode is conventionally anatlybg separately solving the problem of
layer physics near the rational surface, where the plaseréianresistivity, and possibly viscosity
effects become important, and the problem in the bulk owgion, in which the plasma is nor-
mally well described by ideal, single fluid MHD equations.[5 key parameter, the so-called
stability parameter for the tearing mode (or simply teanimgde parameter)’ [6], defined as the
logarithmic jump of the perturbed radial magnetic field, exided from the outer solution, that
matches to the resistive layer solution to obtain the fingpelision relation for the mode stability.
For NTMs, the parametéY’, being normally negative, plays a key role in determinirgrragnetic
island onset condition and the island evolution, as showthbygeneralized Rutherford equation
[7, 8, 9]. Therefore, mitigation or suppression of tearingdas in many cases can be achieved by
reducing (stabilizing)\'.

In this work, we consider two possible mechanisms of modiy\’: one is due to the kinetic
effects of energetic particles (the passive way), the othective control ofA’” using magnetic
feedback.

Active control of tearing modes in tokamaks are normallyiaedd by acting on the tearing layer.
One example is the ECCD stabilization of tearing modes lthabeen demonstrated both in theory
[10, 11, 12] and in experiments [13, 14, 15]. This is a non-n&ig control scheme. Magnetic
control of the tearing mode, by directly controlling the magjc islands with external fields seems
to encounter a difficulty of the so-called phase instab[lit§y, 17, 18], in which the island chain
naturally locks to the external resonant field in such a laépbase, that the islands are destabilized.
This process is non-linear and is beyond the scope of thepregrk. In the linear phase, Finn
[19] studied the direct active control of the tearing modevgh rate, based on magnetic feedback.
In this work, we propose a completely different methodolémythe tearing mode control, namely
we focus on active control @ using magnetic coils. The results are still applicable forteolling

the stability of a linear tearing mode. But since the residisot depend on the inner layer physics,
they can also be useful for the NTM study. Our control confdgion is also slightly different from
that assumed by Finn.

The kinetic effects on the tearing mode stability have begwventionally analyzed for the resistive
layer [20, 21, 22, 23, 24]. Here we investigate possibletidresfects from trapped patrticles dxi.
We mention that Cai et al. [25, 26] recently studied the kineffect of energetic ions o', and
concluded that the co-circulating (counter-circulatieggrgetic ions reduce (increage) whereas
the trapped hot ions destabiliaé For circulating hot ions, it has been shown that the kineffiect
comes from the finite orbit width effect [25]. Similar desil&ation effect by energetic particles
has also been reported in another numerical study of thmgearode instability [27]. In this work,
we find a destabilizing effect from deeply trapped parti¢hesth thermal ions and electrons as well
as hot ions) due to the non-adiabatic drift kinetic resppasgen neglecting the finite orbit effect.



The main physics of destabilization&fcomes from the kinetic modification of the Mercier index.

In Section I, we study thiénear modification ofA’ by magnetic feedback control schemes, based
on a simple cylindrical geometry and ideal MHD theory. Vasdypes of active and sensor coils
are considered. In Section lll, we investigate the driftetia effects of trapped particles dxi.
This requires consideration of toroidal geometry. A refaly simple Newcomb-like equation is
obtained by considering only deeply trapped particle gbation. Section IV summarizes the
results.

Il. FEEDBACK MODIFICATION OF A/
A. A in the absence of feedback

Here we focus on capturing the main physics features, bynaisgua cylindrical geometry with a
single poloidal mode approximation. We consider the wethkn Newcomb equation with finite
plasma pressure [28]
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wherer is the radial coordinate along the plasma minor radijiss them-th poloidal harmonic
of the perturbed poloidal magnetic flux function, which haseapim6 — ikz) variation along the
poloidal angled and thez-axis, k is the wave number along tizedirection. J; is thez-component
of the equilibrium plasma current densify= mBy — kB,, whereB = Bg0 + B,Z is the equilibrium
field. P is the equilibrium plasma pressure.

For simplicity, we assume a step function for the currentsitgrprofile J,(r), with J, = Jo = const
at0<r <rp, andJ; =0 atrg <r < a. ais the plasma minor radius. Following [29, 19], we also
assume a constant presste- Py = constacross the whole plasma column, noting meanwhile
that this is not a consistent pressure profile satisfyingetipglibrium force balance condition. A
schematic plot of these equilibrium profiles, as well as tidhe safety factoq, is shown in Fig.

1. Theq profile is constant for & r < rg, and parabolic foro < r < a. We also assume that a
rational surface, witlgy(rs) = m/n, is located ats, betweerrg anda.

With all the above assumptions for radial profiles, Eq. (Ihsunto the vacuum equation
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everywhere inside the plasma, except at discrete radiatpioi= rg, s, a, where jump conditions
are obtained for the radial derivative of the flux functi¢n Following standard integration tech-

niques, we have (assuming, without loses of generatity, 0)
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wherep = 2uoPo/BZ,da = Go(a/r0)?. In the absence of a wall, the above jump conditions, and the
conditionsr ) /{|r,— = mandr//P|a; = —m, can be connected together, from both sides of the
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Figure 1: Sketch of the equilibrium profiles used for caltmi@ 4’ in the presence of magnetic
feedback.

rational surface =rg, by a relation
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valid between any two points within a 'regular’ region. Thtandard procedure eventually yields
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where

mpB 1

B=1-—-—5, A= .
2(m—nay)2’ m—ncp

In order to slightly generalize the above calculations, mteoduce a thin resistive wall located at
the minor radiug,, > a. [Even thoughd’ is usually calculated at marginal stability poin& O,

at which a resistive wall does not play a role, but this is et ¢ase if we consider a feedback
scheme with complex gains, or when a toroidal plasma flowesgmt.] The field jump condition
across the wall is

ry]
W,

wherety = Horwdw/nw the wall time withd,, and ny, being the wall thickness and resistivity,
respectively.

= Ylw (6)



A feedback system requires sensors and active coils. Sieassume a single poloidal harmonic
m, both sensor and active coils are “idealized”, i.e. measgylaunching a single harmonic mag-
netic field. We consider three types of sensors, all locatéueawall radiug . For radial sensors,
the sensor signal is the fluxy(ry) at the wall radius. The external poloidal sensors are defined
byy= —ry/|;,+, i.e. the radial derivative of the flux function justitsidethe resistive wall. The
internal poloidal sensors are definedyoy: —ry/|y,,—, i.e. the radial derivative of the flux function
justinsidethe resistive wall. In the following, we shall consider twpés of active coils, defined

by their relative radial location to the wall.

B. External active coils

In this case, the active coils are located outside themyadl r¢. In the vacuum region, <r <ry,
the solution can be written as

W(r) = s (%)mﬂs(&) B

whereWs = Ws(ry) is the free-space field at the wall radius, produced by thieecbil current
solely.

Consider a generic feedback controller with the (simplified) feedback law for three types of
sensors

Ys+C, radial— sensor
P = —Ky=—K{ —m(ys—c), external- poloidal— sensor
—m(Ps —¢) +ytw(Ps +¢). internal— poloidal— sensor

The above feedback law immediately relates the coeffiaeot)

—(1+K)/K, radial— sensor
c=yPsq¢ —(1—mK)/mK, external- poloidal— sensor
—[1— (m—ytw)K]/(m+ytw)K, internal— poloidal— sensor

The wall jump condition (6) helps us to introduce and caltiaquantity

+2mK :
14+ iy yrvvaerZmK’ radial
— ™Yl _ Vour-2mPK / (1—2mK) external- poloidal
Oe= —1_ 1y - yrw+2m4rrnzzmzK/(172mK)’ P
mw|, y% internal— poloidal
om

The above quantitye, connected with other jump conditions (2) and (3) by thetiete(4), yields
the same expression fdf at the rational surface, as Eqg. (5), but with the coefficieBtreplaced
by Be

1 mpB
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C. Internal active coils

In this case, the active coils are located between the plasiniace and the wall < rs <ry. In
the vacuum region; < r < ry, the field solution can be written as

P(r) = Py <%)_m+01 (%) m+cz (%) B
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whereys = Wi (rw) is again the free-space field at the wall radius, producecdhbyattive coil
current solely.

The feedback laws become

Y +C1+Co, radial— sensor
Pi = —Ky=—-K< m(@s+cp+cp), external-poloidal—sensor
m(Ws —C1+Cy). internal— poloidal— sensor

The above feedback equation, together with the wall jumpitamm (6), determines the coeffi-
cientsc; andc;

Yiw/2mK| radial— sensor
c1=Ys{ Yrw/2nPK, external- poloidal— sensor
Yiw/2mK(m+yty), internal— poloidal— sensor

(YTw + 2m+2mK) /2mK, radial— sensor
Co=—Ws{ (Yiw+2m+2nPK)/2nmPK, external- poloidal— sensor
(Ytw + 2m+ 2mK(m+yty) ) /2mK(m+yty). internal— poloidal— sensor

In the vacuum regioa < r < r¢, we have

W(r) =asWs (%) +01(%) +cz(%)

wherea s = r2™/r2M, This allows us to calculate

r_Lp’ =m {1 — #}
P gy 1—aja®m/rgm|’
where
%, radial— sensor
aj = %, external- poloidal— sensor
%ﬁﬁ%&gff;&"ﬁﬁg . internal— poloidal— sensor

Following the similar coupling procedures as for the exé¢ooils, we arrive at the same dispersion
relation (5), but withB replaced byB;

B 1 B mpB
C1-gi@@/r2n 2(m—ngy)2’

Bi (7)

D. Modification of A’ by feedback

Now we investigate the modification &f by magnetic feedback, based on Eq. (5) which is valid
for both external and internal feedback coils. For simpficive consider a special case without
the wall (1, = 0), and with a proportional controller with real feedback gin



Making additional notation§ = mB/2(m— naw)2, ay = a2"/r2M as = r2"/a?M C = ag+ (1 —
0s)(1—B), itis easy to derive from Eqg. (5)
2mag 1

M’EA’(K)—A’(KzO):—r—SE(l_as>+(1_aWG)C, (8)

where the parameter depends on the feedback gain, and is associated with ditfgnees of the
feedback coils and sensors

K/(1+K), extcoil 4 radsensor

a(K) = mK/(1—mK), extcoil + pol.sensor ()
) atK/(1+K), int.coil + rad sensor
asmK/(1+mK). int.coil+ pol.sensor

Notice that in the absence of the wall, the difference betwike internal and the external poloidal
sensors disappears. Generally, wWithc 1, and with the gain valuelk being not too large, we
always havédA’ < 0 for all types of coils and sensors, meaning a stabilizifigeeby the magnetic
feedback control.

Figures 2(a-b) show two examples, wih=0.95m=2n=1,ro=0.653a,rs=0.9a,ry, = 1.2a.

We assume; = 1.3afor external active coils, and = 1.1afor internal coils. Figure 2(a) shows a
case with the thermdd = 0.01, in which the intrinsi@\’ is already negative without feedback. The
effect of a proportional feedback action is to brifdginto the deeply stable region. Regardless of
the types of active coils, the poloidal sensors work moreiefiily.

~~~~~~
------

1: ext.coil+pol.sensor

2: ext.coil+rad.sensor

3: int.coil+pol.sensor

4: int.coil+rad.sensor
.

1: ext.coil+pol.sensor
2: ext.coil+rad.sensor
3: int.coil+pol.sensor
4: int.coil+rad.sensor

-1.5 :
0 0.05 0.1

feedback gain

0.05 01 0.15 0.2
feedback gain

Figure 2: Stabilizing effect of a simple (proportional) nm&gic feedback on the tearing mode
stability index4’, for a cylindrical plasma that is (a) intrinsically stableith B = 0.01), and

(b) intrinsically unstable (witl3 = 0.03). Various types of the feedback coils and sensors are
compared.

At higher values of3, the intrinsic value of\’ becomes positive. This case is shown in Fig. 2(b)
at 3 = 0.03. All four feedback schemes efficiently redutse In particular, the combination of
external active coils with poloidal sensors fully statekz\’ at rather moderate gain values (with
the gain as defined in this study). However, further incredsbe gain value (beyond the values
shown in Fig. 2(b)) leads to a destabilization. This is beedor this specific combination, the
parameten, from Eq. (9), switches sign at sufficiently larevalue. For the practical purpose of
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stabilizingA’ with feedback, we should always choose the feedback gaimtibke critical value.
The other three cases also lead to full stabilization atelagough gain values. It is interesting
to note that, for these three schemes, the stabilizatidxi séturates at large enough gain values.
This is also evident from Eq. (9).

lll. KINETIC MODIFICATION OF A
A. Newcomb-like equation with kinetic effects

Here we derive a Newcomb-like equation, including the dkitfietic modification of the perturbed
plasma pressure. Since our eventual goal is to investigatkihetic effect of trapped particles on
A, we need to consider a toroidal geometry.

At marginal stability without the equilibrium flow, the perbed force balance equation reads
O-p=jxB+Jxb, (10)

whereB andJ are the equilibrium magnetic field and current density, eesigely. b andj are the

corresponding perturbationg.is the perturbed pressure tensor.

In a torus, the equilibrium magnetic field can be written asthm of poloidal and toroidal field

components

B =Dox Oy+I1(y)Ue, (11)

where@is the geometric toroidal anglg, is the equilibrium poloidal flux, ant{y) is the poloidal
current flux function. We define a straight-field-line flux cdimate systenfy, X, ®), where the
poloidal anglex is chosen such, that the jacobige (O - Ox x O¢) 1 = gR?/1, with (W) being
the safety factor anB(y, ) being the major radius of the torus.

Neglecting the toroidal component of the field perturbatiwhich is normally small compared to
the other two components, we represent the perturbed nmadieéd as

b = Oex DA,
whereA(y, X, @) is the toroidal component of the perturbed magnetic veatoemtial, which will
be the solution variable of our final Newcomb equation.
The perturbed pressure tengors derived by solving the drift kinetic equation, as will beosvn
later on. For the moment, we writein a form

p=npl+ pHBEH— p (I —66),

wherel is the identity tensof) = B/B is the unit vector of the equilibrium field. The scalar part of
the pressure perturbatignrepresents the adiabatic part of the kinetic pressure styjiland p,
represent the parallel and perpendicular components afidheadiabatic pressure perturbations.
All these three components eventually are functions of thetion variableA.

Taking the curl-product of the force balance equation (1@h\B/B?, and then applying th&l
operator, we obtain

B B.j B-b
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whereo = B - J/B? characterizes the equilibrium parallel current densitg aan be calculated as

o (L1 0P
dg B2dy)/’
whereP is the isotropic equilibrium pressure, satisfying the égrium force balance condition
0P =J x B.
In a general toroidal geometry, the four terms from Eq. (1) be expressed as follows
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where we have introduced a new notatipp= p; — p.. The metric elements are defined as
g¥ = [Dy[?, g% = |Ox[?, g% = Dy - 0.

We now follow the procedures from Ref. [30], in order to sifhpthe above expressions. We shall
assume¥¥ < 12, dropping all theO(B2/B?) terms. Furthermore, we consider a single poloidal
and toroidal harmonic for the perturbatidni.e. A= A(P) expimx —ing), with the poloidal mode
numberm and the toroidal mode number respectively. This significantly simplifies the final
equation, at the expense of losing the toroidicity inducedpting between poloidal harmonics.
Other toroidal effects, such as the trapped patrticles (bice the key kinetic effects in this study),
are fully retained.

Under the above single harmonic assumption, we can eaklgde plasma normal displacement,
as well as the scalar pressure tepnto the perturbed flux functioA. The scalar product dfly
with the ideal MHD equatioh = [ x (& x B) givesg - 0w = —m/(m— nqg)A. The scalar pressure
term is expressed gs= —¢§ - OP = m/(m— nq)(dP/dy)A. Note that the equilibrium pressukre
here is generally the sum of both thermal and energeticgb@agressures. Therefore, the perturbed
scalar pressurp includes the adiabatic contributions from both thermal andrgetic particles.

The final equation is obtained by multiplying Eq. (12) withpéximy + ing), and then taking the
average over the flux surface, yielding

Id (g_gydA FXA do, m i(g dp
qdw<lg dw) A nq'dtuA (m-ng? dg \q) dg"
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T m—nag [@ ('”g) (9PL)m— Sy <P+ 7) (gpk)m] =0,(13)
where the surface averade= foznfdx/(Zn) is defined for equilibrium quantities. The last term
from the left hand side of Eq. (13) represents the drift kinebntribution to the Newcomb-like
equation, in the toroidal geometry. Without this term, Ed.3)(recovers Eq. (26) from Ref.
[30] (except for aq factor which is omitted in the fourth term of Eq. (26) in [30]n deriving
Eg. (13), we neglected the terms associated @#h The jacobian is attached to the kinetic
pressures, for the convenience of deriving the latter (asvehn the next Subsection). We also
mention that, by taking the surface average of the momenalanbe equation in favor of deriving
a single Newcomb-like equation, we lose certain toroidaltimg effects, which can be important
as shown in a recent fluid calculation&f[31]. The sideband coupling between the magnetic field
line curvature and the perturbed kinetic pressure can asmportant. The finite orbit effect (of
energetic particles) may enhance this coupling. Finallg,drift kinetic effect itself also enriches
the poloidal spectrum of the perturbed kinetic pressur@}. [RAll these mode coupling effects
can generally only be studied numerically, though a threglercoupling problem, betweemand
m-=+ 1 harmonics, may still be analytically tractable. This Vo examined in a future work.

B. Drift kinetic pressures

Here we derive a compact form that relates the perturbedikipesssure terms to the perturbed
flux function A, by solving the drift kinetic equations in the limit of vahiag orbit width. We

consider contributions from both thermal particles (ionsl @lectrons), and hot ions. Only the
magnetic precession drift resonance effect will be inctudéhe full toroidal geometry is retained.

The non-adiabatic part of the drift kinetic pressure termescalculated as

pi= [MiBtidw b, =3 [MBfLay (14)

whereM is the particle mas$f, is the perturbed distribution function, satisfying thefikinetic
equation [32]

______ C(3fL), (15)

where fg is the equilibrium distribution function of particlesthe particle energyR, the particle
toroidal canonical momentum, ar@{6f) the collision operator.H, is the perturbed particle
Lagrangian

HL = MVﬁK'h%—U(bH +0B-&,),

wherek is the equilibrium magnetic field curvatunethe magnetic moment, arigi the parallel
component of the perturbed magnetic field. Under the singlenbnic approximation for the
perturbations, the particle Lagrangian can be expresstinms of the flux functiom\

B m d q dA] 3
HL = & [Cl (m— nqA) +C2® (m— nqA) +C3@} = Ekk;Ckam,

whereg, = MV?/2 is the particle kinetic energy. The equilibrium coeffidie@y are defined as
2 : 2 v

Ci= 2[(L_ANAP (  ANOB) i () ANFOB o Ahgh
B2|\2 2h/dy 2h/) oy B2 2h / gB oy B3R2
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where/ = Bop/gi is the particle pitch angld) = Bo/B, with By being the equilibrium field am-
plitude at the magnetic axis. The terms associated with tagicrelemenig¥X are consistently
neglected as in the fluid treatment.

With a simplified collision operato€(df.) = ve0fi, EQ. (15) can be analytically solved [32].
We note that the Krook collision is a simplified assumpticet fiacilitates analytic solution of the
drift kinetic equation. Our further study assumes a calliéess plasma. The solution of Eq.(15)
is inserted into Eq. (14) to calculate the kinetic pressur€snsidering the toroidal magnetic
precession drift of trapped particles only, and negledigfinite banana width effect, the poloidal
Fourier harmonics of the perturbed kinetic pressures camrtigen in the following compact form
[33]

(9P} 1), B 2 /d/\HkaIL i Xkmy (16)

where the inde) stands for thermal |on$)( thermal electronsg), or hotions ). Following [33],
the “geometrical” factorglym andGH are defined as

equl_/ )ei(m—nq)XdX,
‘. \/W
_ e~ iNAXL /Xu gBA/(2h) —|(m—nC1)XdX

X

. V/1I—A/h
/ gBA/I—A/he i (M-naXdy.
XL

wherex. andyxy are respectively the lower and upper turning points of tapged particle along

the poloidal angle(. Tp = 2f>2(LU gBdx/+/1—A/h is the normalized particle bounce time (one
period).

g inaxL
G =

211

The factorij from Eq. (16) is obtained as a result of the kinetic integmatver the particle energy
€. This factor depends on the particle equilibrium distribat as well as the kinetic resonances
between particles and the mode. For the external idealisolwve assume that the mode frequency
is zero. The magnetic precession drift motion of partictemcluded in the kinetic resonance. For
thermal particles, we assume the Maxwellian equilibriustrébution, which leads to

3 1dInRg

e — 2 (I)d dl.|J 9
wherety =< wy > /(&k/€) is the normalized bounce averaged toroidal precessionfarifuency
of particles. Both the plasma flow and the collisionality ayeored in the above calculations.
These factors can be added into the calculations withoutciple difficulties, but resulting in
much more complicated expressions.

(32, (3/2

For hotions, we assume a slowing down distributigra-C/(g,'“+¢&c’ ") for 0 < g¢ < &, andfp =
O for g > €, Whereg. is the crossover energy proportional to the thermal eledieonperatureg,
the birth energy of hot ions (3.52MeV for fusion baxrparticles). The facto€ in the distribution
function can be calculated knowing the hot ion pres$trein the absence of plasma flow, the
factor for hot ions can be calculated as [34]

| __§i dInPn_dIneh
h_ za)d .

dy  dy
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C. Deeply trapped limit

In full toroidal geometry, the kinetic pressures (16) geatigrcan only be computed numeri-
cally. However, for deeply trapped particles, the driftédiic integrations are analytically tractable.
Therefore, we shall consider the kinetic contribution frdaeply trapped particles.

In this limit, at each flux surface, the particle pitch angdaches the maximal valul,ay, at a

poloidal anglexo = XL = Xu. The geometrical factordyn, andGH{L can be easily evaluated even
in a generic torus

BO g(XO) e—im)(o GI"L

Amx VFo/Alxo)

whereHg = —(9%h/0x?)|,. We also obtain

1 .
Hicm| e = 5Ck(X0) €™, G

1 quqJ

, Ca(Xo) =0, Cs(Xo)= 2B

Xo

Xo
Note thatCs(xo) is aO(B3/B?) term, which we shall neglect.

Interestingly, using the Rosenbluth-Sloan formula [35¢ inagnetic precession drift frequency of
deeply trapped particles can be easily calculated

dlnB

ouln = 10Jo/ow|
/\max an

Amax = & 030/ 0€

= C1(Xo),
Xo

whereJ = $ My dl is the longitudinal invariant of the particle motion.

With the inclusion of the drift kinetic effects from the magit precession drift of deeply trapped
particles, the final Newcomb-like equation (13) takes thie¥ang form

I_i (ggﬂJUJd_A) —mZQXXA— m | ch

qdy \ 17 dy m—nq dy
e d %dP me
————l— (=) —A—-——SIK4JA=0, 17
(m—ng)? dy <q ay” " (m-nqz " (a7)
where
_ 3fijnetic | d % 1d B2\ | 1 g(xo)
=_ZHele )~ (n2 )4 = — [P+— || — Ki 1
d 4q [dw<nq +Bzdw< +2) vHo h(xO)Z 3 (18)
and
~_dRe _dRy _ dingy
Kl,e— qu7 Kh— qu Ph—dLIJ . (19)

In deriving Egs. (17) and (18), we have practically assumédunction in pitch angled(A —
Amax), for the particle equilibrium distribution function. To s®what relax this assumption, we
introduce a fraction coefficierfiinetic in EQ. (18). This coefficient roughly represents the frattio
of deeply trapped particles among the total trapped pagjalith fxinetic = 1 corresponds to the
o-function distribution in particle pitch angle for deephapped particles. Since we expect that
those particles, which has a pitch anglsufficiently close ta\max Will make similar contribution
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to the modification ofd’, as the deeply trapped ones, in practiggetic represents the fraction
of those particles which are deeply or sufficiently deepgpped. Without an exact definition
for sufficiently deeply trapped particles, we introduce paeameterfyinetic. This parameter also
allows us to trace the kinetic contributionAbin the later study. This contribution is excluded by
setting fyinetic = 0.

The kinetic contribution from the deeply trapped hot ions ao terms. The second term is
proportional to the hotion pressure (not the pressure grafilt can be shown that, for the slowing
equilibrium distribution which is isotropic in particle gh angle, a similar term also appears in
the adiabatic portion of the perturbed kinetic pressurd.tBat term is of ordeg smaller than that
from Eq. (19). Therefore, no full cancellation can occur.

On the other hand, if the hot ion birth energyis a constant (such as that for fusion bors),
the kinetic contributions from trapped thermal particlesl &rom trapped hot ions cannot be dis-
tinguished, in the sense that the ratio of the hot ion pressuthe thermal one does not affect the
result, as long as the total (equilibrium) pressure remdnasame. This is true only if we neglect
the finite orbit width effect of hot ions, which is the appnaration adopted in this work.

We note that the last term in the left hand side (LHS) of EqQ.) (Epresents the non-adiabatic
response of deeply trapped particles. The adiabatic regpoh(all) particles is included in the
second last term of the LHS of Eq. (17), because the equilbpressuré® includes both thermal
and (isotropic) kinetic pressures from hot ions.

We also note that the non-adiabatic kinetic contributios baderf;, or By, similar to the term
due to the fluid pressure gradient. Moreover, these two tesimse the same order of singularity
near rational surfaces. Therefore, The eventual kinetidifivation of A" in our model shares the
similar physics as that from the fluid pressure gradient, bg changing the Mercier index as
shown below.

D. Calculation of &’

Equation (17) can be solved f&', following the same procedure as that in Ref. [30]. In case
that the last two pressure terms do not vanish, there are &g small solutions near the rational
surfaceq(Wys) = m/n. The ratio of the small to large solution is discontinuousoas the rational
surface. This discontinuity is defined Asand is used as the asymptotic matching parameter to
the inner resistive layer solution.

Introducing a local variablX near the rational surfaa@ = Ys

| (3) (@), 09

The leading order in the/I expansion of Eq. (17) gives

d?A 1 -\ 3-D
W+<_Z+7+T A=0, (20)
where
.
r—_ A (dayrdo 1| 1)
2m \ dy qu\/gWgXXllJ
_lg? (dq\ ?/dP d g 1
o= gon(@) (Gwave )5 .
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Note that the drift kinetic effect modifie&’ essentially via the modification of the Mercier index
D, [36]. The kinetic modification of the Mercier criteria hasdpestudied in literature, e.g. in [37]

for a large aspect ratio plasma. Our result obtained heralid Yor a generic torus, but in the

deeply trapped limit. Both in [37] and here, the kinetic nfadition is shown to be proportional to

the gradient of the equilibrium pressure.

The solution of Eq. (20), which is the Whittaker function [3Bas a power series expansion for
smallX, whenv = —1/2+ /D is not an integer. The two independent solutions, from twesi
of the rational surface, that satisfy the inner asymptatithe outer ideal solution [30], are

AT(X(r)>0)=(r—rg™" <1— %X(r) +) +A(r —rs)1+v (1_|_ 2(1:\)))((0 +) ,

A (X(r)<0) = (I’s—r)_V <1+ %X(I’) —|-) —|—A,(I's—r)1+v (1_ 2(12_\,))(“) +) ,

wherer is an equivalent cylindrical minor radius, and

X(r)zzm,/E‘;':%(il—lfrJ (r—rs) = (r—rs)Xg,

(=120 T(AHA V) 1oy
T TA+2v) T(A—v) %5
(=120 T(1-A+V) L 1in
T T(142v) T(-A—v) g

In a true circular cylinderg? = (dy;/dr)?, and hencey = 2m/gf. The asymptotic matching
parameter is calculated as

sinvrtl (1—2v)

I = — _x+ _
N=A +A_ Xg e cogAT) o r(2+2v)r(1 A+VF(1+A+vV). (23)
The abovel has a smalv expansion
N = _x91+2V)mcot()\T[){1+ [—2—4Y(1)+WPA-N)+WYA+N)]v+--}, (24)

whereW(x) = dInT (x)/dxis the digamma function. Interestingly @s— 0 in Eq. (24), the above
A formally recovers the result with vanishing pressure geatl{and in the absence of the kinetic
effect) at the rational surface, even though the latter cas@ot be derived using the same power
series expansion for the solution.

The drift kinetic effects of trapped particles modityvia the parameter = —1/2+ /D), see Eq.
(22). Itis evident from Eq. (23), that the stability margiccars atA = 0.5, independent of. At
small values of/, 0 < v < 0.5, A’ is positive (negative) whek > 0.5 (< 0.5). A larger value of
can change the sign &f.

E. An analytic toroidal equilibrium

In order to quantify the drift kinetic effect of deeply traggb particles od\’, we consider an exact
analytic toroidal equilibrium with elliptic shaping. Th®-<alled Solov’ev equilibrium [39] is
specified by a special choice of the equilibrium pressurecamcent profiles, as well as the plasma
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boundary shape. The poloidal current flux function from Eld) (s a constanit()) = const The
equilibrium pressure is a linear function of the poloidakffunctiony

| 1+k?
P(‘P):—% T(K

wherek () = constis the elongation of the plasma cross section shape. Spegifige plasma
boundary as

Rlr—a = Ro(1+284c080)Y/2,  Z|;_a = Rogak SiNB(1+ 254c080) Y2, (25)
whereg; = a/Ry, the solution of the Grad-Shafranov equation reads

Ik [RZ%Z 1 2 o] Rkl o 5
qJ_ZquO 7+Z(R2_R(2J> _aR(Z) —z—qo(sr_sa)a

with
R=Ro(1+ 2 cosB)/2,  Z = Roke; sinB(1+ 2&, cosd) /2,

andg, =r/Rp. This series of equilibria is fully specified by five free pax@ters(€a, do, K, Ro, ).
Because of the special choice for the plasma shape functiosi is also certain triagularity to
the plasma shape (as shown for example in Fig. 3), makingdmdy of equilibria very useful

in approximating realistic tokamak plasmas. The only lahdn is that the aspect ratio cannot be
smaller than 2, constrained by the specification of the péelsoundary (25).

Figure 3: One toroidal Solov’ev equilibrium shown in a spfati field line coordinate system, with
Ro=3m,a/Ry=0.33,go= 1.4,k = 1.6.

All the equilibrium quantities can be calculated analyticdor instance
@ V14 2¢, E(K)

T 1—4¢? ’
12 1

B?= — |———
R% 1+ 2¢, cosP

K?€? <er +cosD+ ¢ cosze) 2
a5 ’

2
e
~tsinfe

+q(2) T 1+ 2¢, cosO

15



whereE (k) is the complete elliptic integral of the second kind, wktk /4¢€; /(1+ 2¢;).

Since the derivations of the Newcomb-like equation havenlyeade for a straight field line flux
coordinate system with the jacobign= qR?/I, we need to choose a poloidal angigfor the
Solov’ev equilibrium, that gives the same jacobian. [The& fystem(r, 6, @), with the geometrical
angled, gives a jacobiaggeom= R3Ker /R] It can be shown that, at each flux surface, the poloidal
anglex should be chosen to satisfy the following equation

0x _ Rodo
6 Rq’
Definingx = 0 at6 = 0 (the outboard mid-plane), it is easy to show th&aries from O to 2, asb

varies from 0 to 2u All the equilibrium quantities, that enter into the final\Wsomb-like equation
(17), can also be calculated in the, X, @) coordinate system

2
g (&, x(8)) = (Iqﬁ) [Sin?O(1+ 2&, cosB) + K(&r + & COS 0+ cosB)?(1+ 2¢; cosh) ] ,
0

2
X = (Roiioeq) [cos6(1+ 2¢, cosB) 2+ K sir? 6(1+ & cosB)?(1+ 2¢, cosd) 4],
r
1+K212
KF%C]O B2
Some of the intermediate quantities, appearing during te@gus derivations, can also be analyt-
ically calculated. In particular, the normalized bounceaqiy, the normalized toroidal magnetic

precession frequendyy, for deeply trapped particles, as well as some other facton f£q. (18),
are

1 K2€2 & k%3  (1-k?)e? 12
T =2 | + L +—L+ 1+2¢ ,
olAmax = 2700 (1+ 2% ) {2(1+ %) ¢ 203 (120
N do 1 K2€2 -1 1 K2g,
O |/\max = + 2 2 T 2 |»
Rokerl \ 1+ 2¢, a5 (1+ 2¢) a5
9(Xo0) = Roq(1+ 2¢;),
1 K2e2\ ~1/2
h(Xo) = < + r) ,
1+2e o3
1 K22\ ~3/2 & ke3>  (1—k?)e?
Ho=< +—r) { +—r+ L 1+28)}-
1+2 o3 2(1+2¢) o 242 ( '

Some of the surface averaged equilibrium quantities irevédwngthy calculations (see Appendix),
but can be eventually expressed in terms of the completgtielintegrals of the firsti (k)) and
second E(k)) kind

1 [en 1 ox 1+K?
by _ L Wy — & Wy _ 2 _(1—
g 2n/o grrdyx 2T[/ g aede 3Trqoq| 1+c[E— (1-c)K],

4 1
G = 15MRZK2CH (qo) 1 ; = {2(1—¢%) [(—2+19¢® + 15¢*)E + 2(1—¢) (1 — 5¢°)K]
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K2

+ > {(44+ 27907 — 258 + 63c%)E + (1— ) (—44+ 3¢ + 9c*) K] } :

wherec = 2¢;,.

The exact analytic expression for the surface averagedlg@lacarrent densityo is difficult to
calculate. An approximate expression, up to the fourthoadeuracy ire, can be obtained

o ! 1+K2( +10+10 +K20+ 20 +K40>
e o1 2 3 4 5 —Y6 ),
2MRyg K B a9 o a8

where
01 =4(1+¢) Y%K,

02 = 125(1+C)1/2[—(1+302)E+(1—C)K],

03 = 57 (1+0)Y? [(—4+15c2 +21chE+4(1—c) (1 - 3c2)K],
04 = 57 (1+¢)Y2[(86—270c% +21c*)E — 2(1—¢) (43— 24c*)K]
05 = 315 1+0)Y2[(8—9¢® +21c*)E — (1—¢)(8—3?)K],
06 = g7g(1+C )2 [~ (164 24c% — 147 E + 4(1—¢) (44 9A)K] .

Numerical test shows that the above approximation resulisss than 1% error for all reasonable
choices of equilibrium parameters.

The analytic coefficients, calculated for the Solov’ev éguium, can be directly inserted into
Eqgs. (21,22,23), for computindy. By varying theqp value, it is also possible to fix the radial
location of the rational surface, saysat= 1/6, givingk = v/2/2, where the values of the elliptic
integralsE andK are known, and hence the above analytic derivations canrbdeefuadvanced.
We shall, however, stay with more generic cases, by nunibrieaaluating equilibrium quantities
at arbitrary radial location, for the rational surface. dincbe verified that the parametarandv,
from Eqgs. (21) and (22) respectively, are dimensionlestef@endent oRy andl), as expected.

As examples, we show quantitative results for the abovesefiSolov’ev equilibria, witta/Ry =
0.33,Ryp = 3m, and varyingyp andk. Figure 4 shows threg-profiles, with the on-axis value
go=1.2,1.4 and 1.6 respectively. [With a giveg, theq -profile does not depend on the elongation
K.] We vary the kinetic fraction parametéginetic from Eq. (18), in order trace the changefi) as
shown in Fig. 5. In the absence of the kinetic effefghtic = 0), A’ is positive for all three cases.
The kinetic terms destabiliz&, for cases withgp = 1.2 and 1.4. However, for thgg = 1.6 case,
which has a large positiv&' at fyinetic = O, the kinetic effect first stabilize&s', with a subsequent
destabilization at sufficiently larg&inetic.
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Figure 4: Radial profiles of the safety facmprwith go = 1.2,1.4 and 1.6, for Solov’ev equilibria
with the inverse aspect ratay Ry = 0.33.

Further increase ofyinetic leads to an infinité\’ for all three cases, corresponding to the transition
to the ideal instability [28, 40]. This transition is assatedd with the parameter approaching
1/2, which is the pole of\ (23). The dependence of as well as\ andD,, as a function of the
kinetic fraction parameter is shown in Fig. 6 ffRy = 0.33. Note that for this family of Solov’ev
equilibria, the values o andD, are independent afp andk. The current drive ternA does
depend o andk, but not onfyjnetic.

The decrease of the Mercier tef, and hence the parameter, withfyinetic iS due to the can-
cellation between the two ternigP/dy)[d(g/q)/dy] andKy from Eqg. (22). For the Solov’ev
equilibria, the first (fluid) term is positive, the secondnlic) is negative. This is easier to see in
the large aspect ratio limit for the Solov’ev equilibriume&ping only the lowest order termsdn

it can be shown that Egs. (21)-(22) become

8 [3 1+k?
A~ st—= 1|,
15m 2 4gf
- . 1 . 161 fuinetic [1  1+k2] 1
D ~D(1+K Z. Di==—==. Ky=-— - ) 26
| (14 d)+4, =75 K 22 12 4R | Ve (26)

The above asymptotics also qualitatively explain why a tenahlue ofqp leads to ideal marginal
stability at a smallefjnetic, @s shown in Fig. 5.

Figure 6 shows that the destabilization/foccurs in the parameter spacelof 0.5 andv > 0.5.
This corresponds to the plasma regime, whEris positive in the absence of the kinetic terms yet
the ideal mode is tablé\( < ), for these Solov’ev equilibria.

The above results are not very sensitive to the elongaticempeterk, as shown by Fig. 7, where
we consider three values @f= 1,1.6 and 2, while fixinggo = 1.4. For all threex values, the
drift kinetic effects from deeply trapped patrticles dedtab A/, till reaching the ideal instability
boundary {/ — «). Moreover, a stronger elongation requires a smaller kdrfedction, in order to
reach the ideal marginal stability. This again can be uridedsfrom the asymptotic formula (26),
showing a larger kinetic cancellation of the fluig, at a larger value of.
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Figure 5: Calculated\’ versus the fraction of the drift kinetic contribution froneeply trapped
particles, for three toroidal Solov’ev equilibria, witph = 1.2,1.4 and 1.6 respectively. These
equilibria havea/Ry = 0.33,k = 1.6.

IV. SUMMARY AND DISCUSSION

Based on analytically tractable cases, this work shows wasible mechanisms of modifyiry,
by invoking either the kinetic physics or the active contreing magnetic coils.

In the single (poloidal) mode cylindrical approximatione Wwave shown that the active magnetic
control can be effective in modifyinfy, hence the tearing mode stability. Various combinations of
types of active and sensor coils can be used, either brirajirigtrinsically negativé)’ to a more
stable domain, or stabilizing an intrinsically unstableby the feedback system. This theory may
be applied to interpret the experimental results in RFX jere the internal resonant modes are
efficiently suppressed by magnetic feedback coils.

We have investigated drift kinetic effects from trappedtiocles onA’. This requires considera-
tion of toroidal geometry, as well as the inclusion of kiegiressure tensor terms into the fluid
equations. For deeply trapped particles (both thermal areigetic), it is possible to derive a
Newcomb-like equation. One simplification in this derieatiis the neglect of the finite orbit
width (of energetic particles). The eventual calculatibd\ofrom the Newcomb equation follows
standard procedures.

For a family of toroidal equilibria, all the equilibrium quotties entering the toroidal Newcomb
equation can be analytically calculated, which allows ugjdantify the modification of\ by
trapped patrticle kinetic effects in toroidal geometry. Wedfthat the kinetic contribution tends to
reduce the degree of singularity of the large solution fréwva duter region. As a consequence,
the kinetic contribution generally destabilizA§ and can lead to the marginal stability for ideal
mode. The main physics of the kinetic modificationfin our model comes from the change
of the Mercier index due to the non-adiabatic response oplgieteapped particles. Note that
the adiabatic response is also included in our model, viaatad equilibrium pressure term. This
kinetic destabilization effect may partially explain treeent numerical results with NIMROD [27]
and M3D-K [26], although the finite orbit width effect is alseluded in these numerical studies,
which probably also contributes to the kinetic destabilaof A'.

Finally, we emphasize that the effects such as the toroiapling of different harmonics, the
kinetic contributions from other particles rather thanplgerapped ones, and the finite orbit width
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Figure 6: The current drive terik, the Mercier indeXD;, and the powev = —1/2+ /D, of the
large solution, versus the fraction of the drift kinetic taoution from deeply trapped patrticles,
for a toroidal Solov’ev equilibria witla/Ry = 0.33,k = 1.6 andgp = 1.4.

of energetic particles can potentially also be important¥o We neglected them in this study in
favor of analytic tractability. Generally these effects @nly be numerically studied.
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A FAMILY OF INTEGRALS

The surface average of equilibrium quantities for the Seoequilibrium involves calculating a
family of integrals of the form

21
S(A) = /0 (1+Acos9)'de,

wherev is a half integer, and € A < 1.

Forv=—1/2 and Y2, the above integral is easily converted to the compleiptiglintegrals of
the first and second kinds, respectively

S.12=41+N) " VK(K), Sz =4V1+AE(K),
wherek? = 2\ /(1+)). The integrals fov = —3/2,-5/2,--- can be calculated using a recursive
formula
AdS
v d\’

S-1=S-— (27)
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Figure 7: Calculated\’ versus the fraction of the drift kinetic contribution froneeply trapped
particles, for three toroidal Solov’ev equilibria, withoglgatiork = 1,1.6 and 2 respectively. These
equilibria havea/Ry = 0.33,qo = 1.4.

valid for arbitraryv value. For example

S 32=4V1+N1-N?)IE,

S-5/2= 3VITA(L-N)24E — (1-N)K],

S = % 14+A(1—2%)3[(23+9N?)E —8(1 - MK],

Sgp= %.SM(l—AZ)4[16(11+ 13)E — (1) (71+25\2)K],

4

S.112= gV 1+A1- A2)75[(563+ 1338\2 + 147A*)E — 8(1— N) (314 33A?)K].

Forv =3/2,5/2,---, the integrals can in principle be calculated by solvingdbeve differential
equation (27), or simply by using the following relation

S)S:\])-_l — (1_ )\)V-i-l/z,

valid again for arbitrary.
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