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Abstract— The state-space explosion problem, resulting from
the reachability computation of the synthesis task, is one fo
the main obstacles preventing the supervisory control they
(SCT) from having an industrial breakthrough. To alleviate
this problem, a well-known strategy is to utilize binary dedsion
diagrams (BDDs) to compute supervisors symbolically. Baseon
this principle, we present in this paper an efficient reachabity
approach to large-scale discrete event systems modeled asitk
automata with variables. By making use of the disjunctive
partitioning technique, the proposed approach partitions the
transition relation of a considered system into a set of paitl
transition relations according to included events. Then tlose
partial transition relations are selected systematicallyto per-
form the reachability computation. Experimental results show
that more iterations might be required to compute the fixed
point, but the intermediate BDDs are smaller. The approach s
been implemented in the supervisory control tool Supremica
and the efficiency is demonstrated on a set of industrially
relevant benchmark problems.

I. INTRODUCTION

ysis, the number of states are not affected and could po-
tentially cause thestate-space explosioproblem that typ-
ically occurs when the behavior of interacting sub-systems
is studied. To alleviate the state-space explosion problem
a well-known strategy is to symbolically represent system
models and compute supervisors by usliigary decision
diagrams(BDDs) [5], [6], [7]. [8], [9], [10]. In [3], a BDD-
based synthesis approach was presented. Particularld bas
on a plant and a specification modeled by EFAs, initially, the
EFAs are encoded as BDDs. Afterwards, the corresponding
BDD for the states of the monolithic supervisor is computed
iteratively. However, the main problem of such a monolithic
approach is that during the reachability computations, the
number of nodes in the intermediate BDDs might be signif-
icantly large.

To reach significant BDD reduction, it is crucial to explore
the search space in an intelligent way. The key is to impose
structure on the state-space exploration. Moreover, tizeca

The analysis of discrete event systems (DESs) has beeiich an intelligent state-space exploration, an important

paid extensive attention by researchers and scientistsein fingredient is the use gbartitioning techniqueswhich was
computer science community. One typical analysis approagiyorously defined in [11]. In [12] and [13], a straightforwia
is to utilize formal verification techniques, such as modebut non-trivial symbolic reachability approach was presdn

checking, to verify whether considered systems fulfill give
specifications or not. However, from the control enginegrin

in the context of SCT. The approach, based on the disjunctive
partitioning technique, represents the monolithic trémsi

point of view, instead of verifying the correctness of a DESelation of a fully synchronized DES by a collection of patti

model, a controller, which automatically conducts the eyst
behavior without violating specifications, is a hecesditye
supervisory control theory (SCT) [1], [2] provides a cotiro

transition relations. However, these approaches are lased
finite automata without the introduction of variables. Agth
time of writing this paper, to the knowledge of the authors,

theoretic framework for control engineers to design sucllet no work has been presented to adapt these partitioning

a safety device, referred to as teapervisorof a system.

Given a DES model to be controlled, th@ant, and the

intended behavior, thepecification the supervisor can be
automatically synthesized, guaranteeing that the cléseol-

system always achieves the given specification.

techniques to DESs with variables.

In the context of the aforementioned research develop-
ments, motivated by the above remarks, in this paper, we
present an alternative symbolic reachability approach. By
making use of the disjunctive partitioning technique, the

In [3], a framework was presented where users can bofyoposed approach partitions the transition relation of a

model a system and obtain the supervisor in the forrexef
tended finite automatéEFAS) [4], which is an augmentation

considered system into a set of partial transition relation
according to included events. Then those partial tramsitio

of an ordinary automata extended with variables. By takingg|ations are selected systematically to perform the meach
the advantage of EFAs, more compact and comprehensiygivy computation.

system models can be obtained. In addition,

instead Of 10 haper has three main contributions:

representing the supervisor as a single automaton, thel guar
generation procedure provided in the framework can extract
a set of logic formulas. Those extracted formulas, referred
to as guards, are attached to the corresponding transiifons
original models, which results in a modular representation
of the supervisor.

Whereas the aforementioned framework allows compact
representation of large state-spaces, when it comes te anal

Suggesting a symbolic way to partition DESs modeled
as EFAs by using the disjunctive partitioning technique.
Proposing a straightforward algorithm to realize the
structural state-space exploration.

Integrating this approach with our modeling framework
and demonstrating the efficiency on a set of industrially
relevant benchmark examples.



[l. PRELIMINARIES Definition 11.3 (Extended Full Synchronous Composition)

— E E E _
In this section, some preliminaries used throughout the res€t Bk = (L™ x V.3 b= e (" v)) ko= 1,2, be

i ’ D n
of the paper are provided and briefly explained. two EFAs with the shared varlables__. (v',...,0™). The

Extended Full Synchronous Composition (EFSC)afand
A. Extended Finite Automata Es is

Definition 1.1 (Extended Finite Automata)An extended p, | B, = (L7 x LP2 x V, 2P U £P2 (6B 072 )
finite automatonZ is a4-tuple N o ]
where the state transition relaties is defined as

E E E o PR .
E= (L7 x V., =, (&), v0)), 1) (671,052) Sy (51, 652),0 € 21 01 5 i
where: 35? %’gl/m 5? €—p, and
« L” x V is the extended finite set of states, denoted by ~ = ~ —g:/az £* €= p, Such that:
Q, whereL” is a set oflocationsand V' is the domain e g=g1 g2,
of definition of thevariables o Fori=1,...,nand¥v € V:
« YF is a non-empty finite set of events i.e. the alphabet; at(v) if ai(v) = ai(v)
o »C LFP xXF x G x Ax LF is the transition relation ; ai(v) if ay(v) =¢
whereg is the set of guard predicates ovérand A = a'(v) = as(v) if al(v) =¢
{a | a: a function fromV to V'} is a collection of i otherwise

action functions; - PR
o (tF vg) € LT x V is the initial state. 2) ((F1,052) 2 0 (0P 0F2),0 € £1\5; if

(
E1 E1 E2 — /Eg-
The finite setV = V! x ... x V™ is the domain of Eé 09,0, £7) €, and! -

E1 pEz\ O jE1 jE i
definition of ann-tuple of variablesy = (vt ..., v™) with 3) éEl’E ) _>91é“ (%, 672), 0 %EQ\% i
- 1 n : (t"2,0,9,a,0"?) e, and = (51,
the initial valuesvy = (vj,...,v}) € V. A guard g(v) is a 2
predicate over the variables that relate each elemehttf B. Supervisory Control Theory

either1 (true) or 0 (false). Actions are written as As described in Section I, the goal of SCT [1], [2] is to
6: =a(v) = (a*(v),...,a"(v)),where 6 € V. automatically synthesize a minimally restrictive supsovi
S which guarantees that the behavior of the pl&Bnalways
The symbol¢ is used to denote implicit actions that do noffulfills the given specificationSp. Notice that if the plant
update the values_ of variables. For instanc_e;,l(fu) = &, it is given as a number of sub-planfy, ..., P,, the plant
means that action’ does not update variablé, i.e.v* =v'. P = P, || ... || P,. Similarly, Sp = Sp, || ... || Sp,,.

For convenience, the states (locations and variable Valugsor each sub-specificatiofip;, ¥°7: C %, meaning the
can be explicitly written out in system transitions accogli specification can not specify more than what the plant can
to the following definition. achieve. Within the theory, some states of an automaton
Definition 1.2 (Explicit State Transition Relation) et £ = Ebtyp|cally a specification, are identified asarked s_tates
(LF x V,S, s, ((F vy)) be an EFA. The explicit state Q;,.. The marked states are the states that are desired to be

reached from the initial state. The set of marked states of a
composed automatafi, || E; is the cartesian product of the
—e 2 {(P0,00P 0)eLP xV xS xLFxV| corresponding sets of marked states. In addition, the higha
yE gg/a (E. yc SATG(g) A (v,6) € SATA(a)}, is divided into two disjoint subsets, the controllable evsst
Y., and the uncontrollable event s¥t,.
wherev and4 are the values of the variables before and after In SCT, the supervisor of a DES to be synthesized is
executing the transition, respective§ATG denotes the set assumed to beninimally restrictive meaning that the plant

transition relation ofF is defined as

of variable assignments that satisfies the gugrd, is given the greatest amount of freedom to generate events.
A Moreover, there are two properties that the supervisor bugh
SATG(g) = {veV |vEg}; to have:
andSATA denotes the following set: « Controllability: The supervisorS is never allowed to
disable any uncontrollable event that might be generated
SATA(a) 2 {(v,0) € V x V [0 = a(v)}. by the plantP.

For brevity, we denote the explicit representation of a * Non-blocking The supervisoty guarantees that at least
transition ¢ %,,, ¢ by o 4 Additionally, since we one mark.ed state can.be reached from every state.
are interested in deterministic systems, we merely focus on 1€ Supervisory synthesis starts by generating the system
deterministic EFAs. In the sequel, for the sake of brevitg, w0 = £ || Sp and detecting a set of initiallly uncontrol-

simply write EFAs for deterministic EFAs. lable states. Through a series of reachability computation
The composition of two EFAs is defined by tegtended forbidden states are iteratively excluded fra@pie until the
full synchronous composition (EFSC) remaining states are both controllable and nonblocking. Th

resulting system is the supervisSrand all of the included



states are hereby calleéfe statesdenoted byQ®. refer to  where b™ denotes the Boolean variables representing the

[13] for more details. alphabet whileb” and b% are two different sets of Boolean
) o ) variables representing the current and updated locatfenrs.
C. Binary Decision Diagrams an EFA wheren variables are defined!" andbV" denote

Binary Decision Diagrams (BDDs) [5], [6], compact andthe current and updated integer values of ik variable.
operation-efficient data structures for representing Baol In our framework, integers are represented as the two’s
functions, have proven to be a powerful technique to combabmplement system as array of BDDs [16]. Consequently,
the state-space explosion problem. Given a set of Boole#ime characteristic function of the transition relation ofesFA
variablesB, a BDD is a Boolean function: 28 — {0,1}, E, x,, will be

which can be expressed using Shannon’s decomposition [14]:
X=p = \/ XHZ$ é
h = (=bj A hlp,—0) V (bj A hlp,—1) bj € B PES S o
whereh |,,—o andh |, refer to assignmertt and1 to all
occurrences of the Boolean variable respectively. A BDD [1l. EFFICIENT SYMBOLIC REACHABILITY
is represented as a directed acyclic graph, which condists o COMPUTATION

two types of nodesdecision nodesnd terminal nodesA  Not surprisingly, reachability (co-reachability) comatibns
terminal node can either b@&terminalor 1-terminal Each turn out to be the bottle-neck of the SCT synthesis algorithm
decision node is labeled by a Boolean variable and has twitopting the symbolic representation using binary decisio
edges to itslow-child and high-child The low- and high- diagrams, we can partially solve this problem. However,
child corresponds to the cases in the above equation whetéth more complicated DESs, the BDD representation of
bj is 0 and1 respectively. Thesizeof a BDD refers to the the monolithic transition relationy,, ; , might be extremely
number of decision nodes. More details can be found in [15large to be constructed. More |mportantly, even though
Given an EFAE, BDDs can be used to represent thesuch BDD representing the monolithic transition relatien i
explicit transition relation 11.2. The key point is to makemanaged to be constructed, the reachability computatign ma
used of thecharacteristic function still suffer from the state-space explosion due to the large
intermediate BDDs. In this section, we present a way to
partition DESs modeled by EFAs by using the disjunctive
partitioning technique and then a straightforward but rent
ial algorithm, based on the partitioned BDDs, is presented
1 iffaeW 1 to guide the state-space exploration.
xXw(a) = 0 iffagW (1) SinceS is the synchronization of a number of sub-plants
and sub-specifications in the form of EFAs, in all of the
following computations we focus oV > 2 EFAs and let

Definition 11.4 (Characteristic Function)Let W be a finite
set so thatW C U, whereU is the finite universal set. A
characteristic functionyy : U — B is defined by

Let n be the number of elements . In practice its
elements can be represented by binaryuples inB™ (m =

[logy]). Hence, an injective functiof: U — B™ is used to E=Ell... [ Bn.
map the elements ity to elements ifB™: A. Partitioning of the full synchronous composition
_ \/ a & O(w), @) Partitioning of the transition relation as introduced ii]1

has become the standard guideline to alleviate the statsesp
) _ problem. This is done by splitting the transition relation
where > on two m-tuplesv, andv, is defined as into a set ofpartial transition relations connected by either
v v 2 /\ (v} e o), 3) disjunction or conjun%tion In this paper, in correspormen
0eicm with each event € ¥*, the partial transition relatloag
- under full synchronous composition can be constructed in
wherev? denotes the:th element in the binaryr-tuple v. the following steps:

L - . _ i
Based on Definition I1.4, the characteristic function foeon 1) Computex,s  where Ef = Bl | ... | EL
element of the explicit state transition relatien, o, L0 can {E],.. Ejn} C{E,...,Ex}ando € En...N
be constructed as: E}.

weW

U A G (CN AN I 2) Computex, ~whereE! = Ej || ... || E,, and
% /0l (El,... EL Y ={E\,...,EN}\{E],...,E} }.
Regardmg step 1, computl% , two further steps need
\/ to be performed in advance:
n(”’ﬁ)GSATA(“””eSATg(g) (4) « Computey/, K which denotes the characteristic func-
/\(b"i S0 A B o 9(131'))) A tion of @ETEexcluding the action functions of EFA
i=1 variables,

bl 0(0) A L o g(g’) A b e 0(0), . Computexg%T denoting the update of EFA variables.



To computex’ﬁ) , we make use of the following two
Ef

propositions.

Proposition 1. For an EFA E and an event € XF, the
characteristic function representing the explicit traticsn
relation througho of E, denoted be@E, is computed as
follows:

X&E = X—g A Xo>

where ., is the characteristic function of the evemtand
X IS the explicit transition relation of the EF&.

Proposition 2. Let EI,..., E} bem > 2 EFAs ando <
YE ... n%EL. Then
’ _ N [vi Alad
Xo = k/_\l(a @V .. )X ) (5)

whereE!t = Ef || ... || E},.

Subsequently, we computes,» , which represents the

update of EFA variables after the occurrencesofin the

following computations, we focus on the update of a single
variable between two EFAs and extend it to all variables for

all EFAs in the model.

Definition 111.1 (Updated Transition Relation Througt).
For an EFA E and a single variablé, the updated transition
relation forv? througho, denoted by&viyE, can be defined
as

i g= {(l,0,0,0,0) | Y(l,v,0,0,0) € Sg A6 # 0}

Recall that,from Definition 11.3, the result af (v) can be
divided into four if-then constructs, which we denote @y.
Each(; consists of anif part, denoted by, and athen
part, denoted byf;:

C(2(’1)1)"5,E1||E2) é{((éEl ) £E2)7 v, 0, (éEl ) éEz)a 15) |
(4 0,0,07 ) € 5, A
(€E27’Uvo'7 éE2? V,) € }E)E2 \ ’E)'Ui',E2}7

C3(£>vi,E1HE2) é{((£E17gE2)’ v, 0, (éElaéEz)vﬁ) |
(0B 0, 0,05 1) € S, \ Dy A
(

7 , o
22y, 0, £E2,v) € i gy b

Ca(Dror py 1 5,) S 072), 0,0, (05 £72), ) |
(65, 072), 0,0, (65 (72),5) ¢
3
U@ i)

J=1

wherev = (0%, ... 071 € ot L
Hence, by definition we have:

).

4
Xﬁ)m‘,El | Eo - j\:/l ch(ﬁhﬂ,zzl 1B,)
Based on Definition I11.2:

n
ng}”ﬂ = _/\1X,3”YET- (6)
1=

Moreover,y o, . can be computed according to (5) and (6):
E

o
X =X AXar (7)
At this stage, we are done with step 1.

Remark. Recall from Definition 1.3, that if there exists an
events, such thatr € ©£1\xF2, on the occurrence of,

E> would remain the previous location, i, (e LFP2 (=

¢. On the other hand, the values of variables are updated
according to the transitions labeled byin E;.

Definition 111.3 (Remained Transition Relation a@f). For

o I1: a} = aj; both actions update the variables to thean EFA E and an evenv ¢ ¥, the remained transition

same value.
e T1:a'(v) =al ora'(v) =dl.

o I: ab = &; the first action updates the variable but not

the second action.
o Ty:al(v) =al.

o I3:ai = ¢; the second action updates the variable b

not the first action.
o T3:a'(v) = ab.

o I,: otherwise; none of the actions updates the variable,
or the actions update the variable to different values.

o Ty:a(v) =o'

Definition Ill.2 (Interaction Transition Relation Through

o). For two EFAs E; and E,, and a variablev’, the
interaction transition relation through the eventdenoted
by C;(-%.: g, 5,), can be defined as

L8 052, 0,0, (1, £F2),0) |

(éEl Y /U, 0.7 gEl ) ’0)

(tF2 v, 0, 22y 0)

(e
Cr(=vi By | Es)
(e
’_)’Ui',E1 A

S
S ’gviyE2}7

relation of s for E, denoted by can be defined by
Ap={l,o,0)|Vt,{c LF Nt =1}

Therefore, the characteristic function representipg:
can be computed according to the following proposition.

Yroposition 3. Let El,...,E! ben > 2 EFAs ando ¢

YE .. UXEL, then

- = - 8

HEfu...uE}l k:lmefi ( )
Based on (7) and (8):

Xag = X, A X, )

Theorem lll.L1. For N > 2 EFAs Ey,...,Eyx and E =
Ei || ... || Exy and ann-tuple of variablesv?, ..., v", the
following statement holds:

ceUr_, =Fk

For the proof, refer to [17].

Xvg = X,7, (10)

E



B. Structural state-space exploration

Algorithm 1 Event-based Forward Reachability

Following the previous section, we conclude that in orderi:
to design successful BDD-based reachability algorithnis fo
large-scaled systems, it is vital to traverse the stateespa 2
a structural way. For this purpose, we present an altemativ 3
algorithm which is structurally similar to the workset algo 4
rithm in [13] with the difference that it works for the system s:
modeled as extended finite automata. 6:

After the transition relation of a system has been par-7:
titioned into a set of event-based BDDs, the reachabilitys:
computation, as is shown in Algorithm 1 starts to execute.o:
Taking as input the initial state and the set of partiaho:
transition relations, the algorithm maintains a set ofvacti 11:

input qo := (ﬁgl X ... X géﬂN X vp),
Wo = {%p, .oy Yo € 2P UL UEPNY
let Qo := {qo},k:=0
repeat
Pick and removeSElll--.nENE Wy
k=k+1
Qr = Qj—1 UReachability(Qs_1, %5, | |&x)
if Qr # Qr—1 then
Wi i= Wi 1UD(= g, .. Ex )UD (P B Ex )
end if
until Wy, =0
return Qg

partial transition relationd})/,.. For each iteration, one partial
transition relation is selected and a saturated reachabili

search (Algorithm 2) is performed on it. If more reachablégorithm 2 Reachability

states are found, based on Definition Ill.4 and IIl.5, more ;.
partial transition relations are appended to the worksee T ».
algorithm terminates as long as there is no transitionicglat 3.
in Wy,. The formal proof of the correctness of the algorithm ,.
can be found in [17]. 5:

Definition 11l.4 (Event Dependent Transition Relation Set
of o). For N > 2 EFAs, E1, ..., Ey, the event dependent &

. o
input Q, =g, |..|Ex

let Qo :=Q,k:=0
repeat
k=k+1

Qr = Qr—1U{(¢,9) | (¢,%) € Qx such that
3((],1}) S Qk*l A (q,'U,U, q/v’é) € ’E)E1 ||HEN}
until Qr = Qr—1
return Q@

transition relation sets of, denoted byD®(“ g, | jzy) IS "
defined as:

DS gy iEx) = {2 . By | 0 € D(0) Ao’ # o},

where

Experiments are carried out on a standard PC (Intel Core
2 Quad CPU @ 2.4 GHz and 3GB RAM) running Windows
7 and the result is shown in Table I. For each benchmark
example, the minimally restrictive supervisor generatgd b
the algorithm is both non-blocking and controllable. It can

Definition 11l.5 (Variable Dependent Transition Relation Set?€ observed that both the monolithic and partitioning ap-
of o). For N > 2 EFAs and au-tuple of variables!, ..., ", Proachescan handle AGV, for which the number of reachable

the variable dependent transition relation sets oflenoted States is up tol0”. However, by comparing the maximal
by D*(% g, .12y ) IS defined as: number of BDD nodes during the reachability computa-
tion, which can express the maximal memory usage, the
monolithic approach needstimes more memory than the
partitioning approach. Regarding the example BSP, event
though the final number of supervisor states is only,
the intermediate BDDs during the state-space exploration,
on the other hand, are large due to the high interactive
complexity of the system. The monolithic approach fails
to explore the state-space while the partitioning approach
IV. CASE STUDIES can survive and synthesize the supervisor within sec-
The proposed partitioning and traversal algorithm in thisnds. As mentioned before, since the proposed partitioning
paper has been implemented in the supervisory control toalgorithm is based on the alphabet which might contain a
Supremica[18] which usesJavaBDD [19] as the BDD large number of events, more iterations than the standard
package. In this section, it is applied to a set of academdc amlgorithm are needed to reach the final fixed point. However,
industrial benchmark examples to demonstrate the effigiendhe intermediate BDDs produced during the computation are
The benchmark examples where experiments are carristhaller, leading to improved memory and runtime efficiency.
out are: Resource Allocation System (RAS) [20], [21]Finally, with respect to the last two benchmark examples, Ca
Resource Allocation Systems with Error Handling (RAS-EHpand Mouse Tower and Extended Dining Philosophers, the
[17], Ball Sorting Process (BSP) [22], Automated Guided Vepartitioning approach can also handle some relativelyelarg
hicles (AGV) [23], Parallel Manufacturing Example (PME) problem instances with the acceptable time. However, with
[24], Cat and Mouse Tower (CMT) and Extended Dinninghe values of parameters growing, both the computation time
Philosophers (EDP) [25], [17]. and memory used increase rapidly.

DE(O.) = {0/ | dE € {Elv"'vEN}a
such thats’ is the successor of in E}.

DY (5 gy Ey) = {2 B |Ex| 0 € D’(0) Ao’ # 0},
where
D*(0) = {0’ | 3(t,0", g,a,0) € —p,|Ex:YX0i €9
such thaE(é,v,a, é,ﬁ) c ;i)EIHHEN A Ui 7& ﬁl)}



TABLE I: Comparison Between Two Symbolic Synthesis Approaches

BDD Monolithic Approach

BDD Partitioning Approach

Model Reachable States  Supervisor states BDD Peak CorngouEme (s) BDD Peak Computation Time (s)
RAS 1.19 x 10* 0.88 x 10* 2826 0.49 215 0.13
RAS-EH 1.84 x 106 0.68 x 10 42314 18.67 2275 0.87
BSP 706 706 M.O. - 16640 10.48
AGV 2.29 x 107 1.15 x 107 9663 3.60 1001 0.87
PME 8.13 x 10° 0.46 x 10° 1022 0.24 225 0.14
CMT (1,5) 605 579 447 0.01 255 0.02
CMT g5,1§ 1056 76 635 0.06 590 0.04
CMT (1,7 1198 1156 801 0.10 321 0.39
CMT (7,1) 2710 155 1074 0.15 974 0.06
CMT (3,3) 2.96 x 10° 1.64 x 10° 16770 24 5070 4.1
CMT (5,5) 1.07 x 1010 3.15 x 109 M.O. - 65102 79
EDP (5,10) 167761 1596 1157 0.5 134 0.4
EDP (5,50) 3.46 x 108 1.38 x 10° 7743 1.25 178 0.55
EDP (5,100) 1.05 x 1010 1.05 x 106 - T.O. 192 1.3
EDP (5,200) 3.28 x 1011 8.20 x 109 - T.O. 206 6.5

M.O. indicates memory out during reachability search (duéatge intermediate BDDs) and T.O. indicates time out (18)mi

V. CONCLUSIONS [11]

In this paper, we presented an alternative symbolic approac
to large-scaled systems modeled as extended finite automata
The proposed approach first partitions the closed-loogsyst (12]
under full synchronous composition based on the disjuactiv
partitioning technique, and then depends on an efficient
algorithm to explore the state-space in a structural way.

The proposed approach has been implemented and in‘e-
grated into prior work. Besides, it is applied to a set of aca-
demic and industrial examples to demonstrate the efficiené§74]
Overall, the whole framework provides the convenience fqfs;
users to model systems and obtain control functions in
the same model domain. All computations are perform
symbolically by BDDs, which are transparent and the only
interface users deal with is the EFA framework.

6]
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