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Abstract

The rising concerns about the global warming and emissions on one hand, and
the limited sources of fossil fuels on the other hand, has made electrification of
vehicles an interesting topic among researchers and companies. Hybrid electric
vehicles (HEV) have been on market for several years. These vehicles proved
to decrease the fuel consumption due to downsized engine, regeneration of the
braking energy, and the higher efficiency gained from the extra freedom in choos-
ing the engine operating points. Plug-in HEVs have the additional ability to store
energy from the electricity grid using large capacity batteries. The extra source
of energy in these systems opens new questions concerning both the energy man-
agement (the strategy that decides the power split between power sources) and
sizing of the components.

The first part of the thesis is on energy management strategies for a PHEV. A
trivial strategy is to run the vehicle on battery energy until the battery reaches a
lower level and then keep the battery state of charge around that level. This strat-
egy requires no information about the trip; however, it doesnot result in the best
fuel economy. An energy management strategy is proposed forPHEVs which is
based on minimizing an equivalent fuel consumption. To implement this strat-
egy, some a priori information about the trip is required. The proposed strategy
can improve the fuel economy considerably, even when using only information
about the trip length, compared to the trivial discharge strategy. Increasing the
information details about the trip results in fuel consumption close to the opti-
mal, calculated by using dynamic programming, when full information about the
trip is available.

The second part of the thesis focuses on design of PHEVs. The goal here is
to design a vehicle that has low cost and low fuel consumption. An approach
based on convex optimization is used for simultaneous optimization of compo-
nent sizes and energy management for passenger PHEVs. The optimal sizes of
key components, i.e. battery, electric motor, and engine/engine generator unit are
obtained by minimizing a cost function, including operational and components
costs. The effects of different performance requirement levels, change in prices
of components and energy, and also driving pattern of different drivers, on the
optimal design are studied. Since the result of the optimization depends highly
on the driving cycle, a systematic way to generate driving cycles that reflect driv-
ing patterns of different drivers is given.
Keywords: Plug-in Hybrid Electric Vehicles, Energy Management, ECMS, Com-
ponent Sizing, Driving Cycles.
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Part I

Introductory chapters





Chapter 1

Background

The development both in technology and economy on one hand, and the growing
population on the other hand, has dramatically increased the mobility and trans-
portation in the last decades. Although transportation hasmade life easier for
people in many ways, it has raised concerns about the limitedsources of fossil
fuels and the impacts on the environment. The transportation sector is a major
consumer of energy and emits a high amount of pollution [1]. Suggested solu-
tions for this problem requires motivating higher use of public transportation and
developing cleaner and more fuel efficient vehicles, including electrification of
vehicles.

1.1 Electrified vehicles

Hybrid electric vehicles (HEV) are the first generation of electrified vehicles that,
in addition to aninternal combustion engine (ICE), have anelectric motor (EM)
and an electric energy storage. HEVs can improve fuel efficiency, because of the
possibility of downsizing the engine, the ability to recover braking energy, the
extra power control freedom gained by the two power sources,and the ability to
stop the engine when idle.

In fact, electrified vehicles existed for more than hundred years. The first
electric vehicle was built in 1939 by Robert Anderson. At thebeginning of the
twentieth century, electric vehicles were available in themarket, as well as steam
or gasoline powered vehicles, and actually, the electric vehicles were a more at-
tractive choice to the customers, since they did not have theproblem of unclean
gasoline engines and long start up time of steam engines. In 1901, Ferdinand
Porsche even developed the first gasoline-electric hybrid vehicle. However, the
main problem with this vehicle was the heavy batteries, thatcould weigh up to
1.8 tones for a four passenger vehicle. Moreover, the inventof electric starters,
along with the expansion of the roads, made longer range engine powered vehi-
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Chapter 1. Background

Figure 1.1: Transportation has raised concerns about the impacts on the environ-
ment.

cles dominant products on the roads [2]. It was not until a hundred years later
that the concerns about emissions and dependency on limitedresources of fuels
brought the electrified vehicles back on the market. In 1997,Toyota released the
first series of Prius which was a hybrid electric vehicle, making it the top sell-
ing hybrid car, by selling more than 2.8 million Prius aroundthe world through
October 2012. Today, most of the car manufacturers have their hybrid version of
vehicles in the market, for example Honda Civic Hybrid, Toyota Camry Hybrid
and Insight, Ford Fusion and Escape Hybrid, Hyundai Sonata Hybrid, and Lexus
CT 200h.

The improvements in battery technology and the reduction incost and weight
of the batteries on one hand, and the desire to become independent on the fos-
sil fuels on the other hand, has made the second generation ofthe electrified
vehicles,Plug-in hybrid electric vehicles (PHEV), interesting to the manufac-
turers. PHEVs have the additional ability to store energy from the electricity
grid, using large capacity batteries. The stored energy canpropel the vehicle
on short trips, thereby reducing vehicle’s dependency on petroleum and poten-
tially CO2 emissions. Today, there are several PHEVs available in the markets,
like Tesla Roadster, Mitsubishi i-MiEV, Nissan Leaf, Chevrolet Volt, Ford Fo-
cus Electric, BMW ActiveE, Renault Fluence Z.E., Toyota Prius Plug-in Hybrid,
Renault Kangoo Z.E., Coda, Tesla Model S, and Volvo V60 Plug-in Hybrid.

The extra source of energy in PHEVs has opened issues concerning the opti-
mization of these systems. To maximize the benefits from PHEVs, they can be
optimized at three different levels: first, the configuration level, where the best

2



1.1. Electrified vehicles

configuration is chosen; second, the design level where the optimal dimensions
of different components for the vehicle with a fixed configuration are found;
third, the energy management level, where the optimal powerflow for the vehi-
cle is decided [3].

Depending on how the power sources in a PHEV interact, they can be cate-
gorized into three main types: series, parallel, and series-parallel hybrids. Each
of these configurations has its advantages in specific situations [4]. In this thesis,
the optimization of series and parallel PHEVs at the energy management and
design levels are studied.

The first part of this thesis is on optimization at energy management level.
Energy management strategies decide the power split between the ICE and the
electric machines, while meeting the power demand at the wheels. The main
aim of the optimization is to minimize the total energy consumption while sat-
isfying constraints in the system. For HEVs, the energy management minimizes
the fuel consumption, while keeping thebattery state of charge (SoC) within a
specific range. Many different energy management strategies are proposed for
HEVs (for example [5] and [6] using ECMS methods, [7] using model predic-
tive control, and [8]) based on a combination of rules and ECMS) resulting in
fuel consumption close to the optimum.

For PHEVs, since the electrical energy is cheaper than the fuel energy, it is
optimal to run on the battery energy in short distances. In the absence of any in-
formation about the trip length, it is also best to run the vehicle on electricity first
(depletion mode) and then keep the battery SoC around a lowerlevel (charge sus-
taining mode). This strategy, calledcharge depletion charge sustaining (CDCS),
does not guarantee the best fuel economy and performance forlong trips, due
to high internal battery losses during the depletion mode, and less power control
freedom in charge sustaining mode. In [9], the tradeoff between the available
information about the trip and the fuel consumption is shownby using a proba-
bilistic model for the trip length; if the trip is perfectly known, the controller will
choose a blended strategy that depletes the battery slowly until the end of the trip,
but with increased uncertainty, the strategy will gradually tend towards CDCS.
The best strategy is the one that can minimize the fuel consumption using the
least possible information about the coming trip. In this thesis an energy man-
agement strategy is presented that is based ontelemetry equivalent consumption
minimization strategy, introduced for HEVs in [10]. The method is modified to
be used in PHEVs, where it uses only the information about thetrip length, along
with general information from the driver’s past trips. It isshown that the result is
close to the optimal value and the method can reduce the fuel consumption con-
siderably compare to CDCS, using relatively low level of detailed information.

The second part of the thesis focuses on the problem of designing electrified
vehicles. This is an optimization problem, where the goal isto design a vehicle

3



Chapter 1. Background

with low costand energy consumption. Since the problem of energy manage-
ment influences the performance of the vehicle, both the energy management
and the component sizing should be included in the problem. This optimization
problem is complex, since both the objective function and the constraints are
nonlinear. Genetic algorithms have been used widely to solve this problem, for
example in [11], [12], [13], [14] , [15], and [16]. However, these algorithms can
not guarantee finding the global optimal solution and they donot scale well with
complexity.

An alternative is to use approximations and assumptions to formulate the
problem as a convex optimization problem. Once the problem is formulated
as a convex optimization problem, it is relatively straightforward to solve it
[17]. The method is originally introduced in [18] to simultaneously optimize
battery size and energy management for a plug-in hybrid bus.In this thesis, the
method is extended to find the optimal size of battery, electric motor, and engine
generator unit or internal combustion engine, simultaneously with the energy
management, for series and parallel PHEVs. The effect of different factors, e.g.,
energy prices, battery price, and performance requirements on the optimal design
of a PHEV are studied. Furthermore, to design vehicles that match drivers with
different driving patterns, relevant driving cycles are generated, considering both
the speed profile and the distance distribution of the trips.A Markov process with
transition matrices trained by real data is used to generatespeed profiles and a
Weibull standard distribution function is used to approximate the trip distance
distributions of different drivers.

4



1.2. Contribution

1.2 Contribution

The main contributions of this thesis are:

• A modification of T-ECMS [10] is presented for energy management of
PHEVs. The method is based on the idea to use the information about the
trip length to discharge the battery close to the optimal discharge behav-
ior, i.e., at a slower rate until reaching the destination. The algorithm is
presented in Paper 1.

• An extension of the convex optimization method used for powertrain di-
mensioning in [19] is given for finding the optimal design of aPHEV. The
method gives the optimal size of battery, electric motor andinternal com-
bustion engine, and the optimal energy management for both parallel and
series PHEVs, over a predefined driving cycle. The method is presented in
Paper 2 for a parallel PHEV, and it is used for dimensioning a series PHEV
in Paper 3.

• A study of the influence of different levels of performance requirements,
and battery and energy prices on the optimal design of a PHEV,presented
in Paper 2.

• A method for generating driving cycles which represent reallife driving
patterns, including driving distance distributions of different drivers given
in Paper 3.

1.3 Thesis outline

This thesis is presented in two main parts. Part I serves as a general introduc-
tion to the field and overview of the methods used in papers. InChapter 2, the
models of PHEVs and their main components, different driving cycles, and the
performance requirements are presented. Chapter 3 gives anoverview on differ-
ent energy management strategies used in Paper 1. The chapter continues with
an introduction on convex optimization problems and the approaches taken to
use the method in Papers 2 and 3. A brief summary of the appended papers is
provided in Chapter 4 and finally the conclusions are drawn inChapter 5. In Part
II of the thesis, the three publications are included.
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Chapter 2

Modeling

This chapter gives a background on the vehicle model, powertrain configurations
and component models, driving cycles, and performance requirements.

2.1 Model requirements

The vehicle model is simulated in Matlab/Simulink R© using quasi-static models.
In a quasi-static model, instead of using more correct but complex mathemat-
ical descriptions of the system, most of the dynamics are neglected and speed
dependent characteristics are obtained from stationary relations. Using quasi-
static models reduces computational burden, while describing the system behav-
ior well.

The simulations are run backward over known driving cycles.In the back-
ward simulations, the tractive force required at the vehicle wheels, the required
speed, torque, or power of each component are calculated from the known driv-
ing cycle. Since the calculation of the power is the oppositeof the flow of power
in real process, the simulation is called backward. This is different from for-
ward simulation, in which a control loop is used to control the throttle position
to follow the target speed.

2.2 Vehicle model

The longitudinal dynamics of a vehicle is affected by different forces acting on
the vehicle, i.e., the aerodynamic losses,Fa, rolling friction losses,Fr, the uphill
driving force, Fg, and the traction force from the prime movers,Ft, as shown
in Fig. 2.1. Knowing the vehicle’s speed,v, and the total mass,mtot, the power
demand can be calculated from the forces as

Pdem = Ftv = (mtotd
v
dt
+ Fr + Fg)v + Fav (2.1)

7
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Figure 2.1: Different forces acting on a moving vehicle.

All the forces, except aerodynamic force, are dependent on the total mass of the
vehicle, therefore, the power demand can be calculated as

Pdem = Pmmtot + Pa. (2.2)

2.3 Powertrain model

PHEVs have two or more power sources, usually a motor to convert the electrical
energy and an engine to convert the fuel energy, in addition with an electrical
energy storage. Dependent on how these power sources interact, PHEVs can be
categorized into different types.

Series hybrid

In a series PHEV, as shown in Fig. 2.2, it is only theelectric motor (EM) that
powers the wheels. Theengine generator unit (EGU) is the primary engine con-
nected to a generator that produces electricity. The EM can be powered by the
battery and/or the EGU. The battery can be charged by the EGU, from the brak-
ing energy, or from the grid. Series vehicles are suited for city drive, since the
engine is not connected to the wheels and the EM, compared to the engine, has
a better efficiency at low speeds and can deliver higher torque. The engine can
be downsized to get a better efficiency and conventional mechanical transmission
elements can be removed. However, series vehicles are slightly heavier and more
expensive than parallel PHEVs, because in addition to a generator, they need a
large battery and an EM that can provide the maximum power demand.
The power balance equations for a series PHEV are given by

TEMωEM + Pbrk = Pdem, (2.3)

8



2.3. Powertrain model

Figure 2.2: Configuration of a series PHEV (solid lines are the mechanical link
and dashed lines are the electrical links).

PEM = PEGU + Pbat − Paux, (2.4)

wherePdem is the power demand;Pbrk is the power dissipated at the friction
brakes;TEM andωEM are the torque and speed of the EM,PEM is the electrical
power of the EM;Pbat, PEGU , andPaux are the battery power, the electrical power
of the EGU, and the electrical power used by auxiliary devices. The battery can
be charged at charging occasions which gives

Pbat = −Pgηg. (2.5)

wherePg is the grid power (including the losses) andηg is the charger efficiency.
For simplicity, the rotational inertia of the wheels, the differential, the EM, and
the EGU are neglected in the models.

Parallel hybrid

In a parallel PHEV, as shown in Fig. 2.3, both the EM and theinternal combus-
tion engine (ICE) are directly connected to the wheels, either on the same axle
or different axles. Since both the EM and ICE are connected to the axles, they
should have the same speed as the shaft. A parallel PHEV has nogenerator, but
the motor functions as a generator during braking. Parallelvehicles are suited
for highway driving, where the engine propels the vehicle with a good efficiency.
Since the engine is directly connected to the wheels, the losses due to the con-
version of energies, as in series PHEVs, will be omitted. Theadditional power
for acceleration or climbing hills is provided by the electric motor. A drawback
of the parallel configuration is the need for a clutch to mechanically disconnect
the ICE during idling.

9



Chapter 2. Modeling

Figure 2.3: Configuration of a parallel PHEV (solid lines arethe mechanical link
and dashed lines are the electrical links).

The power balance equations for a parallel PHEV are given by

TEMωEM + eonTICEωICEη + Pbrk = Pdem, (2.6)

PEM = Pbat − Paux, (2.7)

whereTICE andωICE are the torque and speed of the ICE,eon is the engine on-
off variable, andη is the transmission efficiency which depends on the choice of
gear.

2.4 Powertrain components

In this section, the quasi-static models of the main components of PHEVs are
described.

2.4.1 Battery

Batteries are one of the key components of HEVs. They can savethe electrical
energy in form of chemical energy and thus work as a reversible energy stor-
age. Different technologies are used in the batteries of electrified vehicles, each
having its characteristics. Some of the commonly used are lead-acid, nickel-
cadmium, nickel-metal hydride, and lithium-ion. To capture the characteristics
of different batteries and also the dynamic behaviors, a complex model is needed.
However, to reduce the complexity in calculations, the battery is modeled as a
steady state battery equivalent circuit, which is an open circuit voltage,Voc, in
series with an internal battery resistance,R, as shown in Fig 2.4.

10
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+ 

 

Figure 2.4: The battery equivalent circuit, as an open voltage in series with an
internal resistance (upper); the resistance can have different values at charging
or discharging modes (lower).

The battery current,i, can be calculated as:

i =
Voc −

√

V2
oc − 4RP

2R
, (2.8)

whereP is the output power of the battery. For a battery with a capacity of Q,
the SoC changes with

d
dt

(S oC) = − i
Q
. (2.9)

Using the total capacity of the battery can deteriorate its lifetime, therefore
only around 20% of the total battery capacity of HEVs and around 60-80% of
the total battery capacity of PHEVs are used.

2.4.2 Electric motor

The electric motors used in electrified vehicles are mostly permanent magnet
synchronous AC, due to their higher efficiency and power density. The EM is
modeled by a static loss map which relates the electrical power to the mechanical
power. The electrical power is hence

PEM = TEM , ωEM + PEM,loss. (2.10)

The losses, include copper (torque and speed dependent), iron, and winding
(speed dependent) losses. For simplicity, it is assumed that the losses in the

11
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Figure 2.5: The efficiency map (left) and the Willans map (right) for a 35kW
permanent magnet synchronous EM.

power electronics are also included in the EM losses. The EM model can be
described by an efficiency map as a function of torque and speed, or by the elec-
trical power as a function of torque at different motor speeds (known as Willans
approach [20]):

ηEM = fη(TEM , ωEM) (2.11)

PEM = fp(TEM , ωEM). (2.12)

The typical characteristics of these models are shown in Fig. 2.5. The Willans
line can be approximated by a second order polynomial as

PEM(ωEM , TEM) = c1(ωEM)T 2
EM + c2(ωEM)TEM + c3(ωEM). (2.13)

where the coefficientsc1, c2, andc3 are functions ofωEM and therefore are time
dependent. These coefficients are calculated using least squares method for grids
overωEM to fit the second order polynomial to the measured data.
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2.4. Powertrain components

To vary the size of the EM, the torque and the losses are assumed to scale
linearly with a scaling factor,sEM [21], [22]. Hence, given a baseline EM model,
the losses of the scaled EM are calculated as

PEM,loss(ωEM , TEM) = sEMPEM,loss,base(ωEM , TEM,base) (2.14)

= sEM

(

c1(ωEM)T 2
EM,base + c2(ωEM)TEM,base + c3(ωEM)

)

= sEM













c1(ωEM)

(

TEM

sEM

)2

+ c2(ωEM)
TEM

sEM
+ c3(ωEM)













= c1(ωEM)
T 2

EM

sEM
+ c2(ωEM)TEM + c3(ωEM)sEM.

2.4.3 Internal combustion engine

The engines used in PHEVs are usually spark ignited gasolineor compression
ignited diesel internal combustion engines. These enginescan be described by a
quasi-static model, which is either measured from engine experiments at steady-
state or calculated by engine process simulation programs.The model gives the
fuel consumption as a function of the engine torque and speed. The models
are either given as an efficiency map, which is a function of engine torque and
speed, or as the fuel power as a function of torque, at different engine speeds,
called Willan’s lines. The Willans lines can be approximated by a second order
polynomial as

P f ,base(ωICE, TICE,base) = b1(ωICE)T 2
ICE,base +b2(ωICE)TICE,base +b3(ωICE) (2.15)

where the coefficientsb1, b2, and b3 are functions ofωICE and therefore are
time dependent. The efficiency map of the ICE and the Willans map with the
approximated second order polynomials are shown in Fig. 2.6To vary the ICE
size, we assume that the torque and the losses are scaled linearly with a scaling
factor, sICE. Linear scaling has been used by many authors (e.g., in [21] and
[23]). Linear scaling is valid for scaled sizes close to the baseline size and for an
ICE with fixed number of cylinders. Assuming linear scaling,the efficiency of a
scaled ICE,ηICE is given by

ηICE(ωICE, TICE) = ηICE,base(ωICE ,
TICE

sICE
). (2.16)

Using (2.15), the fuel power of the scaled engine is calculated in a similar way
as EM

P f (ωICE , TICE) = b1(ωICE)
T 2

ICE

sICE
+ b2(ωICE)TICE + eonb3(ωICE)sICE . (2.17)

The variableeon is introduced to remove the idling lossesb3, when the ICE is off.
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and the fuel power as a function of engine torque for different engine speeds
(right) as a function of the output power for a 65kW naturallyaspirated spark
ignited ICE.

2.4.4 Engine generator unit

An EGU is a combination of an engine connected electrically to a electric gen-
erator. Since the operating point of the EGU is not related tothe output speed or
torque at the wheels, it can be chosen in a way to maximize the total efficiency
for every power demand [3]. The EGU model is the fuel power as afunction
of the output power, as shown in Fig. 2.7. The fuel power of an EGU can be
approximated by a second order polynomial as

P f (PEGU) = a1P2
EGU + a2PEGU + eona3 (2.18)

where the coefficientsa1, a2, anda3 are are found by least squares. Assuming
linear losses, the fuel power of a scaled EGU is calculated similarly as for EM
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Figure 2.7: The map for a 18kW EGU.

and ICE as

P f (PEGU) = a1
P2

EGU

sEGU
+ a2PEGU + eona3sEGU . (2.19)

2.4.5 Transmission, final drive and clutch

Gear boxes are used in vehicles to transform the speed and torque on the differ-
ential side to the desired speed and torque on the engine side. This is because the
speed range of the engine is very different compared to the speed range of the
wheels. Moreover, the speed range of the engine where the torque and power are
at the maximum is narrow.

To choose the gears at every time instantk, a gear shifting strategy is needed.
There are different strategies based on torque, efficiency, or speed of the vehicle.
Usually a hysteresis model is applied to prevent frequent gear changes. The gear
shifting strategy can also be changed to either give a betterfuel economy or a
better performance.

Usually, in systems with two rotating parts, there is a need for a clutch. The
clutch is used to connect the two shafts while they rotate with the same speed
and decouple them when their speeds are different. We assume that the model
does not allow any slip in the clutch at low speeds, and the PHEV is propelled by
the EM. The dynamics of the gear box and the clutch are neglected in this thesis
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Chapter 2. Modeling

and the efficiency is assumed to be constant. Knowing the gear and the vehicle’s
speed, the angular speedsωEM andωICE are calculated at every time instant.

2.4.6 Cost and weight models

The models of the key components of a PHEV are scalable, therefore, a model
for the cost and weight of these components as a function of sizes is needed. For
all the components, i.e. battery, EM, ICE, and EGU, we assumean initial cost,
and linear cost and weight that increase with the sizes. In this way, the cost and
weight models of these components are described by

cost = costi + costs s (2.20)

m = ms s.

2.5 Driving cycle

Driving cycles are used as a reference to assess the performance of a vehicle, for
example the fuel consumption or emissions. For conventional vehicles, the speed
profile of the vehicle is used to asses the performance, however, for PHEVs, since
the vehicle can be charged from the grid, the driving distance between charging
occasions need to be considered. A driving cycle typically includes vehicle’s
velocity, v, possibly road’s inclination,β, at each point of time, and charging
times between the trips, with constant acceleration duringa time step,h.

2.5.1 Speed profile

The speed profiles of driving cycles can be given by availablestandard driving
cycles, logged data from real life driving, or generated driving cycles.

Standard driving cycles

Standard driving cycles are produced by organizations to make comparison of
performances of different vehicles possible. However, since typical driving con-
ditions varies among regions, specific driving cycles are made for different re-
gions. Some of the most common driving cycles are new European driving cycle
(NEDC), federal test procedure 75 (FTP75) from USA, Japanese 10.15 Mode,
and CUEDC from Australia. The effect of using different standard driving cycles
on fuel economy has been studied in [24], [25], [26], and [27].
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2.5. Driving cycle

Real-life driving cycles

Although using standard driving cycles is a good way to compare the perfor-
mance of different vehicles, in general the results are limited since these cycles
are short and they do not represent real-life driving behaviors. Therefore, it is
sometimes necessary to use measured driving data to assess the performance. In
this thesis, two data bases of real-life driving data are used. The first database
1 contains data collected from two Volvo V70 plug-in hybrids driven as private
cars by 16 families each for some weeks in Gothenburg during year 2010. In total
there are 3617 trips in this database. The second database2 contains driving data
from 500 privately cars, each driven at least for 30 days [28]. The data is logged
using equipment containing GPS units and includes time, position, velocity, and
number and id of the used satellites.

Driving cycles generated by Markov chains

Markov Chains can be used to capture the features of real-life driving in a com-
pact form and to then generate representative driving cycles [29]. This method of
generating driving cycles gives flexibility in constructing arbitrary driving cycles
with desired lengths. The procedure is as follows: first, real life driving cycles
are sorted based on desired characteristics, for example trip distance. For each
group of these data, the information is extracted in form of aprobability matrix.
This so called transition matrix includes probabilities ofmoving from one state
to another (the state is characterized by the velocityv and the accelerationa),
defined as

Pk(Vk+1 = vk+1, Ak+1 = ak+1|vk, ak). (2.21)

The probabilities are saved in the transition matrix for allthe possible combina-
tions ofvk andak. From the transition matrix corresponding to a desired charac-
teristic, the driving cycle can be synthesized.

2.5.2 Driving distance distribution

To determine the performances of PHEVs in general, in addition to the speed
profile of a driving cycle, it is also important to know how often the driver has
access to a charging station, or how far he/she drives between two charging oc-
casions. Therefore, to assess the performance of PHEVs, oneneeds to model
the driving distance distribution. In this thesis, to modelthe driving distance
distribution real-life data is first used to study how different people drive. It is
worth mentioning that in the database, trips are separated if the data is missing

1provided by ETC Battery and FuelCells Sweden AB
2provided by the Test Site Sweden (TSS) project
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for more than 10 seconds. However, for PHEVs, the trips should be separated
by the charging occasions. Considering the availability ofcharging stations, and
sufficient parking time to charge the battery, we can assume different minimum
charging time to separate the trips. For simplicity, we consider only daily charg-
ing which is a realistic assumption, because it is more likely that the owner of a
PHEV has a charger at home with which he can charge the vehicleat nights for
around 8 hours.

Usually, the trip length distribution is given for all drivers and over one day,
as in [30], [31], [32], [33], and [34]. However, if vehicles are to be designed to
match different drivers, it is important to know how each vehicle is driven during
its life-time, due to the very different driving behaviors of individual drivers.

We approximate a standard Weibull distribution function tothe trip length
distribution functions of different drivers. Weibull distribution is defined as

f (x, λ, k) =















x
λ
( x
λ
)k−1e−( x

λ
)k
, x ≥ 0,

0, x < 0,
(2.22)

with k as shape parameter andλ as scale parameter [35]. Weibull distribution
function is widely used in life data analysis due to its versatility. For example,
by changing the shape parameter to 1 or 2, the distribution gives the exponential
distribution or the Rayleigh distribution. The cumulativedistribution function,
which represents the probability that the trips have shorter distance thanx, is
given by

f (x, λ, k) = 1− e−( x
λ
)k
. (2.23)

By using Weibull distribution functions with different values ofλ and keep-
ing k constant, behavior of drivers with different trip distance distributions are
approximated. The distributions are shown for several different values ofλ in
Fig. 2.8.

To generate a mix of stochastic driving cycles, the trip distances for a specific
driver are chosen from the Weibull curves, uniformly on the probability/y-axis
in a way that a similar distance distribution function is obtained. To get a smooth
curve as the Weibull CDF curves, the number of trips chosen onthe y-axis should
be quite high. However, to reduce the computation time, we choose only 10 trips.
Choosing higher number of points does not effect the result a lot. Knowing the
trip distances, the corresponding Markov transition matrix is used to generate the
driving cycle.

2.6 Performance requirements

Performance requirements are in general more demanding than normal driving,
but crucial for commercial success. Some of the important performance require-
ments are top speed, acceleration at different speed or 0-100km acceleration
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Figure 2.8: Weibull cumulative distribution function for different values ofλ and
k = 1.5.

time, uphill driving, and all electric range for PHEVs. In a series PHEV, since
only the EM is directly connected to the wheels, the minimum power of the EM
for fulfilling the top speed and uphill driving can be directly calculated. The re-
quirement on acceleration is usually defined as the time the vehicle accelerates
from 0 to 100 kph. The EM power also determines the sum of the battery and
EGU power.

For a parallel PHEV, since there are two sources providing the power to the
wheels, a different way to define the performance requirements is needed. A
possible way is to first define a normalized net traction forceas a function of
speed as shown in Fig. 2.9. The normalized net force is simplythe force needed
to give the vehicle the required acceleration (or ascent capability), divided by
mass. A performance cycle is then made, with speed from zero up to the max-
imum speed, and accelerations taken from the normalized netforce curve. This
performance cycle can be added to the driving cycle. The optimization solver
finds the components sizes so that they can provide the torqueand power to
manage the performance requirement.
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Chapter 3

Optimization

This chapter is devoted to studies of optimization problemsfor a PHEV. These
optimization problems can be formulated at three different levels; finding the
best configuration; finding the best design or component sizes for a given con-
figuration; and finding the best energy management strategy for an existing vehi-
cle [3]. In Section 3.1, different energy management strategies for a given PHEV
are briefly discussed. Energy management strategies decidehow the power flows
in the system in real time, and the optimization at this levelaims at minimizing
the total energy consumption for a fixed design of a vehicle.

The second part focuses on the design level optimization. PHEVs have the
potential to reduce fuel consumption, but this depends highly on the sizing of the
key mechanical and electrical components and the controller splitting the power
flow between these components. The simultaneous optimization of component
sizes and energy management makes the optimization problemcomplex, but it
turns out that it is possible to pose the problem as a convex optimization problem.
The advantage with using convex optimization is that once the problem is formu-
lated as convex, the global optimal solution is obtained by using very effective
solvers. The steps taken to formulate the problem of simultaneous optimization
of component sizes and energy management as a convex problemare presented
in Section 3.2.

3.1 Energy management

As mentioned earlier, the potential fuel consumption savings of a given PHEV
depends on the energy management strategy that decides how the power should
be split between the power sources. This is an optimal control problem, where
the fuel consumption is minimized while respecting some constraints on e.g. the
battery SoC or EM and ICE torque. The controller can use some apriori in-
formation about the trip, provided by the driver or identified by an algorithm.
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Chapter 3. Optimization

Depending on the level of a priori information about the trip, different energy
management strategies can be used. The three most common methods are pre-
sented in this section.

3.1.1 Charge depletion charge sustaining

One of the simplest energy management strategies used in PHEVs is charge de-
pletion charge sustaining (CDCS). In this strategy, the vehicle first runs on the
electrical energy in the battery until the battery is discharged to a lower level.
After that and if the trip length is longer than theall electric range (AER) of the
vehicle, the battery SoC is kept around this lower level. Since electrical energy
is cheaper than fuel energy, CDCS is the best strategy in short trips, or in the
absence of a priori information about the trip. However, because of high bat-
tery losses during the charge depletion mode and less freedom during the charge
sustaining mode, this strategy does not guarantee the best fuel economy and per-
formance for trips longer than the AER of the vehicle.

3.1.2 Equivalent consumption minimization strategy

Theequivalent consumption minimization strategy (ECMS) represents the real-
time implementation of the optimal control problem mentioned earlier. In this
strategy, an equivalent fuel power is introduced as

J f ,eq(t) = P f (t) + s(t)Pbat(t), (3.1)

where s(t) is an equivalence factor used to convert the electrical power to an
equivalent fuel power. At every time instant, the torque is split between the
two power sources in a way thatJ f ,eq(t) is minimized. The optimal equivalence
factor varies with the driving conditions. Therefore, the equivalence factor that
is suitable for one driving cycle may lead to poor performance or even no charge
sustaining conditions for another. In reality, the value ofthe equivalence factor
is not known in advance; however,s(t) can be assumed to be constant or tuned
online [6]. Different methods to find the equivalence factor are described in[5].

ECMS is originally applied to HEVs to sustain the SoC around aconstant
level and therefore it needs to be modified to be used in PHEVs to use the energy
in the battery. In Paper 1, a method based ontelemetry equivalent consump-
tion management strategy (T-ECMS) originally introduced for HEVs in [10], is
modified to be used for PHEVs.

3.1.3 Dynamic programming

Dynamic programming (DP) is a method to solve optimal control problems nu-
merically, based on the principle of optimality [36]. DP is used to find the global
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Table 3.1: Fuel consumption from three energy management methods, CDCS,
T-ECMS, and DP

Method Fuel consumption Difference from DP

CDCS 943.7 5.2%

T-ECMS 903.2 0.7%

DP 896.7 0%

optimal control input,u, by minimizing a cost function,J, while satisfying con-
straints. In automotive applications, DP is used by many authors to find the
optimal energy management which minimizes the fuel consumption, while sat-
isfying the constraints on the SoC level and the powertrain models (for example
in [37], [38], [39], [40], [41], and [42]).

The advantage with dynamic programming is that it can handlecomplex con-
straints on inputs and states [3]. However, the computationtime which increases
exponentially with the number of states, is still an issue despite the efforts that
has been done to reduce the burdens [43], [44]. In addition, to use the determinis-
tic DP, the complete trip needs to be known in advance. Therefore, DP is mostly
used as a tool to provide a benchmark for assessment of different controllers. For
example, in Fig 3.1 the battery SoCs, resulting from the implementation of the
method in Paper 1, CDCS, and DP are shown. The fuel consumption of these
three methods are also given in Table 3.1.

3.2 Convex optimization

Convex optimization can be used to find the optimal design of aPHEV. The
objective function in this problem is a weighted sum of the fuel and electrical
energy consumption, in addition to the components costs. The equations gov-
erning the power flows in the system act as constraints together with maximum
component ratings. The variables in the problem are the component sizes as well
as the complete control trajectory of the energy managementsystem. The main
challenge in using the convex optimization approach is in formulation. Once the
problem is formulated as a convex optimization problem, effective solvers can
solve the problem in a straight forward way.

In a general form, a convex optimization problem can be written as

inf x f0(x) (3.2)

subject to fi(x) ≤ 0, i = 1, ...,m,

h j(x) = 0, j = 1, ..., p,
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Figure 3.1: The battery SoC from the three energy managementstrategies,
CDCS, T-ECMS, and DP.

where the cost functionf0(x) and the constraintsf1, ..., fm : Rn → R are convex
andh1, ..., hp : Rn → R are affine functions [17]. To formulate the problem as
convex, several steps must be taken. As mentioned before, the cost function is the
sum of operational and component costs. The operational cost over a discretized
driving cycle is calculated considering the consumed fuel and electric power,
using the energy prices. The component costs are calculatedas the depreciation
over the driving cycle, taking the yearly interest rate intoaccount.

3.2.1 Heuristic decisions

As mentioned, in a convex optimization problem, all the functions need to be
convex (or even affine). Since the set of integer variables is not convex, they
need to be found outside the problem by heuristics. Decidingthese variables,
the rest of the problem is formulated and solved as a convex optimization sub-
problem. The integer decision variables in our problem are the engine on-off
variable and the gear ratio for parallel PHEVs. The engine on-off decision is
decided based on the baseline power demand,Pdem,base, required by the vehicle
when following a driving cycle. The baseline mass,m, used to calculatePdem,base,
is the mass of the vehicle with the baseline component sizes.It is shown in [19]
that the error due to this on-off heuristics is below 1% for a series powertrain.
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3.2. Convex optimization

The gears for a parallel PHEV can be chosen by heuristics based on known
variables, e.g., the vehicle’s speed and power demand.

3.2.2 Optimization variables

The decision variables of the optimization problem include, firstly, the compo-
nent scaling factors,sbat, sEM, andsICE /sEGU , which are all dimensionless scaling
parameters. The second group consists of optimization variables which are re-
lated to the energy management and are determined for every time instant. These
variables vary for different configurations of PHEVs. For a series PHEV, the vari-
ables are: the EM and ICE torques,TEM andTICE , battery current,̃i, battery state
of energy,Eb, grid power,Pg, and braking power,Pbrk. For a parallel PHEV, the
variables are: the EM torque,TEM , EGU power,PEGU , battery current,̃i, battery
state of energy,Eb, grid power,Pg, and braking power,Pbrk.

The constraints in (3.2) are the equations governing the power flow in the
system, the component models, and the limitations of the components, e.g., the
maximum torque of EM and ICE or the maximum current of the battery. Most
of the equations introduced in Chapter 2 are convex functions of the decision
variables, but some need modification to be formulated as convex functions. The
steps taken to formulate the optimization problem of seriesand parallel PHEVs
as a convex problem are given in the next section.

Steps to formulate the problem as convex optimization problem

Since multiplication of variables does not result in a convex function, the output
battery power given by

Pbat = sbat(Voci(k) − Ri2(k)). (3.3)

will not result in a convex function. A change of variable asĩ = sbati is needed,
which gives the convex function of

Pbat = Voc ĩ(k) − R
ĩ2(k)
sbat
. (3.4)

for positive value ofsbat.
Moreover, the result of the optimization gives a real value for sbat, instead of

an integer number of cells. This will introduce a rounding error but has a small
influence on the optimal result, because either the cell capacity can be considered
very small to give large number of cells, or the result can be interpreted as an
indication of the optimal pack capacity.

Since a quadratic over linear functionf (x, y) = x2

y is convex fory > 0 and a
second order polynomial functionf (x) = px2 + qx + r is convex forp ≥ 0, the
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Table 3.2: Convex optimization problem for a series PHEV
Variables T N

EM, PN
EGU , PN

brk, ĩN, EN+1
b , PNc

g , sbat, sEGU , sEM

minimize cost(P f , Pg)
subject to PEM(k) = Pbat(k) − Paux + Pg(k)ηg

Pbat(k) = Voc ĩ(k) − R ĩ2(k)
sbat

Eb(k + 1)(k) = Eb(k) − h(k)Voc ĩ

P f (k) = a1
P2

EGU (k)
sEGU

+ a2PEGU(k) + eona3sEGU

PEM(k) >= c1(k)
T 2

EM(k)
sEM
+ c2(k)TEM(k) + c3(k)sEM

Eb(k) ∈ [Eb,min, Eb,max]
Pg(k) ∈ [Pg,min, Pg,max]
PEGU(k) ∈ [PEGU,min,base, PEGU,max,base]sEGU

TEM(k) ∈ [TEM,min,base(ωEM(k)), TEM,max,base(ωEM(k))]sEM

ĩ(k) ∈ [ ĩmin, ĩmax]
sbat ∈ [sbat,min, sbat,max]
sEM ∈ [sEM,min, sEM,max]
sEGU ∈ [sEGU,min, sEGU,max]
∀k ∈ {0, . . . ,N − 1}

second order polynomial models for the EM power, fuel power result in convex
functions of the optimization variables.

Combining the power balance equations and the equation overthe battery
power gives a second order constraint function. Since having an equality sign in
a second order polynomial constraint does not result in convex formulation, we
change the equality sign into inequality. This does not effect the results, since
the optimalPEM will satisfy the inequality with equality. This is so, because
otherwise energy would be wasted, making the result not optimal.

The convex formulation of the problems are summarized in Table 3.2 and
Table 3.3 for series and parallel PHEVs.

As examples of the results obtained using the method for sizing of PHEVs,
two results are given. The first one illustrates the optimal operational and compo-
nent costs of a series PHEV, driven over a 700 km long driving cycle. Since the
problem is a Multi-objective optimization problem (the component cost versus
the operational cost), the conflicting objectives can be scaled to formulate a sin-
gle objective optimization problem. The parameter used to scale the problem is
in reality related to the lifetime driving distance of a car.By altering this weight-
ing parameter, a so called Pareto front can be obtained as shown in Fig 3.2. The
optimization is done for different level of performance requirements considered
in the problem.

The second example gives the result of the optimization for aseries PHEV. As
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Table 3.3: Convex optimization problem for a parallel PHEV
Variables T N

ICE , T N
EM, PN

brk, ĩN, EN+1
b , PNc

g , sbat, sICE, sEM

minimize cost(P f , Pg)
subject to Pdem(k) − Pbrk(k) = TEM(k)ωEM(k) + eon(k)TICE(k)ωICE(k)η(k)

PEM(k) + Paux(k) ≤ Pbat(k) + Pg(k)ηg

PEM(k) = c1(k)
T 2

EM(k)
sEM
+ c2(k)TEM(k) + c3(k)sEM

Pbat(k) = Voc ĩ(k) − R ĩ2(k)
sbat

Eb(2 : k + 1) = Eb(1 : k) − h(k)ĩ(1 : k)Voc

TEM(k) ∈ [TEM,min,base(ωEM(k)), TEM,max,base(ωEM(k))]sEM

TICE(k) ∈ [0, TICE,max,base(ωICE(k))]sICE

ĩ(k) ∈ [imin, imax]sbat

Eb(k) ∈ [S oCmin, S oCmax]VocQ
Pg(k) ∈ [0, Pg,max(k)]
sbat ∈ [sbat,min, sbat,max]
sEM ∈ [sEM,min, sEM,max]
sICE ∈ [sICE,min, sICE,max]
∀k ∈ {0, . . . ,N − 1}

mentioned earlier, the length of the driving cycle highly influences the optimal
sizing. To clearly show this, the optimization is done over driving cycles with
lengths from 1 to 180 km. For each trip length, 10 different stochastic driving
cycles are generated by Markov chains, and the mean (µ) and standard deviation
(σ) of the optimal component sizes, in addition to the energy demand of the trip
and available battery energy are shown in Fig 3.3.
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Figure 3.2: Set of pareto points obtained by using different weighting factors
between fuel cost and component cost
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Chapter 4

Summary of included papers

In this chapter, a brief summary of the appended papers is provided. Full versions
of the papers are included in Part II.

Paper 1

Mitra Pourabdollah, Viktor Larsson, Lars Johannesson, Bo Egardt,
PHEV Energy Management: A Comparison of Two Levels of Trip
Information,SAE World Congress, April 2012, Detroit, Michigan,
USA.

Plug-in hybrid electric vehicles need a controller to splitthe power between the
two power sources. In the absence of any information about the trip, the best
strategy is to first deplete the battery and then, if the trip is longer than the all
electric range of the vehicle, to sustain the battery state of charge around a lower
level. However, fast discharging results in higher batterylosses, and therefore
does not give the best fuel economy on long driving distances. The optimal en-
ergy management is obtained using dynamic programming, knowing the driving
cycle fully. This means that there is a tradeoff between improved fuel economy
and the need for a priori information. In this paper, a new method for discharg-
ing the battery is proposed which is based on telemetry equivalent consumption
minimization strategy. The proposed method requires only some general infor-
mation, in addition to the information about the trip distance.

The results of implementing this method, considering two different levels
of detailed information, are compared with the result of implementing charge
depletion charge sustaining and dynamic programming methods. The proposed
strategy improves the fuel economy considerably compared to charge depletion
charge sustaining strategy. More detailed a priori information reduces the fuel
consumption, very close to the optimal value.
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Paper 2

Mitra Pourabdollah, Nikolce Murgovski, Anders Grauers andBo
Egardt, Optimal sizing of a parallel PHEV powertrain, Accepted for
publication inIEEE Transactions on Vehicular Technology.

Paper 2 presents a method to find the optimal sizes of the key components , of
a parallel PHEV, i.e., the battery, the electric motor, and the internal combustion
engine, simultaneously with the energy management. To solve this problem, it
is casted as a convex optimization problem. The objective function to be mini-
mized is a weighted sum of the operational cost, i.e., fuel and electricity, and the
cost of the key components. The constraints are given by equations governing
the power flow in the system and the component models, and by the maximum
component ratings. The results of the optimization are the global optimal energy
management at every time instant over a given driving cycle and optimal com-
ponent sizes. The comparably fast computation time of the method allows the
use of a long driving cycle, including different driving patterns of a driver over
20 days.

This method can be used as a tool to understand how the optimalcost and
design of a PHEV is influenced by different factors, e.g., performance require-
ments, charging behavior, driving cycle, battery type, energy and component
costs, and gear shifting. For example, it is shown that the vehicle cost is more af-
fected by the acceleration requirements, than the requirements on top speed and
all electric range. Moreover, with the current price of energy and battery cells,
the optimal AER is not very long.

Paper 3

Mitra Pourabdollah, Anders Grauers and Bo Egardt, Effect of Driv-
ing Patterns on Components Sizing of a Series PHEV, Submitted to
7th IFAC Symposium on Advances in Automotive Control, Septem-
ber 2013, Tokyo, Japan.

Paper 3 presents a method to find the optimal design of a seriesPHEV that
matches the driving pattern of a driver. To model the drivingpattern of a driver,
a driving cycle is needed, that includes not only the speed profile of the driving
cycles, but also the distance driven between two charging opportunities. The
speed profile of these driving cycles are generated by Markovprocesses, whose
transition matrices are trained by real-life data. Using Markov process enables
us to make stochastic combinations of driving cycles with different distances that
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represent the real life behavior of drivers. To model the driving distance distri-
bution, Weibull standard distribution is used. By changingthe parameters, the
distribution is altered, to fit the driving distance distributions of different drivers.

The optimal size of the battery, electric motor, and engine generator unit are
found over the generated driving cycles, using convex optimization method pre-
sented in Paper 2. The objective function to be minimized is the component costs
and operational costs over the defined driving cycles. The optimization gives the
optimal components sizes simultaneously with the optimal energy management.

The results show that the sizes of the components vary much for different
distance distributions, however, are not very sensitive tothe speed profiles. For
drivers driving mostly short distances, the optimal vehicle has a small battery,
but a big EGU to provide the power needed for performance requirements. For
drivers who drive in average longer routes, the battery sizeincreases, because
more electrical energy is needed for longer driving cycles.However, if the driver
drives mostly on very long routes, then the optimal vehicle design is more like
an HEV, with a small battery and a big EGU.
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Chapter 5

Concluding remarks

In this thesis optimization problems for PHEVs are studied at two different lev-
els, energy management and sizing.

The first part focuses on energy management strategies for PHEVs. This is
an optimization problem aiming at finding the best power split in terms of the
fuel consumption, using available information about the trip. The trivial strategy
is to fist use the battery energy, and in case the battery reaches a lower level,
sustain the SoC around this level. This strategy is the best for short distances and
also if no a priori knowledge about the trip is available. However, for trips longer
than the all electric range of the vehicle, a strategy that can discharge the battery
gradually to reach the lower level at the end of the trip decreases the internal bat-
tery losses and hence the fuel consumption and emissions. The method presented
in Paper 1 is based on telemetry equivalence consumption minimization strategy
for HEV, and is therefore modified to be used for PHEVs. This strategy can im-
prove the fuel consumption using only the trip distance provided by the driver
and general information including expected energy demand and braking energy
per kilometer. The results show that the proposed method candecrease the fuel
consumption considerably compared to the trivial strategy. The fuel consump-
tion improves by increasing the level of information details. In other words, if
the information is calculated considering only the trips driven on the same route
as the current trip, the fuel consumption improves slightlycompared to the case
when all the trips over different routes are considered.

There are different ways to provide the information on trip length. One way
is that the driver provides the estimate manually. An alternative is to use smart
algorithms like route recognition algorithms to estimate the trip information. The
method is robust to the general information, but is rather sensitive to the trip
distance. This means that if the trip length given by the driver is over or under
estimated, the battery will be discharged less or sooner than needed.

In the second part of the thesis, convex optimization is usedfor dimensioning
a passenger PHEV. Its relatively fast computations makes itpossible to consider
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variables of component sizing simultaneously with the variables of the energy
management over a long driving cycle. The optimization is done for both paral-
lel and series PHEVs, for which a cost function including thecomponents and
operational costs are minimized. To cast the models as convex functions, ap-
proximations, variable changes, and assumption must be done. For example,
convex second order polynomial models are approximated to the power charac-
teristics of the engine, the engine-generator unit and the electric machines, and
the battery model assumes quadratic losses.

The method can be used as a tool to study the effect of different factors, like
component and energy prices, driving and charging patterns, and different con-
figurations, on optimal sizing. For example, it is shown thatthe cost is more
affected by the acceleration requirements than the requirements on the top speed
or the all electric range. Moreover, with the current price of energy and battery
cells, the optimal AER is not very long. In addition, a systematic way to gener-
ate series of driving cycles which represent life time driving pattern of different
drivers is presented, and the corresponding optimal designof the vehicles are
given. The results shows, as expected, that the optimal battery size for a driver
driving mostly short distances is small, but it increases ifthe driver drives longer
distances more often, up to some point. If the driving cyclesare very long, the
optimal battery size decreases again.

The main drawback of the method is that the integer variablescan not be
included in the convex problem. Therefore, variables like the engine on-off and
gear ratio needs to be decided by heuristics outside the convex problem. Future
work needs to address the limitations and improve the heuristics.

Future work

First, the convex optimization method can be used to study different scenarios of
changing battery type, fuel and battery price and performance requirements in
more details. A more detailed battery model including the wear model and SoC
dependent battery voltage need to be considered in the problem. Moreover, the
problem can be extended to vehicles with different components, such as super
capacitors, flywheels or fuel cells. Finally, future work has to address the lim-
itation that is posed by the need to fix the integer control variables (gears and
engine on-off) prior to the optimization.
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