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Abstract

The rising concerns about the global warming and emissionsne hand, and
the limited sources of fossil fuels on the other hand, hasenedelctrification of
vehicles an interesting topic among researchers and caegpatybrid electric
vehicles (HEV) have been on market for several years. These vehictasg
to decrease the fuel consumption due to downsized engigeneeation of the
braking energy, and the highdfieiency gained from the extra freedom in choos-
ing the engine operating points. Plug-in HEVs have the auitit ability to store
energy from the electricity grid using large capacity bt The extra source
of energy in these systems opens new questions concernimghiecenergy man-
agement (the strategy that decides the power split betwewrrpsources) and
sizing of the components.

The first part of the thesis is on energy management stratégia PHEV. A
trivial strategy is to run the vehicle on battery energy Iuhe battery reaches a
lower level and then keep the battery state of charge ardwatdievel. This strat-
egy requires no information about the trip; however, it doeisresult in the best
fuel economy. An energy management strategy is proposdeH&\Vs which is
based on minimizing an equivalent fuel consumption. To en@nt this strat-
egy, some a priori information about the trip is requirede finoposed strategy
can improve the fuel economy considerably, even when ugihgioformation
about the trip length, compared to the trivial dischargategy. Increasing the
information details about the trip results in fuel consuimptclose to the opti-
mal, calculated by using dynamic programming, when fulbinfation about the
trip is available.

The second part of the thesis focuses on design of PHEVs. Gélengre is
to design a vehicle that has low cost and low fuel consumptim approach
based on convex optimization is used for simultaneous agition of compo-
nent sizes and energy management for passenger PHEVs. filmalogizes of
key components, i.e. battery, electric motor, and engimgine generator unit are
obtained by minimizing a cost function, including operagband components
costs. The fects of diferent performance requirement levels, change in prices
of components and energy, and also driving pattern fiéint drivers, on the
optimal design are studied. Since the result of the optitiwmadepends highly
on the driving cycle, a systematic way to generate drivirges/that reflect driv-
ing patterns of dferent drivers is given.

Keywords: Plug-in Hybrid Electric Vehicles, Energy Management, ECI@8m-
ponent Sizing, Driving Cycles.
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Chapter 1

Background

The development both in technology and economy on one haddha growing
population on the other hand, has dramatically increasedibbility and trans-
portation in the last decades. Although transportationrhade life easier for
people in many ways, it has raised concerns about the lirsibedces of fossil
fuels and the impacts on the environment. The transpontggator is a major
consumer of energy and emits a high amount of pollution [Ligg&sted solu-
tions for this problem requires motivating higher use oflputbansportation and
developing cleaner and more fudlieient vehicles, including electrification of
vehicles.

1.1 Electrified vehicles

Hybrid electric vehicles (HEV) are the first generation of electrified vehicles that,
in addition to arinternal combustion engine (ICE), have arelectric motor (EM)
and an electric energy storage. HEVs can improve fti@iency, because of the
possibility of downsizing the engine, the ability to recoweaking energy, the
extra power control freedom gained by the two power souaras the ability to
stop the engine when idle.

In fact, electrified vehicles existed for more than hundredrg. The first
electric vehicle was built in 1939 by Robert Anderson. At beginning of the
twentieth century, electric vehicles were available inrtteeket, as well as steam
or gasoline powered vehicles, and actually, the electiiickes were a more at-
tractive choice to the customers, since they did not haveitblelem of unclean
gasoline engines and long start up time of steam engines904, IFerdinand
Porsche even developed the first gasoline-electric hylaiicle. However, the
main problem with this vehicle was the heavy batteries, thatd weigh up to
1.8 tones for a four passenger vehicle. Moreover, the invealectric starters,
along with the expansion of the roads, made longer rangenemgiwered vehi-
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Figure 1.1: Transportation has raised concerns about thadts on the environ-
ment.

cles dominant products on the roads [2]. It was not until adneid years later
that the concerns about emissions and dependency on liregedrces of fuels
brought the electrified vehicles back on the market. In 198yota released the
first series of Prius which was a hybrid electric vehicle, mght the top sell-
ing hybrid car, by selling more than 2.8 million Prius arouhd world through
October 2012. Today, most of the car manufacturers havehierid version of
vehicles in the market, for example Honda Civic Hybrid, TayGamry Hybrid
and Insight, Ford Fusion and Escape Hybrid, Hyundai Songhaitl, and Lexus
CT 200h.

The improvements in battery technology and the reducti@ost and weight
of the batteries on one hand, and the desire to become indepieon the fos-
sil fuels on the other hand, has made the second generatitire &dflectrified
vehicles,Plug-in hybrid electric vehicles (PHEV), interesting to the manufac-
turers. PHEVs have the additional ability to store energynfithe electricity
grid, using large capacity batteries. The stored energypcapel the vehicle
on short trips, thereby reducing vehicle’s dependency arolgeim and poten-
tially CO, emissions. Today, there are several PHEVs available in tr&ets,
like Tesla Roadster, Mitsubishi i-MIEV, Nissan Leaf, Chafet \olt, Ford Fo-
cus Electric, BMW ActiveE, Renault Fluence Z.E., ToyotauBrdPlug-in Hybrid,
Renault Kangoo Z.E., Coda, Tesla Model S, and Volvo V60 Riuigybrid.

The extra source of energy in PHEVs has opened issues camgdhne opti-
mization of these systems. To maximize the benefits from P$jEWy can be
optimized at three dlierent levels: first, the configuration level, where the best
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configuration is chosen; second, the design level whereptimal dimensions
of different components for the vehicle with a fixed configuratiom faund;

third, the energy management level, where the optimal pdaerfor the vehi-

cle is decided [3].

Depending on how the power sources in a PHEV interact, theybeacate-
gorized into three main types: series, parallel, and s@aeallel hybrids. Each
of these configurations has its advantages in specific gihgf4]. In this thesis,
the optimization of series and parallel PHEVs at the energnagement and
design levels are studied.

The first part of this thesis is on optimization at energy nggmaent level.
Energy management strategies decide the power split betthed CE and the
electric machines, while meeting the power demand at theelshe€lrhe main
aim of the optimization is to minimize the total energy camgdion while sat-
isfying constraints in the system. For HEVS, the energy rgangent minimizes
the fuel consumption, while keeping tbattery state of charge (SoC) within a
specific range. Many ferent energy management strategies are proposed for
HEVs (for example [5] and [6] using ECMS methods, [7] usingdelopredic-
tive control, and [8]) based on a combination of rules and BIkesulting in
fuel consumption close to the optimum.

For PHEVSs, since the electrical energy is cheaper than thesfuergy, it is
optimal to run on the battery energy in short distances. ératbsence of any in-
formation about the trip length, it is also best to run theieleton electricity first
(depletion mode) and then keep the battery SoC around a lewadi{charge sus-
taining mode). This strategy, calletdarge depletion charge sustaining (CDCS),
does not guarantee the best fuel economy and performandentptrips, due
to high internal battery losses during the depletion modéd,less power control
freedom in charge sustaining mode. In [9], the trdtibetween the available
information about the trip and the fuel consumption is shimymusing a proba-
bilistic model for the trip length; if the trip is perfectlynlown, the controller will
choose a blended strategy that depletes the battery slolyhe end of the trip,
but with increased uncertainty, the strategy will gradué&tihd towards CDCS.
The best strategy is the one that can minimize the fuel copsamusing the
least possible information about the coming trip. In thissils an energy man-
agement strategy is presented that is base@emetry equivalent consumption
minimization strategy, introduced for HEVs in [10]. The method is modified to
be used in PHEVs, where it uses only the information abourijnéength, along
with general information from the driver’s past trips. Isisown that the result is
close to the optimal value and the method can reduce the dmsluenption con-
siderably compare to CDCS, using relatively low level ofaded information.

The second part of the thesis focuses on the problem of dagigtectrified
vehicles. This is an optimization problem, where the go&bidesign a vehicle
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with low costand energy consumption. Since the problem of energy manage-
ment influences the performance of the vehicle, both theggneranagement
and the component sizing should be included in the probldms dptimization
problem is complex, since both the objective function arel ¢bnstraints are
nonlinear. Genetic algorithms have been used widely toestbiis problem, for
example in [11], [12], [13], [14], [15], and [16]. Howevehédse algorithms can
not guarantee finding the global optimal solution and thepalcscale well with
complexity.

An alternative is to use approximations and assumptionsmdlate the
problem as a convex optimization problem. Once the probkedorimulated
as a convex optimization problem, it is relatively straifmward to solve it
[17]. The method is originally introduced in [18] to simulgously optimize
battery size and energy management for a plug-in hybrid louthis thesis, the
method is extended to find the optimal size of battery, éleototor, and engine
generator unit or internal combustion engine, simultasgowith the energy
management, for series and parallel PHEVs. Tihece of diferent factors, e.g.,
energy prices, battery price, and performance requiresmnthe optimal design
of a PHEV are studied. Furthermore, to design vehicles tlztindrivers with
different driving patterns, relevant driving cycles are geeeiaconsidering both
the speed profile and the distance distribution of the téglarkov process with
transition matrices trained by real data is used to genefaed profiles and a
Weibull standard distribution function is used to approaiethe trip distance
distributions of diferent drivers.
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1.2 Contribution

The main contributions of this thesis are:

e A modification of T-ECMS [10] is presented for energy managetrof
PHEVs. The method is based on the idea to use the informatiout éhe
trip length to discharge the battery close to the optimattthsge behav-
ior, i.e., at a slower rate until reaching the destinatiohe &lgorithm is
presented in Paper 1.

e An extension of the convex optimization method used for ptam di-
mensioning in [19] is given for finding the optimal design ®?HEV. The
method gives the optimal size of battery, electric motor iawernal com-
bustion engine, and the optimal energy management for kavtllel and
series PHEVs, over a predefined driving cycle. The methorkeisgmted in

Paper 2 for a parallel PHEV, and it is used for dimensioningrees PHEV
in Paper 3.

e A study of the influence of dlierent levels of performance requirements,

and battery and energy prices on the optimal design of a PHEgented
in Paper 2.

e A method for generating driving cycles which represent téaldriving

patterns, including driving distance distributions offeiient drivers given
in Paper 3.

1.3 Thesis outline

This thesis is presented in two main parts. Part | serves amergl introduc-
tion to the field and overview of the methods used in paper£hapter 2, the
models of PHEVs and their main componentsfedient driving cycles, and the
performance requirements are presented. Chapter 3 givaseaview on difer-
ent energy management strategies used in Paper 1. The rchapt@ues with
an introduction on convex optimization problems and there@ghes taken to
use the method in Papers 2 and 3. A brief summary of the apdgrajeers is
provided in Chapter 4 and finally the conclusions are draw®hapter 5. In Part
Il of the thesis, the three publications are included.






Chapter 2
Modeling

This chapter gives a background on the vehicle model, poamertonfigurations
and component models, driving cycles, and performanceanegents.

2.1 Model requirements

The vehicle model is simulated in Matj@mulink® using quasi-static models.
In a quasi-static model, instead of using more correct boipgex mathemat-
ical descriptions of the system, most of the dynamics ardentayl and speed
dependent characteristics are obtained from stationdaiaes. Using quasi-
static models reduces computational burden, while desgribe system behav-
ior well.

The simulations are run backward over known driving cyclesthe back-
ward simulations, the tractive force required at the vehwheels, the required
speed, torque, or power of each component are calculatedtfre known driv-
ing cycle. Since the calculation of the power is the oppasitae flow of power
in real process, the simulation is called backward. Thisifedent from for-
ward simulation, in which a control loop is used to contra throttle position
to follow the target speed.

2.2 Vehicle model

The longitudinal dynamics of a vehicle ifected by diferent forces acting on
the vehicle, i.e., the aerodynamic losdeg,rolling friction lossesF,, the uphill
driving force, F4, and the traction force from the prime movefs, as shown
in Fig. 2.1. Knowing the vehicle’s speed, and the total massy, the power
demand can be calculated from the forces as

\Y,
Pgem = Frv = (mtotda +F + Fg)v+ Fav (2.1)
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Figure 2.1: Diferent forces acting on a moving vehicle.

All the forces, except aerodynamic force, are dependent@iotal mass of the
vehicle, therefore, the power demand can be calculated as

I::'dem = I:)mmtot + Pa- (2-2)

2.3 Powertrain model

PHEVs have two or more power sources, usually a motor to cotheselectrical
energy and an engine to convert the fuel energy, in additiin &an electrical
energy storage. Dependent on how these power sourcescinteHEVs can be
categorized into dierent types.

Series hybrid

In a series PHEV, as shown in Fig. 2.2, it is only #dectric motor (EM) that
powers the wheels. Thamgine generator unit (EGU) is the primary engine con-
nected to a generator that produces electricity. The EM eapdwered by the
battery angbr the EGU. The battery can be charged by the EGU, from the brak
ing energy, or from the grid. Series vehicles are suited ifyrdrive, since the
engine is not connected to the wheels and the EM, compardz terigine, has

a better éiciency at low speeds and can deliver higher torque. The engin

be downsized to get a bettdfieiency and conventional mechanical transmission
elements can be removed. However, series vehicles ardiglgavier and more
expensive than parallel PHEVs, because in addition to argtarethey need a
large battery and an EM that can provide the maximum poweiadem

The power balance equations for a series PHEV are given by

Temwem + Pork = Pdem, (2.3)



2.3. POWERTRAIN MODEL
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Figure 2.2: Configuration of a series PHEV (solid lines aeerttechanical link
and dashed lines are the electrical links).

Pem = Pecu + Poat = Pauxs (2.4)

where Pgem IS the power demandPy, is the power dissipated at the friction
brakes;Teym andwgy are the torque and speed of the ERgyy is the electrical
power of the EM{Pyy, Pecu, andP,yy are the battery power, the electrical power
of the EGU, and the electrical power used by auxiliary desidéne battery can
be charged at charging occasions which gives

Poat = — Pgng- (2.5)

wherePy is the grid power (including the losses) apgds the chargerféciency.
For simplicity, the rotational inertia of the wheels, thé&eliential, the EM, and
the EGU are neglected in the models.

Parallel hybrid

In a parallel PHEV, as shown in Fig. 2.3, both the EM andititernal combus-
tion engine (ICE) are directly connected to the wheels, either on theesaxhe
or different axles. Since both the EM and ICE are connected to tles,akley
should have the same speed as the shaft. A parallel PHEV hgsnaoator, but
the motor functions as a generator during braking. Paredibicles are suited
for highway driving, where the engine propels the vehicléaigood éiciency.
Since the engine is directly connected to the wheels, treetdue to the con-
version of energies, as in series PHEVs, will be omitted. ddhditional power
for acceleration or climbing hills is provided by the elécimotor. A drawback
of the parallel configuration is the need for a clutch to meatally disconnect
the ICE during idling.
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Figure 2.3: Configuration of a parallel PHEV (solid lines #re mechanical link
and dashed lines are the electrical links).

The power balance equations for a parallel PHEV are given by

Temwem + €nTicewicen + Pork = Pdem, (2.6)
I:)EM = I:)bat - Paux, (2-7)

whereT,ce andw,cg are the torque and speed of the IEE, is the engine on-
off variable, and; is the transmissionfgciency which depends on the choice of
gear.

2.4 Powertrain components

In this section, the quasi-static models of the main comptsnef PHEVs are
described.

2.4.1 Battery

Batteries are one of the key components of HEVs. They cantbavelectrical
energy in form of chemical energy and thus work as a revershbkergy stor-
age. Diferent technologies are used in the batteries of electrifiicies, each
having its characteristics. Some of the commonly used a@-&eid, nickel-
cadmium, nickel-metal hydride, and lithium-ion. To cajgttine characteristics
of different batteries and also the dynamic behaviors, a compldelsneeded.
However, to reduce the complexity in calculations, thedrgitts modeled as a
steady state battery equivalent circuit, which is an opecuiivoltage,Vy, in
series with an internal battery resistanBeas shown in Fig 2.4.

10
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R(SOC)

Voc (50C)

R4(SOC)

Voc (50C)

Figure 2.4: The battery equivalent circuit, as an open gelta series with an
internal resistance (upper); the resistance can hatereint values at charging
or discharging modes (lower).

The battery current, can be calculated as:

. VOC - vac - 4RP
i = , (2.8)

2R
whereP is the output power of the battery. For a battery with a capaudi Q,

the SoC changes with

d i

Using the total capacity of the battery can deteriorateifigiine, therefore
only around 20% of the total battery capacity of HEVs and athb60-80% of
the total battery capacity of PHEVs are used.

2.4.2 Electric motor

The electric motors used in electrified vehicles are mostiyranent magnet
synchronous AC, due to their higheffieiency and power density. The EM is
modeled by a static loss map which relates the electricabptmthe mechanical
power. The electrical power is hence

Pem = Tem, wem + Pemjjoss- (2.10)

The losses, include copper (torque and speed dependemt),and winding
(speed dependent) losses. For simplicity, it is assumedtiiealosses in the

11
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Figure 2.5: The giciency map (left) and the Willans map (right) for a 35kW
permanent magnet synchronous EM.

power electronics are also included in the EM losses. The Edeahcan be
described by anficiency map as a function of torque and speed, or by the elec-
trical power as a function of torque affidirent motor speeds (known as Willans
approach [20]):

Nem = fn(TEM,wEM) (2.11)
Pem = fp(TEM,wEM)- (2-12)

The typical characteristics of these models are shown inZf The Willans
line can be approximated by a second order polynomial as

Pem(wem, Tem) = Ci(wem) Téy + C2(wem) Tem + Ca(wem)- (2.13)

where the cofficientsc,, ¢,, andcgz are functions ofugy and therefore are time
dependent. These dbieients are calculated using least squares method for grids
overwgy to fit the second order polynomial to the measured data.

12
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To vary the size of the EM, the torque and the losses are asktorszale
linearly with a scaling factoisgy [21], [22]. Hence, given a baseline EM model,
the losses of the scaled EM are calculated as

PEM,Ioss(wEM , TEM) = Sem PEM,Iossbase(wEM , TEM,base) (2-14)

= Sem (Cl(wEM)TéM,base + Co(wem) TEM base + Cs(wEM))

Tem )2 Teu )
= Cci(w — | + C(wem)—— + C3(w
SEM( 1 EM)(SEM 2(wem) Seun 3(wem)

T2
= Cl(wEM)g + Co(wem) Tem + Ca(wem)Sem-
M

2.4.3 Internal combustion engine

The engines used in PHEVs are usually spark ignited gasotimempression
ignited diesel internal combustion engines. These engiae$e described by a
quasi-static model, which is either measured from engipe®gments at steady-
state or calculated by engine process simulation prograims model gives the
fuel consumption as a function of the engine torque and spd&éxd models
are either given as arffeciency map, which is a function of engine torque and
speed, or as the fuel power as a function of torque, fé¢r@dint engine speeds,
called Willan’s lines. The Willans lines can be approxintbly a second order
polynomial as

P+ pase(@ice, Tice pase) = P1(@ice) Tice pase + b2(@ice) Tice base + ba(wice) (2.15)

where the cofficientsb;, b,, andbs; are functions ofw,ce and therefore are
time dependent. Thefficiency map of the ICE and the Willans map with the
approximated second order polynomials are shown in FigT@.@ary the ICE
size, we assume that the torque and the losses are scaledyliwith a scaling
factor, sce. Linear scaling has been used by many authors (e.g., in j2d] a
[23]). Linear scaling is valid for scaled sizes close to theddine size and for an
ICE with fixed number of cylinders. Assuming linear scalititg dficiency of a
scaled ICEy,cg is given by

TICE

Mmce(wice, Tice) = Mice pase(wice, ——). (2.16)
Sice

Using (2.15), the fuel power of the scaled engine is caledlan a similar way
as EM

T2
Pt(wice, Tice) = bl(CUICE)S:_:::IEE + bo(wice) Tice + €nbs(wice)Sice.  (2.17)

The variableg,, is introduced to remove the idling losdes when the ICE is fi.
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Figure 2.6: The enginefigciency as a function of engine speed and torque (left)
and the fuel power as a function of engine torque fdfedent engine speeds
(right) as a function of the output power for a 65kW naturabpirated spark
ignited ICE.

2.4.4 Engine generator unit

An EGU is a combination of an engine connected electricallg electric gen-
erator. Since the operating point of the EGU is not relatetiécoutput speed or
torque at the wheels, it can be chosen in a way to maximizeotaédficiency
for every power demand [3]. The EGU model is the fuel power &sation
of the output power, as shown in Fig. 2.7. The fuel power of &UEcan be
approximated by a second order polynomial as

Pt(Pecu) = a1P2gy + aPecu + Ends (2.18)

where the coicientsa;, a;, andag are are found by least squares. Assuming
linear losses, the fuel power of a scaled EGU is calculatedariy as for EM
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Figure 2.7: The map for a 18kW EGU.

and ICE as
2

__ Peau
Pt (Pecu) =& o + a2Pegu + €on@3Secu- (2.19)
u

2.45 Transmission, final drive and clutch

Gear boxes are used in vehicles to transform the speed aqeton the dter-
ential side to the desired speed and torque on the enginelideis because the
speed range of the engine is veryfdient compared to the speed range of the
wheels. Moreover, the speed range of the engine where ttpgg@nd power are
at the maximum is narrow.

To choose the gears at every time instgra gear shifting strategy is needed.
There are dferent strategies based on torqu&ceency, or speed of the vehicle.
Usually a hysteresis model is applied to prevent frequeat geanges. The gear
shifting strategy can also be changed to either give a betétreconomy or a
better performance.

Usually, in systems with two rotating parts, there is a needfclutch. The
clutch is used to connect the two shafts while they rotaté thie same speed
and decouple them when their speeds afiedint. We assume that the model
does not allow any slip in the clutch at low speeds, and the\Pidpropelled by
the EM. The dynamics of the gear box and the clutch are neglewtthis thesis
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and the éiciency is assumed to be constant. Knowing the gear and thele@’sh
speed, the angular speadsy andw,ce are calculated at every time instant.

2.4.6 Cost and weight models

The models of the key components of a PHEV are scalable,ftrerea model
for the cost and weight of these components as a functiorze$ $s needed. For
all the components, i.e. battery, EM, ICE, and EGU, we assaimaitial cost,
and linear cost and weight that increase with the sizes.isnwhy, the cost and
weight models of these components are described by

cost costi + costs s (2.20)
m = mgS.

2.5 Driving cycle

Driving cycles are used as a reference to assess the perfoernéa vehicle, for
example the fuel consumption or emissions. For conventiatacles, the speed
profile of the vehicle is used to asses the performance, hewfev PHEVS, since
the vehicle can be charged from the grid, the driving distadretween charging
occasions need to be considered. A driving cycle typicaltfudes vehicle’s
velocity, v, possibly road’s inclination3, at each point of time, and charging
times between the trips, with constant acceleration duaitigne steph.

2.5.1 Speed profile

The speed profiles of driving cycles can be given by availatdedard driving
cycles, logged data from real life driving, or generatedidg cycles.

Standard driving cycles

Standard driving cycles are produced by organizations tkencamparison of
performances of dierent vehicles possible. However, since typical driving-co
ditions varies among regions, specific driving cycles arelerfar diferent re-
gions. Some of the most common driving cycles are new Eurogeging cycle
(NEDC), federal test procedure 75 (FTP75) from USA, Japari€sl5 Mode,
and CUEDC from Australia. Thefiect of using diferent standard driving cycles
on fuel economy has been studied in [24], [25], [26], and [27]

16



2.5. DRIVING CYCLE

Real-life driving cycles

Although using standard driving cycles is a good way to camphe perfor-
mance of diferent vehicles, in general the results are limited sincsetlogcles
are short and they do not represent real-life driving bedravi Therefore, it is
sometimes necessary to use measured driving data to dssgesfiormance. In
this thesis, two data bases of real-life driving data arelu3ée first database
! contains data collected from two Volvo V70 plug-in hybridsvdn as private
cars by 16 families each for some weeks in Gothenburg dueag3010. In total
there are 3617 trips in this database. The second databaséains driving data
from 500 privately cars, each driven at least for 30 days.[Z8E data is logged
using equipment containing GPS units and includes timatiposvelocity, and
number and id of the used satellites.

Driving cycles generated by Markov chains

Markov Chains can be used to capture the features of reatHi¥ing in a com-
pact form and to then generate representative driving sy28. This method of
generating driving cycles gives flexibility in construdiarbitrary driving cycles
with desired lengths. The procedure is as follows: firstl ligadriving cycles
are sorted based on desired characteristics, for exanipldistance. For each
group of these data, the information is extracted in form pfabability matrix.
This so called transition matrix includes probabilitiesydving from one state
to another (the state is characterized by the velociynd the acceleratioa),
defined as

I::'k(Vk+1 = Vk+1, Ak+1 = ak+1|Vk, ak) (2-21)

The probabilities are saved in the transition matrix fortladl possible combina-
tions ofv, anda,. From the transition matrix corresponding to a desiredadtar
teristic, the driving cycle can be synthesized.

2.5.2 Driving distance distribution

To determine the performances of PHEVs in general, in auldiid the speed
profile of a driving cycle, it is also important to know how @ft the driver has
access to a charging station, or how farshe drives between two charging oc-
casions. Therefore, to assess the performance of PHEVs)erus to model
the driving distance distribution. In this thesis, to motted driving distance
distribution real-life data is first used to study howtdient people drive. It is
worth mentioning that in the database, trips are separated data is missing

provided by ETC Battery and FuelCells Sweden AB
2provided by the Test Site Sweden (TSS) project
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for more than 10 seconds. However, for PHEVS, the trips shbalseparated
by the charging occasions. Considering the availabilitgharging stations, and
suficient parking time to charge the battery, we can assuffierdnt minimum
charging time to separate the trips. For simplicity, we ad&rsonly daily charg-
ing which is a realistic assumption, because it is moreyikieht the owner of a
PHEV has a charger at home with which he can charge the vedticlights for
around 8 hours.

Usually, the trip length distribution is given for all driseeand over one day,
as in [30], [31], [32], [33], and [34]. However, if vehicleseato be designed to
match diterent drivers, it is important to know how each vehicle iseiniduring
its life-time, due to the very dlierent driving behaviors of individual drivers.

We approximate a standard Weibull distribution functiortte trip length
distribution functions of dferent drivers. Weibull distribution is defined as

X(X)k=1a- (%K
F(x, A, K) = {6(4) e, xz0, (2.22)

; X< 0,
with k as shape parameter andas scale parameter [35]. Weibull distribution
function is widely used in life data analysis due to its vélisg For example,
by changing the shape parameter to 1 or 2, the distributiesghe exponential
distribution or the Rayleigh distribution. The cumulathstribution function,
which represents the probability that the trips have shdisgtance tharx, is
given by
f(x, A,k =1-e@ (2.23)

By using Weibull distribution functions with fferent values oft and keep-
ing k constant, behavior of drivers withfterent trip distance distributions are
approximated. The distributions are shown for severgiedint values ofl in
Fig. 2.8.

To generate a mix of stochastic driving cycles, the tripatises for a specific
driver are chosen from the Weibull curves, uniformly on thebability/y-axis
in a way that a similar distance distribution function isaibed. To get a smooth
curve as the Weibull CDF curves, the number of trips chosegheg-axis should
be quite high. However, to reduce the computation time, ve®sa only 10 trips.
Choosing higher number of points does nfieet the result a lot. Knowing the
trip distances, the corresponding Markov transition masrused to generate the
driving cycle.

2.6 Performance requirements

Performance requirements are in general more demandinghtiranal driving,
but crucial for commercial success. Some of the importaribpeance require-
ments are top speed, acceleration dfedent speed or 0-100km acceleration
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Figure 2.8: Weibull cumulative distribution function foifférent values oft and
k=15.

time, uphill driving, and all electric range for PHEVs. In eries PHEV, since
only the EM is directly connected to the wheels, the minimwwer of the EM
for fulfilling the top speed and uphill driving can be dirgctialculated. The re-
quirement on acceleration is usually defined as the time ¢hécle accelerates
from 0 to 100 kph. The EM power also determines the sum of thiedyaand
EGU power.

For a parallel PHEYV, since there are two sources providiegpthwer to the
wheels, a dierent way to define the performance requirements is needed.
possible way is to first define a normalized net traction fasea function of
speed as shown in Fig. 2.9. The normalized net force is sithplyorce needed
to give the vehicle the required acceleration (or ascenaluisify), divided by
mass. A performance cycle is then made, with speed from zeto the max-
imum speed, and accelerations taken from the normalizefbret curve. This
performance cycle can be added to the driving cycle. Theropdition solver
finds the components sizes so that they can provide the t@adeower to
manage the performance requirement.
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Chapter 3
Optimization

This chapter is devoted to studies of optimization problémna PHEV. These
optimization problems can be formulated at threfedent levels; finding the
best configuration; finding the best design or componensdizea given con-
figuration; and finding the best energy management strateg@nfexisting vehi-

cle [3]. In Section 3.1, dierent energy management strategies for a given PHEV
are briefly discussed. Energy management strategies demidtéhe power flows

in the system in real time, and the optimization at this l@nels at minimizing

the total energy consumption for a fixed design of a vehicle.

The second part focuses on the design level optimizatiorE\RHave the
potential to reduce fuel consumption, but this dependsiyigithe sizing of the
key mechanical and electrical components and the contispléting the power
flow between these components. The simultaneous optimizaficomponent
sizes and energy management makes the optimization pratdemlex, but it
turns out that it is possible to pose the problem as a convigxigation problem.
The advantage with using convex optimization is that onegtoblem is formu-
lated as convex, the global optimal solution is obtained singivery éfective
solvers. The steps taken to formulate the problem of simatias optimization
of component sizes and energy management as a convex pratdgonesented
in Section 3.2.

3.1 Energy management

As mentioned earlier, the potential fuel consumption sgwiof a given PHEV
depends on the energy management strategy that decideh@@ower should
be split between the power sources. This is an optimal coptodblem, where
the fuel consumption is minimized while respecting somest@ints on e.g. the
battery SoC or EM and ICE torque. The controller can use soipeoai in-

formation about the trip, provided by the driver or identfiey an algorithm.
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Depending on the level of a priori information about the tdigferent energy
management strategies can be used. The three most commioodsetre pre-
sented in this section.

3.1.1 Charge depletion charge sustaining

One of the simplest energy management strategies used iN®idEEharge de-
pletion charge sustaining (CDCS). In this strategy, thacketirst runs on the
electrical energy in the battery until the battery is disged to a lower level.
After that and if the trip length is longer than thk electric range (AER) of the
vehicle, the battery SoC is kept around this lower level.c8ielectrical energy
is cheaper than fuel energy, CDCS is the best strategy irt sijus, or in the
absence of a priori information about the trip. However,duse of high bat-
tery losses during the charge depletion mode and less freddang the charge
sustaining mode, this strategy does not guarantee theusstdonomy and per-
formance for trips longer than the AER of the vehicle.

3.1.2 Equivalent consumption minimization strategy

The equivalent consumption minimization strategy (ECMS) represents the real-
time implementation of the optimal control problem men&drearlier. In this
strategy, an equivalent fuel power is introduced as

Jr.eq(t) = Pr(t) + S(t)Poa(t), (3.1)

where s(t) is an equivalence factor used to convert the electricalgodw an
equivalent fuel power. At every time instant, the torque pt<etween the
two power sources in a way thafe(t) is minimized. The optimal equivalence
factor varies with the driving conditions. Therefore, tlipigalence factor that
is suitable for one driving cycle may lead to poor perforneaoceven no charge
sustaining conditions for another. In reality, the valuehef equivalence factor
is not known in advance; howevext) can be assumed to be constant or tuned
online [6]. Different methods to find the equivalence factor are describf.in

ECMS is originally applied to HEVs to sustain the SoC arounmbastant
level and therefore it needs to be modified to be used in PH&VUsé the energy
in the battery. In Paper 1, a method basedt@ametry equivalent consump-
tion management strategy (T-ECMS) originally introduced for HEVs in [10], is
modified to be used for PHEVs.

3.1.3 Dynamic programming

Dynamic programming (DP) is a method to solve optimal control problems nu-
merically, based on the principle of optimality [36]. DP &seadl to find the global
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Table 3.1: Fuel consumption from three energy managemetitatg, CDCS,
T-ECMS, and DP
Method Fuel consumption Berence from DP

CDCS 943.7 5.2%
T-ECMS 903.2 0.7%
DP 896.7 0%

optimal control inputy, by minimizing a cost function), while satisfying con-
straints. In automotive applications, DP is used by manyamstto find the
optimal energy management which minimizes the fuel consiompwhile sat-
isfying the constraints on the SoC level and the powertraadets (for example
in [37], [38], [39], [40], [41], and [42]).

The advantage with dynamic programming is that it can hacaheplex con-
straints on inputs and states [3]. However, the computaitio@ which increases
exponentially with the number of states, is still an issuspite the &orts that
has been done to reduce the burdens [43], [44]. In additbamse the determinis-
tic DP, the complete trip needs to be known in advance. ToereDP is mostly
used as atool to provide a benchmark for assessmenftefatt controllers. For
example, in Fig 3.1 the battery SoCs, resulting from the enp@ntation of the
method in Paper 1, CDCS, and DP are shown. The fuel consumgtithese
three methods are also given in Table 3.1.

3.2 Convex optimization

Convex optimization can be used to find the optimal design BHEV. The

objective function in this problem is a weighted sum of thelfand electrical
energy consumption, in addition to the components cost& €fjuations gov-
erning the power flows in the system act as constraints tegettth maximum

component ratings. The variables in the problem are the coemt sizes as well
as the complete control trajectory of the energy managesystiém. The main
challenge in using the convex optimization approach is imfdation. Once the
problem is formulated as a convex optimization probleffeaive solvers can
solve the problem in a straight forward way.

In a general form, a convex optimization problem can be amidis

inf,  fo(X) (3.2)
subjectto fi(x)<0,i=1,..,m,
hix)=0,j=1,...p,
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Figure 3.1: The battery SoC from the three energy managestestegies,
CDCS, T-ECMS, and DP.

where the cost functiotiy(xX) and the constraintg, ..., f,, : R" — R are convex
andhy,....h, : R" - Rare dfine functions [17]. To formulate the problem as
convex, several steps must be taken. As mentioned beferep#t function is the
sum of operational and component costs. The operationabeesa discretized
driving cycle is calculated considering the consumed funel alectric power,
using the energy prices. The component costs are calcldatdte depreciation
over the driving cycle, taking the yearly interest rate iatcount.

3.2.1 Heuristic decisions

As mentioned, in a convex optimization problem, all the tiots need to be
convex (or evenfiine). Since the set of integer variables is not convex, they
need to be found outside the problem by heuristics. Decithege variables,
the rest of the problem is formulated and solved as a conviamigation sub-
problem. The integer decision variables in our problem heedngine on-
variable and the gear ratio for parallel PHEVs. The enginefbmecision is
decided based on the baseline power dem&aghnase, required by the vehicle
when following a driving cycle. The baseline massused to calculatByem pase,

is the mass of the vehicle with the baseline component sizesshown in [19]
that the error due to this onfftheuristics is below 1% for a series powertrain.
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The gears for a parallel PHEV can be chosen by heuristicslb@s&nown
variables, e.g., the vehicle’s speed and power demand.

3.2.2 Optimization variables

The decision variables of the optimization problem incluiistly, the compo-
nent scaling factors,a, Sem, ands,ce/Secu, Which are all dimensionless scaling
parameters. The second group consists of optimizatioamas which are re-
lated to the energy management and are determined for everyristant. These
variables vary for dterent configurations of PHEVs. For a series PHEV, the vari-
ables are: the EM and ICE torqud$,y andT,cg, battery current, battery state
of energy,E,, grid power,Py, and braking poweiRy . For a parallel PHEV, the
variables are: the EM torqué&gy, EGU powerPegy, battery currentl, battery
state of energyky, grid power,Pgy, and braking poweRy.

The constraints in (3.2) are the equations governing theepdow in the
system, the component models, and the limitations of thepoornts, e.g., the
maximum torque of EM and ICE or the maximum current of thedygtt Most
of the equations introduced in Chapter 2 are convex funstmnthe decision
variables, but some need modification to be formulated agseoiunctions. The
steps taken to formulate the optimization problem of seara$ parallel PHEVS
as a convex problem are given in the next section.

Steps to formulate the problem as convex optimization prot#m

Since multiplication of variables does not result in a corfumction, the output
battery power given by

Poar = Spar(Voci (K) — Ri(K)). (3.3)

will not result in a convex function. A change of variableias s, is needed,
which gives the convex function of
- i2(K
Ppat = Vol (K) = R ( ). (3.4)

at

for positive value ofs,.

Moreover, the result of the optimization gives a real valresf,, instead of
an integer number of cells. This will introduce a roundingpebut has a small
influence on the optimal result, because either the cellagpaan be considered
very small to give large number of cells, or the result canriterpreted as an
indication of the optimal pack capacity.

Since a quadratic over linear functidifx, y) = X—yz is convex fory > 0 and a

second order polynomial functiof(x) = px? + gx + r is convex forp > 0, the
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Table 3.2: Convex optimization problem for a series PHEV
Varlableg TENMa PEGU’ PbNrka IN’ Et’;l+1’ PgNC, Soata SEGU! SEM

minimize cost(Ps, Pg)
subject to Pgm(K) = Ppar(K) — PNaux + Pg(k)ng
Poa(K) = Vool (K) - REY
En(k + 1)(k)2= En(K) — h(K)Vodl
Pi(k) = alpEss—;Ek) N aPecu (K) + €ndsSecu
Pem(K) >= c1(k) 22 + Go(K)Tem(K) + Ca()Sem
En(K) € [Ebmin» Enmax]
Pg(k) € [Pg,min, I:)g,max]
Pecu (K) € [Pecu,minbases PEGU.maxbase] SEGu
:I-EM (k)~E [-[EM,min,base(wEM (K)), Temmaxpase(wem (K))] Sem
i(k) € [imin, imax]
Shat € [sbat,min, Soat,max]
Sem € [Sem.mins SEM.max]

Secu € [Secu.min, SeGU,max]
vYke{0,...,N-1}

second order polynomial models for the EM power, fuel povesult in convex
functions of the optimization variables.

Combining the power balance equations and the equationtbeebattery
power gives a second order constraint function. Since lgaaimequality sign in
a second order polynomial constraint does not result in@ofermulation, we
change the equality sign into inequality. This does rfteéa the results, since
the optimalPgy will satisfy the inequality with equality. This is so, becau
otherwise energy would be wasted, making the result notregti

The convex formulation of the problems are summarized inerd® and
Table 3.3 for series and parallel PHEVSs.

As examples of the results obtained using the method fongiaf PHEVS,
two results are given. The first one illustrates the optirpakational and compo-
nent costs of a series PHEYV, driven over a 700 km long driviidec Since the
problem is a Multi-objective optimization problem (the gooment cost versus
the operational cost), the conflicting objectives can béesic® formulate a sin-
gle objective optimization problem. The parameter usea#besthe problem is
in reality related to the lifetime driving distance of a day. altering this weight-
ing parameter, a so called Pareto front can be obtained asshd-ig 3.2. The
optimization is done for dierent level of performance requirements considered
in the problem.

The second example gives the result of the optimization $aeris PHEV. As
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Table 3.3: Convex optimization problem for a parallel PHEV
Variables TR, TN, PN, iN, EN"L, Pg°, spat, Sice, Sem

minimize cost(Ps, Pg)
subject to Pgem(K) — Pork(K) = Tem(K)wem(K) + €on(K) Tice (K)wice (K)n(K)
Pem(K) + Paux(k)2 < Phat(K) + Pg(K)17g
Pew(K) = 122X + ¢, () Tem(K) + ca(K)Sem
Poat(K) = Vool (K) — REQ
Ep(2 :k+1)=Ep(1:Kk) —h(K)i(1:KkVe
Tem(K) € [Temminbase(wem (K)), Tem maxbase(wem (K))] Sem
Tice(K) € [0, Tice maxbase(wice(K))] Sice
|(k) € [imim imax]soat
Eb(k) € [SOCmin, SOCmax]VocQ
Pg(K) € [0, Pgmax(K)]
Spat € [Soat,mim Soat,max]
Sem € [Semmins SEM,max]

Sice € [Sice,min, SicE max]
vYke{0,...,N-1}

mentioned earlier, the length of the driving cycle highlfluences the optimal
sizing. To clearly show this, the optimization is done ovevidg cycles with
lengths from 1 to 180 km. For each trip length, 1@elent stochastic driving
cycles are generated by Markov chains, and the mgeaind standard deviation
(o) of the optimal component sizes, in addition to the energyaled of the trip
and available battery energy are shown in Fig 3.3.
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Chapter 4

Summary of included papers

In this chapter, a brief summary of the appended papersvejao. Full versions
of the papers are included in Part Il.

Paper 1

Mitra Pourabdollah, Viktor Larsson, Lars Johannesson, Barét,
PHEV Energy Management: A Comparison of Two Levels of Trip
Information, SAE World Congress, April 2012, Detroit, Michigan,
USA.

Plug-in hybrid electric vehicles need a controller to sghlé power between the
two power sources. In the absence of any information abautrtp, the best
strategy is to first deplete the battery and then, if the 8ifpnger than the all
electric range of the vehicle, to sustain the battery stttbarge around a lower
level. However, fast discharging results in higher battesses, and therefore
does not give the best fuel economy on long driving distantls optimal en-
ergy management is obtained using dynamic programmingyikgathe driving
cycle fully. This means that there is a traffdoetween improved fuel economy
and the need for a priori information. In this paper, a newhoétfor discharg-
ing the battery is proposed which is based on telemetry atgnv consumption
minimization strategy. The proposed method requires omtyesgeneral infor-
mation, in addition to the information about the trip digtan

The results of implementing this method, considering twibedent levels
of detailed information, are compared with the result of lempenting charge
depletion charge sustaining and dynamic programming nadsth®he proposed
strategy improves the fuel economy considerably comparetidarge depletion
charge sustaining strategy. More detailed a priori infdromareduces the fuel
consumption, very close to the optimal value.
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Paper 2

Mitra Pourabdollah, Nikolce Murgovski, Anders Grauers &l
Egardt, Optimal sizing of a parallel PHEV powertrain, Actagpfor
publication inl EEE Transactions on Vehicular Technology.

Paper 2 presents a method to find the optimal sizes of the kepa@oents , of
a parallel PHEYV, i.e., the battery, the electric motor, dralihternal combustion
engine, simultaneously with the energy management. Teedbig problem, it
is casted as a convex optimization problem. The objectiaetfan to be mini-
mized is a weighted sum of the operational cost, i.e., fudledectricity, and the
cost of the key components. The constraints are given bytieqsagoverning
the power flow in the system and the component models, andebsniximum
component ratings. The results of the optimization are tbleaj optimal energy
management at every time instant over a given driving cyatea@ptimal com-
ponent sizes. The comparably fast computation time of thinodeallows the
use of a long driving cycle, including flierent driving patterns of a driver over
20 days.

This method can be used as a tool to understand how the optosablnd
design of a PHEV is influenced byfterent factors, e.g., performance require-
ments, charging behavior, driving cycle, battery type,rgmeand component
costs, and gear shifting. For example, it is shown that thecleecost is more af-
fected by the acceleration requirements, than the reqeméon top speed and
all electric range. Moreover, with the current price of gyeand battery cells,
the optimal AER is not very long.

Paper 3

Mitra Pourabdollah, Anders Grauers and Bo Egardie& of Driv-
ing Patterns on Components Sizing of a Series PHEV, Suldhiite
7th IFAC Symposium on Advances in Automotive Control, Septem-
ber 2013, Tokyo, Japan.

Paper 3 presents a method to find the optimal design of a JeH&3/ that
matches the driving pattern of a driver. To model the drivyagtern of a driver,
a driving cycle is needed, that includes not only the speetil@rof the driving
cycles, but also the distance driven between two chargimprbpnities. The
speed profile of these driving cycles are generated by Mgpkosesses, whose
transition matrices are trained by real-life data. Usinghda process enables
us to make stochastic combinations of driving cycles witfedent distances that
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represent the real life behavior of drivers. To model theidg distance distri-
bution, Weibull standard distribution is used. By changiihg parameters, the
distribution is altered, to fit the driving distance distriions of diferent drivers.

The optimal size of the battery, electric motor, and engiereegator unit are
found over the generated driving cycles, using convex dpétion method pre-
sented in Paper 2. The objective function to be minimizedascomponent costs
and operational costs over the defined driving cycles. Thengation gives the
optimal components sizes simultaneously with the optimatgy management.

The results show that the sizes of the components vary muctiifferent
distance distributions, however, are not very sensitihi¢éospeed profiles. For
drivers driving mostly short distances, the optimal vehichs a small battery,
but a big EGU to provide the power needed for performanceireqpents. For
drivers who drive in average longer routes, the battery sizeeases, because
more electrical energy is needed for longer driving cydiémwever, if the driver
drives mostly on very long routes, then the optimal vehi@sign is more like
an HEV, with a small battery and a big EGU.
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Chapter 5

Concluding remarks

In this thesis optimization problems for PHEVs are studietiva different lev-
els, energy management and sizing.

The first part focuses on energy management strategies faBWBHThis is
an optimization problem aiming at finding the best powertsplterms of the
fuel consumption, using available information about tiy tfhe trivial strategy
is to fist use the battery energy, and in case the battery esazhower level,
sustain the SoC around this level. This strategy is the beshiort distances and
also if no a priori knowledge about the trip is available. Hwer, for trips longer
than the all electric range of the vehicle, a strategy thatdischarge the battery
gradually to reach the lower level at the end of the trip deses the internal bat-
tery losses and hence the fuel consumption and emissioesné&thod presented
in Paper 1 is based on telemetry equivalence consumptioimiition strategy
for HEV, and is therefore modified to be used for PHEVs. Thiategyy can im-
prove the fuel consumption using only the trip distance gled by the driver
and general information including expected energy demaxdoaaking energy
per kilometer. The results show that the proposed methodiearease the fuel
consumption considerably compared to the trivial stratégye fuel consump-
tion improves by increasing the level of information detailn other words, if
the information is calculated considering only the tripsein on the same route
as the current trip, the fuel consumption improves slightignpared to the case
when all the trips over dierent routes are considered.

There are dterent ways to provide the information on trip length. One way
is that the driver provides the estimate manually. An aligve is to use smart
algorithms like route recognition algorithms to estimée trip information. The
method is robust to the general information, but is rathesisige to the trip
distance. This means that if the trip length given by theatdrig over or under
estimated, the battery will be discharged less or soonerribaded.

In the second part of the thesis, convex optimization is fsedimensioning
a passenger PHEV. Its relatively fast computations maksssisible to consider
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CuAPTER 5. CONCLUDING REMARKS

variables of component sizing simultaneously with thealalgs of the energy
management over a long driving cycle. The optimization isedfor both paral-

lel and series PHEVs, for which a cost function including teenponents and
operational costs are minimized. To cast the models as gdovetions, ap-

proximations, variable changes, and assumption must be.dbor example,
convex second order polynomial models are approximateldet@ower charac-
teristics of the engine, the engine-generator unit and lénerec machines, and
the battery model assumes quadratic losses.

The method can be used as a tool to study tfeceof diferent factors, like
component and energy prices, driving and charging pattentd diferent con-
figurations, on optimal sizing. For example, it is shown ttigt cost is more
affected by the acceleration requirements than the requirsroarthe top speed
or the all electric range. Moreover, with the current pri€ewergy and battery
cells, the optimal AER is not very long. In addition, a sysédimway to gener-
ate series of driving cycles which represent life time dargvpattern of dierent
drivers is presented, and the corresponding optimal desfighe vehicles are
given. The results shows, as expected, that the optimargagize for a driver
driving mostly short distances is small, but it increaselefdriver drives longer
distances more often, up to some point. If the driving cyelesvery long, the
optimal battery size decreases again.

The main drawback of the method is that the integer variatéesnot be
included in the convex problem. Therefore, variables Ihe ¢ngine on-b and
gear ratio needs to be decided by heuristics outside theeggmoblem. Future
work needs to address the limitations and improve the higgis

Future work

First, the convex optimization method can be used to stufdigrént scenarios of
changing battery type, fuel and battery price and perfooaaequirements in
more details. A more detailed battery model including thammaodel and SoC
dependent battery voltage need to be considered in theggnotMoreover, the
problem can be extended to vehicles witffelient components, such as super
capacitors, flywheels or fuel cells. Finally, future workshta address the lim-
itation that is posed by the need to fix the integer controlades (gears and
engine on-) prior to the optimization.
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