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Abstract—In this work, we compare 4-pulse amplitude
modulation and on–off keying modulation formats at high
speed for short-range optical communication systems. The
transmission system comprised a directly modulated vertical-
cavity surface-emitting laser operating at a wavelength of
850 nm, an OM3+ multimode fiber link, and a photodetector
detecting the intensity at the receiver end. The modulation
formats were compared both at the same bit-rate and at the
same symbol rate. The maximum bit-rate used was 25 Gbps.
Propagation distances up to 600 m were investigated at
12.5 Gbps. All measurements were done in real time and
without any equalization.

Index Terms—Data communications; Fiber-optical commu-
nications; IM/DD; Interconnects; MMF; 850 nm; OOK; 4-PAM;
Short range; VCSEL.

I. INTRODUCTION

T he increasing demand for capacity in short-range optical
communications, such as optical interconnects and stor-

age area networks, has motivated the development of fast
and low-cost vertical-cavity surface-emitting lasers (VCSELs)
and multimode fiber (MMF). Graded index MMF, optimized
for the 850 nm wavelength, has been successfully used to
reduce the impact of modal dispersion induced intersymbol
interference (ISI) and extend the reach in such systems.
Currently, 10 Gbps links are commercialized, and lasers and
photoreceivers (although with limiting amplifiers only) for
25 Gbps at the wavelength of 850 nm are becoming available.
However, with increased bit-rates and the recent development
of VCSELs capable of operating at 40 Gbps at the wavelength
of 850 nm [1] and 44 Gbps at the wavelength of 980 nm [2], it
turns out that the transmission distance in MMF at such high
bit-rates is limited by the modal dispersion, if on–off keying
(OOK) modulation is used. Multilevel modulation, with higher
spectral efficiency, is a potential way to extend the reach of
MMF-based links at high bit-rates. Because of cost constraints,
intensity modulation and direct detection (IM/DD) is appealing
in short-range optical networks.

There are two main possibilities for increasing the spectral
efficiency in IM/DD links: subcarrier modulation (SCM) and
pulse amplitude modulation (PAM). In SCM schemes, a
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microwave subcarrier signal is first modulated with, for
example, quadrature amplitude modulation (QAM) or phase
shift keying modulation (PSK). Single-cycle SCM with 16-QAM
has been demonstrated in links using VCSELs and MMFs [3],
with the transmitter operating in real time and the digital
processing on the receiver side being implemented off-line.
Discrete multi-tone modulation, which is a multiple subcarrier
scheme, has been demonstrated at 30 Gbps for the same
type of link [4], also with off-line processing. The main
advantages of the multiple subcarrier approaches are easier
electronic equalization and increased robustness to effects
of modal dispersion due to reduced symbol rates. A general
disadvantage of IM/DD subcarrier schemes, compared to
PAM, is worse sensitivity, in terms of optical received
power [5,6]. Another disadvantage of the subcarrier schemes is
their implementation complexity, whether implemented using
analog electronics or digital signal processing.

The complexity of the electronic modulator, demodulator
and laser driver circuits is an important limitation in the
design of short-range data communication links. Higher
complexity means higher power consumption, which is
undesired in densely packed data centers, and therefore it
is difficult to justify use of subcarrier modulation in such
environments. On the other hand, PAM offers probably the
lowest implementation complexity of all multilevel modulation
formats. Complementary metal-oxide-semiconductor (CMOS)
electronic circuits for real-time 4-PAM transmitters and
receivers, operating at bit-rates up to 22 Gbps, have already
been developed [7,8]. In [9], multilevel intensity modulation
formats, including PAM in particular, were investigated for
increasing the reach of 10 Gbps links, using 1550 nm
wavelength and standard single-mode fiber. It was shown
that 4-PAM modulation can increase the dispersion-limited
distance. Electronic pre-distortion for extension of the reach
of 4-PAM in MMF was analyzed and demonstrated at 10 Gbps
in [10], and eye diagrams from real-time operation at 32 Gbps
with electronic pre-distortion were demonstrated in [11].
In [12], 4-PAM and OOK were compared in short-range optical
links with VCSELs and MMF, with promising results.

Recently, we have demonstrated 30 Gbps error-free trans-
mission over 200 m of MMF, using 4-PAM and a 850 nm
VCSEL [13]. The 4-PAM signal was generated in real time
and the bit error rate (BER) measurement was also done
in real time. No equalization was used in the receiver, nor
was any pre-distortion used in the transmitter. Although
electronic equalization may become commonplace in the
future, implemented for example with transversal filters [11],
the objective of this work is to provide a baseline comparison
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of OOK and 4-PAM. A detailed description of the experimental
procedures was presented in [14].

In this work, we further investigate the application of
4-PAM in short-range optical links using VCSELs, MMF,
and direct detection. We present theoretical and experimental
comparisons of the sensitivity and ISI penalties of 4-PAM and
OOK. An experimental comparison of sensitivities and ISI
penalties for both modulation formats is also presented.

There are two cases of particular interest when comparing
OOK and 4-PAM. The first one is when 4-PAM is used to
double the bit-rate, compared to an OOK system. The main
questions are how much more optical power is required and
how the propagation in the MMF is affected. To answer these
questions we have compared experimentally OOK and 4-PAM
at the same symbol rate of 12.5 Gbaud, which in other words
meant comparison of 12.5 Gbps OOK with 25 Gbps 4-PAM.

The other case is when 4-PAM is run at the same bit-rate
as OOK, to increase the propagation distance in MMF. The
main interesting question here is how large the improvement
in propagation distance in the MMF is, and again, what
the power penalty is. From a simplistic point of view, the
propagation distance should be doubled, because of the signal
bandwidth being reduced by half, but, on the other hand,
the power expense for using more levels means that less
dispersion penalty can be tolerated. To investigate this, we
have experimentally compared 4-PAM and OOK at 12.5 Gbps.

This paper is organized as follows. In Section II, we briefly
compare OOK and 4-PAM theoretically. In Section III, we
elaborate on the experimental setup. In Section IV, we present
experimental results and discussion. Section V contains closing
conclusions.

II. 4-PAM AND OOK FOR SHORT-RANGE

LINKS—THEORETICAL CONSIDERATIONS OF BER
PERFORMANCE AND SENSITIVITY

A. Relative Sensitivity

With the limited bandwidth–distance product of MMFs it
is desirable to reduce the signal bandwidth. Unfortunately,
with OOK modulation this means that the data rate will also
be reduced. However, if multilevel modulation, such as PAM,
is used, the bandwidth of the signal can be reduced, for the
same bit-rate, at the expense of the optical power efficiency,
manifested through the receiver sensitivity. The bandwidth of
M-level PAM is 1/log2(M) of the OOK signal bandwidth at the
same bit-rate, where M is the number of levels [9]. For 4-PAM,
this means that the bandwidth is reduced by half, compared to
OOK at the same bit-rate. Under assumptions that the noise
is additive, white, and stationary, the optical power penalty for
using a multilevel PAM, compared to OOK at the same symbol
rate, in terms of the required optical power in dB to reach the
same BER is

Pps = 10log10(M−1), (1)

where M is the number of PAM levels [15]. This means that
4.8 dB more received optical power is needed for 4-PAM at the

same symbol rate as OOK. The penalty is less when the bit-rate
is kept fixed, because of reduced bandwidth. The optical power
penalty for M-PAM, relative to OOK at the same bit-rate Ppb,
is expressed in dB as

Ppb = 10log10

(
M−1√
log2(M)

)
, (2)

according to [9]. For 4-PAM this gives that 3.3 dB more optical
power is required compared to the OOK signal at the same
bit-rate to reach the same BER.

B. SER and BER Calculation

To calculate the theoretical BER values for M-PAM systems,
we start with the symbol error rate (SER) calculation.
Assuming that all M symbols are equiprobable, the SER can
be calculated in an exhaustive manner through

SER= 1
M

M−1∑
i=0

M−1∑
j=0, j 6=i

Pi j , (3)

where Pi j is the probability of receiving symbol j when symbol
i was transmitted [16, Ch. 4.2]. Assuming Gaussian noise, this
probability is found as

Pi j =
1
2

erfc

(
I th, j − I i

σi
p

2

)
− 1

2
erfc

(
I th, j+1 − I i

σi
p

2

)
. (4)

Here, I i denotes the photocurrent at symbol i, and I th, j is
the threshold current, where I th,0 = −∞, and I th,M = +∞.
The remaining decision thresholds are located between the
subsequent symbols. The root mean square (RMS) value of the
noise current at the symbol i level is denoted σi .

The BER is dependent on the labeling of the symbols. The
Gray labeling usually provides the best performance [17], but
sometimes in experiments it is easier to implement natural
labeling. In general, the BER can be expressed as

BER= 1
M

M−1∑
i=0

M−1∑
j=0, j 6=i

di j

log2(M)
Pi j , (5)

where the di j is the Hamming distance between the labels of
symbols i and j [17]. An example of the two labelings for M = 4
is given in Table I.

Assuming that the thermal noise is dominating, all symbol
levels are equally spaced, and the decision thresholds are
equidistant from adjacent symbols, the SER can be expressed
as

SER= M−1
M

erfc
(

Iavg

(M−1)
p

2σ

)
, (6)

where Iavg is the average photodetector current and σ=σi for
all i is the RMS noise current. For high signal to noise ratios
(SNRs), it can be assumed that only errors between adjacent
symbols occur. In that case, the BER can be approximated as

BERapprox ≈ davg
SER

log2(M)
, (7)
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TABLE I
GRAY AND NATURAL LABELING FOR M = 4

Symbol Gray labeling Natural labeling

3 10 11

2 11 10

1 01 01

0 00 00

where davg is the average Hamming distance between the
labels of adjacent symbols. If Gray labeling is used, davg = 1,
which yields

BERG ≈ SER
log2(M)

. (8)

If natural labeling is used, the BER is still well approximated
by Eq. (7), where in this case

davg =
∑log2(M)−1

k=0

(
log2(M)−k

)
2k

M−1
= 2− log2(M)

M−1
. (9)

C. Theoretical BER and Sensitivity for Our Experimental
System

The value of I i is related to the optical power P as Ip = RP,
where R is the responsivity of the photodetector. The total noise
current variance can be expressed as

σ2
k = 4kBTFn∆ f /RL +2qI i∆ f +RINI2

i ∆ f , (10)

where the three terms of the sum on the right-hand side of
the equation describe, respectively, the thermal noise, the shot
noise, and the relative intensity noise (RIN) [18]. The values
denoted by kB,T,Fn,∆ f ,RL, q, and RIN are, respectively, the
Boltzmann constant, temperature in Kelvin, receiver amplifier
noise figure, receiver bandwidth, load resistance, elementary
charge, and average RIN spectral density. The photodiode dark
current of the detector is small compared to the photocurrent
and therefore is ignored. The values R = 0.4 A/W, T =
298 K, Fn = 5 dB, RL = 50 Ω, and RIN = −155 dB/Hz
characterize our experimental setup and are used to find
the theoretical BER for our experiments. The bandwidth was
set to 12.5 GHz for 12.5 Gbps OOK and to 12.5 GHz for
25 Gbps 4-PAM and 6.25 GHz for 12.5 Gbps 4-PAM. The
symbols were set equispaced, and the thresholds were set in
the middle between adjacent symbols. This would be optimal
at high SNR if thermal noise was dominating and suboptimal
if power-dependent noise (shot noise and RIN) was dominating.

The theoretical BER values for OOK and 4-PAM, both exact,
obtained using Eq. (5), and approximated, including both Gray
and natural labeling, obtained using Eq. (7), are illustrated in
Fig. 1. The relative sensitivities of 4-PAM and OOK signals
at the same bit-rate and at the same symbol rate agree with
results from Eq. (2) and Eq. (1). The difference between the
exact and approximate BER is very small in the low-BER
region and becomes apparent only for very high BER. On
the other hand, operation of short-range optical links in that

Fig. 1. (Color online) Theoretical BERs versus received optical power
for OOK and 4-PAM. The approximate values of the BER were
obtained using Eq. (7).

Fig. 2. (Color online) Contributions from the thermal noise, shot noise,
and relative intensity noise for given system parameters at a receiver
bandwidth of 12.5 GHz.

region is of limited interest in data center and supercomputing
applications, because forward error correction (FEC) would
have to be implemented. Although FEC would increase the
power consumption and heat generation, and it is not used at
present in short-range applications, it may become an option
in the future. The small difference (at low BER) between the
Gray and natural labelings is also worth noting. The penalty
for using natural labeling is small, and it is easier to implement
natural than Gray labeling in experiments.

The noise contributions are plotted in Fig. 2. The RIN and
shot noise powers are stronger than RIN only for received
power levels greater than 3 dBm. On the other hand, the
photodetector at our disposal saturates at 3 dBm received
optical power, so the system is always dominated by the
thermal noise. Since the thermal noise is not signal dependent,
we can use equally spaced levels and decision thresholds at
equal distances from the symbol levels [9,18].
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D. ISI Penalties Due to Modal Dispersion

The ISI penalty due to the modal dispersion is well
understood for OOK systems. The basic ISI penalty calculation
methods have been outlined in [19]. The worst-case ISI penalty
(expressed in dB) is

PISI = 10log10

(
1

1−Em

)
, (11)

where Em is the worst-case eye closure. For OOK it is
approximated as

Em,OOK = 1.425exp

(
−1.28

(
T

TC

)2
)

. (12)

The bit period is denoted as T and the channel 10%–90%
rise time is denoted as TC . This ISI penalty calculation
method, which is valid under assumptions of Gaussian channel
response and rectangular input pulse, was given in [20]. It is
used in the IEEE 802.3 link budget spreadsheet [21]. Methods
of calculation of the 10%–90% rise time for a given system are
described in [20].

We can now extend the ISI penalty estimates to 4-PAM,
assuming that it contains three stacked OOK eye diagrams.
Assuming that the channel response is Gaussian, it is easy to
observe that, for the same system rise time and symbol rate,
the eye closure for 4-PAM is twice as large as that for OOK,

Em,4PAM = 2.85exp

(
−1.28

(
T

TC

)2
)

. (13)

It must be noted here that the top and bottom eye openings
for 4-PAM signals are not symmetric, and therefore there is
an additional power penalty if the decision thresholds are not
adjusted.

The bandwidth of the experimental link was measured
for various fiber lengths, and the results are presented in
Subsection III.B. The measured system bandwidth was used
to calculate the approximate theoretical ISI penalties for OOK
and 4-PAM at 12.5 Gbps and 25 Gbps for both modulation
formats. The theoretical ISI penalties are illustrated in Fig. 3.
The theoretical ISI penalties for 4-PAM are substantially lower
than for OOK at the same bit-rate, and at 25 Gbps OOK suffers
from ISI even in the back-to-back (BTB) case. The theoretical
ISI penalties will be compared with experimental results in
Section IV.

III. EXPERIMENTAL SETUP

A. 4-PAM and OOK Signal Generation

The OOK test signal was generated using an SHF 12103A
pattern generator. The 4-PAM signal was generated from two
binary pseudo-random binary signals (PRBS) of length 27 −1,
at the same symbol rate as the target 4-PAM signal. It would be
interesting to investigate the effects of longer PRBS patterns,
since both VCSEL performance and effects of ISI are affected.

Fig. 3. (Color online) Theoretical ISI power penalties for OOK and
4-PAM.

Fig. 4. Generalized experimental setup with 4-PAM signal generator.
The photoreceiver (PR) and error analyzers were different in various
configurations, which are listed in Table III.

On the other hand, short PRBS patterns are commonly used
in experiments with VCSELs to model short run length
codes, such as the 8B10B code used in data communication
applications [22,23]. The binary streams were offset by half
of the pattern length for optimum decorrelation, which is
important in order to obtain all transitions between the 4-PAM
symbols and for proper SER measurement. It was also verified
that the 4-PAM signal was bias neutral, i.e., it contained the
same number of low-power and high-power symbols. The bits
were mapped to symbols using natural coding, rather than
Gray coding, which is an inherent characteristic of this way
of generating a 4-PAM signal. The amplitudes of the binary
signals were approximately 900 mV and 450 mV, but they
were adjusted slightly to optimize the resulting 4-PAM signal
level spacing. The two binary signals were clock aligned and
combined together, as illustrated in Fig. 4. The generated
4-PAM signal was then fed to a VCSEL through a bias-T.

B. VCSEL and Transmission Fiber

The VCSEL used in these experiments was developed
in-house and comes from the same batch as the one reported
in [24]. The VCSEL was biased at 8 mA; at this bias current,
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Fig. 5. (Color online) Normalized magnitude of the frequency response
of the complete link for different fiber lengths.

the modulation bandwidth is around 16 GHz. Low bias current
translates to low current density, which in turns improves
reliability [9]. The VCSEL was operated without cooling, at
room temperature. A photoreceiver with 12 GHz bandwidth
was used to detect the optical signal. Between the VCSEL and
the photoreceiver, OM3+ graded index MMF was used, with
a bandwidth–distance product of 4700 MHz · km. A variable
optical attenuator was used to vary the optical power. The
bandwidth of the MMF link was measured using a vector
network analyzer. Fiber lengths up to 800 m were evaluated,
with an increment of 100 m. A BTB configuration was also
included. The magnitude and phase of the frequency response
are presented in Figs. 5 and 6, respectively. The bandwidths
of the tested configurations are summarized in Table II. As
the length of the MMF was increased, the bandwidth fell and
roll-off increased. In the case of Gaussian frequency responses,
the total bandwidth of a system can be expressed with a simple
expression,

BW−2
system =BW−2

1 +BW−2
2 +BW−2

3 +·· · , (14)

where BWsystem denotes the total system bandwidth and BWi
denotes the component bandwidths [25]. It is easy to observe
that in this case the total bandwidth of the system is less than
the bandwidth of the slowest component. Even though real
systems may have non-Gaussian frequency responses, Eq. (14)
gives an illustration of the evolution of the system frequency
response. The magnitude of the frequency response did not
have any sharp dips or peaks, as would be expected for older
types of MMF [26].

In many of the 4-PAM experiments reported, the modulation
amplitude of the signal driving the VCSEL is adjusted to
stay in the linear region of the static output power to
driving current (PI) relationship. However, the semiconductor
lasers have much more linear performance for high-frequency
signals [27], and therefore static PI characteristics cannot be
used to define linear operation. The static PI characteristics, as
well as the static bias voltage to bias current characteristics,
are plotted in Fig. 7. We have optimized experimentally the

Fig. 6. (Color online) Phase response θ( f ) of a system with 300 m of
MMF (top plot) and the same phase response unwrapped and with the
linear part subtracted, i.e., θ( f )−T f , where T =−62 ns (bottom plot).

TABLE II
MEASURED −3 dB BANDWIDTH, −6 dB BANDWIDTH AND

FREQUENCY ROLL-OFF FOR THE TESTED FIBER LINKS

Length (m) −3 dB BW −6 dB BW Roll-off
(GHz) (GHz) (dB/decade)

0 8.5 12 15

100 7.2 11 16

200 6.5 9.5 18

300 5 7.5 22

400 4.2 6 23

500 4 5.5 24

600 3.2 5 25

700 3 4.5 26.5

800 2.3 3.8 27.7

driving signal to obtain the best signal. An example of a BTB
4-PAM eye diagram is presented in Fig. 8, to show that the eye
diagrams are free from nonlinear distortions.

C. Receiver Configurations

At the time when the experiments were done, we had
at our disposal a 12 GHz photoreceiver with an integrated
transimpedance amplifier (TIA). The responsivity of the
photodiode in the photoreceiver was 0.4 A/W at 850 nm. For the
error detection, we had two error analyzers (EAs): an Agilent
N4903A and an SHF 11100B. The Agilent EA was used for
signals with a symbol rate up to 12.5 Gbaud, and the SHF
EA was used for signals with a symbol rate of 12.5 Gbaud
and above. The photodetectors and EAs were used in the two
configurations summarized in Table III.

The two configurations differ only with the choice of the
EA. The SHF EA had better sensitivity, but the Agilent
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Fig. 7. (Color online) The power and voltage versus current
characteristics of the VCSEL used in the experiments.

Fig. 8. (Color online) Back-to-back eye diagram of a 4-PAM signal at
25 Gbps, at 0 dBm received optical power. Because of the inverting
amplifier in the photoreceiver, the highest power level is in the bottom
of the eye diagram.

TABLE III
RECEIVER CONFIGURATIONS

No. Photodetector Amplifier Error analyzer

1 12 GHz PR Integrated Agilent N4903A

2 12 GHz PR Integrated SHF 11100B

EA could be used at lower symbol rates. Additionally, for
the 12.5 Gbps 4-PAM signal, a 7.5 GHz passive electrical
low-pass filter (LPF) was added to reject the noise outside the
signal bandwidth. Because of different performances of the two
receiver configurations, all comparisons are always done with
the same configuration. The test setup illustrated in Fig. 4
corresponds to the configuration with receiver no. 2.

D. Bit Error Rate Measurement

The BER measurement was performed using an EA
designed for conventional OOK modulation. Since it is the

low-BER operation that is of highest interest, it is enough
to measure the error rates between the adjacent symbols
(as motivated in Section II). This kind of measurement
can be easily done with an EA with adequate decision
threshold, programed with patterns corresponding to given
decision thresholds. For 4-PAM, three decision thresholds are
applicable. The error rates measured at these thresholds are
denoted ER1, ER2, and ER3, and the total BER is given by

BER= 1
2

ER1 +ER2 +
1
2

ER3, (15)

as was discussed in more detail in [14].

IV. RESULTS AND DISCUSSION

A. Comparison at the Same Symbol Rate—12.5 Gbaud

The comparison of 4-PAM with OOK at the same symbol
rate of 12.5 Gbaud was performed using receiver configuration
no. 2. A BTB eye diagram at 0 dBm received optical power is
illustrated in Fig. 8: all levels had the same width, indicating
that the noise is not signal dependent and that the theoretical
considerations on noise in Section II are correct. The BER
results are illustrated in Figs. 9 and 10. The BTB sensitivity
at BER = 10−9 of OOK at 12.5 Gbps was about −13 dBm,
which agrees very well with the theory (see Fig. 1). On
the other hand, 4-PAM at 25 Gbps had BTB sensitivity of
around −6.5 dBm, which was about 1.2 dB off the theoretical
expectation, and consequently the difference between OOK
and 4-PAM sensitivity was 6 dB, rather than the expected
4.8 dB.

The comparison of the receiver sensitivities versus propa-
gation distance for the 12.5 Gbaud case is shown in Fig. 11.
The propagation penalty for 200 m of the OM3+ MMF was
small for both modulation formats, but, beyond this length,
4-PAM degraded much faster than OOK. This agrees with the
theoretical ISI penalty evolution from Fig. 3. The absolute
ISI penalties with respect to the BTB configuration are in
good agreement with theory up to 400 m for OOK and up
to 200 m for 4-PAM, or roughly up to 2 dB ISI penalty,
which comes at shorter distances for 4-PAM. Consequently,
the approximate theoretical ISI expression for 4-PAM is
useful for shorter fiber lengths. The theoretical ISI penalty
is apparently overestimated for OOK and underestimated for
4-PAM for longer fiber lengths. The theoretical ISI penalties
were calculated under the assumption of Gaussian channel
response and pulse shape, which is only a rough approximation
of the real conditions. For 4-PAM, the eye closing is larger
for the two outer levels than in the center (see the insert in
Fig. 11), while the theoretical model approximates it with the
same eye closing for all levels.

B. Comparisons at the Same Bit-Rate—12.5 Gbps

The comparison at the same bit-rate was done at 12.5 Gbps.
Receiver configuration no. 1 was used both for 4-PAM and OOK
at 12.5 Gbps, with a 7.5 GHz LPF for the 4-PAM. The BTB
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Fig. 9. (Color online) BER versus average received optical power for
4-PAM at 25 Gbps.

Fig. 10. (Color online) BER versus average received optical power for
OOK at 12.5 Gbps, obtained with receiver in configuration no. 2.

receiver sensitivity of OOK with this receiver configuration
was 4.5 dB worse than with receiver configuration no. 2. The
relative BTB sensitivity of 4-PAM at 12.5 Gbps was 4 dB
worse than of OOK at 12.5 Gbps, while a 3.3 dB difference
was expected from theory in Section II. The BER results
for the 12.5 Gbps case are illustrated in Figs. 12 and 13.
The receiver sensitivities after propagation over MMF are
illustrated in Fig. 14. Within the available received power,
both OOK and 4-PAM could reach 600 m at 12.5 Gbps,
although the propagation penalty for 4-PAM is much lower
until 500 m is reached. In fact, at 500 m, the sensitivity of
12.5 Gbps 4-PAM was only 2.5 dB worse than of 12.5 Gbps
OOK. Beyond 500 m, the propagation penalty for 4-PAM
started to increase much faster. Similar behavior is observed
in Fig. 3; however, the expected ISI penalty beyond 500 m
is lower that what was observed in the experiments. From
the theoretical consideration in Section II, it follows that

Fig. 11. (Color online) Sensitivity at BER = 10−9 versus MMF
propagation distance compared at the same symbol rate (12.5 Gbaud)
with 4-PAM eye diagram after 300 m in the insert.

Fig. 12. (Color online) BER versus average received optical power for
4-PAM at 12.5 Gbps and 25 Gbps.

4-PAM should have better sensitivity than OOK at the same
bit-rate after propagation over 500 m. In the experiments, the
sensitivity and ISI penalties for 4-PAM were worse than the
theoretical values. The theoretical penalties for 4-PAM are
again underestimated compared to the experimental results.
Similarly to the 12.5 Gbaud 4-PAM case, the eye closing
becomes uneven for different levels, and that adds to the
penalty, as illustrated in the insert in Fig. 14. There are
also implementation penalties for 4-PAM, which could lower
if electronic circuits dedicated for 4-PAM were developed. For
example, the microwave combiners used are non-ideal, and a
dedicated multilevel circuit would improve the performance.
A highly linear optical receiver with automatic gain control
(AGC), similar to the one used in [28], would make the BER
measurements more reliable and simplify the design of a
decision stage for 4-PAM in real applications.
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Fig. 13. (Color online) BER versus average received optical power for
OOK at 12.5 Gbps, obtained with receiver in configuration no. 1.

Fig. 14. (Color online) Sensitivity versus MMF propagation distance
compared at the same bit-rate (12.5 Gbps) with 4-PAM eye diagrams,
BTB ad 500 m, in the insert.

C. Discussion

The experiments show that 4-PAM required significantly
more receiver power than OOK in both scenarios: 6 dB
at the same symbol rate and 4 dB more at the same
bit-rate. This is more than is expected from the theoretical
considerations, which yield 4.8 dB and 3.3 dB in the two
respective scenarios (Section II). The implementation penalties
are thus 1.2 dB and 0.7 dB, respectively. Possible reasons
for the implementation penalties are the suboptimal electrical
signal from the microwave couplers and lack of AGC in the
receiver.

The ISI penalties of 4-PAM were lower than of OOK at the
same bit-rate, but because of the implementation penalties
we could not reach the point where the lower ISI penalties
of 4-PAM would offset its higher power requirements. Also,

the theoretical ISI penalties of 4-PAM were underestimated by
1–2 dB at longer fiber length, compared to the experimental
results. This is reasonable, given the simplicity of the
theoretical model, which assumes Gaussian pulses as well as
channel responses and equal eye closing for all levels. The
theoretical calculation gives good estimates up to roughly 2 dB
of ISI penalty.

The difference in sensitivity between 4-PAM and OOK was
comparable to, for example, the link budget foreseen for short
data links in the IEEE 802.3 standard [29]. The link budget
foreseen by this standard is 8.3 dB and allocation for penalties
is 6.5 dB. This means that, should an existing OOK system be
upgraded to 4-PAM in order to double the bit-rate in the same
bandwidth, the power budget would be exhausted. On the other
hand, the power budgets might be different in applications
such as active optical cables, where, for example, the connector
losses are eliminated. Because of the closed nature of active
optical cables, multi-source agreements do not have to be
followed and, for example, the link budgets can be adjusted to
the specific needs and 4-PAM could be used. As we show in our
experiments, it is possible to make links with sufficient power
budget for 4-PAM operation. The main benefit of 4-PAM in such
an application would be doubled throughput, using the same
components. In a bandwidth-constrained case, 4-PAM allows
doubling the bit-rate and has lower propagation penalties, but
the lower penalties after propagation in the MMF do not offset
the higher optical power required by 4-PAM.

Given that at 12.5 Gbps we need −12 dBm to achieve
error-free performance with OOK and that the maximum
available power at the photoreceiver is around 1 dBm, it should
be possible to increase the number of modulation levels to 8,
since 8-PAM should require around 8.5 dB more power to reach
the same BER (plus implementation penalty between 1 and
2 dB).

V. CONCLUSION

We have shown that 4-PAM can be used to double the
bit-rate of short-range optical links using existing components
and OOK, although it required 6 dB more optical power. We
have also demonstrated that 4-PAM had lower propagation
penalties than OOK at the same bit-rate, but required 4 dB
more optical power in the BTB case. Due to implementation
penalties, this was more than expected from the theoretical
considerations. Because of the additional penalties, the
reduced propagation penalties did not offset the increased
power requirements of 4-PAM in the case of the particular
tested system. Higher linearity requirements of 4-PAM,
compared to OOK, were not a problem when VCSELs were
used. Implementation of 4-PAM was relatively simple, and for
experimental purposes does not require customized electronics.
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