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Bandlimited Intensity Modulation
Mehrnaz Tavan,Student Member, IEEE, Erik Agrell, Senior Member, IEEE, and Johnny Karout,Student

Member, IEEE

Abstract—In this paper, the design and analysis of a new
bandwidth-efficient signaling method over the bandlimited
intensity-modulated direct-detection (IM/DD) channel is pre-
sented. The channel can be modeled as a bandlimited chan-
nel with nonnegative input and additive white Gaussian noise
(AWGN). Due to the nonnegativity constraint, standard methods
for coherent bandlimited channels cannot be applied here.
Previously established techniques for the IM/DD channel require
bandwidth twice the required bandwidth over the conventional
coherent channel. We propose a method to transmit without
intersymbol interference in a bandwidth no larger than the bit
rate. This is done by combining Nyquist or root-Nyquist pulses
with a constant bias and using higher-order modulation formats.
In fact, we can transmit with a bandwidth equal to that of
coherent transmission. A trade-off between the required average
optical power and the bandwidth is investigated. Dependingon
the bandwidth required, the most power-efficient transmission
is obtained by the parametric linear pulse, the so-called “better
than Nyquist” pulse, or the root-raised cosine pulse.

Index Terms—Intensity-modulated direct-detection (IM/DD),
optical communications, strictly bandlimited signaling.

I. I NTRODUCTION

T HE GROWING demand for high-speed data transmis-
sion systems has introduced new design paradigms for

optical communications. The need for low-complexity and
cost-effective systems has motivated the usage of affordable
optical hardware (e.g., incoherent transmitters, opticalintensity
modulators, multimode fibers, direct-detection receivers) to
design short-haul optical fiber links (e.g., fiber to the home
and optical interconnects) [1], [2] and diffuse indoor wireless
optical links [3]–[5]. These devices impose three important
constraints on the signaling design. First, the transmitter only
modulates information on the instantaneous intensity of an
optical carrier, contrary to conventional coherent channels
where the amplitude and phase of the carrier can be used to
send information [6, Sec. 4.3]. In the receiver, only the optical
intensity of the incoming signal will be detected [4]. Due to
these limitations, the transmitted signal must be nonnegative.
Such transmission is called intensity modulation with direct
detection (IM/DD). Second, the peak and average optical
power (i.e., the peak and average of the transmitted signal in
the electrical domain) must be below a certain threshold for
eye- and skin-safety concerns [4] and to avoid nonlinearities
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present in the devices [7], [8]. In conventional channels, such
constraints are usually imposed on the peak and average of
the squared electrical signal. Third, the bandwidth is limited
due to the impairments in the optoelectronic devices [5], [9]
and other limitations (e.g., modal dispersion in short-haul
optical fiber links [10] and multipath distortion in diffuse
indoor wireless optical links [4]). Consequently, the coherent
modulation formats and pulse shaping methods designed for
conventional electrical channels (i.e., with no nonnegativity
constraint on the transmitted signal) cannot be directly applied
to IM/DD channels.

Pulse shaping for the purpose of reducing intersymbol
interference (ISI) in conventional channels has been previously
investigated in [6, Sec. 9], [11]–[16]. Much research has been
conducted on determining upper and lower bounds on the
capacity of IM/DD channels considering power and bandwidth
limitations [17]–[22]. In [4], [23]–[29], the performanceof
various modulation formats in IM/DD channels were stud-
ied using rectangular or other time-disjoint (i.e., infinite-
bandwidth) pulses.

Hranilovic in [30] pioneered in investigating the problem
of designing strictly bandlimited pulses for IM/DD channels
with nonnegative pulse-amplitude modulation (PAM) schemes.
He showed the existence of nonnegative bandlimited Nyquist
pulses, which can be used for ISI-free transmission over
IM/DD channels, and evaluated the performance of such
pulses. He also showed that any nonnegative root-Nyquist
pulse must be time limited (i.e., infinite bandwidth). Hence
receivers with matched filters are not suitable for Hranilovic’s
signaling method. He concluded that transmission is possible
with a bandwidth twice the required bandwidth over the
corresponding conventional electrical channels. This work was
extended to other Nyquist pulses that can introduce a trade-off
between bandwidth and average optical power in [9], [31].

In this paper, we present a new signaling method for
bandlimited IM/DD channels, in which the transmitted signal
becomes nonnegative by the addition of a constant direct-
current (DC) bias. This method provides us with two benefits:
(i) We can transmit ISI-free with a bandwidth equal to that
of coherent conventional channels, while benefiting from the
reduced complexity and cost of IM/DD system. (ii) We can im-
plement the system using either Nyquist pulses with sampling
receiver or root-Nyquist pulses with matched filter receiver.
By being able to use a larger variety of pulses, the transmitted
power can be reduced compared with known methods, which
is advantageous in power-sensitive optical interconnectsand
indoor wireless optical links. We also evaluate the spectral
efficiency and optical power efficiency of binary and 4-PAM
formats with Nyquist and root-Nyquist pulses for achievinga
specific noise-free eye opening or a specific symbol-error-rate
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(SER).
The remainder of the paper is organized as follows. Section

II presents the system model. In Section III, we define the
Nyquist pulses that have been used extensively for conven-
tional bandlimited channels, as well as the ones that have been
suggested for nonnegative bandlimited channels. In Section
IV, the root-Nyquist pulses used in this study are introduced.
Section V discusses a method of computing the required DC
bias for a general pulse. Section VI introduces the performance
measures and analyzes the performance of the system under
different scenarios. Finally, conclusions are drawn in Section
VII on the performance of the system.

II. SYSTEM MODEL

In applications such as diffuse indoor wireless optical links
and short-haul optical fiber communications, where inexpen-
sive hardware is used, IM/DD is often employed. In such
systems, the data is modulated on the optical intensity of the
transmitted light using an optical intensity modulator such as a
laser diode or a light-emitting diode. This optical intensity is
proportional to the transmitted electrical signal. As a result,
the transmitted electrical signal must be nonnegative. This
is in contrast to conventional electrical channels, where the
data is modulated on the amplitude and phase of the carrier
[6, Sec. 4.3]. In the receiver, the direct-detection methodis
used in which the photodetector generates an output which is
proportional to the incident received instantaneous power[25].
Another limitation, which is considered for safety purposes,
is a constraint on the peak and average optical power, or
equivalently, a constraint on the peak and average of the
signal in the electrical domain [4], [9], [17], [18], [20]. In
this study, we consider the IM/DD transmission system with
a strict bandwidth limitation and generalM -level modulation.

Fig. 1 represents the system model for an IM/DD op-
tical transmission system. It can be modeled as an electrical
baseband transmission system with additive white Gaussian
noise (AWGN) and a nonnegativity constraint on the channel
input [3], [4], [9], [32]. We consider an ergodic source with
independent and identically distributed information symbols
ak ∈ C, wherek ∈ Z is the discrete time instant, andC is
a finite set of constellation points. Based on these symbols,
an electrical signalI(t) is generated. The optical intensity
modulator converts the electrical signal to an optical signal
with optical carrier frequencyfc and random phaseθ, given
by O(t) =

√

2x(t)cos (2πfct+ θ), wherex(t) is the intensity
of the optical signal. This intensity is a linear function ofI(t)
[4], given by

x(t) = JI(t) = JA

(

µ+

∞
∑

k=−∞

akq(t− kTs)

)

, (1)

whereJ is the laser conversion factor,A is a scaling factor that
can be adjusted depending on the desired transmitted power,
µ is the required DC bias,q(t) is an arbitrary pulse, andTs

is the symbol duration.
Three requirements are placed onx(t): it should be nonneg-

ative, bandlimited, and ISI-free. The nonnegativity constraint,
x(t) ≥ 0 for all t ∈ R, is fulfilled by choosingµ in (1)

sufficiently large, see Sec. V. This DC bias is added equally
to each symbol to maintain a strictly bandlimited signalx(t),
in contrast to works like [25], [27], [28] in which the bias is
allowed to vary with time. The bandwidth constraint is fulfilled
by choosing the pulseq(t) such that

Q(ω) =

∞
∫

−∞

q(t)e−jωtdt = 0, |ω| ≥ 2πB, (2)

whereQ(ω) denotes the Fourier transform ofq(t). The con-
dition of ISI-free transmission, finally, is fulfilled by either
choosingq(t) as a Nyquist pulse, see Sec. III, when using a
sampling receiver, or choosingq(t) as a root-Nyquist pulse
(also known asTs-orthogonal pulse), see Sec. IV, when using
a matched filter in the receiver. Fig. 2 illustrates an example
of the transmitted intensity given by (1) whereC = {0, 1}.

Depending on the application, it is desirable to minimize the
average optical power or the peak optical power [4], [7]–[9],
[18], [20]. The average optical power is

Popt =
1

Ts

Ts
∫

0

E {x(t)} dt,

whereE {·} denotes expectation, which for the definition of
x(t) in (1) yields

Popt =
1

Ts

Ts
∫

0

JA

(

µ+ E {ak}
∞
∑

k=−∞

q(t− kTs)

)

dt

= JA (µ+ E {ak} q) , (3)

where

q =
1

Ts

∞
∫

−∞

q(t)dt =
Q(0)

Ts
. (4)

The peak optical power is

Pmax = max x(t) = JA

(

µ+max

∞
∑

k=−∞

akq(t− kTs)

)

(5)
where the maximum is taken over all symbol sequences
. . . , a−1, a0, a1, a2, . . . and all timest.

The optical signal then propagates through the channel and
is detected and converted to the electrical signal [4], [18]

y(t) = Rh(t)⊗ x(t) + n(t),

whereR is the responsivity of the photodetector,⊗ is the
convolution operator,h(t) is the channel impulse response,
andn(t) is the noise. In this study, the channel is considered
to be flat in the bandwidth of interest, i.e.,h(t) = H(0)δ(t).
Without loss of generality, we assume thatR = J = 1 [4] and
H(0) = 1. Since the thermal noise of the receiver and the shot
noise induced by ambient light are two major noise sources
in this setup, which are independent from the signal,n(t) can
be modeled as a zero-mean AWGN with double-sided power
spectral densityN0/2 [4], [6], [20], [33]. Although the input
signal to the channelx(t) must be nonnegative, there is no
such constraint on the received signaly(t) [17].
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Fig. 1. Baseband system model, whereak is thek-th input symbol,q(t) is an arbitrary pulse,µ is the DC bias,I(t) is the transmitted electrical signal,
x(t) is the optical intensity,h(t) is the channel impulse response,n(t) is the Gaussian noise,g(t) is the impulse response of the receiver filter,r(t) is the
input to the sampling unit, and̂ak is an estimate ofak.

The received signal passes through a filter with impulse
responseg(t), resulting in

r(t) = y(t)⊗ g(t), (6)

which is then sampled at the symbol rate. In this paper, two
scenarios are considered for the receiver filter:

(i) Similarly to [9], [30], y(t) can enter a sampling receiver,
which in this paper is assumed to have a rectangular frequency
response to limit the power of the noise in the receiver, and
is given by

G(ω) =

{

G(0) |ω| < 2πB

0 |ω| ≥ 2πB
. (7)

(ii) According to our proposed method,y(t) can enter
a matched filter receiver with frequency responseG(ω) =
ζQ∗(ω) where (·)∗ is the complex conjugate andζ is an
arbitrary scaling factor. This type of filter will limit the power
of the noise, and can also result in ISI-free transmission ifthe
pulses are root-Nyquist (see Sec. IV).

The system model introduced in this section is a general-
ization of the one in [9], which is obtained by considering
C ⊂ R

+ and settingµ = 0 in (1). If µ = 0, the pulseq(t)
should be nonnegative to guarantee a nonnegative signalx(t).
In our proposed system model, by introducing the biasµ, the
nonnegativity condition can be fulfilled for a wider selection
of pulsesq(t) and constellationC ⊂ R.

III. B ANDLIMITED NYQUIST PULSES

In order to have ISI-free transmission with a sampling
receiver, the pulseq(t) must satisfy the Nyquist criterion [11].
In other words, for anyk ∈ Z [6, Eq. (9.2-11)],

q(kTs) =

{

q(0), k = 0,

0, k 6= 0.
(8)

The most popular Nyquist pulses are the classical “sinc” pulse,
defined assinc(x) = sin(πx)/(πx), and the raised-cosine
(RC) pulse [6, Sec. 9.2]. Many other Nyquist pulses have been
proposed recently for the conventional channel; see [34], [35]
and references therein.

In this paper, we evaluate some of these pulses, defined
in Table I, for IM/DD transmission. Our selected pulses are
the RC pulse, the so-called “better than Nyquist” (BTN)
pulse [13], which in [14] was referred to as the parametric

TABLE I
DEFINITIONS OF THE STUDIEDNYQUIST AND ROOT-NYQUIST PULSES.

Pulse Definition q(t)

RC











π

4
sinc

(

t

Ts

)

, t = ±
Ts
2α

,

sinc
(

t

Ts

)

cos
(

παt
Ts

)

1−( 2αt
Ts

)2
, otherwise

BTN sinc
(

t

Ts

) 2παt
Ts ln 2

sin
(

παt
Ts

)

+2 cos
(

παt
Ts

)

−1
(

παt
Ts ln 2

)2
+1

PL sinc
(

t

Ts

)

sinc
(

αt

Ts

)

Poly











1, t = 0,

3 sinc
(

t

Ts

)

sinc
(

αt
2Ts

)2
−sinc

(

αt
Ts

)

(

παt
2Ts

)2 , otherwise

S2 sinc2
(

t

Ts

)

SRC q2RC(t), whereqRC is the RC pulse defined above

SDJ
[

(

1−α

2

)

sinc
(

(1−α)t
Ts

)

+
(

1+α

2

)

sinc
(

(1+α)t
Ts

)]2

RRC



















1− α+ 4α
π
, t = 0,

α
√

2

[

(1 + 2
π
) sin( π

4α
) + (1− 2

π
) cos( π

4α
)
]

, t = ±
Ts
4α

,

sin
(

π(1−α)t
Ts

)

+ 4αt
Ts

cos
(

π(1+α)t
Ts

)

πt
Ts

(

1−
(

4αt
Ts

)2
) , otherwise

Xia sinc
(

t

Ts

)

cos
(

παt
Ts

)

2αt
Ts

+1

exponential pulse, the parametric linear (PL) pulse of first
order [14], and one of the polynomial (Poly) pulses in [15].
Their bandwidth can be adjusted via the parameter0 ≤ α ≤ 1
such that their lowpass bandwidth isB = (1+α)/(2Ts). Since
these pulses may be negative, they must be used in a system
with µ > 0. We denote these four pulses asregular Nyquist
pulses.

Another option is to usenonnegative Nyquist pulses, which
satisfy all the three aforementioned constraints. As a result, in
(1),µ = 0 andq(t) ≥ 0 for all t ∈ R. In [9], it has been shown
that pulses that satisfy these requirements must be the square
of a general Nyquist pulse. This will result in having pulses
with bandwidth twice that of the original Nyquist pulses. Three
pulses that satisfy these constraints were introduced in [9],
and we use them in our study for compatibility with previous
works: squared sinc (S2), squared RC (SRC), and squared
double-jump (SDJ), also defined in Table I. Their low-pass
bandwidth isB = 1/Ts for S2 andB = (1 + α)/Ts for SRC
and SDJ, where0 ≤ α ≤ 1.
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Fig. 2. The normalized transmitted signalx(t)/A for C = {0, 1} and
using an RC pulse withα = 0.6 asq(t). It can be seen that without using
the biasµ = 0.184 (see Fig. 4), the RC pulse would create a signalx(t)
that can be negative.
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Fig. 3. The normalized transmitted signalx(t)/A for C = {0, 1} and
using an SRC pulse withα = 0.6 as q(t). In this case, the required DC
µ is zero.

Figs. 2 and 3 depict the normalized transmitted signal
x(t)/A using the RC and SRC pulses, respectively, assuming
C = {0, 1}. The most important parameters of the pulses are
summarized in Table II.

IV. BANDLIMITED ROOT-NYQUIST PULSES

ISI-free transmission is achieved with the pulses in Sec. III
as long as the input of the sampling unit satisfies the Nyquist
criterion given in (8). In addition to the method of using a
Nyquist pulse in the transmitter and a rectangular filter (7)
in the receiver, other scenarios can be designed that generate
Nyquist pulses at the inputr(t) of the sampling unit. In one of
these methods, the transmitted pulse is a root-Nyquist pulse,
and the receiver contains a filter matched to the transmitted
pulse [6, Sec. 5.1]. Consequently, the output of the matched

filter will be ISI-free if for any integerk
∞
∫

−∞

q(t)q(t− kTs)dt =

{

Eq k = 0

0 k 6= 0
, (9)

whereEq =
∫∞

−∞
q2(t)dt. Tables I and II also includes two

root-Nyquist pulses that have been previously used for conven-
tional coherent channels, where again0 ≤ α ≤ 1. These are
the root raised cosine (RRC) pulse and the first-order Xia pulse
[36]. Both have the lowpass bandwidthB = (1 + α)/(2Ts).

Although the output of the matched filter for both the first
order Xia pulse and the RRC pulse are similar (r(t) consists
of RC pulses in both cases), the RRC is symmetric in time,
whereas the Xia pulse has more energy in the precursor (i.e.,
the part of the pulse before the peak in Fig. 5 (d)) [37].
Moreover, the maximum of Xia pulse does not happen at the
origin. The important point with the Xia pulse is that it is both
a Nyquist and a root-Nyquist pulse.

In contrast to Nyquist pulses, from which nonnegative
Nyquist pulses can be generated by squaring the original
pulse (see Sec. III), the square of a root-Nyquist pulse is not
root-Nyquist anymore. Moreover, [9] has proven that there
is no nonnegative root-Nyquist pulse with strictly limited
bandwidth.

V. REQUIRED DC BIAS

Our goal is to find the lowestµ that guarantees the nonneg-
ativity of x(t). From (1) andx(t) ≥ 0, the smallest required
DC bias is

µ = − min
∀a,−∞<t<∞

∞
∑

k=−∞

akq(t− kTs) (10)

= − min
∀a,−∞<t<∞

∞
∑

k=−∞

[(ak − L) q(t− kTs) + Lq(t− kTs)]

(11)

whereL = (â + ǎ)/2, â = maxa∈C a, and ǎ = mina∈C a.
The notation∀a in (10) and (11) means that the minimization
should be over allak ∈ C wherek = . . . ,−1, 0, 1, 2, . . . Going
from (10) to (11), we created a factor (ak − L) which is a
function ofak and symmetric with respect to zero. As a result,
the minimum of the first term in (11) occurs if, for allk, either
ak = â andq(t− kTs) < 0 or ak = ǎ andq(t− kTs) > 0. In
both cases, due to the fact that the factorâ− L = −(ǎ− L),

µ = max
0≤t<Ts

[

(â− L)

∞
∑

k=−∞

|q(t− kTs)|

− L

∞
∑

k=−∞

q(t− kTs)
]

. (12)

The reason why (12) is minimized over0 ≤ t < Ts is that
∑∞

k=−∞ q(t − kTs) and
∑∞

k=−∞ |q(t − kTs)| are periodic
functions with period equal toTs. Since for all pulses defined
in Sec. III and IV,q(t) rescales withTs asq(t) = v(t/Ts) for
some functionv(t), thenµ is independent ofTs.

To simplify (12), Lemma 1 and Corollary 2 will be helpful,
since they prove that the second term in (12) does not change
over time.
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TABLE II
PARAMETERS OF ALL CONSIDERED PULSES. THE ENERGYEq IS RELEVANT FOR ROOT-NYQUIST PULSES ONLY.

Pulse Nyquist root-Nyquist q q(0) BTs Eq/Ts

RC X 1 1 (1 + α)/2
BTN X 1 1 (1 + α)/2
PL X 1 1 (1 + α)/2

Poly X 1 1 (1 + α)/2
S2 X 1 1 1

SRC X 1− α/4 1 1 + α
SDJ X 1− α/2 1 1 + α
RRC X 1 1− α+ 4α/π (1 + α)/2 1
Xia X X 1 1 (1 + α)/2 1

Lemma 1: For an arbitrary pulseq(t),

∞
∑

k=−∞

q(t− kTs) =
1

Ts

∞
∑

n=−∞

Q

(

2πn

Ts

)

e
j2πnt

Ts .

Proof: Since f(t) =
∑∞

k=−∞ q(t − kTs) is a periodic
function with periodTs, it can be expanded as a Fourier series.
Its Fourier series coefficients are

Cn =
1

Ts

Ts/2
∫

−Ts/2

f(t)e−
j2πnt

Ts dt

=
1

Ts

Ts/2
∫

−Ts/2

∞
∑

k=−∞

q(t− kTs)e
− j2πnt

Ts dt. (13)

Since bothn andk are integers,ej2πnk = 1. As a result, (13)
can be written as

Cn =
1

Ts

Ts/2
∫

−Ts/2

∞
∑

k=−∞

q(t− kTs)e
−

j2πn

Ts
(t−kTs)dt

=
1

Ts

∞
∫

−∞

q(t)e−
j2πnt

Ts dt =
1

Ts
Q

(

2πn

Ts

)

.

Hence,

f(t) =

∞
∑

n=−∞

Cne
j2πnt

Ts =
1

Ts

∞
∑

n=−∞

Q

(

2πn

Ts

)

e
j2πnt

Ts , (14)

which proves the lemma.
The usefulness of this lemma follows from the fact that for

bandlimited pulsesq(t), (14) is reduced to a finite number of
terms. As a special case, we have the following corollary.

Corollary 2: If q(t) is a bandlimited pulse defined in (2),
whereBTs ≤ 1, then (14) can be written as

f(t) =

∞
∑

k=−∞

q(t− kTs) =
1

Ts
Q(0). (15)

In other words, for suchq(t), this sum is not a function of
time.

Proof: Since BTs ≤ 1, the sum in (14) has only
one nonzero term (i.e.,Q(0) can be nonzero whereas
Q(2πn/Ts) = 0 for all n 6= 0 due to (2)).

As a result of Corollary 2, (12) for the regular Nyquist
pulses and root-Nyquist pulses considered in Sec. III and IV
(but not SRC and SDJ) can be written as

µ = (â− L) max
0≤t<Ts

∞
∑

k=−∞

|q(t− kTs)| − L
Q(0)

Ts
, (16)

where Q(0) = qTs for all pulses, see (4). It appears that
solving the summation in (16) is impossible analytically even
for simple pulses.

Theorem 3: For bandlimited pulses whereBTs ≤ 1, the
transmitted signal (1) is unchanged if all constellation points
in C are shifted by a constant offset.

Proof: Since the chosen pulse has limited bandwidth
given by (2), using (15) given in Corollary 2, the transmitted
signal (1) can be written as

x(t) = A

(

µ+

∞
∑

k=−∞

(ak − L+ L) q (t− kTs)

)

= A

(

µ+

∞
∑

k=−∞

(ak − L) q (t− kTs) + L
Q(0)

Ts

)

. (17)

Substituting the required bias given by (16), (17) can be
written as

x(t) = A

(

(â− L) max
0≤t<Ts

[

∞
∑

i=−∞

|q(t− iTs)|
]

+
∞
∑

k=−∞

(ak − L) q (t− kTs)

)

. (18)

It can be seen that (18) only depends on symbols throughâ−L
andak − L. Both terms are independent of the constellation
offset.

Theorem 3 shows that for narrow-band pulses defined in
(2), the constellation offset does not have an effect on the
performance. This result which holds for intensity modulated
channels (with nonnegative transmitted signal requirement) is
in contrast to the standard result for conventional channels. For
instance, binary phase-shift keying (BPSK) and on-off keying
(OOK) are equivalent in this IM/DD system, whereas BPSK is
3 dB better over the conventional AWGN channel [6, Sec. 5].

Fig. 4 illustrates the required DC bias (16) for various
pulses considering any nonnegativeM -PAM constellation
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(C = {0, 1, ...,M − 1}). In case of Nyquist pulses, due to the
fact that by increasingα, the ripples of the pulses decrease,
the required DC bias decreases as well. It can be seen that the
Poly and RC pulses always require more DC bias than other
Nyquist pulses. The PL and BTN pulses require approximately
the same DC bias. The BTN pulse requires slightly less DC
bias in 0.250 ≤ α ≤ 0.256, 0.333 ≤ α ≤ 0.363, and
0.500 ≤ α ≤ 0.610, while the PL is better for all other roll-off
factors in the range0 < α < 1.

The RRC pulse has a different behavior. For0 < α ≤ 0.420,
similar to Nyquist pulses, by increasing the roll-off factor,
the required DC bias decreases, and is approximately equal
to the required DC bias for BTN and PL. However, when
0.420 ≤ α < 1, the required DC bias starts to fluctuate slightly
aroundµ = 0.25â and the minimum happens forα = 0.715.
The reason for this behavior is that in RRC, the peak is a
function ofα, see Table I. As a result, by increasing the roll-
off factor, there will be a compromise between the reductionin
the sidelobe amplitude and the increase in peak amplitude. For
small values ofα, the sidelobe reduction is more significant
than the peak increase, and as a result, the required DC bias
decreases. The Xia pulse always requires the largest DC bias.
For 0 < α ≤ 0.730, similar to other pulses, by increasing the
roll-off factor, the required DC bias for Xia pulses decreases.
However, when0.730 ≤ α < 1, the required DC bias starts to
fluctuate slightly and starts to approach the required DC for
RRC.

The expression forµ given in (12) illustrates the reason why
the double-jump and sinc pulses are not considered in Sec. III.
These pulses decay as1/|t|. As a result, the summation in
(12) does not converge to a finite value. Hence, they require
an infinite amount of DC bias to be nonnegative.

VI. A NALYSIS AND RESULTS

A. Received Sequence for Sampling Receiver

Considering the assumptions mentioned in Sec. II, the
received signal (6) is

r(t) = (x(t) + n(t))⊗ g(t)

= A

(

µ+

∞
∑

k=−∞

akq(t− kTs)

)

⊗ g(t) + z(t)

= AG(0)

[

µ+
∞
∑

k=−∞

akq(t− kTs)

]

+ z(t), (19)

where (19) holds sinceg(t) has a flat frequency response given
by (7) over the bandwidth ofq(t) given by (2); Therefore, the
convolution has no effect onx(t). The noise at the output of
the receiver filter, which is given byz(t) = n(t)⊗g(t), is zero
mean additive white Gaussian with varianceσ2

z = G(0)2N0B.
Applying the Nyquist criterion given in (8) to the sampled

version of (19), we can write thei-th filtered sample as

r(iTs) = AG(0) [µ+ aiq(0)] + z(iTs). (20)

for any constellationC. The received waveformr(t), for
several Nyquist pulses, is shown in Fig. 5, in the form of
eye diagrams in a noise-free setting (z(t) = 0). As expected,
the output samplesr(iTs) are ISI-free.

B. Received Sequence for Matched Filter Receiver

Similar to Sec. VI-A, the received signal will be

r(t) = (x(t) + n(t))⊗ g(t)

= A

(

µ+

∞
∑

k=−∞

akq(t− kTs)

)

⊗ ζq(−t) + u(t)

= Aζ
(

µ

∞
∫

−∞

q(−t)dt

+

∞
∑

k=−∞

ak

∞
∫

−∞

q(τ − kTs)q(τ − t)dτ
)

+ u(t)

= Aζ
(

µQ(0)

+

∞
∑

k=−∞

ak

∞
∫

−∞

q(τ)q(τ − t+ kTs)dτ
)

+ u(t) (21)

whereu(t) is zero mean additive white Gaussian noise with
varianceσ2

u = ζ2N0Eq/2. Applying the root-Nyquist criterion
given in (9) to the sampled version of (21), thei-th filtered
sample will be, for any constellationC,

r(iTs) = Aζ (µQ(0) + aiEq) + u(iTs). (22)

C. Comparison Between Pulses

As mentioned in Sec. II, it may be desirable to minimize
the average or peak optical power. The next theorem shows
that these two criteria are equivalent for narrow-band pulses
(BTs < 1) and symmetric constellations (E{ak} = L).



7

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

t/Ts

r
(t
)

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

t/Ts

r
(t
)

(a) (b)

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

t/Ts

r
(t
)

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t/Ts

r
(t
)

(c) (d)

Fig. 5. Noise-free eye diagrams for (a) RC, (b) PL, (c) BTN, and (d) Xia pulses with OOK modulation (C = {0, 1}) and sampling receiver. All pulses have
α = 0.60 and are normalized to have the same optical powerq̄ = 1.

Theorem 4: If BTs < 1 and E{ak} = L, then Pmax =
2Popt.

Proof: From (5) and Corollary 2,

Pmax = JA
(

µ+ max
∀a,−∞<t<∞

∞
∑

k=−∞

[

(ak − L) q(t− kTs)

+ Lq(t− kTs)
])

= JA
(

µ+ max
∀a,−∞<t<∞

[

∞
∑

k=−∞

(ak − L) q(t− kTs)

+
LQ(0)

Ts

])

.

In analogy to (16), the maximum is

Pmax = JA
(

µ+ (â− L) max
0≤t<Ts

∞
∑

k=−∞

|q(t− kTs)|

+
LQ(0)

Ts

)

= JA

(

2µ+ 2
LQ(0)

Ts

)

which compared with (3) completes the proof.

To compare the optical power of various pulses, a criterion
called optical power gain is used, which is defined as [9]

Υ = 10 log10

(

P ref
opt

Popt

)

,

whereP ref
opt is the average optical power for a reference system.

(According to Theorem 4,Υ would be the same if defined in
terms ofPmax, for all pulses in our study except SRC and
SDJ.) Similarly to [30], this reference is chosen to be the S2
pulse with OOK modulation and sampling receiver, for which
no bias is needed. Using (3),P ref

opt = ArefEref {ak} and

Υ = 10 log10

(

ArefEref {ak}
A (µ+ E {ak} q)

)

(23)

whereAref andEref {ak} are the scaling factor and the symbol
average for the reference system, respectively. Defining

∆a = min
a,a′∈C,a 6=a′

|a− a′| (24)

as the minimum distance between any two constellation points
a anda′, Eref {ak} = ∆aref/2, where∆aref is the minimum
distance for the reference system. The expressions in (23) and
(24) hold in general for all finite set of constellation points C.

Initially, we compare the pulses in a noise-free setting. For
any Nyquist pulse with a sampling receiver, the minimum eye
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opening after filtering, using (20), is given by

min
a,a′∈C,a 6=a′

|AG(0) (µ+ aq(0))−AG(0) (µ+ a′q(0))|

= AG(0)∆aq(0). (25)

As a result, to have the same eye opening as with the reference
pulse, we requireAref/A = ∆aq(0)/∆aref , which substituted
into (23) yields

Υ = 10 log10

(

∆aq(0)

2 (µ+ E {ak} q)

)

. (26)

Fig. 6 demonstrates the comparison of the optical power
gain for various pulses defined in Sec. III for both OOK and
4-PAM formats, where the signals are scaled to have equal eye
opening. The S2 pulse with OOK modulation, which is used
as a baseline for comparison, is shown in the figure with an
arrow. The results for SRC and SDJ have been derived before
in [9, Fig. 4], whereas the results for other pulses are novel,
whereTb = Ts/ log2 M is the bit rate. OOK is chosen rather
than BPSK for compatibility with [9], although these binary
formats are entirely equivalent forBTb ≤ 1, as shown in
Theorem 3. In these examples, we use∆a = ∆aref ; however,
rescaling the considered constellationC would not change the
results, as it would affect the numerator and denominator of
(26) equally.

For the nonnegative pulses in Sec. III (i.e., SRC and SDJ)
with OOK, where µ = 0, by increasing the bandwidth,
the optical power gain, which depends onα through its
dependence onq, increases sinceq decreases. The results
in Fig. 6 are consistent with [9, Fig. 4], where the same
nonnegative pulses were presented. It can be seen that when
the regular Nyquist pulses (RC, BTN, PL, and Poly) are used,
and the nonnegativity constraint is satisfied by adding a DC
bias, transmission is possible over a much narrower bandwidth.
However, since the DC bias consumes energy and does not
carry information, the optical power gain will be reduced.

There is a compromise between bandwidth and optical
power gain, due to the fact thatµ will be reduced by increasing

the roll-off factor (see Fig. 4), whereas the required bandwidth
increases. The highest optical power gain for all pulses will be
achieved when the roll-off factorα is one. The reason is that
by increasing the roll-off factor, the required bias, whichis the
only parameter in (26) that depends onα, decreases. The BTN
and the PL pulses have approximately similar optical power
gain, and the Poly and RC pulses have smaller gains, due to
higherµ, which is also visible in the eye diagrams of Fig. 5.

Comparing the binary and 4-PAM cases for the sameα
and ∆a, we can see in Fig. 6 that by using higher-order
modulation formats, the optical power gain for all pulses
decreases, since in (26),E {ak} and µ will increase. For
0.5 < BTb < 1, the optical power gain for the best 4-PAM
system with nonnegative Nyquist pulses is up to 2.39 dB less
than the gain of the best OOK system with regular Nyquist
pulses.

For any root-Nyquist pulse with a matched filter receiver,
the minimum eye opening after filtering, using (22), is given
by

min
a,a′∈C,a 6=a′

|Aζ (µQ(0) + aEq)−Aζ (µQ(0) + a′Eq)|

= Aζ∆aEq . (27)

Since the eye openings in (25) and (27) depend on the receiver
filter gainsG(0) or ζ, pulses should be compared using the
same receiver filter. In particular, it is not relevant to compare
the sampling receiver with matched filters in this context, since
the outcome would depend on the ratioG(0)/ζ, which can be
chosen arbitrarily. This is the reason why root-Nyquist pulses
are not included in Fig. 6.

It appears from Fig. 6 that the studied pulses become more
power-efficient when the bandwidth is increased. A higher
bandwidth, however, for sampling receiver means that the
receiver filter admits more noise, which reduces the receiver
performance. In Fig. 7, we therefore compare the average
optical power gain of Nyquist and root-Nyquist pulses, when
the power is adjusted to yield a constant SER equal to10−6.
Since the amount of noise after the matched filter receiver
does not depend on the bandwidth, we considered this fact
as a potential advantage, and therefore included root-Nyquist
pulses in the following analysis. Similarly to the previouscase,
the S2 pulse with OOK and sampling receiver is used as a
baseline for comparison.

So far the analysis holds for a generalC. To find the optical
power gain as a function of SER for the sampling receiver, we
first apply a maximum likelihood detector to (20), assuming
a special case in whichC is anM -PAM constellation, which
yields the SER [6, Sec. 9.3]

Perr = 2
M − 1

M
Q

(

AG(0)∆aq(0)

2
√

G(0)2N0B

)

where

Q(x) =
1√
2π

∞
∫

x

exp

(−x2

2

)

dx

is the Gaussian Q-function. As a result,

A =
2

∆aq(0)
Q−1

(

Perr
M

2 (M − 1)

)

√

N0B
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and
Aref

A
=

∆aq(0)

∆aref

Q−1 (Perr)

Q−1
(

Perr
M

2(M−1)

)

√

Bref

B
, (28)

whereBref = 1/Tb is the bandwidth of the reference pulse.
The optical power gain now follows from (23).

For the matched filter receiver, by applying the maximum
likelihood detector to (22), the SER will be [6, Sec. 9.3]

Perr = 2
M − 1

M
Q





A∆aEqζ

2
√

ζ2N0Eq

2





= 2
M − 1

M
Q

(

A∆a

√

Eq

2N0

)

.

As a result,

A =
1

∆a
Q−1

(

Perr
M

2 (M − 1)

)

√

2N0

Eq

and

Aref

A
=

∆a

∆aref

√
2Q−1 (Perr)

Q−1
(

Perr
M

2(M−1)

)

√

EqBref . (29)

In contrast to the case with equal eye openings (see Fig. 6),
Nyquist and root-Nyquist pulses can be compared with each
other when the SER is kept constant, since neither (28) nor
(29) depend on the filter gainsG(0) andζ.

By increasing the bandwidth, the gain for SRC decreases
slightly, whereas it increases for SDJ, whereµ = 0 for both
cases. The reason is that for these pulses by increasingα,
both q and the ratioAref/A decreases. We observe that for
the regular Nyquist pulses in Sec. III, the gain increases by
increasing the bandwidth. The reason is that by increasing the
roll-off factor, the required bias decreases much faster (see
Fig. 4) than the speed of increase in bandwidth. The BTN and
the PL pulses have approximately similar gain, and the gain

of the RC and Poly pulses are always smaller than the gain
of the other two pulses.

In case of the matched filter receiver, the noise variance does
not depend on bandwidth. As a result, the ratioAref/A in (29)
is not a function of the roll-off factor and the optical power
gain only depends on the roll-off factor through its dependence
on the required DC bias. In Fig. 7, the optical power gain
of the RRC pulse increases for0.5 < BTb ≤ 0.71, and a
wide gap is maintained with respect to the Nyquist pulses. For
0.71 < BTb ≤ 1, since the required DC is slightly fluctuating,
the same happens for the optical power gain of RRC, and the
maximum optical power gain happens atBTb = 0.86, where
it is Υ = −0.22 dB.The Xia pulse has a similar behavior,
though it is not better than all Nyquist pulses.

Forα → 1, the optical power gain of the Xia, RC, and RRC
pulses are approximately equal since the output of matched
filter will be equal to an RC pulse by either using RRC or
Xia pulse. However, the optical power of mentioned pulses
will be different for other values ofα.

By increasing the modulation level from binary to 4-PAM,
for the sameα and∆a, the optical power gain for all pulses
decreases, since the required DC bias and symbol average
increase while the ratioAref/A decreases. For0.5 < BTb < 1,
the optical power gain of the regular Nyquist pulses and root-
Nyquist pulses with OOK modulation is significantly more
than the gain for the all nonnegative Nyquist pulses with 4-
PAM.

When the roll-off factor is equal to zero (i.e., the normalized
bandwidthBTb for the biased pulses with binary modulation
is equal to 0.5 and for the biased pulses with 4-PAM is equal
to 0.25), the regular Nyquist pulses discussed in Sec. III and
the root-Nyquist pulses in Sec. IV will become equal to a
sinc pulse with bandwidth1/(2Ts). As discussed in Sec. V,
the required DC will be infinite for the sinc pulse. Hence, the
gainΥ will asymptotically go to−∞ whenα → 0.

VII. C ONCLUSIONS

In this work, a pulse shaping method for strictly bandlimited
IM/DD systems is presented, in which the transmitted electri-
cal signal must be nonnegative. The proposed approach adds
a constant DC bias to the transmitted signal, which allows
a wider selection of transmitted pulses without violating the
nonnegativity constraint. This allows us to use Nyquist or
root-Nyquist pulses for ISI-free transmission, with narrower
bandwidth compared to previous works. It is possible to trans-
mit with a bandwidth equal to that of ISI-free transmission in
conventional coherent channels.

To compare our proposed transmission schemes with pre-
viously designed schemes and to see the effect of increasing
the modulation level, we evaluated analytically the average
optical power versus bandwidth in two different scenarios.The
optimization of modulation formats means a tradeoff between
the two components of the optical power: the constellation
power, which carries the data and is similar to the coherent
case, and the bias power, which is constant. We prove the
somewhat unexpected results that for narrowband transmission
(BTs ≤ 1), the two powers balance each other perfectly, so
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that OOK and BPSK have identical performance regardless of
the pulse.

In the first scenario, the Nyquist pulses are compared when
the noise-free eye opening is equal for all the pulses and
modulation formats. Of the studied pulses, the SDJ pulse
with OOK is the best known, as previously shown in [9]
over BTb ≥ 1. At 0.5 < BTb < 1, the PL and BTN
pulses with binary modulation have the best performance,
being up to2.39 dB better than SDJ with 4-PAM modulation.
Similarly, the 4-PAM BTN and PL pulses have highest gain
over 0.25 < BTb < 0.5.

In the second scenario, all pulses have equal SER. Of the
studied pulses, the SDJ with OOK modulation and sampling
receiver has the highest gain forBTb ≥ 1. At 0.869 < BTb <
1, the binary PL pulse has the best performance, whereas
for 0.5 < BTb ≤ 0.869, the RRC pulse with matched filter
receiver achieves the highest gain. The gain of RRC in this
scenario is up to0.74 dB over the best Nyquist pulse and
2.80 dB over the best known results with unbiased PAM.
It seems possible that further improvements can be achieved
by utilizing the most recently proposed Nyquist pulses [13]–
[15], [34], [35], or their corresponding root-Nyquist pulses,
and carefully optimizing their parameters.

Extensions toM -PAM systems withM > 4 are straight-
forward, in order to gain even more spectral efficiency at the
cost of reduced power efficiency. This might be important for
designing power- and bandwidth-efficient short-haul optical
fiber links (e.g., fiber to the home and optical interconnects)
[1], [2] and diffuse indoor wireless optical links [3]–[5].
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