THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

On Formal Methods for Large-Scale
Product Configuration

Alexey Voronov

Department of Signals and Systems
CHALMERS UNIVERSITY OF TECHNOLOGY
Goteborg, Sweden 2013

On Formal Methods for Large-Scale Product Configuration
ALEXEY VORONOV
ISBN 978-91-7385-790-1

(© ALEXEY VORONOV, 2013.

Doktorsavhandlingar vid Chalmers tekniska hogskola
Ny serie nr 3471
ISSN 0346-718X

Department of Signals and Systems
Chalmers University of Technology
SE-412 96 Goteborg, Sweden
Telephone + 46 (0) 31 — 772 1000

Cover: Supervisor for interactive product configuration, see Figure 5.8 on page 63.

Typeset by the author using KTEX.

Printed by Chalmers Reproservice
Goteborg, Sweden 2013

to my family

Abstract

In product development companies mass customization is widely used to achieve
better customer satisfaction while keeping costs down. To efficiently implement
mass customization, product platforms are often used. A product platform allows
building a wide range of products from a set of predefined components. The process of
matching these components to customers’ needs is called product configuration. Not
all components can be combined with each other due to restrictions of various kinds, for
example, geometrical, marketing and legal reasons. Product design engineers develop
configuration constraints to describe such restrictions. The number of constraints and
the complexity of the relations between them are immense for complex product like a
vehicle. Thus, it is both error-prone and time consuming to analyze, author and verify
the constraints manually. Software tools based on formal methods can help engineers
to avoid making errors when working with configuration constraints, thus design a
correct product faster.

This thesis introduces a number of formal methods to help engineers maintain,
verify and analyze product configuration constraints. These methods provide automatic
verification of constraints and computational support for analyzing and refactoring
constraints. The methods also allow verifying the correctness of one specific type
of constraints, item usage rules, for sets of mutually-exclusive required items, and
automatic verification of equivalence of different formulations of the constraints.
The thesis also introduces three methods for efficient enumeration of valid partial
configurations, with benchmarking of the methods on an industrial dataset.

Handling large-scale industrial product configuration problems demands high effi-
ciency from the software methods. This thesis investigates a number of search-based
and knowledge-compilation-based methods for working with large product configu-
ration instances, including Boolean satisfiability solvers, binary decision diagrams
and decomposable negation normal form. This thesis also proposes a novel method
based on supervisory control theory for efficient reasoning about product configuration
data. The methods were implemented in a tool, to investigate the applicability of
the methods for handling large product configuration problems. It was found that
search-based Boolean satisfiability solvers with incremental capabilities are well suited
for industrial configuration problems.

The methods proposed in this thesis exhibit good performance on practical con-
figuration problems, and have a potential to be implemented in industry to support
product design engineers in creating and maintaining configuration constraints, and
speed up the development of product platforms and new products.

Keywords: Product configuration, constraint satisfaction, Boolean satisfiability,
knowledge compilation, supervisory control theory.

Acknowledgments

I would like to thank everyone without whom this thesis would not be possible. First
of all, my main supervisor, Knut Akesson, thank you for your guidance, enthusiasm,
energy and ideas. My second supervisor, Martin Fabian, thank you for discussions,
good feedback and an always welcoming open door. Bengt Lennartson, thanks for your
encouragements during the project, and for excellent management of the research group.
All members of our automation group, thanks for all the discussions, DK-meetings,
kick-off meetings, fika-times, floorball matches and afterworks.

Thanks to all the people who made day-to-day work run smoothly, especially to
Madeleine, Agneta, Christine, Natasha, Lars and Ingemar.

Thanks to all external co-authors with whom I had a pleasure to work: Koen
Claessen, Mary Sheeran, Niklas Sérensson, Niklas Een, Anna Tidstam, Johan Malmqvist
and Fredrik Ekstedt. I would also like to thank all academic and industrial members
of the Wingquist project on Configuration Rule Management.

I would like to thank Anna Reymer, Knut Akesson and Martin Fabian for reading
this thesis and giving valuable comments. Without you, this thesis would be nowhere
near as good.

Special thanks to Jorgen Sjoberg, without whom I would never come to Sweden in
the first place.

My family. Thanks for believing in me. Mom, sister, grandma, many others. Anna,
you bring joy to my life. Thank you so much!

Alexey Voronov
Goteborg, December 2012

This work was carried out within the Wingquist Laboratory VINN Excellence
Centre at Chalmers University of Technology. It was supported by the Swedish
Governmental Agency for Innovation Systems (Vinnova). The work was also supported
by Swedish Foundation for Strategic Research through the ProViking program.

vii

List of Publications

This thesis is based on the following appended papers:

Paper 1. Alexey Voronov, Knut Akesson, Anna Tidstam, Johan Malmqvist and
Martin Fabian. Toward better support for authoring and maintaining product
configuration constraints. Submitted (2012).

Paper 2. Alexey Voronov, Knut Akesson, Anna Tidstam and Johan Malmqvist.
Verification of Item Usage Rules in Product Configuration. Proceedings of 9th
International Conference on Product Lifecycle Management PLM-12, Montreal,
Canada, 2012.

Paper 3. Alexey Voronov, Knut Akesson and Fredrik Ekstedt. Enumerating partial
configurations. Proceedings of Configuration Workshop at 22nd International
Joint Conference on Artificial Intelligence IJCAI-11, Barcelona, Spain, 2011.

Paper 4. Koen Claessen, Niklas Een, Mary Sheeran, Niklas Sérensson, Alexey Voronov
and Knut Akesson. SAT-Solving in Practice, with a Tutorial Example from
Supervisory Control. Journal of Discrete Event Dynamic Systems 19(4), pp.
495-524, 20009.

Other relevant publications co-authored by Alexey Voronov:

Anna Tidstam, Lars-Ola Bligard, Fredrik Ekstedt, Alexey Voronov, Knut Akesson,
Johan Malmqvist. Development of Industrial Visualization Tools for Validation
of Vehicle Configuration Rules. Proceedings of 9th International Symposium on
Tools and Methods of Competitive Engineering, pp. 14, 2012.

Sajed Miremadi, Alexey Voronov. Symbolic Reduction of Guards in Supervisory
Control Using Genetic Algorithms. Technical report. Goéteborg: Chalmers
University of Technology, 2012.

Alexey Voronov, Knut Akesson. Verification of Process Operations Using Model
Checking. Proceedings of IEEE International Conference on Automation Science
and Engineering CASE’2009. pp. 415-420, 2009.

Alexey Voronov, Knut Akesson. Verification of Supervisory Control Properties of
Finite Automata Ezxtended with Variables. Technical report. Géteborg: Chalmers
University of Technology, 20009.

ix

Alexey Voronov, Knut Akesson. Supervisory Control using Satisfiability Solvers.
Proceedings of 9th International Workshop on Discrete Event Systems WODES 2008,
pp. 81-86, 2008.

List of Acronyms

Al — Artificial Intelligence

API — Application Programming Interface
BDD — Binary Decision Diagram

BMC — Bounded Model Checking

BOM — Bill of Materials

CNF — Conjunctive Normal Form

CSP — Constraint Satisfaction Problem
CTL — Computation Tree Logic

DNNF — Decomposable Negation Normal Form
sd-DNNF - Smooth Deterministic DNNF

EFA — Extended Finite Automaton

FPT — Fixed Parameter Tractability

FSA — Finite State Automaton

IUR — Item Usage Rule

LTL — Linear Temporal Logic

MDD — Multivalued Decision Diagram
MUS — Minimal Unsatisfiable Subformula
PDM — Product Data Management

PLM — Product Lifecycle Management
SAT — Boolean Satisfiability Problem
SCT — Supervisory Control Theory

SMI — Set of Mutually-Exclusive Required Items

X1

Contents

Abstract \
Acknowledgments vii
List of Publications ix
List of Acronyms xi
I Introductory chapters 1
1 Introduction 3
2 Challenges in working with configuration constraints 7
2.1 Authoring 7
2.2 Verification and validation 12
2.2.1 Automatic verificationo 13
2.2.2 Computational support for manual inspection 16
2.3 Reconfiguration and Interactive Configuration 18
2.4 Conclusions 19
3 Introduction to Formal Methods 21
3.1 Constraint Satisfaction o000 22
3.1.1 Basic constraint satisfaction solver 24
3.1.2 Basic Boolean satisfiability solver 26

3.1.3 Encoding constraint satisfaction problems as Boolean satisfia-
bility problem 26
3.2 Synthesis using Supervisory Control Theory 29
3.3 Conclusions 33
4 Solving large-scale problems 37
4.1 Search-based Boolean Satisfiability Solvers 37
4.2 Knowledge compilation methodso 39
4.2.1 Binary Decision Diagrams 39
4.2.2 Other knowledge compilation methods 40
4.3 Solver benchmark o 43

CONTENTS CONTENTS

4.3.1 Testbed 44
4.3.2 Algorithms and tools 44
4.3.3 Benchmarking time to compile and get the first answer 46

4.3.4 Benchmarking time to get consecutive answers: incremental
solving 48
4.4 Explaining efficiency oo 50
4.4.1 Evaluating industrial product configuration instances 52
4.5 Conclusions Lo 53

5 Using Supervisory Control Theory for Interactive Product Configu-

ration 55

5.1 Encoding interactive product configuration using supervisory control
theory L 56
5.1.1 Encoding forward-only interactive configuration o7
5.1.2 Encoding interactive configuration with undo-actions 61

5.1.3 Encoding interactive configuration with undo-actions and recon-
figurationo 64
5.2 Representing the supervisor, 67
5.3 Conclusions 68
6 Summary of Appended Papers 71
7 Conclusions and Future Work 73
Bibliography 77
II Appended papers 95

1 Toward better support for authoring and maintaining product con-

figuration constraints 97
1 Introduction 99
2 Challenges in working with configuration constraints 102
2.1 Authoring 102
2.2 Verification and validation 107
3 Tool Support in maintaining and analysing the rules. 113
3.1 Modelling the problems 113
3.2 Constraint satisfaction 0L 114
3.3 Automatic verification using reference configurations 115
3.4 Item Usage Rules for Mutually-Exclusive Items 116
3.5 Refactoring 116
3.6 What-if analysiso 119
4 Feasibility study oo 120
5 Conclusions 122
6 Acknowledgements 122
References 122

Xiv

CONTENTS CONTENTS

2 Verification of Item Usage Rules in Product Configuration 131
1 Introduction oo 133
2 Motivating example00 oo 134

2.1 Verifying sets of mutually-exclusive required items (SMIs) . . 136
2.2 Verifying alternative IURs 137
3 Automated verification of Item Usage Rules 138
3.1 Constraint satisfaction 0. 138
3.2 Verifying sets of mutually-exclusive required items 139
3.3 Verifying alternative formulations of an IUR 140
3.4 Empirical evaluation 141
4 Conclusions and future work 141
References 142

3 Enumerating partial configurations 145
1 Introduction oo 147
2 Preliminarieso 149
3 Motivating exampleo oo 149
4 Enumerating valid partial assignments 151

4.1 Searching for complete, then forbidding partial 151
4.2 Enumerating partial, then extending 152
4.3 Knowledge compilation: DNNF 153
5 Experimental resultso 155
6 Conclusions 157
References 157

4 SAT-solving in practice, with a tutorial example from supervisory

control 161
1 Introduction 163
1.1 Why SAT is interesting from a practical point of view 164
1.2 State of the art until 1999 164
1.3 The SAT revolution 165
1.4 The Supervisory Control Approach 166
2 The basics of a modern SAT-solver 166
2.1 Formal Definition of The SAT Problem 166
2.2 Boolean Constraint Propagation 167
2.3 Conflicts, Learning, and Backtracking 167
24 Making decisions oL oo 168
2.5 State of the art in SAT 169
3 Bounded Model Checking 169
4 Temporal Induction 172
) Supervisory Controlo 174
5.1 Modelling formalism 175
5.2 Encoding transition functions 179
5.3 Verification 182
5.4 Synthesis via iterative specification refinement 185

XV

CONTENTS CONTENTS

5.5 Discussion of the use of SAT in the supervisory control example 186
6 Discussion and conclusion, 186
7 Acknowledgements 187
References 187

xXvi

Part 1

Introductory chapters

Chapter 1

Introduction

Modern manufacturing is very challenging. On one hand, broad competition pushes
manufacturers to keep costs down. One of the most widespread practices for keeping
costs down is mass production, pioneered by Henry Ford more than a century ago.
By extreme standardization and unification it is possible to reduce costs. A famous
quote by Ford (1922) says: “Any customer can have a car painted any colour that he
wants so long as it is black”, which emphasizes standardization. On the other hand,
customers want individualized solutions. For example, a buyer of a commercial truck
knows how the vehicle will be used, and does not want to pay for extra cargo capacity
or driving range. Such individualization contradicts mass production.

Mass customization, envisioned by S. M. Davis (1987), bridges the gap between
mass production and custom-made products. Mass customization is a production
strategy focused on the broad provision of personalized products and services produced
almost as cheaply as mass products (Pine II et al. 1993; Piller and Stotko 2002; Hvam
et al. 2008; Fogliatto et al. 2012). The key to implementing mass customization is to
use product families and product platforms. A product family is a group of related
products that is derived from a product platform to satisfy a variety of market niches
(Simpson et al. 2006). A product platform is a “set of common components, modules,
or parts from which a stream of derivative products can be efficiently developed and
launched” (Meyer and Lehnerd 1997). The process where customer needs are matched
to the company’s standardized components and procedures is called configuration.
Configuration, according to Mittal and Frayman (1989), is “a special type of design
activity, with the key feature that the artifact being designed is assembled from a set
of pre-defined components that can only be connected together in certain ways”. Given
the complexity of most modern products, configuration would be almost impossible
without information system support.

There are different approaches to implement information systems for configuration.
Sabin and Weigel (1998) divide them in three groups: case-based, rule-based and
model-based. Case-based systems (Kolodner 1992) store all previously sold products
as cases, and use these cases as a basis for each new order, possibly making necessary
design adaptations either manually or automatically. The advantage of case-based
systems is that they do not require large amounts of work upfront for designing a
product platform. However, the absence of a carefully designed platform prevents

the manufacturer from fully realizing the benefits of unification and economy of scale.
Rule-based systems (Hayes-Roth 1985) use production rules of the form 1F condition
THEN consequence to encode what actions should be performed to obtain a valid
configuration, and when each action should occur with respect to other actions. Rule-
based systems suffer from severe maintenance problems (Barker et al. 1989) due to the
tight coupling between the domain knowledge and the inference engine, both encoded
in the same set of rules. Model-based systems were developed to address the limitations
of case-based and rule-based systems. The main assumption of model-based system is
the existence of a model of the product being configured. Such a model consists of
decomposable entities and interactions between their elements. The model facilitates
the separation between what is known and how the knowledge is used (Hamscher
1992).

Model-based systems can be further sub-classified. The models for model-based
configuration can be created using description logic (McGuinness and Wright 1998;
McGuinness 2003), features (Kang et al. 1990; Thiel and Hein 2002; Batory 2005),
ontologies (Asikainen et al. 2007; Yang et al. 2008), answer set programming (Soininen
et al. 2001), preference programming (Junker and Mailharro 2003) and constraints
(Mittal and Frayman 1989; Junker 2006). This thesis focuses on constraint-based
systems. Constraints provide a simple yet flexible and powerful framework for modeling
rapidly-changing products (Schuh et al. 2009). Constraint-based systems are widely
used in automotive manufacturing companies like Renault (Amilhastre et al. 2002;
Astesana, Cosserat, et al. 2010), DaimlerChrysler AG (Sinz et al. 2003) and Volvo
Trucks (Lindroth 2011).

High complexity of constraints, as well as frequent introduction of new products
and components, makes manual handling of configuration constraints error-prone and
time consuming. Software tools can help engineers analyze and maintain configuration
constraints. A number of methods and tools have been reported in the literature that
aim to help engineers, including tools for verification and validation of knowledge-based
systems (Gupta 1993; Preece et al. 1997; Tsai et al. 1999; Desharnais et al. 2011),
verification of automotive configuration data (Amilhastre et al. 2002; Sinz et al. 2003;
Astesana, Bossu, et al. 2010; Astesana, Cosserat, et al. 2010), visualization tools for
dealing with decisions that cannot yet be automated (Baumeister and Freiberg 2010),
virtual builds (Fuxin 2005), automatic analysis of feature models (Benavides et al.
2010), and refactoring of feature models (Alves et al. 2006; Thiim et al. 2009). However,
being specialized, these methods and systems do not cover all possible configuration
problems. For example, to the best of authors knowledge, the problem of efficient
enumeration of valid partial configuration has not been addressed, and the problem of
supporting engineers in analyzing constraints and possibly improving them was not
covered exhaustively.

This thesis focuses on the following research questions:

1. What kind of computer support can be implemented to help engineers maintain,
verify and analyze product configuration constraints? (Approached in Papers 1,
2 and 3).

2. How to enumerate valid partial configurations efficiently? (Paper 3).

Chapter 1. Introduction 5)

3. How to compactly represent product configuration data for answering product
configuration questions efficiently? (Approached in Chapters 4 and 5).

The amount and complexity of constraints make analysis computationally demand-
ing: there might be tens of thousands of constraints and 10!% of possible products.
Moreover, configuration problem can often be seen as a generalization of the well-
known problem of Boolean satisfiability!, which is a classical problem that belongs
to the set of NP-complete problems (Cook 1971), and to date there is no algorithm
known that can solve an arbitrary problem instance with a time complexity that is
better than exponential in the size of the input (Hertli et al. 2011). However, there
is a lot of work done on handling practical instances of NP-complete problems, for
example, in the hardware verification community (Burch et al. 1990), which resulted
in efficient methods to solve generic satisfiability problems. These methods include,
for example, Binary Decision Diagrams (Bryant 1986), Boolean Satisfiability Solvers
(Biere, Heule, et al. 2009) and Constraint Programming (Apt 2003; Dechter 2003). This
thesis identifies important challenges in working with configuration constraints that
can be tackled using recent advancements in methods and tools for solving satisfiability
problems.

The main contributions of this thesis are:

1. A number of methods for automatic verification of configuration constraints and
for computational support of manual inspection of constraints (Paper 1).

2. A method for verifying the correctness of one specific type of constraints (Item
Usage Rules) for sets of mutually-exclusive required items, and a method for
automatic verification of equivalence of different formulations of the constraints
(Paper 2).

3. Three methods for enumerating valid partial configurations efficiently, and
benchmarking of the methods on an industrial dataset (Paper 3).

4. A novel encoding of configuration data that allows checking the validity of
partial configurations without exhaustive search, by using Supervisory Control
Theory introduced by Ramadge and Wonham (1989); the encoding is suitable
for configuration tools that are interactive (Chapter 5).

5. A method for solving Supervisory Control Theory problems—namely synthesis
of deadlock-free and controllable supervisors—using Boolean satisfiability solvers
(Paper 4).

Tt is difficult to give a precise reference for Boolean satisfiability problem: logic as a science dates
back to Aristotle (384-322 B.C.) (Johansen and Rosenmeier 1998); Boolean functions and variables
are named after George Boole (1815-1864) who laid the foundations for an algebraic notation for
logic, and this notation was later popularized by William Stanley Jevons (1835-1882) (Gardner
1958); the most widely-cited algorithm that initiated active research in computer methods for solving
Boolean satisfiability problem is due to M. Davis and Putnam (1960). More historical notes can be
found in the book “Logic machines and diagrams” by Gardner (1958), and more details about the
state-of-the-art in Boolean satisfiability can be found in “Handbook of Satisfiability” edited by Biere,
Heule, et al. (2009)

6. A prototype implementation of a product configuration engine.

The methods presented in this thesis were implemented in a prototype for rapid
experimentation with configuration problems. Methods for enumerating valid partial
configurations (Paper 3) and for explaining invalid partial configurations (Paper 1)
were further developed for an automotive company by a spin-off company from this
research project, Confirmlogic AB, and a pilot project for integrating the methods
into daily work process was initiated at that automotive company.

This thesis consists of two parts. Part I is a general introduction to the field
and puts the appended papers into context, except for Chapter 5, which has not
been published before and is a novel contribution of this thesis. Part II contains the
appended papers.

Chapter 2

Challenges in working with
configuration constraints

Creation and maintenance of configuration constraints is an important part of devel-
opment of mass-customized products. The constraints have to be developed before
the sales process can start, to specify what can and can not be produced. While
ordering the product, a customer can customize or configure the product within the
configuration constraints. Once a customer orders a product, the assembly process
typically starts. This workflow is illustrated in Figure 2.1.

The process of developing configuration constraints consists of three steps, as
illustrated in Figure 2.1: authoring, verification and validation, and release (Watts
2012; VDA 4965 2010). Among these tree steps, the main contributions of this thesis
are in the second step (verification and validation), but some contributions affect
also the authoring step. The third step (release) is where configuration constraints
are made available for use by sales and manufacturing departments. The following
sections introduce the authoring and the verification and validation steps.

2.1 Authoring

Authoring of configuration constraints can be seen as a knowledge acquisition activity
of Knowledge Based Systems. According to Neubert (1993), authoring consists of
four standard steps: elicitation, interpretation, formalization, and implementation.
A request to modify a product initiates the elicitation step, where a product design
engineer, acting as a domain expert, creates a natural language description of what
should be done. The natural language description is then translated into a semi-
formal description in the interpretation step. The interpretation step is needed
between the elicitation and formalization steps, as a mediator between knowledge (or
information technology) engineers and domain experts (represented by product design
engineers) (Angele et al. 1998). In the formalization step, a formal logic description
of the constraints is created from the semi-formal description. In the last step,
implementation, the constraints are stored in an information system, for example, by
typing the constraints into an editor.

2.1. Authoring

Sales to delivery

Develop
Constraints

Configure
Product

Manufacture
Product

,,,,,,,,,,,,,,,,,,,,

Author

Modification request

i

Elicitate

Interpret

Verify and
Validate

Release

Domain experts

Natural language

High-level mod-
eling framework

Semiformal description

Formalize Convert to logic
Logic expressions
Implement Save to database

Constraint
Automatically] _
. Automatic
verify
Manually
. Manual
mspect
Empirically Virtual builds,
validate Prototype workshop

Figure 2.1: Configuration constraints workflow.

Chapter 2. Challenges in working with configuration constraints 9

Product design engineers author two types of constraints, according to the two tiers
of configuration introduced by Haag (1998): high-level customer oriented configuration
constraints and low-level manufacturing oriented configuration constraints. The high-
level constraints are eventually released for use by the sales department, while the
low-level constraints that specify which parts to use for which customer order—together
with drawings, assembly instructions and other necessary information—are released
to the manufacturing department. This process is illustrated in Figure 2.2.

In the high-level customer-oriented configuration, products are broken down into
configurable parts and features referred to as families. In a valid product, each
family assumes exactly one wariant from a predefined finite set. Later we give a
formal definition to these terms. Combinations of variants will from here on be called
configurations. A complete configuration has exactly one variant assigned to each
family in the complete set of families. A partial configuration has variants assigned to
some families, but not to all. Some configurations are not technically buildable, and
some are not desirable for marketing or legal reasons. Configurations that fulfill all
limitations are called valid. A partial configuration is wvalid if it can be extended to a
valid complete configuration. Variant constraints define which configurations are valid
and which are invalid.

An example of how high-level configuration constraints might look is shown in
Table 2.1. The constraints appear in several stages. The first stage is Authorization, its
constraints specify which variants are allowed for each product type, where a product
type is a coarse partition of products into types. For example, for an automotive
manufacturer such types could be sedan “S60” or station wagon “V70”. The second
stage, Irrelevant configurations, are constraints that come from marketing, planning
and legal departments, which specify configurations that are not to be sold, thus should
not be designed. Such irrelevant configurations are depicted by the connected arrows in
Table 2.1. For example, the 1.2L engine should not be combined with the Sport model.
The third stage is where engineers add constraints that forbid some configurations due
to engineering reasons, for example, physical constraints or safety, such as the Sport
model is not to be manufactured with Diesel engine. Partial configurations forbidden
by engineers are also depicted by connected arrows in Table 2.1.

High-level constraints

{ Sales]
Product Orders:
Development variants/configurations

{ Manufacturing }

Low-level constraints,
items, drawings, I[URs

Figure 2.2: Two-tier configuration.

10 2.1. Authoring

Table 2.1: Example of possible configuration constraints. Authorization constraints
specify product type to variant relation. Irrelevant configurations constraints specify
which configurations are forbidden by, for example, marketing, planning and legal
departments. Engineering restrictions constraints specify which configurations are
forbidden due to engineering reasons.

Families Authorizations by
and Product Type

Variants Type A Type B Type C

Irrelevant Engineering
configurations restrictions

Volume
1.2 v v VRS “
1.6 v v 1
Turbo
Yes v v v
No v v v
Sport]
Yes v v v o< -
No v v ~
City
Yes v v v <~
No v v
Fuel
Gasoline v v v <~
Diesel v v v ~ <~

In the low-level manufacturing-oriented configuration, the structure is defined by
items. Each item can be either included or not in a Bill of Materials (BOM). Item
Usage Rules (IURs) define which items are selected for each concrete product based
on the customer selection of variants for families. IURs, in the form presented here,
were reported to be used in automotive industry in (Tidstam and Malmqvist 2010).
An IUR is a production rule of the form IF condition THEN item, where condition is
a complete or partial configuration (from the high-level customer-oriented tier) that
triggers the inclusion of the item into the BOM. IURs can be considered as a method
for encoding part lists; for a comparison of a number of methods of encoding part
lists see, for example, (Sinz 2006). An example of IURs is shown in Table 2.2, where
cach line contains one IUR. The left part of the table (Families and variants) contains
the inclusion condition part of the IUR, and the right part contains the item to be
included in a BOM. For example, the first row of Table 2.2 says that IF the customer
ordered family Volume to take variant 1.6, Turbo and Sport families to take variants
Yes, and family City to take variant No, THEN the 1.6L turbocharged engine item
denoted E16T should be included into the BOM for assembly. An item, such as F12
in Table 2.2, can be included by several I[URs, and identical inclusion conditions can
participate in different IURs, thus forcing inclusion of several items.

Chapter 2. Challenges in working with configuration constraints 11

Table 2.2: TURs. In each row a condition for including an item is specified. For
example, the first row specifies that if Volume=1.6 and Turbo=yes and Sport=yes
and City=no and Fuel=gasoline then and only then item E16T should be included.
For multi-row items (E12 in this example), an item is included if and only if any of
the rows is satisfied.

Families and variants

Volume Turbo Sport City Fuel Item(s)
1.6 yes yes no gasoline E16T
1.6 no no no diesel E16D
1.2 no no yes gasoline Ei12
1.2 no no no gasoline E12

All configurations that are valid with respect to high-level configuration constraints
have to be fully designed on the low-level, including specifications of items, I[URs and
detailed items designs, to be ready for a customer order. This is a so-called assemble-
to-order strategy, which requires all designs for products that customers can order to
be done beforehand, as opposed to an engineer-to-order strategy, where a design is
created only when a customer orders it. Assemble-to-order allows shorter delivery times
compared to engineer-to-order, and is thus the strategy of choice in most automotive
companies. However, in the truck industry some companies combine assemble-to-order
with more individual solutions that may require additional engineering support.

There can still be a large number of allowed configurations even after authorizations
and other constraints have removed many configurations. For instance, there are about
10%' possible “Renault Trafic” vehicles (small delivery vans) at Renault (Astesana,
Cosserat, et al. 2010), and at least 10'% car configurations possible to order for the
E-class line of Mercedes-Benz (Kiibler et al. 2010). Such a large number of complete
vehicle designs is impossible to create explicitly. Instead, the product is broken down
into loosely coupled function groups, and the complete design of a product is a set of
designs from function groups. If we take a hypothetical example of breaking down a
product into 20 function groups, and if each function group can be represented by
one design chosen from 10, then these 20 x 10 = 200 (sub)designs will describe 10%
complete products. To implement such product breakdown, each function group is
connected with a subset of families. Engineers in a function group have to create
detailed designs for all valid partial configurations only within the subset of families.
To conform to the assemble-to-order strategy, an engineer responsible for a function
group has to prepare all design documents beforehand for all possible valid partial
configurations within the function group. If some partial configurations cannot possibly
result in a valid product, for example, due to physical limitations, an engineer has to
create constraints to prevent customers from ordering such configurations.

Engineers rarely create the whole product platform from scratch. Instead, they do
incremental additions to the product offering. Consider, for example, introducing a
car with an electrical engine, or even with a hybrid powertrain. To introduce a new
engine, it is necessary to add a new variant to the families responsible for the engine.
Most likely, the new engine will not work for all configurations, thus it is necessary

12 2.2. Verification and validation

to add some variant rules to specify when the new engine can be selected. It is also
necessary to create [lURs that will specify concrete items to be used in the assembly
whenever a customer selects a configuration with the new variant.

There might be several problems with the new constraints and [URs, for example,
they might forbid configurations that otherwise should be valid, or they can allow
something that will not be possible to assemble, or the new rules might simply be
redundant and unnecessary. Some of these problems can be discovered as late as
on the manufacturing floor, which might result in costly manual adjustments or
re-negotiations of the order with the customer. To prevent proliferation of errors from
development to manufacturing, the configuration data should be fully verified and
validated before it is released to the sales and manufacturing departments.

2.2 Verification and validation

Once the constraints have been authored, the next step in configuration constraints
development is verification and validation. According to Boehm (1984), verification is
ensuring that the system is built right, while validation is ensuring that the right system
is built. Meseguer and Preece (1995) clustered verification and validation activities into
four groups: inspection, static verification, empirical testing and empirical evaluation.
Inspection is performed manually by domain experts—“by eye”’—to detect semantically
incorrect knowledge in the knowledge base. By manual inspection we will also mean
activities involving computational methods that nevertheless require domain expert
knowledge to make a decision about the correctness of the system. Static verification
checks the consistency of a knowledge base using computational support. Empirical
testing checks correctness by executing the system on sample data sets. Static
verification and empirical testing are both combined in this thesis into a group
automatic computation, since both have potential to be performed automatically,
that is, by a software tool, algorithmically, without user intervention. Empirical
evaluation checks suitability of the configuration constraints for the final user, including
manufacturing and sales departments. Prototype workshops and virtual builds, among
other methods, can be used to perform such validation (Fuxin 2005).

The verification and validation stage of the constraints development process has
gained significant attention in the scientific community, not the least for its high
complexity but also due to its wide application to all knowledge-based systems.
Over the years a number of tools and methods for verification and validation of
knowledge based systems have been created, see e.g. (Preece et al. 1997; Tsai et al.
1999) for reviews. These tools include consistency checkers, which detect conflicting
and redundant knowledge in a knowledge base; completeness checkers, which detect
missing or deficient knowledge; testing tools, which check correctness using test
cases. Despite great attention, however, these tools do not cover specific needs of
design engineers in the automotive industry. Feature models (Kang et al. 1990) were
proposed for use in automotive product configuration (Thiel and Hein 2002), but
have not found widespread use there, possibly due to high duplication of variants
and difficulties with introduction of changes, as discussed in (Biithne et al. 2004).
However, feature models enjoyed a substantial amount of attention, for example as a

Chapter 2. Challenges in working with configuration constraints 13

tool for modeling software, and as such, a number of methods have been developed
for automated analysis and verification. Benavides et al. (2010) reviewed 53 studies
and presented a catalog with 30 operations for automated analysis of feature models.
Due to a connection between feature models and constraints (Batory 2005), some of
the ideas can be readily applied to support product design engineers in automotive
companies. Sinz and Kiichlin were the first to address the needs of product development
engineers in automotive companies by introducing formal methods for verification
of product configuration data (Kiichlin and Sinz 2000; Sinz et al. 2003), including
checks for inadmissible variants, superfluous items, inclusion of mutually-exclusive
items, necessary variants and temporal consistency. Later, a number of verification
questions, including consistency, validity, completeness, conflict analysis and model
counting, were proposed by Astesana et al. (Astesana, Bossu, et al. 2010; Astesana,
Cosserat, et al. 2010) for working with product configuration at Renault. Astesana
and co-workers also proposed the development of new solvers to handle such questions,
without considering how to compute the answers to these questions with the existing
solvers. However, there are still problems that manufacturing companies are facing
that have not been addressed in the literature. The remainder of this chapter addresses
such problems.

2.2.1 Automatic verification

Automatic verification can catch errors without the need for human intervention,
and may be executed every time the new constraints are introduced, or old ones
changed. This subsection introduces three problems that can be addressed by automatic
verification. Originally, these problems were introduced in Papers 1 and 2.

Verifying that new rules do not forbid reference configurations

The complexity and interplay between configuration constraints make it difficult
to figure out whether a new constraint is “correct” or not. For example, adding
a constraint that forbids configurations that should normally be valid is clearly
undesirable. To help prevent situations like these, Paper 1 proposes to create a kind
of a “safety net” around the rules, using a number of reference configurations. These
configurations must always be possible to build, and if they become invalid due to
some rules, then more thorough analysis is required.

The reference configurations can be either complete, involving variants for all
families, or partial, with variants assigned only to a subset of families. Partial reference
configurations are valid only if they can be extended to valid complete reference
configurations. Verifying that a complete reference configuration satisfies a new
constraint is easy, while it is much more difficult to verify whether a partial reference
configuration satisfies the constraint.

Reference configurations, as well as their counter-part forbidden reference config-
urations that must always remain invalid, are illustrated in Figure 2.3. Reference
configurations can also be used as positive and negative examples for model-based
diagnosis (Felfernig, Friedrich, Jannach, et al. 2004).

14 2.2. Verification and validation

Invalid
configurations (hatched)

All configurations Reference

configurations

Valid

Forbidden reference configurations

configurations

Figure 2.3: Configurations space.

Verifying Item Usage Rules for Mutually-Exclusive Items

IURs specify the connections between variants and items. Since an [UR specifies how
an item depends on families’ variants, but not on other items, it is easy to end up in a
situation where, for example, a car has no engine. Such at-least-one condition for a
car must be satisfied by, for example, steering wheel items, chassis items, cabin items,
windshield items etc. Many of these examples also have a corresponding at-most-one
condition, for example, a car must have only one steering wheel (there are exceptions
though: hybrid cars have more than one engine, some waste collection trucks have
two steering wheels etc). Together, at-least-one and at-most-one conditions form
exactly-one conditions. A set of items that must satisfy an exactly-one condition will
be called Set of Mutually-exclusive required Items (SMI) (Tidstam, Bligard, et al. 2012;
Voronov, Akesson, Tidstam, et al. 2012), where mutually-exclusive means that no two
items are allowed together, and required means that at least one item is necessary
(SMIs are also called generic items (Veen 1992)). Exactly-one conditions can be
illustrated as in Figure 2.4, which highlights that every valid configuration should
have exactly one item assigned from a SMI.

Since there is no support for defining relations directly between items, and since it
is necessary to maintain backward compatibility with the existing system, Paper 2

No items Valid configurations

Single item 7

Two item

(a) Incorrect: some configurations with one item, (b) Correct: disjoint and covers all

some with two, and some with none. configurations (ensures both at most
and at least one item per configura-
tion).

All configurations

Figure 2.4: Configurations for a SMI with two items.

Chapter 2. Challenges in working with configuration constraints 15

proposes to add verification of exactly-one condition for SMIs on top of the variant
constraints and IURs, and to use such verification every time the configuration data
changes.

Beyond verification: authoring Item Usage Rules using partial configura-
tions

When authoring IURs for a SMI, it is necessary to ensure that each valid configuration
will have exactly one item from the SMI. This can be ensured by verifying the exactly-
one property, as described above in Section 2.2.1. However, we can also consider a
systematic way to create [URs that guarantees the exactly-one condition. A systematic
way to use valid partial configurations as a basis for IURs is presented in Paper 1.
Valid partial configurations for a given set of families do not coincide, since two
different partial configurations for a set of families will never result in the same
complete configuration. Thus, IURs based on valid partial configurations will make
sure that items do not overlap. Valid partial configurations could also reveal some
configurations that are valid, but must be forbidden, since there is no item to assign
to them. This creates an iterative process. From the variant constraints the valid
partial configurations are computed, from analysis of the valid partial configurations
and IURs more variant constraints are potentially created, and the process repeats.
This workflow is illustrated in Figure 2.5.

Computing valid partial configurations is a computationally difficult task. One way
to enumerate all partial configurations and check each of them for validity, but even to
check whether a single partial configuration is valid, it is necessary to take into account
all possible extensions of that configuration and see if any of them satisfies all the
constraints. Only checking a partial configuration against each constraint in isolation
is not enough. For example in Table 2.1, if we take partial configurations involving

possibly
new variant
constraints

- ~
- ~

Variant || Partial || Ttem Usage
Constraints | | configurations Rules

/

Request
for change

Figure 2.5: Workflow when using partial configurations to create item usage rules.

16 2.2. Verification and validation

only Volume and Turbo, there is no direct constraint that connects these two families.
Thus, it might seem that any combination of them is allowed. However, the partial
configuration { Volume=1.2, Turbo=Yes} is not valid, because there are constraints
connecting Volume with Sport and Sport with Turbo. This example illustrates that
to verify properties of a subset of families it might be necessary to take into account
other families as well. There could be a huge number of ways to extend a partial
configuration to a complete one. For example, if there are 100 families, and a function
group consists of two families, it is necessary to try all combinations of variants of
the 98 remaining families, which will be 2% if each family has only two variants; it is
infeasible to explicitly check each of these configurations. Paper 3 introduces three
efficient methods to compute valid partial configurations.

The number of valid partial configurations, and the IURs based on them, depend on
the families used for partial configurations. It might be beneficial from a maintenance
point of view to change the set of families used to create the IURs, but this might
result in other problems, some of which are considered next.

2.2.2 Computational support for manual inspection

Apart from the automatic verification tasks introduced above, there are more tasks
engineers might face, for example, authoring and modifying IURs, or discovering
opportunities to improve the structure of the constraints. Such tasks can greatly
benefit from computational support. For example, constraints can be rewritten
automatically in different form depending on the needs of an engineer. Implicit
relationships between items or families can also be made explicit automatically, as well
as the effects of changes in constraints. These tasks are considered in this subsection.

Rewriting Item Usage Rules in terms of other families

When the IURs are already created, an engineer might want to rewrite an [UR in
terms of other families, but keep intact the configurations for which the item is selected
(Tidstam, Bligard, et al. 2012; Voronov, Akesson, Tidstam, et al. 2012). This can be
done in order to simplify and shorten an IUR, or to facilitate a better understanding
of an IUR by showing it from “a different angle”. Automatic rewriting from one set of
families to another can contribute to the sustainability of the development by allowing
different engineers to view [IURs in their preferred ways.

Not all subsets of families are suitable for rewriting of an IUR. Adding more families
is always safe. At worst, the size of the IUR will grow (possibly exponentially) due to
the expansion of partial configurations into a number of more specific ones. Removing
families, on the other hand, can lead to situations when it is ambiguous whether an item
should be included or not, since when a family is removed, a number of more specific
partial configurations can become a single less-specific partial configuration. Consider,
for example IURs in Table 2.3a. If more families are added, a partial configuration
for item K12 splits into two more specific partial configurations, as illustrated in
Table 2.3b. When some families are removed, two more-specific partial configurations
become one less-specific partial configuration, as illustrated in Table 2.3c, making it
impossible to create IURs that would uniquely define which item should be included.

Chapter 2. Challenges in working with configuration constraints 17

Paper 2 introduces a way to verify that it is safe to delete a family from a given IUR,
and, more generally, to verify that an alternative set of families is suitable for rewriting
a given [UR.

Rewriting IURs is just one example of how constraints can be modified without
changing their external behavior or meaning. The next subsection considers more
such modifications.

Identifying refactoring opportunities

Software code refactoring is the process of changing a software system in such a
way that the external behavior of the code is not altered, yet the internal structure
of the code is improved (Fowler et al. 1999). The definition of refactoring can be
extended to configuration constraints, where refactoring would be defined as changing
the constraints without changing the valid configurations defined by the constraints,
the reference configurations, or the forbidden reference configurations. The previously
introduced rewriting of IURs in terms of other families can be regarded as one form of

Table 2.3: IURs.
(a) Initial IURs.

Families and variants

Volume Turbo Sport Fuel Item(s)
1.6 yes yes gasoline E16T
1.6 no no diesel E16D
1.2 no no gasoline E12

(b) TURs with extra family. Partial configuration for item E12 split into two
more-specific partial configurations.

Families and variants

Volume Turbo Sport City Fuel Item(s)
1.6 yes yes no gasoline E16T
1.6 no no no diesel E16D
1.2 no no yes gasoline Ei12
1.2 no no no gasoline Ei12

(c) TURs with families removed. Partial configurations for items E16T and E16D
become one less-specific partial configuration.

Families and variants
Volume Item(s)

1.6 E16T or E16D
1.2 Ei12

18 2.3. Reconfiguration and Interactive Configuration

refactoring. Paper 1 introduces more refactoring opportunities connected to the variant
constraints. It should be noted that refactoring was also introduced for knowledge
bases (Baumeister, Puppe, et al. 2004), which are related to configuration constraints.

Some configuration constraints might be implicit in the configuration data, or
implied by other constraints. Some of such implicit constraints can be made explicit
when refactoring, allowing to remove some of the presently-explicit constraints. It
can also be discovered that an item has IURs, but there is no valid configuration that
satisfies them, so the item is redundant and can be removed. Here is a number of
refactoring questions:

e Does one item depend on another?

e Must two items always be selected together?

e Can two items ever be selected together?

e [s an item, or a variant, or a family redundant?

Answers to these questions can help engineers to understand the system and identify
areas for refactoring.

What-if analysis: showing configurations that become invalid after intro-
ducing a new constraint

When adding a constraint, it might be difficult to foresee the effects of it. Unwanted
side-effects may be introduced, for example, configurations that were allowed before
adding the constraint may become forbidden. This may affect other teams concurrently
working on the product. Thus, it is important to be able to assess the effects of adding,
or removing, constraints to/from an existing constraint set. Paper 1 introduces a
method to compute which valid configurations—either partial or complete—that are
introduced or removed by a given modification of constraints.

2.3 Reconfiguration and Interactive Configuration

Reconfiguration is needed when a change in configuration constraints or user choices
happens, and there is a need to find a new valid configuration (Crow and Rushby
1994; Ménnisto et al. 1999). Usually, such new valid configuration should be as close
as possible to the original invalid configuration. The actual change that have to be
made to the assignment is called a repair (Kreuz and Roller 1999; Felfernig, Friedrich,
Schubert, et al. 2009; Schubert et al. 2011). Another relevant notion is diagnosis
(Reiter 1987). Diagnoses can be used as a basis for reconfiguration (Crow and Rushby
1994), and this approach has been applied for product configuration, see, for example,
(Felfernig, Friedrich, Jannach, et al. 2004). Corrective explanations (O’Callaghan
et al. 2005) can also be considered as a reconfiguration. Reconfiguration is useful, for
example, when dealing with aging and evolution of the product (Kreuz and Roller 1999;
Manhart 2005; Falkner and Haselbock 2010; Friedrich et al. 2011), software upgrades

Chapter 2. Challenges in working with configuration constraints 19

(Trezentos et al. 2010; Abate et al. 2012) and accommodating failures (Hadzic and
Andersen 2005), as well as a feature in interactive product configuration.

Interactive product configuration (Gelle and Weigel 1996; Hadzic, Subbarayan,
et al. 2004; Janota 2010) is a well-studied and widely implemented area of product
configuration, and the most visible by customers. For example, a customer can
configure a car on a manufacturer website, interactively choosing desired options while
the configurator will ensure that the customer always selects only valid combinations
of options. The user should have the possibility to choose values in any order, and
the whole process should be backtrack-free and complete. Backtrack-free means that a
user should always be able to finish the configuration procedure (select values for all
variables) without a need to alter any of the earlier decisions. Complete means that if a
configuration is valid, a user should have a way to achieve it. Interactive configuration
sometimes also include a possibility to undo some of the earlier choices, we will call
such actions undo-actions. Interactive configuration without undo-actions we will call
forward-only. Another addition to reconfiguration can be reconfiguration, where an
invalid configuration is changed into a valid one. During interactive configuration
it can happen that the user wants to select a value that is not in the valid domain.
In such a case, some of the previous choices have to be undone in order to make
the new assignment valid. We will call such problem interactive configuration with
reconfiguration. Reconfiguration can also be used outside of interactive configuration.

Enumeration of valid partial configurations, introduced in Paper 3, can be per-
formed efficiently if there is an efficient interactive configurator. In the case of a
forward-only configurator, each partial configuration can be checked for validity using
the configurator. If a configurator supports undo-actions, the configurator can be used
to generate a depth-first search tree from possible assignments, where each node of
the tree will be an assignment of one value, and each terminal leaf of the tree will
correspond to one partial configuration.

Chapter 5 introduces a novel method to efficiently represent configuration data
needed for interactive configuration and reconfiguration.

2.4 Conclusions

This chapter introduced a number of problems in authoring and verification of con-
figuration constraints that can be addressed by computational tools. Chapter 3
introduces formal methods and notation that can be used to describe these problems,
and outlines how to apply the methods to the problems introduced here. Afterwards,
Chapter 4 briefly introduces efficient algorithms and tools that can be used to solve
large configuration instances.

Chapter 3

Introduction to Formal Methods

In computer science, formal methods are a particular kind of mathematically based
techniques for systematic, rather than ad hoc, specification, design, and verification of
software and hardware systems (Wing 1990). Formal methods for specification use
mathematical notation to describe system requirements on some appropriate level
of abstraction; formal specification can later guide the (non-formal) design process.
Formal methods for verification check whether a model of a systems fulfills a given
specification, usually by either examining the entire state-space of the system as done
in Model Checking (Emerson and Clarke 1980; Clarke, Grumberg, et al. 2000), or
by applying inference rules as done in Automated Theorem Proving (Robinson 1965;
Duffy 1991). Formal design methods, called also synthesis methods, create a model of
a system form a specification.

Formal methods have found the most widespread application in verification of
hardware and software systems (Woodcock et al. 2009). In automotive product devel-
opment formal methods were applied to embedded software, for example, to design
and analyze a gear controller (Lindahl et al. 1998; Lindahl et al. 2001), to verify a car
central locking system (Amnell and Jansson 2001), and to model and verify an infantry
fighting vehicle rear ramp control system (Uckun 2011). However, if we include the
use of all logic-based methods into the definitions of formal methods, then the use of
many knowledge-based systems in product development—and especially the methods
for their verification (Suwa et al. 1982; Gupta 1993; Preece et al. 1997; Tsai et al.
1999; Desharnais et al. 2011)—become relevant too. If we narrow the scope down
to supporting automotive engineers in formally verifying correctness of the product
configuration data, then the most relevant formal methods include efficient methods
for representing configuration data and reasoning about it (Veron et al. 1999; Kiichlin
and Sinz 2000; Amilhastre et al. 2002; Pargamin 2002), as well as methods to formalize
specific engineering problems and provide means to answer them (Amilhastre et al.
2002; Sinz et al. 2003; Astesana, Bossu, et al. 2010; Astesana, Cosserat, et al. 2010).

This chapter introduces constraint satisfaction, which is used in this thesis to
model configuration data and to answer many verification questions. This chapter also
introduces a synthesis method that is used in Chapter 5 to represent the configuration
data for answering some of the configuration questions.

21

22 3.1. Constraint Satisfaction

3.1 Constraint Satisfaction

We encounter constraints in everyday life, for example, when determining a seating
arrangement for a dinner party, or when choosing a movie that a large group of friends
will like. Constraint problems have three characteristic attributes: wvariables, their
domains and constraints. Variables are objects that can take on a variety of values.
The set of possible values for a given variable is called its domain. For the dinner
party seating arrangement problem we may use chairs as variables. Fach variable has
the same domain — the set of all guests. Constraints impose limitations on the values
that a variable, or a combination of variables, may be assigned. An example may be
that the host and the hostess must sit at the two ends of the table, and that a feuding
pair of guests should not sit next or opposite to each other. Many problems can be
modeled in more than one way. For example, in the seating arrangement the guests
may be the variables instead of the chairs, with the chairs being the domain of each
variable. Such modeling difference is not important in the seating example due to a
one-to-one correspondence between guests and chairs, but for other problems it might
matter. A model that includes variables, their domains and constraints is called a
constraint problem!.

A solution or a valid assignment is an assignment of a single value from its domain
to each variable such that no constraint is violated. A problem may have one, many,
or no solutions. A problem that has one or more solutions is satisfiable or consistent.
If there is no possible assignment of values to variables that satisfies all the constraints,
then the problem is unsatisfiable or inconsistent.

Typical analysis of constraint problems is to determine whether a solution exists,
finding one or all solutions, finding whether a partial instantiation can be extended to
a full solution, and finding an optimal solution relative to a given cost function. Such
tasks are referred to as constraint satisfaction problems (CSPs).

CSP for finite-domain variables belongs to the set of NP-complete problems (Cook
1971), and to date there is no algorithm known that can solve an arbitrary problem
instance with a time complexity that is better than exponential in the size of the input
(Hertli et al. 2011). However, if a problem instance possesses special structure (for
example Horn formulas or 2-SAT, see Section 4.4), then the instance is polynomial-
time solvable (Aspvall and Plass 1979; Dowling and Gallier 1984; Maaren 2000). The
industrial problems that we tested do not belong to any of the known polynomial-time
solvable classes. However, many solvers were still able to solve the industrial problems
in a very short time (much faster than theoretically-predicted worst-case running
time). Section 4.4 attempts to provide an explanation for that discrepancy.

The following section introduces the formal notation for constraint satisfaction.

'Freuder and Mackworth (2006) attribute the emergence of constraint satisfaction as a new
paradigm within artificial intelligence and computer science to the 1965 paper by Golomb and
Baumert “Backtrack programming” (Golomb and Baumert 1965).

Chapter 3. Introduction to Formal Methods 23

Formal notation

Formally, a CSP is a triple P = (X, D, C), where X = (x1, 23, ...,x,) is an n-tuple
of variables;, D = (Dy, Ds, ..., D,) is an n-tuple of corresponding finite domains,
and C = {C},Cy,...,C;} is a set of constraints. A constraint Cj is a pair <R5j, Sj>,
where Ry, is a relation on the variables in S; = scope(C;), and scope(C;) C X is
a set of variables over which Cj is defined. In other words, Rg; is a subset of the
Cartesian product of the domains of the variables in \S;. In this thesis the relations
are limited to propositional formulas over atomic propositions z, = v where v € Dy.

A solution to the CSP P is an n-tuple A = (a4, as, ..., a,) where a; € D; and
each C; is satisfied in that Rg; holds on the projection of A onto the scope S;. In a
given task one may be required to find the set of all solutions, denoted by sol(P),
to determine if that set is non-empty, or just to find any solution, if one exists.
If sol(P) contains at least one solution, the problem P is said to be satisfiable,
otherwise it is unsatisfiable.

A complete assignment to a CSP P is a function f : X — D which is defined
for all z € X. A complete assignment f is valid when its codomain (the target
set of f, or the values for each variable) forms a solution. A partial assignment
to P is a partial function g : X — D defined for variables x;, € Y C X. We will
write scope(g) =Y C X to denote the set of variables of g. We will call a partial
assignment wvalid if and only if it can be extended to a valid complete assignment,
i.e. there exists a function h defined for X \ Y, such that codomains of g and h
together form a solution.

One of the methods to encode constraints is by using propositional formulas
(Chrysippus (c. 279 B.C. — ¢. 206 B.C.) is credited for the development of a coherent
system of propositional logic (Johansen and Rosenmeier 1998)). A propositional
formula is a formula that consists of a single propositional literal, or is a conjunction
(“and”, A), disjunction (“or”, V) or negation (“not”, =) of propositional formulas.
A propositional literal is either a positive or negative atomic proposition. An
atomic proposition can be, for example, an expression saying that a variable takes a
specific value, like “z = 27, or a Boolean variable. A Boolean variable (named after
George Boole (1815-1864) who laid the foundations for an algebraic notation, which
was later popularized by William Stanley Jevons (1835-1882) (Gardner 1958)) is a
variable that have domain {0, 1}, or alternatively { (F)alse, (T)rue}. A propositional
formula that consists only of Boolean variables is a Boolean formula. The problem
of finding an assignment to the Boolean variables such that the Boolean formula
evaluates to true is called Boolean satisfiability problem (SAT).

A propositional formula is said to be in conjunctive normal form (CNF) if it
is a conjunction of clauses, where a clause is a disjunction of literals; for example,
(AVBVC)A(BVD)isin CNF, while (AA B) V C is not in CNF. A Boolean
formula in CNF can be represented using a set notation. A clause Iy VIy V...V,
is expressed as a set of literals {l1,ls,...,l,}. Moreover, a CNF ay Aag A ... Ay,
is expressed as a set of clauses {1, as, ..., a,}. Consider the following CNF over
Boolean variables A, B, C, D:

(AVBV-=C)A(mAVD)AN(BVCVD,).

24 3.1. Constraint Satisfaction

Using set notation, it can be expressed as:
{{A, B,~C},{—-A,D},{B,C,D}}.

A CNF A is inconsistent if it contains an empty clause:) € A. Moreover, if a CNF
A contains no clauses, it is consistent: A = ().

A conditioning of a CNF A on a literal L, denoted A|L, is the process of
replacing every occurrence of literal L by the constant True, replacing —L by the
constant False, and simplifying accordingly. All clauses that contain L become
satisfied and can be removed from A. All clauses that contain =L can be simplified
by removing —L from them (as it is False and no longer have any effect). All clauses
that contain neither L nor =L remain in A|L without change. Unit resolution is a
conditioning procedure that takes the literal from a unit clause, where a unit clause
is a clause that contains only one literal.

Having the notation covered, the next subsections introduce the basic building
blocks of CSP and SAT solvers. Later, Chapter 4 and Paper 4 provide more methods
to handle industrial problem instances.

3.1.1 Basic constraint satisfaction solver

A general algorithm for CSP solvers is illustrated by the procedure CSP-SOLVE
in Algorithm 3.1 (Apt 2003). The algorithm is parameterized by the procedures
PREPROCESS, PROPAGATE-CONSTRAINTS, HAPPY, ATOMIC, SPLIT and PROCEED-
BY-CASES. The PROCEED-BY-CASES procedure recursively invokes CSP-SOLVE.

Algorithm 3.1 CSP-SOLVE

PREPROCESS
PROPAGATE-CONSTRAINTS
if not HAPPY
if AToMIC
done
else
SPLIT
PROCEED-BY-CASES

The first procedure in the algorithm is PREPROCESS, which prepares the problem
for solving. It can convert a problem formulation to the form suitable for the solver or
perform simplification of the problem to speed up the future solving process.

The procedure HAPPY checks whether the goal for the initial CSP has been
achieved. The goal depends on the applications, but the most common goals are:

e some solution has been found,
e all solutions have been found,

e an inconsistency has been detected,

Chapter 3. Introduction to Formal Methods 25

e an optimal solution with respect to some objective function has been found.

ATtowMmiIC checks whether it is possible to split the current problem into smaller
ones. If a solution or inconsistency has been found, the problem cannot be split.

The SPLIT procedure divides the current problem into two or more subproblems,
with the union of subproblems equivalent to the current problem. Splitting can be
done on the domains of the variables or on the constraints. For example, if branching
is done on a variable with domain size of three, then it is possible to split the problem
into three sub-problems, each of which will have to deal with a single value for the
variable. As an example of splitting on a constraint, consider a constraint that is
a disjunction (OR). Such disjunction constraint can be split into multiple parts,
with each subproblem having only one disjunct from the complete disjunction; if the
subproblem for any of the disjuncts is satisfiable, then the original problem itself is
satisfiable.

PROCEED-BY-CASES recursively invokes CSP-SOLVE for each subproblem (case)
produced by the SPLIT procedure. The cases are usually treated in a depth-first manner,
turning the whole solving procedure into a backtracking depth-first search (Golomb
and Baumert 1965). It starts at a root node and proceeds to the first descendant.
The process is repeated until either the descendant node is a leaf or an inconsistency
is found. If a leaf is a valid solution, the search terminates. Otherwise, the search
backtracks to the previous node and continues by selecting the next unexplored
descendant. If the search backtracks to the root node when all its descendants have
already been explored, the search terminates declaring absence of solutions. The
search can backtrack more than one level at a time, which is called non-chronological
backtracking (Stallman and Sussman 1977; Bruynooghe 1981). It is also possible to
remember the reason for the conflict in order to not repeat such partial assignments in
the future (Stallman and Sussman 1977; R. Davis 1984; Dechter 1986; Dechter 1990).

The PROPAGATE CONSTRAINTS procedure reduces the search tree by inferring
information from existing constraints. The simplest form is node consistency: if there
is a unary constraint (i.e. defined only over one variable), then all values that do
not satisfy the constraint should be removed from the domain of the variable. Arc
consistency (Mackworth 1977) generalizes this to binary constraints: for each value
of a variable in a binary constraint there should be a value in the domain of the
other variable, such that the resulting pair satisfies the constraint. Path consistency
(Montanari 1974) uses implicit induced constraints on triples of variables, i.e. considers
all paths of size two among binary constraints to prune domains. Generalized arc
consistency is an extension of arc consistency to constraints with more than two
variables in their scope. A variable is generalized arc consistent with a constraint if
every value of the variable can be extended to all the other variables of the constraint
in such a way that the constraint is satisfied (Freuder 1978).

The CSP architecture presented in Algorithm 3.1 is very general and allows solving
a variety of problems. SAT-solvers, on the other hand, can be seen as an extreme
specialization of the CSP algorithm; they are considered in the next section.

© 0 N O U R W N =

1
11
12
13
14
15

o

26 3.1. Constraint Satisfaction

3.1.2 Basic Boolean satisfiability solver

The basic procedure for Boolean satisfiability solving was presented by M. Davis and
Putnam (1960), and later modified into a more memory-efficient search procedure by
M. Davis, Logemann, et al. (1962). The resulting algorithm—commonly referred to as
DPLL, by the initials of its authors—is given in Algorithm 3.2.

Algorithm 3.2 DPLL(A)

input: CNF A
output: SATISFIABLE or UNSATISFIABLE
A" = UNIT-RESOLUTION(A)
if A/ =10
return SATISFIABLE
else if) € A’
return UNSATISFIABLE
else
choose a literal L in A’
if DPLL(A’|L) = SATISFIABLE
return SATISFIABLE
else if DPLL(A’|~L) = SATISFIABLE
return SATISFIABLE
else
return UNSATISFIABLE

It is easy to see similarities between Algorithms 3.1 and 3.2. The unit resolution in
line 3 of Algorithms 3.2 is a simple form of constraint propagation, which propagates
all clauses that consist of a single literal (unit clauses) by conditioning the problem on
those literals. Lines 4-7 of Algorithm 3.2 are a merge of both tests for HAPPY and
ATomMmic. SPLIT is implemented by choosing a literal in line 9 of Algorithms 3.2, and
PROCEED-BY-CASES is implemented by a recursive call to the DPLL procedure on a
conditioned CNF.

The original DPLL algorithm presented here was invented half a century ago.
Modern efficient implementations of SAT algorithm depart from the original DPLL in
various ways. An overview of some of the most important modifications is given in
Chapter 4 and Paper 4. Modern SAT algorithms have very good performance, and
they are often used to solve problems that were modeled as CSP (Prestwich 2009), by
converting CSP to SAT. Such conversion is briefly introduced in the following section.

3.1.3 Encoding constraint satisfaction problems as Boolean
satisfiability problem
Often problems are modeled using CSP, and then converted to SAT to take advantage

of many efficient SAT tools (Prestwich 2009). Wide range of efficient tools use a
common encoding of Boolean satisfiability problem called DIMACS CNF format. The

Chapter 3. Introduction to Formal Methods 27

format requires the problem to be described in terms of only Boolean variables, and
the constraints have to be CNF clauses; a CSP with finite-domain variables and
propositional constraints can be converted to (Boolean) SAT with CNF constraints
with a polynomial increase of the problem size.

The DIMACS CNF format is as following. The file starts with zero or more comment lines,
indicated by the character c at the beginning of the line. After the comment lines, there is a
“header string” p cnf n m that indicates that the instance is in CNF format; n is the number of
variables; m is the number of clauses. The header string is followed by the clauses. Each clause (a
disjunction of literals) is encoded as a sequence of literals, where each literal is represented by a
number between —n and n, the clause ends with 0 on the same line; a clause cannot contain the
opposite literals ¢ and —i simultaneously. A positive number 7 denotes the corresponding variable
x;. A negative number —i denotes the negations of the corresponding variable —x;. An example
file content for the formula (x1 V =25V 24) A (-1 V 25 V 23 V 24) A (m23 V —24) can look as the
following:

c
c start with comments
c

p cnf 5 3

1-540

-15340

-3-40

To provide a brief introduction to the conversion from CSP to SAT, the encoding of
finite-domain variables using Boolean variables, and encoding of arbitrary propositional
formula using CNF is given in the following two sections.

Encoding finite-domain variables using Boolean variables

Two of the most widespread encodings of finite-domain variables using Boolean
variables are direct encoding (Kleer 1989; Walsh 2000) (also called one-hot encoding
(Biere and Kunz 2002)) and log encoding (Iwama and Miyazaki 1994; Walsh 2000).
Direct encoding assigns one Boolean variable to each value. The Boolean variable
indicates if the value is assigned to the variable or not. Thus, the number of Boolean
variables is equal to the number of values in the domain. Log encoding assigns a
unique integer in the interval from 0 to n — 1 to each value in the domain, where n is
the size of the domain. In this case [log, n| Boolean variables are needed to encode
the values.

Direct encoding requires extra constraints to encode that exactly one value can be
selected for each variable. Exactly-one constraints can be split into two constraints:
at-least-one and at-most-one. At-least-one constraints can be encoded using a single
disjunction of n literals. At-most-one constraints, on the other hand, is more difficult
to encode. The simplest encoding of an at-most-one constraint would require n?
disjunctions of the form (—z; V =), # j, where x; and x; belong to the domain of
the variable; this encoding is called quadratic in this thesis due to the number of extra
constraints needed. Other encodings exist (Sinz 2005; Frisch and Giannaros 2010;
Ben-Haim et al. 2012; Manthey et al. 2012), including generalizations of at-most-one
to at-most-k called cardinality constraint. One of the encodings is ladder encoding

28 3.1. Constraint Satisfaction

(Gent and Nightingale 2004), which introduces a linear number of new constraints
and a linear number of extra variables. Ladder and quadratic encodings are used in
this thesis to encode at-most-one constraints for direct encodings of finite-domain
variables.

Log encoding does not require at-least-one and at-most-one constraints, as mutual
exclusiveness is implicit in the encoding. However, to encode variables with domains of
sizes not a power of 2, log encoding requires constraints to forbid spurious assignments
that would correspond to integers between n and 212271 — 1. Despite the benefit of
reduced number of variables needed by log encoding, the drawback of log encoding is
that unit propagation on the log encoding is less effective than unit propagation on the
direct encoding (Walsh 2000), which might result in worse SAT-solver performance.

Encoding propositional formulas into CNF

To convert a propositional formula to CNF, one can use the rules of Boolean algebra.
The conversion can be exemplified by transforming formula (A A B) V =(C A =D),
where A, B, C, D are Boolean variables:

(AANB)V—(CAN-D) =
(ANB)V (=C)V D =
(AV-CVD)AN(BV-CVD)

Logic transformations might result in exponential growth of the formula, for example,
when converting Disjunctive Normal Form (disjunction of conjunctions) to CNF.
Another approach to convert a formula to CNF is to use Tseitin transformation
(Tseitin 1968), which introduces auxiliary variables and results only in polynomial
growth of the formula. For the example above, Tseitin transformation would introduce
two new variables, X and Y, and the following extra formulas for the new variables:

X < (AN B)
Y < (CA-D)

where P < @ stands for (P — Q) A (Q — P). Also, P — @ stands for (=P) V Q.

Then the original formula can be replaced by the following clauses:

XvVv-Y % Original formula
(-X)V A %X — A
(-X)V B % X — B
(mA)V (=B)v X % (ANB) — X
(=Y)vC %Y = C

(=Y) VvV (=D) %Y — =D
(-C)VDVY % (C A=D) =Y

For smaller formulas, like the one above, Boolean algebra transformations give smaller
CNF, but for bigger formulas, Tseitin transformation is necessary to avoid exponential

Chapter 3. Introduction to Formal Methods 29

growth of the formula. Consider, for example, converting (AABAC)V (DA E A
F)V (G A H AT), which would result in 27 clauses using Boolean algebra, and only in
13 clauses and 3 extra variables using Tseitin transformation.

Satisfiability problems are well-suited for answering verification questions. For
example, SAT often serves as a target representation for answering verification questions
in model checking (Biere, Cimatti, et al. 1999). However, some problems might benefit
from other formal methods such as synthesis. One synthesis method, supervisory
control synthesis, is introduced in the next section. Furthermore, there is a relation
between verification and synthesis, and in Paper 4 we introduce the first encoding of
some of supervisory synthesis problems as SAT problems. The next section briefly
introduces supervisory control theory and synthesis problems.

3.2 Synthesis using Supervisory Control Theory

Verification answers only yes or no to the question whether a specification is fulfilled or
not by the system, possibly with a proof for yes, and a counter-example for no. But it
is possible to go further. For example, the supervisory control theory (SCT) (Ramadge
and Wonham 1989; Cassandras and Lafortune 2008) provides a way to synthesize
(automatically compute) a safety device, called a supervisor, that restricts the behavior
of an uncontrolled process, the plant, in such a way that the desired behavior of the
controlled system, a specification, is fulfilled. The synthesized supervisor controls
the plant so that it always stays within the limits defined by the specification, by
dynamically disallowing the generation of events that might lead to a behavior outside
the specification, see Figure 3.1.

SCT includes a certain type of “controllability”. The supervisor is mainly a safety
device that prevents the plant from executing events that would take the controlled
system outside the specified behavior. However, not all events can be prevented from
occurring; some events are uncontrollable, and the supervisor must never (try to)
disable any of the uncontrollable events, since these events may be spontaneously
generated by the plant.

disables S <---- observes

Figure 3.1: Plant P supervised by a supervisor S. P spontaneously generates
events from a set allowed by S. The generated events are observed by S, which
generates a new set of disabled events for P.

30 3.2. Synthesis using Supervisory Control Theory

In addition to controllability, it is desired for the supervisor to be non-blocking.
A non-blocking supervisor guarantees that at least one marked state is reachable
from any state that the closed-loop system (plant and supervisor) is allowed to reach.
Marked states typically represent (sub-)tasks that the system must always be able to
finish.

Ramadge and Wonham (1987) have shown that for a given plant and a controllable
and non-blocking with respect to the plant specification, there always exists an optimal
supervisor guaranteeing that the specification will not be violated, while at the same
time allowing the system to always fulfill at least one of its defined (sub-)tasks.
The optimality criterion for the supervisor is to restrict the given plant as little
as possible. Such a supervisor is said to be maximally permissive or equivalently
minimally restrictive.

Synthesis can be viewed as a series of verification tasks, where the process model
(the plant) allows an automatic alteration of the suggested, and negatively verified,
supervisor candidate. The original specification can be viewed as the first supervisor
candidate; if it is verified to be correct (controllable and non-blocking) then no further
processing is necessary. Otherwise, a new supervisor candidate will be created by
removing undesired behavior from the previous supervisor candidate, and the process
repeats. Thus, by construction, a synthesized supervisor will always be verified to be
correct.

SCT and CSP have some similarities. In CSP, given a set of constraints, the task
is to find a set of satisfying assignments. In SCT, given a model of a plant, plus a
given set of constraints (specification), the task is to find another model (supervisor),
such that this model interacting with the plant satisfies the constraints.

From complexity point of view, answering whether there exist a supervisor with
respect to a modular finite-state automata system that guarantees reaching a marked
state is NP-hard (Gohari and Wonham 2000), and verifying the admissibility of a
single supervisor with respect to a modular finite-state automata system is PSPACE-
complete (Rohloff and Lafortune 2005), while CSP for finite-domain variables and
SAT are NP-complete (Cook 1971).

Modeling formalism

As a modeling formalism for supervisory control theory problems, finite state
automata may be used. Formally, a deterministic finite state automaton (FSA),
denoted by A, is defined as a five-tuple (Cassandras and Lafortune 2008):

A= <Q727faQO7Qm>7

where () is the finite set of states; X is the finite set of events, i.e. the alphabet,
associated with the transitions in A; f : Q x ¥ — @ is the partial transition
function: f(q,0) = p means that there is a transition labeled by event o from state
q to state p; qo € @ is the initial state; and @, C @ is the set of marked states.

The transition function can be written in infix notation; for example, ¢ = p
denotes a transition from state ¢ to state p associated with event . This notation
is further extended in the natural way to sequences of events of finite length.

Chapter 3. Introduction to Formal Methods 31

The transition function, f, is partial and thus not all events are defined from
all states. The active event function I'(q) denotes the set of all events o for which
f(g,0) is defined; this set is called the active event set. If o € I'(q) we say that the
event o is enabled in state ¢q. The active event function is implicitly defined from
the transition function f.

A state ¢; is called reachable if there exists a sequence of events that leads from
the initial state (qp) to state g;.

Typically, a model of a plant or a specification consists of different submodels
focusing on different aspects. A specific composition operator parallel composition
(also called synchronous composition), see for example (Cassandras and Lafortune
2008), may be used to compose a full model (plant or specification) from multiple
submodels.

Parallel composition models interaction. In a parallel composition of automata,
an event o can occur only from a joint state where each automaton has o enabled.

Let A = (Q', 3 f1, ¢}, QL) and Ay = (Q?%, %2, f2,¢3,Q?2,). The parallel com-
position of A; and A, is the automaton

A4 = (@' x @2 U, 1P (g5, 40), O x @2) -

The transition function, f'?, is defined as

(fY(q",0), f*(¢*,0)) if o €T (¢")NT?(¢?)
(fYq".0),¢%) if o € ' (¢")\¥?
(¢", f*(¢* o)) if o € T?(¢%)\X!

undefined otherwise.

("), 0) =

I'12 follows from the definition of f!I? and is given by
Mg ¢%) = (M (¢") N T2(g%) U (TM(g)\3?) U (T2(@)\S') -

Only the reachable states are of importance during analysis; thus it is common
to keep only the reachable subset of Q' x @2 in the composition. The parallel
composition operator is associative and commutative (Cassandras and Lafortune
2008), and can thus be extended in a straightforward way to compose an arbitrary
number of automata.

Controllability Let P and S be two automata. Let 3, be the set of uncontrollable
events and ¥° be the alphabet of S. A state (¢7, ¢°) € Q¥ x Q° in the synchronized
automaton P||S is controllable if the following statement holds:

YN, NT(¢") CT(¢%), assuming ©° C ©F.

Uncontrollable states are the states in P||S where P enables an uncontrollable
event, but S disables the same event (i.e. S has the event in its alphabet, but
does not have the event in the active event set of the current state). Let P be the
plant and S be a specification, and ¥, be the set of uncontrollable events. S is

3.2. Synthesis using Supervisory Control Theory

controllable with respect to P and 3, if all reachable states of P||S are controllable.
It is known (Ramadge and Wonham 1987) that for a given specification and plant,
a supervisor, which guarantees that the entire specification can be achieved, exists
if and only if the specification is controllable with respect to the plant. This means
that the specification must be such that it can be enforced without having to (try
to) disable any uncontrollable events. If the original specification is not controllable
with respect to the plant, a controllable sub-behavior of the specification has to
be computed. It is known that the union of all controllable sub-behaviors of a
specification with respect to a plant is also controllable thus a supremal controllable
sublanguage exists. The supervisor’s task is to restrict the behavior of the plant
such that the supremal controllable sublanguage is achieved. If no controllable
sublanguage exists, which implies that the supremal controllable sublanguage is
empty, then no supervisor exists; in such a case it is necessary to change the plant
or the specification.

Non-blocking Let A = (Q,%, f, g, @m) be an automaton. A reachable state
q € Q is said to be non-blocking if there is a path from ¢ to some marked state:

Jds € ¥*, such that 3¢, € Q,, where ¢ = g,

An automaton is said to be non-blocking if all of its reachable states are non-blocking.
In words, the system is non-blocking if from any reachable state there is a path to
some marked state.

Deadlocks A reachable state ¢ €) is a deadlock state if there is no transition
leaving the state:

I'(q) = 0.

In many applications it is desirable to have no deadlocks, but in some applications
deadlocks arise naturally. For example, if a manufacturing system has to produce
a fixed number of parts, then, after those parts are produced, the system is in a
desired deadlock. Such deadlocks at the end of a set of tasks can often be avoided
either by adding a transition back to the initial state, or by adding self-loops at
the desired final states, or by making desired final states marked. The remaining
(non-marked) deadlocks would usually indicate some undesired behavior of the
system, and the need for controlling the system. Thus, the synthesis procedure
should make sure that we the closed-loop system is not allowed to reach non-marked
deadlock states.

Supervisor synthesis algorithm A simple algorithm for synthesis of a non-
blocking and controllable supervisor (Cassandras and Lafortune 2008) starts by
computing the first supervisor candidate as the synchronous composition of the plant
and specification automata. Then uncontrollable and blocking states are removed
from the candidate repeatedly until there are no more uncontrollable or blocking
states left. This way, the resulting supervisor is controllable and non-blocking by
construction.

Chapter 3. Introduction to Formal Methods 33

Example: applying Supervisory Control Theory to a robot
and a machine

As an example, let us consider one robot and one machine as shown in Figure 3.2.
The plant consists of the two automata shown in Figure 3.3a and 3.3b that model
the robot and the machine. It is assumed that the robot will spontaneously release
a manufacturing part (corresponding to the put-event) in the machine after it has
picked it up. Thus, the put-event is uncontrollable. Uncontrollable events are prefixed
with an exclamation mark (!) in the figure. We would like the system to fulfill
the following specification (Figure 3.3¢c): after each (!/)put event there should follow
event load followed by unload__A. This guarantees that the robot will not put a new
part into the machine before the machine has consumed the current part. It also
restricts the machine to use output buffer A only. In this example, the plant, P,
is given by Robot||Machine and the specification S consists of a single automaton.
In general, both a plant and a specification can consist of multiple sub-plants and
sub-specifications.

The full synchronous composition of R, M and S is shown in Figure 3.4. It contains
two uncontrollable states, which the synthesis algorithms removes to produce the
four-states supervisor. The supervisor resulting from synthesis algorithm for Robot,
Machine and Specification example is shown in Figure 3.5.

The example illustrated the basic concepts of SCT, including modeling the system
using finite state automata and synthesizing a controllable and non-blocking supervisor.
Chapter 5 shows how to use SCT to solve product configuration problems.

3.3 Conclusions

To summarize, this chapter introduced basic mathematical concepts used in this thesis:
CSP, SAT and SCT. CSP and SAT are used to represent configuration problems in
Papers 1, 2 and 3. Approaches for solving large satisfiability problems arising from

A

——1B

Figure 3.2: A robot and a machine. The robot takes parts from the input buffer
and puts them on the machine. The machine loads the part brought by the robot,
and after processing unloads it to the output buffer A or B.

34 3.3.

Conclusions

ﬁ available idle

/ unload A
take (!)put load unload B
@ carrying @ working
(a) Robot (b) Machine
free

forbidden event:

load-B
unioa (!)put unload-A

load
has non-loaded @ od has loaded

(c) Specification

Figure 3.3: Automata models of the plant, consisting of the robot and the
machine, and the specification. The exclamation mark (!) before an event
name indicates that the event is uncontrollable. The alphabets are as fol-
lowing: Yoot — ftake, \put}, BMachine — fload, unload_A,unload_ B}, and
yopec — {!put,load, unload__A,unload__B}. Note that the specification has no
transition labeled unload__ B, but this event is in the alphabet of the specification,

thus unload__B is never allowed by the specification.

unload-A

unload-A

Figure 3.4: The synchronous composition R||M||S, with uncontrollable states s.i.n
and c.w.l denoted by dashed crossed-out arrows pointing away from the states.

Chapter 3. Introduction to Formal Methods 35

unload A

load

(Dput

Figure 3.5: Minimally restrictive supervisor for the robot and the machine from
Figure 3.3

large configuration problems are presented in Chapter 4. SCT is used to represent
configuration problems in Chapter 5. Using SAT to encode SCT problems is presented
in Paper 4. The next chapter looks at efficient methods to solve large problem instances
arising in product configuration.

Chapter 4

Solving large-scale problems

Chapter 2 introduced some challenges in product development, and Chapter 3 intro-
duced some techniques for formalizing product configuration problems and outlined
how these techniques can be used to solve the problems in Chapter 3. This chapter
briefly introduces different computational methods that were suggested for working
with large-scale configuration problems, and empirically evaluates some of them. The
chapter starts with the modern SAT-solvers and the key features that improved their
performance compared to the basic DPLL algorithm presented in Section 3.1.2. Then,
knowledge compilation methods are introduced, which separate the computations
into an “expensive” offline phase and a “cheap” online phase, providing the ability
to reuse the offline computation for many online queries about the same data. The
chapter goes on to compare several implementations of known methods on industrial
configuration data. The benchmark reveals that SAT-solvers provide answers in a
much shorter time than the theoretically predicted worst-case running time, and in
the last section of this chapter we investigate this discrepancy (but we have not found
an answer yet, and further investigations are needed).

4.1 Search-based Boolean Satisfiability Solvers

A search-based Boolean Satisfiability Solver, or a SAT-solver, has to, given a formula
in CNF, find an assignment to the Boolean variables such that the formula evaluates
to true, if possible. An equivalent formulation is to say that each clause should have
at least one literal that is true under a certain assignment. Such a clause is said to be
satisfied. If there is no assignment satisfying all clauses, the CNF formula is said to
be unsatisfiable. Propositional formulas that are not in CNF can be transformed into
CNF using the methods discussed in Section 3.1.3.

A simple and complete SAT algorithm can be achieved by a standard backtracking
search. During the search, a partial assignment is maintained, where some variables
are assigned to 0 or 1 (alternatively to True or False), and others are unassigned. The
backtracking search picks a variable, assigns it to 0 or 1 (this is called a decision), and
repeats the procedure for the subproblem. If no solution is found, the other value is
tried. If a conflict is found (all literals in a clause are false), there is no need to branch
further. If all clauses have at least one literal true, then a solution has been found.

37

38 4.1. Search-based Boolean Satisfiability Solvers

Sometime partial assignments can force the values of other variables, which is
called constraint propagation. Consider the following three CNF clauses:

(maVb)A(=aVe)A(mbV —eVd)

If a partial assignment is @ = 1, then there is no other way to satisfy the first clause
other than assign b = 1. In the same way the assignment is propagated to ¢ = 1.
Theses two assignments, in turn, will lead to d = 1. Such propagation takes place
when all but one literal of a clause are false, and can be implemented very efficiently
(Moskewicz et al. 2001).

Constraint propagation can be run after every assignment, resulting in the DPLL
algorithm presented in Section 3.1.2, which until the inception of modern SAT solvers
was the predominant approach to SAT.

The major differences of modern solvers from DPLL can be summarized as following:

e [t is not a recursive procedure. Instead, an explicit stack of assignments is used
for backtracking.

e When a conflict is found, the solver learns from it. From each conflict, a
conflicting clause is derived and added to the set of clauses. The conflict clause
strengthens the propagation without changing the satisfiability of the formula.

e Backtracking is no longer restricted to return to the previous decision. If the
last k decisions were irrelevant to the conflict, all of them are undone, together
with their propagated assignments.

These differences resulted in a new name for modern SAT-solvers: Conflict-Driven
Clause Learning (CDCL) solvers (Marques-Silva and Sakallah 1996; Marques-Silva,
Lynce, and Malik 2009).

The algorithm of a modern CDCL SAT-solver can be summarized as in Algo-
rithm 4.1 (Claessen et al. 2008).

Algorithm 4.1 CDCL-SOLVE

forever:

PROPAGATE-CONSTRAINTS

if NO-CONFLICT
if NO-UNASSIGNED-VARIABLE then return SAT
MAKE-DECISION

else
if NO-DECISIONS-WERE-MADE then return UNSAT
ANALYZE-CONFLICT
UNDO-ASSIGNMENTS
ADD-LEARNED-CLAUSE

Another important part of a solver is how it makes decisions. The most successful
heuristic so far tries to bias decisions towards variables that were recently involved in

Chapter 4. Solving large-scale problems 39

the conflicts. This helps to find as many conflicts as possible in a small region of the
search space, which should result in a set of short clauses that capture the reasons for
the conflicts better than the original clauses.

The mentioned features of the SAT-solvers’ algorithms and well-selected and tuned
heuristics have made SAT-solvers very powerful computing tools successfully applied
to many practical problems (Marques-Silva 2008). In particular, SAT-solvers were
successfully used for product configuration (Kiichlin and Sinz 2000; Sinz et al. 2003;
Janota 2008; Janota 2010).

Often, especially in many product configuration problems, the same data is used
to answer many queries, which makes starting the search “from scratch” less desirable.
Instead, it is possible to keep learned clauses as in incremental solving (Een and
Sorensson 2003), or to compile the whole problem into a tractable representation, as
done in the knowledge compilation approaches considered in the next section.

4.2 Knowledge compilation methods

Knowledge compilation is a family of approaches that addresses intractability of many
Artificial Intelligence problems. A propositional model is compiled in an offline phase
in order to support some online queries in polytime. Many knowledge compilation
methods exist, see, for example, (Cadoli and Donini 1997; Darwiche and Marquis
2002) for reviews, but the most widespread knowledge compilation method is Binary
Decision Diagram, which is considered in the following subsection.

4.2.1 Binary Decision Diagrams

Binary Decision Diagrams (Lee 1959; Akers 1978; Bryant 1986) can be used to
efficiently find a satisfying assignment to SAT. A Boolean formula can be represented
as a decision tree, where nodes of the tree represent variables, and edges of the tree
represent values of the variables. An example tree for the function a A b is shown in
Figure 4.1a. Each decision node is labeled by a Boolean variable and has two child
nodes called the low child and the high child, respectively. The edge from a node to
a low (high) child represents an assignment of the variable to 0 (1). Terminal leafs
represent the final value that the function will take when variables are assigned the
values found on the path from the root of the tree to the leaf. Since the function
is Boolean, there are only two unique terminal leafs: 0 and 1. By keeping only two
unique leafs (and calling them O-terminal and 1-terminal), the tree will become a
rooted, directed, acyclic graph, which consists of decision nodes and two terminal
nodes O-terminal and 1-terminal. This graph is called a Binary Decision Diagram
(BDD). A BDD is called ordered if different variables appear in the same order on
all paths from the root. A BDD is said to be reduced if the following two rules have
been applied to its graph: (i) any isomorphic subgraphs are merged, and (ii) any
node whose two children are isomorphic is eliminated. In what follows, we will call
such a reduced ordered BDD simply BDD. An example of such a BDD is shown in
Figure 4.1b. In practice, BDDs are generated and manipulated in their fully reduced
form, without ever building the decision tree. Multi-valued decision diagrams (MDDs)

40 4.2. Knowledge compilation methods

(Kam et al. 1998) are a generalization of BDDs to variables with arbitrary finite-sized
domains.

BDDs have several important benefits. First of all, it is a compact representation
of a Boolean function, which saves space compared to some other representations.
Secondly, it is easy to manipulate BDDs: all usual logical operations (AND, OR,
NOT, NAND, etc.) can be performed directly on BDDs. A BDD with a fixed variable
ordering is also a canonical representation of a Boolean function, which makes it easy
to check functions for equivalences.

The disadvantage of BDDs is that they are sensitive to the variable ordering
(Bryant 1986). The problem of choosing the best variable ordering is NP-complete
(Bollig and Wegener 1996). An example of the difference between a good and a bad
variable ordering for a BDD is shown in Figure 4.2.

Despite the fact that BDDs have been successfully used for product configuration
(Hadzic, Subbarayan, et al. 2004; Subbarayan, Jensen, et al. 2004), for many practical
problem instances BDDs can require a large amount of memory. Other knowledge
compilation methods may provide more succinct representations of a problem instance
at the expense of reduced number of supported polytime queries and transformations.
Such knowledge compilation methods relevant to product configuration are outlined
in the next subsection.

4.2.2 Other knowledge compilation methods

Darwiche and Marquis (2002) presented a summary of knowledge compilation methods
(a “knowledge compilation map”), along with the properties of each method and
polytime supported queries. Later, the map was extended with more methods, for
example, Tree-of-BDDs (Subbarayan, Bordeaux, et al. 2007; Fargier and Marquis 2009).
Among knowledge compilation methods, the most relevant to product configuration
are Decomposable Negation Normal Form (Darwiche 1998; Darwiche 2001a), Cluster
trees (Dechter and Pearl 1989; Pargamin 2002), Automata (Amilhastre et al. 2002),
Multivalued Decision Diagrams (Kam et al. 1998; Hadzic and Hansen 2008), Tree-
driven automata (Fargier and Vilarem 2004), AND/OR Multivalued Decision Diagrams

~ 0 !
1 \ 1
0
0 0|
1 LN
1 0 0 0 1 0
(a) Decision tree (b) BDD

Figure 4.1: Decision tree and reduced ordered BDD for function a A b.

Chapter 4. Solving large-scale problems 41

(a) Bad variable ordering (b) Good variable ordering

Figure 4.2: Good and bad variable orderings for formula (x1 A z2) V (z3 A x4).

(Mateescu and Dechter 2006) and Tree-of-BDDs (Subbarayan 2005). These data
structures are briefly introduced below.

Decomposable Negation Normal Form

Decomposable Negation Normal Form (DNNF) (Darwiche 1998; Darwiche 2001a) is a
data structure of which BDD is a special case. A propositional formula is in negation
normal form (NNF) if and only if it is one of the following:

e a [iteral, which is a positive or negative atomic proposition (atom);
e a conjunction of formulas in NNF;
e a disjunction of formulas in NNF.

A formula in NNF is decomposable (DNNF) if and only if for any conjunction no
atoms are shared by any conjuncts (in other words, for every conjunction the following
must hold: for any two children of the conjunction, the sets of atoms do not overlap).
A formula in NNF is deterministic (d-NNF) if for every disjunction, every pair of
disjuncts is logically inconsistent (only one child of a disjunction can be true for any
given assignment). A formula in NNF is smooth (s-NNF) if for every disjunction
the set of atoms is equal to the set of atoms of each of its children (all children of a
disjunction have the same sets of atoms). If a formula in DNNF is both smooth and
deterministic, we write sd-DNNF.

DNNF is more succinct than BDDs and its compilation time is often shorter than
that of BDDs (Subbarayan, Bordeaux, et al. 2007; Voronov, Akesson, and Ekstedt 201 1).
DNNF supports smaller number of tractable operations than BDD (Darwiche and

42 4.2. Knowledge compilation methods

Marquis 2002), while still allowing polynomial-time (in the size of the DNNF and/or
the number of solution) counting of solutions (on sd-DNNF), existential quantification
of atoms (forgetting) (Darwiche 1999) and solutions enumeration (Darwiche 2001b).

DNNF was proposed for use in product configuration for solutions (or valid
configuration) counting to measure documentation maturity and estimate complexity
of detecting errors in product configuration; these methods may be useful when
comparing configuration data, as well as for historical analysis (Kiibler et al. 2010).
Paper 3 of this thesis proposes to use efficient operations on DNNF to introduce a
polytime algorithm (once the DNNF is compiled) for enumeration of valid partial
configurations.

Cluster trees

The cluster tree approach (Dechter and Pearl 1989) (also called join tree, junction tree,
clique tree) relies on finding clusters of variables such that the interactions between
the clusters are tree-structured, which allows solving the queries about a compiled
problem by efficient tree algorithms. For example, cluster trees were proposed for
use in product configuration at Renault (Pargamin 2002; Pargamin 2003). The same
clustering idea underlines the tree decomposition used in DNNF compilation (Darwiche
1999; Darwiche 2004), which makes the result of cluster tree compilation similar to
the result of DNNF compilation. Thus, we will not analyze the cluster tree approach
separately from DNNF.

Automata and multi-valued decision diagrams

Automata were proposed for interactive configuration and explanation of invalid
configurations by Amilhastre et al. (2002), with the compilation procedure based on
the work of Vempaty (1992), who proposed to use automata to solve CSPs. Such
automata closely resemble MDDs. Automata and MDDs have similar sizes of compiled
representation (Hadzic and Hansen 2008), which are typically smaller than the sizes of
BDDs for product configuration problems (Amilhastre et al. 2002; Hadzic and Hansen
2008). Amilhastre et al. (2002) report the size of the compiled automata representation
to be 3.4 Mb vs 29.5 Mb for BDDs for the product configuration data of Renault
Megane with 10'? valid configurations. Approximate compilation of MDDs (Hadzic,
Hooker, et al. 2008) can give further space and time reductions while still providing
useful data for interactive product configuration tasks. Given such properties, the
methods appear to be promising, and might be a topic of future work.

Tree-driven automata

Tree-Driven Automata (Fargier and Vilarem 2004) can be compared to d-DNNF,
but relaxing the requirement of only having Boolean variables. Although tree-driven
automata have been proposed for product configuration (Fargier and Vilarem 2004),
neither empirical evaluations nor implementations are available, which makes it difficult
at the moment to estimate the benefits of this method.

Chapter 4. Solving large-scale problems 43

AND/OR Decision Diagrams

Each node in an AND/OR BDD (Mateescu and Dechter 2006) represents a formula of
the form: (((a1 Aag A---ANap) Ax)V ((by Aby A -+ Aby) A—x)), where a; and b; are
functions represented by the children of the node and x is the decision variable of the
node. Hence, AND/OR BDDs define a subset of d-DNNF and satisfy the decomposable
property. The AND/OR MDDs (Mateescu and Dechter 2006) are multi-valued versions
of AND/OR BDDs. Compiled tree-driven automata (Fargier and Vilarem 2004) are
essentially the same as (although developed independently from) AND/OR MDDs
(Mateescu and Dechter 2006), with minor difference in the compilation approach, which
is guided by a tree-decomposition for tree-driven automata, and by variable-elimination
based algorithms for AND/OR MDDs, while variable elimination and cluster-tree
decomposition are, in principle, the same (Dechter and Pearl 1989). AND/OR MDDs
were proposed for use in product configuration (Mateescu, Dechter, and Marinescu 2008;
Mateescu and Dechter 2008), but no empirical evaluation is available yet. Comparing
performance of the tools for AND/OR MDD and d-DNNF compilation may be a
topic of future work, especially since at least the binary code! of an AND/OR MDD
compiler is available.

Tree-of-BDDs

Tree-of-BDDs is a data structure that was introduced to address the problem of huge
BDDs that turn up in for many configuration problems (Subbarayan 2005). It uses
tree decomposition of the constraint graph and compiles each individual BDD. The
method relies on the total size of the partial BDDs being smaller than the size of
the monolithic BDD. The compilation time for Tree-of-BDDs can be shorter than
for &-DNNF (Subbarayan, Bordeaux, et al. 2007). However, Tree-of-BDDs supports
less number of polytime operations. For example, the operation of checking the
validity of an extra clause can not be performed on Tree-of-BDDs as efficiently as on
sd-DNNF (Subbarayan, Bordeaux, et al. 2007; Fargier and Marquis 2009), which limits
the applicability of Tree-of-BDDs for answering at least some of the configuration
questions. Still, promising performance (Subbarayan, Bordeaux, et al. 2007) and
available implementation? make Tree-of-BDDs an interesting topic for future work.

4.3 Solver benchmark

The previous sections introduced many methods that were used to tackle configuration
problems. Often some tools implementing some methods are better on some problem
instances, but not on all, as many comparisons show (Walsh 2000; Bennaceur 2004;
Bordeaux et al. 2006; Hamadi and Bordeaux 2007; Pan and Vardi 2005; Mendonca 2009;
Pohl et al. 2011). This section benchmarks several tools to find the most appropriate
one to work with the product configuration data of our industrial partners in the
research project. The tools were selected based on good performance in benchmarks

http://graphmod.ics.uci.edu/group/aomdd
2http://wuw.itu.dk/people/sathi/tob/

http://graphmod.ics.uci.edu/group/aomdd
http://www.itu.dk/people/sathi/tob/

44 4.8. Solver benchmark

within their specific disciplines, as well as on the implementation of well-known
algorithms and availability of the source-code that could be investigated.

4.3.1 Testbed

For a comparison we use a truck configuration problem, we will call it Dataset A.
We also use three car configuration problems from DaimlerChrysler AG, C210_FVF,
C211_FW and C638 _FKA (Kiichlin and Sinz 2000; Sinz et al. 2003). A set of smaller
problems was constructed based on Dataset A by reducing the number of constraints
in it to see how the running time increases with the problem size. Dataset A has
53818 constraints and 511 variables; average domain size is 6.37. Details about the
other three problems are given in Table 4.1.

The constraints in Dataset A are of two types. The first type of constraints
represents forbidden combinations of values of the following form:

- ((xkl = akl) VANPIAN (ka = akL)) .
Each constraint of this type contains from two to ten values. The second type of
constraints represents direct implications of the following form:
(k= ar)) V (21 = a),
Both of these two types of constraints can be directly converted to CNF clauses
when using direct encoding (that is, encoding each value with one Boolean variable):
(_'(xlﬁ = alﬁ) V...V _'<ka = akL)) :

The problems C210_ FVF, C211_FW, C638 FKA are in DIMACS CNF for-
mat?, which means that all variables have Boolean domain, and each constraint is a
disjunction of literals, where a literal is either a positive or negative atomic proposition.

4.3.2 Algorithms and tools

Six tools were used for the tests. The constraints were converted to a format suitable
for each tool. Solvers and formats are illustrated in Figure 4.3 and described below.

Shttp://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/satformat.ps

Table 4.1: Details for problems C210_FVF, C211_FW, C638_FKA.

Problem Boolean Variables CNF Clauses

C210_FVF 439 1853
C211_FW 327 3186
€638 _FKA 228 5346

http://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/satformat.ps

Chapter 4. Solving large-scale problems 45

MZN — FZN —— Gecode
API calls — Choco
Dataset A preprocessing PB Minisat-
API calls — Sat4]
CP CLab
MDD

Figure 4.3: The tools and intermediate formats used. MZN, FZN — MiniZinc and
FlatZinc file formats, PB — Pseudo Boolean file format, CP — CLab file format.

Two general-purpose constraint solvers were used, Gecode 3.2.2* and Choco 2.1.15.
Input data for Gecode was in MiniZinc/FlatZinc formats (Nethercote et al. 2007).
MiniZinc files were created for all the problems, and then the MiniZinc files were
converted to FlatZinc format using G12 MiniZinc-to-FlatZinc converter®. Input data
of Choco was loaded via its API. Due to the direct use of the API and not a file
format, all timing results for Choco exclude the time needed for reading the data from
a disk, and include only the time needed to populate in-memory data structures of
the solver and the time to execute the solving procedure.

As SAT-solvers, Sat4j 2.1.0 (Le Berre and Parrain 2010), Minisat+ and Minisat 2.0
(Een and Sorensson 2004; Een and Sorensson 2006) were used. The input data of
Satdj was loaded through the API, hence the disk reading time is not included in the
timing results, similar to Choco. Minisat+ was used for Dataset A with input data
in Pseudo-Boolean format” (Een and Sorensson 2006), and Minisat 2.0 was used for
C210_FVF, C211_FW, C638 FKA with the data in DIMACS CNF format. The
reason for using Minisat+ instead of the plain Minisat for Dataset A is that Minisat+
takes care of encoding finite-domain variables into Boolean variables.

As a BDD-based tool, CLab 1.0 (Jensen 2004b) was used with input data in the
CLab file format (Jensen 2004a).

Another BDD/MDD-tool was implemented, as part of this research, in C++ using
a BDD representation with logarithmic encoding of finite-domain variables. The
C/C++ package BuDDy was used for this purpose (Lind-Nielsen 2002). The pre-
ordering algorithms from (Narodytska and Walsh 2007) were implemented for sorting
variables and constraints, using the inflation parameter » = 1.5 in the clustering
step. A simplified version of the MCL clustering algorithm (Dongen 2000) was used,
skipping the truncation heuristics and the sparse matrix multiplication tools. No
post-ordering of the variables was included.

‘http://www.gecode.org

Shttp://choco.sourceforge.net
Shttp://www.gl2.csse.unimelb.edu.au/minizinc/

"For format description, see http://www.cril.univ-artois.fr/PB05/

http://www.gecode.org
http://choco.sourceforge.net
http://www.g12.csse.unimelb.edu.au/minizinc/
http://www.cril.univ-artois.fr/PB05/

46 4.8. Solver benchmark

Other knowledge compilation methods were not included in the benchmark due to
lack of time. However, preliminary tests with d-DNNF compilers ¢2d (Darwiche 2004)
and DSHARP (Muise et al. 2012) have shown that they can compile up to 80% of
constraints of Dataset A, but both failed to compile the complete dataset due to the
memory limit of 1 GB.

All tools were run with default settings and no extra tuning. It is possible to argue
that it is not fair to take a solver and just use it with no tuning, especially since
it was shown that automatic parameter tuning of a solver can significantly increase
its performance (Hutter et al. 2009). However, the industry would like to have a
trouble-free no-support tool that just works, especially since the sets of variables
and constraints are changing continuously, and it might be prohibitively expensive to
continuously re-tune or re-evaluate solvers.

The tools used for benchmarking were state-of-the-art at the time the experiments
were conducted (2009), but at the moment of writing (2012) new tools and updates
have become available. It might be a topic of future work to make new experiments
with the newly available tools.

4.3.3 Benchmarking time to compile and get the first answer

In the first benchmark a solver was to answer whether there exists at least one valid
configuration, and it is known in advance that there exists one for each problem (all
instances are satisfiable). The main goal was to evaluate whether the compilation
time for knowledge compilation methods is acceptable or not, as well as whether the
search-based tools can handle the data.

The time limit for all the tools was 1 hour, and memory limit was 1 GB. All
benchmark problems were executed on a 2.33 GHz Intel Core 2 Duo processor with
3.25 GB of RAM; only one core was used in the benchmark due to single-threaded
implementations of the algorithms.

Results Timing results for Dataset A are presented in Figure 4.4. Timing results
for problems C210_FVF, C211_FW, C638 FKA are presented in Figure 4.5. The
results show that BDD and MDD based tools were not able to compile the complete
Dataset A, while all search-based tools were able to successfully handle it. Runtime
variation between search-based tools differed not significantly, and any of them would
suit to answer whether there exist at least one valid product configuration. The
results also show that Minisat+ performs worse than Minisat, with the most probable
explanation being that the former solver performs a re-encoding.

Often we are interested in more intricate questions, and answering them with
the help of search-based tools would require answering multiple (related) questions.
Answering multiple related questions can significantly benefit from incremental solving,
which is discussed in the next section.

Chapter 4. Solving large-scale problems A7

—
]

Minisat+

Time to first answer, sec
—_

Gecode

<
—

Sat4j*

10! 102 103 10% 10°
Number of constraints

Figure 4.4: Time to get the first answer from each solver for Dataset A benchmark
and its reduced versions.

i S .
3 =
IS 3 O -
. 5 — .
Q | |
g - © - . ,
- — o] |
[
2 E S =
s UlEEE S T 3
Z - O T z ©]
= - = < 0 L
s PBS = - - 3]
2 I g = =
B i B= = i
= =
0.01 | |
C210-FVF C211-FW C638-FKA
Instance

Figure 4.5: Time to get the first solution, DaimlerChrysler AG benchmarks.

48 4.8. Solver benchmark

4.3.4 Benchmarking time to get consecutive answers: incre-
mental solving

Some problems can be solved by search-based solvers through iteratively solving a
number of related instances. Traditional examples that require multiple SAT-solver
queries are Bounded model checking (BMC) (Clarke, Biere, et al. 2001) and Incremental
Construction of Inductive Clauses for Indubitable Correctness (IC3) (Bradley and
Manna 2007; Bradley 2011). However, product configuration also has problems that
can be solved by multiple queries to a solver, for example, enumeration of valid
configurations (see Paper 3), verification of Item Usage Rules (see Paper 2), and
interactive product configuration. Since solving multiple related instances is useful for
product configuration, knowledge compilation methods including BDDs and MDDs
seem very appealing. We wanted to evaluate whether search-based tools—especially
the ones capable of incremental solving (Een and Sérensson 2003)—can come close
to the performance of compiled data structures, and whether the average running
time of the search-based tools is acceptable and how often the search-based tools show
worst-case behavior.

Interactive configuration was chosen as a benchmark for measuring both the speed-
up gained from incremental solving and the average run-time. In the interactive
configuration a user selects values for the variables one-by-one, and the configurator
must guarantee backtrack-freeness (no dead ends) and completeness (all valid configu-
ration should be reachable by the user) of the process by restricting the user choices
to the valid domains. We measured how long it takes to compute whether a value
belongs to the valid domain of a variable. Since the configuration instance is the same,
it allows reusing some inferred information between the queries.

The most widespread incremental interface of a SAT-solver is the incremental
interface of Minisat proposed in (Een and Sérensson 2003), which allows forcing values
for a set of variables without modifying the state of the model or data. Since user
choices are exactly the assignments of values to variables, such incremental solving fits
well for interactive configuration. To test whether a value belongs to the valid domain,
the value is temporarily added to the user choices and forced in the solver. If there
exists a satisfiable assignment, then the value belongs to the valid domain and the user
is permitted to select the value. Otherwise, the value is outside of the valid domain
of the variable, and the user is not allowed to select it. To test multiple values and
variables, a simple simulator was implemented. It simulated user actions of choosing
values for variables. Among all unassigned variables, a variable was selected randomly.
The time to compute whether each value of the chosen variable belongs to the valid
domain was measured. Then, one value from the valid domain was selected and fixed,
and the process was repeated one level deeper. From several such simulations, the
average and the maximum times were computed.

The CSP solvers considered (Choco and Gecode) had no incremental capabilities
built-in. Implementing such functionality might be difficult, and even more difficult
would be to maintain the codebase of a solver afterwards, since the main users of the
solvers do not demand this feature, and it will be a burden for the core developer.
Thus, CSP solvers were not considered in this benchmark. Incremental capability for

Chapter 4. Solving large-scale problems 49

Gecode was implemented within a MSc thesis (Sachenkova and Thapaliya 2011), and
experiments have shown that the speedup is less than the speedup achievable by a
Minisat-like SAT-solver.

For MDDs, a simple test of validity of one value of one variable was taken, which
was based on operations Restrict and Compute One Solution. Theoretical time bounds
for MDDs predict that the run-time would be very similar between different variables
and values, thus the simulator used for Sat4j was not used for MDDs.

Other knowledge compilation methods might be suitable for interactive configu-
ration, but due to lack of time they were not included in the benchmark, and might
be a topic of future work. Especially interesting is sd-DNNF with computed partial
derivatives described in (Darwiche 2001b), as the use of derivatives allows to reason
about changes only, without the need to reevaluate values for the complete data
structure.

Results Experimental results are presented in Figure 4.6. The data shows that
MDD was an order of magnitude faster than Sat4j. It also shows that there is a
significant speed-up when using incremental capabilities of Sat4j compared to starting
the solver “from scratch”. The data also shows that the average runtime of the solver,
as well as observed longest run-times, are acceptably short.

100 |- g
S 10| MDD compilation time (as in Fig. 4.4) E
0 =]
9 f 5
=
2 Ly i
@ g _ g
L B Sat4j, max time for incremental answers i
3—;1 - -
8 0.1 = E
2 B Sat4j*, first answer (as in Fig. 4.4) 1
8 I |
Z o001} l
9 f]
° a Sat4j, average time for incremental answers i
+ . N
£ 0.001} |
= é
i MDD, single answer)
0.0001 + i
| | [| (| |

10! 102 103 104 10°
Number of constraints

Figure 4.6: Incremental solving for Dataset A and its reduced versions.

50 4.4. FExplaining efficiency

4.4 Explaining efficiency

Our experiments have shown that SAT-solvers work very well on some industrial
configuration problems (Voronov, Akesson, and Ekstedt 2011; Voronov, Akesson,
Tidstam, et al. 2012), and not so well on, for example, supervisory control problems
(Voronov and Akesson 2008). Since both mentioned problems are similar in the number
of variables and the number of constraints, the difference in SAT-solver performance
must lie not in the size of the problems, but perhaps in differences in the problem
structures. This section looks at Parameterized Complexity (Downey and Fellows
1999), which attempts to characterize problems in more refined ways than purely by
the problem size as in traditional complexity analysis, allowing to better explain and
predict the difference between the problems.

In classical complexity theory the computational complexity of a problem is
considered exclusively in terms of the input size, and structural properties of problem
instances are not represented. The framework of Parameterized Complexity addresses
this issue (Downey and Fellows 1999; Flum and Grohe 2006; Niedermeier 2006).
Parameterized complexity tries to find a parameter k = 7(F") of instances F' that is
smaller than the size n of the instance, such that there is an algorithm with running
time polynomial in n, and exponential only in k, that is, 2¢ - n®®). Such algorithms
are called fized parameter tractable (fpt) algorithms.

As an example, a typical problem in this thesis has thousands of variables and tens
of thousands of constraints. The best known worst-case run-time bound for 3-SAT is
O(1.321"), where n is the number of variables (Hertli et al. 2011). For n = 1000 such
a bound would suggest runtimes of order of at least 10'% seconds (for comparison,
the age of the universe is estimated to be about 10'7 seconds). However, the observed
practical runtimes are less than a second. A possibility to explain such short runtimes
would be a fpt-algorithm with polynomial runtime in n, and exponential in some fixed
parameter k < n.

One important notion related to fpt-algorithms is a backdoor (Williams et al. 2003).
A backdoor set is a set of variables such that when instantiated, the problem becomes
“easy”, that is it simplifies to some tractable class. There is a number of such tractable
classes to which original problems can be simplified, for example, Horn formulas, which
have at most one positive literal in each clause, Renameable Horn formulas (RHorn),
which have a variable renaming that makes a formula into a Horn formula, or 2-SAT,
which have at most two literals per clause. Horn and 2-SAT are linear-time solvable
(Dowling and Gallier 1984; Aspvall and Plass 1979), and RHorn is polynomial-time
solvable (Lewis 1978). An algorithm that efficiently solves the simplified problem is
called a sub-solver. A strong backdoor set is one for which the sub-solver can find a
satisfying assignment or decide unsatisfiability for any instantiation of the variables in
the backdoor set. A weak backdoor set is one for which the sub-solver can provide a
satisfying assignment for at least one instantiation (finding such instantiation is still
hard). Weak backdoors are not relevant for unsatisfiable instances, which have no
satisfying assignments, while strong backdoors are relevant for both satisfiable and
unsatisfiable instances. Since an instance becomes efficiently-solvable by a sub-solver
after any instantiation of the variables in a strong backdoor set, the instance can

Chapter 4. Solving large-scale problems o1

be considered fixed parameter tractable with respect to the size of the backdoor set.
Experiments with identification of backdoors for automotive problems were performed
in (Dilkina et al. 2007; Samer and Szeider 2008; Li and Beek 2011).

Another important and widely-studied property of SAT instances is treewidth
(Robertson and Seymour 1984), which informally can be described as a “tree-likeness”
of a constraints graph. The most prominent graph representation of a CNF formula F
is the primal graph G(F). The vertices of G(F') are the variables of F'; two variables
x,y are joined by an edge if they occur in the same clause, that is, if =,y € var(C)
for some C' € F. A tree decomposition of a graph G = (V, E) is a tree T' = (V' E")
together with a labeling function y : V/ — 2V associating to each tree node t € V' a
bag x(t) of vertices in V such that the following tree conditions hold:

1) every vertex in V occurs in some bag x(t);
2) for every edge xy € E there is a bag x(t) that contains both = and y;

3) if x(t1) and x(t2) both contain x, then each bag x(t3) contains x if ¢3 lies on the
unique path from ¢ to t,.

An example of a graph and its tree decomposition is shown in Figure 4.7.

The width of a tree decomposition is max;ey |x(t)| — 1. The treewidth of a graph
is the minimum width over all its tree decompositions. The treewidth of a graph is a
measure for its acyclicity, i.e., the smaller the treewidth the less cyclic the graph is.
In particular, a graph is acyclic if and only if it has treewidth 1.

Figure 4.7: Sample graph and its tree decomposition. Adapted from (Eppstein
2007).

52 4.4. FExplaining efficiency

If its tree decomposition is given, an instance can be solved using a bottom-up
dynamic programming approach on the tree decomposition, making the problem
fixed-parameter tractable for instances with bounded treewidth (Gottlob et al. 2002).

The next subsection investigates the backdoor sizes and the tree-width of two
industrial instances.

4.4.1 Evaluating industrial product configuration instances

Sizes of RHorn backdoors (Kottler et al. 2008; Dilkina et al. 2007) and tree-width
were computed for two industrial product configuration instances. The results are
shown in Table 4.2. As seen from the table, we could not find a parameter less than
75, which would suggest that the worst-case running time should be in the order of 27
operations; so that if a modern computer performs about 10° operations per second,
the running time would be more than 10! seconds, which is much more than the
observed running times of less than one second. To achieve one second as an upper
bound, a parameter k ~ 30 would be needed. Thus, neither RHorn backdoor sizes
nor tree-width of the instances can explain the good SAT-solver performance on these
instances.

Tree-width was earlier studied as a candidate for explaining a good run-time
behavior of SAT-solvers on industrial instances of the 2009 SAT competition (Mateescu
2011). It was found that many instances that were solved fast in practice have rather
large tree-width (Mateescu 2011), which supports our observation that tree-width
might not be suitable for explaining good performance of SAT-solvers.

Since none of the parameters we considered can explain the good experimental
performance of SAT-solvers, there is a need for better problem characterization
methods.

Table 4.2: Backdoor sizes and tree-width bounds for two industrial product config-
uration problems. Ladder and quadratic encodings of finite-domain variables are
discussed in Section 3.1.3.

Property Problem A Problem B

Encoding Encoding
Ladder Quadratic Ladder Quadratic

General properties

CNF variables 5901 3206 1907 1596
CNF clauses 65183 91644 9010 11270
Max clause length 108 108 60 60
Avg clause length 2.5 2.3 2.5 24
FPT properties
Tree-width upper bound 488 1579 414 432
Tree-width lower bound 136 135 76 75
RHorn backdoor set size upper bound 1255 2243 398 433

RHorn backdoor set size lower bound 1255 1254 187 185

Chapter 4. Solving large-scale problems 53

4.5 Conclusions

We evaluated several knowledge compilation tools and several search based tools for
use with product configuration data from our industrial collaborator. The results show
that MDD fails to compile the complete dataset within the time and memory limits,
while search-based tools can successfully handle the complete dataset. SAT-solvers
with incremental interface appear to work extremely well for the data we used. Other
knowledge compilation methods require further investigations. We also investigated
the reasons for good performance of some of the tools, and have not found yet a
definitive explanation.

Chapter 5

Using Supervisory Control Theory
for Interactive Product
Configuration

Compiling configuration constraints into a representation that allows efficient reasoning—
a technique called knowledge compilation introduced in Section 4.2—can save significant
amounts of time when answering multiple queries on the same configuration problem.
Examples of multiple queries on the same data include enumeration of valid partial
configurations, interactive configuration, or in situations when multiple users use
the same data. However, traditional knowledge compilation methods—Ilike Binary
Decision Diagrams (BDDs) introduced in Section 4.2.1—usually have high memory
requirements, which might be a limiting factor for using compiled data structures on
low-memory devices. Another application that requires small sizes of compiled data
structures is a client-server architecture, where a server sends all the data necessary for
configuration to a client over a limited-bandwidth channel. Applications like these mo-
tivated, for example, a technique for BDD compression (Hansen and Tiedemann 2007),
a technique for compression of Multivalued Decision Diagrams (Hadzic, Hansen, and
O’Sullivan 2008), and a new knowledge compilation technique—Tree-of-BDDs—based
on a decomposition of the data (Subbarayan 2005). However, even more compact
representations of the configuration data are desirable, and this might potentially
be achievable by using a different approach — Supervisory Control Theory (SCT)
introduced in Section 3.2. To the best of our knowledge, SCT, and particularly SCT
synthesis, has not been used for product configuration problems before.

The product configuration tasks that are approached by SCT in this chapter are
forward-only interactive configuration, interactive configuration with undo-actions,
and reconfiguration, all introduced in Section 2.3. Moreover, efficient interactive
configuration can be used to efficiently enumerate valid partial configurations too, as
explained in Section 2.3.

We propose to use SCT for product configuration in an approach that consists of
the following steps:

1) encode variables (families) and constraints, as well as additional specifications
when needed, as automata;

95

56 5.1. Encoding interactive product configuration using supervisory control theory

2) synthesize a supervisor;

3) use the supervisor in combination with the original automata to efficiently answer
the interactive configuration or reconfiguration queries.

Automata have been previously used for solving Constraint Satisfaction Problems
(CSP) (Vempaty 1992), as well as product configuration problems (Amilhastre et al.
2002). However, in these approaches a CSP is represented by a monolithic automaton
resulting from applying product and minimization algorithms (Hopcroft and Ullman
1979; Kimura and Clarke 1990), which might have size exponential in the size of the
original CSP. Our approach does not require to monolithically compose all automata.
Instead, our approach relies on supervisory synthesis algorithms to do the necessary
computations. Synthesis algorithms, in turn, can either do a brute-force monolithic
synchronization of all automata, or use more efficient strategies, including composi-
tional synthesis that avoids synchronizing all automata (Mohajerani et al. 2011), or
symbolic synthesis that uses BDDs to improve efficiency (Hoffmann and Wong-Toi
1992; Vahidi et al. 2006). Moreover, SCT allows representing a supervisor not only as
a monolithic automaton, but also as a set of automata (Mohajerani et al. 2011), or as
logic expressions (Miremadi et al. 2011), which might potentially require less memory
than other representations.

5.1 Encoding interactive product configuration us-
ing supervisory control theory

Different capabilities of interactive configuration require different levels of sophistication
of encodings. We will start with the simpler forward-only interactive configuration
and will add undo-actions and reconfiguration afterwards. All encodings create
an automaton for each variable and each constraint, these are treated as plants.
Undo-actions and reconfiguration require an extra automaton, which is treated as
a specification. Specification for the forward-only interactive configuration does not
have separate automata, and is expressed as marked states only.

The overall algorithm is illustrated in Algorithm 5.1. The algorithm converts
all constraints to Conjunctive Normal Form (CNF) to simplify the encoding; such
conversion is described in Section 3.1.3. The algorithm encodes all variables and
constraints as automata; the encodings are different between forward-only configura-
tion and configuration with undo-actions. For configuration with undo-actions and
reconfiguration, the algorithm encodes extra specifications to ensure backtrack-freeness
and correct reconfiguration. Plants and specifications automata are designated from
previously created automata. Then, a non-blocking and controllable supervisor is
synthesized; this synthesis procedure is denoted as NBC. The synthesized supervisor
in conjunction with the original automata can be used for answering appropriate
product configuration queries. The following sections describe the encodings in details.

Chapter 5. Using SCT for Interactive Product Configuration Y

Algorithm 5.1 SUPERVISOR-FOR-CONFIGURATION-USING-SCT

input: A CSP P = (X, D, C) with finite-domain variables
and propositional constraints
output: A supervisor for forward-only configuration,
configuration with undo-actions, or reconfiguration
(" = CONVERT-CONSTRAINTS-TO-CNF(C)
for r € X:
ENCODE-VARIABLE-AS-AUTOMATON ()
for c € C":
ENCODE-CLAUSE-AS-AUTOMATON(¢)
Encode extra specifications when necessary
Define plants and specifications from created automata
Sup < NBC(Plants, Specifications)
return Sup

5.1.1 Encoding forward-only interactive configuration

An automata encoding of a CNF formula F' (which can be generalized to finite-domain
variables as well) is as following. For each variable x; € scope(F') introduce an
automaton A,, with two states: an “unassigned” (initial) state s and an “assigned”
state sy . Let the only marked state be s7 , since the product is not fully configured
until every variable have a value assigned. Two transitions will lead from the unassigned
state to the assigned state: one transition labeled 27 and the other transition labeled
x¥' corresponding to assignment of the Boolean value True and False to the variable,
respectively. The alphabet of the automaton is {z7, zf'}. Formally, the automaton
for the variable z; is as follows:

Axi = <in72xiafxiaq2ia Zt>a
where

Q. ={ss.,s5 } is the set of states,

Ti) Xy

Y., ={zl', 2F'} is the alphabet,

Je; =S, — S, is the transition function,
qgi = s, is the initial state, and
@, ={sg,} is the set of marked states.

For each clause ¢; € F, introduce an automaton, again with two states: the initial
state where the clause is unsatisfied s¢ , and another state s7 where the clause is
satisfied. The satisfied state will be the only marked state. For each literal in the
clause, introduce a transition from the unsatisfied state to the satisfied one, labeled
by the appropriate assignment of values (x} for positive literal and zf for negative

literal). To allow multiple literals to be satisfied within the same clause, the satisfied

58 5.1. Encoding interactive product configuration using SCT

state s;. will have self-loops transitions for all of the literals. The alphabet of the
automaton for the clause ¢; will be {af |), € ¢;} U {zf | (-xy) € ¢;}. Formally,

0 m
ch = <QCJ720j7fcj7cha Cj>’
where
Qc; ={s:,, s} is the set of states,

S, ={zp |z € ¢;} U{zy | (max) € ¢;} is the alphabet,

Xe; Xe; . oy .
fe; ={sec, —> se,} U{si, —> s;,} is the transition function,
quj = sgj is the initial state, and

Qe ={s,} is the set of marked states.

The complete model is a synchronous composition of automata for variables and
clauses. However, a supervisor can be synthesized without explicitly constructing the
automaton for synchronous composition. Automata for variables and clauses can be
both considered as plants, while specification is expressed as marked states. However,
since there are no uncontrollable events in this model, the distinction between plant
automata and specification automata is not important for this model. A non-blocking
supervisor for the complete model will ensure that taking any enabled events will
lead to the marked state, which corresponds to the situation when all variables are
assigned and all clauses are satisfied.

As an example, consider CNF F' = (z1V —x9V 3) A (—21 V —x3). The variables z,
2o and z3 can be encoded into automata as shown in Figure 5.1a, and the two clauses
can be encoded as shown in Figure 5.1b. The synthesized supervisor for the model
is shown in Figure 5.2, where supervisor is shown with solid lines, while solid plus
dashed lines represent the synchronous composition of variables and clauses automata
(before synthesis).

The supervisor resulting from the synthesis has a lot of symmetry, since the order
in which the variables are assigned is not fixed, resulting in the number of paths
leading to the marked states being exponential in the number of variables. Restricting
the order of variables will reduce the size of the supervisor, but will also reduce the
flexibility of user choices. An automaton for restricting the order in which the variables
are assigned to xy, oo, x3 is shown in Figure 5.3. The supervisor for this order is
shown in Figure 5.4.

Chapter 5. Using SCT for Interactive Product Configuration 29

x]
(e =)
xf

xd
OBO RO O=Lr:
zf

T3 =
(%) ~()t
Ty Ty
(a) Automata for variables x1, z2 and z3. (b) Automata for constraints. Alphabets
The alphabets, top to bottom: {z1 z1'}, are: {1, 28 21V, {2f 2}

{23, 25}, {af, 24}

Figure 5.1: Encoding CNF F' = (z1 V —xa V x3) A (-1 V —x3) as automata.

| x2t 'x1f
\ |

K

| |

[P

x3f X3t
1

s

N v ¥
. .
1 1

Figure 5.2: The automaton illustrating the supervisor (solid lines) and the states
and transitions reachable by the unsupervised plant, but disabled by the supervisor
(dashed lines).

xy Ty =

ry 3 g
Figure 5.3: A specification to restrict the order of assigning the values to the
variables to z1, x2, 3.

60

5.1. Encoding interactive product configuration using SCT

Figure 5.4: The automaton illustrating the supervisor (solid lines) assuming a fixed
order of assignment (x1,x2,x3) of the variables. Dashed nodes and transitions are
reachable by the unsupervised system with the fixed order of variables, but are
disabled by the supervisor.

Chapter 5. Using SCT for Interactive Product Configuration 61

5.1.2 Encoding interactive configuration with undo-actions

To illustrate undo-actions and reconfiguration, as well as to introduce by example
an encoding for finite-domain variables, we will use a hypothetical car configuration
example (similar to the example in Table 2.1, but slightly modified). The variables
and their domains are shown in Table 5.1, and constraints are shown in Table 5.2.

To support undo-actions, variables are encoded by automata with n + 1 states,
where n is the domain size of the variable, see Figure 5.5 for the encoding of the
variable Body. One state, initial, is not marked and corresponds to the variable being
unassigned. The other n states correspond to the values the variable can be assigned
to (we will call these states assigned states). These assigned states are marked. The
set of “assign” events is the same as in forward-only case, one event for one value
of the variable. Each such event leads from the initial state to the corresponding
assigned state. Each assign-event has a corresponding undo-event that leads back
from the assigned state to the initial (unassigned) state. Due to the multi-valued
nature of the variables, the negation of a variable is no longer encoded directly,
and has to be represented in the constraints as a disjunction of all other values of
the domain of the variable. For example, —(Body=Mini) have to be encoded as
(Body=Sedan V Body=Suv).

Encoding of constraints requires three additions compared to the Boolean forward-
only case. First, all negative literals have to be converted to disjunctions of positive
literals. Second, due to undo-actions, encoding of a clause requires a separate state for
each possible number of satisfied literal in the clause. However, since all literals are
positive, and no two literals representing values of the same variable can be satisfied
simultaneously, the number of states is limited by the number of variables, and not
the number of literals. The number of states in an automaton for a clause with
the scope of k variables will be k + 1. Assign-events for each literal lead from a
state to the state corresponding to one more satisfied literal, for example, from 0
satisfied literals (unsatisfied clause) to 1 satisfied literal, from 1 to 2, etc. Thirdly,
undo-events lead from a state to the previous one (for example, from 2 to 1, etc).
Complete encoding of the constraint —(Body=Mini A Engine=Gasoline), which can
be rewritten as (Body=Sedan V Body=Suv V Engine=Diesel V Engine=EFElectric), is
shown in Figure 5.6.

The specification needed to ensure the correct behavior for user undo actions is
shown in Figure 5.7. This specification introduces two events user _assign, user__unassign
that correspond to the user choices. The user can choose one of the two options:

e continue with the configuration by selecting event user _assign;

Table 5.1: Variables and their domains for the car configuration example.

Variable Values
body mini, sedan, suv
engine gasoline, diesel, electric

transmission manual, automatic, evt

62 5.1. Encoding interactive product configuration using SCT

Table 5.2: Constraints for the car configuration example.

=((body = mini) A (engine = gasoline))
—((body = mini) A (engine = diesel))
((body = sedan) A (engine = electric))
=((body = suv) A (engine = gasoline))
(engine = electric) — (transmission = evt)
(transmission = evt) — (engine = electric)

J

body_unassigned

suv_undo

body_mini body_suv

mini_undo

sedan_undo sedan

body_sedan

Figure 5.5: Automaton encoding variable Body with values Mini, Sedan and Suv.

suv_undo suv_undo
sedan_undo sedan_undo
electric_undo electric_undo
diesel_undo diesel_undo
unsatisfied : S1 i S2
z!ectrllc sedan
iese suv
sedan diesel
suv electric

Figure 5.6: Automaton encoding constraint —(Body=Mini A Engine=Gasoline).

e undo some previous assignment by selecting event user _unassign.

Event user _assign is uncontrollable, making sure that the supervisor will always
avoid dead ends and will be prepared to move “forward” with configuration, without
relying on the user undo actions (backtracking) to get out of dead ends. Event
user_unassign is controllable, since it must be disabled when no assignments have
been made; making user _unassign uncontrollable would result in the specification
being uncontrollable with respect to the plant, leading to a null supervisor. Consider
automaton in Figure 5.7. Firing user unassign leads to the state from where only
undo-events are possible. However, if there are no events to undo, as is the case in the
beginning of the configuration process, or after all assignments were already undone,
the system will end up in a deadlock. To remove this deadlock, the supervisor have to
disable the event user unassign, thus this event have to be controllable.

The supervisor contains 101 states and 197 transitions, and it is illustrated in
Figure 5.8. To give an intuition of interactive configuration session without relying on
a drawing a supervisor, consider the following paths from the initial state to a marked
state, where each row indicates the enabled events, and “*” indicates the event taken:

Chapter 5. Using SCT for Interactive Product Configuration 63

electric
mini automatic_undo
automatic electric_undo
manual gasoline_undo
suv manual_undo
gasoline diesel_undo
diesel evt_undo
sedan sedan_undo
evt suv_undo
: : . mini_undo
user_choice_mode =
assign_mode - - unassign_mode
user_assign

user_unassign

Figure 5.7: Automaton encoding backtrack-freeness for undo-actions.

S
b\ssi\‘“ 535

4

t
.
o=

. N0
ﬁaS?O

sisseuniasn —— S

&)

$

e\
4 ERN
% |

il

e
g

“uummm@
"w%\
6
Lo
~ &
T
ot
y:

r_unassig,

\'eé‘
Vid

%
%
g
)
@‘"ﬁiﬂ
2
%
%
Jigsex B
4
et
e
JpurATS

"3,

Giese,.
o

o

JBisseunasn

“nasg,

——stisse S

E)
o
359

purt

5 5

e

Se
Seda, “nqdah
~nge

: | 4
) [A&
& % |
‘ ‘e
& %

L

Figure 5.8: Illustration of the supervisor for interactive

configuration with undo-
actions for the car configuration example.

64 5.1. Encoding interactive product configuration using SCT

*user_assign

*mini, sedan, suv, gasoline, diesel, electric, manual, automatic, evt
*user_assign, user_unassign

electric, *evt

*user_assign, user_unassign

*electric

(done)

*user_assign

*mini, sedan, suv, gasoline, diesel, electric, manual, automatic, evt
*user_assign, user_unassign

electric, *evt

user_assign, *user_unassign % example of undo-actions
*mini_undo, evt_undo

*user_assign, user_unassign

mini, suv, *electric

*user_assign, user_unassign

mini, *suv

(done)

The paths illustrate the choices offered to and made by the user. The intuition
behind the supervisor is as following: after the user chooses user__assign, the supervisor
disables all assignments that can not result in a valid complete configuration. The
user is only offered the choices that will lead to a valid complete configuration (marked
state) without the need for any undo-actions.

5.1.3 Encoding interactive configuration with undo-actions
and reconfiguration

The reconfiguration procedure will be built on top of the solution for undo-actions.
The specification needed to ensure the correct behavior for user undo actions and
reconfiguration introduces three extra event, user_force, user_force_start_undo and
user__force__done to the previously introduced events user assign and user__unassign.
This specification is shown in Figure 5.9. The user force event can be either con-
trollable or uncontrollable, the synthesis procedure results in the same supervisor.
We chose to make it uncontrollable, to emphasize that the system should always be
prepared for the user executing this action. Event user force start undo is also
uncontrollable. Event user_force_done is controllable, to ensure that the user has un-
done enough assignments to make partial configuration valid. With such specification,
there are three options to choose from, when selected variants correspond to a valid
partial configuration:

e continue with the configuration by selecting event user assign;
e undo some previous assignment by selecting event user unassign;

e enter a reconfiguration mode by selecting event user _force.

Chapter 5. Using SCT for Interactive Product Configuration 65

electric

mini automatic_undo
automatic electric_undo
manual gasoline_undo
suv manual_undo
gasoline diesel_undo
diesel evt_undo
sedan sedan_undo
evt suv_undo

mini_undo

user_choice_mode

assign_mode unassign_mode

user_assign user_unassign

user_force user_force_done

enforcing_mode unassigning_until_good_mode

user_force_start_undo

manual_undo

sedan

suv sedan_undo
electric diesel_undo
manual electric_undo
gasoline automatic_undo
mini gasoline_undo
evt evt_undo

diesel mini_undo
automatic suv_undo

Figure 5.9: Automaton encoding user undo action and reconfiguration.

Naturally, these choices can be hidden from the user interface, presenting the user
only with the variants (click once to assign a variant, click the variant second time to
undo the assignment), firing the necessary events in the background.

The supervisor for undo actions and reconfiguration is illustrated in Figure 5.10.
Unfortunately, with 229 states and 617 transitions, it is too big to be visualized
properly on the standard printed page. The following path from the initial state to a
marked state might give some intuition of the supervisor:

*user_assign, user_force

*mini, sedan, suv, gasoline, diesel, electric, manual, automatic, evt
*user_assign, user_unassign, user_force

electric, xevt

user_assign, *user_unassign, user_force % example of undo-actions
*mini_undo, evt_undo

mini, *suv, electric

user_assign, user_unassign, *user_force % example of reconfiguration
gasoline, *diesel, electric, user_force_start_undo

gasoline, electric, *user_force_start_undo

diesel_undo, *evt_undo, suv_undo

diesel_undo, suv_undo, *user_force_done

*user_assign, user_unassign, user_force

*xautomatic, manual

(done)

However, in this example even when the user chooses to force FEngine=Diesel, there
is an immediate offer to undo this choice. To make sure that the system offers to undo

66

5.1. Encoding interactive product configuration using SCT

Figure 5.10: Illustration of the supervisor with undo-actions and reconfiguration
for car configuration example.

Chapter 5. Using SCT for Interactive Product Configuration 67

only the choices that were not forced, the automata for the variables can be modified
as shown in Figure 5.11. After event user_force, the automaton allows assigning values
to the variable, but does not allow to unassign them until reconfiguration is over,
that is, until the event user_force done is fired. The supervisor for such automata
contains 682 states and 1359 transitions.

This solution allows the user to undo actions and helps the user reconfiguring
invalid configurations.

5.2 Representing the supervisor

The supervisor in Figure 5.4 had to disable only two transitions that led to blocking
states. Instead of representing the supervisor as an automaton with unwanted transi-
tions disabled, it is possible to augment existing automata with conditions that will
specify when the transition is allowed. Such conditions are called guards. The supervi-
sor represented by such guards can potentially be smaller than, for example, the BDD
for representing the data necessary for the configuration process. The algorithm for
computing such guards was introduced in (Miremadi et al. 2011). The generated guards
might be compared to extra constraints added by, for example, Adaptive-Consistency
algorithm (Dechter and Pearl 1987) for ensuring backtrack-freeness of the CSP search.

The supervisor in Figure 5.4 can be represented by two symbolic guards shown in
Table 5.3, one guard for event x2, which would allow zZ to be fired only when the
automaton for clause c; is in the state s7,, that is, clause c; is already satisfied, and
one guard for event x| allowing it to be fired only when in the state s; , that is, when

user_force

user_force_done

ody_unassigned
user_force_done

body_prepared_to_force

suv_undo

user_force_done

body_forced_suv

user_force_done
user_force

sedan_undo sedan

body_sedan

user_force_done body_forced_sedan

mini user_force_done

user_force

mini_undo

body_mini
user_force_done body_forced_mini

user_force_done
user_force

Figure 5.11: Automaton for variable Body that ensures that the enforced value is
not offered for immediate undo (compare to Figure 5.5).

68 5.3. Conclusions

clause ¢ is already satisfied. The intuition behind the first guard is that, because x3
is the last variable to be assigned, if by the time of choosing a value for x5 clause ¢, is
not satisfied yet, the only way to satisfy it is to choose z£, thus to choose z1 clause
co should be satisfied by the other variables.

Similarly, the guards can be computed for the supervisor shown in Figure 5.2;
these guards are shown in Table 5.4. Note that the guards represent only what and
when the supervisor disables (or enables, if such representation is more compact). The
supervisor does not have to keep the information about the complete state-space of
the synchronous composition of the original automata.

Another promising approach to compact supervisor representation is to use com-
positional synthesis algorithms (Mohajerani et al. 2011). These algorithms apply
abstraction techniques to the automata, as well as use multiple automata to represent
the synthesized supervisor; the resulting supervisor can thus be called an abstracted
modular supervisor. Preliminary experiments with compositional algorithms indicate
that it might be possible to create a supervisor for product configuration instances
that are larger than the ones that can be handled by other SCT methods. Comparison
with BDDs and other knowledge compilation methods is a topic of future work.

5.3 Conclusions

Modeling interactive product configuration problem as an SCT problem allows com-
pilation of the configuration constraints into a supervisor compactly represented by
either symbolic guards or an abstracted modular supervisor. These representations of
the supervisor can potentially be more compact than the other knowledge compilation
methods used for product configuration, for example BDDs, while still providing

Table 5.3: Guards for the supervisor shown in Figure 5.4.

Event Guard

T s
1'3 c2

F s
.1'3 c1

Table 5.4: Guards for the supervisor shown in Figure 5.2.

Event Guard
xt s8N st A SsY
zf Sey N Sgy N Sg,
x? stONsEASL
xl true
xt EANCNEL

u a a
T3 S¢p N Sy VAN Say

Chapter 5. Using SCT for Interactive Product Configuration 69

polynomial-time in the size of the compiled representation answers to important
product configuration queries.

A limitation of the presented reconfiguration solution is that it does not help the
user to find the shortest (or optimal with respect to some other criterion) way to
repair a configuration. Future work may be to introduce optimization. Optimization
can be implemented by showing the user for each event the minimum number of steps
necessary to reach a marked state, or simply disable by the supervisor all undo-choices
that do not lie on any of the shortest paths to a marked state. Work on optimization
is ongoing in the SCT community (Miremadi 2012), and the model presented here
will be usable for that purpose.

Chapter 6

Summary of Appended Papers

Paper 1.

Alexey Voronov, Knut Akesson, Anna Tidstam, Johan Malmqvist and Martin Fabian.
Toward better support for authoring and maintaining product configuration constraints.
Submitted, 2012.

Paper 1 introduces a number of methods to help engineers maintain, verify and
analyse product configuration constraints, including a method for automatic detection
of errors in constraints, a method for authoring constraints for mutually-exclusive items,
methods for improving internal structure of constraints for their better maintainability,
and a method for efficiently computing the effects of adding or removing constraints.
Computational performance of the proposed methods is tested on configuration data
from automotive industry, and the results show that the methods can work very
efficiently on such data.

Paper 2.

Alexey Voronov, Knut Akesson, Anna Tidstam and Johan Malmqvist. Verification
of Item Usage Rules in Product Configuration. Proceedings of 9th International
Conference on Product Lifecycle Management PLM-12, Montreal, Canada, 2012.

Paper 2 introduces problems engineers face when working with Item Usage Rules
(IURs), which specify which items are included in a bill of materials for a customer
order. The paper considers ensuring that exactly one item from a predefined set is
included in each product, as well as the problem of rewriting an IUR without changing
the configurations that the IUR covers.

Paper 3.

Alexey Voronov, Knut Akesson and Fredrik Ekstedt. Enumerating partial configura-
tions. Proceedings of Configuration Workshop at 22nd International Joint Conference
on Artificial Intelligence IJCAI-11, Barcelona, Spain, 2011.

Paper 3 focuses on the problem of efficient enumeration of valid partial configura-
tions, which is used to provide a scoped view of a product, as well as for supporting
engineers in authoring IURs. The paper provides motivation, pedagogical examples,

71

72

detailed algorithms and empirical evaluation of different approaches to compute valid
partial configurations.

Paper 4.

Koen Claessen, Niklas Een, Mary Sheeran, Niklas Sorensson, Alexey Voronov and
Knut Akesson. SAT-Solving in Practice, with a Tutorial Example from Supervisory
Control. Journal of Discrete Event Dynamic Systems 19(4), pp. 495-524, 2009.

Paper 4 gives an overview of SAT-solving, and introduces a SAT-solver based ap-
proach to SCT problems, providing methods for SCT verification of controllability and
deadlock-freeness, as well as SAT-based iterative synthesis procedure for controllable
and deadlock-free supervisor.

Chapter 7

Conclusions and Future Work

This thesis introduces a number of methods for automatic verification of product
configuration constraints and for computational support of manual inspection of con-
straints. These methods may ease elimination of errors and speed up the development
process of a product platform, which in turn can increase the competitiveness of a
company.

The conclusions are grouped around the research question (RQ).

RQ-1. What kind of computer support can be implemented to help engineers maintain,
verify and analyze product configuration constraints?

For automatic verification of product configuration constraints, Paper 1 proposes
to use reference configurations and Paper 2 proposes to use sets of mutually
exclusive items to verify variant constraints and Item Usage Rules (IURs) after
each modification of the constraints, similar to running unit tests in software
engineering, which can speed up the detection of errors. Paper 1 proposes
a method that can be used for both verification and authoring of IURs; this
method is based on using valid partial configurations to verify or author IURs.
How to compute valid partial configurations efficiently in investigated in Paper 3.
These methods for automatic verification can reduce the number of errors and
speed up the process of developing correct configuration constraints.

For supporting manual inspection, this thesis introduced a method to auto-
matically verify that an IUR can be rewritten using a given subset of product
variables (families). Rewriting an IUR can be useful as a maintenance operation,
and it is important that it does not introduce errors. Rewriting an IUR is just
one operation from a larger class of refactoring operations that improve the
structure of constraints, but do not change their external behavior or meaning.
The thesis also proposes a number of methods for discovering refactoring oppor-
tunities. When changing constraints, it might be difficult to foresee the effects
of the change. This thesis introduces a method for efficiently computing the
configurations that become allowed or forbidden when constraints are added
or removed; this can be used when an engineer adds or removes constraints
to automatically notify all other engineers that are influenced by the change,

73

74

which can greatly improve the communication between engineers in a concurrent
engineering setting.

RQ-2. How to enumerate valid partial configurations efficiently?

Valid partial configurations for large industrial product configuration data can
be efficiently enumerated using SAT-solvers, as introduced in Paper 3. sd-DNNF
might also be used for rather large product configuration instances. Problem
instances that could be handled by sd-DNNF are larger than those that could
be handled by MDDs, but not as large as those that could be handled by SAT.
Performance of the proposed SCT-based method (Chapter 5) for enumerating
valid partial configurations requires further investigations.

RQ-3. How to compactly represent product configuration data for answering product
configuration questions efficiently?

SAT-solver with incremental solving can be very efficient in handling large
product configuration problems from automotive industry. However, it is dif-
ficult to predict their running time, and there are no acceptable worst-case
running time guarantees. Knowledge compilation methods can be used to create
data structures that would provide acceptable guarantees on the worst-case
running time. Among existing knowledge compilation methods for product
configuration, sd-DNNF, AND/OR MDDs and Tree-of-BDDs look the most
promising, although further investigations and benchmarking are necessary (see
Chapter 4). We proposed a new knowledge compilation method for interactive
product configuration based on Supervisory Control Theory (Chapter 5), but its
applicability for large product configuration instances and benchmarking against
other methods remains a topic of future work.

To summarize, this thesis introduces a number of formal methods for handling
large-scale product configuration data. These methods can reduce the errors in creating
and maintaining product configuration constraints, and speed up the development of
product platforms. This thesis also opens up new questions for future work outlined
below.

Future Work

One of the industrial partners in the research project adopted SAT-based methods for
enumerating valid partial configurations described in Paper 3. It would be interesting
to conduct a follow-up study to find out how helpful the methods are for real engineers,
what improvements can be made to the methods, and whether more companies might
benefit from deploying similar tools.

This thesis introduced a method for verifying that an IUR can be rewritten using a
given set of families. This verification can be used within the optimization procedure.
Such optimization procedure can automatically find the best set of families with respect
to some criteria, for example, some engineers might want to have as many families
as possible in an TUR to see all relevant details, while other engineers might prefer
as few families as possible, to keep only essential information. Automatic rewriting

Chapter 7. Conclusions and Future Work 75

can contribute to sustainability of the workplace by allowing engineers to chose their
preferred representation method.

Verification and analysis queries in this thesis were formulated and programmed
by researchers based on informal descriptions provided by engineers. To shorten the
time from an idea to an implementation, and to improve the methods’ adoption, an
investigation of user-friendly methods to create queries about configuration constraints
is needed, with the aim, for example, to create a language for constraint queries similar
to database query languages, to be directly usable by engineers.

This thesis treated product configuration constraints as logic only. Taking into
account the sources of constraints—for example, that some constraints are geometri-
cal, and some constraints originate from marketing—might allow richer feedback to
engineers, to facilitate understanding and improve decisions (for example, an engineer
can relax marketing constraint much easier than a physical constraint). Further
investigation is needed on how to connect such meta-data with constraints, and how
to use it to create better explanations, and which other benefits it might bring and at
which cost.

The methods presented in this thesis might be used to efficiently compute visual-
izations of configuration data similar to the ones presented in (Tidstam 2012; Tidstam,
Bligard, et al. 2012; Pleuss et al. 2011; Ziyang 2010; Hadzic and O’Sullivan 2008).
However, how to do that and which visualizations can be computed efficiently is not
clear. Visualization methods might be very important when dealing with decisions
that can not yet be automated (Baumeister and Freiberg 2010).

This thesis compares performance of some SAT, BDD, MDD and sd-DNNF tools,
while other knowledge compilation methods are not benchmarked, including Tree-of-
BDDs, AND/OR MDDs, as well as the SCT-based representation proposed in this
thesis. Comparing as many existing tools as possible on a wide range of representative
benchmarks could allow finding the best method for working with product configuration
data.

This thesis attempts to find fixed-parameter-tractable properties in industrial
product configuration instances. However, not all known tractable classes are inves-
tigated, and the number of industrial instances in the study was limited. As future
work, one might extend the study with other tractable classes, for example, single
lookahead unit resolution (SLUR) (Franco and Van Gelder 2003; Cepek et al. 2012)
and matched formulas (Franco and Van Gelder 2003; Szeider 2003), as well as with
more instances from other companies. Finding suitable fixed-parameter-tractable
properties for industrial instances would allow improving and specializing both search
and knowledge compilation procedures, which would result in faster answers.

Explanations of unsatisfiability in this thesis are based on extracting a Minimal
Unsatisfiable Subformula (see Paper 1). However, this extraction does not take into
account how complicated the resulting formula is for an engineer. Exploring human-
friendly presentations of unsatisfiability and human understanding of formulas, for
example, as in (Strannegard et al. 2009), could allow better explanations that can
speed up comprehension and save engineers’ time.

To make SAT-based algorithms more efficient for SCT problems as presented in
Paper 4, one might start by looking at symmetry breaking (see, for example, (Sakallah

76

2009) for an introduction to symmetry and satisfiability), better encodings, and new
verification approaches. Symmetry can be exemplified by multiple paths leading to
the same state, while to verify a system it is often enough to analyze only one path.
Symmetry can be avoided, for example, by adding extra constraints (Crawford et al.
1996), or by using solvers that take symmetry into account (Sabharwal 2009). Better
encodings can also speed up the solving process. SAT solvers tend to work well with
encodings that allow to achieve Generalized Arc Consistency via Unit Propagation
only (Walsh 2000; Bacchus 2007). Such encodings exist for both automata transitions
(for example, grammar constraint from (Bacchus 2007)) and for cardinality constraints
that specify mutual exclusiveness of automata states (Bailleux and Boufkhad 2003;
Sinz 2005; Marques-Silva and Lynce 2007; Bailleux 2010; Frisch and Giannaros 2010;
Ben-Haim et al. 2012). Previously, Linear Temporal Logic (LTL) properties were the
focus for SAT-based tools, and it is not possible to encode the non-blocking property
using LTL. Recently, an approach to use SAT-solvers to check Computation Tree
Logic (CTL) properties was proposed (Hassan et al. 2012), and CTL can be used to
express non-blocking (Kumar and Jiang 2002). Using this approach for verifying CTL
properties can allow verifying the non-blocking property and synthesizing non-blocking
supervisors using SAT-solvers.

To summarize, there is a number of directions that can be pursued starting from
this thesis to help engineers working with product configuration constraints.

Bibliography

Abate, Pietro, Roberto Di Cosmo, Ralf Treinen, and Stefano Zacchiroli (Oct. 2012).
“Dependency solving: A separate concern in component evolution management”.
In: Journal of Systems and Software 85.10, pp. 2228-2240. 1SSN: 01641212. DOTI:
10.1016/j.jss.2012.02.018 (cit. on p. 19).

Akers, Sheldon B (June 1978). “Binary Decision Diagrams”. In: IEEE Transactions on
Computers C-27.6, pp. 509-516. 1sSN: 0018-9340. DOI: 10.1109/TC.1978.1675141
(cit. on p. 39).

Alves, Vander, Rohit Gheyi, Tiago Massoni, Uird Kulesza, Paulo Borba, and Carlos
Lucena (2006). “Refactoring product lines”. In: Proceedings of the 5th international
conference on Generative programming and component engineering - GPCE ’06.
New York, New York, USA: ACM Press, pp. 201-210. 1SBN: 1595932372. DOTI:
10.1145/1173706.1173737 (cit. on p. 4).

Amilhastre, Jérome, Héléne Fargier, and Pierre Marquis (Feb. 2002). “Consistency
restoration and explanations in dynamic CSPs — Application to configuration”. In:
Artificial Intelligence 135.1-2, pp. 199-234. 1sSN: 00043702. DOI: 10.1016/S0004~
3702(01)00162-X (cit. on pp. 4, 21, 40, 42, 56).

Amnell, Tobias and Pontus Jansson (2001). Report from ASTEC-RT Auto project.
Tech. rep. Mecel AB, p. 11. URL: http://www.mecel.se/about/papers/ASTEC-
RT-AUTO-report_final.pdf (cit. on p. 21).

Angele, J, D Fensel, D Landes, and Rudi Studer (1998). “Developing knowledge-based
systems with MIKE”. In: Automated Software Engineering 5.4, pp. 389-418. DOTI:
10.1023/A:1008653328901 (cit. on p. 7).

Apt, Krzysztof (2003). Principles of Constraint Programming. Cambridge University
Press, p. 420. 1SBN: 9780521825832 (cit. on pp. 5, 24).

Asikainen, Timo, Tomi Ménnist6, and Timo Soininen (Jan. 2007). “Kumbang: A do-
main ontology for modelling variability in software product families”. In: Advanced
Engineering Informatics 21.1, pp. 23-40. 1SSN: 14740346. DOT: 10.1016/j.aei.
2006.11.007 (cit. on p. 4).

Aspvall, Bengt and MF Plass (1979). “A linear-time algorithm for testing the truth
of certain quantified boolean formulas”. In: Information Processing Letters 8.3,
pp. 121-123 (cit. on pp. 22, 50).

Astesana, Jean-Marc, Yves Bossu, Laurent Cosserat, and Héléne Fargier (2010).
“Constraint-based Modeling and Exploitation of a Vehicle Range at Renault’s:
Requirement analysis and complexity study”. In: ECAI 2010 Workshop on Config-
uration, pp. 33-39 (cit. on pp. 4, 13, 21).

7

http://dx.doi.org/10.1016/j.jss.2012.02.018
http://dx.doi.org/10.1109/TC.1978.1675141
http://dx.doi.org/10.1145/1173706.1173737
http://dx.doi.org/10.1016/S0004-3702(01)00162-X
http://dx.doi.org/10.1016/S0004-3702(01)00162-X
http://www.mecel.se/about/papers/ASTEC-RT-AUTO-report_final.pdf
http://www.mecel.se/about/papers/ASTEC-RT-AUTO-report_final.pdf
http://dx.doi.org/10.1023/A:1008653328901
http://dx.doi.org/10.1016/j.aei.2006.11.007
http://dx.doi.org/10.1016/j.aei.2006.11.007

78 Bibliography

Astesana, Jean-Marc, Laurent Cosserat, and Hélene Fargier (Oct. 2010). “Constraint-
based Vehicle Configuration: A Case Study”. In: 22nd IEEFE International Con-
ference on Tools with Artificial Intelligence ICTAI 2010. IEEE, pp. 68-75. ISBN:
978-1-4244-8817-9. DOI: 10.1109/ICTAI.2010.19 (cit. on pp. 4, 11, 13, 21).

Bacchus, Fahiem (2007). “GAC Via Unit Propagation”. In: 13th International Con-
ference on Principles and Practice of Constraint Programming, CP 2007. Ed. by
Christian Bessiere. Vol. 4741. LNCS. Providence, RI, USA: Springer, pp. 133-147.
DOI: 10.1007/978-3-540-74970-7_12 (cit. on p. 76).

Bailleux, Olivier (2010). On the CNF encoding of cardinality constraints and beyond.
Tech. rep., pp. 1-8. arXiv:arXiv:1012.3853v1 (cit. on p. 76).

Bailleux, Olivier and Yacine Boufkhad (Oct. 2003). “Efficient CNF Encoding of
Boolean Cardinality Constraints”. In: 9th International Conference on Principles
and Practice of Constraint Programming - CP 2003. Ed. by F. Rossi. Vol. 2833.
LNCS. Kinsale, Ireland: Springer, pp. 108-122. por1: 10.1007/978-3-540-45193-
8_8 (cit. on p. 76).

Barker, Virginia E., Dennis E. O’Connor, Judith Bachant, and Elliot Soloway (Mar.
1989). “Expert systems for configuration at Digital: XCON and beyond”. In:
Communications of the ACM 32.3, pp. 298-318. 1ssN: 00010782. por1: 10.1145/
62065.62067 (cit. on p. 4).

Batory, Don S. (2005). “Feature Models, Grammars, and Propositional Formulas”.
In: 9th International Conference on Software Product Lines. Ed. by Henk Obbink
and Klaus Pohl. Vol. 3714. LNCS. Rennes, France: Springer, pp. 7 —20. DOIL:
10.1007/11554844 _3 (cit. on pp. 4, 13).

Baumeister, Joachim and Martina Freiberg (Oct. 2010). “Knowledge visualization for
evaluation tasks”. In: Knowledge and Information Systems 29.2, pp. 349-378. 1SSN:
0219-1377. por: 10.1007/s10115-010-0350-8 (cit. on pp. 4, 75).

Baumeister, Joachim, Frank Puppe, and Dietmar Seipel (2004). “Refactoring methods
for knowledge bases”. In: Engineering Knowledge in the Age of the Semantic Web.
Springer, pp. 157-171. DOI: 10.1007/978-3-540-30202-5_11 (cit. on p. 18).

Benavides, David, Sergio Segura, and Antonio Ruiz-Cortés (Sept. 2010). “Automated
analysis of feature models 20 years later: A literature review”. In: Information
Systems 35.6, pp. 615-636. 1SSN: 03064379. por: 10.1016/j.1is.2010.01.001
(cit. on pp. 4, 13).

Ben-Haim, Yael, Alexander Ivrii, Oded Margalit, and Arie Matsliah (2012). “Perfect
Hashing and CNF Encodings of Cardinality Constraints”. In: 15th International
Conference on Theory and Applications of Satisfiability Testing — SAT 2012. Ed.
by Alessandro Cimatti and Roberto Sebastiani. Vol. 7317. LNCS. Trento, Italy:
Springer, pp. 397-409. DOI: 10.1007/978-3-642-31612-8_30 (cit. on pp. 27, 76).

Bennaceur, Hachemi (Apr. 2004). “A Comparison between SAT and CSP Tech-
niques”. In: Constraints 9.2, pp. 123-138. 1sSN: 1383-7133. pOI: 10.1023/B:
CONS.0000024048.03454.c0 (Cit. on p. 43).

Biere, Armin, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu (1999).
“Symbolic Model Checking without BDDs”. In: 5th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems TACAS’99.

http://dx.doi.org/10.1109/ICTAI.2010.19
http://dx.doi.org/10.1007/978-3-540-74970-7_12
http://arxiv.org/abs/arXiv:1012.3853v1
http://dx.doi.org/10.1007/978-3-540-45193-8_8
http://dx.doi.org/10.1007/978-3-540-45193-8_8
http://dx.doi.org/10.1145/62065.62067
http://dx.doi.org/10.1145/62065.62067
http://dx.doi.org/10.1007/11554844_3
http://dx.doi.org/10.1007/s10115-010-0350-8
http://dx.doi.org/10.1007/978-3-540-30202-5_11
http://dx.doi.org/10.1016/j.is.2010.01.001
http://dx.doi.org/10.1007/978-3-642-31612-8_30
http://dx.doi.org/10.1023/B:CONS.0000024048.03454.c0
http://dx.doi.org/10.1023/B:CONS.0000024048.03454.c0

Bibliography 79

97. Amsterdam, The Netherlands: Springer, pp. 193-207. boI1: 10.1007/3-540-
49059-0_14 (cit. on p. 29).

Biere, Armin, Marijn Heule, Hans van Maaren, and Toby Walsh, eds. (Feb. 2009).
Handbook of Satisfiability. Vol. 185. Frontiers in Artificial Intelligence and Applica-
tions. IOS Press, p. 980. 1sBN: 978-1-58603-929-5 (cit. on p. 5).

Biere, Armin and W. Kunz (2002). “SAT and ATPG: Boolean engines for formal
hardware verification”. In: IEEE/ACM International Conference on Computer
Aided Design. ICCAD-2002. IEEE, pp. 782-785. 1SBN: 0-7803-7607-2. DOI: 10.
1109/ICCAD.2002.1167620 (cit. on p. 27).

Boehm, B.W. (Jan. 1984). “Verifying and Validating Software Requirements and
Design Specifications”. In: IEEE Software 1.1, pp. 75-88. 1SSN: 0740-7459. DOI:
10.1109/MS.1984.233702 (cit. on p. 12).

Bollig, Beate and Ingo Wegener (1996). “Improving the variable ordering of OBDDs
is NP-complete”. In: IEEE Transactions on Computers 45.9, pp. 993-1002. 1SSN:
00189340. poI1: 10.1109/12.537122 (cit. on p. 40).

Bordeaux, Lucas, Youssef Hamadi, and Lintao Zhang (2006). “Propositional Satisfia-
bility and Constraint Programming: A comparative survey”. In: ACM Computing
Surveys 38.4, pp. 1-62. 1SsN: 0360-0300. DOI: 10.1145/1177352.1177354 (cit. on
p. 43).

Bradley, Aaron R (2011). “SAT-Based Model Checking without Unrolling”. In: 12th
International Conference on Verification, Model Checking, and Abstract Interpre-
tation. VMCAI 2011. Ed. by Ranjit Jhala and David Schmidt. Austin, Texas:
Springer, pp. 70-87. DOI: 10.1007/978-3-642-18275-4_7 (cit. on p. 48).

Bradley, Aaron R and Zohar Manna (Nov. 2007). “Checking Safety by Inductive
Generalization of Counterexamples to Induction”. In: Formal Methods in Computer
Aided Design (FMCAD’07). Austin, Texas: IEEE, pp. 173-180. 1SBN: 0-7695-3023-0.
DOI: 10.1109/FAMCAD.2007.15 (cit. on p. 48).

Bruynooghe, Maurice (Feb. 1981). “Solving combinatorial search problems by intelligent
backtracking”. In: Information Processing Letters 12.1, pp. 36-39. 1sSN: 00200190.
DOI: 10.1016/0020-0190(81)90074-0 (Cit. on p. 25).

Bryant, Randal E. (Aug. 1986). “Graph-Based Algorithms for Boolean Function
Manipulation”. In: IEEFE Transactions on Computers C-35.8, pp. 677-691. 1SSN:
0018-9340. DOT: 10.1109/TC.1986.1676819 (cit. on pp. 5, 39, 40).

Biihne, Stan, Kim Lauenroth, and Klaus Pohl (2004). “Why is it not Sufficient to Model
Requirements Variability with Feature Models?” In: Automotive Requirements
Engineering (AUREO04), pp. 5-12 (cit. on p. 12).

Burch, Jerry R., Edmund M. Clarke, Ken L. McMillan, David L. Dill, and L.J. Hwang
(1990). “Symbolic model checking: 10E20 states and beyond”. In: Logic in Computer
Science, 1990. LICS °90, Proceedings., Fifth Annual IEEE Symposium on. IEEE,
pp. 428-439. DOI: 10.1109/LICS.1990.113767 (cit. on p. 5).

Cadoli, Marco and Francesco M. Donini (1997). “A Survey on Knowledge Compilation”.
In: AI Communications 10.3-4, pp. 137-150. 1SSN: 1875-8452 (cit. on p. 39).

Cassandras, Christos G. and Stephane Lafortune (Sept. 2008). Introduction to Discrete
Fvent Systems. 2nd. Boston, MA: Springer US, p. 776. 1SBN: 978-0-387-33332-8.
DOI: 10.1007/978-0-387-68612-7 (cit. on pp. 29-32).

http://dx.doi.org/10.1007/3-540-49059-0_14
http://dx.doi.org/10.1007/3-540-49059-0_14
http://dx.doi.org/10.1109/ICCAD.2002.1167620
http://dx.doi.org/10.1109/ICCAD.2002.1167620
http://dx.doi.org/10.1109/MS.1984.233702
http://dx.doi.org/10.1109/12.537122
http://dx.doi.org/10.1145/1177352.1177354
http://dx.doi.org/10.1007/978-3-642-18275-4_7
http://dx.doi.org/10.1109/FAMCAD.2007.15
http://dx.doi.org/10.1016/0020-0190(81)90074-0
http://dx.doi.org/10.1109/TC.1986.1676819
http://dx.doi.org/10.1109/LICS.1990.113767
http://dx.doi.org/10.1007/978-0-387-68612-7

80 Bibliography

Cepek, Ondfej, Petr Kucera, and Véclav Viéek (2012). “Properties of SLUR formulae”.
In: 38th Conference on Current Trends in Theory and Practice of Computer Science,
SOFSEM-2012. Ed. by Maria Bielikova, Gerhard Friedrich, Georg Gottlob, Stefan
Katzenbeisser, and Gyorgy Turdn. Vol. 7147. Spindleruv Mlyn, Czech Republic:
Springer, pp. 177-189. DOI: 10.1007/978-3-642-27660-6_15 (cit. on p. 75).

Claessen, Koen, Niklas Een, Mary Sheeran, and Niklas Sorensson (2008). “SAT-
solving in practice”. In: 9th International Workshop on Discrete Event Systems
WODES-2008. Goteborg, Sweden: IEEE, pp. 61-67. 1SBN: 978-1-4244-2592-1. DOI:
10.1109/WODES . 2008.4605923 (Cit. on p. 38).

Clarke, Edmund M., Armin Biere, Richard Raimi, and Yunshan Zhu (July 2001).
“Bounded Model Checking Using Satisfiability Solving”. In: Form. Methods Syst.
Des. 19.1, pp. 7-34. 18SN: 0925-9856. DOI: 10.1023/A: 1011276507260 (cit. on
p. 48).

Clarke, Edmund M., Orna Grumberg, and Doron A. Peled (2000). Model Checking.
MIT Press, p. 330. 1ISBN: 978-0-262-03270-4 (cit. on p. 21).

Cook, Stephen A. (1971). “The complexity of theorem-proving procedures”. In: Pro-
ceedings of the third annual ACM symposium on. ACM Press, pp. 151-158. DOI:
10.1145/800157.805047 (cit. on pp. 5, 22, 30).

Crawford, James M., Matthew L. Ginsberg, Eugene M. Luks, and Amitabha Roy
(1996). “Symmetry-Breaking Predicates for Search Problems”. In: Proceedings of
the Fifth International Conference on Principles of Knowledge Representation
and Reasoning (KR’96). Ed. by Luigia Carlucci Aiello, Jon Doyle, and Stuart C.
Shapiro. Cambridge, Massachusetts, USA: Morgan Kaufmann, pp. 148-159 (cit. on
p. 76).

Crow, Judith and John Rushby (1994). Model-based reconfiguration: Diagnosis and
recovery. Tech. rep. NASA| p. 59. URL: http://ntrs.nasa.gov/search. jsp?R=
19940028270 (cit. on p. 18).

Darwiche, Adnan (1998). “Model-Based Diagnosis using Structured System Descrip-
tions”. In: Journal of Artificial Intelligence Research 8, pp. 165-222 (cit. on pp. 40,
41).

Darwiche, Adnan (1999). “Compiling knowledge into decomposable negation normal
form”. In: IJCAI 1999. Vol. 16. Citeseer, pp. 284-289 (cit. on p. 42).

Darwiche, Adnan (July 2001a). “Decomposable negation normal form”. In: Journal
of the ACM 48.4, pp. 608-647. 1sSN: 00045411. DOI: 10.1145/502090 . 502091
(cit. on pp. 40, 41).

Darwiche, Adnan (Jan. 2001b). “On the Tractable Counting of Theory Models and its
Application to Truth Maintenance and Belief Revision”. In: Journal of Applied Non-
Classical Logics 11.1-2, pp. 11-34. 1SSN: 1166-3081. DOT: 10.3166/jancl.11.11-34.
arXiv:0003044 [cs] (cit. on pp. 42, 49).

Darwiche, Adnan (2004). “New Advances in Compiling CNF to Decomposable Negation
Normal Form”. In: Proceedings of the 16th Fureopean Conference on Artificial
Intelligence, ECAI’2004. Ed. by Ramon Lépez de Mantaras and Lorenza Saitta.
Vol. 110. Frontiers in Artificial Intelligence and Applications. Valencia, Spain: I0S
Press, pp. 328-332 (cit. on pp. 42, 46).

http://dx.doi.org/10.1007/978-3-642-27660-6_15
http://dx.doi.org/10.1109/WODES.2008.4605923
http://dx.doi.org/10.1023/A:1011276507260
http://dx.doi.org/10.1145/800157.805047
http://ntrs.nasa.gov/search.jsp?R=19940028270
http://ntrs.nasa.gov/search.jsp?R=19940028270
http://dx.doi.org/10.1145/502090.502091
http://dx.doi.org/10.3166/jancl.11.11-34
http://arxiv.org/abs/0003044

Bibliography 81

Darwiche, Adnan and Pierre Marquis (2002). “A knowledge compilation map”. In:
Journal of Artificial Intelligence Research 17.1, pp. 229-264. DOI: 10.1613/jair.
989 (cit. on pp. 39-41).

Davis, Martin, George Logemann, and Donald Loveland (July 1962). “A machine
program for theorem-proving”. In: Communications of the ACM 5.7, pp. 394-397.
1SSN: 0001-0782. por: 10.1145/368273.368557 (cit. on p. 26).

Davis, Martin and Hilary Putnam (July 1960). “A Computing Procedure for Quantifi-
cation Theory”. In: Journal of the ACM 7.3, pp. 201-215. 1SSN: 00045411. DOTI:
10.1145/321033.321034 (cit. on pp. 5, 26).

Davis, Randall (Dec. 1984). “Diagnostic reasoning based on structure and behavior”.
In: Artificial Intelligence 24.1-3, pp. 347-410. 1sSN: 00043702. DOI: 10.1016/0004~
3702(84)90042-0 (cit. on p. 25).

Davis, Stanley M. (1987). Future perfect. Reading, MA: Addison-Wesley, p. 243. ISBN:
9780201327953 (cit. on p. 3).

Dechter, Rina (1986). “Learning while searching in constraint-satisfaction-problems”.
In: AAAI 1986, pp. 178183 (cit. on p. 25).

Dechter, Rina (Jan. 1990). “Enhancement schemes for constraint processing: Backjump-
ing, learning, and cutset decomposition”. In: Artificial Intelligence 41.3, pp. 273~
312. 18SN: 00043702. DOT: 10.1016/0004-3702(90)90046-3 (cit. on p. 25).

Dechter, Rina (2003). Constraint Processing. Morgan Kaufmann (Elsevier), p. 480.
ISBN: 978-1-55860-890-0 (cit. on p. 5).

Dechter, Rina and Judea Pearl (Dec. 1987). “Network-based heuristics for constraint-
satisfaction problems”. In: Artificial Intelligence 34.1, pp. 1-38. 1ssSN: 00043702.
DOI: 10.1016/0004-3702(87)90002-6 (cit. on p. 67).

Dechter, Rina and Judea Pearl (Apr. 1989). “Tree clustering for constraint networks”.
In: Artificial Intelligence 38.3, pp. 353-366. 1SSN: 00043702. DOI: 10.1016/0004~
3702(89)90037-4 (cit. on pp. 40, 42, 43).

Desharnais, Jean-Marc, Alain Abran, and Julien Vilz (2011). “Verification and vali-
dation of a knowledge-based system”. In: Common Software Measurement Inter-
national Consortium (COSMIC) Function Point: Theory and Advanced Practices.
Ed. by Reiner Dumke and Alain Abran. Taylor and Francis. Chap. 5.2. 1SBN:
978-1-43-984486-1 (cit. on pp. 4, 21).

Dilkina, Bistra, Carla P. Gomes, and Ashish Sabharwal (2007). “Tradeoffs in the
Complexity of Backdoor Detection”. In: 15th International Conference on Principles
and Practice of Constraint Programming, CP 2007. Ed. by Christian Bessiéere.
Vol. 4741. LNCS. Providence, RI, USA: Springer Berlin Heidelberg, pp. 256-270.
DOI: 10.1007/978-3-540-74970-7_20 (cit. on pp. 51, 52).

Dongen, Stijn van (2000). A Cluster Algorithm for Graphs. Tech. rep. Amsterdam:
Centrum voor Wiskunde en Informatica. URL: http://oai.cwi.nl/oai/asset/
4463/04463D . pdf (cit. on p. 45).

Dowling, William F and Jean H Gallier (1984). “Linear-time algorithms for testing the
satisfiability of propositional Horn formulae”. In: The Journal of Logic Programming,
pp. 267-284 (cit. on pp. 22, 50).

Downey, Rodney G. and Michael R. Fellows (1999). Parameterized Complezity.
Springer-Verlag. 1SBN: 978-0-387-94883-6 (cit. on p. 50).

http://dx.doi.org/10.1613/jair.989
http://dx.doi.org/10.1613/jair.989
http://dx.doi.org/10.1145/368273.368557
http://dx.doi.org/10.1145/321033.321034
http://dx.doi.org/10.1016/0004-3702(84)90042-0
http://dx.doi.org/10.1016/0004-3702(84)90042-0
http://dx.doi.org/10.1016/0004-3702(90)90046-3
http://dx.doi.org/10.1016/0004-3702(87)90002-6
http://dx.doi.org/10.1016/0004-3702(89)90037-4
http://dx.doi.org/10.1016/0004-3702(89)90037-4
http://dx.doi.org/10.1007/978-3-540-74970-7_20
http://oai.cwi.nl/oai/asset/4463/04463D.pdf
http://oai.cwi.nl/oai/asset/4463/04463D.pdf

82 Bibliography

Dufty, David A. (1991). Principles of Automated Theorem Proving. Wiley (cit. on
p. 21).

Een, Niklas and Niklas Sérensson (Jan. 2003). “Temporal Induction by Incremental
SAT Solving”. In: Electronic Notes in Theoretical Computer Science: Proceedings
of First International Workshop on Bounded Model Checking 89.4, pp. 543-560.
ISSN: 15710661. DOL: 10.1016/81571-0661(05)82542-3 (cit. on pp. 39, 48).

Een, Niklas and Niklas Sorensson (2004). “An Extensible SAT-solver”. In: Theory and
Applications of Satisfiability Testing 2919, pp. 502-518. DOI: 10.1007/978-3-540-
24605-3_37 (cit. on p. 45).

Een, Niklas and Niklas Sorensson (2006). “Translating pseudo-boolean constraints
into SAT”. In: Journal on Satisfiability, Boolean Modeling and Computation 2,
pp. 1-26 (cit. on p. 45).

Emerson, E. Allen and Edmund M. Clarke (1980). “Characterizing correctness proper-
ties of parallel programs using fixpoints”. In: Seventh Colloguium Noordwijkerhout
on Automata, Languages and Programming. Ed. by Jaco de Bakker and Jan van
Leeuwen. Vol. 85. Lecture Notes in Computer Science. Springer, pp. 169-181. DOI:
10.1007/3-540-10003-2_69 (cit. on p. 21).

Eppstein, David (2007). A graph and its tree decomposition. URL: http://commons.
wikimedia.org/wiki/File:Tree_decomposition.svg (visited on 11/19/2012)
(cit. on p. 51).

Falkner, Andreas A and Alois Haselbock (2010). “Challenges of Knowledge Evolution
in Practice”. In: Configuration Workshop at ECAI 2010. Lisbon, Portugal, p. 71
(cit. on p. 18).

Fargier, Héléne and Pierre Marquis (2009). “Knowledge compilation properties of
Trees-of-BDDs, revisited”. In: Proc. of IJCAI’09, pp. T72-777 (cit. on pp. 40, 43).

Fargier, Hélene and Marie-Catherine Vilarem (Oct. 2004). “Compiling CSPs into
Tree-Driven Automata for Interactive Solving”. In: Constraints 9.4, pp. 263-287.
ISSN: 1383-7133. DOI: 10.1023/B:CONS. 0000049204 . 75635. 7e (cit. on pp. 40, 42,
43).

Felfernig, Alexander, Gerhard Friedrich, Dietmar Jannach, and Markus Stumptner
(Feb. 2004). “Consistency-based diagnosis of configuration knowledge bases”. In:
Artificial Intelligence 152.2, pp. 213-234. 1SSN: 00043702. DOI: 10.1016/S0004-
3702(03)00117-6 (cit. on pp. 13, 18).

Felfernig, Alexander, Gerhard Friedrich, Monika Schubert, Monika Mandl, Markus
Mairitsch, and Erich Teppan (2009). “Plausible repairs for inconsistent require-
ments”. In: Proceedings of the 21st international jont conference on Artifical
intelligence IJCAI-2009. Morgan Kaufmann Publishers Inc., pp. 791-796 (cit. on
p. 18).

Flum, Jorg and Martin Grohe (2006). Parameterized Complexity Theory. Texts in
Theoretical Computer Science. An EATCS Series. Berlin, Heidelberg: Springer
Berlin Heidelberg, p. 493. 1SBN: 978-3-540-29952-3. DOI: 10.1007/3-540-29953-X
(cit. on p. 50).

Fogliatto, Flavio S, Giovani J.C. da Silveira, and Denis Borenstein (Mar. 2012). “The
mass customization decade: An updated review of the literature”. In: International

http://dx.doi.org/10.1016/S1571-0661(05)82542-3
http://dx.doi.org/10.1007/978-3-540-24605-3_37
http://dx.doi.org/10.1007/978-3-540-24605-3_37
http://dx.doi.org/10.1007/3-540-10003-2_69
http://commons.wikimedia.org/wiki/File:Tree_decomposition.svg
http://commons.wikimedia.org/wiki/File:Tree_decomposition.svg
http://dx.doi.org/10.1023/B:CONS.0000049204.75635.7e
http://dx.doi.org/10.1016/S0004-3702(03)00117-6
http://dx.doi.org/10.1016/S0004-3702(03)00117-6
http://dx.doi.org/10.1007/3-540-29953-X

Bibliography 83

Journal of Production Economics 138.1, pp. 14-25. 1SSN: 09255273. DOI: 10.1016/
j.ijpe.2012.03.002 (cit. on p. 3).

Ford, Henry (1922). My Life and Work. New York, NY, USA: Garden City Publishing
Company, Inc (cit. on p. 3).

Fowler, Martin, Kent Beck, John Brant, William Opdyke, and Don Roberts (July 1999).
Refactoring: improving the design of existing code. Addison-Wesley Professional,
p. 464. 1SBN: 978-0201485677 (cit. on p. 17).

Franco, John and Allen Van Gelder (Feb. 2003). “A perspective on certain polynomial-
time solvable classes of satisfiability”. In: Discrete Applied Mathematics 125.2-3,
pp. 177-214. 18SN: 0166218X. DOI: 10.1016/50166-218X(01) 00358-4 (cit. on
p. 75).

Freuder, Eugene C. (Nov. 1978). “Synthesizing constraint expressions”. In: Commu-
nications of the ACM 21.11, pp. 958-966. 1ssSN: 00010782. DOI: 10.1145/359642.
359654 (cit. on p. 25).

Freuder, Eugene C. and Alan K Mackworth (2006). “Constraint Satisfaction: An
Emerging Paradigm”. In: Handbook of Constraint Programming. Ed. by Francesca
Rossi, Peter van Beek, and Toby Walsh. Elsevier. Chap. 2, pp. 13-27. DOI: 10.
1016/S1574-6526 (06)80006-4 (cit. on p. 22).

Friedrich, Gerhard, Anna Ryabokon, Andreas A Falkner, Alois Haselbock, Gottfried
Schenner, and Herwig Schreiner (2011). “(Re)configuration using Answer Set Pro-
gramming”. In: Workshop on Configuration In conjunction with the 22nd Interna-
tional Joint Conference on Artificial Intelligence - IJCAI 2011. Ed. by Kostyantyn
Shchekotykhin, Dietmar Jannach, and Markus Zanker. Vol. 755. Barcelona, Spain:
CEUR-WS (cit. on p. 18).

Frisch, Alan M. and Paul A. Giannaros (2010). “SAT Encodings of the At-Most-k
Constraint”. In: The 9th International Workshop on Constraint Modelling and Re-
formulation (ModRef 2010) at the 16th International Conference on the Principles
and Practice of Constraint Programming (CP 2010) (cit. on pp. 27, 76).

Fuxin, Freddy (2005). “Evolution and communication of geometry based product
information within an extended enterprise (PhD thesis)”. PhD thesis. Luledtekniska
universitet. URL: http://epubl.ltu.se/1402-1544/2005/04/ (cit. on pp. 4, 12).

Gardner, Martin (1958). Logic machines and diagrams. McGraw-Hill (cit. on pp. 5,
23).

Gelle, Esther and Rainer Weigel (Dec. 1996). “Interactive configuration using constraint
satisfaction techniques”. In: AAAI Fall Symposia ’96. Cambridge, Massachusetts,
USA, pp. 3744 (cit. on p. 19).

Gent, Ian P and Peter Nightingale (2004). “A New Encoding of AllDifferent into
SAT”. In: Modelling and Reformulating Constraint Satisfaction Problems: Towards
Systematisation and Automation. Ed. by Alan M. Frisch and Tan Miguel, pp. 95-110
(cit. on p. 28).

Gohari, P. and W. Murray Wonham (2000). “On the complexity of supervisory control
design in the RW framework”. In: Systems, Man, and Cybernetics, Part B, IEEFE
Transactions on 30.5, pp. 643-652 (cit. on p. 30).

http://dx.doi.org/10.1016/j.ijpe.2012.03.002
http://dx.doi.org/10.1016/j.ijpe.2012.03.002
http://dx.doi.org/10.1016/S0166-218X(01)00358-4
http://dx.doi.org/10.1145/359642.359654
http://dx.doi.org/10.1145/359642.359654
http://dx.doi.org/10.1016/S1574-6526(06)80006-4
http://dx.doi.org/10.1016/S1574-6526(06)80006-4
http://epubl.ltu.se/1402-1544/2005/04/

84 Bibliography

Golomb, Solomon W. and Leonard D. Baumert (Oct. 1965). “Backtrack Programming”.
In: Journal of the ACM 12.4, pp. 516-524. 1sSSN: 00045411. DOT: 10.1145/321296.
321300 (cit. on pp. 22, 25).

Gottlob, Georg, Francesco Scarcello, and Martha Sideri (June 2002). “Fixed-parameter
complexity in Al and nonmonotonic reasoning”. In: Artificial Intelligence 138.1-2,
pp. 55-86. 1sSN: 00043702. DOL: 10.1016/50004-3702(02)00182-0 (cit. on p. 52).

Gupta, Uma G. (Dec. 1993). “Validation and verification of knowledge-based systems:
A survey”. In: Applied Intelligence 3.4, pp. 343-363. 1SSN: 0924-699X. DOI: 10.
1007/BF00872136 (cit. on pp. 4, 21).

Haag, Albert (July 1998). “Sales configuration in business processes”. In: IEEE
Intelligent Systems 13.4, pp. 78-85. 1SSN: 1094-7167. DOI: 10.1109/5254.708436
(cit. on p. 9).

Hadzic, Tarik and Henrik Reif Andersen (2005). “Interactive Reconfiguration in Power
Supply Restoration”. In: 11th International Conference on Principles and Practice
of Constraint Programming CP-2005. Ed. by Peter van Beek. Vol. 3709. LNCS.
Sitges, Spain: Springer, pp. 767-771. DOI: 10.1007/11564751_61 (cit. on p. 19).

Hadzic, Tarik and Esben Rune Hansen (2008). “On Automata, MDDs and BDDs in
Constraint Satisfaction”. In: Workshop on Inference methods based on Graphical
Structures of Knowledge at ECAI’08. Ed. by Rina Dechter, Hélene Fargier, Jirg
Kohlas, Jérome Mengin, Gérard Verfaillie, and Nic Wilson. Patras, Greece (cit. on
pp. 40, 42).

Hadzic, Tarik, Esben Rune Hansen, and Barry O’Sullivan (Nov. 2008). “Layer Compres-
sion in Decision Diagrams”. In: 20th IEEFE International Conference on Tools with
Artificial Intelligence. c. Dayton, OH: IEEE, pp. 19-26. 1SBN: 978-0-7695-3440-4.
DOI: 10.1109/ICTAI.2008.92 (cit. on p. 55).

Hadzic, Tarik, John N. Hooker, Barry O’Sullivan, and Peter Tiedemann (2008). “Ap-
proximate Compilation of Constraints into Multivalued Decision Diagrams”. In:
14th International Conference on Principles and Practice of Constraint Program-
ming, CP-2008. Ed. by Peter J. Stuckey. Vol. 5202. LNCS. Sydney, Australia:
Springer. DOI: 10.1007/978-3-540-85958-1_30 (Cit. on p. 42).

Hadzic, Tarik and Barry O’Sullivan (July 2008). “Beyond Valid Domains in Interactive
Configuration”. In: Configuration Workshop at ECAI 2008 (cit. on p. 75).

Hadzic, Tarik, Sathiamoorthy Subbarayan, Rune Mgller Jensen, Henrik Reif Andersen,
Jesper Moller, and H. Hulgaard (2004). “Fast backtrack-free product configuration
using a precompiled solution space representation”. In: PETO conference (cit. on
pp. 19, 40).

Hamadi, Youssef and Lucas Bordeaux (May 2007). “On the First SAT/CP Integration
Workshop”. In: Trends in Constraint Programming. Ed. by Frédéric Benhamou,
Narendra Jussien, and Barry O’Sullivan. ISTE. Chap. 5, pp. 105-123. 1SBN: 978-1-
905209-97-2. por: 10.1002/9780470612309. ch5 (Cit. on p. 43).

Hamscher, Walter (July 1992). “Model-based reasoning in financial domains”. In:
The Knowledge Engineering Review 7.04, p. 323. 1SSN: 0269-8889. por1: 10.1017/
S0269888900006457 (cit. on p. 4).

Hansen, Esben Rune and Peter Tiedemann (2007). “Compressing Configuration Data
for Memory Limited Devices”. In: AAAT 2007, pp. 210-216 (cit. on p. 55).

http://dx.doi.org/10.1145/321296.321300
http://dx.doi.org/10.1145/321296.321300
http://dx.doi.org/10.1016/S0004-3702(02)00182-0
http://dx.doi.org/10.1007/BF00872136
http://dx.doi.org/10.1007/BF00872136
http://dx.doi.org/10.1109/5254.708436
http://dx.doi.org/10.1007/11564751_61
http://dx.doi.org/10.1109/ICTAI.2008.92
http://dx.doi.org/10.1007/978-3-540-85958-1_30
http://dx.doi.org/10.1002/9780470612309.ch5
http://dx.doi.org/10.1017/S0269888900006457
http://dx.doi.org/10.1017/S0269888900006457

Bibliography 85

Hassan, Zyad, Aaron R Bradley, and Fabio Somenzi (2012). “Incremental, Inductive
CTL Model Checking”. In: 24th International Conference on Computer Aided
Verification CAV-2012. Ed. by P. Madhusudan and Sanjit A. Seshia. Vol. 7358.
LNCS. Berkeley, CA: Springer, pp. 532-547. DOI: 10.1007/978-3-642-31424~
7_38 (cit. on p. 76).

Hayes-Roth, Frederick (Sept. 1985). “Rule-based systems”. In: Communications of the
ACM 28.9, pp. 921-932. 1sSN: 00010782. DOI: 10.1145/4284.4286 (cit. on p. 4).

Hertli, Timon, Robin A Moser, and Dominik Scheder (2011). “Improving PPSZ for
3-SAT using Critical Variables”. In: 28th International Symposium on Theoretical
Aspects of Computer Science (STACS 2011). Ed. by Thomas Schwentick and
Christoph Diirr. Vol. 9. LIPICS. Dortmund, Germany: Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, pp. 237-248. 1SBN: 978-3-939897-25-5. DOI: 10.4230/
LIPIcs.STACS.2011.237 (cit. on pp. 5, 22, 50).

Hoffmann, Gerard and Howard Wong-Toi (1992). “Symbolic synthesis of supervisory
controllers”. In: American Control Conference, 1992. Chicago, IL, USA: IEEE,
pp. 2789-2793 (cit. on p. 56).

Hopcroft, John E. and Jeffrey D. Ullman (1979). Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley. ISBN: 81-7808-347-7 (cit. on p. 56).

Hutter, Frank, Holger H Hoos, Kevin Leyton-Brown, and Thomas Stiitzle (2009).
“ParamlILS: An Automatic Algorithm Configuration Framework”. In: Journal of
Artificial Intelligence Research 36.1, pp. 267-306. 1sSN: 10769757. DOI: 10.1613/
jair.2861 (cit. on p. 46).

Hvam, Lars, Niels Henrik Mortensen, and Jesper Riis (2008). Product Customization.
Springer, p. 283. ISBN: 978-3-540-71448-4 (cit. on p. 3).

Iwama, Kazuo and Shuichi Miyazaki (1994). “SAT-variable complexity of hard com-
binatorial problems”. In: IFIP World Computer Congress, pp. 253-258 (cit. on
p. 27).

Janota, Mikolas (2008). “Do SAT solvers make good configurators?” In: 12th Interna-
tional Software Product Line Conference. First Workshop on Analyses of Software
Product Lines, pp. 1-5 (cit. on p. 39).

Janota, Mikolas (2010). “SAT Solving in Interactive Configuration (PhD thesis)”.
PhD thesis. University College Dublin (cit. on pp. 19, 39).

Jensen, Rune Mgller (2004a). CLab 1.0 User Manual. Tech. rep. CMU. URL: http:
//www.cs.cmu.edu/\simrunej/data/systems/clabl0/man. pdf (cit. on
p. 45).

Jensen, Rune Mgller (2004b). “CLab: a C++ Library for Fast Backtrack-Free Interac-
tive Product Configuration”. In: 10th International Conference on Principles and
Practice of Constraint Programming, CP-2004. Ed. by Mark Wallace. Vol. 3258.
Lecture Notes in Computer Science. Toronto, Ontario, Canada: Springer, p. 816.
DOI: 10.1007/978-3-540-30201-8_94 (Cit. on p. 45).

Johansen, Karsten Friis and Henrik Rosenmeier (1998). A History of Ancient Philoso-
phy: From the Beginnings to Augustine. London: Routledge. 1SBN: 0-415-12738-6
(cit. on pp. 5, 23).

Junker, Ulrich (Aug. 2006). “Configuration”. In: Handbook of Constraint Programming.
Ed. by Francesca Rossi, Peter van Beek, and Toby Walsh. Foundations of Artificial

http://dx.doi.org/10.1007/978-3-642-31424-7_38
http://dx.doi.org/10.1007/978-3-642-31424-7_38
http://dx.doi.org/10.1145/4284.4286
http://dx.doi.org/10.4230/LIPIcs.STACS.2011.237
http://dx.doi.org/10.4230/LIPIcs.STACS.2011.237
http://dx.doi.org/10.1613/jair.2861
http://dx.doi.org/10.1613/jair.2861
http://www.cs.cmu.edu/\simrunej/data/systems/clab10/man.pdf
http://www.cs.cmu.edu/\simrunej/data/systems/clab10/man.pdf
http://dx.doi.org/10.1007/978-3-540-30201-8_94

86 Bibliography

Intelligence. Elsevier Science Inc. Chap. 24, pp. 837-874. DOI: 10.1016/S5S1574-
6526 (06)80028-3 (cit. on p. 4).

Junker, Ulrich and Daniel Mailharro (Aug. 2003). “Preference programming: Advanced
problem solving for configuration”. In: Al EDAM: Artificial Intelligence for En-
gineering Design, Analysis and Manufacturing 17.01, pp. 13-29. 1SSN: 0890-0604.
DOI: 10.1017/S089006040317103X (cit. on p. 4).

Kam, T., T. Villa, R. Brayton, and A Sangiovanni-Vincentelli (1998). “Multi-valued
decision diagrams: theory and applications”. In: Multiple- Valued Logic 4, pp. 9-62
(cit. on p. 40).

Kang, Kyo C, Sholom G Cohen, James A Hess, William E Novak, and A Spencer
Peterson (1990). Feature-Oriented Domain Analysis (FODA) Feasibility Study.
Tech. rep. November. Pittsburgh, PA, USA: Carnegie Mellon University, Software
Engineering Institute, p. 163. URL: http://www.sei.cmu.edu/reports/90tr021.
pdf (cit. on pp. 4, 12).

Kimura, Shinji and Edmund M. Clarke (1990). “A parallel algorithm for constructing
binary decision diagrams”. In: Proceedings., 1990 IEEE International Conference
on Computer Design: VLSI in Computers and Processors, pp. 220-223. DOI:
10.1109/ICCD. 1990.130209 (cit. on p. 56).

Kleer, Johan de (1989). “A comparison of ATMS and CSP techniques”. In: Proceedings
of the Eleventh International Joint Conference on Artificial Intelligence 1JCAI-89.
Vol. 1, pp. 290-296 (cit. on p. 27).

Kolodner, Janet L. (1992). “An introduction to case-based reasoning”. In: Artificial
Intelligence Review 6.1, pp. 3-34. 1SSN: 0269-2821. por: 10.1007/BF00155578
(cit. on p. 3).

Kottler, Stephan, Michael Kaufmann, and Carsten Sinz (May 2008). “Computation
of renameable horn backdoors”. In: 11th International Conference on Theory
and Applications of Satisfiability - SAT 2008. Ed. by Hans Kleine Biining and
Xishun Zhao. Vol. 4996. LNCS. Guangzhou, China: Springer, pp. 154-160. ISBN:
978-1-4244-5821-9. DOI: 10.1007/978-3-540-79719-7_15 (cit. on p. 52).

Kreuz, Ingo and Dieter Roller (1999). “Knowledge Growing Old in Reconfiguration
Context”. In: Configuration Workshop at AAAI 1999, pp. 54-58 (cit. on p. 18).

Kiibler, Andreas, Christoph Zengler, and Wolfgang Kiichlin (July 2010). “Model
Counting in Product Configuration”. In: Electronic Proceedings in Theoretical
Computer Science 29.LoCoCo, pp. 44-53. 1SSN: 2075-2180. DOI: 10.4204/EPTCS.
29.5. arXiv:1007.0831 (cit. on pp. 11, 42).

Kiichlin, Wolfgang and Carsten Sinz (Feb. 2000). “Proving Consistency Assertions
for Automotive Product Data Management”. In: Journal of Automated Reasoning
24.1, pp. 145-163 (cit. on pp. 13, 21, 39, 44).

Kumar, Ratnesh and Shengbing Jiang (2002). “Supervisory control of discrete event
systems with CTL* temporal logic specifications”. Orlando, FL. URL: http://
ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=980826 (cit. on
p. 76).

Le Berre, Daniel and Anne Parrain (2010). “The Sat4j library, release 2.2 system
description”. In: Journal on Satisfiability, Boolean Modeling and Computation 7,
pp. 5964 (cit. on p. 45).

http://dx.doi.org/10.1016/S1574-6526(06)80028-3
http://dx.doi.org/10.1016/S1574-6526(06)80028-3
http://dx.doi.org/10.1017/S089006040317103X
http://www.sei.cmu.edu/reports/90tr021.pdf
http://www.sei.cmu.edu/reports/90tr021.pdf
http://dx.doi.org/10.1109/ICCD.1990.130209
http://dx.doi.org/10.1007/BF00155578
http://dx.doi.org/10.1007/978-3-540-79719-7_15
http://dx.doi.org/10.4204/EPTCS.29.5
http://dx.doi.org/10.4204/EPTCS.29.5
http://arxiv.org/abs/1007.0831
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=980826
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=980826

Bibliography 87

Lee, C.Y. (1959). “Representation of switching circuits by binary-decision programs”.
In: Bell System Technical Journal 38.4, pp. 985-999 (cit. on p. 39).

Lewis, Harry R. (Jan. 1978). “Renaming a Set of Clauses as a Horn Set”. In: Journal
of the ACM 25.1, pp. 134-135. 1sSSN: 00045411. DOI: 10.1145/322047 . 322059
(cit. on p. 50).

Lindahl, Magnus, Paul Pettersson, and Wang Yi (1998). “Formal Design and Analysis
of a Gear Controller”. In: 4th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems TACAS’98, Held as Part of the Joint
Furopean Conferences on Theory and Practice of Software, ETAPS’98. Ed. by
Bernhard Steffen. Vol. 1384. LNCS. Lisbon, Portugal: Springer, pp. 281-297. DOTI:
10.1007/BFb0054178 (cit. on p. 21).

Lindahl, Magnus, Paul Pettersson, and Wang Yi (2001). “Formal design and analysis
of a gear controller”. In: International Journal on Software Tools for Technology
Transfer (STTT) 3.3, pp. 353-368. DOI: 10.1007/s100090100048 (cit. on p. 21).

Lind-Nielsen, Jgrn (2002). BuDDy: A BDD package. Miscellaneous. URL: http://
buddy . sourceforge.net (cit. on p. 45).

Lindroth, Peter (2011). “Product Configuration from a Mathematical Optimization
Perspective”. PhD thesis. Chalmers University of Technology and University of
Gothenburg. 1SBN: 9789173855341. URL: http://publications.1lib.chalmers.
se/publication/140022 (cit. on p. 4).

Li, Zijie and Peter van Beek (2011). “Finding Small Backdoors in SAT Instances”. In:
Proceedings of the 24th Canadian conference on Advances in artificial intelligence
- Canadian AI'11. Ed. by Cory Butz and Pawan Lingras. Vol. 6657/2011. Lecture
Notes in Computer Science. St. John’s, Canada: Springer, pp. 269-280. DOTI:
10.1007/978-3-642-21043-3_33 (Cit. on p. 51).

Maaren, Hans van (May 2000). “A Short Note on Some Tractable Cases of the
Satisfiability Problem”. In: Information and Computation 158.2, pp. 125-130. DOTI:
10.1006/inco.2000.2867 (cit. on p. 22).

Mackworth, Alan K (1977). “Consistency in networks of relations”. In: Artificial
intelligence 8.1977, pp. 99-118 (cit. on p. 25).

Manhart, Peter (2005). “Reconfiguration - A Problem in Search of Solutions”. In:
Workshop on Configuration In conjunction with the 22nd International Joint
Conference on Artificial Intelligence - IJCAI 2005. Edinburgh, Scotland, UK,
pp. 64-67 (cit. on p. 18).

Ménnist6, Tomi, Timo Soininen, Juha Tiithonen, and Reijo Sulonen (1999). “Framework
and Conceptual Model for Reconfiguration”. In: Configuration Workshop at AAAI
1999 (cit. on p. 18).

Manthey, Norbert, Marijn J.H. Heule, and Armin Biere (2012). “Automated Reencod-
ing of Boolean Formulas”. In: Haifa Verification Conference. Vol. 23. Haifa, Israel
(cit. on p. 27).

Marques-Silva, Joao P. (May 2008). “Practical applications of Boolean Satisfiability”.
In: 9th International Workshop on Discrete Event Systems WODES-2008. Goteborg,
Sweden: TEEE, pp. 74-80. ISBN: 978-1-4244-2592-1. DOT: 10.1109/WODES . 2008 .
4605925 (cit. on p. 39).

http://dx.doi.org/10.1145/322047.322059
http://dx.doi.org/10.1007/BFb0054178
http://dx.doi.org/10.1007/s100090100048
http://buddy.sourceforge.net
http://buddy.sourceforge.net
http://publications.lib.chalmers.se/publication/140022
http://publications.lib.chalmers.se/publication/140022
http://dx.doi.org/10.1007/978-3-642-21043-3_33
http://dx.doi.org/10.1006/inco.2000.2867
http://dx.doi.org/10.1109/WODES.2008.4605925
http://dx.doi.org/10.1109/WODES.2008.4605925

88 Bibliography

Marques-Silva, Joao P. and Inés Lynce (Dec. 2007). “Towards robust CNF encodings of
cardinality constraints”. In: Principles and Practice of Constraint Programming—CP
2007. Vol. 11. Lecture Notes in Computer Science 3. Springer. Chap. 35, pp. 483~
497. DOI: 10.1007/978-3-540-74970-7_35 (cit. on p. 76).

Marques-Silva, Joao P., Inés Lynce, and Sharad Malik (2009). “Conflict-Driven Clause
Learning SAT Solvers”. In: Handbook of Satisfiability. IOS Press. Chap. 4, pp. 131-
153. 1SBN: 9781586039295. DOTI: 10.3233/978-1-58603-929-5-131 (cit. on p. 38).

Marques-Silva, Joao P. and Karem A. Sakallah (1996). “GRASP-A new search algo-
rithm for satisfiability”. In: Proceedings of International Conference on Computer
Aided Design. San Jose, California: IEEE Comput. Soc. Press, pp. 220-227. 1SBN:
0-8186-7597-7. DOI: 10.1109/ICCAD.1996.569607 (cit. on p. 38).

Mateescu, Robert (2011). Treewidth in Industrial SAT Benchmarks. Tech. rep. Cam-
bridge, UK: Microsoft Research. URL: http://research.microsoft.com/pubs/
145390/MSR-TR-2011-22.pdf (cit. on p. 52).

Mateescu, Robert and Rina Dechter (2006). “Compiling constraint networks into
AND/OR multi-valued decision diagrams (AOMDDs)”. In: Principles and Practice
of Constraint Programming-CP 2006. Springer, pp. 329-343. DOI: 10 . 1007/
11889205_25 (cit. on pp. 41, 43).

Mateescu, Robert and Rina Dechter (2008). “AND/OR Multi-valued Decision Diagrams
for Constraint Networks”. In: Concurrency, Graphs and Models. Essays Dedicated
to Ugo Montanari on the Occasion of His 65th Birthday. Ed. by Pierpaolo Degano,
Rocco De Nicola, and José Meseguer. Vol. 5056. LNCS. Springer, pp. 238-257.
ISBN: 978-3-540-68676-7. DOI: 10.1007/978-3-540-68679-8_15 (cit. on p. 43).

Mateescu, Robert, Rina Dechter, and Radu Marinescu (2008). “AND/OR multi-valued
decision diagrams (AOMDDs) for graphical models”. In: Journal of Artificial
Intelligence Research 33, pp. 465-519. DOI: 10.1613/jair.2605 (cit. on p. 43).

McGuinness, Deborah L. (2003). “Configuration”. In: The Description Logic Handbook.
Ed. by Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,
and Peter Patel-Schneider. Cambridge University Press. Chap. 12, pp. 388 —405.
ISBN: 0-521-78176-0 (cit. on p. 4).

McGuinness, Deborah L. and Jon R. Wright (Sept. 1998). “Conceptual modelling
for configuration: A description logic-based approach”. In: AI EDAM: Artificial
Intelligence for Engineering Design, Analysis and Manufacturing 12.4, pp. 333-344.
ISSN: 08900604. DOT: 10.1017/3089006049812406X (cit. on p. 4).

Mendonga, Marcilio (2009). “Efficient Reasoning Techniques for Large Scale Feature
Models (PhD thesis)”. PhD thesis. University of Waterloo, Ontario, Canada, p. 170
(cit. on p. 43).

Meseguer, Pedro and Alun D. Preece (July 1995). “Verification and validation of
knowledge-based systems with formal specifications”. In: The Knowledge Engineer-
ing Review 10.04, pp. 331-343. 1ssN: 0269-8889. DOT: 10.1017/50269888900007542
(cit. on p. 12).

Meyer, Marc H. and Alvin P. Lehnerd (1997). The Power of Product Platforms. Free
Press, p. 288. ISBN: 978-0684825809 (cit. on p. 3).

Miremadi, Sajed (2012). “Symbolic Supervisory Control of Timed Discrete Event
Systems (PhD thesis)”. PhD thesis. Chalmers University of Technology, p. 252.

http://dx.doi.org/10.1007/978-3-540-74970-7_35
http://dx.doi.org/10.3233/978-1-58603-929-5-131
http://dx.doi.org/10.1109/ICCAD.1996.569607
http://research.microsoft.com/pubs/145390/MSR-TR-2011-22.pdf
http://research.microsoft.com/pubs/145390/MSR-TR-2011-22.pdf
http://dx.doi.org/10.1007/11889205_25
http://dx.doi.org/10.1007/11889205_25
http://dx.doi.org/10.1007/978-3-540-68679-8_15
http://dx.doi.org/10.1613/jair.2605
http://dx.doi.org/10.1017/S089006049812406X
http://dx.doi.org/10.1017/S0269888900007542

Bibliography 89

ISBN: 978-91-7385-765-9. URL: http : //publications . 1ib . chalmers . se/
publication/164981 (cit. on p. 69).

Miremadi, Sajed, Knut Akesson, and Bengt Lennartson (2011). “Symbolic computation
of reduced guards in supervisory control”. In: IEEE Transactions on Automation
Science and Engineering 8.4, pp. 754-765. 1SSN: 1545-5955. DOI: 10.1109/TASE.
2011.2146249 (cit. on pp. 56, 67).

Mittal, Sanjay and Felix Frayman (1989). “Towards a generic model of configuration
tasks”. In: Proceedings of the Eleventh International Joint Conference on Artificial
Intelligence IJCAI-89, pp. 1395-1401 (cit. on pp. 3, 4).

Mohajerani, Sahar, Robi Malik, Simon Ware, and Martin Fabian (June 2011). “On
the use of observation equivalence in synthesis abstraction”. In: 3rd International
Workshop on Dependable Control of Discrete Systems, DCDS-2011, pp. 84-89. DOI:
10.1109/DCDS.2011.5970323 (cit. on pp. 56, 68).

Montanari, Ugo (Jan. 1974). “Networks of constraints: Fundamental properties and
applications to picture processing”. In: Information Sciences 7, pp. 95-132. ISSN:
00200255. DOI: 10.1016/0020-0255(74)90008-5 (cit. on p. 25).

Moskewicz, Matthew W., Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik (2001). “Chaff: engineering an efficient SAT solver”. In: Proceedings of the
38th annual Design Automation Conference. ACM, pp. 530-535. 1SBN: 1581132972.
DOI: 10.1145/378239.379017 (cit. on p. 38).

Muise, Christian, Sheila A. Mcllraith, J. Christopher Beck, and Eric 1. Hsu (2012).
“Dsharp: Fast d-DNNF Compilation with sharpSAT”. In: Advances in Artificial
Intelligence. 25th Canadian Conference on Artificial Intelligence. Ed. by Leila
Kosseim and Diana Inkpen. Toronto, Ontario, Canada: Springer, pp. 356-361. DOI:
10.1007/978-3-642-30353-1_36 (Cit. on p. 46).

Narodytska, Nina and Toby Walsh (2007). “Constraint and variable ordering heuristics
for compiling configuration problems”. In: Proceedings of the 20th international
joint conference on Artifical intelligence. Hyderabad, India: Morgan Kaufmann
Publishers Inc., pp. 149-154 (cit. on p. 45).

Nethercote, Nicholas, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J.
Duck, and Guido Tack (Sept. 2007). “MiniZinc: Towards a Standard CP Modelling
Language”. In: Thirteenth International Conference on Principles and Practice of
Constraint Programming CP-2007. Ed. by Christian Bessiere. Vol. 4741. Lecture
Notes in Computer Science. Springer-Verlag, pp. 529-543. poI: 10.1007/978-3-
540-74970-7_38 (cit. on p. 45).

Neubert, Susanne (1993). “Model Construction in MIKE (Model Based and Incremental
Knowledge Engineering)”. In: 7th European Workshop on Knowledge Acquisition
for Knowledge-Based Systems, EKAW ’93. Ed. by N. Aussenac, G. Boy, B. Gaines,
M. Linster, J.-G. Ganascia, and Y. Kodratoff. Vol. 723. LNCS. Toulouse and
Caylus, France: Springer Berlin Heidelberg, pp. 200-219. 1SBN: 978-3-540-47996-3.
DOI: 10.1007/3-540-57253-8_55 (cit. on p. 7).

Niedermeier, Rolf (2006). Invitation to Fized-Parameter Algorithms. Oxford University
Press, p. 316. 1SBN: 978-0-19-856607-6 (cit. on p. 50).

O’Callaghan, Barry, Barry O’Sullivan, and Eugene C. Freuder (2005). “Generating
corrective explanations for interactive constraint satisfaction”. In: 11th International

http://publications.lib.chalmers.se/publication/164981
http://publications.lib.chalmers.se/publication/164981
http://dx.doi.org/10.1109/TASE.2011.2146249
http://dx.doi.org/10.1109/TASE.2011.2146249
http://dx.doi.org/10.1109/DCDS.2011.5970323
http://dx.doi.org/10.1016/0020-0255(74)90008-5
http://dx.doi.org/10.1145/378239.379017
http://dx.doi.org/10.1007/978-3-642-30353-1_36
http://dx.doi.org/10.1007/978-3-540-74970-7_38
http://dx.doi.org/10.1007/978-3-540-74970-7_38
http://dx.doi.org/10.1007/3-540-57253-8_55

90 Bibliography

Conference on Principles and Practice of Constraint Programming CP-2005. Ed.
by Peter van Beek. Vol. 3709. LNCS. Sitges, Spain: Springer, pp. 445-459. DOI:
10.1007/11564751_34 (cit. on p. 18).

Pan, Guoqiang and Moshe Y. Vardi (2005). “Search vs. Symbolic Techniques in
Satisfiability Solving”. In: 7th International Conference on Theory and Applications
of Satisfiability Testing, SAT 200/, Revised Selected Papers. Ed. by Holger H. Hoos
and David G. Mitchell. Vol. 3542. LNCS. Vancouver, BC, Canada: Springer,
pp. 235-250. DOI: 10.1007/115627695_19 (cit. on p. 43).

Pargamin, Bernard (2002). “Vehicle Sales Configuration: the Cluster Tree Approach”.
In: Configuration Workshop at ECAI-2002. July. Lyon, France (cit. on pp. 21, 40,
42).

Pargamin, Bernard (2003). “Extending cluster tree compilation with non-boolean
variables in product configuration: a tractable approach to preference-based config-
uration”. In: Configuration Workshop at IJCAI'03 (cit. on p. 42).

Piller, Frank T. and Christof Stotko (2002). “Mass customization: four approaches
to deliver customized products and services with mass production efficiency”. In:
IEEFE International Engineering Management Conference 2, pp. 773-778. DOI:
10.1109/IEMC.2002.1038535 (cit. on p. 3).

Pine II, B. Joseph, Bart Victor, and Andrew C. Boynton (1993). “Making Mass
Customization Work”. In: Harvard Business Review (cit. on p. 3).

Pleuss, Andreas, Rick Rabiser, and Goetz Botterweck (2011). “Visualization techniques
for application in interactive product configuration”. In: Proceedings of the 15th
International Software Product Line Conference on - SPLC ’11. New York, New
York, USA: ACM Press, p. 1. 1SBN: 9781450307895. DOI: 10 .1145/2019136 .
2019161 (cit. on p. 75).

Pohl, Richard, Kim Lauenroth, and Klaus Pohl (Nov. 2011). “A performance compar-
ison of contemporary algorithmic approaches for automated analysis operations
on feature models”. In: 2011 26th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE 2011). Lawrence, KS: IEEE, pp. 313-322. 1SBN:
978-1-4577-1639-3. DOI: 10.1109/ASE.2011.6100068 (cit. on p. 43).

Preece, Alun D., Stéphane Talbot, and Laurence Vignollet (Nov. 1997). “Evaluation
of verification tools for knowledge-based systems”. In: International Journal of
Human-Computer Studies 47.5, pp. 629-658. 1SSN: 10715819. pOI1: 10.1006/1jhc.
1997.0152 (cit. on pp. 4, 12, 21).

Prestwich, Steven (2009). “CNF Encodings”. In: Handbook of Satisfiability. Ed. by
Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh. Vol. 185. Handbook
of Satisfiability. Frontiers in Artificial Intelligence and Applications. IOS Press.
Chap. 2, pp. 75-97. 1SBN: 978-1-58603-929-5 (cit. on p. 26).

Ramadge, Peter J.G. and W. Murray Wonham (1987). “Supervisory Control of a Class
of Discrete Event Processes”. In: SIAM Journal on Control and Optimization 25.1,
p. 206. 1SsN: 03630129. DOI: 10.1137/0325013 (cit. on pp. 30, 32).

Ramadge, Peter J.G. and W. Murray Wonham (1989). “The control of discrete event
systems”. In: Proceedings of the IEEE 77.1, pp. 81-98. DOI: 10.1109/5.21072
(cit. on pp. 5, 29).

http://dx.doi.org/10.1007/11564751_34
http://dx.doi.org/10.1007/11527695_19
http://dx.doi.org/10.1109/IEMC.2002.1038535
http://dx.doi.org/10.1145/2019136.2019161
http://dx.doi.org/10.1145/2019136.2019161
http://dx.doi.org/10.1109/ASE.2011.6100068
http://dx.doi.org/10.1006/ijhc.1997.0152
http://dx.doi.org/10.1006/ijhc.1997.0152
http://dx.doi.org/10.1137/0325013
http://dx.doi.org/10.1109/5.21072

Bibliography 91

Reiter, Raymond (Apr. 1987). “A theory of diagnosis from first principles”. In: Artificial
Intelligence 32.1, pp. 57-95. 1SSN: 00043702. DOT: 10.1016/0004-3702(87)90062-
2 (cit. on p. 18).

Robertson, Neil and P.D Seymour (Feb. 1984). “Graph minors. III. Planar tree-width”.
In: Journal of Combinatorial Theory, Series B 36.1, pp. 49-64. 1SSN: 00958956.
DOI: 10.1016/0095-8956 (84)90013-3 (cit. on p. 51).

Robinson, John Alan (Jan. 1965). “A Machine-Oriented Logic Based on the Resolution
Principle”. In: Journal of the ACM 12.1, pp. 23-41. 1ssSN: 00045411. por: 10.1145/
321250.321253 (cit. on p. 21).

Rohloff, Kurt and Stephane Lafortune (June 2005). “PSPACE-completeness of Modular
Supervisory Control Problems”. In: Discrete Fvent Dynamic Systems 15.2, pp. 145
167. 1sSN: 0924-6703. DOT: 10.1007/s10626-004-6210-5 (cit. on p. 30).

Sabharwal, Ashish (Dec. 2009). “SymChaff: exploiting symmetry in a structure-aware
satisfiability solver”. In: Constraints 14.4, pp. 478-505. DOI: 10.1007/s10601-
008-9060-1 (cit. on p. 76).

Sabin, Daniel and Rainer Weigel (1998). “Product configuration frameworks-a survey”.
In: IEEE Intelligent Systems and their Applications, 13.4, pp. 42-49. DOI: 10.
1109/5254.708432 (cit. on p. 3).

Sachenkova, Oxana and Suvash Keshari Thapaliya (2011). Using CSP solvers for
Partial Configuration in Automotive Configuration Problems (Master’s Thesis).
Tech. rep. Goteborg, Sweden: Chalmers University of Technology, p. 42. URL:
http://publications.lib.chalmers.se/publication/155929 (cit. on p. 49).

Sakallah, Karem A. (2009). “Symmetry and Satisfiability”. In: Handbook of Satisfi-
ability. Ed. by Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh.
IOS Press. Chap. 10, pp. 289-338. 1SBN: 978-1-58603-929-5. DOI: 10.3233/978-1-
58603-929-5-289 (cit. on p. 75).

Samer, Marko and Stefan Szeider (2008). “Backdoor Trees”. In: Proceedings of the
Twenty-Third AAAI Conference on Artificial Intelligence - AAAI’'2008. Chicago,
[linois, USA: AAAI Press, pp. 363-368 (cit. on p. 51).

Schubert, Monika, Alexander Felfernig, and Florian Reinfrank (2011). “ReAction:
Personalized Minimal Repair Adaptations for Customer Requests”. In: 9th Inter-
national Conference on Flexible Query Answering Systems FQAS-2011. Ed. by
Henning Christiansen, Guy De Tré, Adnan Yazici, Slawomir Zadrozny, Troels An-
dreasen, and Henrik Legind Larsen. Vol. 7022. LNAT 4. Ghent, Belgium: Springer,
pp. 13-24. DOI: 10.1007/978-3-642-24764-4_2 (cit. on p. 18).

Schuh, Giinther, Michael Lenders, and J. Arnoscht (Jan. 2009). “Focussing product
innovation and fostering economies of scale based on adaptive product platforms”.
In: CIRP Annals - Manufacturing Technology 58.1, pp. 131-134. 1SsSN: 00078506.
DOI: 10.1016/j.cirp.2009.03.097 (Cit. on p. 4).

Simpson, Timothy W., Zahed Siddique, and Jianxin (Roger) Jiao (2006). “Platform-
Based Product Family Development: Introduction and Overview”. In: Product
Platform and Product Family Design: Methods and Applications. Ed. by Timothy W.
Simpson, Zahed Siddique, and Jianxin (Roger) Jiao. Springer. Chap. 1, pp. 1-15.
ISBN: 978-0-387-25721-1. DOI: 10.1007/0-387-29197-0_1 (cit. on p. 3).

http://dx.doi.org/10.1016/0004-3702(87)90062-2
http://dx.doi.org/10.1016/0004-3702(87)90062-2
http://dx.doi.org/10.1016/0095-8956(84)90013-3
http://dx.doi.org/10.1145/321250.321253
http://dx.doi.org/10.1145/321250.321253
http://dx.doi.org/10.1007/s10626-004-6210-5
http://dx.doi.org/10.1007/s10601-008-9060-1
http://dx.doi.org/10.1007/s10601-008-9060-1
http://dx.doi.org/10.1109/5254.708432
http://dx.doi.org/10.1109/5254.708432
http://publications.lib.chalmers.se/publication/155929
http://dx.doi.org/10.3233/978-1-58603-929-5-289
http://dx.doi.org/10.3233/978-1-58603-929-5-289
http://dx.doi.org/10.1007/978-3-642-24764-4_2
http://dx.doi.org/10.1016/j.cirp.2009.03.097
http://dx.doi.org/10.1007/0-387-29197-0_1

92 Bibliography

Sinz, Carsten (2005). “Towards an Optimal CNF Encoding of Boolean Cardinality
Constraints”. In: 11th International Conference on Principles and Practice of
Constraint Programming CP-2005. Ed. by Peter van Beek. Vol. 3709/2005. Lecture
Notes in Computer Science. Sitges, Spain: Springer. Chap. 73, pp. 827-831. DOI:
10.1007/11564751_73 (cit. on pp. 27, 76).

Sinz, Carsten (2006). “Comparing different logic-based representations of automotive
parts lists”. In: ECAI 2006 Workshop on Configuration, pp. 41-43 (cit. on p. 10).

Sinz, Carsten, Andreas Kaiser, and Wolfgang Kiichlin (Aug. 2003). “Formal methods
for the validation of automotive product configuration data”. In: AI EDAM:
Artificial Intelligence for Engineering Design, Analysis and Manufacturing 17.01,
pp. 75-97. 18sN: 0890-0604. DOI: 10.1017/S0890060403171065 (cit. on pp. 4, 13,
21, 39, 44).

Soininen, Timo, Ilkka Niemel&, Juha Tiihonen, and Reijo Sulonen (2001). “Representing
configuration knowledge with weight constraint rules”. In: Spring Symposium on
Answer Set Programming: Towards Efficient and Scalable Knowledge Representation
at AAAI 2001. Ed. by Alessandro Provetti and Tran Cao Son. I. AAAI Press,
pp. 195-201 (cit. on p. 4).

Stallman, Richard M. and Gerald J. Sussman (Oct. 1977). “Forward reasoning and
dependency-directed backtracking in a system for computer-aided circuit analysis”.
In: Artificial Intelligence 9.2, pp. 135-196. 1SSN: 00043702. DOI: 10.1016/0004~
3702(77)90029-7 (cit. on p. 25).

Strannegard, Claes, Simon Ulfsbécker, David Hedqvist, and Tommy Gérling (Oct.
2009). “Reasoning Processes in Propositional Logic”. In: Journal of Logic, Language
and Information 19.3, pp. 283-314. 1SSN: 0925-8531. DOI: 10.1007/s10849-009-
9102-0 (cit. on p. 75).

Subbarayan, Sathiamoorthy (2005). “Integrating CSP Decomposition Techniques and
BDDs for Compiling Configuration Problems”. In: Second International Conference
on Integration of AI and OR Techniques in Constraint Programming for Combina-
torial Optimization Problems, CPAIOR 2005. Ed. by Roman Bartak and Michela
Milano. Vol. 3524/2005. LNCS. Prague, Czech Republic: Springer, pp. 351-365.
DOI: 10.1007/11493853_26 (cit. on pp. 41, 43, 55).

Subbarayan, Sathiamoorthy, Lucas Bordeaux, and Youssef Hamadi (2007). “Knowledge
Compilation Properties of Tree-of-BDDs”. In: AAAI 2007, pp. 502-507 (cit. on
pp. 40, 41, 43).

Subbarayan, Sathiamoorthy, Rune Mgller Jensen, Tarik Hadzic, Henrik Reif Andersen,
Jesper Mgller, and H. Hulgaard (2004). “Comparing Two Implementations of a
Complete and Backtrack-Free Interactive Configurator”. In: CP-04 Workshop on
CSP Techniques with Immediate Application (cit. on p. 40).

Suwa, Motoi, A Carlisle Scott, and Edward H Shortliffe (1982). “An Approach to
Verifying Completeness and Consistency in a Rule-Based Expert System”. In: AT
Magazine 3.4, pp. 16-21 (cit. on p. 21).

Szeider, Stefan (2003). “Minimal Unsatisfiable Formulas with Bounded Clause-Variable
Difference are Fixed-Parameter Tractable”. In: 9th Annual International Conference
on Computing and Combinatorics, COCOON 2003. Ed. by Tandy Warnow and

http://dx.doi.org/10.1007/11564751_73
http://dx.doi.org/10.1017/S0890060403171065
http://dx.doi.org/10.1016/0004-3702(77)90029-7
http://dx.doi.org/10.1016/0004-3702(77)90029-7
http://dx.doi.org/10.1007/s10849-009-9102-0
http://dx.doi.org/10.1007/s10849-009-9102-0
http://dx.doi.org/10.1007/11493853_26

Bibliography 93

Binhai Zhu. Vol. 2697. LNCS. Big Sky, MT, USA: Springer, pp. 548-558. DOTI:
10.1007/3-540-45071-8 (cit. on p. 75).

Thiel, Steffen and Andreas Hein (July 2002). “Modelling and using product line
variability in automotive systems”. In: IEEE Software 19.4, pp. 66-72. 1SSN: 0740-
7459. DOI: 10.1109/MS.2002.1020289 (cit. on pp. 4, 12).

Thiim, Thomas, Don S. Batory, and Christian Kastner (2009). “Reasoning about
edits to feature models”. In: 2009 IEEE 31st International Conference on Software
Engineering, pp. 254-264. DOI: 10.1109/ICSE.2009.5070526 (cit. on p. 4).

Tidstam, Anna (2012). “Developing Vehicle Configuration Rules (Lic thesis)”. PhD
thesis. Chalmers University of Technology. URL: http://publications. lib.
chalmers.se/publication/154850 (cit. on p. 75).

Tidstam, Anna, Lars-Ola Bligard, Fredrik Ekstedt, Alexey Voronov, Knut Akesson,
and Johan Malmqvist (2012). “Development of Industrial Visualization Tools for
Validation of Vehicle Configuration Rules”. In: Proceedings of 9th International
Symposium on Tools and Methods of Competitive Engineering (TMCE’12), p. 14
(cit. on pp. 14, 16, 75).

Tidstam, Anna and Johan Malmqvist (2010). “Information Modelling for Automotive
Configuration”. In: Proceedings of NordDesign 2010. Géteborg, Sweden (cit. on
p. 10).

Trezentos, Paulo, Inés Lynce, and Arlindo L Oliveira (2010). “Apt-pbo: solving the
software dependency problem using pseudo-boolean optimization”. In: Proceedings
of the IEEE/ACM international conference on Automated software engineering -
ASE ’10. New York, New York, USA: ACM Press, pp. 427-436. 1SBN: 9781450301169.
DOI: 10.1145/1858996.1859087 (cit. on p. 19).

Tsai, Wei-Tek, R. Vishnuvajjala, and Du Zhang (1999). “Verification and validation
of knowledge-based systems”. In: IEEE Transactions on Knowledge and Data
Engineering 11.1, pp. 202-212. 18SN: 10414347. DOI: 10.1109/69.755629 (cit. on
pp. 4, 12, 21).

Tseitin, Gregory S. (1968). “On the complexity of derivation in propositional calculus”.
In: Structures in Constructive Mathematics and Mathematical Logic, Part II,
Seminars in Mathematics (translated from Russian). Ed. by A.O. Slisenko. Steklov
Mathematical Institute, pp. 234-259 (cit. on p. 28).

Uckun, Serdar (2011). Meta II: formal co-verification of correctness of large-scale
cyber-physical systems during design. Volume 1. Tech. rep. (cit. on p. 21).

Vahidi, Arash, Martin Fabian, and Bengt Lennartson (Oct. 2006). “Efficient supervisory
synthesis of large systems”. In: Control Engineering Practice 14.10, pp. 1157-1167.
DOI: 10.1016/j.conengprac.2006.02.013 (cit. on p. 56).

VDA 4965 (2010). Tech. rep. Verband der Automobilindustrie (German Association
of the Automotive Industry) / Strategic Automotive Product Data Standards
Industry Group. URL: http://www.vda.de/en/publikationen/publikationen_
downloads/detail.php?id=710 (cit. on p. 7).

Veen, Eelco A. van (1992). Modelling Product Structures by Generic Bills-of-Materials.
New York, NY, USA: Elsevier Science Inc. ISBN: 0444896767 (cit. on p. 14).

Vempaty, Nageshwara Rao (1992). “Solving constraint satisfaction problems using
finite state automata”. In: Proceedings of the tenth national conference on Artificial

http://dx.doi.org/10.1007/3-540-45071-8
http://dx.doi.org/10.1109/MS.2002.1020289
http://dx.doi.org/10.1109/ICSE.2009.5070526
http://publications.lib.chalmers.se/publication/154850
http://publications.lib.chalmers.se/publication/154850
http://dx.doi.org/10.1145/1858996.1859087
http://dx.doi.org/10.1109/69.755629
http://dx.doi.org/10.1016/j.conengprac.2006.02.013
http://www.vda.de/en/publikationen/publikationen_downloads/detail.php?id=710
http://www.vda.de/en/publikationen/publikationen_downloads/detail.php?id=710

94 Bibliography

intelligence AAAI-92. Ed. by Paul Rosenbloom and Peter Szolovits. San Jose,
California: AAAI Press, pp. 453-458 (cit. on pp. 42, 56).

Veron, Mathieu, Hélene Fargier, and Michel Aldanondo (1999). “From CSP to config-
uration problems”. In: AAAT 1999. AAAI Press, pp. 101-106 (cit. on p. 21).

Voronov, Alexey and Knut Akesson (2008). “Supervisory control using satisfiability
solvers”. In: 9th International Workshop on Discrete Event Systems WODES-2008.
IEEE, pp. 81-86. 1SBN: 9781424425938. DOI1: 10.1109/WODES . 2008 . 4605926
(cit. on p. 50).

Voronov, Alexey, Knut Akesson, and Fredrik Ekstedt (2011). “Enumeration of valid
partial configurations”. In: Configuration Workshop at IJCAI-2011. Ed. by Kostyan-
tyn Shchekotykhin, Dietmar Jannach, and Markus Zanker. Vol. 755. Barcelona,
Spain: CEUR Workshop Proceedings, pp. 25-31 (cit. on pp. 41, 50).

Voronov, Alexey, Knut Akesson, Anna Tidstam, and Johan Malmqvist (2012). “Ver-
ification of Item Usage Rules in Product Configuration”. In: 9th International
Conference on Product Lifecycle Management. Montreal, Canada (cit. on pp. 14,
16, 50).

Walsh, Toby (2000). “SAT v CSP”. In: 6th International Conference on Principles and
Practice of Constraint Programming - CP 2000. Ed. by Rina Dechter. Vol. 1894.
Lecture Notes in Computer Science. Singapore: Springer. Chap. 32, pp. 441-456.
DOI: 10.1007/3-540-45349-0_32 (cit. on pp. 27, 28, 43, 76).

Watts, Frank B. (2012). Engineering Documentation Control Handbook: Configuration
Management and Product Lifecycle Management. 4th ed. Elsevier / William Andrew.
ISBN: 978-1-4557-7860-7 (cit. on p. 7).

Williams, Ryan, Carla P. Gomes, and Bart Selman (2003). “Backdoors to typical case
complexity”. In: IJCAI 2003 (cit. on p. 50).

Wing, Jeannette M. (Sept. 1990). “A specifier’s introduction to formal methods”. In:
Computer 23.9, pp. 8-22. 1sSN: 0018-9162. DOI: 10.1109/2.58215 (cit. on p. 21).

Woodcock, Jim, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald (Oct. 2009).
“Formal methods: Practice and Experience”. In: ACM Computing Surveys 41.4,
pp. 1-36. 1ssN: 03600300. DOI: 10.1145/1592434.1592436 (cit. on p. 21).

Yang, Dong, Ming Dong, and Rui Miao (Aug. 2008). “Development of a product
configuration system with an ontology-based approach”. In: Computer-Aided Design
40.8, pp. 863-878. 1SSN: 00104485. DOI: 10.1016/j.cad.2008.05.004 (cit. on
p. 4).

Ziyang, Hu (2010). “Analysis and Presentation of Combinatorics in Product Con-
figuration, Master thesis”. PhD thesis. Chalmers University of Technology. URL:
http://publications.lib.chalmers.se/records/fulltext/128822.pdf (cit.
on p. 75).

http://dx.doi.org/10.1109/WODES.2008.4605926
http://dx.doi.org/10.1007/3-540-45349-0_32
http://dx.doi.org/10.1109/2.58215
http://dx.doi.org/10.1145/1592434.1592436
http://dx.doi.org/10.1016/j.cad.2008.05.004
http://publications.lib.chalmers.se/records/fulltext/128822.pdf

