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DYNAMIC ANALYSIS OF MOORING CABLES

J LINDAHL and A SJOBERG
Chalmers University of Technology, Sweden

ABSTRACT

A finite element model for numerical analysis of the dynamic response of
mooring cables is presented. The model takes into account the elasticity of
the cable, inertia forces, drag forces and frictional forces between the sea
bottom and the cable. The model is capable of handling both two- and three-
dimensional problems. The equations of motion are transformed to ordinary
differential equations by means of the virtual work principle. The cable is
decomposed into elements connected by nodes. For each node the discretized
equations of motion are formulated with the displacement of the node as de-
pendent variable. The equations are then solved by means of a simple explicit
time integration method based on a central difference formula. The description
of the model is considered complete enough to make an understanding of the
construction of the model possible. Calculation examples dealing with a dis-
placement excited mooring cable (chain) are presented where two- and three-
dimensional calculations are compared. The calculation results show that the
risk of obtaining slack, defined as negative strain, grows with increasing
drag force. In a three-dimensional case a relatively long time integration

is required to obtain a steady-state.

A comparison is made with an analytical solution in the case of displacement
excitations out of the plane of the cable as well as with calculation results

presented in the literature.

Second International Symposium on Ocean Engineering and Ship Handling 1983, 1
Swedish Maritime Research Centre SSPA,
P.O. Box 24 001, S-400 22 Gothenburg



NOTATION

Symbol Definition

A Matrix containing shape functions

g Matrix containing functions

(A) Arbitrary time-dependent configuration of the cable (fig. 2.1)

Ai Displacement excitation amplitude

a Constant defined by (4.5)

%2

B %,

CDT Tangential drag coefficient

CDN Normal drag coefficient

CMN Hydrodynamic mass coefficient

C2 Constant, defined by (2.16)

C3 Constant, defined by (2.18)

C4 Constant, defined by (2.20)

gj Connectivity matrix .

Co Damping constant due to internal friction in the cable

ig) Inverse of the mass matrix of a node (k)

¢, Longitudinal wave velocity

¢, Angles defined by (4.23)

<, Tolerance in the friction model (fig. 3.2)

D Water depth

Dy = 2%

D, = i%

do Representative diameter of the cable

5 = 2"

E = A%A

F Global internal force vector in (A)

Fe Frictional force acting at the node (k)

Eo Global internal force vector in (R)

£ = £(1)+ £(2)+ 2(3)

2(1) Hydrostatic and gravitational force vector per unit of un-
stretched length of the cable in (A) and (R)

g‘z) Tangential drag force vector per unit unstretched length
of the cable in (&) _

£(3) Normal drag force vector per unit of unstretched length .of the
cable in (&)

§(4) Hydrodynamic inertia force vector per unit of unstretched
length of cable in (A)

B R R L T E T e ©f

14 — = r = LA

g -8'8

; Gr;vztational acceleration

H Horizontal component of the cable tension in a static case

K Stiffness of the cable

Kf Spring constant

[38]



Symbol Definition
Total unstretched length of cable

1 The unstretched length of the cable in a simplified model
(fig. 4.1)

3 Unstretched length of the cable element j

ljmin Length of the shortest element

l* Nondimensional length of the cable (» 1 for small values of 6)

M Global mass matrix

éj Mass matrix of the element

N(k) Normal force from the bottom acting at a node (k)

ND Number of dimensions

ng» NE Number of elements

o) Global nodal displacement vector from (R) to (A)

pik) Displacement vector of a node (k)

Ej Element nodal displacement vector from (R) to (A)

Pék) Resultant to the forces at a node (k), due to £(1), £(2) and £(3)

R Global external load vector due to £(1), 2(2) and £(3)

(R) A configuration of the cable used as a reference configuration,
chosen as the static configuration due to gravity and hydrostatic
pressure

R Global external load vector in (R} due to £(1{ 2(2) and ;‘3)

R$1) Element force vector due to gravity forces and hydrostatic

—J pressure

542) Element force vector due to tangential drag forces

553) Element force vector due to normal drag forces

Ry Glopal force_vector in (R) due to the sea bottom, simulated as
bilinear springs

ik) Position vector of a node (k) in (A)

Ej Element nodgl position vector in (A}

x, Global nodal position vector in (R}

£oj Element nodal position vector in (R)

s Arc length of the stretched cable to a material point P,
measured in (A) (fig. 2.1)

S . Unstretched length of cable measured to "the beginning"of

J element j (defines the first node of the element for increasing
sg)

5o Un;tretched length of cable measured to a material point P
(fig. 2.1)

T Cable tension in (A)

Tp Displacement excitation period

Tn Eigenperiod

t Time

At Timestep

£ Unit tangent vector to the cable curve pointing in the direction
of increasing arc length measured in (A)

u Displacement vector from (R) to (A)



Symbol Definition

v Relative velocity vector of the water (relative to the cable
in () defined by (2.14))

Ve Water velocity vector

Yoy Water velocity vector for the element in (A)

V. Relative water velocity vector for the element (relative to
J the element in (a))

w Nondimensional displacement vector, = u/l

&Zn'§3n Normal modes

b4 Nondimensional variable defined by (4.9)

X Position vector of the cable in (A) (fig. 2.1)

X, Position vector of the cable in (R) (fig. 2.1)

- 9
Bso

. A
at

- Vector notation

= Matrix notation

o Strain of the cable at the lowest point for an equilibrium
configuration (fig. 4.1)

B Parameter representing the influence of the spring

Y Defined by (4.13c)

Yo Cable mass per unit unstretched length

Y Reduced mass per unit unstretched length of the cable defined

r by (2.13)

ép Global nodal virtual displacement vector

€ Strain of the cable in (A}, defined by (2.2)

€ Strain of the cable in (A), defined by (2.4)

€5 Strain ?f the element in (A), defined by (3.12a)

Ej = eoj+Aej. Strain of the element in (A)

€ Strain of the cable in (R), defined by (2.11a)

éoj Strain of the element in (R) defined by (3.12c)

~ Incremental strain of the cable between the configuration (A)

Ae and (R) .

AEj Incremental strain of the element between configuration (A) and (R)

n Parameter representing the stiffness and the geometrical
properties of the cable

] = 1/a, defining the shallowness of the cable

A Defined by (4.13a)

u Bottom friction coefficient

Ej Local variable over the element j defined by (3.2).
A measure of So for the element

Pr Density of the cable

Pv Density of the water

T Characteristic time

w Angular frequency



1. INTRODUCTION

The purpose of a mooring or a mooring system is to keep the moored vehicle,
e.g. a ship, platform or floating factory, in station. A ship may have a one-
point mooring while platforms normally use a system of mooring lines. For
large structures the mooring lines normally consist of chains or wires. This
study has been carried out with mainly these types of lines in mind.

A floating structure is exposed to the influence of wind, currents, and waves.
Forces generated by wind and currents are normally assumed to be constant.

The forces imposed by the waves may be divided into first-order forces with
the same period as the waves, and second order forces, called slow drift
forces [1]. The drift force is considered as constant in regular waves and
slowly varving in irregular waves. Since the properties of the various forces
differ, the moored structure is exposed to drift and oscillatory motions of
different time scales.

In calculations of the oscillatory motion of large floating structures, the
interaction between the mooring system and the structure is often described
by means of simplified models, i.e. without'coﬁsidering the dynamic response
of the mooring lines [2]. However, even if simplified models normally seem
justified for large structures, the determination of the suitability of
certain assumptions has to be based on an analysis of the properties of the
moored structure and the environmental conditions, such as resonance periods,
wave periods and the mass, damping and stiffness, of the mooring system rela-
tive to the corresponding properties of the moored object. In regular waves
the oscillatory motion of a ship is very little influenced by the response

of a mooring cable if the ship is greater than 1000 tons [3]. In analysis of
the motions of, for example, a one-point moored buoy, a dynamic analysis of
the complete system is much more important. For further discussion concerning
the interaction between the structure and the moorings, reference is made to

[4].

In this study the displacement or the force at the upper end of the cable is
presumed to be known. We are only interested in the forces and the motions of
the cable. The main aspect is thus a detailed dynamic analysis of the mooring
cable, only. Such an analysis constitutes an important step towards safer
anchorage systems.

Cables may be regarded as long and slender structures and cannot as a rule
respond to external loads without a significant change of shape. This property
may give major nonlinear effects. The drag forces acting on the cable give
rise to important non-linear terms in the governing differential equations.
Boundary conditions, as the contact between the cable and the bottom, also
constitute essential non-linearities. Therefore in most cases the solution of
practical problems, with reference to the dynamic response of cables, requires
the use of numerical models implemented on computers. A series of calculation
models have been constructed through the years. A brief review with the
emphasis on mooring cables is given below. The description makes no claim to

5



being complete, but it is believed to be important as a backgrouné to the model
presented in this report.

The most frequently used methods are finite difference methods (FDM}, finite
element methods (FEM), the "method of characteristics" and perturbation methods.

The startiné~point is normally a formulation of the governing partial differ-
ential equations or some related variational formulation. Some researchers
take a shortcut and divide the cable into segments with certain properties.
The equations of motions are then formulated directly as a system of ordinary
differential equations.

The partial differential equations may be discretized both in time and space
and then numerically solved by means of FDM [5,6].Maltuk [7] used Hamilton~”s
principle as a variational formulation and applied FDM in both time and space
in a study of the stress in a towing wire due to an airplane turn. It is also
possible to use the method of characteristics to formulate a number (four in
the case of a two-dimensional problem) of ordinary differential eguations

(the characteristic equations), which may be integrated along their character-
istic directions by means of FDM. A mathematical description of the method of
characteristics can be obtained in [8] and examples of application to cables
in [3,9,10].

Walton and Polachek [11] developed a model where the cable was replaced by a
series of masses attached to a weightless inextensible line. The resulting
ordinary-differential equations were solved by FDM.

Recently, a description of a model [12, 13] has been given, where the cable
could be simulated as a series of N rigid links connected by spherical joints.

Dominques [14] used a model with straight, weightless cable segments (which
may be considered as either rigid or elastic) to obtain the small displacement
dynamic response of statically deformed cable systems. The solution in the
time domain is obtained by a modal analysis technique.

Applications of the finite element method (FEM) to cable problems have been
made by [15-20]. FEM is used for discretization in space to obtain time-depend~
ent ordinary differential equations. Leonard and Recker [15] studied the re-
sponse of sagged cables. The analyses were later extended to cable-nets [16],
and curved elements were introduced [17]. An incremental solution technique

was used.

Johansson [18] formulated FEM based on linear shape functions for a mooring
cable. To obtain a solution in the time domain normal coordinates were intro-
duced in the discretized equations of motion. Because of the non-linear force
term a coupling exists between the equations.

The coupled force terms were decoupled by assuming each to be a function of
time only, over a short interval of time. A trial and error process was then
used to obtain the final state at the end of the interval.

6



Webster [19] used FEM to calculate the static and dynamic response of general
three-dimensional cable structures in a moving fluid. He also used different

techniques to solve the resulting non-linear algebraic equations or non-linear
ordinary differential equations.

In an attempt to minimize the computing time [20], a number of numerical
techniques were compared to determine the dynamic response of a net of electri-
cal high-tension cables. Higher order shape functions were used, both explicit
and implicit time integration procedures were tested.

The perturbation method is used in [21,22]. Goodman and Breslin [21] outlined
a method for the solution of the linearized cable-buoy dynamic equations.
Triantafyllou [22] presents a pertubation method based on multiple-time-scale

expansion for the preliminary design of mooring systems.

Several of the above-mentioned studies deal with the dynamics of underwater
cables from various aspects [3,9,11,12,13,14,18,19,21,22]}. A cable can be
represented by different types of physical models. In the studies cited, the
formulation varies from elasto-plastic models dealing with large strains to
axial-stiff models and from models assuming small oscillation to models accept-
ing larce ones. We are of the opinion that dynamic analyses of mooring cables
require consideration of the elasticity of the cable also in case of small
strains. The elastic model used in this study is consistent with the one in

[20], 4if the strains are small.

The perturbation method offers valuable possibilities of accomplishing rapid
results by means of solutions in the frequency domain or by parametric ana-
lysis. In order to obtain a direct numerical solution of the governing non-
linear differential equations with respect to, for example, non-linear drag
forces (which may be of significant magnitude) methods like FDM, FEM, and the
method of characteristic can be used. When these methods are used, there is

a great need of checking whether the numerical solution is consistent with the
solution of the corresponding differential equations. This is not an easy task
due to the non-linearity of the problem. However, verification of numerical
models requires comparison with known analytical solutions. Comparisons with
solutions obtained by other existing numerical models may strengthen the
confidence in a model. In this study only results from preliminary comparisons

are presented.

In the numerical model presented in this papver, the governing differential

equations have been formulated with the displacements as dependent variables.
The finite element model is used for the discretization of the equations into
a system of time-dependent ordinary differential equations. The time inte-

gration of the equations is carried out by means of a simple explicit numeri-
cal method, which results in easy programming without iterations or solutions
of systems of equations. It also makes it easy to test different formulations

of the model and to make additions to the model.

This study i® part of the work for a thesis performed by the first author.



2. BASIC EQUATIONS

2.1 The equations of motion

A mooring cable is regarded as a long slender structure with negligible mo-
ments and shear forces. The only internal force considered is the tension T,
tangential to the local cable direction.

The equations of motion of a cable in rectangular Cartesian coordinates are
well known [23,24]. They may be written with the unstretched length S, Meas-
ured along the cable from the end point ( Sq = 0) to a material point P, as an
independent variable (Fig. 2.1). Let ds be a small element of the cable meas-
ured in an arbitrary time dependent configuration (A). Assuming the mass of
this element to be constant, we obtain using vector notations,

se a
Yo X~ gg— (TR) - £ =0 (2.1)
o

where Yo is the cable mass per unit of unstretched length, T is the cable
tension, t is the unit tangent vector to the cable curve, x is the position
vector of the point P and gr represents volume forces ;nd surface forces per
unit of unstretched length of the cable. The symbols, *, and ,"*, refer to 3/9t
and 82/8t2 , respectively.

The variables T, E, gr and x are functions of the independent variables

o
L is the total unstretched length of the cable. T is some characteristic

s and time t within the intervals s, € [0,L] and t€ [0, 1], respectively.

time.

The arc length of the stretched configuration to the point P is denoted s.

2.2 The elastic model

For a short element dSO: strain is defined by the equation

€ =3s5"-1 (2.2)
where “= s/aso. The unit tangent vector may then be written

- X~

t = TTe (2.3)

We also introduce the Strain

-2 I P
(s7°=1) = 5(x7-x"-1) (2.4)
which is related to € by the eguation

(1+e)2 = 1428 (2.5)

Let us now assume the cable to follow the constitutive relation

T = KE(1+¢g) (2.6)



where K 1s a constant dependent on the elasticity of the cable. Restricting
the analysis to small strains, 0 < € << 1, we find that

T = KE(1+e) M KEmKe (2.7)

i.e., equation (2.6) follows Hooke”s law, T = Ke. The reason for introducing
Eqg.(2.6) as a constitutive law is to avoid complications in later stages of
the analysis.

Substituting Egs.(2.3) and (2.6) into Eqg.(2.1) now gives

" 3 ~ _
"(0_}_(_-’5;;— (KE?_{} _f‘r““g (2.8)

It has been judged advantageous to relate the displacements of the cable to
some known cable configuration. A reference configuration (R) is thus defined
by the position vector X, (S,), (Fig. 2.1), and the strain Eg(s,).
If u is the displacement and AE is the incremental strain between the actual
configuration (A) and the reference configuration (R),

x =X, (2.9)

€ =F + AF

which substituted into Eqgs. (2.8) and using (2.4) gives
0

. AR\ (e ey - (2.10)
Yol --=BSO (K(E_+AE) (xZ+u”)) £.=20

where
x oo 1 (g - 2.11a
CHS 5 (x”-x% 1) ( )
SO N (2.11b)
A€ 7 4o-u+ X ou

The equations of motion as given by Eqg.(2.10) seem to be consistent with the
ones given in [20] apart from the choice of reference configuration, which in
[20] is chosen as Eo = 0, (They also included temperature effects and elec-
tro dynamic forces).

The reason for the derivation of the equations in this section is that we
wanted to explain the expression (2.7).

2.3 Forces acting at the cable

The force ,ﬁr acting at the cable is composed of gravity forces, hydrostatic

forces, and hydrodynamic forces.

This study is limited to cables in stationary water currents. The water veloc-
ity Y. is assumed to be parallel to the water surface and slowly varying
from the bottom to the surface. The hydrodynamic forces are caused by the
relative velocity between the water and the cable and by the acceleration of



the cable. A summary of different approaches is given in [25].

The Cartesian coordinates Xy ‘and Xq lie in the plane of the sea bottom paral-
lel to the water surface (Fig. 2.1 ). X, is vertical and positive upwards. At
the bottom Xy = 0. The water surface is defined by X, =D , where D is the
water depth.

Hydrostatic force and gravity force

The hydrostatic force at a cable element ds is caused by the hydrostatic
pressure on the surface of the element. For a chain the pressure may be as-
sumed to be distributed all over the surface, including the end faces of the
element, each link being totally surrounded by water.

In the case of a wire this assumption is less exact. A more exact procedure
requires here subtraction of the pressure integral over the end faces of the
element [18,21]. However, the assumption of an element completely surrounded
by water seems justified also for wires. It is believed that the errors induced

by this assumption are negligible in this application.

Each element, ds , is thus regarded as completely surrounded by water. It is
also assumed that the volume of the element remains constant. The resultant
£(1) to the hydrostatic pressure and the gravity forces is then obtained as

the weight of the cable per unit of unstretched length minus the weight of the

displaced water,

£(1) = [0,—Yrg,OJT (2.12)

where
Py, = P,
y_ = KV (2.13)

and Pp is the cable mass density and P, the water mass density.

Hydrodynamic forces

The physical modelling of the hydrodynamic forces is based on the Morison
equation. The model is of the same type as those presented in [18,19].
Johansson [18] also includes the effect of an accelerating flow field.

Webster [19] uses variable drag coefficients depending on the actual flow con-
dition. The vector formulation of the forces may be obtained from [18].

The hydrodynamic forces are formulated for a cable of circular cross-section
with a "drag diameter" do , constant within each element ds . In the case of

a chain, dy is some characteristic length.

The relative velocity between the water and the cable is

e e

Xﬁv—

c (2.14)
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The tangential component v -t gives a drag force, 5(2) , per unit of un-

stretched length, expressed as

£ s oyt (1ee) (2.15)
where

C, = 5 Cpn d_py (2.16)
CDT is a tangential drag coefficient.

In the direction normal to the cable, the relative velocity gives the drag

force 5(3) per unit of unstretched length,
(3)_ o ™
£177= cylv-vetE| (v-v-tE) (1+€) (2.17)
where
S
C3 = 3 Cpy 6Py (2.18)
CDN is a drag coefficient in the direction normal to the cable.

Finally, the acceleration of the cable in the normal direction is assumed to

give rise to the hydrodynamic inertia force §(4) per unit of unstretched
length,
(4) e n2

f ="C4(E d-tt) (1+¢) (2.19)

where
ﬂdoz

C4 = CMNT DV (2.20)
CMN is a hydrodynamic mass coefficient. The coefficients CDT' CDN and
CMN are all considered constant.

The inertia force in the tangential direction of the cable has here been
neglected, even though it should not lead to any major difficulties in the
formulation of the equations. If this force is considered important, the
constant C, in the third term of Eg. (2.21) below may be exchanged for an-

other constant.

2.4 The complete equations of motion

The force j; in Eg. (2.10) is thus the resultant of the forces j(1h §(22£(3)

2(4)

and . Substitution of the corresponding equations and using (2.3) gives

after some algebra
. . Cqp . 5 o . (2.21)
YoltCy (T+e)u = = (U-XT) X7 =5——(KEx") - £= 0 :

where

11



f2£(1)+ £(2)+_f_(3) (2.22)

g(n___ [o’erg'O]T (2.23)
£ el wrnxr —1 (2.24)
(1+¢€)
2(3)- C. (v V- 2(2 ,_‘)2)1/2 (y_.,. (Xazg“) 2&’ 1 2) (1+¢e) (2.25)
(1+€) (1+€g)

x= _}5{‘;4-9;" (2.26)
ve=yv_ -@ (2.27)
(1+6)2 = 1428 (2.28)
=g, + At (2.29)
e =1 rexm -1 ' (2.30)
o} 2 ‘0 =0 ) )

AR = %&"E'*’ x2eu” (2.31)



3. NUMERICAL SOLUTION

3.1 Spatial discretization of the cable

The equations of motion (2.21) are a set of nonlinear partial differential
equations. These equations may be transformed to ordinary differential equa=-
tions by means of the virtual work principle. The use of this principle in
finite element analysis is described in [26].

Let the cable be subject to a small displacement Su in relation to the con-
figuration (A) at time t. The virtual work done by the forces is then:

L
c
4 PR
J{ty u + c 1+l = s (ux")x") -6u - £-6u +
0

(3.1)

+ KEéx“-.8u”}ds - [K&x~ 6u] =0

Eq. (3.1) is obtained by taking the scalar product of Eq. (2.21) and Sdu and
integrating over the unstretched length L of the cable. The last term is
obtained by partial integration. It represents the virtual work performed by
forces acting at the end faces of the cable.

The cable is now decomposed into a number of ne disjointed elements, called
finite elements, with the unstretched length lj. Over the element j, the un-
stretched length s, is expressed by

soE{O,L]
s = s.+ E_.1. € .
o SJ 53 i E] [0,1] (3.2)
Ng

L =231,
j=1 7

where sj defines "the beginning® of the element. By means of Eg. (3.2) the

variable s, is exchanged for Ej, for example 5=g(€j,t) for each element j.

For the sake of simplicity we for the moment assume the last term in Eg. (3.1)
to be zero. This would be the case if the cable was completely free or if
displacements are prescribed for sy=0 and s, =I,. As the elements are disjointed,
we may rewrite Eq. (3.1) using Eq. (3.2)

Ne } C4 X 9x
Ity 4+ c,(1+e)ll - (li+55) 57 * Su
3=1 o o= 4 (1+€)1f ) .BEj
(3.3)
~ 90X

Ke = 3

- F£08 p=bA- . S dE., =0
£ u o+ 1? 353 353 (GE) }1:' E]
J

13



Over each finite element J, all variables are assumed to be continuous and

approximated by the following relations

Lt) = I p.

u(EJ ) é(gj)gj(t)

Ko(gj) = é(gj)on Ej€[0J]

x(E.,t) = A(E.)r. (t)

= 7] = "J"=] j = 1,ne

(3.4a,b,c,d,e,f)

X(Ej,t) _Q_(Ej)yj(t)

zc(gj,t) = é(Ej)zcj(t)

5E(€j,t) = é(éj)ﬁgj(t)

where the matrix A contains the so-called shape functions, which are here

assumed to be linear,

1—53 0 0 Ej 0 0
A = 0 1-g5 0 0 £ 0 (3.5)
0 0 1-Ej 0 0 Ej
and where
Ej = element nodal displacement vector
£oj = element nodal position vector in configuration (R)
£j = element nodal position vector in configuration (A)
Xj = element nodal relative velocity vector
!cj = element water velocity vector
6Qj(t) = element nodal virtual displacement vector
It follows directly from Egs. (2.9), (2.14) and (3.4) that
5% L5 T By
(3.6a,b)

Xj ch - Ej

All the vectors given above have the dimension (6 x 1). The elements have two
nodes, each with three degrees of freedom. The first three components describe

the conditions at one node (so=sj)and the last three at the other node(so=sj+1y.

In order to obtain an easily invertable mass matrix, we make the following

approximation with respect to accelerations and virtual displacements
associated with the inertia forces:

E(Ejrt) = éEj(t) £, 5[0,1]
J (3.7)

6p; (t) 3 = Ting

1y e

Su(Ey ) =

[[F

The matrix is chosen

14



I e
1
S
o
o
S
N
[
o

0 @, 0 0 @, 0 (3.8)
LO 0 ©, 0 0 ©,
where
®f=1 and ®2=O for Ej €fo, 1/21
wf=0 and ®2=1 for Ej €l1/2, 11

The nodal vectors of element j are related to the corresponding global vectors

through the connectivity matrix ¢., for exahple

J

. = C.
By = C4p
To3™ E3%0 3=1m, (3.9)
Sp.= C.6

B4= S50

where p = global nodal displacement wvector,
I, = global nodal coordinate vector in configuration (R), and 8p = global

nodal virtual displacement vector.

The global vectors and the connectivity matrix gj have the dimensions (n x 1)

and (6 x n),respectively, where n is the number of degrees of freedom of the
total system.
Substituting Egs. (3.4), (3.7) and (3.9) into Egq. (3.3) gives

n

e 1 C
T T - T 4 T T =
I f opT Heylylvgrey (1+e))EpCip = S5 [rve. )T, 2255552088
. 3’73
j=1 0
(3.10)
Ke.
- ct1.aTf + clgr, =2 ag, = 0
=7 J= - =J=—] lj J
where
A
-3
G=BB
= MTt {3.11a,b,c,d)
E,= A'a
_ X7
D= 2B
The syn&mﬂ_gT means the transpose of B.

The strain of element j follows from Egs. (2.28)=(2.31), (3.4) ané (3.11b),

(1+e.)" = 1+2;.
J J (3.12a,b)
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PO EP B & -
€03 = 2(12~ojg£oj N
3 (3.12¢,4d)
~ 1 1.7
Bey = 517 Bs€Ry 12 032 By
i j

Since dp may be arbitrary in Egq. (3.10), we obtain the equations of motion

in the following form:

Mp=R - F (3.13)
where M is the mass matrix of the system,
n
_ e
M '32_193;“.‘39 (3.14)
and My is the mass matrix of element j,
1 c
- _ 4 T T
i f{lj(Yo+c4(1+ej))Ez e T, Dpr,riD,} at (3.15)
0

The external force vector R is defined by the second term in Egq. (3.10). With
f according to Eq. (2.22), we obtain

Ng

= TR, H(2 (3)

R =1L CL(R. R,

£l 1=j<_3 By ) (3.16)
where R; )arises from hydrostatic and gravity forces, Eq. (2.23),

(1) 1 T (1)
J1 de (3.17)

2
and.Bé )comes from the tangential drag forces, Eq. (2.24),

(2) 1 T

R.7"= C — sy . D D . .

L3 20 (e 1 l_j 1541 (250924)D x4 Aty (3.18)
w1tﬁ121=éT£- »j( )15 derived from the drag forces normal to the cable, Eq.
(2.25),

1 1/2

(3) T 1

R.7'=c.f 1. (1+e){v E,v m——m———-(vDr) 2y
J 30 J J _321_ (1+€.)212. =Jj=1=
J J
] (3.19)
{E v~ (vID Ly )D, y } d&
=1-=7 (1+€ )2 32 —j=1=
withE; = A'A.

The last term in Eg. (3.10) represents the reaction forces F of the cable

N T 1 Ke
F=rc fg2cr. ac, (3.20)
j=1°j j ==] J

When the matrix A is chosen according to Eg. (3.5), numerical integration is
required only of Egs. (3.18) and (3.19). It also follows from Egs. (3.11) and
(3.12) that the strain Ej is constant along each element j. The equations,

which may look complicated, are further developed before computer implementa-

tion.
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The definition of é by Eq. (3.8) gives a simple mass matrix By - It has the
dimension (6 x 6), and it becomes block diagonal with two matrices (3 x 3)

in the diagonal. The rest of the elements humjare zZero.

3.2 The equilibrium equations

The reference configuration (R) is defined by the global nodal coordinate
vector ry, which is derived from the equilibrium equations. In the case of no
contact with the sea bottom:

3(1)9 F = 0 (3.21)
which are obtained from Eq. (3.13) with p=0 and v,=0, that is for static
conditions. ﬂ1grises from hydrostatic and gravity forces, Eq. (3.17), and EO

is given by

Ng - 1‘KEO.
F = I g5 f——l——Gl. SIy daj (3.22)
3=1 ~ o0 I

If the positions of the ends of the cable (so=&tdare prescribed, the corre-
sponding components are excluded from Eq. (3.21). If instead the supporting
forces are given, these are added to the corresponding components of, for
example,§(1l

In the equilibrium case the sea bottom is considered to be smooth and elastic.
Bilinear elastic springs are introduced at the nodes of the cable. A spring
becomes active only if the node is underneath the bottom. The spring stiffness
is chosen to be proportional to the cable stiffness.

The spring force contributions are assembled in the vector BSG The equilibrium

equations then become
RV_F + & =0 (3.23)

The tilde indicates that appropriate boundary conditionsihave been introduced.

Eq. (3.23) represents a set of non-linear algebraic equations. The equations
are solved with respect to I by means of successively updated reference con-
figurations (not described here) corresponding to a gradually increased level
of strength of gravity forces and hydrostatic forces. When these forces have
reached their full strength, the static configuration Xjhas been achieved.

The calculations are carried out in two dimensions only, since the cable con-
figuration is in the vertical plane. The component of orepresenting the third
dimension is thus put equal to zero. The numerical soclution of Eg. (3.23) is
carried out by means of a quasi Newton method using an algorithm presented

in [27].

The equilibrium configuration constitutes the initial-conditions of the time=-

dependent analysis.
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3.3 The equations of motion

We assume that the reference configuration I, of the cable and the correspond-
ing strains E have been calculated with Eg. (3.23). For the sake of simplic-
ity we also assume prescribed displacements at the boundaries s —0 L of the
cable. The corresponding components of the equatlons of motion are then ex-

cluded (reduced vectors and matrices are denoted ). Premultiplying Eq. (3.13)

by the inverse gx_’” of M, we obtain

21

B=up (3.24)

lme =

where § = - é The mass matrix M is a function of the displacements, while

P is a function of both veloc1t1es and displacements.

The Eg. (3.24) may be considered as the equations of motion of a discrete
system (Fig. 3.1). This fact is made use of when simulating the contact between
the cable and the bottom. The equations were established for a freely movable
cable, and they have to be modified with regard to the possible contact between
the cable and the bottom.

In the time-dependent analysis the sea-bottom is simulated as stiff and energy
absorbing. When a node on the cable hits the bottom, it is assumed that all
kinetic energy associated with the vertical velocity of the node is absorbed.
After the impact the node moves along the bottom affected by frictional forces,
until its vertical acceleration becomes greater than zero. Then the node is

presumed to be freely movable again.

The components of Eq. (3.24) associated with node (k) may be written

Bkl i?’pgk’ 12133 (3.25)
where
pék) = displacements of node (k) i=1,2,3
;g) = inverse of the mass matrix of the node {symmetric 3 x 3)
ng) = forces acting at the node (k} 3j=1,2,3

The equation above holds for all nodes (k) situated above the sea bottom, i.e.
if ¥5 >0, where T, is the vertical components of the coordinate vector r{ )

o

(In the calculations the bottom is defined within a tolerance level).

When rék)

node moves in the plane of the bottom only. The mass matrix is assumed to be

&0, contact is obtained between the node and the bottom, and the

unchanged while the equations of motion are modified:

(k) _ (k) (k)
By = 1%11 S92 Sq3 Py
*k)
0 Ci2 Coy Cyg P2 (3.26)
.. (k) o pik)
P3 €13 C23 ©C33 3

with
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éék) = 0
*(k) _ ,(k) (k)
P2 = P2 + N

(k)

N normal force from the bottom acting at the node (k).

To the third component of the force vector has been added a frictional force

* (k) p (k)

Py 3 *Fg (3.27)

The formulation of the frictional force Ff appears from (Fig. 3.2).

From Eg. (3.26) follows that

*(k)_ .
P, "=

(k)

1 *(k)
—:—~—(c12P1 + c,,P

%57 23F3 ) (3.28)
which becomes equal to zero if both of the elements adjoining the node lie

. on the bottom. Then, the normal force equals the resultant to buoyancy forces
and gravity forces acting at the node. Egs. (3.26)-(3.28) are valid until

52 kg oaccgrding to Eg. (3.25), which means that a force again may lift the
node fxom the bottom.

By using the three-dimensional form of the inverse of the mass matrix in Eq.
(3.26), we can use the same formulation whether the node is in contact with
the bottom or not. The equations of motion are always formally written oOn

the form

s _ [fi= 2

P = j(p.p) (3.29)
The equations are solved by means of an explicit time integration method.
Assume that p at time t and p at time t and t-At/2 are known. The accelerations
at time t can then be calculated from Egq. (3.29),

st ~t

3= f(p%. 55 (3.30)
Then, by means of a central difference formula, we calculate

ét*-At/Z: ét"At/2+ At ét (3.31)

and by extrapolation, we find

ét+At= ét+At/2+ %(§t+At/2‘ Et—At/2) (3.32)
Finally, the displacements are found by the central difference formula

~ ~t v

pErAt. 5ty ap ptrOL/2 (3.33)

The central difference formula as used in Egs. (3.31) and (3.33) seems favour-
able from the point of view of stability of heavily damped systems. The funda-
mental limit on the time step At in this application is (for very high values

of CDN and C however, still smaller values of At have to be used),

DT’

At < lj min/cl (3.34)
where

%jmin length of the shortest element

¢y /E7?; = longitudinal wave velocity in the cable

Egs. (3.31)=(3.33) have been used earlier for cables in connection with towing
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by airplane [7].

An explicit integration method may seem inefficient compared to an implicit
solution of Eq. (3.29) considering the small time step required by the explicit
method. However, the calculation effort per time step is much less for this
method. It leads to simpler and smaller program packages and less complicated

programming, which makes testing of different calculation models easier.

The greatest part of the calculation effort is in our case associated with
the setting up of the mass matrix, Eg. (3.15) and its inverse and with the
calculation of the drag forces, Egs. (3.18) and (3.19). However, in many cases

it might not be necessary to update these at each time step.

For a heavy cable the mass of the cable always dominates in the mass matrix.
In the case of small rotations and strains, it should then be possible to use
the mass matrix calculated for the equilibrium configuration, that is, to ex-
change r. and ejforggojand ﬂay respectively. However, different possibilities

J
of reducing computer time have to be examined from case to case.
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4, UNDAMPED FREE VIBRATIONS OF A CABLE SUPPORTED ON A SPRING

Free vibrations of cables and strings have been subject to extensive studies
[8,28,29,30,31]. We will here discuss free, undamped small amplitude oscilla-
tions of a relatively straight (shallow) cable (see (Fig. 4.1}), using basic
assumptions presented in [31], where general theories for vibrations of a
shallow cable and their application to a "parabolic" cable with fixed support
points can be found.

In Section 5.1 a comparison is presented between eigenperiods calculated
according to the analytical model given in this section and those calculated
by means of the finite element method (FEM). The latter method will, however,
not be discussed in this report. It is more general and requires fewer assump-

tions. The agreement between the two methods is nevertheless good.

Consider Eg. (2.10) and replace £r with §(1) (buoyancy forces and gravity
forces G- O (R(B x 7 g ! _oe (1)
)y 3sO(K(Eo+A€)(§o+3 )) - £ 0 (4.1)

The equilibrium configuration is chosen as the reference configuration X
Thus, the equilibrium equations associated with Eq. (4.1) are

3
aso

5 (1 _
(KEOEO) + £ =0 » (4.2)

For small strains EO we may exchange Eqg.(4.2) for the equation

€
] )
— (K
SSO

Tre %o + £ = (4.3)
le]

For small values of €5 it follows from Eg. (2.7) that EONEO, and therefore
the solutions of Egs. (4.2) and (4.3) are anticipated to be similar in charac-
ter. The solution of Eq. (4.3) is well known [32] and less complicated to

handle than Eq. {(4.2), and therefore it is used in this study.

At equilibrium the cable hangs in the vertical plane defined by the coordinate
axes X, and xzrespectively (Fig. 4.1). Origo is placed at the lowest point of

the cable, where also s, = 0. The components of X, are then obtained from Eqg.
(4.3),
s v.ga
: o r
Xoq = a arcsinh (1;)+ < 5o
/550 Y gs? }'
_ L2, .2 r’’o _ (4.4)
x02 =/a +so + 5K a
Xy3 = 4]

where a is a constant. The horizontal component H of the cable tension is

H = yrga (4.5)
The strain is given by
9 2, .2 "
eo == a +so IS Eo : go<<1 (4.6)

We will now use the frequently used assumption that the components of u' are
small. This assumption is satisfied if also the time dependent strains and

21



rotations are small and it defines the designation "small oscillations".

Combining Egs.(4.1) and (4.2) we then obtain, neglecting higher order terms,
Yoo = K gg—-(e u” + x ".u x7) =0 (4.7)

where X, and EO are assumed to be defined by Egs. (4.4) and (4.6), respectively.
The tangent vector §o‘is obtained by differentiation of Eg. (4.4)

%" = a ¥,94
o1 575 K
Sa +so
- = 20 - (4.8)
%02 a XOT
XoB =0

In order to obtain wellknown functions, we exchange the variable S, for the

new non-dimensional variable X,

x = § arcsinh—2 (4.9)
The cable is presumed to oscillate within the interval s,€00,1] and it is con-
sidered as shallow for small values of 6=1/a, Hence, it follows from Eqg. (4.9)
that x€[0,1*], where 1*81, We also introduce

= 8
w=73 (4.10)
Egs. (4.6) to (4.10) then give
- e a aw»] aw,]
Ycosh 6x wal = (o Fral M 1 , Sinh 6x ) =0 (4.117a,b)
ow ow
W 2 sinh 6x sinh® 0x|| —2
2 ox / ax
82w 1
- .. 3
Ycosh(ex)w3 - a—p= =0 (4.12)
ox
where
B 1 1 2
A= cosh 6x (cosh ox t @)
o =1
& 9
- Yl (4.13a,b,c,d)
Y = K
& =R

Eg. (4.12) is uncoupled with Egq. (4.11), which illustrates the well-known fact
that the interaction between the wmotions in the plane of the cable and those
normal to this plane are negligible in this case. Separation of variables in
Eg. (4.12) leads to a modified Mathieu equation. The properties of Mathieu

equations are described in [33].

The boundary conditions used in this example are

£ 3 * %
w1(1 ,t) = wz(l LB = w3(l sE) =0
w1(0,t) = w3(0,t) = 0 (4.14a,b,c)
ow

2 -
3;“(0rt) = sz(Opt)
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where B= Kfl/Yrga and Kf is the spring constant of the cable support, see
(Fig. 4.1). The time-dependent contribution to the tension is neglected in
Eq. (4.74c).

We now assume a shallow cable, i.e. small &-values. Hence, coshéxs1 and Eq.

(4.12) may be simplified to

» 32w3
Yw, = o =0 (4.15)
3 2
ox
Assume a solution of the form
- iwt (4.16)
wa = w3(x)e

where w is the angular frequency. By Eg. (4.15) and the boundary conditions,
Eq. (4.14), we obtain: the eigen modes of oscillations normal to the plane of
the cable

W3n(x)~sin nmnx ; n=1,2,3 .... (4.17)
with the eigenperiods
o = 21/Yo no=1,2,3 ... (4.18)
n ny{y_ga

The solution of Eg.(4.11) is based on the assumptions proposed in [31]. The
cable is assumed to be shallow. We therefore neglect &1 [31]. This seems to
be justified in order to get the first transverse modes. Integration of

Eg. (4.11a) then gives

ow ow 3W2
Gt 4 A (e + 5— Sinhox) = h(t) (4.19)
X X

where h(t) is a time-dependent function and a measure of the contribution to
the horizontal component of the cable tension. The coefficient «, representing
the strain in the lowest point of the cable at equilibrium, is much smaller

than A, which is of the order of magnitude of one.

The first term in Eq.(4.19) may thus be neglected, which is consistent with
E3

the assumptions made in [31]. Integrating Eq.(4.19) for x € [0,1 ] and again

using Eq.(4.19) and Eq. (4.11b) we obtain after some algebra

ES

32 p
oy Y2 -1,2
szcoshex - o +x © coshex‘jw2 coshéx dx =
ax
0
4 1% (4.20a)
x 'Bcoshéx[w,+w.,sinhéx]
1772 0
where %
1
= 2 tax (4.20b)
0

For a direct solution of Eqg.(4.20), reference [33] is of interest. The per-

turbation method may also be applied (see [34]).
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Eq. (4.20) is derived by neglecting the acceleration Gj,and it is thus wvalid
only for small values of €. We restrict the analysis to first order terms,

i.e. cosh@x~1. Using the boundary conditions Eq. (4.14), we obtain

2 1*

.. Wy 199

YW, = o=+ x '0° f w, dx = 0 (4.21)
o 0

After separation of space- and time-dependent variables, an equation of simi-

lar type as the one presented for a parabolic cable in [31] is obtained.

By the separation of variables, using the boundary condition Eg.(4.14a,c) and

assuming a harmonic solution, we find the eigenmodes of oscillations in the

pPlane of the cable:

[

(1=cosc_) sincn+ -Z?coscn
1 ~ ———————ginc_x + cosc. x = ——m b
2n ch n n Ch (4.22)
inc_+-—= si 42
s nt g ne, B

n=1,2,3.....

where <y is obtained from the transcendental equation

2
c (nc2 =1+Jﬁsinc + S—1'3(r1c2=-==1)cosc: + 2(1=cosc_) = 0 (4.23)
n n B n B n n n :
n=1"2,3.....
where
n = i% (4.24)

The eigenperiods are

27l {Yo
T = == | e & n=1%2,3..... (4.25)
n cn yrga 4 ’

*

1 has been approximated to be 1.0 in Egs.(4.22) and (4.23). x in Eq. (4.24)
*

can be calculated using Egs.(4.13a) and (4.20b) with 1 =1. The unstretched

length of the cable is sowxl.

Egs. (4.22) and (4.23) may be solved for different values of the parameters n
and B, where n expresses the stiffness and the geometry of the cable and B
describes the effect of the spring support. It should be noted that Egs.(4.22)
and (4.25) are valid for the first eigenmodes only.
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5. CALCULATION EXAMPLES

Three calculation examples have been selected to demonstrate the potential of
the presented simulation model. The first example deals with a displacement-
exited mooring cable (chain). The starting point of the calculation is an
equilibrium position generated by constant wind and drift forces acting on the
moored structure. Because of the influence of the waves, the structure oscil-
lates around the reference position. A simplified regular oscillating displace-
ment at the upper end has been chosen. The vertical displacement has been
disregarded in this example. In the second example comparison is made with an
analytical solution in case of displacement excitations out of the plane of

the cable.

The third example constitutes a comparison with calculation results presented

by Johansson [18].

5.1 Displacement-excited mooring cable

Consider a mooring cable (chain) with an equilibrium configuration according
to Fig.5.1. The cable hangs in the vertical plane defined by the coordinate

axes x, and Xy 4 respectively. The following data are assumed:

i

total unstretched length, L = 1200 m

link diameter, do = 0.076 m
stiffness, K = 5-108 N
density, p, = 7800 kg/m>
mass per unit of unstretched length,Yo = 135.35 kg/m
water depth, D = 120 m
density of water, Py = 1000 kg/m3
bottom friction coefficient, yu = 1.0
tolerance according to Fig.3.2, cy = 0.2 m/s

In order to get some qualitative ideas about the behavior of the cable, we

will use the analytical model presented in Section 4 to calculate the eigen-
periods of a corresponding undamped system. The part of the cable, which is
laying on the bottom, is assumed to be replaceable by a spring support at the
touchdown point, (Fig. 4.1 ). This is, of course, a gross simplification of

the problem.

The unstretched length from the touchdown point to the upper end of the cable
is 1=507.8 m. The constant a given by the elastic catanary, Eq.(4.4), is
equal to a = 1016.9 m, then @ = 1/a = 0.5. The strain at the lowest point of
the cable is calculated by Eq.(4.13d), a = 0.00235, and also n by Eq.(4.24).
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Eigenperiods calculated for different conditions by the analytical model and

by the finite element model are compared in Tables 5.1 and 5.2.

Table 5.1 Eigenperiods in seconds for oscillations .in the plane of the cable
Mode Analytical model a) Finite element model
Fixed support, Weak elastic Fixed support
B = o spring, B =0 B = o
7.7 5.8
4.5 4.5

3.2 3.6 3.4

a) Egs. (4.23) and (4.25)

Table 5.2 Eigenperiods in seconds for oscillations out of the plane of
the cable
Mode Analytical modela) Finite element model
10.9 11.4
5.5 5.7
3.6 3.8

a) Eg. (4.18)

The figures presented in the tables should give a fair idea about the magni-
tude of the resonance periods of a displacement-excited cable with low damping.

Possible resonance periods will normally increase due to damping.

The damping effect of the drag forces will be demonstrated later on in this
section. The higher period values obtained by means of the finite element
method may partly be explained by the inclusion of the hydrodynamic mass in
this model. However, drag-damping is excluded.

In the time-dependent simulation the following displacement was assumed at the
upper end of the cable.

1#
()

il

ui(L,t) = A‘l tk51n 7 t t<tk
p (5.1)
(L,t) = A,.sin 2" ¢ t>t
Uyt Tl = Ay810 7 7tk
p
i=1,3
u, (L,t) =0

Calculations have been made for different values of Ai, Tp and tk (see Table
5.3). The displacement functions for case 1, 2, and 3 are shown also in
Figs. 5.2 and 5.3.
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Table 5.3 Combinations of parameter values used in the simulations

Calculation ND NE A A

1 3 DN DT mn fx Tp At Slack
case (m) (m) (s) (s) (s8)
1 3 40 5.08 2.1 2.5 0.5 45 15 0.01 Yes
2 3 40 5.08 2.1 1.0 0.2 45 15 0.01 No
3 3 40 5.08 2.1 0.5 0.1 45 15 0,01 No
4 3 40 5.08 0.0 2.5 0.5 3.8 45 15 0.01 Yes
5 2 20 5.08 - 2.5 0.5 45 15 0.01 Yes
6 3 40 5.08 0.0 2.5 0.5 3.8 40 20 0.01 No
ND = 2 two-dimensional calculation
ND = 3 : three-dimensional calculation
NE : number of elements of equal length (see Fig.5.4)

At is calculated from Eq. (3.34).

Different values were assumed for CDN and CDT (see Table 5.3). The coefficients
are related to the link diameter dO of the chain. There seems to be a lack of

relevant experimental studies with regard to chain profiles.

The calculations 1, 4, and 5 were performed with an excitation period T_ = 15s
and with high values of the drag force coefficients. In all three cases, slack
(negative strain, e<o) was obtained after 53s, see Table 5.4. The calculations

were then terminated.

Table 5.4 Summary of slack appearence
Calculation ND NE Slack appeared Touchdown point
case in element at time at node number
number (s)
1 3 40 8 53.6 24
40 7 53.6 24
5 2 20 8 53.2 13

The tension in the upper end element was practically egual in all three cases
(1, 4 and 5). Case 1 is shown in Fig. 5.5. The reason that the force is the
same, irrespective of the calculations being two- or three-dimensional may be
explained by small strains and rotations. Oscillations out of the plane of the

cable then give negligible contributions to the tension (see Section 4).

Fig. 5.5 displays the tension in the upper end element for different values of

the drag force coefficients, CDN and CDT'

of the coefficients have been used, the force may be regarded as more or less

In case 3, where the lowest values
quasi-static, i.e. the force can be estimated from the elastic catanary. This

seems reasonable also from a comparison between the excitation period (15s)
and the estimated undamped eigenperiods.
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Fig. 5.5 also shows that the tension increases with increasing drag force co-
efficient values. For the highest values used, case 1, slack is obtained. The
obvious conclusion from these numerical experiments is that high drag forces
may give rise to slack conditions, that is, negative strain. We conclude that
the properties of the system have changed radically because of the high drag

forces.

Immediately after a slack situation a longitudinal impact has to be antici-
pated. However, it is not obvious which theoretical model to use under these
conditions. In the case of a chain, it might be justified to assume zero ten-
sion if the strain is negative. This is a frequently used model which is easy
to program. However, we also have to check a basic assumption for the validity

of the equations of motion,
x(sp,t) # x(s;,t) S # 5

that is, different material points on the cable are not allowed to meet. This
criterion may require time-consuming checking procedures. Under certain condi-
tions, it might therefore be justified to use the simpler criterion e > =-1.

However, modeling with regard to slack requires further investigations.

When the excitation period was increased, the tension decreased (case 4 and 6,

see Fig. 5.6). No slack situation appeared in case 6 (Tp = 20s).

In case 2 the tension is (Fig. 5.5) stationary after about 45s. However, this
does not hold for all variables. Figs. (5.7) and (5.8) show the displacement
of node 24 (the touchown point in equilibrium) in the vertical plane (direc-
tion 2) and out of the plane of the cable (direction 3), respectively. The
nodes thus drift in direction 3.

5.2 Comparison with analytical solution

The numerical time dependent solution is compared with an analytical solution
based on the theory presented in Section 4. Assume the touchdown point to be
kept fixed and the cable (same as in sect. 5.1) to be at equilibrium at time
t=0. The upper end is exposed to a displacement excitation out of the plane of
the cable:

. 2
u3(l,t) = A351n Tﬁt
p (5.2)

uz(l,t) = u1(l,t) =0

The cable (counted from the touchdown point to the upper end, 1 = 507.8 m) is
divided into 20 elements. If only lift forces and gravity forces are con-
sidered (CDT = CDN = CMN = 0), an approximate solution may be obtained from
Eg. (4.15) assuming that the oscillations are “"sufficiently small". This sol-
ution is here obtained as a Fourier series with 80 components. Figs. (5.9) and
(5.10) display analytically and numerically calculated displacements at the

midpoint of the cable (sO = 1/2) for two different amplitudes A The excit-

3°
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ation period Tp is 15s.

According to the linear theory the tension in the cable is presumed to be
constant and equal to the static one, in the case of small vibrations out of
plane of the cable. The numerical solutions resulted in the following relative

tensions in the upper end element

ax _
Ay = 2.5 m numerical’/ Tstatic = 1°:023
_ ax
Ay = 10.0 m numerical/T = 1,40

static
Thus, large excitation amplitudes result in an increased cable tension.

When the excitation period was changed from 15s to 12s, the increase in cable
tension became considerable and slack appeared. The 12s period is close to the

eigenperiod value of 10.9s estimated by means of linear theory.

The agreement between displacements obtained by the analytical solution and
the numerical solution (Fig.5.9, 5.10) is satisfactory, in spite of the dis-
agreemént in tension. The small discrepancies may be referred to "errors" in
both the analytical solution (too large 6 = 1/a) and the numerical solution

(for example discretization error).

A completely stretched cable and a hanging cable are other examples for which
analytical solutions can be used for comparison. However, we do not know of
any analytic solutions also considering geometrical non=linearities and non-
linear drag forces. Mathematical analysis are in progress for certain cases
[35].

5.3 Comparison with tests presented by Johansson [18].

Johansson [18] presented some calculation tests, one of which has been se-

lected for a comparative test.

The simulation model constructed by Johansson also makes use of a displace-
ment-based finite element method with linear shape functions. (In our model,
an exception is made with regard to linear shape functions in Eq. (3.8) in order
to obtain an easily invertable mass matrix). The time integration method is,

on the other hand, gquite different (for a comparison see [18]).

Data and results presented by Johansson have been transformed into the units and
constants used in our study. Even if the transformation is not entirely exact,

it is accurate enough to make a comparison meaningful.

Consider a cable hanging in water at equilibrium at time t = 0 (see Fig.5.11).
The following cable data are assumed:
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mass per unit of unstretched length, Yo = 24.7 kg/m

stiffness , K =2.28-10%n
unstretched length (calculated by us), L = 1040.94 m
drag force coefficient ’ CDN = 1.4

¢ Cpp = 0.0
mass coefficient ’ CMN = 1.2
density ;P = 5440 kg/m’
diameter ’ do = 0.076 m

The density of water is Py = 1000 kg/m3. The cable is divided into 10 equal
elements according to [18]. The static tension in the upper element was calcu-
lated by the finite element method to be 5.6+10°N.

The calculation example is a two-dimensional problem. The upper end of the

cable is given the following displacement:

u1(L,t) = 1.414 % t < 2s
t
uZ(L,t) = 2.5 3 t < 2s
(5.3)
ui(L,t) = 1.414 t 2 2s
uz(L,t) = 2,5 t > 2s

The upper end is pulled a certain distance at constant velocity for 2 seconds

and then held fixed in the extreme position.

The time step in our calculation is At = 0.02s. Johansson used 0.25s except

for the initial phase when time steps down to 0.01s were used.

Fig.5.12 shows the calculated tension in element 6, counted from the lower end
of the cable. (Johansson [18] presented the dynamic part of the tension which
has been added by us to the static tension). Johansson”s solution is smoother
than ours since he introduced a proportional viscous damping simulating the
internal friction of the cable. The damping constant was given the value

= <108
c, = 2.3°10
had been done, values were found [36] for steel wire ropes of the order of

7 Ns/mz,

Ns/mz. However he reports in [18] that after the calculations

magnitude of Co ™ 1.5-10

Our curve is plotted on the basis of the value calculated at every tenth time
step (the interval is 0.2s). As our calculation does not consider any tan-
gential drag damping (CDT = 0) or any internal damping, longitudinal oscil=~
lations are obtained.

If our curve is smoothed, a good agreement is obtained with Johansson”s sol-
ution. The vertical displacement calculated at the node 6, however, does not
exhibit any significant oscillations (Fig. 5.13).
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6. SUMMARY AND CONCLUSIONS

A numerical simulation model for the calculation of the dynamic response of
mooring cables has been developed. The finite element method is used for the
discretization of the cable into a number of elements, leading to a system of
equations of motion of a discrete system. These equations are solved in the

time domain by means of a simple explicit difference scheme.

The model takes into account non-linearities caused by a change of the geo-
metry of the cable, drag forces, and contact and friction between the cable

and the sea bottom.

A comparative calculation test showed good agreement with results obtained by
Johansson [18]. Reasonable agreement was obtained also with analytical sol=-
utions. However, more systematic analysis must be undertaken in order to test
the convergence of the numerical model with respect to errors due to the

spatial discretization and the time integration method.

An analysis of the properties of a displacement-excited mooring cable (chain)
is presented. The first eigenperiods of the undamped system were estimated by
a simplified model to be lower than the period of the displacement excitation.
In the case of low damping (i.e. small values of the drag force coefficients)
an almost guasi static solution was obtained, which seems reasonable con-
sidering the relative magnitude of the periods. At high damping, slack (i.e.
negative strain) was obtained in the cable at about the same point of time for
different numbers of elements, regardless of whether two- or three-dimensional
calculations were performed. The example shows that the drag forces can have

significant effects on the dynamic response of mooring cables.

Also the calculated cable tension had about the same value in the two-dimen-
sional as in the three-dimensional calculation, which may be explained by the
small displacements in this example. General conclusions concerning the necess-
ity of three dimensional calculations are, however, always difficult to draw
due to the nonlinear character of the problem. Three-dimensional calculation
was found to require a rather long time of integration for "steady-state" to

be obtained.

Further development of the model is planned with respect to the formulation
of the slack condition. In addition, the model will be modified to make poss-
ible an analysis of the effect of geometrical non-linearities. Some experi-
mental studies are also planned.
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Fig. 2.1 Reference configuration (R) and actual configuration (A)
in a rectangular Cartesian coordinate system.
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Fy F¢ = friction force at node k
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3.2 Formulation of the frictional force Ff.
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Fig. 5.1 Equilibrium configuration of the cable.
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Fig. 5.11 Equilibrium configuration of the cable in the

comparative test.
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Fig. 5.13 Vertical displacement at node 6 in the
comparative test.
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