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Abstract 

 

Automobile electrification is one the technological developments, that will commence 

an earth friendly transport system, by mitigating emissions and hopefully lead to a 

less fossil fuel dependent society. With commercial success attained by models like 

Nissan’s leaf and Chevy’s Volt, the consumer market looks promising to assimilate 

vehicle electrification. At present these technologies include HEVs (hybrid electric 

vehicles), PHEVs (plug-in hybrid electric vehicles), EVs (complete electric vehicles).  

A closer look at these technologies will lead us to one of the crucial components of 

electric vehicles, the “batteries”. This component decides one of the key performance 

factors which is the energy storage and usage, which means it is the basis for public 

acceptability. 

The lithium-ion battery chemistries are chosen to fulfill this requirement. Although 

lithium constitutes of a small fraction of the complete battery weight, still its contin-

ued availability in future  is debated among many resource analysts. 

Introduction 

 

Batteries from the hybrid and electric vehicles should be treated both to guarantee 

safe disposal and recover elements of value In the context, this report brings forth - 

present lithium resources and the requirement projections for future. To make sense of 

the projections, a brief about the battery technologies and a survey of batteries used in 

market is also put forth. In the context of resource availability a review of present 

lithium recovery methods, stressing on the need for developing better methods is pre-

sented. 

Lithium ion batteries are popularly used batteries for powering device scale electron-

ics. Over a span of  a decade, they have now taken over what used to be a Ni battery 

market  with stark growth rate and the predictions for future  only seem to establish 

them furthermore  in the battery industry,  Figure 1,(Pistoia 2009) , Figure 2 (Pillot 

2010). The recent development of hybrid vehicle and electric vehicle technology, 

which find the  Li-ion as a promising chemistry however made the resource analysts 

question the future availability and sustainability of this new vehicle battery product. 

The analysis results were conflicting to the point of presenting totally opposite views 

on availability of lithium, Table1,(Paul Gruber 2010). From the selected predictions 

shown below (Tahil 2008), stressed that the produced amount of lithium is not enough 

to sustain the growth rate of the electric vehicle industry projected along with the 

growth rate of the other industries which use lithium as well.  
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Figure 1: The increase in Li-ion batteries in portable devices from 2000-2007, CY- cumulative 

years (Pistoia 2009) 

 

 

Figure 2: Portable rechargeable battery projections by application until 2014 based on current 

annual growth rate +10 %, (Pillot 2010) 

 

Table 1: World total lithium resource and reserve estimates (Mt. Li), (Paul Gruber 2010). 

 

Lithium is the lightest metal in the periodic table (Atomic weight: 6.941   

     ).(Fenton Walter, Esmay Donald et al. 1957) It is silvery and soft to cut. It has a 

low thermal expansion coefficient, (25 °C). These properties make lithium covetable 
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in many industries such as grease, glass industries. It’s high electro-chemical potential 

(3.7 V) and energy density of lithium, that gives Li -ion batteries an edge over other 

battery chemistries. 

1. What is a battery? 

A battery is an electrochemical cell, Figure 3, with an anode, a cathode, and an elec-

trolyte. Batteries can be classified in to primary and secondary depending on their 

utility. Primary batteries cannot be recharged and secondary batteries are rechargea-

ble. For any type of a battery, the materials are so chosen for all the main parts, such 

that all working parameters are optimized, mainly the cell potential. The cell potential 

is defined as the difference between the chemical potential of the anode and cathode 

(Pistoia and Gianfranco 2005). 

 

 

 

 

Figure 3: Schematic of an electrochemical cell  

 

 

 

1.1 primary and secondary batteries 

The introduction of the ‘dry cell’ - a battery in which the electrolyte is a solid/paste, 

marked the beginning of ‘primary batteries’. The batteries that could be used to store 

energy, fit into small electronic devices, were portable and could be replaced with ease 

with minimal cost (Scrosati 1994).  With the requirement which carried over to the power 

storage components due to the development in electronics, that needed to function for long 

periods without having to replace the batteries, the secondary batteries were made. It is 

possible to recharge and re-use secondary batteries for many cycles because of their 

                             

Zinc – copper half-cell reactions (during discharge) 

are shown as an example of a working electrochemi-

cal cell below 

At Cathode (negative) 

Cu
+2

 + 2e
-                 

Cu 

At Anode (positive) 

Zn    Zn
+2

+  2e
- 

Net cell potential; E is the reduction potential 
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reversible charged particle movement (Figure4) within the battery. In order to create such 

reversible cell chemistry with minimal structural disintegration, due to the cycle of charge 

and discharge, new materials had to be made. Electrodes that can undergo deep 

charge/discharge cycles, without any significant loss of capacity, were made possible by 

intercalation
1
 chemistry.  Many of these electrochemically active materials, which are 

able to resist shock failure due to intercalation, are however not good electronic conduc-

tors, so it is necessary to add an electrically conductive material. Hence the active material 

is deposited on to a conductive metal substrate such as Cu or Al. To physically hold the 

electrode together with the substrate, a binder /adhesive is also added. Thus, most 

electrodes of today  are complex porous composites (Whittingham 2004). It is now well-

established that a number of transition metal oxides or sulphides and other materials can 

reversibly incorporate or intercalate lithium into vacant sites in their lattice without 

substantially altering the host structure, for a number of cycles (Vincent 2000). Some of 

the more used secondary batteries are listed in Table2. A comparison of various primary 

batteries and secondary batteries with respect to their energy densities is shown in Figure5. 

It can be noted, Figure 5, that nickel metal hydride and Li-ion battery are both at nearly 

equal levels in terms of their energy density per unit volume, but the Li-ion battery offers 

better energy density per unit weight. The specific energy varies from 100 Wh kg−1 to 

150 Wh kg−1 (Scrosati and Garche 2009) depending on the compound. The newer thin 

film lithium-ion batteries have a range between 300-500 Wh kg−1 (Patil, Patil et al. 2008). 

Because of these attributes lithium and its compounds possess, they have become a 

popular choice for battery materials. 

Table 2: Comparison of different cell potentials for few popular secondary battery chemistries 

(Wakihara 2001) 

Battery System Cathode Electrolyte Anode Voltage (V) 

                        2 

                (aqueous)    1.2 

                (aqueous) Hydrogen adsorbed alloy 1.2 

                                 
               

Carbon 3.7 

                                                           

1 An intercalation process is defined as a reversible topotactic reaction in which the guest 

species occupy empty sites in a solid structure. A topotactic chemical reaction is one in 

which all chemical solid state reactions that lead to a material with crystal orientations 

which are correlated with crystal orientations in the   initial product, so that the initial and 

final lattices are in coherence 

                                            

 



 

 8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: A ragone plot of primary batteries and secondary batteries of various   chemistries 

(Pistoia and Gianfranco 2005) 

 

 

Figure 4: A Li-ion rechargeable battery showing ‘to and fro movement of Li-

ion during charge and discharge cycles (Patil, Patil et al. 2008) 
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1.2 The Li -ion rechargeable battery 

Li -ion batteries (as explained previously) have represented a turning point in the field 

of power sources for a variety of applications because of their desirable characteristics 

(Pistoia 2009), such as high specific energy  and energy density , low self-discharge, 

long cycle life, almost no maintenance, negligible memory effect, higher capacity, 

possibility of miniaturization and very thin form factors. However there are some is-

sues which need to be addressed before they are accepted as large (vehicle scale) bat-

teries. Some of the issues are noted as (Pistoia 2009) relatively need for a protection 

circuit to avoid overcharge and discharge and excessive temperature rise, degradation 

at high temperatures , lower power than Ni–Cd or Ni–MH at low temperatures. How-

ever, it is to be stressed that some of the above drawbacks are being progressively 

reduced with continuous study(Tsang, Sun et al. ; Endo, Kim et al. 2000; Sarre, 

Blanchard et al. 2004; Lestriez 2009) and enhanced battery engineering. 

Figure 4, demonstrates the working of a Li-ion battery.  

 

 

 

1.3 Design aspects of a Li-ion cell 

The conventional designs of the battery are such as the ones shown in Figure6. 

Stacked cells are held together by pressure from the cell container. The lithium-ion 

gel polymer stacked cells are prepared by bonding/laminating layers of electrodes and 

separators together. The separator properties should not change significantly during 

the bonding process. In some cases, the separators are coated to help in bonding pro-

cess, thus reducing the interfacial resistance. The spirally wound cells are made by 

winding two layers of separators tightly along with the cathode and anode layers, re-

sulting in a cathode/ separator/ anode/separator configuration (also called jelly roll). 

Once wound, the jellyroll is inserted into a can, and filled with electrolyte. A header is 

then crimped in to the cell to cover the can from top. In some prismatic cells, the jel-
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lyroll is pressed at high temperature and pressure and then inserted into thin prismatic 

(rectangular) mantels (Johnson and White 1998). It has been shown (Sit, Li et al. 

2004) that the cell-specific energy and energy density are affected significantly by the 

cell geometric shape, the material of the can, the cell discharge voltage, the cell tem-

perature, and the cycle number. The geometric difference between the cylindrical and 

prismatic cells has shown to have caused the prismatic cells to perform as much as 

9% better in cycling tests and with a 12% difference in the cell energy density , even 

though the total volume of prismatic cell was 2% larger among the tested samples, 

Figure 7. 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

    

Figure 6 Schematic of typical:  (a) button cell (primary); (b) spiral wound cylindrical 

lithium-ion; (c) spiral wound prismatic lithium-ion (Arora and Zhang 2004) 
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Figure 7 Average discharge voltages at 0.2 C vs. cycle number for cylindrical (C in graph) and 

prismatic cells(GC in the graph) 

 

A more recent lithium-ion battery design is the thin film battery also called the li-

polymer battery, Figure8 (Patil, Patil et al. 2008).  In order to construct a thin film 

battery, it is necessary to fabricate all the battery components (anode, electrolyte, 

cathode including the current leads) all into multi-layered thin films by suitable tech-

niques. The active solid films are sequentially deposited on a substrate. Usually, the 

active lithium compound used for anode, is prepared by vacuum thermal vapour dep-

osition (VD).  

Solid electrolytes and cathode or sometimes even anode materials of oxides are pre-

pared by various sputtering techniques such as radio frequency sputtering (RFS), RF 

magnetron sputtering (RFMS), chemical vapour deposition (CVD) and electrostatic 

spray deposition (ESD) are also other processes used(Bates, Dudney et al. 2000).  

 

Figure 8 Schematic of layers with in a thin film Li-ion battery 
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1.4 Chemically Active Components of a lithium-ion battery 

The chemically active parts within the lithium-ion cell; the anode, cathode, electro-

lyte, adhesive and additives are discussed briefly below. 

1.4.1 Anode  

Though promising research is being reported on various lithium alloys, tin based 

composites, glasses, at present carbon in various forms ( graphite, hard carbon and 

microspheres)is the most commonly used anode-active material.  

 

Figure 9 Structure of graphite and LiC6 (Inaba, x00Fc et al. 2009) 

 

Graphite, Figure 9,  is built of ABAB layers, which is held together by van der Waals 

forces. Each layer contains a conjugated sp2 bond. When Li-ions move into these 

layers, this layer arrangement changes to AAA2− this arrangement is reversible, al-

lowing to and fro movement of the lithium-ion(Shu, McMillan et al. 1993).  

Thus, graphite serves as the host structure for lithium intercalation and the structure is 

studied to be resilient enough to provide reversibility by allowing easy insertion and 

de-insertion of lithium. In practice, at room temperature, graphite accepts sufficient 

lithium to form      which on reversal of Li-ion movement can deliver 372 

         Lithium charge capacity and cyclic efficiency depends strongly on the 

cross sectional structure of the fibres, such as onion, radial and random structures.  

Thus the new generation anodes use carbon fibres subject to different heat treatment 

processes for better structural incorporations. In particular, mesophase pitch-based 

carbon fibres (MPCFs), Figure 10, exhibit a high degree of anisotropy with regard to 

mechanical, electrical, magnetic, thermal as well as chemical properties. These aniso-

tropies are directly related to the layered structure with strong interlayer interactions 

and very weak van der Waals interplanar interactions between adjacent graphene 

sheets aligned parallel to the fibre axis (Endo, Kim et al. 2000) . 

 A new electrolyte system has been developed, in which it is reported that the use of 

an anode has been avoided completely in the FORTU battery, which is a metal-free 
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system, in which lithium is produced within the battery on charging from the cathode 

system that uses lithium cobalt oxide (G. Hambitzer 2000). This uses the standard 

lithium cobalt oxide cathode material, but the electrolyte is liquid sulphur dioxide 

with lithium tetra-chloraluminate (LiAlCl4) as the electrolyte salt. This solution has a 

freezing point below −80°C and conductivity at room temperature of about 10 times 

that of organic electrolytes. Hence, this system has high power capability. 

 

 

 

 

 

 

 

1.4.2 Cathode  

 

As mentioned in (Whittingham 2004), the requirements for a material to be success-

fully used as a cathode in Li-ion batteries are: It should be readily reducible/oxidize-

able ion, for example a transition metal, should react with lithium in a reversible man-

ner. This necessitates an intercalation-type reaction in which the host structure essen-

tially does not change as lithium is added. It should have a high free energy of reac-

tion with lithium, high capacity, voltage (around 4V). It should also be a good elec-

tronic conductor, hence generally a metal is preferred. Its toxicity should be fairly low 

and its cost should be low. 

 Almost all of the research and commercialization of cathode materials has centered 

on two classes of materials. The first contains layered compounds with an anion 

close-packed or almost close-packed lattice in which alternate layers between the ani-

on sheets are occupied by a redox-active transition metal and lithium then inserts its 

self into the essentially empty remaining layers, Figure 11.a.  

 

 

 

Figure 10 FE–SEM photographs of milled MPCFs with HTT (a) 1000°C, (b) 

3000°C, and (c) high modulus mesophase pitch-based graphite fiber (P-100) 

(Endo, Kim et al. 2000) 



 

 14 

 

 

 

 

 

 

 

 

Figure 11: (Whittingham 2004) (a) Layered structure of (first kind of Lithium-compounds) for 

ex: LiTiS2, LiVSe2, LiCoO2, LiNiO2 ; (b) three dimensional spinel structure; (c) structure of V2O5 

showing the square pyramids sharing edges of the basal planes; (d) Crystal structure of LiFePO4 

(Li, Yao et al. 2008) 

   

 

The first kinds of Li-ion batteries were made used LiTiS2 (Vincent 2000) as cathode 

material, followed by LiCoO2, LiNi1-yCoyO2, and LiNiyMnyCo1-2yO2. The spinels, Fig-

ure 11.b, may be considered as a special case where the transition-metal cat-ions are 

ordered in all the layers (Fergus 2009). The materials in the second group have more 

open structures, like many of the vanadium oxides, Figure 11.c, the tunnel compounds 

of manganese dioxide, and most recently the transition-metal phosphates, such as the 

olivine LiFePO4, Figure 11.d. The first group, because of their more compact lattices, 

will have an advantage in energy stored per unit of volume, while the second group 

compounds such as LiFePO4, are of much lower cost. Some of the preferred chemis-

tries are discussed below.   

 

(a) (b) 

(c) (d) 
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LiCoO2  

One the most popular cathode material for lithium-ion battery is lithium cobalt oxide. 

LiCoO2 forms the α-NaFeO2 structure, a distorted rock-salt structure where the cati-

ons order in alternating (1 1 1) planes. This ordering results in a trigonal structure, the 

planes through which lithiation (intercalation of Li-ion) and de-lithiation (de-

intercalation) can occur, Figure 11.a.  

One of the drawbacks however is that, Cobalt is more costly than other transition 

metals such as manganese, nickel and iron. Other problems with LiCoO2 ; is that it is 

not as stable as other potential electrode materials and can undergo performance deg-

radation or failure when overcharged.  Several reasons have been given for the degra-

dation during cycling. One is that cobalt is dissolved in the electrolyte when the elec-

trode is delithiated during charging, such that less lithium can be intercalated during 

discharge. Another is that the CoO2 layer formed after full delithiation shears from the 

electrode surface, which also results in less capacity for lithium intercalation. In addi-

tion, there is a sharp change in lattice parameter with change in lithium content, which 

can lead to stresses and micro-cracking of the cathode particles.  

LiNiO2 

LiNiO2 (Fergus 2009) has the same structure as of LiCoO2, but is cheaper and has a 

higher energy density (15% higher by volume, 20% higher by weight), but is less sta-

ble and less ordered, as compared to LiCoO2. The lower degree of ordering results in 

nickel ions occupying sites in the lithium plane, which impedes lithiation/delithiation 

and also creates challenges in obtaining the appropriate composition. . Its structure is 

very unstable in the overcharge state and it is difficult to make a perfect structure at 

industrial scale. The addition of cobalt to LiNO2 increases the degree of ordering, 

which leads to nickel ions occupying sites in the nickel/cobalt plane rather than in the 

lithium plane. Thus, LiNi1−x CoxO2, typically containing mainly nickel (x∼0.8), has 

been used to take advantage of the low cost and higher capacity of nickel relative to 

cobalt . 

Li2Mn2O4 

Manganese oxides are among the most popular cathode materials in primary lithium 

batteries due to abundance of manganese; low cost, favorable charge density, rather 

high electronic conductivity, better stability on overcharge and suitable electrode po-

tential(Ohzuku and Brodd 2007). Three-dimensional framework structures of 

LiMn2O4 or the spinel structures have cross-linked channels allowing ion insertion, 

Figure 11.b. The size of the channels must be sufficiently large to accommodate the 

ions. The advantages of three-dimensional frameworks over two-dimensional layered 

structures like LiCoO2 are: the possibility of avoiding the co-insertion of bulky spe-

cies such as solvent molecules, the smaller degree of expansion/contraction of the 
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framework structure upon lithium insertion / de-insertion. The spinel structure is the 

reason this is a more commonly used chemistry for larger batteries. However, com-

pared to the others it suffers from a smaller energy density and a lower chemical sta-

bility, inducing a shorter life especially at high temperature (Whittingham 2004).  

LiFePO4 

The high cost, toxicity (LiCoO2), safety hazards and chemical instability (LiNiO2, and 

LiMn2O4) of the conventional cathode materials prohibits their use in biomedical ap-

plications. A promising class of cathode materials are lithium phosphates (LiMPO4) 

with the olivine structure in which phosphorous occupies tetrahedral sites, the transi-

tion metal (M) occupies octahedral sites and lithium forms one-dimensional chains 

along the [0 1 0] direction. The phosphate most commonly used for the cathode is 

LiFePO4, Figure 11.d, which delithiates to FePO4 as the Fe
2+

 is oxidized to Fe
3+

. 

Some iron ions occupy lithium sites, which results in the formation of Li-ion vacan-

cies to maintain charge. There is a miscibility gap between FePO4 and LiFePO4, so 

the delithiation occurs by growth of a two-phase material rather than a continuous 

change in lithium content (Fergus).The formation of a two-phase mixture establishes a 

fixed activity, which results in a relative flat discharge profile. This makes it a promis-

ing cathode material for lithium rechargeable batteries.  

 

Table 3: Various lithium-ion cathode chemistries with their respective average voltage and ener-

gy densities [83] 

Active Material (Cathode) Average Voltage Energy Density 

LiCoO2   3.7 V 110-190   Wh/kg 

LiMnO2 4.0 V 110-120   Wh/kg 

LiFePO4 3.3 V   95-140    Wh/kg 

Li2FePO4F 3.6V   70-105    Wh/kg 

LiNi1/3Co1/3Mn1/3O2 3.7 V   95-130    Wh/kg 

 

1.4.3 Adhesives & polymers  

The electrodes of a lithium-ion battery (LIB) are composite active materials that need 

to be bound to the conductive substrates. Proper binding is necessary to efficiently 

move the charged particles to the surface of the electrochemically active material par-

ticles. The binder additive is a combination of several polymers and organic additives 

that perform critical multiple roles. Such a complex medium is generally obtained by 

mixing together the active material grains with non-electron-active additives such as a 

very fine powder of conductive carbon and a binder. The carbon additive helps elec-

tronic movement of the charged particles within the composite electrode improves 

electronic contacts between particles in the active layer (Lestriez 2009).Tape casting 

is popular in the electrode manufacturing processes. A slurry of active material, con-
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ductive carbon and binder mixture is prepared through ball milling. This slurry is then 

cast in a slot-die or rolled.  

After drying, composite electrodes are usually pressed down to about 30–40% porosi-

ty using a rolling machine or hydraulic press. This treatment is essential for obtaining 

simultaneously high energy, high rate and good cycling stability. The composite ob-

tained films are porous and electronically conducting. They are then impregnated by 

the liquid electrolyte during the battery assembly. For long-lasting battery operation, 

the composite electrode needs to be chemically and electrochemically stable. It also 

needs to maintain a good mechanical cohesion in the presence of the liquid electrolyte 

and during the volume changes which occur when inserting and extracting    ions 

within the active material grains. 

Polymers with higher electrochemical stability such as poly tetra-fluoroethylene 

(PTFE), or poly vinyl di-fluoride (PVdF) have been most widely adopted as the bind-

er for composite electrodes in Li -ion battery (Babinec, Tang et al. 2007) .A copoly-

mer of vinylidene fluoride with hexafluoropropylene, (PVdF-HFP), is used in both 

polymeric electrolyte and composite electrode of the plastic lithium-ion battery tech-

nology (Tarascon, Gozdz et al. 1996). A significant amount of research has been con-

ducted to replace the PVdF binder, because of its high cost, insufficient mechanical 

properties strong binding strength, low flexibility and stability aspects.  

Also an attempt has been made to switch from the non-aqueous to the aqueous pro-

cessing techniques, to reduce the cost, the safety and due environment concerns asso-

ciated with the use of the organic solvents for PVdF, i.e., N-methyl-2-pyrrolidone, 

NMP. Aqueous binders will thus gradually replaced PVdF for the anodes binding. 

Similar work is being done for cathode as well. 

Examples of other binders  are poly ethyleneoxide (PEO) , poly acrylonitrile-methyl 

methacrylate (PMMA), aromatic polyimides, and polypyrrole for non-aqueous pro-

cessing; gelatin, poly acrylamide-co diallyldimethylammonium chloride (AMAC), 

and polyacrylic acid (PAA) for aqueous processing. Many Combinations of polymers 

have also been proposed for the aqueous processing such as: Carboxy methyl cellu-

lose (CMC), styrene-butadiene rubber latex (SBR latex), and PAA;  acrylonitrile-

butadiene (NBR) rubber latex and CMC; poly acrylic rubber latex (LA132) and CMC, 

ammonium polyacrylic acid (PAA−NH4) and LA132; NBR, CMC and the iso-

octylphenylether of polyoxyethylene (Lestriez 2009). 

1.4.4 Electrolyte 

Progress in lithium batteries relies as much on improvements in the electrolyte as it 

does on the electrodes. The electrolyte provides for the movement of ionic transport 

and electronic transport, and in a perfect battery the Li-ion transport number will be 

unity in the electrolyte. Solid polymer electrolytes are currently the most popular elec-

trolytes for Li-ion batteries. It is because they can offer an all-solid-state construction, 

good mechanical and electrochemical properties, a wide variety of shapes and sizes 
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and a higher energy density, no corrosive or explosives can leak out, and lesser inter-

nal short-circuits (Dias, Plomp et al. 2000) In true solid electrolytes only     ions are 

mobile. Other much less mobile ions in a solid electrolyte are arranged in a crystalline 

or glassy matrix in which     ions move through vacant and/or interstitial sites. This 

type of     transport occurs in inorganic solid electrolytes. At ambient temperatures 

the ionic conductivity of solid electrolytes is poor. In true solid electrolytes the contri-

bution of the counter anion to the ionic conductivity is considerable. The most desira-

ble polymer electrolytes are those formed by solvent free membranes, for example 

poly(ethylene oxide), PEO, and a lithium salt, LiX, like LiPF6 or LiCF3SO3. These are 

also referred to as high molecular weight dry polymers. In all cases, the battery elec-

trolyte film is an amorphous lithium phosphorous oxynitride (Fergus ; Hong H 1977; 

Laudise R 1980; Korepp, Santner et al. 2006; Nakahara, Yoon et al. 2006; Tsujikawa, 

Yabuta et al. 2009), Recently K. Sit et.al., have shown that the crystalline complexes 

PEO: LiXF6 (X = P, As, Sb) demonstrate good ionic conductivity. It has also been 

shown that the conductivity of the crystalline polymer electrolytes may be raised by 

two orders of magnitude by partial replacement of the XF6 ions with other mono or 

divalent anions. Nanoscale inorganic fillers such as Al2O3, TiO2 and SiO2 have been 

proved effective in enhancing the mechanical strength and conductivity of the poly-

mer electrolyte (Bates, Dudney et al. 2000; Kawamura, Okada et al. 2006). 

 

1.4.5 Separators 

Separators main function is to keep the cathode and anode apart to prevent electrical 

short circuits and at the same time allow rapid transport of ionic charge carriers that 

are needed to complete the circuit during the passage of current in an electrochemical 

cell. A separator is a porous membrane placed between electrodes of opposite polari-

ty, permeable to ionic flow but preventing electric contact of the electrodes. There are 

many different types of separators used in batteries; manufactured from cellulosic 

papers and cellophane to nonwoven fabrics, foams, ion exchange membranes, and 

microporous flat sheet membranes made from polymeric materials. As batteries have 

become more sophisticated, separator function has also become more demanding and 

complex. This requires the separators to be strong to avoid any contact between the 

electrodes through the separator. The separator also must not yield and reduce in 

width with either charge or discharge cycles, or else the electrodes may contact each 

other. Separators can be broadly classified into six types micro-porous films, 

nonwovens, ion exchange membranes, supported liquid membranes, solid polymer 

electrolytes, and solid ion conductors (Arora and Zhang 2004). The solid polymer 

electrolyte usually used in thin polymer film Li-ion battery acts both as an electrolyte 

and separator. 
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2. Lithium: Resources & Its applications in other in-

dustries  

Lithium can be found in brines, pegmatites, and sedimentary rocks. Brines containing 

lithium make up 66% of the world’s lithium resource; pegmatites make up 26% and 

sedimentary rocks make up 8%, (Paul Gruber 2010) 

The lithium content on average in eaths crust is about 20 ppm. The lithium content is 

divided between the lithologies and aquatic regimes as: basic rocks 17 ppm lithium, 

intermediate rocks 20 ppm lithium syenite 28 ppm lithium, granite 40 ppm lithium, 

shales 66 ppm lithium, sandstone15 ppm lithium, carbonate rocks 5 ppm lithium, river 

water 3 ppm lithium, seawater 180 ppb lithium;(Dill). In this section the sources of 

reserves, major producers and consumers are presented along with a brief note about 

industries which also use lithium in their products other than the battery industry. 

2.1 Lithium Sources 

Lithium is widely distributed in trace amounts in most rocks, soils and natural waters. 

However, the actual concentration can vary greatly. The different minable sources can 

be broadly classified to rock forming ores and brines. 

2.1.1 Lithium minerals 

Pegmatites are an exceptionally coarse-grained igneous rock with interlocking crys-

tals, normally found as irregular dikes, lenses or veins, especially at the margins of 

large bodies of (solidified) magma flow. Most grains are 1 cm or more in diameter 

and the pegmatite’s composition is usually that of granite. The need for favorable cir-

cumstances such as continued flow of magma with slow cooling has resulted in only a 

small fraction of the world’s pegmatites having high lithium content . Some common 

lithium based minerals are spodumene (8.03%      ), lepidolite (7.7%     ), pet-

alite(4.5%     ) and amblygonite (7.4%     ). It has been studied that concentrations 

exceeding 0.5%      are feasible to extract lithium. 

The pegmatite ore is first crushed and ground to 100% finer than 0.3 mm and cleared 

with caustic, sometimes with sodium sulphide  added as a dispersant. Then the ore is 

conditioned with a collector like oleic acid(Averill and Olson 1978).  But when it is in 

a mineral form such spodumene then the lithium is leached out of the mineral using 

acids such as sulphuric acid and the lithium sulphate is purified by addition of other 

salts and evaporating. 

2.1.2 Lithium Brines 

Brines are mineral salt concentrated waters undergoing evaporative concentration and 

precipitating a sequence of minerals in order of increasing solubility (Risacher, 

Alonso et al. 2003). The brine is pumped from subsurface deposits in dry salt lakes 

for concentration by evaporation, due to the evaporation of water, other salts present 

in the brine precipitate first and get separated. The lithium-containing concentrated 

brine is then precipitated as Li2CO3  by carbonation. The efficiency of the concentra-
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tion depends on the evaporation rate (influenced by average temperature, wind, hu-

midity and therefore of topography (Paul Gruber 2010). 

Electrowinning  

To get pure lithium, electrowinning of the precipitated lithium carbonate from brines 

or pegmatite is used. Lithium metal is extracted by a process in which the the lithium 

is electrolytically reduced from a fused mixed salt of potassium chloride and lithium 

chloride with 40% lithium chloride,(Averill and Olson 1978).  

 

 

Table 4: Ore deposit estimates and Brine reserve estimates around the world in various coun-

tries(1990-2002) (Garrett 2004).Estimated Lithium Reserves of Various Lithium Deposits, 1000 

mt lithium. 

 

Countries Ore Deposits  Brine Lakes Reserves 

Africa (other) >0.3  Salar de Uyuni , Bolivia 5000 

Bikita, Zimbabwe 23  Salar de Atacama , Chile 4300-4600 

Mali 26  Salar de Hombre Muerto 800 

Manono-Kitotolo, Zaire 309  Clayton Valley 115-382 

Namibia 9.8  Zabuye Salt Lake, China 1000 

Argentina 0.2  Qinghai Lake, China 1000 

Australia (Greenbushes) 150  Smackover oilfield brine 1000 

Austria 10  Great Salt Lake 526 

Brazil 3.3  Searles Lake 31.6 

Canada (total) 240.5  Salton Sea 1000 

Bernic Lake, Manitoba 73  Dead Sea 2000 

Ontario, Quebec 139    

China 500    

Portugal 10    

Russia 130    

United States (other) 44.3    

North Carolina 71    

Total 1739 approx  Total  14718 approx 
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Figure 12:  A photo of the Salar2 de Atacama, Chile(Scrosati 1997)(Scrosati 1997)(Scrosati 

1997)(Scrosati 1997)(Scrosati 1997)(Scrosati 1997)(Scrosati 1997) 

 

                                                           

2 A salar is a salt pan, created when water repeatedly evaporates from a shallow lake, leav-

ing behind a crusty layer of salt minerals, which are brilliant white in this image. Unlike many 

salt pans in the region in and near the world’s driest desert, the Atacama Desert, Salar de 

Atacama receives enough rainfall to occasionally be covered by a thin layer of water. The 

water evaporates or percolates through the salt crust to form a layer of brine. The brine in 

Salar de Atacama is rich in lithium 
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2.2 Producers and Consumers 

Although the mineral production is dominated by South America, with more than 

50% concentrated between Chile and Argentina, production companies are dominated 

by the developed countries like Australia, Germany, USA, Canada and Norway ; and 

in that order, (Jungst, G. Pistoia et al. 2001). The published production with respect to 

reserves for 2008-2009 are shown in Table 5.  

Table 5:  World Mine Production and Reserves(1000mt) 

Country 2008  2009 

(estimate) 

Reserves
3
 Reserve Base

4
 

(2007) 

Chile 10,600 7,400 7,500,000 3,000,000 

Argentina 3,170 2,200 800,000 2,000,000 

China 3,290 2,300 540,000 1,10,000 

United States --- --- 38,000 410,000 

Australia 6,280 4,400 580,000 260,000 

Canada 690 480 180,000 360,000 

Portugal 700 490 --- --- 

Zimbabwe 500 350 23,000 27,000 

Afghanistan ---- --- ---- ---- 

World total (rounded) 25,400 18,000 9,900,000 13,800,000 

 

It should be noted that the revised 138 10
8
 mt  seen above, is very low compared that 

quoted by the Lithium-handbook (Table 4). Also the reserve bases have not been up-

dated since 2007 and show an obvious disagreement with reserves in 2009.. 

 

 

                                                           

3 Reserves are that part of the Reserve Base which could be economically extracted or produced at 

the time of determination. The term 'reserves' need not signify that extraction facilities are in 

place and are operative. Reserves include only recoverable materials. 

4 Reserve Base is that part of an identified resource that meets specified minimum physical 

and chemical criteria related to current mining and production practices, including those for 

grade, quality, thickness, and depth.   
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2.3 Other consumers 

The major consumer until 2006, Figure13,was the ceramics industry; The United 

States is at present the leading consumer of lithium minerals and compounds and the 

leading producer of value-added lithium (using) materials, (Jungst, G. Pistoia et al. 

2001). Few of the many utilities of lithium in other industries other than batteries have 

been described below. 

 

Figure 13:  Share of lithium using Industries 

2.3.1 Glass , Ceramics , Enamel Industries  

Lithium is used in many glass and ceramic industries for varied purposes. It reduces 

melting temperatures and improves forming properties. In Pyro-ceramic ware lithium 

additions helps achieve zero coefficient of expansion and improves forming character-

istics. In fibreglass it reduces viscosity, improves continuity of fibre production and in 

safety glasses it helps improve strength. Lithium is also used in optical glass ceramics 

for high performance telescopes requiring extremely low linear thermal expansion. 

Lithium imparts desirable properties to both enamels and glazes. Enamel is a glass-

like coating bonded to a metal. Lithium addition can prevent against forming frits, to 

make aventurine, corrosion-resistant (“glass”) coatings for steel tanks, in high-voltage 

porcelain because of its low coefficient of expansion, leadless glazes for dinner ware, 

opaque and crystalline glazes, and to produce white ware. (Garrett 2004).  

 

 

Figure 14: Examples of glass ceramics for telescopes; left, support; right, 8.6 m dia mirror (Garrett 2004) 
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2.3.2 Grease Industry 

Lithium hydroxide is used in making greases like lithium stearate (Fenton Walter, 

Esmay Donald et al. 1957). About 60% of all industrial greases contained in lithium 

in 1993. Lithium stearate is a matrix or sponge-like gel lubricant where the lithium 

attaches to the metal, and the long-chain multi-hydroxyl end of the stearate molecule 

extends outward in the form of interlocking spirals to hold the petroleum lubricant 

and cushion the wearing surface. Mixtures containing 5–10% of the lithium soap are 

an excellent lubricant for bearing surfaces, since they are almost totally water insolu-

ble, and stable in consistency over a range of shear and temperatures from -55 to 

200˚C. The gel holds a high volume of oil, resists oxidation and hardening, and on 

liquefaction will reform as stable grease upon being cooled. Because of these qualities 

the grease is used over a wide variety of demanding industrial & machine applica-

tions. 

2.3.3 Aluminum Electrolysis 

Lithium is used in the aluminum industry (Garrett 2004) to lower the (electric) reduc-

tion cell’s temperature and reduce the fluorine emissions from the electrolytic cells by 

25–50%. About 1–3% LiF in the bath or 2 kg lithium carbonate/mt of aluminum is 

needed. It. Lithium carbonate reacts with the crayolite (Na3AlF6) “solvent” in the cell 

to form lithium fluoride, which has a very high fluxing ability, electrical conductivity 

and low volatility. Lithium is most beneficial for older plants, where it can reduce the 

energy costs by 5–10%, and bring the cell efficiency up to 90–95%. However, most of 

the lithium was used to initially charge the cells. However, the more modern cells the 

energy efficiency is already at 90–93% and lithium can only add 1–3% greater effi-

ciency. Lithium alloys with aluminum retain high strength even at high temperatures 

up to 204 ˚C and increases the modulus of elasticity by about 8%. 

2.3.4 Air Treatment  

Concentrated lithium bromide brines (54%) are widely used in aqueous solution as an 

absorption medium in  the industrial absorption refrigeration(absorbs heat and uses 

heat to power the cooling systems) (Goldstein, Eckert et al. 2002). These refrigerating 

units are used mainly in hotels, apartment buildings, hospitals, etc. for air condition-

ing and process cooling. Lithium chloride solutions are used in industrial humidity 

control and drying systems of comparable construction. These systems have the added 

advantage that the lithium chloride destroys micro-organisms, bacteria, etc. Anhy-

drous lithium hydroxide and peroxide serve for the removal of carbon dioxide from 

the air (Garrett 2004). 

2.3.5 Clinical usage 

Lithium salts have had a major impact in the medical treatment of bipolar affective 

disorder. Long term treatment of bipolar patients has resulted in considerable reduc-

tion in the re-hospitalization rates for this condition. Lithium clinics provided an early 

model for the psychopharmacologic treatment of individuals with other mental disor-
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ders and the medical approach to the treatment of depression and in some trial cases 

alcoholism and drug abuse (Soares and Gershon 1998; Audet, Carney et al. 2008). 

 Li2CO3 is used in drugs treating asthma, thyroid diseases, granulo-cytopenia, head-

ache, bowel disease, anaesthesiology, cardiology, and sleep disorders (Dunner, 

Neumaier et al. 2000).  

2.3.6 Nuclear and Fusion Reactors 

Lithium carbonate is both a raw material for the solid-state synthesis of 

some nuclear compounds and a pellet detector for estimation of tritium production 

rate in irradiated samples. Lithium as a solid compound, a pure melt, or a molten alloy 

is used for tritium breeding in at least the first generation of fusion reactors. To simu-

late sun's fission reaction and produce energy, we need both deuterium and tritium, 

the latter is not readily available on earth. But it can be produced by bombarding lithi-

um with neutrons (Blink J, Krikorian O et al. 1982).          

   

6
Li + n → 

4
He + 

3
T+ 4.8 MeV             ------- (i) 

 
7
Li + n →

4
He + 

3
T + n - 2.5 MeV           ------- (ii) 

 

The two isotopes of natural lithium contribute to this breeding of tritium according to 

(i, ii) reactions. Lithium is also being used in fusion devices as a coating on vacuum 

vessel walls. It increases plasma performance by reducing impurities sputtering into 

the plasma(Blink J, Krikorian O et al. 1982). Lithium compounds are also used as 

coolants for the walls. 

3. Li -ion batteries for vehicles 

There are many types of vehicles. These range from very large ones such as trams, 

trains, aircrafts, and cargos trucks to small ones such as forklift trucks and golf carts, 

all having different fuel needs. Cars and vans together are responsible for 17% of 

world locomotive emissions, which is higher than the share of aviation  (12%) (Mock, 

Schmid et al. 2010).  

For fuel cell hybrid electric vehicle (FCHEVs) and especially for (EVs), specific en-

ergy consumption is significantly lower than for Internal combustion engine (ICE) 

vehicles, owing to their higher degree of efficiency of energy conversion, Figure15. 

The specific energy density of a battery( X-axis, figure15) is the nominal battery en-

ergy per unit mass, also called the gravimetric energy density,  previously. Batteries 

play a major role as a critical component in many respects, such as energy and power 

capability, life, safe use and cost.  Li -ion batteries can offer superior characteristics as 

mentioned earlier (Chapter2).  
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Li-ion batteries using the chemistries described in Table 2, are under consideration for 

many hybrid and fully electric car batteries. An overview of hybrid and electric cars is 

given below. A brief survey of the fleet of cars, their respective companies is also 

presented along with the chemistry of the battery on board. 

 

Figure 15 Specific energy consumption vs. vehicles types assessed (for a medium size passenger 

car). BEV- battery electric vehicle; CNG-compressed natural gas; D-diesel; EREV- extended range 

electric vehicle; FCHEV-fuel cell hybrid electric vehicle; G-gasoline; HEV- hybrid electric vehicle; 

ICE- internal combustion engine (Mock, Schmid et al. 2010) 

 

3.1 Hybrid Electric Vehicles (HEV) and Plug-in Hybrid vehi-

cles (PHEV) 

The HEV does not need to be plugged into an electrical outlet to recharge. Hybrids use 

a conventional fuel or an alternative fuel along with a battery. Fuel motors switch on 

automatically when the battery gets low, and proceed to charge the battery. Therefore, 

hybrid cars still use gasoline unlike the electric cars.  

A (full) hybrid vehicle allows starting and driving with the electric motor alone. It has 

however limited motor and battery size because of its dependence on conventional 

fuel for power/ even battery charging. There are micro, mild versions of hybrid de-

pending on the battery capabilities. In a full-hybrid system, the following characteris-

tics are present; Power supply to electrically driven accessories, Stop & start, Inactive 

timing system, Power supply for traction purposes; in particular the electric motor 

provides power when torque peaks must be reached. For example, at the start brake 

energy regeneration Regenerative braking uses kinetic energy to recharge the battery 

when the vehicle slows down. An idling or stopped hybrid car automatically uses 

electrical power. Once the car begins to accelerate, it reverts to using the fuel engine. 

Different models of cars vary in terms of when the electric power is used (German 

and Cutler 2004). 

As many as 47 auto-mobile manufacturers and many small scale manufacturers are 

putting out their models of Hybrid electric Vehicles most of which were brought in to 
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market already (2010) and the rest are predicted to be brought in by 2011 (Ritchie 

2001). Although their(various HEV’s) initial battery chemistries are unknown, it is 

noted that most of them are switching to Li-ion batteries (Orecchini and Santiangeli).  

 

Table 6:  Some of the HEV's whose battery chemistry is lithium- based 

Battery 

 Developer 

Chemistry Company (Hybrid) Year 

A123 Doped Lithium phosphate (nano) -Saturn view plug-in 

 

2010 

Panasonic EV  

EnergyJohnson 

Controls or Saft 

Li Ni Co Al Oxide -Toyota Plug-in 

-Mercedes 

-Saturn view plug in 

-2010 

-2009 

-2009 

Hitachi Li/Mn Oxide Future GM Hybrids 2010 

 

 

Plug-in hybrid electric vehicles (PHEV) offer the possibility of recharging the batter-

ies onboard from an electrical socket and the capacity to guarantee all-electric driving 

for a distance that is sufficient at least for daily average urban driving, i.e. from ap-

proximately 15 to above 100 km. It can also run on internal combustion engine (ICE) 

or any other alternative fuel depending on requirement.  

 

 

Figure 16 Typical charge of PHEV discharge cycle; 65% DOD (Axsen, Burke et al.) 

 

In contrast to HEV a PHEV is charged from electricity output and not from fuel com-

bustion within the ICE (Orecchini and Santiangeli). A PHEV can operate in one of 
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two modes: Charge Sustaining (CS) or Charge Depleting (CD) which is illustrated in , 

Figure 16. In practice, the battery’s maximum State of Charge (SOC) may be limited 

to less than 100% , and the minimum SOC constrained to more than 0%, both to pre-

serve battery life and to improve safety. The difference between the maximum and 

minimum SOC is known as the usable Depth of Discharge (DOD), which varies 

across battery and vehicle designs (Axsen, Burke et al.). A comprehensive list of the 

HEV’s put forward by various automotive industries is provided at Annex C (Ritchie 

2001). 

Table 7: PHEV Battery chemistries and their respective qualitative assessment(Axsen, Burke et 

al.) 

Name Description Automotive 
status 

Power Energy Safety Life Cost 

NiMH Nickel-metal 
hydride 

Commercial 
production 

Low Low High High Mod 

LCO Lithium cobalt 
oxide 

Limited pro-
duction 

High High Low Low High 

NCA Lithium nickel 
cobalt and alu-
minum 

Limited  
Production 

High High Low Mod Mod-
High 

LFP Lithium iron 
phosphate 

Pilot Mod-
High 

Mod Mod-
High 

High Low 

NCM Lithium nickel, 
cobalt, manga-
nese 

Pilot Mod Mod-
High 

Mod Low High 

LMS Lithium manga-
nese spinel 

Development Mod Low-
Mod 

Mod-
High 

Low-Mod Low-
Mod 

LMO Lithium manga-
nese oxide 

Development High Mod-
High 

Mod-
High 

Mod-
High 

Mod 

LTO Lithium titanium 
oxide 

Development High Low High High Mod 

MNS Manganese 
titanium 

Research High Mod High Unknown Mod 

 

 

3.2 Complete  Electric Vehicles (EV) 

EV’s use electricity directly as a fuel and the source of electricity can be traditional power 

grid, solar cells or other sources of electricity. Since there is no internal combustion engine 

(ICE) the efficiency is almost 90-95% and vehicles run noiselessly.(Dhameja 2002) There are 

no emissions from EV’s; hence they are environment-friendly (although it depends on the 

source of electricity). Once the charge units are placed and the infrastructure is built, EVs 

may require lesser investment on maintenance (van Vliet, Kruithof et al.). Now many of the 

major manufacturers are gearing up for complete electric vehicle. 

A market study of the EV battery chemistry presented in Table 8, will signify the role of the 

Li-ion battery in the electric car technology. 
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Table 8: Some of the EV's which employ Li-ion batteries (Li, Ge et al. ; Motors ; Pranolo, Zhang et 

al. ; Shin, Kim et al. 2005; Balakrishnan, Ramesh et al. 2006; Nan, Han et al. 2006; Pistoia 2009; 

Wang, Lin et al. 2009) 

Company Model 

Name 

Battery Battery De-

veloper 

Price 

USD 

Vehicle preview Sales 

Sold vs. Estimate 

BYD, 

China 

E6 60kWh 

Lithium -

ion, 

Fe based 

BYD  

 $43k 

 

2900 test lease con-

tracts,as opposed to 

1100 target 

Tesla Roadster -

sport, 

Roadster 

53 kWh 

Li-ion 

 Tesla $109-

59k 

 

1200 as of June 2010 

BMW Megacity 

 

35kWh 

Li -ion 

(Ni-Mn-Co) 

Bosch JV  

– 

due 

2013 

 

 

 

--- 

CODA 

made in 

China 

(US mar-

ket) 

Hafei Sai-

bao 3 

37kWh 

Li-ion 

(LiFePO4) 

Lio Energy 

Systems 

(Coda 

&Lishen 

Power Bat-

tery ) 

 

$40k 

 

9000 in 2010 and 

30,000 there after. 

Mercedes Blue Ze-

roE-Cell 

35kWh 

Lithium 

 --- due 

2011 

 

 

---- 

Ford Focus 23kWh 

Li -ion 

  Ford  

due 

2011 

 

5000-8000 

Volvo C30 24kWh 

Hard carbon/ 

Li -ion 

EnerDel 2011 

 

---- 

Nissan Leaf 24 kWh   

Li -ion bat-

tery 

Automotive 

Energy Sup-

ply Corpora-

tion (AESC ) 

  

$32k 

 

25000 orders for 

delivery in 2011 

confirmed 
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Renault Fluence ZE 22kWh 

Li -ion bat-

tery 

  --------- due 

2012 

 

660 in 2010 as test 

car models 

BMW Mini E 35kWh 

Li -ion 

   Hybrid 

Technologies 

850$/m

onth ; 1 

year 

lease 

 

Only 500 released 

Tayota FT Vn based 

i think based 

on iQ 

Panasoni-c 

EV Energy 

Compan-y 

LTD 

2012 

 

------ 

Subaru R1 e 

 

 

 

 

G4e 

 

Mn/Li-ion 

Batteries 

 

 

Vn based 

lithium-ion 

 

 

 

NEC 

 

 

40 cars in Japan in 

2008,  3000 was the 

target for 2009 

 

------- 

Mitsubis

hi 

iMiEV 16kWh 

Li -ion 

Lithium En-

ergy Japan 

 small 

2009 

$44k 
 

2400 test lease units 

sold 

EnerDel 

(former 

ford) 

Th!nk City 22kWh 

Li-ion , 

zebra so-

dium 

 

EnerDel 

Small 

28kusd 

 

Atleast 60,000 every 

year in only US by 

the end of 2012 

5000in Norway,  

Netherlands,Elkhart 

by 2011 

Chevrolet 

GM 

 Volt 16kWh LG Chem 2010 

 

------ 
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4. Necessity to recycle Li-ion batteries (from elec-

tric vehicles) 

Electric vehicles (EVs) have been considered as a means to meet some of the CO2 

emissions and resource challenges of today's road vehicle system. EVs can be non-

polluting,( if the source of charging  can be derived for alternative sources and not 

conventional fuels) they are more energy efficient than pure internal combustion en-

gine vehicles. However, mineral resource constraints and environmental concerns due 

to excessive mining, can become a severe problem. Large scale EV battery production 

will add to the stress on several metals the battery contains, inclusive lithium.  

4.1 Lithium need 

The lithium-requirement per cell (depending on the cell chemistry) can be of the 

range 0.24-12.7kg  including cathode active material, lithium additive in electrolyte 

and additive anode, Table 9, per battery pack ( 60 – 150 cells), Argonne Laboratory, 

2009, (Gaines 2009). 

Table 9:  Predictions for the lithium-requirement per cell [29]; Lithium - nickel, cobalt, and aluminum - NCA‐

graphite batteries; Lithium-iron and phosphorus - LFP batteries; Lithium-manganese for both the LMO -

graphite and LMO− titanium, LMO‐TiO 

Battery Type NCA-G LFP-G LMO-G LMO-TiO 

Autorangeat 

300Wh/mile 

4 20 40 100 4 20 40 100 4 20 40 100 4 20 40 100 

Li in  

cathode (kg) 

0.34 1.4 2.8 6.9 0.20 0.80 1.6 4.0 0.15 0.59 1.1

8 

3.0 0.29 1.2 2.3 5.8 

Li in 

electrolyte(kg) 

0.04 0.1 0.2 0.55 0.05 0.14 0.26 0.66 0.03 0.09 0.1

7 

0.43 0.05 0.17 0.34 0.85 

Li in anode (kg) 0 0 0 0 0 0 0 0 0 0 0 0 0.30 1.21 2.4 6.1 

Total Li in  

Battery Pack (kg) 

0.37 1.5 3.0 7.4 0.24 0.93 1.9 4.7 0.17 0.67 1.4 3.4 0.64 2.5 5.1 12.7 

 

According to the survey made, Table 8, if the EV production for 2011-2012 reaches 

200,000 EV's, and then requirement for lithium be of the range  48 tonnes – 2.4 thou-

sand tonnes.  This implies that the growth rate of lithium consumption from 2009- 

2011 will be almost 150% considering only EV production, ignoring other manufac-

turing industries. From resources point of view this need for lithium growth will not 

be sustainable only depending on mining sources, Table 7, also taking in to considera-

tion growth in other lithium-using manufacturing sectors. With the need for more 

electric vehicles, the demand for lithium will increase. 

In 1970, there were 200 million cars in the world. In 1990, there were almost 500 mil-

lion, now there are about 600 million cars, and at-least half as many public transport 

vans, military vehicles, goods transport vehicles together. In 2011 (December) 56 

million cars (worldOmeters) have been produced. If green future and minimizing car-

bon dioxide emission is the objective to achieve through electric transportation, then 
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the amount of lithium required to replace as many vehicles by battery run EVs just for 

just this half of year is  above the produced lithium today. Other lithium dependent 

industries will add to the pressure on the lithium market, Figure18 (Dundee 2009) . 

Recycling is a solution which will sustain the lithium-ion battery industry, recycling 

ensures the battery manufacturer with continuous supply of lithium (Baylis), Fig-

ure17. 

 

‘ 

 

 

 

 

 

 

Figure 18: Estimates of the increase in consumption of lithium by various industries 

 

Figure 17: Analysts predict that the world production will not match the need for lithium as early as 2015 (Baylis). 
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4.2 The case of other metals 

The batteries have other metals of value such as cobalt, nickel, aluminum, iron, man-

ganese, titanium. The recovery of lithium will include recovery of these metals as 

well.  

Table 10:  Demand scenario of other metals present in the Li-ion battery (Gaines 2009) 

 

 

Recovery of metals from wastes have been reported (in an early study conducted by 

(Tytgat)) to be better in terms of energy saving resulting in their profitability in com-

parison to mining for minerals and processing the ores for their metallic content (in 

case of lithium, ores with percentages ranging from 0.6-10%, see Chapter 4) .  

 

4.3 Energy Recovery and Environmental Safety 

A battery recycling company (Tytgat) reported that their preliminary research shows 

recycling scenario result in a 51.3% natural resource savings, not only because of de-

creased mineral ore dependency but also because of reduced use of fossil resource 

(45.3% reduction) and nuclear energy demand (57.2%). 

Land filling /dumping batteries is a waste of the metals, also the electrolytes might be 

harmful for earth. The European battery directive has not made a recycling suggestion 

specifically for Li-ion batteries yet but it might be in order very soon judging by the 

introduction of electric cars in to the market and EU’s environmentally responsible 

directives. The present battery directive suggests that the manufacturers should be 

responsible for recycling. A brief summary of the present battery direct is given be-

low.The recovery process has also shown to considerably reduce the release of green-

house gas by replacing recovered metals instead of mineral mining operations for the 

production of new batteries (Tytgat). 

The battery directive (Shin, Kim et al. 2005) is a comprehensive agreement which 

puts forth a number of regulations for the member states for the purpose of ensuring 
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better recycling of batteries and to eliminate any form of environmental pollution by 

producers, distributors, third party and end users due to the carelessness or due to lack 

of information, or regulations. The present directive quotes that the recycling of the 

batteries for hazardous substances is a must and is the responsibility of the producer, 

distributor and economic operators. Few of the regulations which are pertinent to in-

dustrial/automotive batteries have been isolated below for the purpose of this review, 

as Annex A. (Annex III is as quoted in the battery directive, hence the naming se-

quence is left as is, in the original document).  

 

 

 

Figure 19: Preliminary recycling results indicate:  (a) large energy conservation (b) Greenhouse-gas Emission 
reduction - with battery industry sustained by recycling. 

 

 

For the reasons stated above, i.e., metal recovery, energy saving, environmentally 

friendly objectives a review of recycling process specifically for Li-ion batteries has 

been presented below. This review will yet give the reader a perspective and possible 

methods for recycling batteries, if not to the scale of electric car batteries or particu-

larly lithium. 
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5. Li -ion battery recycling processes   

The following recycling processes have been tried and few of them have been com-

mercially established, many times in congruence with each other and more for the 

recovery of Cobalt in device scale batteries. 

The first step in recycling is the stripping and separation of packaging, encasing so as 

to reach the chemically reactive substances, usually the anode, cathode, electrolyte 

and (sometimes) the separators.  

5.1 Physical processes 

Physical processes for recycling include any mechanical processes for the separation 

of materials according different properties such as density, conductivity, magnetic 

behavior, etc. Sometimes thermal processes are used with the production of steel, fer-

romanganese alloys or other metallic alloys. A common mechano-chemical (MC) 

process is a special grinding technique for LiCoO2 chemistries that exposes greater 

surface areas so that the acid leaching is successful for the recovery of  cobalt  and 

lithium. Dissolution process use organic reagents (such as N-methylpyrrolidone) to 

dissolve the adhesive substance usually pVdF (Xu, Thomas et al. 2008). 

5.1.1 Mechanical separation processes 

Inert, dry atmosphere is suitable for mechanical processing of the batteries, as it 

avoids exposing the cell contents to water vapor which can hydrolyze the electrolyte. 

It also reduces the impact of internal short circuits which can be violent in contact 

with oxygen (Lain 2001). Mechanical processes involve crushing, sieving, magnetic 

separation, fine crushing and classification to yield a concentrated material for recov-

ery using other processes. Two stages of crushing and sieving has been noted to give a 

satisfactory separation of the metal-bearing particles from the waste. A magnetic sep-

arator can be used for removal of steel casing. It has been studied (Shin, Kim et al. 

2005) that mechanical separation done before leaching process not only improves the 

recovery efficiency of target metals but also eliminates the need for a purification 

process of the leachate. 

Filtration is used both at the first level of stripping of casing and concentrating and at 

an intermediate step for example to separate pVdF, because it does not dissolve in 

acid solution, remains in the cake after filtration. Also, carbon from the cathode does 

not dissolve in acid solution, and instead it floats on the solution. When defining me-

chanical separation processes the factors that play an important role besides separat-

ing all the components from each other such as metals, organic substances, and inor-

ganic substances is to minimize penetration and cross contamination (Shin, Kim et al. 

2005) . 

5.1.2 Thermal Treatment 

Thermal process usually consists of furnace heating in controlled atmosphere to 100-

150
◦
C to separate out the insolvable organic additives and adhesives. This process is 
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also used as an intermediary step after each step of hot acid leaching. The time of 

heating is not standardized but never exceeds two  hours (Xu, Thomas et al. 2008). 

Sometimes the residues are also heated to separate metallic compounds from organic 

materials.  For example; The solid residue coming from the HNO3 acid leaching of 

spent lithium-ion batteries, consisted of iron, cobalt and nickel hydroxides mixture 

and some traces of Mn(OH)3 (Shin, Kim et al. 2005). They were heated in a muffle 

furnace at 500˚C for 2h to eliminate carbon and organic compounds. 

Though thermal processes are useful for improving the recycling process, issues such 

as recovering organic compounds, purifying the smoke and gas resulting from com-

bustion of carbon and organic compounds and any energy recovery, should all still be 

addressed. 

5.2 Chemical processes 

Recycling through chemical processes include dissolution, acid and or base leaching, 

and precipitation. 

5.2.1 Electrolyte extraction 

The liquid electrolyte is dispersed in the pores of the electrodes and separator. By 

immersing in a suitable solvent for a few hours, the electrolyte can be extracted. After 

separation from the residual solids, the solvent can be recovered by evaporation at 

reduced pressure, leaving pure electrolyte. Several liquids can be used as the extrac-

tion solvent. The main requirements are that the boiling point at reduced pressure is 

below the lithium salt decomposition temperature ( 80°C), and that the material is 

available in an anhydrous state. If the electrolyte does not have volatile additives, the 

thermal treatment stated above is also often preferred to separate out the solvent (Lain 

2001). 

5.2.2 Electrode dissolution process  

The PVDF electrode binder is dissolved in an organic solvent. This process can be 

reversed to recover the electrode particles. The cell pieces are immersed in the sol-

vent, which is stirred, heated to around 50°C. The binder re-dissolves, separating the 

electrode particles from the residual copper, aluminum, steel and plastic. The active 

material particles and substrate metals can be further separated based on their physical 

properties, e.g. density, magnetism. The electrode particles are filtered from the bind-

er solution, which is then concentrated to recover the bulk of the solvent for 

reuse(Lain 2001). 

In a method quoted in (Xu, Thomas et al. 2008) the battery rolls were treated without 

the separation of anode and cathode electrodes with (NMP) at 100
◦
C for 1h and 

Co   was efficiently separated from their support substrate and recovery of the sub-

strate metals both Copper and Aluminum. This method is useful only in case of only a 

certain adhesive agent and electrode rolling method. The solvent used for dissolving 

the PVDF (binder) is N-methylpyrrolidone (NMP)  
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5.2.3 Acid Leaching  

The electro-chemically active material that has been separated from its packaging 

such as plastic, ferrous materials through preliminary treatment step, is leached by an 

acidic solution in order to transfer the metals from the used compound form in to the 

leachate solution. As shown in Table 11. Almost all the experimental results indicated 

that the leaching efficiency of Co is highest in hydrochloric acid (Xu, Thomas et al. 

2008). These experiments are only valid with the LiCo   compound. 

Table 11: Selective leaching (Xu, Thomas et al. 2008) 

Leaching Agent 

mol.l
-1

 
Temperature ◦C Time 

(h) 

S/L ratio 

(g.ml
-1

) 

Reduction agent Result 

4 HCl 80 1 1/10 No agent  100% Li, Co 

2 HNO3 80 2 - No agent 100% Li 

1HNO3 75 1 1/50 1.7% H2O2 85% Li, Co 

 

5.2.4 Solvent Extraction 

Some special extractants were studied to recover cobalt, lithium and copper from bat-

teries; For example di-(2-ethylhexyl) phosphoric acid (D2EHPA), bis-(2,4,4-tri-

methyl-pentyl) phosphinic acid (Cyanex 272 or BTMPPA), trioctylamine (TOA), 

diethylhexyl phosphoric acid (DEHPA) or 2-ethylhexyl phosphonic acid mono-2-

ethylhexyl ester (PC-88A) (Pranolo, Zhang et al. ; Contestabile, Panero et al. 2001; 

Shin, Kim et al. 2005; Nan, Han et al. 2006; Wang, Lin et al. 2009).  

A hydrometallurgical plant involving metal purification/separation by liquid–liquid 

extraction with Cyanex 272 (bis-2,4,4-trimethylpentyl phosphinic acid) as extractant, 

was found to be technically viable to separate base metals from NiCd, NiMH and Li-

ion Batteries [86].The method comprised leaching with sulphuric acid and metal puri-

fication/separation by liquid–liquid extraction with Cyanex 272 (bis-2,4,4 trime-

thylpentyl phosphinic acid) as extractant, after the preliminary separation. It was re-

ported that high recoveries of recycled metals such as cobalt, nickel, copper and lithi-

um could be achieved at high purities.  

5.2.5 Chemical Precipitation  

Chemical precipitation methods for recycling spent Li-ion Batteries are methods 

which use precipitation agents like basic solutions. To precipitate metals dissolved in 

the acidic medium, the following procedure was followed; sorting, crushing and rid-

dling, selective separation of the active materials, lithium cobalt dissolution and co-

balt hydroxide precipitation. The cobalt dissolved in the hydrochloric solution (in the 

acid leaching phase) was recovered as cobalt hydroxide Co     by addition of one 

equivalent volume of a 4M NaOH solution.  
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The precipitation of cobalt hydroxide begins at a pH of 6 and can be considered to be 

completed at pH 8. Ideally, Co      precipitation can be obtained by using an am-

monia solution, a weak base, which forms a buffer solution at pH 9. However, ammo-

nia forms stable complexes with cobalt causing the partial dissolution of the hydrox-

ide and thus, preventing from a quantitative recovery. Therefore, NaOH, remains the 

best choice (Shin, Kim et al. 2005; Xu, Thomas et al. 2008). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure20:Experimental sequence for leaching using HCl (Xu, Thomas et al. 2008). 
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Figure 21: Sheet of recycling process, inclusive of precipitation method (Xu, Thomas et al. 2008). 

 

5.3 Electro chemical separation 

(Xu, Thomas et al. 2008) reported that cobalt can be extracted from waste LiCo   

batteries by using a nitric acid as leaching solution. Cobalt hydroxide is deposited on 

a titanium electrode and cobalt oxide is then obtained by dehydration procedure ( such 

as heating at low temperatures).The detailed reactions were reported to be: 

2  O +    +    ⇔         (1) 

   
 

 +   O + 2  ⇔ N    +       (2) 

    +   ⇔         (3) 

Co
+2

 +      Ti ⇔ Co(     / Ti   (4) 

Compared with other processes for recycling metals from spent Li-ion batteries, the 

electrolysis process can achieve the cobalt compound of very high purity since it does 

not introduce other substances giving no scope for impurities. However, the weight of 

electricity used should be considered. 

5.4 Pyrochemistry 

Pyro-chemistry  involves incinerating/ melting, used batteries at high temperatures in 

a furnace with controlled atmosphere. There are two established recycling processes 
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for Li-ion cells and batteries, using higher temperatures (Pistoia and Gianfranco 

2005).  

The Toxco process  is designed for all types of lithium containing waste. The material 

is cooled in liquid nitrogen, before being mechanically shredded and mixed with wa-

ter. The lithium reacts to produce hydrogen, which burns off above the reaction liquid. 

The main product is lithium hydroxide, but other components are “targeted where 

appropriate” (i.e. cobalt) (McLaughlin).  

The Sony process uses higher temperatures; the cells are incinerated. The metallic 

waste is recovered for processing to recover the cobalt, using standard hydro-

metallurgical techniques. The organic components, lithium, and fluoride are separat-

ed, though a scrubbing system on the incinerator to avoid emission problems. Larger 

cell sizes have to be punctured before they are introduced into the incinerator(Smith 

1998) .  

5.5 Bio Leaching 

A novel (Rohwerder, Gehrke et al. 2003) study using chemo-lithotrophic and aci-

dophilic bacteria, acidithiobacillus ferro-oxidants, which utilized elemental sulphur 

and ferrous ion as the energy source to produce metabolites like sulphuric acids and 

ferric ion in the leaching medium has shown that bio leaching can be an effective 

method, but the results are still very preliminary and laboratory scale.  

The bacteria were able to grow in the medium containing elemental sulphur and iron 

as their energy source. Results revealed that a culture of ferro-oxidants can produce 

sulphuric acid to leach metals indirectly from the Li-ion batteries. Cobalt was leached 

faster than lithium. The main advantage of the bio-hydrometallurgical processes is 

that it is of lower cost and needs few industrial requirements and is also environmen-

tally favorable.  Bio-hydrometallurgical processing of solid waste is similar to natural 

biogeochemical metal cycles and reduces the demand of resources, such as ores, ener-

gy and landfill space. 

5.6 Commercial Recycling Processes 

Some commercial methods have been mentioned below. These processes are mainly a 

combination of two or more mechanical separation methods in conjunction with one 

or more chemical methods discussed above. Commercial recycling processes run have 

two criteria one is two separate and treat toxic material in batteries and second is to 

recover valuable metals. 

5.6.1 Val'Eas closed-loop process 

Umicore (Cheret, Broussely et al. 2007) is one of major producers of materials for 

lithium-ion cathodes (LiCo    or other mixed-metal materials). The aim of the Val'E-

as closed-loop process, shown in Figure 22, is to provide to treat end-of-life lithium-

ion batteries and production scraps. Batteries are directly introduced into a furnace 

without any pre-processing, e.g. crushing or dismantling. The increase in temperature 
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and reducing conditions are closely managed so that no explosion can occur and the 

totality of Co and steel is recovered in the metallic phase.  

This metallic phase is then atomized into a very fine powder and further refined in the 

Co refinery .The other product formed during the first smelting step is a pure inert 

slag. By managing the smelting conditions, no metal can be found in the slag. The 

slag can be re-used in construction, concrete or even as raw material in replacement of 

pure limestone and silica in the special steel industry. 

 

Figure 22:  Umicore’s, Val'Eas closed-loop process for recycling Li -ion batteries, (Bernardes, Espinosa et al. 2004) 

 

5.6.2 Etoile–Rebatt technology 

Etoile-Rebatt (Ra and Han 2006) is  a recycling process which is a combination of 

mechanical dismantling and separation, electrochemical and thermal treatment, Figure 

23. The lithium cells were soaked in brine and completely discharged for security. 

Then, anode, separator, electrolyte, and cathode in the unit cell were separated. Black 

pastes separated from cathode were electrochemically and thermally treated in a la-

boratory-made recycling instrument. The separated pastes were immersed in the ER-

MRT-13 solution containing 4M LiOH and KOH, and located on the bottom of the 

reaction vessel and at a distance of 70 cm from the platinum electrodes located in an-

other vessel for product collecting. The recycling reaction was carried out at a fixed 

temperature between 40 and 100 ◦C.  
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Figure 23: Flowchart of process prescribed by the Etoile-Rebatt method to recycle, (Ra and Han 2006). 

 

The structural and compositional purities of the recovered and renovated LiCo   

were confirmed by elemental analyses, X-ray diffraction pattern analyses, and Raman 

spectroscopy. Since recycling using the Etoile–Rebatt technology is performed in an 

open system, its upper limit in capability depends on just volume scale of recycling 

instrument. While the renovated LiCo   phase was simply obtained from spent Li-ion 

batteries, in an economical recycling way, the recovered and renovated LiCo   was 

reported to exhibit a prospective electrochemical activity and battery performance: an 

initial discharge capacity of 134.8 mAh g
−1

 and the discharge capacity retention of 

95.9% after 50 cycles. In detail, recycling reaction simultaneously consists of the dis-

solution of the used LiCo  , the deposition of the dissolved LiCo   on the platinum 

working electrode, the formation of the recovered and renovated LiCo   film, as well 

as the precipitation of the recovered and renovated LiCoO2 powder from the surface 

of the LiCoO2 film. The recycled LiCoO2 was filtered and washed with doubly dis-

tilled water, and then dried at 80 ◦C for 10 h. 12.564 kg of LiCoO2 was recovered 

from 16.678 kg of black pastes separated from cathode. 

 There other technologies which combine different physical processes and chemical 

processes (explained above) and are uniquely designed based on the metal recovered. 
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Figure 24: Schematization of the recycling instrument using the Etoile-Rebatt technology 

 

 

 

6. Conclusions 

The resources of lithium are limited in comparison to the needs projected for the pos-

sible electric car revolution .There is concern over the interpretation of the reserves. 

The total brine reserve base estimate around the world is about 11million tonnes (Ta-

ble 6-7), while the estimate for the reserves is much smaller about 8-9 million tonnes. 

That leaves much of those numbers to be realised into material, yet there is currently 

no technology set up at the source sites to extensively use it. Of the total world re-

serves (8-9 mt) at-least 60% is present in Bolivia alone. Its government has now taken 

a strong stance against any trade of raw materials in-spite of an already acute interna-

tional pressure (PAZ 2009). Recycling of batteries is important not only for recovery 

of lithium, but also the recovery of many valuable metals and waste battery manage-

ment. Using metal recovered from waste back in to the production process will greatly 

reduce emissions and energy usage related to mining. It will also be much more fi-

nancially viable for the producer than to collect the waste battery and treat it for haz-

ardous materials(producer responsibility). With recycling processes, much needs to be 

studied in terms of making it more environmentally friendly, because as the battery 

chemistries get more stable they become difficult to treat chemically. 
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Annex A 

The Battery directive 2006/66/EC  issued  by the European Parliament and the Coun-

cil on batteries and accumulators and waste batteries and accumulators and repealing 

Directive 91/157/EEC suggests that 

1. Article2 : Scope: 

(only the concerned definitions for this report quoted below from those listed in the 

actual Article) 

This Directive shall apply to all types of batteries and accumulators, regardless of 

their shape, volume, weight, material composition or use. It shall apply without preju-

dice to Directives 2000/53/EC and 2002/96/EC. 

2. Aticle3: definitions: 

(only the concerned definitions for this report quoted below from those listed in the 

actual Article) 

Automotive Battery or Accumulator means any battery or accumulator used for Au-

tomotive starter, lightning or ignition power; 

Industrial Battery or Accumulator means any battery or accumulator designed for 

exclusively industrial or professional uses or used in any type of electric vehicle; 

Waste Battery or Accumulator means any battery or accumulator which is waste with-

in the meaning of Article 1(1)(a) of Directive 2006/12/EC; 

Recycling means the reprocessing in production process of waste materials for their 

original purposes, but excluding energy recovery; 

Disposal means any of the applicable operations provided for in Annex II A to di-

rective 2006/12/EC; 

Treatment means any electrical or electronic equipment, as defined by directive 

2006/12/EC which is partly or fully powered by batteries or accumulators or is capa-

ble of being so; 

Producer means any person in a Member State that, irrespective of selling technique 

used, including by means of distance communication as defined in directive 97/7/EC 

of the European parliament and of the Council of 20 May 1997 on the protection of 

consumers in respect of distant contracts(also defined), places batteries or accumula-

tors, including those incorporated in to appliances or vehicles, on the market  for the 

first time with in the territory of that Member State on a professional basis; 
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Distributor means any person that provides batteries and accumulators on a profes-

sional basis to the end user; 

Placing on the market means supplying or making available whether in return for the 

payment or free of charge, to the third party within the community and includes im-

port in to the customs territory of the Community; 

Economic Operators means any producer, distributor, collector, recycler or other 

treatment operator; 

3.Article 8:Collection Schemes 

(only the concerned definitions for this report quoted below from those listed in the 

actual Article) 

Member States shall ensure that producers of industrial batteries and accumulators, or 

third parties acting on their behalf, shall not refuse to take back waste industrial bat-

teries and accumulators from end-users, regardless of chemical composition and 

origin. Independent third parties may also collect industrial batteries and accumula-

tors;(3). 

Member States shall ensure that producers of automotive batteries and accumulators, 

or third parties, set up schemes for the collection of waste automotive batteries and 

accumulators from end-users or from an accessible collection point in their vicinity, 

where collection is not carried out under the schemes referred to in Article 5(1) of 

Directive 2000/53/EC. In the case of automotive batteries and accumulators from pri-

vate, non-commercial vehicles, such schemes shall not involve any charge to end-

users when discarding waste batteries or accumulators, nor any obligation to buy a 

new battery or accumulator;(4). 

4.Article 12 : Treatment and Recycling 

(only the concerned definitions for this report quoted below from those listed in the 

actual Article) 

1. Member States shall ensure that, no later than 26 September 2009: 

(a) producers or third parties set up schemes using best available techniques, in terms 

of the protection of health and the environment, to provide for the treatment and recy-

cling of waste  batteries and accumulators; and 

(b) all identifiable batteries and accumulators collected in accordance with Article 8 

of this Directive or with Directive 2002/96/EC undergo treatment and recycling 

through schemes that comply, as a minimum, with Community legislation, in particu-

lar as regards health, safety and waste management;(1a-b). 
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Treatment shall meet the minimum requirements set out in Annex III, Part A;(2). 

 

Recycling processes shall, no later than 26 September 2010, meet the recycling effi-

ciencies and associated provisions set out in Annex III, Part B;(4). 

5. Article 14: Disposal 

Member States shall prohibit the disposal in landfills or by incineration of waste in-

dustrial and automotive batteries and accumulators. However, residues of any batter-

ies and accumulators that have undergone both treatment and recycling in accordance 

with Article 12(1) may be disposed of in landfills or by incineration. 

6. Article 16:  Financing 

(only the concerned definitions for this report quoted below from those listed in the 

actual Article)Member States shall ensure that producers, or third parties acting on 

their behalf, finance any net costs arising from:the collection, treatment and recycling 

of all waste industrial and automotive batteries and accumulators collected in accord-

ance with Articles 8(3) and (4);(1b). 

Member States shall oblige producers, or third parties acting on their behalf, to fi-

nance any net costs arising from public information campaigns on the collection, 

treatment and recycling of all waste portable batteries and accumulators;(3). 

The costs of collection, treatment and recycling shall not be shown separately to end-

users at the time of sale of new portable batteries and accumulators;(4). 

Producers and users of industrial and automotive batteries and accumulators may con-

clude agreements stipulating financing arrangements other than the ones referred to in 

the first paragraph above;(5). 

This Article shall apply to all waste batteries and accumulators, irrespective of the 

date of their placing on the market ;(6). 

 

ANNEX III 

DETAILED TREATMENT AND RECYCLING REQUIREMENTS 

PART A: TREATMENT 

1. Treatment shall, as a minimum, include removal of all fluids and acids. 

2. Treatment and any storage, including temporary storage, at treatment facilities shall 

take place in sites with impermeable surfaces and suitable weatherproof covering or in 

suitable containers. 
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PART B: RECYCLING 

3. Recycling processes shall achieve the following minimum recycling efficiencies: 

(a) Recycling of 65% by average weight of lead-acid batteries and accumulators, in-

cluding recycling of the lead content to the highest degree that is technically feasible 

while avoiding excessive costs; 

(b) recycling of 75% by average weight of nickel-cadmium batteries and accumula-

tors, including recycling of the cadmium content to the highest degree that is techni-

cally feasible while avoiding excessive costs; and recycling of 50% by average weight 

of other waste batteries and accumulators.[28] 

Annex B  

Quotes on Lithium 

Thom Calandra, Stockhouse (07/21/10) "Lithium's price has about tripled in the past 

10 years. As Ticker Trax subscribers know, some junior producers' shares have risen 

600%–1,100% since I first profiled them about 16 months ago. These include Western 

Lithium in Nevada and Canada Lithium in Quebec” 

Annex C 

HEV List 
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What gets people to help recycle old batteries? 

 

 

 

 

Battery Recycling slogans and their affectivity in waste battery collection as surveyed by 

(Hansmann, Loukopoulos et al. 2009), the most  effective slogans were when people were 

presented with factual statements than with witty or funny ones, the collection increased. 

 


