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SE-412 96 Göteborg, Sweden
Telephone +46-(0)31-772 1000

Chalmers Reproservice
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Abstract
With the increasing threat of global warming, technologies for efficient capture and storage
of the greenhouse gas CO2 are sought after. Chemical-looping combustion is a novel
CO2 capture technology that can be applied when burning gaseous, liquid or solid fuels.
By using two interconnected fluidised beds with a bed material capable of transferring
oxygen from air to the fuel, a nitrogen-undiluted stream of CO2 can be obtained with no
direct efficiency loss. This thesis is focused on design, modelling and operation of a 100
kW chemical-looping combustor for solid fuels. The goal of the test rig is validation of
chemical-looping combustion at a scale giving both high operational flexibility and semi
industrial conditions.

Two analytical models that can be applied to any chemical-looping combustor for solid
fuels are presented. The first model finds the residence-time from batch-experiments.
The second model estimates the gas conversion of a general fuel as a function of the
oxygen carrier bed inventory. Furthermore, a cold-flow model of the 100 kW unit has been
constructed. Details about the cold-flow model design and experimental results regarding
fluidisation, slugging, residence-time and circulation are presented.

The 100 kW unit has been operated for over 23 hours with an ilmenite oxygen carrier,
using three different fuels. During this time, no instabilities in the bed inventories have
been detected. Experiments aiming for optimal performance showed that gas conversion
above 84% and CO2 capture over 99% are possible. A detailed analysis of the relation
between the global solids circulation, the fuel reactor bed inventory and the gas conver-
sion was conducted. The results revealed that the bed inventory in the fuel reactor had a
strong impact on gas conversion, whereas little effect of overall circulation could be seen
under the present conditions.

Keywords: Carbon capture and storage; Chemical-looping combustion; CO2 capture; Fluidised

beds; Oxygen carriers; Modelling

iii



iv



Publications

This thesis consists of an introductory text and the following six appended research papers,
henceforth referred to as Paper I–VI:

I. P. Markström, N. Berguerand and A. Lyngfelt. The application of a multistage-
bed model for residence-time analysis in chemical-looping combustion of solid fuel.
Chemical Engineering Science, 65(18):5055–5066, 2010.

II. P. Markström and A. Lyngfelt. Designing and operating a cold-flow model of a 100
kW chemical-looping combustor. Powder Technology, 222:182–192, 2012.

III. P. Markström, A. Lyngfelt and C. Linderholm. Chemical-looping combustion in a
100 kW unit for solid fuels. In 21st International Conference on Fluidized Bed Com-
bustion, volume 1, pages 285–292, Naples, Italy, 3–6 June 2012.

IV. P. Markström, C. Linderholm and A. Lyngfelt. Operation of a 100 kW chemical-
looping combustor with Mexican petroleum coke and Cerrejón coal. In 2nd Inter-
national Conference on Chemical Looping, Darmstadt, Germany, 26–28 September
2012.

V. P. Markström, C. Linderholm and A. Lyngfelt. Chemical-looping combustion of solid
fuels – Design and operation of a 100 kW unit with bituminous coal. Submitted for
publication in International Journal of Greenhouse Gas Control, 2012.

VI. P. Markström, C. Linderholm and A. Lyngfelt. Modelling gas conversion in a 100
kW chemical-looping combustor for solid fuels. Submitted for publication in Chemical
Engineering Science, 2012.

Contribution

I. First author, responsible for data evaluation and writing.

II. First author, responsible for experimental work, data evaluation and writing.

III. First author, shared responsibility for the experimental work, responsible for data
evaluation and writing.

IV. First author, shared responsibility for the experimental work, responsible for data
evaluation and writing.

V. First author, shared responsibility for the experimental work, responsible for data
evaluation and writing.

VI. First author, shared responsibility for the experimental work, responsible for data
evaluation and writing.

Related publications not included in the thesis

� N. Berguerand, A. Lyngfelt, T. Mattisson and P. Markström. Chemical-looping
combustion of solid fuels in a 10 kWth unit. Oil & Gas Science and Technology –
Rev. IFP Energies nouvelles, 66(2):181–191, 2011.

� M. Rydén, C. Linderholm, P. Markström and A. Lyngfelt. Release of gas phase O2

from ilmenite during chemical-looping combustion experiments. Chemical Engineer-
ing & Technology, 35(11):1968–1972, 2012.

v



Acknowledgements

First and foremost, I would like to thank my supervisor, Prof. Anders Lyngfelt. Being
completely new to this area of science, I am grateful for the perfect mix of patience, guid-
ance and responsibility you have given me. I am also grateful to my co-supervisor, Prof.
Tobias Mattisson, for all the support.

Also, a big thank you to all the employees at the division of Energy Conversion for pro-
viding a great working atmosphere, especially the past (and present) chemical-loopers:
Nicolas Berguerand, Carl Linderholm, Patrick Moldenhauer, Magnus Rydén, DaZheng
Jing, Golnar Azimi, Mehdi Arjmand, Henrik Leion, Peter Hallberg, Erik Jerndal, Martin
Keller, Sebastian Sundqvist, Jesper Aronsson, Matthias Schmitz, Malin Källén and Ulf
Stenman.

A special mention goes to the following people. Nicolas: the collaboration in Paper I was
great. Thanks for being such a good friend in spite of my bad Swedish/French jokes ;).
Calle: it is a pleasure to listen to your clear way of thinking. Thank you for the col-
laboration in Papers III–VI. Ulf: my experiences working with you in the lab have been
invaluable. It is always a pleasure talking to you, not to mention listening to your mantra!

I would also like to thank my financers, the Research Fund for Coal and Steel of the
European Community, Alstom Power Boilers, Carl Trygger’s Foundation for Scientific
Research, J. Gust. Richert Memorial Fund and Ångpanneföreningen’s Foundation for Re-
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Outline

This thesis is based on six papers in the field of chemical-looping combustion. A brief
overview of the chapters in this thesis are given below.

In Chapter 1, the introduction presents arguments as to why research in this field
is important. Here, the problem of global warming due to greenhouse gas emissions is
discussed, as well as a background to carbon capture and storage. It also provides a
summary of the field of research and an introduction to chemical-looping combustion,
including the basic chemical reactions that take place in the reactor system.

Chapter 2 describes the design of two chemical-looping combustors, a 10 kW (Paper
I) and a 100 kW (Paper III–VI), for solid fuels as well as basic definitions used in the data
evaluation. Here, important properties of the oxygen carrier and the fuels are summarised.
The focus in the discussion lies on the 100 kW unit. Furthermore, a theoretical background
of a cold-flow model (Paper II), built to simulate the 100 kW unit, with an overview on
design and calculations of the dynamic similarity, is provided.

Chapter 3 involves different aspects of modelling of chemical-looping combustion for
solid fuels. Just as in the previous chapter, it focuses on two sizes of reactor systems. The
10 kW and the 100 kW unit. The modelling in the 10 kW unit describes a general pro-
cedure to estimate the residence time and global solids circulation in a chemical-looping
combustor fed with solid fuels. From analyses of gas leaving the air reactor, it was possible
to determine the residence-time and residence-time distribution of particles in the fuel re-
actor. From the known solids inventory in the fuel reactor, the circulation mass flow could
be directly correlated to measured operational data, i.e. pressure drop, temperature and
gas flow in the air reactor riser. The modelling also contains the experimental evaluation
of the cold-flow model system. Studies were made on the mass flows, mass fluxes and
residence-times in the air and fuel reactors using air as fluidisation gas. Finally, an ana-
lytical model for gas conversion of solid fuels is presented. The model is based on the bed
inventory of the fuel reactor in the 100 kW unit and is applied to the case of a bituminous
coal and ilmenite oxygen carrier.

In Chapter 4, results from operation in the 100 kW unit are presented. It describes
experiments conducted with three fuels, focusing on the design fuel, a bituminous coal
from Colombia: Cerrejón coal. In total, over 23 hours of operation have been analysed.

Finally, in Chapter 5 the results from all the papers are summarised and the conclu-
sions are discussed.
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1
Introduction

1.1 Global warming

In recent years, the greenhouse effect has gained a lot of attention due to alarming reports
of global warming. Instrumental recordings over the past 157 years show that temperatures
at the surface have risen globally in two main phases [1]. In the first phase, from the 1910s
to the 1940s, the average temperature rose 0.35� and in the second phase, from the 1970s
to the 2000s, the average temperature rose 0.55�, see Fig. 1.1. In addition, 11 of the 12
warmest years on record have occurred in the past 12 years.

Fig. 1.1: Annual global mean observed temperatures, from [1].

In addition to the increase in global average surface temperature, many indications
of global warming exist. The increase in global average sea level and the decrease in the
northern hemisphere snow cover are such indications. If the global mean temperature con-
tinues to increase, it will lead to serious changes in the climate that may cause irreversible
harm to ecological systems. A major part of the scientific community today agrees that
the cause of global warming is an anthropogenic greenhouse effect, rather than a natural
process. As combustion of fossil fuels results in large emissions, it was natural to envisage

3



1.1. Global warming

a correlation between increased temperatures and an increased production of greenhouse
gases.

The greenhouse effect has been named from the process occurring in a greenhouse with
glass walls, where the temperature of the air inside is increased. The effect occurring on
Earth is analogous in the sense that both the glass and the greenhouse gases in the atmo-
sphere may transmit short-wave radiation from the sun, but absorb long-wave (infrared)
radiation from the ground. The process on Earth can be described in the following way:
From the sun, radiation in all wavelengths is emitted continuously. Approximately 1/3 of
the radiation that reaches the Earth is reflected in the atmosphere back to space, 1/6 is
absorbed in the atmosphere and about 1/2 is absorbed by the Earth’s surface, making
it warmer [2]. The warmed surface radiates heat through infrared radiation. Greenhouse
gases in the atmosphere, predominantly water vapor (H2O) and carbon dioxide (CO2), ab-
sorbs and re-emits most of this radiation in all directions, including back to Earth. This
effect creates a situation where trapped infrared radiation, or heat, warms the Earth’s
surface and the lower atmosphere. Other gases present in the atmosphere, e.g. methane
(CH4), nitrous oxide (N2O) and ozone (O3), also contribute to the greenhouse effect. The
three most important greenhouse gases that not only originate from natural processes, but
also from industrial emissions, are CO2, CH4 and N2O. More than 60 other greenhouse
gases, in groupings of hydrofluorocarbons, perfluorinated compounds, fluorinated ethers
and other hydrocarbons are present in the atmosphere, but only in minute concentrations
[3]. Both CH4 and N2O are much more effective as greenhouse gases compared to CO2.
However, as the concentration of CO2 in the atmosphere is in the order of 1000 times
higher than the other two (ppm instead of ppb) and because it is completely dominant in
the flue gases from fossil fuel combustion, it has become the centre of attention when dis-
cussing greenhouse gas emissions. The historical concentration of these three greenhouse
gases in the atmosphere can be measured indirectly by analysing trapped gas pockets
in the polar ice caps, dating back thousands of years. Combining averages from such
analyses with modern measurements reveals a drastic change, caused by emissions from
anthropogenic processes, see Fig. 1.2. Industrial development across the world continues

Fig. 1.2: Atmospheric concentrations of important long-lived greenhouse gases over the last
2000 years, from [3].
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Chapter 1. Introduction

to increase the greenhouse gas emissions, which in turn may lead to increased tempera-
tures at the surface of the Earth. This in turn leads to increased evaporation of water from
the oceans, and thus increased concentration of water vapor in the atmosphere. As water
vapor is a powerful greenhouse gas, the greenhouse effect becomes self-reinforced. It is
believed that this water vapor feedback may in fact double the increase in the greenhouse
effect due to the added CO2 [2].

According to the Copenhagen Accord [4], the increase in global temperature should
be kept below 2� in order to prevent dangerous anthropogenic interference with the
climate system. To meet this target, countries need to drastically cut their emissions of
greenhouse gases. Due to the rapidly increasing demands of energy around the world, it
is, in practice, difficult to phase out the usage of fossil fuels quickly enough by replacing
it with non-fossil energy sources like wind, solar or nuclear power. Consequently, the CO2

resulting from combustion processes would need to be removed. A possible solution is to
use carbon capture and storage (CCS). This concept can be used as a bridge to a more
long-term solution, in which renewable energy sources can take over. However, due to the
energy demand in the capture process, CCS involves a cost. This thesis studies a capture
technology called chemical-looping combustion (CLC). Chemical-looping combustion is a
novel combustion process for gaseous, liquid or solid fuels, producing a pure stream of
CO2 without any direct efficiency loss.

1.2 Carbon capture and storage

Technologies that enable the possibility for combustion without nitrogen-diluted exhaust
gas have in recent years received more and more attention, and several methods to capture
and store the CO2 are investigated. The concept has been applied in various locations
around the world and is now considered to be an important option for decelerating the
increase of atmospheric CO2. Most information in Section 1.2 is adapted from [5] unless
otherwise stated.

1.2.1 Capturing the CO2

The larger stationary sources that are mostly responsible for anthropogenic CO2 emissions
are power plants, cement production and steel production plants. For example, in 1995,
more than 1400 Mt CO2 were released in steel production associated emissions. Other
processes like natural gas sweetening, which is a separation method for CO2 contaminated
natural gas, also produce large amounts of CO2. There are ways to capture the CO2, many
of which are directed towards combustion systems. Below, a brief summary of the main
CO2 capture technologies is provided. In these examples, the CO2 is generated in large-
scale combustion processes using fossil fuels.

� Post-combustion: Here, the CO2 rich flue gas is treated downstream of the combus-
tion process. Examples of post-combustion capture processes are absorption pro-
cesses, adsorption processes, membranes and solid sorbents. The most common ones
are the absorption processes, which use the reversibility of chemical reactions to cap-
ture and then release the CO2. By letting a solvent be brought in contact with the
flue gas, CO2 will be absorbed. The solvent is then regenerated and CO2 is released
in a stripper at 100–140�. This leads to a drop in efficiency as this temperature

5



1.2. Carbon capture and storage

needs to be maintained. Using the absorption process, typically 80–95% of the CO2

is recovered. Usually an amine is used, but recently, chilled ammonia has received a
lot of attention. The chilled ammonia process uses an aqueous ammonium solution
at 0–10� to capture CO2 by forming ammonium bicarbonate [6].

� Oxy-fuel combustion: By separating the oxygen from air and using it directly in
a combustion process, it is possible to produce flue gases free from nitrogen dilu-
tion. After subsequent steps of steam condensation and cleaning of impurities, such
as argon, NOx and SOx, a pure stream of CO2 can be obtained. Methods of air
separation techniques include e.g. cryogenic distillation, adsorption using multi-bed
pressure swing units, and polymeric membranes. To keep the temperature down in
the combustion chamber, the oxygen is diluted on purpose with recycled CO2 rich
flue gas. This process has an efficiency drop due to the air separation process, but
may potentially capture close to 100% of all CO2.

� Pre-combustion: This process is essentially a method of producing hydrogen from
a hydrocarbon or carbonaceous fuel with the help of steam. As the bi-product in
this production is CO2, pre-combustion is a very convenient alternative for CO2

capture. By letting the hydrocarbon react with either steam or oxygen in sub-
stoichiometric amounts, syngas (H2 and CO) is produced. The first method is called
steam reforming and the latter is called partial oxidation or gasification, depending
on if the fuel is gaseous/liquid or solid, respectively. Finally, by adding more steam,
the water-gas shift reaction,

CO + H2O ↔ CO2 +H2, (1.1)

can be used to push the CO to CO2. This CO2 can then be captured in a subsequent
separation step. The separation step may use e.g. pressure swing adsorption or an
absorbing amine solvent. Hence, this capture technology shares the efficiency drop
with the post-combustion and oxy-fuel combustion processes. Pre-combustion may
also involve a chemical-looping technology (see below), in a process called chemical-
looping reforming [7, 8].

� Unmixed combustion: An alternative to the technologies presented above, all in-
volving costly and energy consuming gas separation. In these technologies, fuel and
air are never mixed. There are two such technologies, chemical-looping combustion
and fuel cells.

1.2.2 Storing the CO2

It is not clear today as to how long the CO2 need to remain in storage. It depends on
factors such as the maximum atmospheric concentration of CO2 that is set as a policy goal,
the timing of that maximum, the anticipated duration of the fossil fuel era, and available
means of controlling the CO2 concentration in the event of significant future releases. Just
as for the capture process, there are several alternatives to store the CO2 captured from
the technologies previously mentioned. Three examples of storage technologies are on and
off-shore geological storage, ocean storage and mineral carbonation.

The one that shows most promise is geological storage. This is due to research showing
that is very likely that over 99% will be retained over 100 years and likely that over
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Chapter 1. Introduction

99% will be retained over 1000 years. In geological storage, the CO2, compressed to its
supercritical state, is injected into geological formations under ground. Geological storage
locations could be e.g. oil fields for enhanced oil recovery, gas fields, or porous rocks such
as sandstone reservoirs.

The most prominent example for enhanced oil recovery is the Weyburn CO2–EOR
project, which started in late 2000. Here, CO2 at a rate between 1.1–1.8 Mt/yr is injected
into a 180 km2 fractured carbonate oil reservoir, expected to store 20 Mt in total.

Sandstone reservoirs are in use in several commercial scale projects across the world
today. Their use as geological storage for CO2 is often connected to a gas field, where
natural gas is taken from large production wells. As the gas will contain an amount of
unwanted CO2, it will undergo a separation process that captures the CO2. This CO2 is
then injected into a sandstone reservoir, either beneath, above, or into the original gas
field. Two successful projects with sandstone reservoirs are given below.

� The first storage site began its operation in 1996. This was when Statoil started
the off-shore Sleipner CO2 storage project in the North-Sea, 250 km off the coast
of Norway. The Sleipner project is located in the south of the Utsira formation, a
saline aquifer with a surface area of 26000 km2, 800–1000 m below the sea floor.
CO2 is injected into the sandstone reservoir, located above a natural gas field, from
an ocean platform at a rate of approximately 1 Mt/yr.

� Another example is BP’s In Salah gas project in the central Saharan region of
Algeria. Here, the CO2 is injected into the same sandstone reservoir as the natural
gas is produced from. However, the production wells and the injection wells are
separated in such a way that a migration of CO2 to the gas field will happen long
after depletion of the gas zone. 17 Mt of CO2 will be stored here at a rate of up to
1.2 Mt/yr. Operation started in 2004 and the CO2 is injected at a depth of 1800 m.

In ocean storage, there are several proposals available. One proposal is to inject the
CO2 below 3 km depth, where CO2 is denser than sea water. This leads to the formation of
CO2 lakes at the bottom of the seafloor. A second proposal is to inject the CO2 somewhere
between 1–3 km depth. Then the CO2 will form an upward plume, dissolving into the
seawater on its way up. Here, research shows that 65-100% will be retained after 100
years and that 30-85% will be retained after 500 years, depending on if the depth of
injection was closer to 1000 m or 3000 m. Because of the poor retention, the interest in
ocean storage is moderate.

Mineral carbonation involves converting CO2 to solid inorganic carbonates, which are
geologically stable. This may be accomplished from chemical reactions between CO2 and
silicate minerals containing magnesium and calcium. Mineral carbonation is at an early
stage of development and the feasibility of such a process is uncertain, but it has the
advantage of highly irreversible CO2 retainment.

1.3 Chemical-looping combustion

1.3.1 Concept

As discussed in Section 1.2, regular combustion uses air to burn the fuel, where the CO2

produced is diluted with nitrogen. Technologies that use different forms of gas separa-
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1.3. Chemical-looping combustion

tion are being studied, but will inevitably lead to a drop in efficiency. In this aspect,
chemical-looping combustion is relevant. As a carbon-capture technology with inherent
capture of CO2, chemical-looping combustion is both feasible and fully compatible with
the new storage technologies. The defining feature of chemical-looping combustion is the
circulation of oxygen carrier particles between two main reactors. In one of these main
reactors, air is introduced from below. Here, the particles become oxidised in exothermal
reactions as they are fluidised. Hence, this reactor is normally called the air reactor. The
particles are then transported through a loop seal, entering the other main reactor. As
this reactor is where the fuel is inserted, it is called the fuel reactor. Depending on the
kind of fuel used, this reactor could be fluidised with either steam, CO2 or the fuel itself.
The fuel then reacts with oxygen available in the particles, which become reduced. Loop
seals prevent gases between the air and fuel reactor to mix, and hence the net effect of the
process is a transport of oxygen to the fuel reactor with no nitrogen dilution and without
any direct efficiency loss. After subsequent steps of steam condensation and gas cleaning
from e.g. sulphur compounds, a pure stream of CO2 is obtained. This CO2 can then be
transported to a suitable location for storage.

1.3.2 Operation with gaseous fuels

The concept of chemical-looping combustion, as described in Section 1.3.1, is depicted in
Fig. 1.3. It shows the oxygen carrier as a metal oxide, labelled MexOy in oxidised form
and MexOy−1 in reduced form. Burning e.g. natural gas or syngas, the fuel itself is used
as the fluidisation medium in the fuel reactor. For gaseous fuels in the form of various

N
O

CO
H O

xMe Oy−1

yMe Ox

Air Fuel

2

2

2

2

Fuel reactorAir reactor

Fig. 1.3: Principal sketch of the CLC process with an air and a fuel reactor, interconnected to
allow an exchange of oxygen-carrier material.

hydrocarbons, the resulting chemical reactions (1.2) and (1.3) describe the processes in
the fuel and air reactor, respectively.

CnH2m + (2n+m)MexOy → nCO2 +mH2O+ (2n+m)MexOy−1 (1.2)

O2 + 2MexOy−1 → 2MexOy (1.3)

A fuel like natural gas often consists of more than 90% methane. In addition, it also con-
tains ethane, propane, butane, carbon dioxide, nitrogen, and sometimes sulphuric com-
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Chapter 1. Introduction

pounds that may lead to SO2 emissions. However, as the combustion does not involve
high temperature flames, there will be no thermal NOx production. The reactions above
show that the only products of sulphur-free hydrocarbon combustion should be steam and
CO2.

1.3.3 Operation with with solid fuels

The method of feeding solid fuels into a chemical-looping combustor is a bit different
compared to using gaseous fuels. Clearly, the fuel cannot be fed in the same fashion as
indicated in Fig. 1.3. Instead, two other options are available [9]. The fuel can either be fed
from above in the fuel reactor, or it can fed into the bed directly. Releasing the fuel above
the bed has a major drawback in that the release of volatiles may occur before they have
had the time to react with the oxygen carriers. If these volatiles leave the system with the
flue gases, un-reacted, they need to be burnt in an oxy-fuel process further downstream,
which in turn leads to increased costs. Therefore, in-bed feeding is preferred. For solid
fuels with in-bed feeding, the volatiles content will react according to (1.2), but the char
needs to be gasified since no direct solid-solid reaction between the fuel and oxygen carrier
can be expected. In this step, the char must first react with steam (1.4) or carbon dioxide
(1.5) to form combustible gas,

C + H2O → CO+ H2 (1.4)

C + CO2 → 2CO. (1.5)

The resulting H2 and CO then react according to

H2/CO +MexOy → H2O/CO2 +MexOy−1, (1.6)

i.e. yielding steam and CO2 as end products. However, there will also be sulphuric emis-
sions, mostly in the form of SO2 and H2S. The levels depend on the kind of solid fuel
used, i.e. on the amounts of elemental sulphur present in the fuel. For some fuels like
South African coal, it can be relatively moderate levels (< 1 wt%), while for others like
Mexican petroleum coke, the sulphur content can be over 6 wt% [10]. Another difference
compared to gaseous fuels is that solid fuels always contain a certain amount of ash. These
differences, together with the fuel feeding, makes chemical-looping combustion with solid
fuels more complicated than with gaseous fuels. As for gaseous fuels, there will be no
thermal NOx production with solid fuels. However, fuel nitrogen will contaminate the gas
from the fuel reactor as e.g. N2 and NO.

1.3.4 Operation with liquid fuels

The challenge of feeding liquid fuels is similar to feeding solid fuels. Any fuel needs to be
in gas phase before reactions with the oxygen carrier can take place. Hence, the liquid fuel
needs to be evaporated before it is injected into the fuel reactor. Liquid fuels can be any-
thing from thin distillation products of petroleum, like kerosene, to heavy oils, like crude
oil. As operation with liquid fuels in chemical-looping combustion is still in its infancy,
experience from the feeding process is limited. One way this has been accomplished is by
mixing the liquid fuel with superheated steam at the moment of injection [11]. The steam
will evaporate the liquid, resulting in a mixture of steam and gaseous fuel that enters the
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1.3. Chemical-looping combustion

bed together. The hydrocarbon content of the evaporated fuel will then convert to steam
and CO2 according to reaction (1.2).

1.3.5 Development

The chemical-looping combustion principle was patented by Lewis and Gilliland [12] for
use in the production of high purity CO2 from fossil fuels. However, the process was not
commercialised and was not called chemical-looping combustion. The name ”chemical-
looping” was given by Ishida et al. [13] as a reference to the analogous human cardio-
vascular system, confining chemical reactions in circulation. Soon after, Ishida and Jin
[14] recognised the concept as a possibility to capture CO2 from fossil fuels in order to
reduce climate impact. The first tentative chemical-looping combustion design based on
the circulating fluidised bed principle was presented by Lyngfelt et al. [15]. More than
900 materials have been investigated as possible oxygen carrier materials for this process,
mostly including active oxides of iron, nickel, copper and manganese [16].

Up until the first half of 2011, reported operation for more than 4000 h had been
accomplished in 12 units of 0.3–140 kW [17]. This time of operation consists mostly of
operation with gaseous fuels, as they were the first to be tested. During the last few years,
more focus has been put on solid and, most recently, liquid fuels. However, liquid fuels
have only been tested in relatively small lab units [11, 18]. So far, reports on roughly 120
h of operation with three different oxygen carriers have been presented [11, 19]. For solid
fuels, both lab investigations [20–27] as well as studies in continuous operation have been
made. Examples with continuous operation are:

� A 1 kW unit for coal and biomass [28, 29]

� A 0.5–1.5 kW unit for coal [30, 31]

� A 10 kW unit for coal and petroleum coke [9, 32, 33]

� A 10 kW unit for coal and biomass [34, 35]

� A 10 kW unit for coal, methane and syngas [36]

� A 25 kW unit for lignite dust [37]

� A 25 kW unit in “coal direct chemical-looping” (CDCL) with moving beds [38, 39].

Except for the CDCL unit, these units all use their fuel reactor as a bubbling fluidised bed.
This thesis concern a 100 kW unit, having tested two bituminous coals and one petroleum
coke. The main difference between this unit and the previously mentioned smaller units
is the possibility to use the fuel reactor as a circulating fluidised bed. Recent reviews
summarise the progress in chemical-looping technologies [40–42].

Since the first design based on the circulating fluidised bed principle in 2001, chemical-
looping combustion has gone from lab scale to include not only pilot scale, but also larger
prototypes. The largest chemical-looping combustors today are the 1 MWth unit at the
Technical University of Darmstadt, Germany [43] and Alstom’s 3 MWth unit in Windsor,
USA [44]. However, still larger units are planned [45, 46]. It is believed that chemical-
looping with limestone-based oxygen carriers will scale up to demonstration size plants
(10–50 MWel) between the years 2015–2020, and to commercial scale (> 100 MWel)
between the years 2020–2025 [44]. In 2005, a techno-economic study was made concerning
the feasibility of a 455 MWel solid fuel fired chemical-looping plant [47]. Here, it was
shown that the proposed CO2 capture power plant had a net efficiency of 41.6%, 2.3%
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lower than the reference power plant, using a bituminous coal as fuel. Based on estimated
investment and operation costs, the CO2 avoidance cost for such a plant was calculated
to around 10 �/tonne captured CO2.

1.3.6 Cold-flow modelling of fluidised beds

Detailed fluid-dynamical investigations of large-scale fluidised beds can be carried out
in small-scale cold-flow models at ambient conditions. This means that it is important
to know if experimental results from them can accurately predict the conditions of the
corresponding large-scale reactors. A cold-flow model can be made in a transparent acrylic
glass, enabling a clear view of the fluidisation and mixing behaviour.

When designing experimental models to simulate the dynamics of larger units, dimen-
sional analysis is a powerful tool. Dimensional analysis provides the scaling laws between
a model and a target prototype such that the two systems will exhibit dynamically similar
behaviour. Two methods to approach dimensional analysis are

� Buckingham’s π-theorem [48].

� The method of non-dimensionalising the governing equations and boundary condi-
tions.

If both of these methods are treated correctly, they will lead to the same result, i.e.
the same set of dimensionless parameters. In 1984 an important paper was released by
Glicksman [49], where the second method was applied to the equations of motion for a
continuum model of fluids and solids phases [50]. Here, a full set of scaling relations was
systematically developed, allowing a bed operating at ambient conditions to model a bed
at elevated temperature and pressure. However, as this set of scaling laws constrained
the dimensions of the model relative to the full scale bed, simplified versions were also
developed. Glicksman identified two regions, where the scale constraint of the full set
could be relaxed. They where:

� The viscous dominated region, for beds with small particles and and low velocities,
where the gas inertial effects are negligible.

� The inertial dominated region, for beds with large particles at high velocities, where
the gas viscous effects should be minimal

This identification led to two sets of simplified scaling laws, each valid in its respective
region. Two years later, in 1986, Horio et al. [51] developed bubbling bed scaling laws
that differed from the ones developed by Glicksman. However, in 1988 it was shown that
the scaling laws by Horio were the same as Glicksman’s simplified scaling laws in the
viscous limit [52]. In 1989, Horio enhanced his previous set of scaling laws to describe
a circulating fluidised bed [53]. The approach was based on the so-called “clustering
annular flow model”, where particle clusters move upward in the core and downward in
the annulus at the wall. In 1993, Glicksman published a paper where he proposed a new
set of simplified scaling laws, valid in both the viscous and the inertial dominated region
at the same time [54]. The purpose was to reduce the number of scaling parameters from
the two older simplified sets in the 1984 paper and to find one simplified set of scaling
parameters which would be valid over a wide range of Reynolds numbers. A review paper
by Glicksman in 1994 [55] summarises the research of dynamic similarity in fluidisation
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and presents detailed comparisons between experiments conducted in full scale beds and
experiments conducted in models, based on both the original full set of scaling laws as
well as the new set of simplified scaling laws. Here, it is claimed that Horio’s scaling laws
from 1989, for circulating fluidised beds, can be shown to be equivalent to Glicksman’s
new simplified set of parameters.

Glicksman’s scaling laws are today recognised as the standard approach for scaling
fluidised beds and countless experiments have verified their validity. However, cases exist
where they are not always successful. A good example is an early test of the full set of
scaling laws performed by Fitzgerald et al. [56]. Here, differences, larger than anticipated,
were measured between experimentally determined factors and theoretical values. How-
ever, the comparison still showed qualitative agreement and the differences were thought
to be due to electrostatic effects and a lack of pressure measurements in order to accurately
represent local dynamics.

Cold-flow models of fluidised beds can be used for many purposes. One example is to
investigate the effect of the exit geometry on the flow pattern in a circulating fluidised bed
riser [57]. In [57], a 1:9 scale cold-flow model, scaled using Glicksman’s simplified set of
scaling laws, modelled a 12 MW circulating fluidised bed-boiler. In a review article on the
scale-up of fluidised-bed combustion by Leckner et al. [58], the impact of the cyclone is
discussed. As the cyclone efficiency plays a significant role for the burnout of char and as
an increase in cyclone efficiency extends the residence time of the char, cyclones need to be
scaled correctly in order to keep the efficiency. Here, it is suggested that in geometrically
similar cyclones with similar gas and particles, Stokes number scaling could be applied.
Hence, for these kinds of cyclones, Stokes number should be kept the same for dynamic
similarity. With respect to chemical-looping combustion, a cold-flow model of a 120 kW
pilot rig for gaseous fuels was built and operated in order to study the fluid dynamics
[59]. Furthermore, Paper II in this thesis studies the fluid dynamics of a 100 kW pilot rig
for solid fuels.

1.3.7 Oxygen carriers

A substantial part of the research in chemical-looping combustion is focused on testing
new oxygen carriers. This is understandable, considering the major role it plays in the
chemical-looping process. There are many important factors to consider when choosing
an oxygen carrier, such as oxygen-transfer capacity, reactivity with the fuel and oxygen,
cost, health and environmental impacts, thermodynamic properties and melting point.
The oxygen carriers are often manufactured, using either freeze-granulation, spray-drying,
impregnation, co-precipitation or spin-flash drying. Manufactured oxygen carriers are nor-
mally metal oxides, with or without a support material to increase mechanical stability.
However, they could also be natural ores or industrial by-products.

Using thermodynamic analysis, Jerndal et al. [60] showed that the metal oxides Fe2O3/
Fe3O4, Cu2O/Cu, Mn3O4/MnO and NiO/Ni appear to be the most suitable ones for
natural gas. In a paper by Mattisson et al. [61], gas conversion using materials based on
Ni, Mn and Fe were tested with CO, H2 and CH4. It was concluded that the reactivity
of Mn and Fe-based particles with syngas was much higher than with methane. As for
Ni-based oxygen carriers, Leion et al. [62] showed that the reactivity of NiO particles were
considerably lower for high-sulphur fuel compared to low-sulphur fuel. This indicates that
Ni-based oxygen carriers are deactivated by the presence of sulphur. In this respect, Mn
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and Fe-based particles are preferred when using solid fuels.
Some oxygen carriers have shown an ability to spontaneously release oxygen in a

process known as CLOU (Chemical-Looping with Oxygen Uncoupling) [63]. A CLOU
particle needs to react reversibly with gas-phase oxygen at high temperature, i.e. they
must be able to take up oxygen in the air reactor and release it in the fuel reactor. This
means that CLOU relies on oxygen carriers that release and take up oxygen at a certain
partial pressure of gas-phase oxygen and temperature. An example of a CLOU material
is CuO/Cu2O. As shown in [63], this oxygen carrier has an equilibrium oxygen partial
pressure of 0.02 bar at 913�. This means that at this temperature, oxygen will be released
up to an oxygen concentration of 2% in the fuel reactor. As the partial pressure of oxygen
is close to zero in the presence of fuel, a rapid release of oxygen is possible. This makes
CLOU especially interesting for chemical-looping combustion with solid fuels. Except for
Cu-based particles [31], many more materials have shown promising results [64, 65].

Durability of oxygen carriers with natural gas has also been tested extensively, e.g. in
[66], where NiO/Ni oxygen carriers were subject to operation for more than 1000 hours.
For a thorough break-down of all tested oxygen carriers up to 2010, see Adánez et al. [40].
The oxygen carrier in Papers I–VI is a 94.3% pure iron-titanium oxide called ilmenite
(reduced form: FeTiO3). In its oxidised state, the oxygen carrier is pseudobrookite+rutile
(Fe2TiO5+TiO2). However, this form is henceforth called oxidised ilmenite for simplicity.
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2
Design

2.1 Oxygen carrier (Papers I–VI)

For Papers I–II, it was necessary to make a detailed analysis of some of the available
literature concerning the structure and density of ilmenite. When fresh ilmenite particles
are used, they need several cycles before they show stable oxidation-reduction behaviour.
In addition, as the particles circulate in the system, as indicated in Fig. 1.3, and oxi-
dise/reduce in each cycle, their density will decrease. This initial process is called acti-
vation and may be due to a chemical migration of the elements in ilmenite [67]. As the
particles are oxidised and subsequently reduced in each cycle, the internal structure may
be altered and new compounds may be formed. This may explain the formation of a more
porous structure and thus lower density. With no migration, reduced ilmenite reacts in
the air reactor to its most oxidised form according to

4FeTiO3 +O2 → 2Fe2TiO5 + 2TiO2. (2.1)

However, at the surface of activated ilmenite, an external shell enriched with hematite
(Fe2O3) has been found that would significantly change the thermodynamic properties
of ilmenite [67]. If the oxidised ilmenite reorganises to a hematite shell and rutile (TiO2)
core structure during activation according to

Fe2TiO5 + TiO2 → Fe2O3
shell

+ 2TiO2
core

, (2.2)

then, if the rutile core is inert, the subsequent reduction may instead produce surface
magnetite (Fe3O4). For the remaining cycles, oxidation would then follow

4Fe3O4 +O2 → 6Fe2O3 (2.3)

instead of (2.1). The heat balance in the fuel reactor will depend on whether it is reaction
(2.1) or (2.3) that occurs in the air reactor. This is due to the different enthalpies of
reaction, −444.82 kJ/mol O2 or −480.42 kJ/mol O2 at 950�, respectively. What is also
affected is the oxygen transfer capacity,

R0 =
m0,ox −m0,red

m0,ox
, (2.4)
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where m0,ox and m0,red are the masses of a fully oxidised and a fully reduced oxygen
carrier, respectively. With reaction (2.1), R0 = 0.0501 kg O2/kg oxidised ilmenite, while
with reaction (2.3), R0 = 0.0334 kg O2/kg hematite. As the molar weight of Fe2O3 is
almost exactly the same as for 2TiO2, reaction (2.2) indicates that there is maximum
0.5 kg hematite/kg oxidised ilmenite. Hence, it is likely that 1.7 ≤ R0 ≤ 5.0 wt% for
activated ilmenite. This uncertainty range in R0 is considered in Paper I and is supported
by Adánez et al. [68], who have shown that R0 for ilmenite is initially 4% but decreases
down to 2.1% after 100 redox cycles with hydrogen as fuel gas.

Ilmenite’s true density has been measured to 4580 kg/m3 for fresh particles [68] using
helium pycnometry. As helium penetrates even the finest pores, this method also considers
the internal structure of the particles, i.e. it excludes the pores. With that in mind,
“particle density”, or “effective particle density”, will from now on be referred to as the
density of the particle including the pores. Eqs. (2.5)–(2.6) show the the relations between
particle density (ρp), true density (ρt) and bulk density (ρb) as

ρp = (1− ϕ)ρt (2.5)

ρb = (1− ε)ρp. (2.6)

Here, the variables ϕ and ε denote the porosity of the particle and the voidage of the bed,
respectively. For fresh ilmenite, ϕ = 0 [68], i.e. ρp = ρt, while ρb = 2370 ± 120 kg/m3

depending on if the bed is loosely packed or more densely packed. From this, ε ≈ 0.48
for a normally packed bed of fresh ilmenite. After a number of cycles, when the particles
have become activated, there is a significant decrease in the particle density as compared
to the fresh case.

The question now comes to the activated ilmenite’s particle density. During activation,
the sphericity of the particles is increased due to rounding effects. Thus, it is likely that
the voidage decreases when going from fresh to activated particles and ends up between
the fresh case and the ideal case of uniformly sized spherical particles, i.e. 0.37 ≤ ε ≤
0.48. Using a measuring jug and a scale, the bulk density of activated ilmenite has been
found to lie in the range of 1170–2050 kg/m3 [9, 69, 70]. Assuming ε = 0.43, Eq. (2.6)
yields instead a range in the activated particle density as 2050 ≤ ρp ≤ 3600 kg/m3,
averaging at 2825 kg/m3. Using instead He pycnometry and Hg intrusion techniques,
Adánez et al. [68] measured the true density to 4250 kg/m3 and porosity to 0.35 for
activated ilmenite. Eq. (2.5) can then be used to calculate ρp = 2760 kg/m3. This value of
the activated ilmenite’s particle density is the one used in Paper II. Table 2.1 summarises
the findings using these methods and their respective sources. It is observed that there

Table 2.1: Different methods in determining the particle density of activated ilmenite.

ρb (kg/m
3) ρt (kg/m

3) ε (-) ϕ (-) ρp (kg/m3) Fuel Source

1170–1750 n/a 0.43 n/a 2050–3070 Natural gas [69]
2050 n/a 0.43 n/a 3600 Bit. coal [9]
1200–1600 n/a 0.43 n/a 2100–2810 Syngas [70]
n/a 4250 n/a 0.35 2760 CH4/H2/CO [68]
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is a significant variation in the particle density from particles activated under different
conditions. Density decrease seems to be higher using gaseous fuels.

In a recent study [71], ilmenite has been shown to exhibit CLOU properties, see Sec-
tion 1.3.7. This is relevant to chemical-looping combustion as it releases gas phase oxygen
at the low oxygen partial pressure present in the fuel reactor. However, this O2 release
was found to be small, approximately 0.1% in the gas passing through the reactor beds.
Table 2.2 presents some important characteristics of the ilmenite used in Papers I and
III–VI. Values for sphericity, φ, were established from SEM images, the minimum fluidi-
sation and terminal velocities (umf ,ut) were calculated according to relations from Kunii
and Levenspiel [72] for a density of 3.60 g/cm3. The average particle diameter, d̄p, was cal-
culated from the particle size distribution. Experimental values for R0, BET and crushing
strength are taken from [9].

Table 2.2: Characteristics of the activated oxygen carrier.

Property Value

Reduced/oxidised form FeTiO3/Fe2TiO5+TiO2

Average particle diameter, d̄p 171 μm
Sphericity, φ 0.7
Effective particle density, ρp 3.60 g/cm3

Terminal velocity, ut: air, 1000
◦C 0.83 m/s

Terminal velocity, ut: steam, 950◦C 0.91 m/s
Min. fluidisation velocity, umf : steam, 950◦C 0.02 m/s
Theoretical (Experimental) R0 5.0% (3.9%)
Specific surface area, BET 0.11 m2/g
Crushing strength (fresh particles) 3.85 N

2.2 Setup of the 10 kW system (Paper I)

The 10 kW chemical-looping combustor [32] consists of an air reactor, connected to a
loop seal on the inlet and outlet side, a fuel reactor and a smaller fuel reactor loop. It
has two cyclones, one after the air reactor, where oxygen depleted air leaves the system,
and one in the fuel reactor loop, where unreacted combustibles, combustion products and
fluidisation gases leave the system. A sketch of the unit is shown in Fig. 2.1. The fuel
reactor is divided into the following sections:

� LOVEL is the largest section and contains the majority of the bed material. For
batch feeding, the fuel is fed through an external valve above the upper loop seal
(not indicated in Fig. 2.1). Each batch, typically around 25 g, then drops down
on top of the right-hand bed in LOVEL in a small clingfilm package. LOVEL is
fluidised with steam.

� HIVEL is a small section below the riser, serving as outlet for the gases from the
fuel reactor. This section is fluidised with inert nitrogen.
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Fig. 2.1: Principle sketch of the 10 kW unit including a top and front view of the fuel reactor.

� CS is the carbon stripper, whose purpose is to elutriate unreacted char from the
particle flow prior to its entrance into the air reactor. CS is also fluidised with N2.

If the section is fluidised with nitrogen, reaction (1.4) can not occur. With the lower
loop seal also fluidised with nitrogen, LOVEL is the section with essentially all syngas
production.

2.3 Setup of the 100 kW system (Papers II–VI)

2.3.1 Reactor layout

During the initial planning of the 100 kW chemical-looping combustor, several configura-
tions were discussed. The criteria that in the end led to the final design were:

� The air reactor riser should control the global circulation.

� The fuel reactor should be a circulating fluidised bed.

� A special riser for returning material to the air reactor is needed in order to keep
the total height of the reactor system down.

� A carbon stripper should be implemented after the fuel reactor.

� The operation should be flexible, enabling both large variation in global solids cir-
culation, fuel reactor bed height and fuel reactor fluidisation velocity.

� The system should be stable in operation and run little risk of loss in solids inventory
in any part of the system.
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The system includes two interconnected circulating fluidised beds, i.e. the air and the
fuel reactor, as well as a carbon stripper. Starting in the fuel reactor, the path of solids
circulation is outlined below and is numbered from 1–28 in Fig. 2.2. Gas and particles
entrained in the fuel reactor (FR) enter the cyclone (CY2), fall down the downcomer to
a loop seal (LS2) and enter the fuel reactor again. Particles not entrained may instead
enter the so-called circulation riser (CR), which is placed in between the carbon stripper
(CS1-4) and the loop seal (LS3) connected to the fuel reactor. The circulation riser is
designed to return varying mass flows of particles to the air reactor. The carbon stripper
has four chambers separated by weirs. The purpose of the carbon stripper is to gasify or
separate residual char in the particle flow. The particles in the carbon stripper are passed
on to a loop seal (LS4), leading to the air reactor (AR). The air reactor will re-oxidise the
oxygen carriers before they are transported back to the fuel reactor by passing a cyclone
(CY1) and another loop seal (LS1), beginning a new cycle. The air and fuel reactors are
separated by loop seals in order to avoid gas mixing. Fig. 2.2 also shows how the different
parts are interconnected. As seen in the sketch, it is the fuel reactor, with an inner height
of 5.0 m, that determines the overall height of the unit.
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Fig. 2.2: A 2D sketch of the 100 kW unit.
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2.3.2 The carbon stripper

As conversion of char is slow, chemical-looping combustors fed with solid fuels may incor-
porate carbon strippers. The main purpose of the carbon stripper is to separate unreacted
char from the bed material and return it to the fuel reactor. Secondly, if the carbon strip-
per is fluidised with steam or CO2, char conversion also occurs. With this dual function
of the stripper, it is important to ensure sufficient residence time for the unseparated char
in the bed. Fig. 2.3 shows the carbon stripper in the 100 kW unit, which employs four
chambers, separated by weirs. This prevents the char from bypassing the bed by floating

Fig. 2.3: Close-up of the four-chambered carbon stripper in the 100 kW unit.

on the surface and exit on the other side. As seen in Fig. 2.3, the bed material first enters
the stripper though the pipe in the first chamber (CS1). This pipe goes down slightly
below the surface of the bed. The particles then enter the second chamber (CS2) from
underneath a separating wall. To enter the third chamber (CS3), the particles continue
above another wall. Finally, the particles again need to go below a wall to enter the fourth
chamber (CS4). Here, particles exit the stripper via an overflow exit and enter LS4. At
the top of the stripper there is a common outlet for gases and entrained char particles,
leading back to the fuel reactor. Every chamber in the stripper has four bubble caps, each
with eight 1.5 mm holes fluidising the beds.

2.3.3 The cold-flow model

As discussed in Section 1.3.6, the key in designing a scale model is to identify the set
of dimensionless parameters that successfully describe the physical processes of the full-
scale system. This can be done by using Buckingham’s π-theorem as a scheme for non-
dimensionalisation of the governing equations [55]. For fluidised beds, a full and a sim-
plified set of scaling laws have been derived, each consisting of a special set of so-called
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π-groups. The π-groups, or scaling laws, are dimensionless combinations of the dimen-
sionfull parameters that describe the physical process. The simplified set of scaling laws
allows for an arbitrary scale to be chosen. However, some assumptions have been made
regarding the flow regimes that might make it less accurate compared to the full set of
scaling laws. Using the full set of scaling laws, the scale of the model will be determined
by

fscale ≡ Dcold

Dhot

=

(
(μf/ρf)cold
(μf/ρf)hot

)2/3

. (2.7)

I.e., the scale is determined by the dynamic viscosity (μf) and density (ρf) of the fluidis-
ation media in the two systems. The full set of scaling laws consists of the π-groups

Fr,
ρp
ρf

,Redp,ReD,
Gs

ρpu0
,
L

D
, φ,PSD, (2.8)

where Fr is the Froude number, Redp is the Reynolds number based on particle diameter,
ReD is the Reynolds number based on bed diameter, u0 is the superficial velocity, D
is the bed diameter, ρp is the particle density, ρf is the fluidisation gas density, Gs is
the particle flux, L is a bed-related length (e.g. height), φ is the particle sphericity and
PSD is the particle size distribution. Choosing to use the same density particles in the
hot and cold-flow model, i.e. (ρp)cold = (ρp)hot, the cold-flow model fluidisation gas must
have the same density at ambient temperature (20�) as steam at 950�. The only gas
that would be possible for this task is helium. Thus, using helium in room temperature,
i.e. (ρf )cold = (ρf)hot, yields fscale = 0.5766 ≈ 58%. This is an acceptable size, hence
the construction of the cold-flow model was determined to follow the full set of scaling
laws. The requirements for dynamic similarity between the systems are summarised in
Table 2.3.

Table 2.3: Atmospheric chemical-looping combustor with corresponding ideal cold-flow model.

Given CLC unit Ideal CFM

Temperature (�) 950 20
Gas viscosity (μPas) 45.03 19.72
Particle density (g/cm3) ∼ 2.76 ∼ 2.76
From scaling laws
Gas density (ρf )hot (ρf)hot
Diameters or lengths Dhot 0.577Dhot

Particle diameter (dp)hot 0.577(dp)hot
Superficial velocity (u0)hot 0.759(u0)hot
Volumetric particle flux (Gs/ρp)hot 0.759(Gs/ρp)hot
Time thot 0.759thot

There are different options for selecting bed material to use in the cold-flow model.
One is to extract activated particles from the hot unit, then crush and sieve them until
a sufficient amount is obtained. A second is to use other particles with the same density,
sphericity and PSD as the activated ilmenite particles. For convenience, a fine silica sand
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(GA39) provided by Sibelco Nordic, consisting of 98.8% SiO2, was chosen as bed material.
Its average particle diameter, d̄p = 92 μm, is close to the ideal case (0.577 · 171 = 99 μm).
It will have approximately the same sphericity (φ ≈ 0.75) but a more narrow PSD than
the ilmenite. The largest uncertainty is the particle density of the activated ilmenite.
Following the discussion in Section 2.1, based on the jug/scale method of measurement,
the activated ilmenite is expected to have a particle density between 2050–3600 kg/m3

whereas the value derived from He pycnometry was 2760 kg/m3. The silica sand has a
particle density of 2650 kg/m3, which, with the given uncertainty, should be adequate to
describe the system in accordance with the prerequisite (ρp)cold = (ρp)hot. A 3D sketch of
the 100 kW system is shown in Fig. 2.4(a) and the cold-flow model itself, with supporting
scaffold, is shown in Fig. 2.4(b).

(a) (b)

Fig. 2.4: (a) The designed 100 kW reactor system and (b) the lab-scale cold-flow model with
supporting scaffold. The cold-flow model is approximately 58% the size of the 100 kW unit.
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2.3.4 Fuel

Three fuels have been tested in the 100 kW unit. A Colombian bituminous coal (LHV =
29.12 MJ/kg, d̄p = 105.2 μm), a Mexican petroleum coke (LHV = 31.75 MJ/kg, d̄p = 79.0
μm) and another coal from Colombia: Cerrejón coal (LHV = 24.64 MJ/kg, d̄p = 42.9
μm). Table 2.4 shows the composition and Table 2.5 the PSD of the fuels. It can be noted
that the Cerrejón coal particles have a much smaller size than the other two.

Table 2.4: Composition of the different fuels.

Content
Colombian coal Mexican petcoke Cerrejón coal

Comment
(%) (%) (%)

C-fix 54.53 81.54 48.2 as received
Volatiles 37.04 10.00 29.4 as received
Moisture 3.25 8.00 13.8 as received
Ash 5.18 0.46 8.6 as received
C 80.78 88.84 84.30 moisture and ash free
H 5.41 3.14 5.90 moisture and ash free
O 11.59 0.49 7.38 moisture and ash free
N 1.54 0.96 1.65 moisture and ash free
S 0.69 6.58 0.77 moisture and ash free

Table 2.5: Particle size distribution of the different fuels.

Size (μm)
Colombian coal Mexican petcoke Cerrejón coal

(wt-%) (wt-%) (wt-%)

< 45 6.5 14.9 52.0
45-90 20.4 28.9 36.0
90-125 17.4 15.4 8.0
125-180 21.9 19.9 4.0
180-212 12.4 10.0 -
212-250 13.4 9.0 -
> 250 8.0 2.0 -

2.3.5 Fuel feeding

This 100 kW unit is designed for use with a pulverised fuel that can be fed through a set
of screws. The unit employs two screws, where the first controls the overall feeding rate
of the fuel while the other transports the fuel into the reactor system. The internals and
the outside of the second screw are cooled with three separate streams of water. Fuel is
fed into the reactor together with a nitrogen sweep-gas. The feeding point of the fuel is
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located on top of the bed in loop seal LS2, see Fig. 2.2. Following the solids flow, the fuel
is then transported into the lower part of the bed in the fuel reactor. Thus, this method
of feeding the fuel can effectively be regarded as in-bed fuel feeding. As the fuel enters the
hot reactor, volatiles will immediately be released, causing a large volume expansion. To
avoid gas production from char gasification in the downcomer from the cyclone (CY2),
loop seal LS2 is fluidised with nitrogen instead of steam. The process of char gasification
starts in the neighbouring fuel reactor and continues all the way to loop seal LS4. However,
as soot may form on the walls above the bed in LS2, a steam flow called “LS2 Fuel” may
be inserted from the ceiling of LS2. The experiments conducted in Paper III–IV employed
a 16 L fuel container, enabling storage of around 8 kg of fuel with a bulk density of 0.5
g/cm3. In Paper V, the experiments were conducted using a 300 L fuel container. Using
a fuel with the same bulk density as mentioned above, this container enables operation
for 10 hours using a feeding rate of 15 kg/h (100 kW fuel power).

2.3.6 Fluidisation and mass distribution

In Table 2.6, data on the fluidisation are summarised. It provides the fluidisation gas in
the different parts as well as mass flow intervals commonly used. The bottom part cross-
section area for each section is also provided. Here, the cross-sections of CR, FR and
AR are circular, CS is square and the loop seals rectangular (1:2). The mass flows do not
include the contribution from fuel devolatilisation and gasification. The last column shows
the approximate mass distribution of bed material at a standard flow setting. Typical bed
inventories in the entire unit lies between 220–280 kg.

Table 2.6: Mass flows, bottom part cross-section areas (Ac) and mass distribution of particles
in the unit. The mass flows are the flows through the windboxes and are provided in the range
within which they are most often varied. The cross-section of the narrow air reactor riser is the
same as in the fuel reactor.

Section Gas Flow (kg/h) Ac (cm
2) Mass (%)

LS1 H2O 1.5-2 115 2.2
LS2 Fuel H2O 0-1 115 -
LS3 H2O 1.5-2 115 7.2
LS4 H2O 1.5-2 115 3.1
CS1 H2O 3-4 225 5.7
CS2 H2O 3-4 225 5.7
CS3 H2O 3-4 225 5.7
CS4 H2O 3-4 225 5.7
CR H2O 5-10 82 4.0
FR H2O 5-15 186 16.3
LS2 N2 2.3 115 6.3
AR Air 128.8-194.0 1257 38.3
Fuel screw N2 2.3-4.5 0.85 -
Total H2O 26.5-48.0 - -
Total N2 4.5-6.8 - -
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2.3.7 Temperature, pressure and gas measurements

There are more than 60 pressure taps all over the system where pressure is measured.
These pressure taps are not only placed on the 100 kW unit itself, but also on the air
cooling pipes, in order to estimate the flow velocity, and in the filter connected to the
sedimentation tank/heat exchanger loop, in order to get an indication on when it is full
and needs to be changed. Temperature is also measured in several places, both in the
reactor and in the peripheral equipment, such as in the steam generator system, the
steam pipes, the scrubber, the sedimentation tank and several places along the flue gas
outlet pipes. Fig. 2.5 shows 49 of the pressure tap locations as well as 6 positions (T1–
T6) where temperature is also measured. The gas analyser that measures concentrations

(a) (b)

Fig. 2.5: Split-up drawings of Fig. 2.4(a), cut between LS3 and CR, with section labels referring
to Fig. 2.2. Here, (a): CR, CS, LS4, AR, CY1 and LS1, while (b): CY2, LS2, FR and LS3.
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from the fuel reactor is an Emerson Rosemount NGA 2000, while the analyser measuring
concentrations from the air reactor is a Sick Maihak S710. The analyser measuring the
NO concentration from the fuel reactor is an Emerson XStream.

2.4 Data evaluation (Papers I–VI)

2.4.1 Measurements of circulation in a riser

The upward mass flux of particles in a riser can be estimated from [73] as

Gs =
1

g

ΔPΔh

Δh
(u0 − ut), (2.9)

where g is the gravitational acceleration, Δh a small distance at the top of the riser over
which a pressure ΔPΔh is measured, u0 the superficial velocity and ut the terminal velocity
of a particle. This estimate appears in Papers I, II and IV, but is used in all papers when
analysing the upward mass flux of particles in a riser. The mass flow derived from Eq. (2.9)
is Ac ·Gs, where Ac is the cross-section area of the riser. In Paper I, it is called ṁGs, while
in Papers II and IV it is called ṁriser. This mass flow is different from the mass flow that
actually passes through to the cyclone. This is due to the fact that some upward moving
particles will hit the ceiling of the riser and fall down again along the walls. Hence, the
(estimated) riser mass flow overestimates the (actual) circulation mass flow, ṁ. The ratio
ṁ/ṁGs or ṁ/ṁriser will from here on be referred to as the flow-through ratio. Inspired by
Eq. (2.9), another measure of the circulation was used by Berguerand and Lyngfelt [32].
This measure is called the circulation index, CI, where

CI = ΔPΔh+Δl · FAR,out. (2.10)

Here, ΔPΔh+Δl is the pressure drop measured between pressure taps located at the riser
bottom and at the cyclone inlet, directly after the riser exit, cf. Fig. 2.1, and FAR,out is
the volume flow of gas in the air reactor at the current temperature. This relation is used
in Paper I as a measure of the circulation rate in the 10 kW unit.

2.4.2 Oxygen demand

The oxygen demand, ΩOD, is the fraction of oxygen lacking to achieve a complete combus-
tion of the gases leaving the fuel reactor. The gas conversion, γ, is given from the oxygen
demand as 1− ΩOD. The oxygen demand is calculated as

ΩOD =
0.5xCO,FR + 2xCH4,FR + 0.5xH2,FR + 1.5xH2S,FR

Φ0(xCO2,FR + xCO,FR + xCH4,FR)
, (2.11)

where Φ0 is the oxygen/carbon ratio, i.e. the ratio of moles of oxygen needed to convert
the fuel completely per moles of carbon in the fuel, and xi,FR is the molar fraction of
species i in the gas from the fuel reactor. Here, an estimation of H2S was only available
and accounted for in the tests using Cerrejón coal. For the first Colombian coal and the
Mexican petroleum coke, xH2S,FR was set to zero. This gives a small underestimation in
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the oxygen demand, especially for the sulphur-rich petroleum coke. The concentration of
H2S was not measured, but calculated from the measured concentration of SO2 as

xH2S,FR = (xCO2,FR + xCO,FR + xCH4,FR)× S
C
− xSO2,FR, (2.12)

where the sulphur-to-carbon ratio, S/C, is calculated on molar basis from the coal analysis.
Thus, it is assumed that the sulphur-to-carbon ratio is the same in gaseous phase as in
solid phase. However, it is possible that some SO2 is dissolved in condensate water, leading
to an overestimation of the H2S concentration. For the first Colombian coal: Φ0 = 1.149,
for the Mexican petroleum coke: Φ0 = 1.138 and for the Cerrejón coal: Φ0 = 1.179.

2.4.3 CO2 capture efficiency

There are two common ways to measure the efficiency of CO2 capture in solid fuel
chemical-looping combustion. They are the calculation of the carbon capture, ηCC , and
oxide oxygen, ηOO, efficiencies.

The carbon capture efficiency for continuous fuel feeding is defined as the ratio of the
carbon containing gas flow, leaving the fuel reactor, to the total carbon containing gas
flow leaving the air and fuel reactors. It can be calculated as

ηCC =
xCO2,FR + xCO,FR + xCH4,FR

FAR

FFR
xCO2,AR + xCO2,FR + xCO,FR + xCO4,FR

, (2.13)

where FAR and FFR are the total, dry, gas flows in the air and fuel reactors, respectively.
FAR is known, while FFR is calculated from knowledge of the total nitrogen flow, FN2,FR,
in the fuel reactor as

FFR =
FN2,FR

xN2,FR
, (2.14)

where the nitrogen composition (on dry basis), xN2,FR, is estimated from

xN2,FR = 1− xCO,FR − xCO2,FR − xCH4,FR − xH2,FR. (2.15)

The oxide oxygen efficiency is defined as the amount of oxygen used for oxidising the
particles in the air reactor, divided by the total amount of oxygen consumed in the air
reactor. It only depends on the gas concentrations in the air reactor outlet, eliminating
any uncertainty due to flows. It is calculated as

ηOO =
0.21− xO2,AR − xCO2,AR

0.21− xO2,AR − 0.21xCO2,AR
. (2.16)

The oxygen needed for char combustion in the air reactor yields an oxygen-to-carbon
ratio, O2/C, of one. The oxygen needed for oxidation of the fuel yields a somewhat higher
oxygen-to-carbon ratio, c.f. Φ0 for the different fuels. However, because of the incomplete
oxidation in the fuel reactor, O2/C is close to one. Thus, the numerator will represent
the carbon released as gas in the fuel reactor, whereas the denominator will represent the
total carbon released. Therefore, the definition used will give a good representation of the
efficiency with which CO2 is captured.

The calculation of the carbon capture efficiency might be less accurate than the oxide
oxygen efficiency due to the dependency of the flows. With this in mind, the oxide oxygen
efficiency is hereby referred to as the CO2 capture efficiency. Paper I uses ηCC to measure
the capture efficiency, while Paper III–V use ηOO.
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3
Modelling

3.1 Residence-time analysis (Paper I)

3.1.1 Mass-flow from residence time

The residence-time is a basic variable in any study of a combustion unit with fluidised
beds. For example, assume that the mass flow of particles cannot be measured directly.
Then the mass flow needs to be determined by some other means. If the residence-time
and bed mass are known, then the mass flow could be calculated from the definition of
the residence-time as

ṁ =
m

τ
. (3.1)

The aim of Paper I was to investigate the residence-time distribution of circulating bed
material in a 10 kW chemical-looping combustor for solid fuels.

3.1.2 The multistage-bed model

Inspired by [74], the derivation of the multistage-bed model is sketched below. First,
assume that there is a fluid passing through a series of N continuous stirred-tank reactors
(CSTRs). Let Vk denote the volume of the k:th CSTR (m3) and Q the overall volume
flow (m3/s). After the k:th CSTR, let ṅk denote the molar flow (mol/s) and Ck the
concentration (mol/m3) of a substance in the fluid. The aim of this analysis is to find the
time dependent concentration of the substance after the last CSTR. A molar balance over
the k:th CSTR can be written

ṅk = ṅk−1 − dnk/dt, (3.2)

where dn/dt refers to the molar rate of change. If the molar change is dnk = VkdCk and
molar flow ṅk = QCk, then Eq. (3.2) can be written

QCk = QCk−1 − Vk
dCk

dt
. (3.3)

Dividing with Q on both sides and recognising that τk = Vk/Q then yields

Ck(t) = Ck−1(t)− τk
d

dt
Ck(t). (3.4)
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This differential equation can be solved using Laplace transforms. A Laplace transform
of Eq. (3.4) would effectively change d/dt → s and Ck(t) → C̃k(s). Treating the time
derivative as a parameter s, Eq. (3.4) can be transformed to

C̃k(s)

C̃k−1(s)
=

1

1 + τks
. (3.5)

Assuming that the volume of each reactor is equally large, i.e. τk = τ/N , where τ is the
total residence-time, means that Eq. (3.5) is the same for all CSTRs. Hence

C̃N

C̃0

=
C̃N

C̃N−1

· C̃N−1

C̃N−2

· . . . · C̃1

C̃0

=

(
1

1 + τs/N

)N

. (3.6)

Defining the last expression as H̃(s) yields C̃N(s) = H̃(s)C̃0(s). The inverse Laplace
transform of a product becomes an integral, hence

CN(t) =

∫ t

t′=0

H(t′)C0(t− t′)dt, (3.7)

whereH(t) and C0(t) are the individual inverse transforms of H̃(s) and C̃0(s), respectively.
If the substance is released at time t = 0, then C0(t) = C0δ(t), where C0 is a constant.
Eq. (3.7) then simplifies to

CN(t) = C0H(t), (3.8)

where H(t) is found in standard mathematical tables to be

H(t) =
1

(N − 1)!

(
N

τ

)
tN−1e−t/(τ/N). (3.9)

The time dependence of the concentration after the N :th CSTR is thus

CN(t) ∼ tN−1e−t/(τ/N). (3.10)

When feeding the fuel reactor with a batch of fuel, the char content will gasify and
gradually reduce the oxygen carrier. This will effectively create a batch of reduced oxygen
carriers that eventually will enter the air reactor. This batch can be viewed as a batch
of oxygen with negative concentration. With the bed material acting as the fluid and the
batch of oxygen with negative concentration acting as the added substance, Eq. (3.10) can
be correlated to measured concentrations in the 10 kW unit. It is assumed that the fuel
reactor and lower loop seal can be modelled as a series of N equally sized CSTRs. When
the batch of reduced oxygen carriers reach the air reactor, the oxygen concentration will
decrease. If the model is successful, then the oxygen concentration should be possible to
fit

xO2,AR(0)− xO2,AR(t) ∼ tN−1e−t/(τ/N). (3.11)

3.1.3 Data sampling and experimental conditions

The experiments were conducted with batch loading of the fuel. To reduce the risk of
fuel particles sticking to the walls, the batches were released in the fuel reactor in small
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packages made by clingfilm. The clingfilm mass was negligible and did not affect the ex-
periments when converted in the bed. The mass of the batches was varied, but typically
sets of 25 g were used. Mexican petroleum coke, with a total volatile fraction of close to
10%, was used in testing with several modes of circulation and two different temperatures.
As the batches were released into the fuel reactor, a time frame of around 40 seconds was
noted until the gas analysers registered any change. Data was saved for around 20–25
minutes before ending each trial as at that time no noticeable concentrations were ob-
served. The gas analyser Sick Maihak S710 was used for selective analysis of IR-absorbing
gases for the CO, CO2 and CH4 measurements and the paramagnetic principle for the O2

measurements.

3.1.4 Correlation to measured data

The experimental data used in the model is obtained with Mexican petroleum coke,
fed in batches for different circulations at 950� and 970�. By varying the circulation
index, see Eq. (2.10), while measuring the oxygen concentration in the air reactor, it is
possible to correlate the coefficients in Eq. (3.11) to the measured data. With N as input,
the residence-time is found using a least squares fit. See Fig. 3.1 for the correlation at
CI = 141 kPa·L/min. Here, the light-gray data is excluded from the fit as it is assumed to
be a “dead-volume tail”. The “dead-volume tail” is a phenomenon caused by the corners
and right angles in the reactor sections, where fluidisation can locally be deficient. This
means that a time delay, not represented in the model, is introduced. The time delay will

0 5 10 15 20 25 30
19.4

19.5

19.6

19.7

19.8

19.9

20

20.1

20.2

20.3

20.4

Time [min]

(O
2
) A

R
[%

]

Measurement data (included)
Measurement data (excluded)
20.43 − 0.326 · t1.5 · e−t/3.54

20.43 − 0.232 · t2 · e−t/2.73

20.43 − 0.161 · t2.5 · e−t/2.23

Fig. 3.1: CI = 141. The three lines here correspond to N = 2.5, N = 3 and N = 3.5, where
τ = 8.2 min is found for N = 3. The fuel-reactor temperature was 950�.

induce a weaker slope of the oxygen concentration in the air reactor at the final minutes.
Fig. 3.1 also shows how N is chosen. For this example, three alternatives for N are studied:
2.5, 3 and 3.5. N = 2.5 produces a curve with too low amplitude, while N = 3.5 drops
off too steep. Hence, the middle alternative N = 3 was chosen. The results for all CI are
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Table 3.1: Results of the residence-time analysis.

CI [kPa·L/min] 34 78 102 121 141 256

N [-] 1.8 2.0 2.5 3.0 3.0 3.0
τ [min] 35.5 14.3 11.0 9.6 8.2 5.7

shown in Table 3.1. As this analysis was done for several different CI, it was possible to
correlate the residence-time to the circulation index. The correlation found was

τ =
1178± 58

CI
, (3.12)

with a 95% confidence bound, see Fig. 3.2. Eqs. (3.1) and (3.12) then yield a relation to
the mass flow as

ṁ =
mτ

1178
· CI. (3.13)

CI [kPa·L/min]

τ
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]
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Fig. 3.2: Measured data and least-squares fit of the residence-time versus circulation index for
950� and 970�. The data points are accompanied by error bars corresponding to the lower and
upper limits (dashed and dotted, respectively) for the different choices of N .

3.1.5 The flow-through ratio

As discussed in Section 2.4.1, the circulation mass flow is smaller than the riser mass
flow. Exactly how much smaller is partly dependent on e.g. the shape of the cyclone
entrance and the fluidisation velocity. Using ṁ as the label for the circulation mass flow,
as calculated from the residence-time model results, and ṁGs as the riser mass flow from
Eq. (2.9), a plot as in Fig. 3.3 can be produced. It shows that the circulation mass flow
from the air reactor is approximately 22% of the riser mass flow, for the lower circulation
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indices. Here, the last point has been excluded from the fit, hence for ṁ > 1 kg/min it is
likely that the flow-through ratio, ṁ/ṁGs, is less than 22%.
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Fig. 3.3: The circulation mass flow ṁ, determined from the residence-time, versus ṁGs , deter-
mined from the mass flux of Eq. (2.9).

3.2 The cold-flow model (Paper II)

3.2.1 Data sampling and experimental conditions

The most interesting parameters in cold-flow model measurements are the pressures,
the particle mass flows and the gas volume flows. The pressures are measured using
over 30 pressure transmitters from Huba Control. Gas flows are controlled by 8 El-Flow
Base/Select models from Bronkhorst. Mass flows of bed material are manually measured
by aid of three butterfly valves, integrated in the cold-flow model. Each valve is placed
after a cyclone, hence there is one after CY1, CY2 and CY3, respectively, see Fig. 2.2.
Pressure data are read and stored every 1/10 seconds for at least 3 minutes in stable
operation before averaging. Particle mass flows are measured 10 times in stable opera-
tion giving an average value. It is done by aid of a soft ruler, pasted above the butterfly
valve, and a stopwatch. The errorbars presented in Figs. 3.6 and 3.7 are defined by ± one
standard deviation from these 10 measurements.

3.2.2 Slug-analysis in the circulation riser

Slugging is common is tall, narrow beds of solids. The most critical part concerning
slugging in the cold-flow model is the circulation riser. Observations during operation in a
default fluidisation setting confirm that there indeed is slugging in this section. Fluidising
with ambient air, the bed material, having average particle diameter d̄p = 92 μm and
particle density ρp = 2.65 g/cm3, are between Geldart A and B solids, hence the slugs
formed are a mixture of axial slugs and wall slugs [72]. Fluidisation in the circulation riser
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was investigated for four different fluidisation velocities, varying from 0.21–0.57 m/s, see
Fig. 3.4. It shows the pressure drop between two points in the upper part of the riser, above
the bed. This figure also includes information on the mean value μ, the standard deviation
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Fig. 3.4: Pressure difference between two points in the top of the circulation riser.

σ, and the current bed height in the fuel reactor hFR. The bed height was measured with
a ruler after quickly having shut off the fluidisation flows. As can be observed, the peaks
are cut at roughly 6 kPa. This is a limitation in the pressure transmitter installed between
these two points. However, it is possible to see a trend with more fluctuations for the lower
velocities and less fluctuations for the higher velocities. This has to do with the terminal
velocity of the sand particles, ut, which is close to 0.41 m/s with ambient air. Hence, when
passing this limit, the transfer of particles will not only occur with slugs, but also with
a continuous flow. This decreases the pressure fluctuations. On the other hand, the bed
height in the fuel reactor falls considerably when u0,CR > ut. The bed height in FR should
be at least 59–60 cm, i.e. the height to the overflow exit to LS3, hence u0,CR = 0.33 m/s
was chosen as default velocity in the circulation riser.

3.2.3 Bed inventory stability

If no changes are made to the flow in the circulation riser, i.e. u0,CR = 0.33 m/s, then
an increase in either the air or the fuel reactor flow may rearrange the bed inventories
by transferring particles from the fuel reactor to the air reactor or vice versa. Evidence
of this is shown in Fig. 3.5. For example, increasing the fluidisation velocity in the air
reactor will increase the circulation mass flow and decrease its bed mass slightly. At the
same time, the bed mass in the fuel reactor will increase slightly. Experiments show that,
after a change, a new steady state is assumed. This means that if the outgoing mass flow
is increased by a certain amount, the incoming mass flow will also increase with the same
amount. For the chosen u0,CR, it is evident from Fig. 3.5 that the circulation mass flow,
both in the fuel reactor loop and between the air and fuel reactor, can be varied in a wide
range with only minor changes in solids inventory.
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Fig. 3.5: Pressure difference over the whole fuel and air reactor as function of circulation mass
flows. Here, ṁFR is the circulation mass flow of the internal FR loop, while ṁAR is the circulation
mass flow of the major AR–FR loop.

3.2.4 The flow-through ratio

Similar to the analysis in Section 3.1.5, the flow-through ratios (ṁ/ṁriser) for both the
fuel and air reactors in the cold-flow model are measured. The riser mass flow, ṁriser, is
calculated from Eq. (2.9) using the pressure difference between points 17–18 in Fig. 2.2,
i.e. the pressure difference between points AR5 and AR8 in Fig. 2.5(a). The circulation
mass flow, ṁ, is measured with the butterfly valve implemented in the downcomer after
each respective cyclone. The results are shown in Fig. 3.6. The circulation mass flow was
found to be 45% of the riser mass flow for the fuel reactor and 29% for the air reactor.
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Fig. 3.6: The circulation mass flow entering the cyclone versus the riser mass flow.
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3.2.5 Residence-time

With knowledge of the bed mass in different parts of the system, the residence-time can
be calculated from Eq. (3.1). E.g. for the air reactor, the mass flow is the global solids
circulation as measured by the butterfly valve in the cyclone downcomer. Fig. 3.7 shows the
residence time in the air reactor for different superficial velocities. Here, τAR = mAR/ṁAR

is the average residence-time of a particle in the air reactor
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Fig. 3.7: The residence-time versus the superficial velocity in the air reactor.

3.3 Modelling gas conversion (Paper VI)

In the 100 kW unit, fuel is fed on top of the bed in the loop seal next to the fuel reactor,
see Section 2.3.5. Immediately, devolatilisation of the fuel starts, releasing CO, H2, CH4

as well as other hydrocarbonaceous gases. However, as this loop seal is fluidised with
nitrogen, steam gasification is negligible. Not until the fuel has reached the fuel reactor,
the gasification process of the char begins according to reaction (1.4), producing syngas.
Two dimensionless quantities are introduced, κ and α, defined as

κ ≡ Fg

F0
(3.14)

αi ≡ kF,im

F0
, (3.15)

where Fg is the total flow of gas above the bed (converted and unconverted) from the
gasification and devolatilisation of the fuel, F0 is the fluidisation flow of steam, kF,i is the
mass-based reaction rate constant between the oxygen carrier and an unconverted species
i, and ṁ is the total bed mass. Assuming that the bed has an even distribution of char
particles with no volatiles present, the model predicts that the partial pressure of species
i (CO or H2) is given by

pi(α) =
pi,max

αi + κ

[
(1 + κ)− (1 + κ)−αi/κ

]
, (3.16)
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Chapter 3. Modelling

where pi,max is the maximum partial pressure of species i. In the other extreme, assuming
that there is no char present and that volatiles enter at the bottom of the bed, the model
predicts that the partial pressure of species i (CO, H2 or CH4) is given by

pi(α) = pi,max · e−αi . (3.17)

As the model treats each unconverted gas species separately, an individual gas conversion
component can be defined for each species as

γCO =
pCO2

pCO + pCO2

(3.18)

γH2 =
pH2O

pH2 + pH2O
(3.19)

γCH4 =
pCO2

pCH4 + pCO2

(3.20)

This means that γi(α) = 1− pi(α)/pi,max for both Eq. (3.16) and Eq. (3.17), yielding

γc,i(α) = 1− (1 + κ)− (1 + κ)−αi/κ

αi + κ
(3.21)

γv,i(α) = 1− e−αi (3.22)

for species i of the char conversion (c) and volatiles conversion (v), respectively. Fig. 3.8
shows Eq. (3.21) for κ > 0. From this plot, it can be observed that γc,i is practically
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Fig. 3.8: Illustration of γc,i’s dependence on κ and α according to Eq. (3.21).

independent of κ for 0 < κ < 1 if κ � α. For these conditions, a good approximation of
Eq. (3.21) is

γc,i ≈ 1− 1

αi
, (3.23)

with an error less than 1% if α � 4.
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3.3. Modelling gas conversion (Paper VI)

During real fluidisation, some unconverted gas bypass the bed through bubbles and
avoid contact with the oxygen carrier. As the model does not consider these facts, a
correction can be added. Defining φs,core as the fraction of solids exposed to the gas
passing in plug flow [75], α would change to

αφ = φs,coreα. (3.24)

As the parameter α contains the bed mass, it is reasonable that φs,core enters here. The
correction φs,core may take different values for Eqs. (3.21) and (3.22) as it is likely that the
contact between gas from char gasification and bed material differs from that of volatiles
and bed material.

In order to find an expression for the total gas conversion with respect to char and
volatiles, each component needs to be weighted with respect to the oxygen consumption
for full conversion of the species. In the case of CO and H2 for char conversion, the weights
would be 50% each, i.e. gas conversion for char is calculated as

γc = 0.5γc,CO + 0.5γc,H2. (3.25)

For the volatiles, data from [76] provide the gas composition for a typical bituminous coal
in rapid pyrolysis. From this data, the gas conversion for volatiles was estimated as

γv = 0.079γv,CO + 0.290γv,H2 + 0.632γv,CH4. (3.26)

Finally, Eqs. (3.25) and (3.26) need to be weighted together to form an overall gas
conversion for the fuel. From a fuel analysis of the Cerrejón coal, see Table 2.4, assuming
no loss of char to the filters, it is possible to show that the overall gas conversion can be
calculated as

γ = 0.624γc + 0.376γv. (3.27)

A correction for the fraction of char, lost from the system, should be added to the model.
To this end, defining ξ as the fraction of char that is converted, i.e. not lost, γ in Eq. (3.27)
would change to

γφ = 0.624ξγc + (1− 0.624ξ)γv. (3.28)

Here, the subscript φ refers to the correction to γ, made by φs,core and ξ.
Instead of regarding γφ as a function of α, it can be noted that the bed mass is related

to the pressure drop according to

m =
Ac

g
Δp. (3.29)

Hence, gas conversion can effectively be modelled as a function of the fuel reactor pressure
drop, Δp.
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4
Operation

The operational periods presented in Paper III–V consist of over 23 hours of operation
with fuel in the 100 kW unit. In this chapter, three representative operational periods
were selected for presentation. The periods are the first operation with Colombian coal
(Co-I), the operation with Mexican petroleum coke (M-I) and seventh operation with
Cerrejón coal (Ce-VII). All data are sampled at a rate of 1 Hz. In the plots showing the
oxygen demand and CO2 capture efficiency, a floating average of 10 seconds has been
applied in order to filter out some of the noise. The measured concentrations do not
add up to 100%. This is mainly due to dilution with nitrogen, originating from the fuel
screw, LS2 and minute quantities from the pressure tap sweep gas. All concentrations
are measured on dry gas and are corrected for minor in-leakage of air on the way to the
analysers. In some figures, small gaps in the data exist during a few minutes throughout
the operational period. These gaps indicate when the sample gas pipes are flushed with
nitrogen in order to clean them from steam condensate. The mass flow of particles, ṁ,
was approximated from batch experiments as described in Section 4.3. The air reactor
temperature was controlled using a mantle cooler, through which ambient air exchanges
heat with the hot wall of the air reactor. Temperatures presented from the air and fuel
reactors are measured at points T1 and T3, see Fig. 2.5, respectively. In Appendix A, a
comprehensive list with startup and shutdown procedures for operation of the 100 kW
system is provided.

4.1 Operation with Colombian coal (Paper III)

For the first operational period with Colombian coal in the 100 kW unit, fuel was fed
for 70 minutes at 6.9 kg/h. The gas concentrations from the fuel reactor are shown in
Fig. 4.1. Note that CO2 is diluted by N2 fluidising LS2 and N2 entering with the fuel
screw and pressure taps. As fuel is introduced at t = 0 min, a drop in the fuel reactor
temperature of approximately 5� can be observed, see Fig. 4.2(a). Approximately 3.5 min
later, the temperature starts to rise in the air reactor as reduced oxygen carrier particles
reach the air reactor. After some additional time, the fuel reactor temperature is regained
as warmer particles from the air reactor return. During the last 30 min of operation
with fuel, the average temperature was 948� in the fuel reactor and 992� in the air
reactor. Fig. 4.2(a) shows that it is possible to operate the unit under stable temperature
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Fig. 4.1: Flue gas concentrations from the first operational period with the Colombian coal.

conditions. Conversion to CO2 increases as the ilmenite is gradually activated and as
char accumulates and the fraction of gases coming from volatiles decrease, see Fig. 4.2(b).
Thus, the oxygen demand drops from approximately 25% to 18.5%, which is the average
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(a) Temperatures in the air and fuel reactor.
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(b) CO2 capture and oxygen demand.

Fig. 4.2: Temperatures in the air and fuel reactor as well as CO2 capture efficiency (ηOO) and
oxygen demand (ΩOD) from the first operational period with the Colombian coal.

from the last 30 minutes. The average CO2 capture from the last 30 minutes was 94.4%.
These data can be compared to results from the 10 kW unit, where the oxygen demand
obtained was around 23% and the CO2 capture ∼ 90% at 970� in the fuel reactor with
the same coal, although partially devolatilised, and oxygen carrier [9]. As fuel addition
stops, oxygen demand drops significantly. This is a result of volatiles not being released
any more, and indicates that the oxygen demand for char conversion is significantly lower.
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Chapter 4. Operation

4.2 Operation with Mexican petroleum coke (Paper IV)

For the operational period with the Mexican petroleum coke, fuel was fed during 32
minutes at 11.3 kg/h. Compared to operation with the Colombian bituminous coal, the
gas concentration curves are smoother, see Fig. 4.3. The smoothness most likely depends
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Fig. 4.3: Flue gas concentrations from the operational period with the Mexican petroleum coke.

on the low volatile content, see Table 2.4. Fig. 4.4(a) shows the temperatures in the
air and fuel reactor. No stable temperature was achieved in the air reactor during the
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Fig. 4.4: Temperatures in the air and fuel reactor as well as CO2 capture efficiency (ηOO) and
oxygen demand (ΩOD) from the operational period with the Mexican petroleum coke.

period of fuel feeding. The temperature was as high as 1050� in the air reactor and no
operational difficulties were noted. However, the average temperatures during the last 10
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4.3. Measuring circulation in the 100 kW unit (Paper IV)

minutes were 1033� in the air reactor and 926� in the fuel reactor. The average oxygen
demand from the last 10 minutes was 14.8%, while the average CO2 capture efficiency
was 77.7%, see Fig. 4.4(b). The low oxygen demand can be explained by the low volatile
content of the fuel. This can be compared with the observation that the oxygen demand
goes down when the fuel feeding stops, i.e. when the volatiles disappear. The low CO2

capture efficiency is due to the high fraction of char in the fuel. A higher fraction of char
means that longer residence times and higher temperatures may be needed to obtain an
efficient CO2 capture. Again, comparing to results obtained in the 10 kW unit with the
same fuel and oxygen carrier at 970� in the fuel reactor [9], an oxygen demand of 18–21%
and a CO2 capture of 60–70% were found.

4.3 Measuring circulation in the 100 kW unit (Paper IV)

The mass flow of particles can be approximated from batch experiments. Here, a batch of
∼ 330 g of Cerrejón coal was fed during 1 minute at 20 kg/h. Using the method outlined
in Section 3.1.4 (Paper I), the residence time was calculated to 7.3 minutes at the current
settings. It was assumed that the system of chambers from the point of fuel insertion till
the entry of the air reactor, with a total bed mass mτ , can be modelled as a plug flow
reactor (PFR) in series with a set of continuous stirred-tank reactors (CSTRs). The time
it took from fuel start till the first indication of an O2 dip in the air reactor provided the
residence time in the plug flow section, while an analysis of the O2 dip itself (see Paper
IV) provided the residence time in the CSTRs. Thus it was found that,

τ = τPFR + τCSTR = 3.2 + 4.1 = 7.3 minutes. (4.1)

The total bed mass in the steam-fluidised sections between the fuel feed point and the
entry to the air reactor is estimated to mτ = 165 kg. Eq. (3.1) then implies that ṁ =
mτ/τ = 22.5 kg/min. During this same period, the estimated riser flow was calculated
from Eq. (2.9), i.e.

ṁriser =
Ac

g

Δpriser
Δh

(u0 − ut), (4.2)

where ṁriser = ṁGS
and Δpriser = ΔPΔh. Here, the pressure drop was measured between

the top of the air reactor riser and the closest pressure tap 1.6 metres below, i.e. between
points AR7 and AR8 in Fig. 2.5(a). The average pressure drop during the batch exper-
iment was 629 Pa, yielding an estimated riser flow of 277.8 kg/min. This results in a
flow-through ratio of 8.09%. Hence, it is assumed that the mass flow through the cyclone
CY1 is given by

ṁ = 0.081 · ṁriser (4.3)

for all experiments.

4.4 Operation with Cerrejón coal (Paper V)

The aim with the experiments using Cerrejón coal was to investigate the effect of key op-
erational parameters on the system behaviour and thereby the performance. The system
behaviour includes global solids circulation, distribution of solids between reactors and
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operational stability of the system, whereas the performance indicators include gas con-
version as well as CO2 capture. From this study, it should be possible to find operational
conditions that give high performance. The seventh operational period with Cerrejón coal
provided 5.2 h of operation with fuel. Table 4.1 shows the parameter changes in events
labelled from 1 to 10 in Figs. 4.5–4.8, where event 0 states the settings at t = 0 min. In

Table 4.1: Parameter changing events from the seventh operational period.

Event
AR flow FR flow CR flow Fuel flow TAR

(Ln/min) (kg/h) (kg/h) (kg/h) (�)

0 1660 15 5 6.3 1000
1 1660 15 5 12.6 1000
2 2000 15 5 12.6 1000
3 2250 15 5 12.6 1000
4 2500 15 5 12.6 1000
5 2500 5 5 12.6 1000
6 2500 5 5 12.6 1025
7 2500 5 10 12.6 1025
8 2500 5 5 12.6 1025
9 2500 15 5 12.6 1025
10 Fuel stop

Fig. 4.5, the concentrations of CO2, CO, H2, CH4 and NO from the fuel reactor as well as
O2 and CO2 from the air reactor are plotted. Here, the NO concentration is scaled up with
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Fig. 4.5: Flue gas concentrations from the seventh operational period with the Cerrejón coal.

a factor of 240. This would mean that if xNO × 240 = 30%, then xNO = 1250 ppm. The
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sulphur gas concentrations are not presented due to the uncertainty in the amounts solved
in condensate water. At event 1, where the fuel feeding rate is increased, both the CO2

as well as the unconverted gases can be seen to increase, as expected. However, as soon
as the air reactor flow is increased, see events 2–4, the concentration of unconverted gases
decreases, while the CO2 and NO concentrations increase. This is also reflected in the sig-
nificant reduction of the oxygen demand, see Fig. 4.6. As seen in Fig. 4.7, this is correlated
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Fig. 4.6: CO2 capture efficiency (ηOO) and oxygen demand (ΩOD) from the seventh operational
period with the Cerrejón coal.
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operational period with the Cerrejón coal.
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to the increased bed height in the fuel reactor. At event 5, when the fuel reactor flow is
lowered from 15 to 5 kg/h, the NO concentration goes down rapidly at the same time as
the oxygen demand decreases further. From Fig. 4.6 it is also seen that lowering the fuel
reactor flow from 15 to 5 kg/h at event 5 does not seem to affect the CO2 capture. Up to
event 5, the fuel reactor temperature was fairly constant, see Fig. 4.8. However, when the
fuel reactor flow was lowered from 15 to 5 kg/h, the temperature increased slightly. Next
increase is seen to occur as the air reactor temperature was increased, providing hotter
particles to the fuel reactor. The air reactor temperature was regulated to 1000� for the
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Fig. 4.8: Temperatures in the air and fuel reactor.

first ∼ 200 minutes, after which it was set to 1025� at event 6. The fuel reactor temper-
ature during the experiment varied between 950–980�. At event 6, when the fuel reactor
temperature increases from approximately 960� to 970�, the oxygen demand is lowered
slightly, while the CO2 capture is improved. Increasing the circulation riser flow from 5
to 10 kg/h at event 7 is shown to have a detrimental effect on both oxygen demand and
CO2 capture. It can also be seen that the circulation is rapidly increased. This increase
resulted in a lowered bed inventory in the fuel reactor, see Fig. 4.7. At this point, the
CO2 concentration goes down while the CO and H2 concentrations go up. At event 8,
when the flow in the circulation riser is again set to 5 kg/h, the temperature also returns
to its previous value. The same can be seen for both the circulation and the fuel reactor
bed inventory. At event 9, a similar behaviour of the temperature is seen when the fuel
reactor flow is returned from 5 kg/h to 15 kg/h.

To summarise, important changes were made to the AR flow, the FR flow, the CR
flow and air reactor temperature. The resulting effects from these changes were:

� Increased AR flow lowers the oxygen demand and increases circulation and fuel
reactor inventory. Furthermore, the NO concentration also increases.

� The oxygen demand goes down slightly when the FR flow is decreased. CO2 capture
seems largely unaffected. Interestingly, the increased gas conversion in this case is
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not accompanied by increased NO concentration. Instead, NO drops drastically.

� The increase in CR flow led to a drastic increase in global solids circulation, a
lowering of the fuel reactor bed inventory, a lower CO2 capture and a higher oxygen
demand.

� As the the fuel reactor temperature increases by 10◦C, an improvement is shown in
both gas conversion and CO2 capture.

� No adverse effects of operating the air reactor at 1025◦C for 2 h were detected.

4.5 Overview of operation

This thesis presents results from fourteen different operational periods, conducted in a 100
kW chemical-looping combustor for sold fuels using ilmenite oxygen carriers. Table 4.2
summarises the results, including the average gas concentrations, from a total of fourteen
experiments. The last row shows the time period before fuel termination, Δtavg , over which
ṁ, ΩOD, ηOO, TFR, Δp and the gas concentrations were averaged, except for experiment
Ce-IX where the average is taken between 165–200 min. A special case is Co-II, where
the averages were taken during the final 10 minutes, except for ηOO, xNO,FR and the AR
concentrations which were averaged for 2 minutes. The label “C-gas” in rows 9–11 is the
sum of CO2, CO and CH4. Rows 9–11 are given in %.

Table 4.2: Summary of fourteen experiments in the 100 kW unit.

Co Co Co M Ce Ce Ce Ce Ce Ce Ce Ce Ce Ce
I II III I I II III IV V VI VII VIII IX X

ṁ (kg/min) 15.7 7.2 9.5 10.5 16.3 19.7 12.9 17.8 18.4 27.7 40.3 39.9 38.7 15.7
tfuel (min) 70.0 28.8 42.0 32.0 22.0 17.7 20.0 13.4 8.4 144 312 85 245 351
ṁfuel (kg/h) 6.9 11.5 4.9 11.3 18.5 20.3 20.3 29.8 ? 19 12.6 12.6 12.6 12.6
ΩOD (%) 18.5 24.0 21.2 14.8 19.6 19.4 25.7 24.5 22.2 21.6 16.9 15.9 16.3 16.7
ηOO (%) 94.4 92.3 96.0 77.7 91.3 74.9 88.4 86.2 87.1 96.4 98.2 97.1 98.3 99.5
TFR (�) 948 919 932 926 941 931 922 923 925 944 964 964 963 955
Δp (kPa) 14.9 12.4 12.3 10.8 15.4 20.2 12.3 13.1 13.6 15.2 19.5 22.7 19.7 22.7
xCO2,FR (%) 41.8 31.8 42.7 45.8 52.3 30.0 44.1 53.8 51.7 47.4 54.2 54.8 54.9 53.2
xCO/xC-gas 14.2 19.1 16.6 10.3 14.0 12.8 16.5 14.9 13.5 14.1 11.7 11.1 11.0 10.9
xH2

/xC-gas 13.7 15.5 14.0 11.3 9.5 7.0 12.4 11.2 10.0 9.5 8.3 7.3 8.4 7.9
xCH4

/xC-gas 3.7 5.2 4.6 3.0 5.5 6.2 7.7 7.7 7.0 6.6 4.7 4.5 4.5 4.9
xNO,FR (ppm) n/a n/a n/a n/a n/a n/a 149 163 338 n/a 1290 930 1332 842
xCO2,AR (%) 0.5 0.4 0.2 1.5 1.3 3.2 1.2 1.8 0.7 0.4 0.1 0.3 0.1 0.03
xO2,AR (%) 14.5 17.3 17.3 15.4 8.4 10.5 12.4 10.4 16.7 12.2 14.5 13.4 14.5 16.2
Δtavg (min) 30 10/2 10 10 5 5 5 5 5 10 180 30 35 20

4.6 Pressure profiles (Paper V)

From cold-flow model experiments, a pressure profile has been produced (Paper II). The
pressure in any point of the fluidised reactor system relative to some reference pressure,
e.g. the pressure at the top of the fuel reactor cyclone, depends on the amount of particles
between the pressure taps and the effective voidage between the particles. This voidage
depends on if the particles are in a dense phase, an entrained phase above the bed or
in a splash zone between the other two phases. If Δh is the vertical distance to where
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the reference pressure is measured, then Δpg ∼ (1 − εeff)ρpΔh, where Δpg is the gauge
pressure, εeff is the effective voidage between the particles up to the reference pressure
and ρp is the particle density. If the effective voidage is assumed the same for the sand
particles in the cold-flow model as for the ilmenite in the 100 kW unit, then the upscaled
pressure drop from cold-flow model experiments is

Δpg,h =
ρp,h

fscale · ρp,cΔpg,c, (4.4)

where “h” and “c” stands for the hot and cold pressure drops and densities in the 100 kW
unit and cold-flow model, respectively. Here, fscale = Δhc/Δhh is the scale factor 0.577.
The densities used were ρp,c = 2.65 g/cm3 and ρp,h = 3.60 g/cm3, as the ilmenite in the
100 kW unit is assumed to have not been fully activated.

In order to compare pressure drops between the cold-flow model and the 100 kW
unit, dynamic similarity must exist between the units. The pressure profile in Paper II
comes from experiments using air as fluidisation gas. For this study, it is hence assumed
that the requirement to use helium can be relaxed for the purpose of comparing pressure
drops. Fig. 4.9(a) shows the pressure profile from Paper II, scaled up using Eq. (4.4),
and Fig. 4.9(b) shows a pressure profile created from the first operational period with
the Colombian coal in Paper III. Both profiles are adapted so that 0 kPa gauge pressure
is defined for the top of the fuel reactor cyclone. The numbers in the profiles match the
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Fig. 4.9: (a) Upscaled pressure profiles from a cold-flow model experiment, adapted from Paper
II and (b) the first operational period with Colombian coal in the 100 kW unit.

numbers provided in Fig. 2.2. From a comparison between the profiles in Fig. 4.9(a) and
Fig. 4.9(b), it is clear that the cold-flow model gives a good representation of the pressure
profile in the 100 kW unit.
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4.7 Relation between circulation, bed height and gas con-
version (Paper VI)

As previously mentioned, the 100 kW unit has significant flexibility with respect to a
number of operational parameters in operation. Due to this flexibility, Section 4.4 could
conclude that the gas conversion is strongly dependent on the bed inventory in the fuel
reactor. Three fluidisation flows of major importance for the system behaviour are iden-
tified. They are the flows in the air reactor, the fuel reactor and the circulation riser. To
present their interrelation more clearly, effects from changing key operational parameters
are presented here, focusing on gas conversion, fuel reactor bed inventory and global solids
circulation. Here, gas conversion is represented by the oxygen demand (γ = 1 − ΩOD),
the fuel reactor bed inventory is represented by the total pressure drop, Δp, while the
circulation, ṁ, was calculated from the air reactor riser pressure drop, see Eq. (4.3).

4.7.1 Varying the air reactor flow

Fig. 4.10 shows the response in oxygen demand, fuel reactor pressure drop and circulation
when doing step-wise changes in the air reactor fluidisation flow as seen in several opera-
tional periods (Paper V). Using data from the Cerrejón operational periods VI, VII and
IX, three set of lines are presented. Each set is taken from a different operational period.
The air reactor fluidisation flow was varied and everything else was kept constant. The
flow was changed from 1660 Ln/min to 2500 Ln/min. As can be seen, each increase in the
air reactor flow results in a higher circulation, which leads to a larger bed inventory in
the fuel reactor, which in turn leads to a lower oxygen demand.
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Fig. 4.10: Responses in the oxygen demand (solid lines), fuel reactor pressure drop (dashed
lines) and circulation (dotted lines) when varying the air reactor fluidisation flow. Data from
periods VI (blue circles), VII (red squares) and IX (green diamonds).
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4.7.2 Varying the fuel reactor flow

In a similar manner as for the air reactor fluidisation flow, Fig. 4.11 shows the response in
oxygen demand, fuel reactor pressure drop and circulation when doing a step-wise change
in the fuel reactor fluidisation flow as seen in several operational periods. The flow was
changed in a range between 5 kg/h to 20 kg/h. As can be seen, an increase in the fuel
reactor flow does not seem to have a large effect on the investigated variables. However,
a slight increase in oxygen demand is observable. To summarise, the results all show that
the effect of changing the fuel reactor flow is small.

4 6 8 10 12 14 16 18 20 22
0

2

4

6

8

10

12

14

16

18

20

22

24

26

FR flow [kg/h]

[%
,
kP

a]

ΩOD

Δp

0

10

20

30

40

50

60

70

80

90

100

[k
g/

m
in

]

ṁ

Fig. 4.11: Responses in the oxygen demand (solid lines), fuel reactor pressure drop (dashed
lines) and circulation (dotted lines) when varying the fuel reactor fluidisation flow. Data from
periods VI (blue circles), VII (red squares) and X (grey triangles).

4.7.3 Varying the circulation riser flow

Fig. 4.12 shows the response in oxygen demand, fuel reactor pressure drop and circulation
when doing step-wise changes in the circulation riser fluidisation flow as seen in several
operational periods. The flow was changed in a range between 3 kg/h to 10 kg/h. As can
be seen, each increase in the circulation riser flow results in a higher circulation. However,
contrary to the events seen in Fig. 4.10 when changing the air reactor fluidisation flow, the
increased circulation leads to a lower fuel reactor bed inventory, which in turn leads to a
higher oxygen demand. This shows that a low oxygen demand, i.e. a high gas conversion,
can be achieved even with a low overall circulation, provided that the circulation riser
flow is adjusted to impose a large bed inventory in the fuel reactor.
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Fig. 4.12: Responses in the oxygen demand (solid lines), fuel reactor pressure drop (dashed
lines) and circulation (dotted lines) when varying the circulation riser fluidisation flow. Data
from periods VII (red squares), IX (green diamonds) and X (grey triangles).

4.7.4 Evaluating the gas conversion model

In Section 3.3, a model for gas conversion was discussed. To test the model, both for
char as well as for char and volatiles together, data are collected from the operational
periods analysed in Papers IV–V. Through α and κ, the model contains a dependence on
the fluidisation flow of steam, F0. This flow is assumed to pass evenly through the bed.
In real fluidisation, steam with a superficial velocity in excess of umf will form bubbles
and will not have an ideal contact with the bed material. Furthermore, as discussed in
Section 4.7.2, the oxygen demand does not seem to depend on the FR flow. For this study,
the base case F0 = 5 kg/h was used in the model. Other constants used in the model are
given in Table 4.3. Here, the values for kF are taken or calculated from [77, 78]. The model

Table 4.3: Summary of the model parameters used. Here, kF is given in m3
n/(tonne·s).

Parameter
Char model Full model

γc γc γv

kF,CO 3 3 3
kF,H2 15 15 15
kF,CH4 - - 0.3
κ 0.066 1.35 1.35
φs,core 0.16 0.16 0.15
ξ - 0.85

results, using Eq. (3.25) and Eq. (3.28), are presented in Fig. 4.13. Using the Cerrejón
periods, data from eight of the ten available γ’s of pure char conversion as well as data
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Fig. 4.13: All available data from full fuel and pure char conversion together with the corre-
sponding models.

from Figs. 4.10–4.12 are appended for comparison. Fig. 4.13 shows that the model fits the
experiments well. The full model suggests that a 90% gas conversion would be reached at
32–33 kPa pressure drop in the fuel reactor.
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5
Discussion and conclusions

5.1 Discussion

5.1.1 Motivation of work

This thesis describes the design, modelling and operation of a 100 kW chemical-looping
combustor for solid fuels. The thesis begins by discussing the concerns of global warming
and its relation to the increasing rate of greenhouse gas release to the atmosphere. Among
the greenhouse gases being released, CO2 is the most important one. Point-source CO2

is released mainly through the use of fossil fuels in energy production and through heavy
industrial processes, such as cement and steel production. Chemical-looping combustion
is a CO2 capture technology that can be used in e.g. large scale power plants using a
technology with clear similarities to circulating fluidised bed (CFB) boilers. CFB boilers
have a size of up to 460 MWel [79], although larger sizes would be feasible. The great
advantage of chemical-looping combustion, compared to other capture technologies, lies
in the fact that no active gas separation is needed, thus avoiding both high costs and
energy penalties.

5.1.2 Concerning flexibility and stability of operation

The 100 kW unit is a pilot-scale test rig, designed for flexibility in operation. The advan-
tages of having operational flexibility are many. There are several variables that are known
to affect gas conversion and CO2 capture efficiency in a chemical-looping combustor. Per-
haps the most important ones are fuel reactor temperature, global solids circulation and
fuel reactor bed inventory. These three variables are intrinsically interlinked and experi-
ments were necessary to clarify their interrelation. However, from a design point of view,
the engine for global circulation is the air reactor. From here, freshly oxidised particles are
transported to the fuel reactor. Global solids circulation is important for the heat balance
between the air and fuel reactors. As heat is produced in the air reactor and normally
consumed in the fuel reactor, it is important to have sufficient circulation in order to avoid
a decrease in the fuel reactor temperature, leading to adverse effects on performance.

Through experiments in the cold-flow model, it was learnt that the solids inventories
in the fuel and air reactors of the cold-flow model are stable to changes in the fluidisation
velocity, i.e. the system is self-stabilising in a large range of circulation mass flows. This
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means that for each flow change, a new steady-state is automatically assumed. Thus, there
seems to be little risk of emptying any of the reactors. However, it is still possible to vary
the bed inventories, i.e. to transfer bed material between the fuel and air reactors in a
certain span. The key to regulate this transfer lies in the circulation riser fluidisation flow,
as it constitutes a bottleneck for the global solids circulation and may be used to control
the bed inventory in the fuel reactor.

5.1.3 Comments on the loss of unconverted gases

Analyses of the experiments, conducted in the 100 kW unit so far, have shown a signif-
icant concentration of unconverted gases exiting the fuel reactor. The presence of these
unconverted gases are expected and can be remediated in the following ways:

� By oxygen polishing, i.e. addition of oxygen at the outlet of the fuel reactor.

� By separation and recycling of unconverted gas in connection to CO2 compression.

� By the use of an oxygen carrier that releases oxygen (CLOU).

� By leading the gas from the fuel reactor to an additional fuel reactor, lying in series
with the first one.

It should be noted that there are also a number of ways to modify the design and operation
of the fuel reactor, including the use of, or mixing with, other oxygen carriers that could
improve gas conversion [9, 33].

5.2 Conclusions

In Paper I–VI, many aspects of chemical-looping combustion for solid fuels are investi-
gated. Three units were available for the research. One smaller 10 kW unit, one cold-flow
model to study system behaviour under variations of operational parameters, and finally
a 100 kW pilot-scale test rig. Below is a summary of the most important findings that are
directly related to the study of the 100 kW unit.

An application of a multistage-bed model for a residence-time analysis in chemical-
looping combustion was developed. Fuel was added batch-wise to the 10 kW unit, where
gas concentrations exiting the air reactor were analysed. Conclusions include that

� It was possible to determine the residence-time and residence-time distribution of
particles in the fuel reactor for a number of operational cases with different solids
circulation.

� Knowing the solids inventory in the fuel reactor, the circulation mass flow could also
be determined.

� The circulation mass flow could be directly correlated to the riser mass flow, deter-
mined from pressure drop measurements in the riser.

The method used to derive a correlation between the mass flow calculated from batch
experiments and the mass flow calculated from air reactor pressure drops proved useful
as it enables the mass flow to be calculated in real-time during operation. The mass flow
can then be correlated to other parameters such as temperature or gas conversion.
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The cold-flow model was built specifically to prepare for the operation of the 100 kW
unit. The cold-flow model residence-time in the fuel and air reactor sections were found
to be variable in a wide range, between 2–11 minutes and 3–21 minutes, respectively, for
the investigated fluidisation velocities of the air reactor. Both these results indicated that
operation in the 100 kW unit would show similar behaviour. Finding that the circulation
mass flows were approximately linear in the riser mass flow, as determined by pressure
drops, was an important result. It strengthened the validity to use the correlation between
mass flow, calculated from a batch experiment, and mass flow calculated from pressure
drops.

In the 100 kW unit, three operational periods were conducted with one bituminous
coal from Colombia, one period with a petroleum coke from Mexico and ten periods with
another bituminous coal from Colombia, labelled “Cerrejón coal”. The last one was the
design coal for the 100 kW unit and represented over 85% of the total operational time,
conducted within the scope of this thesis. The experiments with the first Colombian coal
were focused on testing the stability of the unit. At this point, no attempts were made
to use the flexibility of the system to optimise performance. As seen in Table 4.2, typical
operational conditions were fuel reactor pressure drops and temperatures varying between
12–15 kPa and 930–950�, with a global solids circulation varying between 7–16 kg/min.
From the experiments conducted, it was found that

� Operation was stable and continuous fuel feeding for over 1 h was possible.

� A gas conversion and CO2 capture efficiency of up to 81.5% and 96.0%, respectively,
were found from averaging the performance indicators during the final minutes of
operation.

The incomplete gas conversion means that there is a loss of unconverted CO, H2 and
CH4 from the fuel reactor. Using ilmenite as oxygen carrier, the concentration of CO is
expected to be higher than that of H2. However, the high concentration of H2O from the
fluidisation gas likely raises the H2 concentration through the water-gas shift reaction. A
significant part of the unconverted gas comes from the volatiles, as seen from the sharp
decrease in oxygen demand when the fuel feed is stopped.

As mentioned above, only one experiment with a Mexican petroleum coke was con-
ducted. The purpose was to test a very different fuel before moving on with the design
fuel, the Cerrejón coal. The petroleum coke has a high char content and thus a low
volatiles content. In addition, it is rich in sulphur and low on ash. Experience from such
a fuel is useful when discussing performance results and connecting them with the fuel
composition. Conclusions include:

� The Mexican petroleum coke, which has a lower volatiles content, showed a clearly
lower oxygen demand compared to the Colombian coal. This agrees also with the
first observations that the oxygen demand falls to around 10% after fuel stop, i.e.
when the volatiles disappear.

� An average gas conversion and CO2 capture efficiency of 85.2% and 77.7%, respec-
tively, were found at a fuel reactor pressure drop and temperature of around 11 kPa
and 926�, with a global solids circulation of 10–11 kg/min.

� No adverse effects of reaching an air reactor temperature of 1050◦C were detected.
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From the ten operational periods with the bituminous Cerrejón coal, most conclusions
could be drawn from the final five periods. These periods were significantly longer than
the first five due to the implementation of a larger fuel container. As seen in Table 4.2,
typical operational conditions in the final five periods were fuel reactor pressure drops and
temperatures varying between between 15–23 kPa and 944–964�, with a global solids
circulation varying between 16–40 kg/min. Important conclusions include:

� A gas conversion and CO2 capture efficiency of over 84% and 99%, respectively,
were found from averaging the performance indicators during the final minutes of
operation.

� Tests replacing all nitrogen sources with CO2 showed that the sum of measured gases
was very close to 100%, indicating that only minute quantities of other species were
released.

� Results of the effect of steam gasification in the carbon stripper showed a clear
improvement in the CO2 capture efficiency, indicating an increase from 95.5% to
98.5%. This test involved switching the fluidisation flow from steam to nitrogen,
thus the char separation of the carbon stripper was assumed to be similar.

� The system allows for an independent control of global solids circulation and solids
inventory in the fuel reactor by using the flows fluidising the AR and CR.

� It is shown that increased air reactor flow increases the global solid circulation. This
leads to a transfer of bed material from the air reactor to the fuel reactor, provided
that the circulation riser flow is constant.

� Increasing the fuel reactor flow leads to a moderate decrease in gas conversion but
the CO2 capture seems largely unaffected.

� By raising the circulation riser flow, global solids circulation is drastically increased.

� A careful analysis was made on the relation between fluidisation flows, global solids
circulation, fuel reactor bed inventory and gas conversion. The results show that it
is the bed inventory in the fuel reactor, rather than the global solids circulation,
which has the major impact on gas conversion.

� Despite several minutes without fluidisation in the many sections of the reactor
system fluidised by steam, operation could be resumed without any indications of
harm having come to the oxygen carrier.

� With measured concentrations of NO, typically in the range of 1000–2000 ppm,
it can be concluded that roughly 10–20% of the fuel-N is oxidised to NO for the
Cerrejón coal.
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Ac Cross-section area (m2)

BET Specific surface area (m2/g)

Ck Concentration of particles after the k:th CSTR (mol/m3)

CI Circulation index (kPa·L/min)

d̄p Average particle diameter (μm)

D Bed diameter (m)

Fr The Froude number, u0/
√
gD (-)

F0, V̇0 Fluidisation flow of steam (kg/h or Ln/min)

Fg, V̇g Total flow of gas, originating from the gasification or devolatilisation of
the fuel (Ln/min)

Fj Volumetric flow of gas in reactor j (Ln/min)

FAR,out Volumetric flow of gas in the air reactor (L/min)

fscale The scale factor determined by the full set of scaling laws (-)

g Gravitational acceleration (m/s2)

Gs Particle mass flux (kg/(m2·s))
Δh Distance between two pressure taps in the riser (m)

kF,i Mass-based reaction rate constant between the ilmenite oxygen carrier and
an unconverted species i (m3

n/(tonne·s))
L Characteristic bed length, e.g. height (m)

LHV Lower heating value (MJ/kg)

ṁ, ṁAR Global solids circulation (kg/min)

ṁFR Circulation mass flow in the FR loop (kg/min)

ṁGs, ṁriser (Estimated) riser mass flow, i.e. mass flow based on the pressure drop in
a riser (kg/min)

m Mass (kg)

m0,ox/m0,red Mass of a fully oxidised/reduced oxygen carrier particle (kg)
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mτ Total bed mass from the point of fuel insertion till the entry of the air
reactor (kg)

ṅk Molar flow of particles after the k:th CSTR (mol/s)

N Fitting parameter in the residence-time analysis (-)

Δpg Gauge pressure/pressure difference to a reference pressure (kPa)

ΔPΔh, Δpriser Riser pressure drop over Δh (kPa)

pi Partial pressure of species i (Pa)

pi,max Maximum partial pressure of species i (Pa)

Q Overall volume flow (m3/s)

ReD Reynolds number based on bed diameter, ρfu0D/μf (-)

Redp Reynolds number based on particle diameter, ρpu0dp/μf (-)

R0 Oxygen transfer capacity of the oxygen carrier (%)

u0 Superficial gas velocity (m/s)

ut Terminal velocity of the oxygen carrier particles (m/s)

umf Minimum fluidisation velocity (m/s)

Vk Volume of the k:th CSTR (m3)

xi,j Molar fraction of species i in reactor j (-)

Greek letters

αi Dimensionless number, indicating the potential for an unconverted gas i
to convert (-)

γ Gas conversion for the fuel (%)

γc Gas conversion for char syngas (%)

γv Gas conversion for volatiles (%)

γφ Gas conversion for the fuel, corrected for gas bypass and char loss (%)

γc,i Gas conversion for species i in char syngas (%)

γv,i Gas conversion for species i in volatiles (%)

ε Bed voidage (-)

εeff Effective voidage between fluidised particles up to the reference pressure
(-)

ηCC Carbon capture efficiency (%)

ηOO Oxide oxygen/CO2 capture efficiency (%)
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κ Volumetric fraction of gas, produced by the fuel, to the fluidisation flow of
steam (-)

μf Dynamic viscosity of the fluidisation gas (μPas)

ξ Fraction of char converted, i.e. not lost to the filters (-)

ρb Bulk density (kg/m3)

ρf Fluidisation gas density (kg/m3)

ρp (Effective) particle density (kg/m3)

ρt True density (kg/m3)

τ Residence time between the point of fuel insertion till the entry of the air
reactor (min)

τk Residence-time in the k:th CSTR (min)

φ Particle sphericity (-)

φs,core Fraction of solids exposed to the gas passing in plug flow (-)

ϕ Particle porosity (-)

Φ0 Oxygen/carbon ratio, i.e. the ratio of moles of oxygen needed to convert
the fuel completely per moles of carbon in the fuel (-)

ΩOD Oxygen demand (1− gas conversion) (%)

Abbreviations

AR Air reactor

C-gas The sum of CO2, CO and CH4

CCS Carbon capture and storage

CDCL Coal direct chemical-looping

Ce Cerrejón coal

CFB Circulating fluidised bed

CFM Cold-flow model

CLC Chemical-looping combustion

CLOU Chemical-looping with oxygen uncoupling

Co Colombian coal

CR Circulation riser

CS Carbon stripper

CSTR Continuous stirred-tank reactor
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CY Cyclone

FR Fuel reactor

HIVEL High velocity

LOVEL Low velocity

LS Loop seal

M Mexican petroleum coke

PFR Plug flow reactor

PSD Particle size distribution

SEM Scanning electron microscope
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A
Startup and shutdown procedures for

operation of the 100 kW system

A.1 Preparation

� Change the dirty Biltema-filters for the sample gas.

� If necessary, refill water to the two sample gas water seals.

� Clean the filter between the coal screw and the coal screw water seal.

� Fill water to the coal screw water seal (water pipe should be filled to 3/4).

� Change the heat exchanger filter and write date on the white label.

� Refill particles to CY2 (while fluidising LS2 and FR) to replace the lost part.

� Prepare the fuel tank with enough fuel.

� Blow high pressure air through the sample gas pipes to clear the path.

� Make sure the N2 supply is enough for the experiment.

� Notify Akademiska Hus of the operation dates and use of compressed air.

A.2 Startup (day before operation)

� Calibrate the analysers.

� Close all the oven doors tight.

� Start the computer.

� Start the touch panel (switch on the back side).

� Set all knobs on the touch panel cabinet to automatic (ON).

� Set the steam generator main power to ON (ON = 1).

� Set the leftmost knob on the steam generator cabinet to ON.

� Open the valve for LS2.

� Open the two valves for the pressure tap sweep gas.

� Check to see that all the pressure tap rotameters are set to 0.4 Ln/min.

� Open the red valve for water through the heat exchanger (set to 10–15).
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A.3. Fuel start (day of operation)

� Open the valve for water to the coal screw cooling.

� Open the valve for water cooling of the sample gas pipes.

� Open the valves for water to the spray coolers.

� Make sure that the main valve between the coal screws is closed.

� Close the two valves for the air cooling for faster warm-up.

� Start the host computer Labview application (shortcut on desktop).

� Start the touch panel Labview application (shortcut on desktop).

� Wait a minute to let all electronics connect.

� Write “ Startup” in the comment field

� Press the “Save?”-button and wait a minute for a zero pressure baseline.

� Check in the save-folder that a new file has been created (do not open it).

� Set the flows LS1/LS2F/LS3/LS4/CS1/CS2/CS3/CS4/CR/FR/LS2/AR to
2/1/2/2/4/4/4/4/5/5/30/1660

� Set the two bottom heaters (“Trafo”) to 1000�.

� In Labview, set all ON/OFF switches to ON, except for K-tron feeder.

� Set the three oven heaters to 1000�.

� Set air preheater 1&2 to 860�.

� Set air preheater CA to 180�.

� Make sure all override safety protocol buttons are set to OFF.

� Open the coal screw rotameter (close to the LS2 valve) to 30 Ln/min.

� Set the remaining two knobs on the steam generator cabinet to ON (require 30 min
warm-up).

� Put up the safety enclosure line.

� Note the operation information on the whiteboard.

� Leave for the day.

A.3 Fuel start (day of operation)

� Make sure the T1–T6 temperatures all lie in the range 980–1000�.

� Check to see if all pressure drops are ok.

� Take down the safety enclosure line.

� Open the two valves for the air cooling.

� Set the override safety protocol button for “oven” to ON.

� Press the “Save?”-button to set it to OFF.

� Write “ Run” in the comment field.

� Press the “Save?”-button.

� Check in the save-folder that a new file has been created (do not open it).

� Set the steam temperature to 180� and wait till it stabilises.

� Open the coal screw rotameter (close to the LS2 valve) to 50 Ln/min.

� Check the water seal level on the floor above to see that it is stable.

� Open the valve at the N2 gas tubes (LS2 now becomes fluidised with N2).
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Appendix A. Startup and shutdown procedures for operation of the 100 kW system

� Open the small valve and rotameter on the fuel tank lid.

� Open the four main valves that provide air to the PCC.

� Step-by-step, switch from air to steam, beginning at LS1 and ending at FR.

� Check the FR flow and be prepared to compensate for condensation.

� Set the FR flow to 8 kg/h and wait for the system to stabilise.

� Set K-Tron feeder to 5 kg/h.

� Open the main valve between the coal screws (use protective gear).

� In Labview, set the K-Tron feeder switch to ON, starting the fuel feeding.

� Check again the water seal level on the floor above to see that it is ok.

� Check again the water levels in the two sample gas water seals.

A.4 Shutdown (day of operation)

� Set K-Tron feeder to 0 kg/h.

� Set the K-Tron feeder switch to OFF.

� Close the main valve between the coal screws (use protective gear).

� Close the small valve and rotameter on the fuel tank lid.

� Close the four main valves that provide air to the PCC.

� Close the valve at the N2 gas tubes (LS2 now becomes fluidised with air).

� Wait a while for most of the char to burn out.

� Press the “Save?”-button to set it to OFF.

� Write “ Shutdown” in the comment field.

� Press the “Save?”-button.

� Check in the save-folder that a new file has been created (do not open it).

� Step-by-step, switch from steam to air, beginning at LS1 and ending at FR.

� Await the final char burnout.

� Shutdown the two bottom heaters (“Trafo”).

� Set the ovens, steam temperature, preheater 1, 2 and CA to 20�.

� Set the oven, heating trace, preheater 1, 2 and CA switches to OFF.

� Set the two rightmost knobs on the steam generator cabinet to OFF.

� Set the AR flow to 600–1000 Ln/min.

� Set the flue gas fan to -0.1 kPa for faster cooling.

� Leave for the day.
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A.5. Post-shutdown (day after operation)

A.5 Post-shutdown (day after operation)

� Make sure the T1–T6 temperatures all lie in the range 20–100�.

� In Labview, set all of the remaining ON/OFF switches to OFF.

� Set the LS1-FR flow to -2 kg/h, while the LS2 and AR flow to 0 Ln/min.

� Press the “Save?”-button to set it to OFF.

� Press the “Stop”-button in the Labview application.

� Shut down Windows XP Embedded on the touch panel.

� Shut down the touch panel when notified (switch on the back side).

� Set all knobs on the touch panel cabinet, except for the main power and the evacu-
ation fan, to OFF.

� Set the leftmost knob on the steam generator cabinet to OFF.

� Set the steam generator main power to OFF (OFF = 0).

� Close the valve for water to the coal screw cooling.

� Close the valve for water cooling of the sample gas pipes.

� Close the two valves for the pressure tap sweep gas.

� Close the coal screw rotameter (close to the LS2 valve).

� Close the valve for LS2.

� Close the red valve for water through the heat exchanger (set to 0).

� Recover the saved files to USB for analysis.

� Shut down the host computer.
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