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A B S T R A C T

In this project, the standard High Level Architecture (HLA) has been
used in the area of automotive related distributed simulation systems.
The purpose was to evaluate the possibility to use HLA for verification
of such systems. This has been performed by building and evaluat-
ing three different prototypes. The simulation members, federates, of
the prototypes had real-time requirements with guidelines of being
able to exchange data corresponding to an amount of 10 000 bits,
within 10 ms and with an update period of 10 ms. The first prototype
involves federates transferring data between two Hardware-In-the-
Loop (HIL)-simulators from dSPACE. The second and third involve
federates executing in MATLAB and Simulink, respectively.

The results of the prototypes indicate that it most likely is possi-
ble to use HLA in such simulation systems. However, the amount of
work needed to make everything function varies from case to case
and sometimes tend to be relatively high. Regarding the distributed
data being sent between federates, the wanted way would be to pack
data into containers of small size. Doing this would result in the feder-
ates being able to only receive the data they are actually interested in.
However, handling a large amount of small size containers with data
within a short time period is very computationally demanding. Thus,
in order to succeed with the MATLAB and Simulink prototypes with
respect to the requirements, data had to be packed into larger con-
tainers. Doing that made it possible to transfer data amounts many
times greater than the stated data criterion.

Another use-case that might be even more promising regarding
HLA and the automotive industry came up during the thesis work.
It involves running distributed Simulink models offline (without the
real-time requirements) executed time-synchronized, with help of HLA.

Keywords: High-Level Architecture, HLA, distributed simulations,
real-time systems, Run-Time Infrastructure, Hardware-In-the-Loop,
HIL, automotive, Pitch Technologies, ForwardSim
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1
I N T R O D U C T I O N

Performing simulations on systems is an important approach when
developing and verifying products, especially considering the auto-
motive industry. With simulations one can predict and evaluate the
behaviour of a system, such as the electronics in a car, in an early
stage before the car is actually built. It is important to find faults
and correct these as early in the development procedure as possible
since they will cost multiple times more to correct in a later stage.
Hardware-In-the-Loop (HIL)-simulation is a type of real-time simu-
lation, involving interactions with real components such as several
Electronic Control Units (ECUs), used in for example cars. Such simu-
lators allow validation of both hardware and software. HIL-simulations
executed in real-time are usually very computationally demanding
and therefore run on dedicated real-time simulators. In the automo-
tive industry a single HIL-system is often, for various reasons, spe-
cialised on a certain area of a car such as the motor or the electrical
system. It would however be of interest to share particular informa-
tion between different simulator systems. This could for example ben-
efit from only requiring one HIL-system calculating and distributing
certain repetitive data. The data could then be delivered to several
other systems, instead of forcing each individual system to perform
the same calculations on their own. However, in this type of distributed
simulation, the data exchange between the different simulators need
to be kept at minimum delay in order for the simulations to work
properly. The delay requirement is different depending on, for exam-
ple, what sort of data being exchanged, although common update
intervals are in the range of 1-20 ms.

In this thesis, the High Level Architecture (HLA) standard has been
evaluated in the area of automotive related distributed simulation
systems. HLA can be used to share data in distributed simulation sys-
tems via the widely spread Ethernet protocol [1]. HLA originates from
simulations performed during military training which could involve
thousands of members sharing data. It has also been introduced to
other areas, such as medical simulations [2], emergency management
[3] and traffic simulations [4]. The standard is, however, not yet estab-
lished in the automotive industry.

1.1 previous work

There are a couple of existing protocols available in the automotive
industry which can be used to distribute data between different simu-
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4 introduction

lator systems, such as Controller Area Network (CAN) [5] and FlexRay
[6]. They are however quite limited in terms of bandwidth, and more
importantly the maximum possible length of cables. FlexRay, which
has the highest bandwidth of the two protocols, only supports a
length of around 20 meters between connected nodes. CAN supports
up to around 500 meters but when using a long distance the band-
width becomes significantly lower. Therefore they are very unsuitable
if the simulator systems are in different rooms, different buildings or
even further away from each other.

There also exist brand specific solutions such as Gigalink from
dSPACE [7]. Gigalink makes it possible to exchange data between
several real-time simulators, with low delays. Two large drawbacks
are that those systems only can be connected to other dSPACE HIL-
simulators and the distance between them is limited to around 100

meters.

1.2 purpose

The purpose of this thesis is to evaluate if it is possible to use HLA

for verification of distributed simulations, in the area of automotive
related systems.

1.3 scope

Different case-studies have been prototyped and tested in order to
evaluate HLA. They are described in the case-studies, Part IV. Case
one, the prototyping of HIL-simulator federates, is considered the main
focus of the thesis.

1.4 thesis structure

Part I gives an introduction and presents the purpose and scope of
the thesis.

Part II contains background material needed for the understand-
ing of this project. It covers different kind of computer simulations,
important parts of HLA and Ethernet network related delays.

Part III describes an overall method covering the common things in
the built prototypes of the case-studies. This includes general setups
and how the HLA participants in the prototypes communicate during
code execution. It also includes the prototypes’ evaluation criteria and
a list with development tools used during the project.

Part IV contains four case-studies. The first three involves building
and evaluation of three different prototypes, each of them including
two HLA participants. These three case-studies come with description,
implementation, results, analysis and future work, for respective pro-
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totype. The fourth case-study deals with cases involving more than
two HLA participants.

In Part V the thesis is summarized with conclusions regarding all
the case-studies.

Part VI contains the appendix.





Part II

B A C K G R O U N D





2
B A C K G R O U N D

This chapter describes important background knowledge that the
reader needs to be familiar with when reading this thesis. It cov-
ers different kind of simulations and gives a rough understanding
of HLA and its components which have been used during the thesis.

2.1 computer simulations

In general, a computer simulation is a model of a particular system,
which has been implemented to run on some sort of computer, or
simulator.

2.1.1 Real-Time Simulations

A real-time simulation system is a computer model of a physical
model, being executed on a real-time computer [8]. The type of digital
simulations in this thesis assumes simulations to run in discrete-time
with constant step durations. This means that time moves forward
with equal duration in every time step, known as fixed time-step simula-
tion. In every step of a discrete time simulation a number of equations
and functions, which represent the modeled system, are processed.
The amount of real time required to perform those calculations could
be shorter or longer than the simulation’s time step.

A shorter time usually means that the simulation runs faster than
real time, known as an accelerated simulation. Longer time corre-
sponds to a simulation running slower than real time. These two
types typically execute as fast as possible and the solving time de-
pends primarily on the amount of available computing power and
the complexity of the simulation model. The opposite of these would
be a real-time simulation. Such simulator needs to compute all the cal-
culations of the current time step in the simulation during the same
length of time that its corresponding physical representation would
have needed. However, when hardware is involved such as during
HIL-simulations, it has to go even faster. The reason is that here the
simulator also needs to perform additional tasks such as handling
input and output ports of connected devices. If everything works as
supposed, it should be some time left from the moment the simula-
tor has finished everything in the current time step, before it is time
to start with the next one. This time slot is called the idle-time. Idle-
time does not exist in accelerated simulations, since those would have
executed the simulation as fast as possible. However, during the idle-
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10 background

time in a real-time simulator, the simulator keeps waiting until the
clock ticks to the next time step.

If the simulator’s computational capacity is exceeded during a cer-
tain time step, an overrun will occur. In order to guarantee that the
simulator works properly, overruns must be avoided by, for example,
decreasing the work of the simulator.

2.1.1.1 Hardware-In-the-Loop (HIL) Simulations

HIL-simulation is a type of real-time simulation that includes real com-
ponents in the simulation [9]. In the automotive industry such com-
ponents are commonly different kinds of ECUs [10]. An ECU could for
example be a Brake Control Module (BCM) handling the brake sys-
tem of a car or a Climate Control Module (CCM) taking care of the
air conditioning among other things.

The intention with a HIL-simulator is to provide all connected ECUs
with proper electrical stimulation needed to fully exercise all ECUs. In
other words, this means tricking the ECUs into thinking that they are
connected to a real plant, for example a car. There are several bene-
fits associated with HIL-simulations. A couple of automotive related
examples include:

• Testing of ECUs in an early stage. Functionality can be verified
without the need of a real car, which usually does not even exist
in early stages.

• Completely testing and verifying ECUs is a very costly and time
demanding procedure if they are to be performed in a real car.
Performing these tests in a HIL-simulator would be less time
demanding and more cost efficient in the long run.

• Some test cases could be potentially harmful in a real car, such
as verifying that over-temperature protections works as sup-
posed. Such tests can instead be simulated to verify that the
specific ECU detects the error and reports it properly.

2.1.2 MATLAB and Simulink

MATLAB, which stands for MATrix LABoratory, is software devel-
oped by MathWorks [11]. It is a high-performance interactive pro-
gramming environment for algorithm development, data visualiza-
tion, data analysis and numerical computation [12]. As the name re-
veals, MATLAB is good with handling data within matrices. In MAT-
LAB a matrix does not require dimensioning, which allows easier
solving of many technical vector- and matrix related problems, in
comparison with other non-interactive languages such as C and For-
tran.
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MATLAB features several add-ons, known as toolboxes. A toolbox
is an application-specific solution, usually used and developed for
some specialized technology. Toolboxes are available in many areas
such as signal processing, control systems, wavelets and simulation.

Simulink, also developed by MathWorks, is a simulation environ-
ment integrated with MATLAB. Simulink provides a graphical envi-
ronment for model-based design of dynamic and embedded simula-
tion systems [13]. It includes a set of block libraries making it possible
to design, simulate, implement and test various time-varying systems.
In the same way that MATLAB has add-on toolboxes, Simulink can
be extended with more application-specific block libraries.

2.1.3 dSPACE

dSPACE is a company with both hardware and software solutions
for performing real-time HIL-simulations, among lots of other types
of embedded solutions [14]. Computer models created with Simulink
can, with help of dSPACE’s Real-Time Interface software [15], be com-
piled into applications which can run on dSPACE hardware.

The most central part of a dSPACE HIL-simulator is the processor
board. Communication with the processor board can be performed
through a regular PC, known as the host computer. On this host com-
puter, applications can be uploaded to the processor board in order
for them to run on the real-time simulator. It is also usually via the
host computer that test cases are executed and monitored. This can
be done with the dSPACE software ControlDesk [16].

2.1.3.1 Variable Description File (TRC)

When a Simulink model is compiled into an application using
dSPACE’s Real-Time Interface software, a Variable Description File
(TRC) is generated. This file contains model-specific information such
as parameters, signals, data types and address locations. This infor-
mation is necessary in order to observe and manipulate parameters
and signals when the application runs in the simulator. The informa-
tion could for example be used by ControlDesk, MLIB and CLIB.

2.1.3.2 MLIB

MLIB is a MATLAB to dSPACE interface library [17]. The library
makes it possible to transfer data between a dSPACE application and
MATLAB, running on the host computer, which the dSPACE simu-
lator is hooked up to. MLIB has a set of ready-made functions that
could be used to interact with the Real-Time Processor (RTP) running
on the processor board. MLIB is based on the functions from the low-
level library CLIB, described below.
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2.1.3.3 CLIB

CLIB is a C-code to dSPACE interface library [18]. The library works
in a similar way as MLIB, but function calls are instead made with C-
code. CLIB is even more low-level than MLIB, which makes CLIB
more promising in terms of data transfer delays, but with an in-
creased complexity. In comparison with MLIB, it comes with less
ready-made functions.

2.2 high level architecture (hla)

HLA has been an open standard for distributed simulation since 1996.
It has been developed by the United States Department of Defence
(DoD) and was initially commonly used by military forces to per-
form training simulations [19]. Such simulations could involve thou-
sands of soldiers, vehicles, aircrafts etcetera, all connected together
exchanging information through a simulation. In HLA, each partic-
ipating member that want to take part of the simulation is called
a federate. All information exchange is performed with help of the
Run-Time Infrastructure (RTI). The information exchange follows cer-
tain federation agreements and something called Federation Object
Model (FOM). The FOM contains information about all elements that
are being shared among two or more federates. All federates together
with the RTI and the FOM represents a federation.

HLA is not bound to any specific computing platforms. Whether
or not a specific operative system and programming language within
that system is compatible with HLA depends completely on the RTI. It
is also the RTI that decides which sort of network protocols are being
supported. The most commonly supported protocols are Transmission
Control Protocol (TCP) and User Datagram Protocol (UDP), through
Ethernet, Wi-Fi or a 3G connection.

The latest version of the HLA standard is the IEEE 1516-2010 or
more commonly known as HLA Evolved. It offers a lot of different
functionality for distributed simulation systems. However, in this the-
sis, only a few parts of the HLA functionalities are used. Instead, the
focus lies on trying to adapt and make the prototypes of the case-
studies HLA compatible and keep the data transfer delays at a mini-
mum. Some of the most central parts of HLA have been described in
the sections below.

2.2.1 Run-Time Infrastructure (RTI)

Federates must be connected to each other through an RTI. The RTI

consists of two parts: the Central RTI Component (CRC) (also known
as the RTIexec) and the Local RTI Component (LRC), as shown in
Figure 1. It is the CRC that manages the whole federation. All fed-
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Figure 1: The grey-faded area represents the complete RTI, consisting of a
CRC and one LRC for each federate (in this case two).

erates that want to take part of the federation must connect to the
CRC. When a federate joins, the CRC will provide it with necessary
information such as other currently joined federates and how to in-
teract with them. Each federate is compiled and linked to an LRC.
The LRC contains all methods and classes needed for the federate to
be able to communicate properly with the CRC and with other fed-
erates. A federate must perform all type of communication with the
rest of the federation through its own LRC. A federate makes a call
to its LRC when it wants to communicate with the CRC or another
federate, for example sending data. In a similar way, when the CRC

wants to communicate with a federate, the federate’s LRC will invoke
a callback.

All parts of a federation can either run on a single computer or run
distributed over several computers. For example, Federate 1 (with its
LRC) can run on one computer, Federate 2 (with its LRC) on a second
computer and the CRC on a third computer. Another configuration
would be to let the CRC run on the same computer as one of the fed-
erates. Each federate must however be linked to its own LRC and thus
be located on the same computer, the rest is up to the implementer.
If the federation runs distributed over two or more computers, the
communication between them goes via some sort of network. The
network is usually a Local Area Network (LAN), using Ethernet.

Since HLA is an open standard, it is possible to code an RTI on your
own. However, this would be a very demanding procedure, especially
if the intention is to make it fully HLA compatible, support multiple
federate programming languages, have low latencies etcetera. There
exists a couple of open source RTIs. One of them is called Open HLA
[20] developed in Java. Open HLA only supports federates written
in Java and is not fully HLA compatible, among several other draw-
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backs. Another open source RTI is poRTIco [21]. poRTIco does have
an Application Programming Interface (API) in both Java and C++
but in a relatively limited manner and does not support the latest
HLA version (HLA Evolved). Since open source projects are free they
are usually not state of the art, lack certain functionality and have
very limited support if problems occur. These drawbacks make these
RTIs unsuitable for this thesis. Instead, a complete high-performing
RTI solution has been bought from the company Pitch Technologies
[22].

2.2.1.1 Pitch Technologies

Pitch Technologies is a Swedish company that offers several HLA re-
lated products with various functions. Examples of such are software
for easier development of federates, visual software for producing
FOM files, software with HLA recorder utilities etc. However, the most
important product is the RTI itself, named portable Run-Time Infras-
tructure (pRTI) [23]. The pRTI is fully compatible and certified with the
latest version of the HLA standard and currently supports federates
written in C++ and Java. It offers high performance and is tweak-
able in terms of how data packages are sent between federates. These
were some of the reasons why pRTI was considered to be well-suited
for this thesis.

2.2.1.2 ForwardSim

The pRTI does not support models written in MATLAB or Simulink.
In order to convert such models into HLA federates, some sort of gate-
way is needed. This is where the Canadian company ForwardSim
[24] can help. They provide two products named HLA Toolbox and
HLA Blockset. HLA Toolbox extends MATLAB with a library which
makes it possible to, in regular MATLAB function files, make all sort
of interactions with an HLA RTI. The HLA Blockset includes specific
Simulink blocks, making it possible for Simulink models to interact
with an HLA RTI.

2.2.2 Objects and Interactions

Federates can share data with other federates using objects and in-
teractions. An HLA object is something that persists over time during
federation execution. Objects have one or several attributes. An exam-
ple of an object could be a car. The car’s attributes might then be
data containing its current speed, position and fuel level. One fed-
erate owns the car and provides the RTI with updated values of the
attributes, usually with some sort of decided frequency. Other feder-
ates have the possibility to, with help of the RTI, take part of these
attributes and get updates when there is new data available.
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An HLA interaction is a one time event that does not persist over
time during federation execution. Interactions have one or several pa-
rameters. Interactions are usually used to handle instantaneous events.
An example of this could be text communication between federates.
Such an interaction could be implemented consisting of two parame-
ters; one with some sort of sender identification number and the other
containing a text message. Federates then have the possibility to, with
help of the RTI, send messages using this interaction. When an inter-
action is sent, all federates that have subscribed to that interaction class
will get those parameters.

2.2.3 Federation Object Model (FOM) and Simulation Object Model (SOM)

A FOM describes all information that is shared between two or more
federates in a federation. Examples of such information are names
of interactions, parameters, objects and attributes, together with their
respective data types.

A Simulation Object Model (SOM) is closely related to a FOM. The
difference is that a SOM is individual for each federate and describes
the possible information which that particular federate could offer.

All FOMs and SOMs must follow the format described by the Object
Model Template (OMT), which is part of the HLA standard. Follow-
ing that format results in an eXtensible Markup Language (XML) file.
Thus, FOM files and SOM files are always some kind of XML files.

2.2.3.1 FOM Document Data (FDD)

During federation run-time, the CRC needs to know certain things
from the FOM file. Thus, when the federation is created, parts of the
FOM file known as the FOM Document Data (FDD) is being provided
to the CRC. These things include, for example, names of interactions
and parameters that will be shared in the federation.

2.2.3.2 Visual OMT

Visual OMT [25] is software from Pitch used to create and maintain
object models such as FOMs and SOMs. This is done in a graphical
easy-to-use interface.

2.3 measuring time delays between hla federates

Synchronizing the time on two regular computers to measure one-
way delays is difficult and not very accurate. The easiest way of mea-
suring elapsed time between two federates located on different com-
puters is instead to measure the Round-Trip Time (RTT) [26]. The RTT

is the amount of elapsed time it takes for one (or several) parameter(s)
with data to travel from the first computer to the second one and then
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back again. If the computers are considered equal, both in terms of
hardware and software, one can also easily obtain a feasible one-way
delay by dividing the RTT value by two.

Measurements in this thesis are in overall performed equal, inde-
pendent of what language the federates have been implemented in.
The federates are implemented to perform the general steps below,
when RTT tests are being carried out. The sending and receiving of
data is performed with help of the respective federate’s LRC. The dif-
ferent languages have, of course, their own way of measuring elapsed
time.

1. Federate 1 starts the time measurement and sends a chosen
amount of data to Federate 2.

2. Federate 2 receives that data and then sends an equal amount
of data back to Federate 1.

3. Federate 1 receives the data sent by Federate 2 and then stops
the time measurement.

The three steps above are iterated to produce a proper mean value of
the specific test being run.

2.4 delays on ethernet networks

Ethernet networks have different sources of delays, some of which
have been described briefly below.

2.4.1 Transmission Delay

The time it takes for sending an Ethernet package with data, known
as a frame, between two devices (such as computers) is highly de-
pendent on the bandwidth. The following formula can be used to
calculate the transmission delay:

DTransmission = Frame Size [bits]
Bit Rate [bits/second]

For example, the maximum sized Ethernet frame is 1500 bytes,
which equals 1500 · 8 = 12 000 bits. On a 100 Mbit/s network, the
delay would be:

DTransmission = 12000
100·106 = 120 µs

In a one gigabit network (1000 Mbit/s) the corresponding delay
would only be 12 µs. However, since each frame need some over-
head such as destination address, the maximum efficiency is approxi-
mately 97% (when using the maximum frame size of 1500 bytes) [27].
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2.4.2 Delays Associated with Switches

Ethernet switches involve different kind of delays. A switch could
work either using the store-and-forward technique or the cut-through
technique. Using store-and-forward, the whole frame is stored in the
memory of the switch before it is being forwarded on the proper out
port. Here, the switch has the advantage to throw away a frame if it
is damaged, but with the drawback of introducing a delay with the
size of a corresponding transmission delay. Instead, by using the cut-
through technique, only a small amount of the total frame needs to
be read before the switch starts forwarding the frame. Here, no check
is done to find out whether the frame is damaged or not but instead
has the advantage of forwarding the package a lot faster.

There is an internal processing performed in switches, known as
the switch fabric delay [28]. This value differs depending on the fabric
of the switch, but is usually only in the order of some microseconds.

Queuing delay is a type of delay which occurs when multiple
frames come to a switch in a conjunction. The frames are queued
and need to be handled one at a time. The queuing delay is a non-
deterministic delay because of the difficulty to exactly predict how
traffic flows on a network. An easy estimation of the queuing delay
would be its average, which has the following formula:

DQueuing = Network Load (%) · DTransmission(max)

where network load is the percentage relative full network capac-
ity and DTransmission(max) corresponds to the transmission delay of a
full-size frame, 1500 bytes. For example, a network with a load of
25 percent would have an average queuing delay of:

DQueuing = 0.25 · 1500·8
100·106 = 30 µs.

Observe that if there is no load on the network this delay becomes
zero.

2.4.3 Wireline Delay

Data being transmitted along a wire such as a fiber optic link travel at
approximately 2

3 of the speed of light. At long distance this wireline
delay can have a significant impact on the total time. For example, a
100 km long cable would result in a delay of:

DWireline =
1·105

0.67·3·108 ≈ 500 µs
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M E T H O D

3.1 method

Four different case-studies have been carried out in order to evaluate
HLA. In the first three the goal was to be able to send data between
two federates, with respect to certain criteria. How the federates are
created differs from case to case. However, some parts are equal and
independent of how the federates are implemented. These parts have
been described in sections below. The fourth case-study has been car-
ried out with focus on when there is more than two federates in a
federation.

3.1.1 Federation Object Model (FOM) Files

A FOM file is needed in order to create an HLA federation. Exchang-
ing data between federates could be done with either objects with at-
tributes or interactions with parameters, as described in Section 2.2.2
on page 14. With pRTI there is no difference in performance between
objects and interactions. What differs is rather the way of modelling
the communication. Since the federates in the case-studies are sup-
posed to send data instantly between each other, an interaction class
with multiple parameters was used.

A simple FOM file was built with Pitch’s Visual OMT software. By
performing a couple of simple steps, an interaction class was created
containing one parameter with a specified data type. One also need
to specify which transport protocol to use. UDP, or HLAbestEffort, is
an unreliable protocol which does not re-send any data packages that
might get lost during the transportation through a LAN. Unlike UDP,
TCP (HLAreliable) is a reliable protocol which re-sends data if it gets
lost. Since the data to be sent is updated very frequently, it would
be useless to re-send lost data packages cause the data would be
outdated by then. Hence, HLAbestEffort was chosen, which should
also perform slightly better in terms of delays. The FOM was thereafter
saved into an XML file.

A Java program was then created, which was able to modify the cre-
ated XML file. The Java program has the possibility to generate more
parameters, with names and data types. The parameter names would
ideally be matched to the names of the actual data to be sent. This
was however considered to be out of the scope of this thesis. Instead,
the FOM file was filled with a number of “dummy” parameters with
increasing numbers in their names, all with the same data type. Using
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the Java program, a couple of different FOM files were generated and
used in the case-studies. An example of a generated FOM file with
10 parameters can be seen in Appendix A.1 on page 81.

3.1.2 pRTI Settings

In pRTI one can specify several different settings, making the commu-
nication between federates behave in a way that is wanted. The used
settings are the same for all implemented prototypes. The LRC has
been configured to run with “minimal latency”. This means that the
data packages are not being buffered into larger packages. Instead,
they are sent directly in individual packages over Ethernet. Regard-
ing the CRC, all standard settings have been used.

3.1.3 Computer Setup

All prototyped federates, including the CRC, has executed on one or
two equal computers (depending on which case-study) with the fol-
lowing specifications:

• Operative system: Microsoft Windows XP Professional (with
Service Pack 3)

• Processor: Intel Core 2 6600 (2.4 GHz)

• RAM (Random Access Memory): 2 GB

3.1.4 The Federates’ Step-By-Step Execution

An overview of what is happening in the two federates during execu-
tion can be seen in Figure 2. Below follows a general description of
what happens in each step.

Step 1: The federates connect to the CRC part of the pRTI. To connect,
the federates must specify the IP-address and the port number of the
computer that the CRC runs on. Federates can chose between two dif-
ferent connection types; HLA_IMMEDIATE and HLA_EVOKED. Us-
ing HLA_IMMEDIATE makes the LRC part of the pRTI automatically
generate callbacks. These callbacks are executed by the federate in
parallel with its other tasks, in a so called multi threaded process
model. The opposite of this is the HLA_EVOKED connection. Here,
the federate needs to manually ask the LRC if there are any new
callbacks waiting to be executed. If new callbacks exist, they will
thereafter be executed in a single threaded (evoked) process model.
HLA_IMMEDIATE is recommended to use and will, because of its
multi threaded process model, minimize delays.

Step 2: During this step, federate 1 creates a federation with a cho-
sen name and with a specified FOM file. The FDD parts of the FOM file
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is used by the pRTI and contains, in this case, an interaction class with
names of all the parameters that will be sent between the two feder-
ates. It also specifies that the parameters will be sent using HLAbestEf-
fort (the UDP protocol). More precisely which FOM file that is specified
depends on which test that should run. For example, let’s say that 50

parameters of data type 64 bits integers are to be sent between the
two federates. Then, a file containing 50 parameter names (with in-
creasing numbers) of the data type HLAinteger64BE would be selected
(generated by the Java program mentioned in Section 3.1.1). When the
federation has been created, both federates are able to join it. When
doing this, they also specify their names, for example Federate1 and
Federate2 respectively.

Step 3: Both federates perform a function call to get the handle to
the interaction class containing all the parameters. Next, the federates
use their respective handles to make iterative calls to obtain handles
to all of the parameters.

Step 4: The federates subscribes and publishes to the interaction
class containing all the parameters. Publishing to an interaction class
activates the possibility for a federate to send interactions within that
interaction class. If an interaction is sent, all federates that have sub-
scribed to that same class will receive that interaction (with all the
parameters). Since federate 1 and 2 both should be able to send and
receive interactions, they both subscribe and publish to the same in-
teraction class.

Step 5: Here, an iterative type of RTT test is being performed, as
briefly described in Section 2.3. Federate 1 starts an accurate timer to
measure elapsed time and then assigns all parameters with test val-
ues. Next, the parameters are encoded into an HLA compliant bytes-
array. Thereafter, federate 1 makes a function call to send them as an
interaction. The parameters will at that moment be sent from feder-
ate 1 to federate 2, with help of the pRTI. If the federates are running
on separate computers, the data will be transferred over Ethernet (us-
ing the UDP protocol in this case). Federate 2 will receive a callback
from the RTI (automatically or manually, depending on the process-
ing model), triggering a function named receiveInteraction. Federate 2

will then execute the code inside receiveInteraction. What will happen
is that all received parameters will get mapped to their respective
handles and thereafter become decoded (one by one). Then, they are
all being encoded once again and sent as a new interaction, back to
federate 1. Federate 1 gets a receiveInteraction callback, then maps and
decodes all parameters. After that, the timer is stopped and the pro-
cedure is thereafter repeated from the beginning of step 5.

Step 6: When enough iterations have been performed, it is time to
stop sending and receiving interactions. In most of the tests, at least
1000 iterations have been executed.
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Figure 2: An overview of the actions that two federates perform.

Step 7: When the iterations have stopped, the federates will resign
from the federation.

Step 8: After both federates have resigned, federate 1 makes a func-
tion call to destroy the federation.

3.2 criteria

Below follow a number of criteria which have been considered when
evaluating the built prototypes from the different case-studies.

3.2.1 Delay Requirements

Low delays are highly significant when working with these types of
simulations. Data that should be shared between federates usually
need to be updated very often. To have a relevant requirement to
work with, the goal has been set to be able to update all data with
10 ms periods, with a maximum delay of 10 ms. The delay here cor-
responds to the time it takes for the data to get encoded and sent
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through HLA, travel from its source to its destination and then get
received and decoded again.

3.2.2 Amount of Shared Data

The amount of shared data to be sent between federates is of course of
high relevance and goes hand-in-hand with the delay requirements.
A reasonable amount of data to be shared could be in the order of
2000 parameters. Each of these parameters could be everything from
a few bits up to plenty, but an estimated average would be around
5 bits. This corresponds to a data amount of 2000 · 5 = 10 000 bits.
If the signals were to be packed in 64 bits blocks, the number of
blocks would then be 10 000

64 ≈ 150. Therefore, 150 64 bits parameters
is considered as an appropriate amount of data to be shared.

3.2.3 Distance Between Federates

The distance between federates also play an important role in terms
of delays. Since HLA uses the Ethernet protocol it is possible to have
federates located very far away from each other. However, the dis-
tance comes with increased delays, dependent on for example cable
lengths and the number of Ethernet switches for the data to pass. One
should at least be able to send the data through one switch, and make
estimates on how further switches and cables affect the results.

3.2.4 Complexity

The amount of work needed to set up a working HLA simulation
system is of importance in whether it is worth to implement or not.
Considering an already set up system, it is also important to know the
required level of maintenance, and the amount of knowledge needed
to work with HLA.

3.2.5 Scalability

How HLA performs in terms of scalability would be of significance.
For example, how a growing number of federates or an increased
data exchange is handled.

3.2.6 Computational Power

It would be of interest to investigate how the computational power
of the PCs in the prototypes affect the results. In some case-studies
it is also of importance to not use all of the respective computer’s
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computational capacity for handling data transfer. This must be taken
into consideration during the evaluations.

3.3 development tools

The following development tools have been used throughout this the-
sis.

• Pitch’s pRTI v.4.4.0.0, providing the LRC and CRC parts of the RTI

during all federation executions.

• MathWorks MATLAB R2011a and Simulink. MATLAB was used
together with the MLIB library (v.4.7.2) for interactions with
a dSPACE board. It was also used during measurement plots
and together with ForwardSim’s HLA Toolbox (v.3.0.0.539) when
developing MATLAB federates. Simulink was used to develop
Simulink federates together with ForwardSim’s HLA Blockset
(v.2.1.0.247). Simulink was also used when developing and build-
ing dSPACE applications.

• Microsoft Visual C++ 2010 Express, for developing C++ feder-
ates using Pitch’s C++ API libraries. It was also used for develop-
ing C code when using the CLIB library (v.4.x) for interactions
with a dSPACE board.

• Pitch’s Visual OMT v.2.2.1, used to create simple FOM files.

• Eclipse IDE for Java Developers version Indigo (Service Release
1), together with JDOM (v1.1.3) to modify and extend XML for-
matted files (FOM files).

• dSPACE’s ControlDesk Developer Version 3.7.2, for interaction
with dSPACE boards such as loading of applications.
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P R O T O T Y P I N G O F H I L - S I M U L AT O R F E D E R AT E S

4.1 description of prototype

In this set-up, the goal was to send data from one model running
on a dSPACE HIL-simulator, through HLA, to another model on a
dSPACE HIL-simulator located somewhere else. Unfortunately, there
exists no ready-made gateway for communication between a real-
time dSPACE simulator and HLA. Instead, the data to be exchanged
from one dSPACE simulator to another need to go through host com-
puters that the respective dSPACE simulator is hooked up to. The
host computer then has the possibility to act as a gateway between
dSPACE and HLA. The intention is that the host computers should
be dedicated to these tasks. Thus, it should be permitted to use all
available computational power of those computers. The set-up would
preferably look like Figure 3.

The implementation of this prototype has been divided into smaller
parts. First, the communication between dSPACE simulator and host
computer was implemented (Section 4.2.2). Then, the HLA commu-
nication between the two host computers was made (Section 4.2.3).
Finally, all pieces were put together (Section 4.2.4).

4.2 implementation of prototype

Since only one dSPACE simulator was available, the actual set-up was
instead modified to look like Figure 4. The difference between this set-
up and the preferred one in Figure 3 is that the data travels with HLA

over the LAN twice instead of once. This can however be compen-
sated for, by performing an RTT test between federate 1 and federate
2 (using the same amount of data), as described in Section 2.3. Since

Figure 3: Preferred set-up of the dSPACE HIL-simulators prototype.
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Figure 4: Actual set-up of the dSPACE HIL-simulators prototype.

host PC 1 and 2 have similar hardware and software, the RTT result
can be divided by two to represent a one-way delay. This delay could
then be subtracted from the total time measurement, to simulate the
complete data path.

4.2.1 Simulator Application

First of all, in order to have some data to perform read and write oper-
ations on, an application must be running on the dSPACE simulator.
Thus, a simple Simulink model was created, containing a couple of
thousand constant blocks of both 8 bits and 64 bits parameters. It
also includes a Real-Time Interface (RTI) block [29], acting as a link
between Simulink and dSPACE hardware (not to be confused with
the HLA RTI). The Simulink model was then built to a dSPACE appli-
cation and uploaded to a DS1006 Processor Board [30], located in the
dSPACE simulator. During the build process another important file
was created, a TRC. That file contains information about the signals
and parameters of the application, such as data types and address
references.

4.2.2 Communication Between dSPACE Simulator and Host Computer

The host computer was connected to the dSPACE simulator via a
bus interface, using a fibre-optic cable. This cable was attached to a
dSPACE link board of type DS817 installed in the host computer, and
a dSPACE link board of type DS814 on the simulator side.

dSPACE provides three different ways for transferring parameters
between the host computer and the application running on the dSPACE
board. The alternatives are through ControlDesk, MLIB and CLIB [31].
ControlDesk has not been evaluated since it is not intended for time-
critical transfer of data. MLIB and CLIB have both been tested in order
to decide which of them that is most appropriate for this prototype.
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Figure 5: The communication between the host computer and the dSPACE
simulator, using MLIB.

4.2.2.1 MLIB

With help of MLIB and ForwardSim’s HLA Toolbox software, it is pos-
sible to establish a data communication channel between the dSPACE
simulator and HLA. That is the reason why test code has been written
for MLIB and is described below. Figure 5 shows an illustration over
the communication.

The code has been written in a regular MATLAB script file (m-file).
First, a processor board has to be selected. This is done by speci-
fying the wanted board, in this case a DS1006, to the function Se-
lectBoard. Then, the function SearchTRC is used with an input of an
“expression”. MLIB searches the TRC file for any parameters or sig-
nals matching the expression and generates a vector containing those
matches. All the constant blocks in the created Simulink model are
located directly under the model root. Hence, using the SearchTRC
function with “Model Root/Constant*” as the expression results in a
vector containing the search paths to all of the constant blocks from
the model. Next, in order to read and write to these parameters, MLIB
needs to know things such as address locations and data types. This
is done by using the vector, containing the search paths, in the func-
tion GetTrcVar. The output is a vector with all information needed
for MLIB to be able to read and write data to all the constant blocks.
Reading the data is done by simply providing the output vector (from
GetTrcVar) to the function Read and a vector with all read data is re-
turned. The function Write works in a similar way, except you also
have to provide the data that should be written to the parameters.
Elapsed time for reading and writing operations have been measured
using MATLAB’s function TIC/TOC.

Results of how MLIB performs in terms of read and write delays
are presented in Section 4.3.1 on page 36.
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Figure 6: The communication between the host computer and the dSPACE
simulator, using CLIB.

4.2.2.2 CLIB

The pRTI has a built-in API for C++. It is possible to combine C and
C++ code in the same program. Thus, one can with CLIB read and
write data and connect this to HLA. The CLIB code is described in
brief below. Figure 6 shows an illustration over the communication.

The CLIB implementation has been written in regular C code. To
be able to use the CLIB functions, the CLIB library was added to the
project.

First, in order to get access to the DS1006 processor board, a pro-
gram has to register itself to the DSP Device Driver. This is done
with the function DS_register_host_app, which takes a name (by your
choise) as input. Next, a call to DS_board_index is made, with the
board name DS1006 as input. The board index is returned, and is
used in most function calls below in order to say which board the
specific function should apply to. After that, a check is made to see
that there is an application running on the board. That is done by
calling DS_is_reset, which returns the state of whether the RTP is reset
or running.

Since CLIB does not have any ready-made functions for parsing
information from the TRC file, this is done in a more manual way.
The TRC file in this case contains a couple of thousand parameters
(all the constant blocks from the Simulink model). The parameters
are sorted in an alphabetical order and are located in the proces-
sor board’s memory in the same order. By providing the function
DS_get_var_addr with the first parameter’s address name from the TRC

file, in this case “p_ManyConstantBlocks_P_real_T_0” (where “Many-
ConstantBlocks” comes from the name of the Simulink model), a 32

bit pointer to the memory address of that parameter is returned. By
reading this 32 bit pointer address with the function DS_read_32, the
actual memory address is returned, of where the first parameter is



4.2 implementation of prototype 33

stored in the board’s memory. This address can now be used as a
reference address when performing reading and writing operations
on the dSPACE board. Parameters of 64 bits data type can be read
using DS_read_64. This read-function needs to know the reference ad-
dress (from above) and how many parameters that should be read.
The read values are then returned in an UInt64 vector. DS_write_64
works in a similar way, but needs of course an UInt64 vector with
values to be written. For reading and writing the 8 bits parameters,
similar steps are performed, but with the functions DS_read_8 and
DS_write_8 for reading respective writing data. When the C code is
about to exit, the host application should unregister from the DSP
Device Driver by calling the function DS_unregister_host_app.

Results of how CLIB performs in terms of read and write delays
are presented in Section 4.3.1 on page 36.

4.2.3 Communication Between the Two Host Computers

Two HLA federates have been implemented for sending data between
the two host computers. The host computers were connected to each
other with a bandwidth of 100 Mbit/s over a LAN, with one Ethernet
switch in between (using the cut-through technique). The results in
Section 4.3.1 show that the best way, in terms of delays, is to use
CLIB in this prototype. It is also the most proper solution in terms
of money, since using MLIB requires licenses for both MATLAB and
ForwardSim’s HLA Toolbox. Hence, the two host computer federates
were implemented in C++.

To perform one step at a time, the HLA federates were first imple-
mented without involving CLIB and the dSPACE simulator.

4.2.3.1 The Code of the Federates

The code of the federates have been written in C++ together with
necessary LRC libraries from Pitch.

An overview of what is happening during the code execution of
the federates can be seen in Figure 7. Below follows a description of
what happens in each step.

Step 1: The federates connect to the CRC part of the pRTI, located
on the same computer as federate 1. Both federates connect using
the setting HLA_IMMEDIATE, which makes the LRCs execute new
callbacks automatically.

Step 2: During this step, federate 1 creates a federation named
MyTestFederation and specifies a FOM file. When the federation has
been created both federates join, with the names Federate1 and Feder-
ate2 respectively.

Step 3: Both federates perform a function call to get the handle to
the interaction class named DataParameters. Next, the federates use
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their respective handles to make iterative calls to obtain handles to
all of the parameters inside DataParameters.

Step 4: The federates subscribes and publishes to DataParameters.
Step 5: Here, Federate1 begins with calling the C++ function QueryPer-

formanceCounter, used to measure elapsed time. Then, all parameters
are being assigned with “dummy” values. Next, Federate1 encode all
parameters and send them as an interaction through its LRC. Feder-
ate2 will automatically receive a callback from its LRC, triggering the
function receiveInteraction. Federate2 will receive all parameters and
map them to their respective handles and thereafter decode them.
After that, all values are slightly modified (increased by 1, for test
purposes). Then, they are all being encoded once again and sent as a
new interaction back to Federate1. Now, Federate1 gets a receiveInterac-
tion callback, maps and decodes all parameters and then again calls
the function QueryPerformanceCounter, to be able to calculate how long
time that has elapsed. The procedure is then repeated from the begin-
ning of step 5.

Step 6: When 1000 iterations have been performed, sending and
receiving interactions stop.

Step 7: The federates resign from the federation.
Step 8: When both federates have resigned, Federate1 makes a func-

tion call to destroy the federation.

4.2.4 The Complete Federates’ Code

In the complete federates’ code, the scenario visualized in Figure 4

on page 30 has been realized. The CLIB code written in C (from Sec-
tion 4.2.2.2) has been combined with the C++ code of federate 1 (from
Section 4.2.3.1). The code of federate 2 has remained unchanged.

The final product is very similar to the steps performed in Figure 7.
The major differences occur around step 5. Before Federate1 starts per-
forming step 5, CLIB must be initialized and ready to perform read
and write operations, as described in Section 4.2.2.2. When this has
been done, step 5 is performed with a few modifications. Instead of
initializing the parameters with “dummy” values, CLIB reads the cor-
responding parameters from the dSPACE board’s memory and ports
those data into the HLA parameters.

Then, step 5 continues as regular until Federate1 is about to call
QueryPerformanceCounter the second time. Before doing that, the HLA

parameters are ported back to proper data which CLIB writes to
the dSPACE board’s memory. When that has finished, the call to
QueryPerformanceCounter is performed and the elapsed time is cal-
culated. This modified version of step 5 will then continue to iterate.
When the iteration part has finished and step 7 is about to run, CLIB
should first unregister from the dSPACE board. The rest of the steps
remain the same.
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Figure 7: An overview of the actions that the two C++ federates perform.
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4.3 results

4.3.1 CLIB and MLIB - Reading and Writing of Data

Several plots have been presented below in order to show the results
regarding CLIB and MLIB.

In Figure 8 and Figure 9, one single 64 bits parameter has been
read 1000 times iteratively from the memory of the DS1006 processor
board, using CLIB and MLIB respectively. Observe that these two
figures have been plotted with the same scale on the axes, for easier
comparison. According to the figures, in most of the iterations the
reading takes less than 1 ms. An interesting fact is that MLIB takes
almost the double amount of time to finish all 1000 readings. Another
thing that happens in both figures is that some readings take slightly
more than 10 ms to execute. This is repeated with a relatively constant
period. A closer look on the behaviour shows that these peaks occur
around every 46-47 ms, and at that time adds an additional 10 ms
to the execution time. Unfortunately, the cause of this behaviour is
unknown.

To better show how long time reading values usually take, the
peaks have been removed in some plots. Figure 10 and Figure 11

show what iteratively reading one 64 bits parameter looks like, with-
out such peaks. What can be seen from those figures is that CLIB
performs almost twice as good as MLIB, when reading a single pa-
rameter.

The next two figures present results of reading and writing mul-
tiple parameters. Figure 12 shows results of CLIB and Figure 13 of
MLIB. Here, there is a huge difference between the results of the two
figures. For example, reading 100 values with CLIB takes ~0.85 ms
compared to MLIB’s result of ~40 ms. The reason for this is that CLIB
has the possibility to read (and write) a block with parameters located
in consecutive memory order. What MLIB does here is that it reads
each parameter as if they were located anywhere in the memory. If
CLIB should have read 100 values all from spread memory locations,
it would instead have taken approximately 0.35 · 100 = 35 ms.

What also can be obtained from Figure 12 is that reading takes less
time than writing (when having more than a few parameters). Read-
ing and writing additional values continue in a very linear way with
approximately 5.5 ms and 8.4 ms respectively, for 1000 parameters.

In the rest of the figures below, only CLIB has been plotted. Fig-
ure 14 shows the same type of test as Figure 12, but with 8 bits
parameters instead of 64 bits. Note that the scale of the y-axes are
different in the mentioned figures. The 8 bits plot should ideally be
8 times faster than the 64 bits one. If one compare the figures, the
result does not become a factor 8 in difference. This, however, is be-
cause of the (unavoidable) “start time”, or overhead, of 0.35 ms which
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Figure 8: Using CLIB, one 64 bits parameter has been read iteratively 1000

times. Most of the readings take less than one millisecond but a
couple of them peaks and goes above 10 ms. The axes of the figure
are the same as in Figure 9, for easier comparison between the
plots.
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Figure 9: Using MLIB, one 64 bits parameter has been read iteratively 1000

times. Most of the readings take less than one millisecond but a
couple of them peaks and goes above 10 ms. The axes of the figure
are the same as in Figure 8, for easier comparison between the
plots.
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Figure 10: Using CLIB one 64 bits parameter has been read iteratively 1000

times. Here, peak values have been removed. The mean value for
this plot is approximately 0.35 ms.
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Figure 11: Using MLIB one 64 bits parameter has been read iteratively 1000

times. Here, peak values have been removed. The mean value for
this plot is approximately 0.68 ms.
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Figure 12: Using CLIB, multiple 64 bits parameters have been read (the red-
dashed line) and written (the blue line). All parameters are read
(respectively written) in consecutive memory address order. Each
measure point in the figure corresponds to a mean value of 1000

iterations together with the standard deviation. Peak values have
been removed.
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Figure 13: Using MLIB, multiple 64 bits parameters have been read and writ-
ten, respectively. The two lines are almost identical, which is the
reason why only one seems to appear. Each measure point in the
figure corresponds to a mean value of 1000 iterations together
with the standard deviation. Peak values have been removed.



40 prototyping of hil-simulator federates

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

Number of 8 bits parameters

E
la

ps
ed

 ti
m

e 
[m

s]

 

 
Reading of parameters
Writing of parameters

Figure 14: Using CLIB, multiple 8 bits parameters have been read (the red-
dashed line) and written (the blue line). All parameters are read
(respectively written) in consecutive memory address order. Each
measure point in the figure corresponds to a mean value of 1000

iterations together with the standard deviation. Peak values have
been removed.

stands for a large part of the elapsed time in Figure 14. If that time is
removed from both figures, and they are compared, the difference is
almost exactly a factor 8. For example, comparing the reading of 200

parameters gives the following: 1.36−0.35
0.48−0.35 ≈ 7.8. When the number of

parameters increase, the result is even closer to a factor 8. What this
concludes is that the most significant in terms of execution time is the
total amount of data to be read or written, not the data size of each
individual parameter.

The Simulink model that has been compiled into an application and
uploaded to the dSPACE board was very simple. The load of the RTP

was therefore very low. Thus, a more demanding Simulink model was
compiled and uploaded to the board, resulting in an RTP load around
50%. Figure 15 shows a plot of this, where 150 64 bits values have
been read iteratively 1000 times. Figure 16 shows the same results
obtained when the RTP load is low. By comparing these figures one
see that in Figure 15 the values fluctuate quite much. The mean value
is 1.21 ms, which compared to the mean value of Figure 16, of 1.11 ms,
is not too bad. The elapsed time is only increased by in average a
factor 1.21

1.09 ≈ 1.09.
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Figure 15: Using CLIB, 150 64 bits parameters have been read iteratively
1000 times. The application running on the processor board
makes the RTP work on a level of around 50% load. Peaks have
been removed.
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Figure 16: Using CLIB, 150 64 bits parameters have been read iteratively
1000 times. The application running on the processor board is
not very demanding. Peak values have been removed.
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Figure 17: A single 64 bits parameter has been sent iteratively 1000 times
from Federate 1 to Federate 2, using HLA. The mean value is ap-
proximately 0.28 ms.

4.3.2 Data Exchange Between the Host Computers

In Figure 17 and 18 the time results of sending one respective multi-
ple 64 bits parameters from Federate 1 (on host computer 1) to Feder-
ate 2 (on host computer 2) are presented. The results originate from
RTT tests, where all measurement values have been divided by two
to present the corresponding one-way delays. Figure 17 tells that en-
coding a single parameter, sending it as an Ethernet frame on the
100 Mbit/s LAN where it passes a switch and then reaches Federate 2

where it becomes decoded again, usually takes around 0.25-0.30 ms.
As one can see in Figure 18 where multiple parameters have been

sent, the difference between sending 64 bits parameters and 8 bits
parameters is not big. What matters the most is the number of param-
eters being sent. A large part of the total time when sending multiple
parameters like this occur at the receiver side. Since the parameters
are sent individually, each received parameter needs to be mapped to
the same parameter on the receiver side. When introducing a lot of
parameters, the loop in the code for doing this increases. The 8 bits
parameters do however perform a little faster. This is mainly due to
the less time needed to perform encoding and decoding operations
on the parameters. A computer with more computational power, such
as a quicker processor, would be able to handle even more parameters
during the same amount of elapsed time.
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Figure 18: Multiple parameters with “dummy” values have been sent from
Federate 1 to Federate 2 using HLA. The red line shows the result
when transferring 64 bits parameters and the blue-dashed line the
result when transferring 8 bits parameters. Each measure point in
the figure corresponds to a mean value of 1000 iterations together
with the standard deviation.

4.3.3 Simulated Complete Data Path

In Figure 19 results from the simulated complete data path have been
plotted. The plot shows a relatively linear behaviour when the num-
ber of parameters increase. A more zoomed-in view of the figure can
be seen in Figure 20. Observe that the peaks originating from CLIB
have been removed. With peaks removed, the data requirement of
being able to send 150 64 bits parameters within 10 ms is fulfilled.
However, by studying Figure 21 where peaks have not been removed,
the result is a bit different. That figure shows the complete data path
when sending 150 64 bits parameters iteratively. Here, almost every
fifth measurement includes a peak value, corresponding to a mean
value around 13 ms instead of the regular value which is slightly less
than 6 ms. An average of all 1000 measurements is 7.3 ms.
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Figure 19: The simulated complete data path, with a data flow as indicated
in Figure 3 on page 29. Multiple 64 bits parameters have been
used and each measure point corresponds to a mean value of
1000 iterations together with the standard deviation. Observe that
peak values have been removed, originating from the problem
that CLIB sometimes takes additional time to perform read and
write operations.
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Figure 20: A zoomed-in version of Figure 19, with a maximum of 200 pa-
rameters. Observe that peak values have been removed.
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Figure 21: Here, 150 64 bits parameters have been transported the simulated
complete data path, with a data flow as indicated in Figure 3 on
page 29. The procedure has been iterated 1000 times. Here, the
peaks, originating from the problem that CLIB sometimes takes
additional time to perform read and write operations, have not
been removed. The peak values are the dots distributed around
13 ms.
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4.4 analysis

The results of the simulated complete data path look quite promising
when compared with the criteria. The delay requirements of 10 ms,
in combination with the distance and the amount of shared data (150

64 bits parameters) do not seem unreasonable to fulfill. The prob-
lem with the peaks that sometimes appear during data transmission
between the host computer and the dSPACE board is however not
solved. If those are taken into account, the delay requirements of be-
ing able to periodically (every 10th ms) update 150 64 bits parameters
(within 10 ms) is during peaks exceeded by a few milliseconds, which
can be seen in Figure 21. The problem could be Windows-related
in combination with the bus connection to the dSPACE simulator. It
could also be something happening on the dSPACE board. In sum-
mary, the problem can most likely be avoided in one way or another.

What should not be completely forgotten is that the test model is
rather simple, with quite favorable conditions. For example, the test
case assumes that data to be read (or written) with CLIB already has
been packed in chunks with 64 bits of data. In a real model it is more
likely that parameters are stored in smaller data types. If so, some
sort of “conversion” would be needed to pack them into 64 bits data
types. Another favorable thing with the test-case is that it assumes
that all data to be read (or written) with CLIB is located in consecutive
memory order. In a more complicated Simulink model, this would
probably have to be arranged in some way in order to achieve such
structure. If CLIB would need to read (or write) from several different
memory locations, additional delays would occur. Each such delay is
approximately 0.35 ms, so having all the data stored in consecutive
memory order is of high importance considering delays.

The Ethernet part of this case-setup involves two Ethernet cards
(one in each host computer), two cables and one Ethernet switch. If
one approximate the elapsed time for sending 150 64 bits parameters
between the host computers to 6 ms, obtained from Figure 20, there
is another 4 ms left (according to the 10 ms criterion) which can be
used for transferring the data a longer distance. The data, 150 64 bits
parameters, corresponds to a total amount of 150·64

8 = 1200 bytes.
That amount could be packed and sent in a single Ethernet frame
with help of the RTI. Let’s assume perfect conditions in the meaning
that there is a dedicated optical link available with no other Ethernet
frames introducing any additional queuing delays. With such condi-
tions, the longest possible distance depends primarily on the wireline
delay. As calculated in Section 2.4 on page 16, the wireline delay is
approximately 0.5 ms per 100 km wire. Using those calculations, the
maximum possible distance using 4 ms of travel-time would then be
800 km.
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The reason why MLIB seems to perform quite bad in the tests is
that it is not really intended to be used for such tasks. The purpose
with MLIB is usually to analyze real-time data, but not passing it on
to somewhere else with low delay, as in this case-study. An example
of a use-case with MLIB would be to read the values of some param-
eters during each time-step the simulator performs, for 1000 steps.
What happens in such a case is that the RTP reads the parameters dur-
ing each time-step and then stores the values in a buffer. Not until
all 1000 steps have executed, all data inside the buffer is being sent
to the host computer. If each time-step for example is 1 ms, it would
take one second just to get all values into the buffer, and some ad-
ditional transfer time before the data reaches MATLAB on the host
computer. Thus, that data would be considered old and useless in
this case-study, but useful in other analytical scenarios.

4.5 future work

A couple of suggested future improvements are presented below.

• It would be preferred to have some kind of script which pro-
duces a proper FOM file from a TRC file. As the implementation
is now, the parameter names in the FOM file are not matched to
the parameter names in the TRC file.

• Real data to be transferred using CLIB should preferably be
packed into chunks of 64 bits data. Also, one has to make sure
that the data is being stored in consecutive memory address
order on the dSPACE board’s memory. Both these depend on
how the Simulink model is designed and also with which set-
tings the dSPACE application is built.

• The peaks that sometimes occur when CLIB reads and writes
data would be desirable to investigate, to find out what are caus-
ing them and how they are avoided.

• Finally, an improvement would be to run the federates (and the
CLIB communication) on a real-time operative system, instead
of Windows XP. When running the code on Windows it can get
interrupted if the operative system decides to do something else,
which could delay the code execution with several milliseconds.
With a real-time operative system, such things can be avoided.
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P R O T O T Y P I N G O F M AT L A B F E D E R AT E S

5.1 description of prototype

In this test-case the goal was to evaluate how HLA performs when
two MATLAB federates exchange data. To connect MATLAB with
HLA, the HLA Toolbox has been used. The set-up would preferably
look as in Figure 22.

5.2 implementation of prototype

Due to license limitations with the HLA Toolbox, the implementation
was modified to instead look like Figure 23. As seen in the figure,
the two federates will run on the same computer, but in two differ-
ent MATLAB instances. The PC’s processor has two cores and the
MATLAB instances will run on one core each. Also, since only one
computer is used, the communication does not go with Ethernet over
a LAN. However, this has been compensated for by estimating the
delays associated with the LAN and taking them into account when
performing tests.

As a whole, this prototype is quite similar to what has been per-
formed in Section 4.2.3. However, instead of building the federates in
C++ code using Microsoft Visual C++, they have been built in MAT-
LAB as two functions. The HLA Toolbox’s RTI library has been added
to both MATLAB functions, which makes them HLA federates. The
HLA Toolbox’s RTI library is very similar to Pitch’s C++ RTI library,
which was used in the two C++ federates in Chapter 4.

Figure 22: Preferred set-up of the MATLAB federates prototype.

49
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Figure 23: Actual set-up of the MATLAB federates prototype.

There is one big difference in this prototype compared to the one
in Chapter 4. Here, it is important to only use a certain amount of all
the computational power available. The intension of a federate is nor-
mally to simulate some kind of model and exchange a certain amount
of data with other federates. If all the computational power is used
to send and receive data, the rest of the model will not be able to
execute. It is very computationally demanding for a federate to han-
dle many incoming parameters during a short period of time. What
could be done instead is to send an arbitrarily large array with data
inside one parameter, instead of putting the data in separate parame-
ters. An array with data is a lot easier for MATLAB to handle. There
are however some drawbacks doing this. If only two federates should
form a federation it is relatively easy to decide what data they should
send to each other, and put everything in one parameter each. How-
ever, if more federates join it is unlikely that they are interested in
exactly the same data as the others publish. Let’s say a third federate
only is interested in a couple of values from the other two federates.
Then it has to subscribe to the two large parameter arrays, receive
all that data and parse out the parts it is interested in (and throw
away the rest). Another opportunity would be that the other two fed-
erates publish the data that the third federate actually wants, but in
that case they have to “double post” some data. A better approach
is of course to only have one value in each parameter. This was un-
fortunately considered to be unreasonable in this prototype, with the
stated criteria in Section 3.2 on page 24. Therefore this prototype has
been implemented using only one parameter, containing one array
with multiple values of data.



5.3 results 51

5.2.1 The Code Implementation of the Two MATLAB Federates

The step-by-step overview of the two MATLAB federates is shown in
Figure 24. Below follows a brief description of each step.

Step 1: Both federates connect to the CRC part of the pRTI, located on
the same Windows computer. Unfortunately, they must connect using
the setting HLA_EVOKED since HLA_IMMEDIATE is not supported.

Step 2: During this step, federate 1 creates a federation named
MyTestFederation and specifies a FOM file. When the federation has
been created both federates join, with the names Federate1 and Feder-
ate2 respectively.

Step 3: Both federates perform a function call to get the handle to
the interaction class named DataParameters. Next, the federates use
their respective handles to make one call to get a handle to the single
parameter array.

Step 4: The federates subscribes and publishes to DataParameters.
Step 5: Here, Federate1 begins with calling the MATLAB function

TIC, used to measure elapsed time. Then, the parameter array is filled
with a number of “dummy” values. Next, Federate1 encode the param-
eter and sends it as an interaction through its LRC. In the meantime,
Federate2 keeps asking its LRC for any new interactions. Since Federate1
now has sent one, Federate2 will find out about that and execute its
receiveInteraction function. In that function Federate2 will receive the
parameter and decode it. After that, the same amount of “dummy”
values are encoded into the parameter and sent as a new interaction,
back to Federate1. At this moment, Federate1 does nothing but asks
its LRC for new callbacks and finally gets the one from Federate2. Fed-
erate1 then executes its receiveInteraction and maps and decodes all
parameters. When that has been done, it calls the function TOC, and
the elapsed time is calculated. The procedure is then repeated from
the beginning of step 5.

Step 6: When enough iterations have been performed, sending and
receiving interactions stop.

Step 7: The federates resign from the federation.
Step 8: When both federates have resigned, Federate1 makes a func-

tion call to destroy the federation.

5.3 results

Figure 25 shows the results of sending one 64 bits value inside one
parameter from Federate 1 to Federate 2. The results in the figure
originates from an RTT test, where all measurement values have been
divided by two to present the one-way time. Since the federates are
located on the same computer the Ethernet related delays are not
included. However, since the amount of data is very small (64 bits)
the Ethernet delay for each measurement is negligible with respect
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Figure 24: An overview of the actions that the two MATLAB federates per-
form.
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Figure 25: One 64 bit value inside a parameter has been sent iteratively 1000

times from Federate 1 to Federate 2. Both the median value (the
red-dashed line) and the mean value (the blue line) have been
plotted. The median and mean values are ~2.4 ms and ~4.2 ms
respectively. Approximately 80% of all measurements take less
than 3.0 ms.

to the total transfer time. As the figure shows, some measurements
take relatively long time to perform which makes the mean value
(the blue line) a bit off from the main part of the measurements. The
increased execution times occur due to a couple of reasons. For exam-
ple, the Windows XP computer perform many other processing tasks
which could interrupt the code execution, resulting in additional de-
lays. Also, it is not optimal to run the two federates plus the CRC part
of the pRTI, all on the same computer. By doing this, the risk of ob-
taining measurements with additional delays is increased. In order
to show a more fair view of what usual time measurements take, the
median value has been plotted (the red-dashed line).

In Figure 26, multiple 64 bits values presenting one-way delays
have been sent between the two federates. Independent of the num-
ber of values being sent, there is always at least a ~2.4 ms delay. The
largest part of this delay is an overhead that occurs because of MAT-
LAB. The next largest part is due to the HLA Toolbox. Since the mean
values are a bit misleading, as previously discussed, the measure
points in the figure show median values instead. Due to the relatively
high overhead, sending 150 64 bits values only takes an additional
~0.1 ms compared to sending just one value. As the figure shows, it
is usually possible to send thousands of 64 bits values within 10 ms.
When the amount of data reaches these levels, the Ethernet related
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Figure 26: Multiple 64 bits values inside one parameter array have been sent
from Federate 1 to Federate 2, running on the same computer.
In the black line, each measure point correspond to the median
value when 1000 iterations have been performed. The red (dot-
dashed line) and green (dashed line) are total estimated time if
the parameter array would have travelled over Ethernet, with a
bandwidth of 100 Mbit/s and 1 Gbit/s respectively. An estima-
tion of 90% efficiency has been considered during the Ethernet
transportation.

delays cannot be neglected anymore, as seen in the figure. The Eth-
ernet bandwidth plays an important role regarding the total amount
of time. As can be seen, using a 100 Mbit/s connection really affects
the total time whereas a 1 Gbit/s connection only affects theoretically
one tenth as much.

A similar thing as Figure 26 shows, but with 16 bits values instead
of 64 bits values, can be seen in Figure 27. Both figures have been
plotted with the same scale on the axes, for easier comparison. Since
the figure with 16 bits values only send one forth as much data in each
parameter array (compared with Figure 26) the Ethernet delays are
less significant. Ideally, the 16 bits figure would perform four times
faster than in the 64 bits figure. By comparing the black lines when
10 000 values are sent, the 16 bits figure only performs 5.2

4.0 = 1.3
times faster. A similar comparison for 100 000 values becomes 41.5

16.5 ≈
2.5 times faster. At the latter case the overhead, which are the same
in both figures, play less significance regarding the total time. Four
times faster is however not reached, mainly because of the added time
needed for MATLAB to handle larger matrices.
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Figure 27: Multiple 16 bits values inside one parameter array have been sent
from Federate 1 to Federate 2, running on the same computer.
In the black line, each measure point correspond to the median
value when 1000 iterations have been performed. The red (dot-
dashed line) and green (dashed line) are total estimated time if
the parameter array would have travelled over Ethernet, with a
bandwidth of 100 Mbit/s and 1 Gbit/s respectively. An estima-
tion of 90% efficiency has been considered during the Ethernet
transportation.
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5.4 analysis

The results in this case-study looks quite promising in comparison
with the criteria in Section 3.2 on page 24. The amount of data that
can be sent within 10 ms is many times higher than the stated cri-
terion of 150 64 bits values (which is usually achievable in ~2.5 ms).
However, there are a couple of things which have been modified. For
example, all data is sent in only one parameter array instead of mul-
tiple separate parameters. This was however considered necessary in
order to meet the data amount criterion and not waste all computa-
tional power for sending and receiving data. Another thing is that the
10 ms deadline is exceeded with tenths of milliseconds during some
percentages of the measurements. This is due to that Windows some-
times perform other tasks which is relatively difficult to fully avoid.
Thus, the 10 ms requirement cannot be strictly guaranteed, but on the
other hand this is sort of expected when using Windows.

Another thing to remark is that the federates must use the
HLA_EVOKED connection method. As the federates have been imple-
mented now, when a federate has sent an interaction containing all
data, it starts asking the LRC for new incoming interactions. In a real
case all time could not be used to check for incoming interactions.
The federate would also need to perform its model calculations and
other such things. For example, if the federate checks for new inter-
actions every fifth millisecond, an additional delay of 0-5 ms will be
added to the total time (depending on when an interaction arrives).

Regarding Ethernet delays, the same reasoning as in Section 4.4
on page 46 would be valid. If perfect conditions are assumed, with a
dedicated optical link and no queuing needed, the longest distance is
primarily depending on the wireline delay. In Figure 26, for example,
it takes approximately 6 ms to send 10 000 64 bits values between the
two federates, using a 1 Gbit/s bandwidth. That leaves another 4 ms
for the wireline delay. Since that delay is ~0.5 ms per 100 km wire,
the maximum distance would in this case be 800 km.

5.5 future work

Suggested future improvements have been presented below.

• Better control the processor usage of the Windows operative
system, so that peak values are minimized.

• In a real case, the data that should be shared between feder-
ates should match the data in the FOM file. This has not been
implemented in this prototype.
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P R O T O T Y P I N G O F S I M U L I N K F E D E R AT E S

6.1 description of prototype

In this case set-up the goal was to exchange data between two Simulink
federates and evaluate the results. To make Simulink HLA compatible
the HLA Blockset was used. Figure 28 shows the preferred test set-up.

6.2 implementation of prototype

Similarly to the MATLAB case-study in Chapter 5, the set-up had
to be modified due to license limitations. The federates run on the
same computer but on different MATLAB instances (and different
processor cores). Since they do not run over a LAN, the Ethernet
related delays have been estimated and added to the results. The set-
up is shown in Figure 29.

As discussed in Section 5.2 on page 49, it is very computationally
demanding for a federate to handle many incoming parameters dur-
ing a short time period. However, since Simulink was expected to
be more efficient than the MATLAB federates, two different pairs of
Simulink federates have been prototyped. In the first pair, values with
data are sent in only one parameter array. The second pair was imple-
mented using multiple separate parameters with a single data value
in each parameter.

Figure 28: Preferred set-up of the Simulink federates prototype.
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Figure 29: Actual set-up of the Simulink federates prototype.

6.2.1 The Model Implementations of the Simulink Federates

Federate 1 of the first Simulink pair, where multiple values are sent
in one parameter array, is shown in Figure 30 and 31. A similar repre-
sentation of Federate 2 is shown in Figure 32 and 33. The models will
execute as fast as possible, using a discrete time-step. Below follows
a step-by-step description of the execution of the federates.

Step A: Several HLA related functions are performed in the For-
wardSim initialize block. That block contains a graphical interface
where federate specific information and several settings can be ad-
justed. Examples of such are federate and federation name, connec-
tion settings, selection of FOM file and which objects and interactions
to include from the FOM file. When starting the executions of the
models, this block makes the federates connect to the CRC part of the
pRTI (located on the same Windows computer). Next, the federation
is created and both federates join, using the HLA_EVOKED connec-
tion method (HLA_IMMEDIATE is not supported). Interaction class
handles and subscriptions and publications of the parameter array
(Float1) are then taken care of, all with help of the initialize block.

Step B: During the first time-step, the initializing subsystem block in
Figure 30 will get triggered and thus execute. Inside that subsystem, a
number of random values of data type double (64 bits values) will be
encoded and sent as an interaction, in the same manner as Figure 31

shows.
Step C: In each time-step that Federate 2 executes the initialize block

will actually ask the LRC for new callbacks, such as an incoming in-
teraction. Since Federate 2 has subscribed to the interaction that Fed-
erate 1 recently sent, it will very soon execute its receive interaction
block, see Figure 32. The parameter array, Float1, will then become
decoded. However, since the data is going to be sent as a new in-
teraction to Federate 1, it is being encoded once again. The receive
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Figure 30: The graphical representation of the Simulink model of Federate
1. Here, only one parameter array is used to send multiple values
with data. The triggered subsystem is shown in Figure 31.

interaction block has triggered the triggered subsystem block, which is
where the encoded data will enter and be sent as an interaction, see
Figure 33.

Step D: Shortly after that, Federate 1 will get noticed about the in-
teraction and run its receive interaction block. The Float1 parameter
array will become decoded, but not used further. The receive inter-
action block will also trigger the triggered subsystem block, shown in
Figure 31. There, new random double values will be encoded and
sent as an interaction to Federate 2. Step C and D will then iterate
until the model executions stop.

Step E: When the model executions stop, the initialize block will
make its respective federate resign and the federation will be de-
stroyed.

Step F: Simulink has a built-in profiler tool which has been activated
on Federate 1. When model execution stops it will show the recorded
information, which has been used to calculate one-way delays of the
federates.

The second pair of Simulink federates, where multiple parameters
have been used (with one single data value in each), is very similar
to the first pair. What differs the most is that one additional encode
and decode block is introduced for every parameter being added. So
for example, if 100 different parameters are going to be sent then
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Figure 31: The graphical representation of the blocks inside the triggered sub-
system of Federate 1.

Figure 32: The graphical representation of the Simulink model of Federate
2. Here, only one parameter array is used to send multiple values
with data. The triggered subsystem is shown in Figure 33.

Figure 33: The graphical representation of the blocks inside the triggered sub-
system of Federate 2.
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100 encoding blocks and 100 decoding blocks have been used in each
federate.

6.3 results

Figure 34 shows the one-way delays when sending multiple values in-
side one parameter array between the two federates. The results have
been obtained by the Simulink profiler tool by dividing the total exe-
cution time with the number of times the triggered subsystem executed
in Federate 1. Individual measurements are thus not obtained, which
is why there is no standard deviation included in the figure. However,
it is expected that some of the measurements take longer time than
others, due to that Windows sometimes perform other tasks. So most
of the measurements most likely take a little less time than shown in
the figure. This can be verified with the results presented in Figure 25

on page 53, where individual measurements were performed dur-
ing similar circumstances. As seen in Figure 34, sending one 64 bits
value takes ~0.8 ms. Most of this time corresponds to an overhead
of Simulink and the HLA Toolbox, which always occur independent
of the number of values being sent in the parameter array. As shown
in Figure 34 and 35, thousands of 64 bits values can usually be sent
within the stated criterion of 10 ms.

In Figure 36, results are presented from the second pair of federates.
Here, single data values have been sent in multiple different param-
eters, which is very computationally demanding. According to these
results, the criterion of being able to send 150 64 bits values every
10 ms will most likely fail, since the measured mean value is ~14 ms.

6.4 analysis

Several things are similar to the analysis of the MATLAB federates,
see Section 5.4 on page 56. It is usually possible, without using much
computational power, to send a lot of data within 10 ms when using a
single parameter array. However, since the Windows computers some-
times perform other tasks it cannot be strictly guaranteed. If instead
multiple parameters are used, the computational power is more de-
manding and the data criterion of sending 150 64 bits values within
10 ms will most likely fail. The preferred modeling of the Simulink
federates would probably be a combination using some parameters,
with multiple values in each such parameter array.

6.5 future work

Suggested future improvements have been presented below.
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Figure 34: Multiple 64 bits values inside one parameter array have been sent
from Federate 1 to Federate 2, running on the same computer.
In the black line, each measure point correspond to a measured
mean value of a few thousand iterations. The red (dot-dashed
line) and green (dashed line) are total estimated time if the param-
eter array would have travelled over Ethernet, with a bandwidth
of 100 Mbit/s and 1 Gbit/s respectively. An estimation of 90% ef-
ficiency has been considered during the Ethernet transportation.
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Figure 35: A zoomed-out version of Figure 34, with a maximum of 50 000

values inside one parameter array.
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Figure 36: Multiple 64 bits parameters, each containing one value, has been
sent from Federate 1 to Federate 2, running on the same computer.
Each measure point correspond to a measured mean value of a
few thousand iterations. The Ethernet delays have been neglected
due to their small impact on the total time.

• Introduce time management HLA features into the models. With
those features, the models can run synchronized and enter their
next respective time-steps at the same time.

• Better control the processor usage of the Windows operative
system, so that peak values are minimized.

• In a real case, the data that should be shared between feder-
ates should match the data in the FOM file. This has not been
implemented in this prototype.
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D I S T R I B U T E D S I M U L AT I O N W I T H S E V E R A L
F E D E R AT E S

7.1 description

This chapter deals with situations involving more than two federates.
Such scenarios have not been prototyped in this thesis but expected
behaviors will be discussed in the analysis section below. It is ex-
pected that the reader is familiar with the previously written case-
studies.

Figure 37 shows an example of a federation with several federates.
Here, 10 different federates are connected, all located on different
computers. There is also a computer dedicated for running the CRC

part of the pRTI.

7.2 analysis

Let’s assume that all federates in Figure 37 are connected to its own
dSPACE HIL-simulator and that the same criteria as in Section 3.2 on
page 24 applies. It is also assumed that the federates perform equal
to what was obtained in Chapter 4 on page 29. For example, it would
take approximately 6 ms to send 150 64 bits parameters between two
federates. Here follows a discussion which is of interest regarding
several federates.

• Using pRTI, the data sent between federates does usually not go
through the CRC. Hence, sending lots of data between federates
does not increase the work significantly for the computer run-
ning the CRC. Instead, the federates’ LRCs send data directly to
each other. For example: Federate 1 publishes some data that Fed-
erate 2, Federate 4 and Federate 7 have subscribed to. Each time
Federate 1 sends an interaction it has to send that data to all the
other three federates. However, it is much more computation-
ally demanding for a federate to receive lots of data than it is
for sending lots of data. Therefore, problems usually arise for
federates which subscribe to many parameters being updated
frequently, more seldom on the sender side.

• Since receiving data is the most demanding task, this is most
likely what is going to limit the federates. Each federate must
limit the number of parameters it receives to a level it man-
ages to handle. A federate which only subscribes to parameters
(thus only writes data to its dSPACE simulator) manages to pro-
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Figure 37: A federation containing 10 federates on 10 different computers.
The CRC part of the pRTI runs on its own computer.

cess approximately a maximum of 250 64 bits parameters every
10 ms (obtained from the results in Chapter 4). This is during
good conditions with a low Ethernet delay. As an example, it is
not possible for a single federate to subscribe to 50 parameters
from each federate (a total of 450 parameters), if all that data is
received every 10 ms.

• If multiple federates send data in precisely the same moment,
the Ethernet switch will have to put them in a queue and pro-
cess them individually. This will of course add additional de-
lays. If these delays should be a big problem one could for exam-
ple, if possible, increase the bandwidth. Upgrading all network
cards and the Ethernet switch from 100 Mbit/s to 1 Gbit/s will
make the data travel approximately 10 times faster. This will
not eliminate the queuing problem but since the data travels
much faster there will be less queuing and the Ethernet delays
will decrease significantly. Another thing that can solve queuing
problems is to introduce more switches. If the switches use the
cut-through technique they will only introduce relatively small
delays and they will help unburdening the Ethernet network.

Let’s now assume that the 10 federates are MATLAB or Simulink
federates, or a combination of both. Let’s also say that each federate
publish 150 64 bits values in one single parameter array.

• It would probably be possible for a federate to subscribe to all
9 other parameter arrays (from the 9 other federates), consid-
ering the delay criterion of 10 ms. However, since the MAT-
LAB and Simulink federates must connect to the CRC using
HLA_EVOKED they can only execute in a single-threaded way.
This means that they have to ask their LRCs for new incoming
interactions, which they cannot do all the time in a real case
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(as discussed in Section 5.4 on page 56). Now, assume that Fed-
erate 10 subscribes to all 9 other parameter arrays and that it
checks for new interactions every 5 ms. If one or a few of the
interactions have not arrived to Federate 10 during the period
of which it checks for new interactions, those will not be pro-
cessed until, at earliest, 5 ms later. This might make the data
sometimes be considered too old, with the stated 10 ms crite-
rion. This could probably be solved by using HLA time manage-
ment features and synchronize the federates.

• If the amount of data being sent between federates increase it is
even more important to use a high bandwidth, such as 1 Gbit/s,
and introduce additional Ethernet switches to unburdening the
network load and thus avoid additional delays.
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C O N C L U S I O N

By considering the results obtained from the different case-studies,
it should be possible to use HLA in automotive-related distributed
systems. However, there are still some problems to be solved and
work to be performed in order to be functional in a real scenario.

Regarding the HIL-simulator federates case, a couple of different prob-
lems arise when trying to make those simulators HLA compatible.
Some of the implementation problems here are not explicitly because
of HLA, instead they are related to the communication between dSPACE
simulator and host computer. CLIB has its limitations and there is an
unknown source which periodically causes peaking delays during
communication with the dSPACE simulator. There is also work to
be done regarding mapping of parameters from the application run-
ning on the dSPACE board. Parameters from the generated Simulink
model (described in the TRC file) need to be mapped to proper HLA

parameters in a FOM file. In order to meet the delay and data criteria,
any signals containing only a few bits of data in the Simulink model
need to be combined into chunks containing 64 bits of data. This is
mainly due to the fact that it is very computationally demanding for
the host computers (acting as federates) to handle many parameters
during short time periods. The complexity level of this case-study
is quite high, partially since several different parts need to work to-
gether as links in a chain.

The MATLAB federates prototype performs well according to the cri-
teria about data amounts and delays, when sending lots of data in one
large parameter array. However, it is more preferred to divide data
into multiple parameters. Doing this opens the opportunity for other
federates to subscribe to whichever parameters they are interested in,
instead of receiving one large array which probably contains excess
data, among other drawbacks. Sending data in multiple parameters
was however not implemented here. The reason was that it would
most likely have failed both in terms of the delay and data criteria
and of the amount of computational power used to handle data com-
munication. Thus, if the maximum allowed delay is very low such
as in this case, the data needs to be combined in one or a couple of
parameter arrays. The HLA Toolbox is relatively easy to work with. It
comes with a graphical user interface which can be used to generate
essential federate code which one can continue to build upon.

In the Simulink federates prototype, data values were sent both in
one large parameter array and using multiple parameters, containing
a single data value in each. Simulink did almost manage to send the
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stated amount of 150 64 bits parameters within the 10 ms require-
ment but exceeded it with a few milliseconds. Also, the amount of
computational power needed to do this most likely exceeded the level
reasonable to use for data communication. Sending the data in one
parameter array performed even better than what the MATLAB fed-
erates achieved. However, also in Simulink the preferred way would
be to combine data into arrays, instead of sending individual values
in separate parameters. The graphical environment of Simulink and
the HLA Blockset makes it easy to get to start with, with relatively low
HLA knowledge requirements.

In all three prototype cases there is a need to build proper FOM files,
describing all parameters and parameter arrays to be shared in the re-
spective federation. This needs to be done in order to adapt existing
models, usually containing a large amount of signals, into HLA federa-
tions. The most efficient way of doing this would be with some sort of
script which generates a proper FOM file from a file where all signals
in existing models are described. However, this could, depending on
the existing models, be easier said than done.

My personal reflections are the following:

• HIL-simulator federates would probably be possible in a real sce-
nario, considering the amount of data and delay criteria. How-
ever, it would probably demand a lot of additional work to
make everything function properly. Here, several relatively com-
plex steps are included which need to work flawless in order
for the delay criterion to be strictly fulfilled. Considering these
facts and the problems dicussed above, this is not really recom-
mended.

• MATLAB and Simulink federates look relatively promising in
terms of implementation complexity regarding a real scenario.
If it would be considered okay to send data in a couple of pa-
rameter arrays instead of single data in each parameter, the
data criterion is definitely fulfilled whereas the delay criterion
is usually fulfilled. In order to better satisfy the delay criterion
of 10 ms one would have to put some work into the task han-
dling of Windows, to avoid that the deadline sometimes is ex-
ceeded. When adapting existing models, one implementation
issue would probably be creating a proper FOM file.

• An even more promising use case, especially for Simulink fed-
erates, would be offline distributed simulations (which do not
execute in real-time). An example of this would be a very com-
putationally demanding Simulink model which is too complex
or too slow to execute on a single computer. Such a model could
instead be split in two or a couple of parts, running as HLA fed-
erates on several different computers. With help of HLA related
time management functions, they can all execute in synchronized
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time-steps. Doing this would however also need a FOM file, for
the data being shared between federates.
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A P P E N D I X A

a.1 federation object model (fom) file example

Below is an example of a generated FOM file which contains one inter-
action class (FloatNumbers) with 10 parameters (named Float1, Float2 ...
Float10). All parameters are specified with the data type HLAfloat64BE
and to use the HLAbestEffort (UDP) transport protocol.

<?xml version="1.0" encoding="UTF-8"?>

<objectModel xmlns="http://standards.ieee.org/IEEE1516-2010"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:

schemaLocation="http://standards.ieee.org/IEEE1516-2010 http

://standards.ieee.org/downloads/1516/1516.2-2010/IEEE1516-DIF

-2010.xsd">

<modelIdentification>

<name>New Module</name>

<type>FOM</type>

<version>1.0</version>

<securityClassification>unclassified</

securityClassification>

<purpose />

<applicationDomain />

<description>Description of New Module</description>

<useLimitation />

<other />

</modelIdentification>

<objects>

<objectClass>

<name>HLAobjectRoot</name>

</objectClass>

</objects>

<interactions>

<interactionClass>

<name>HLAinteractionRoot</name>

<interactionClass>

<name>FloatNumbers</name>

<sharing>PublishSubscribe</sharing>

<dimensions />

<transportation>HLAbestEffort</transportation>

<order>Receive</order>

<semantics />

<parameter>

<name>Float1</name>

<dataType>HLAfloat64BE</dataType>

<semantics />

</parameter>

<parameter>
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<name>Float2</name>

<dataType>HLAfloat64BE</dataType>

<semantics />

</parameter>

<parameter>

<name>Float3</name>

<dataType>HLAfloat64BE</dataType>

<semantics />

</parameter>

<parameter>

<name>Float4</name>

<dataType>HLAfloat64BE</dataType>

<semantics />

</parameter>

<parameter>

<name>Float5</name>

<dataType>HLAfloat64BE</dataType>

<semantics />

</parameter>

<parameter>

<name>Float6</name>

<dataType>HLAfloat64BE</dataType>

<semantics />

</parameter>

<parameter>

<name>Float7</name>

<dataType>HLAfloat64BE</dataType>

<semantics />

</parameter>

<parameter>

<name>Float8</name>

<dataType>HLAfloat64BE</dataType>

<semantics />

</parameter>

<parameter>

<name>Float9</name>

<dataType>HLAfloat64BE</dataType>

<semantics />

</parameter>

<parameter>

<name>Float10</name>

<dataType>HLAfloat64BE</dataType>

<semantics />

</parameter>

</interactions>

<switches>

<autoProvide isEnabled="true" />

<conveyRegionDesignatorSets isEnabled="false" />

<conveyProducingFederate isEnabled="false" />

<attributeScopeAdvisory isEnabled="false" />

<attributeRelevanceAdvisory isEnabled="false" />

<objectClassRelevanceAdvisory isEnabled="false" />
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<interactionRelevanceAdvisory isEnabled="false" />

<serviceReporting isEnabled="false" />

<exceptionReporting isEnabled="false" />

<delaySubscriptionEvaluation isEnabled="false" />

<automaticResignAction resignAction="

CancelThenDeleteThenDivest" />

</switches>

<dataTypes>

<simpleDataTypes />

<enumeratedDataTypes />

<arrayDataTypes />

<fixedRecordDataTypes />

<variantRecordDataTypes />

</dataTypes>

<notes />

</objectModel> �
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