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Abstract

In this work a new initialization scheme for nonlinear state-space models is
applied to the problem of identifying a Wiener-Hammerstein system on the
basis of a set of real data. The proposed approach combines ideas from the
statistical learning community with classic system identification methods.
The results on the benchmark data are discussed and compared to the ones
obtained by other related methods.
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1. Introduction

Nonlinear system identification represents a challenging research field.
While linear system identification is a well studied domain encompassing
many different methods, developed both in time and in frequency domain
(Ljung, 1999; Pintelon & Schoukens, 2012), for nonlinear system identifi-
cation there is not yet a unified framework. A wide variety of methods is
currently under study. These include parametric and non-parametric ap-
proaches, ranging from NARX models to Volterra techniques (Billings &
Fakhouri, 1982; Rugh, 1981), block structure, e.g. in (Lauwers, 2011; Wills
& Ninness, 2009) and state-space modeling, e.g. in (Paduart et al., 2010; Ver-
dult, 2002), all with a common goal: obtaining a mathematical description
of the underlying system, based on a set of input/output measurements.

A different class of modeling paradigms, for which relying on data again
represents a founding element, takes its origins from the statistical learn-
ing community, and comprises widely accepted techniques such as Neural
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Networks (NNs) and Support Vector Machines (SVMs) (Hastie et al., 2009;
Vapnik, 1998).

State-space models are general representations that allow one to describe
a variety of systems. In particular, nonlinear state-space modeling represents
a promising, and at the same time challenging, class of techniques. In this
work the focus is on the initialization of nonlinear state-space models of the
form:

x(t+ 1) = f(x(t),u(t)) (1)

y(t) = g(x(t)) (2)

where u(t) ∈ Rnu and y(t) ∈ Rny are the given input and output signal
vectors at time instant t, x(t) ∈ Rnx is the unknown state vector of the
system, and f(·) and g(·) are the nonlinear functions to be estimated.

When trying to obtain an accurate description of a given system, it is
particularly interesting to test several different choices of nonlinear model
structures (nonlinear functions f and g in this case), to choose the most
suitable one for the problem at hand. In order to do this, it is important to
be able to deal efficiently with the recursive nature of state equation (1), since
when optimizing the model parameters (e.g. in an iterative search procedure)
recursions cost a large amount of time.

In this paper a combination of two different approaches is suggested in
a single modeling scheme for the initialization of nonlinear models: on one
hand classic system identification techniques are used to capture system dy-
namics, and on the other hand nonlinear regression methods are employed to
model the nonlinearities. More in details, as will be explained in Section 3,
the goal is to try to obtain an approximate version of problem (1-2) by es-
timating the nonlinear state x(t), in order to turn the problem into a static
one, where f and g can be estimated individually, as static mappings. In
this way, several model structures can be rapidly tested to describe the non-
linearities. Furthermore, hopefully good starting values for the parameters
to be optimized are generated, to try to avoid bad local minima issues.

The focus of the present paper is the application of this new initialization
scheme for nonlinear state-space models to the identification of a Wiener-
Hammerstein system, on the basis of a set of input/output measurement
data. In 2009, a session of the SYSID conference was devoted to the presen-
tation of different modeling techniques on this Wiener-Hammerstein bench-
mark (Schoukens et al., 2009b). The problem turned out to be an interesting

2



nonlinear modeling challenge, so it can be considered to be useful to assess
the performance of the proposed approach.

This paper is organized as follows. Section 2 briefly discusses some re-
lated methods that have already been applied to the Wiener-Hammerstein
benchmark problem, while Section 3 describes the details of the proposed ap-
proach. The application of the method on the benchmark data is presented
in Section 4, and concluding remarks are given in Section 5.

2. Related work

In this section an overview on some of the methods that were applied to
the Wiener-Hammerstein problem during the SYSID benchmark session is
given. The aim is not to provide an exhaustive survey, rather to discuss some
of the works that are more closely related to the approach presented in this
paper.

In (Marconato & Schoukens, 2009), an approach based on the standard
SVM for regression was presented. The quite poor results obtained in that
work highlighted some of the limitations of the method. In particular, only
a NFIR model structure was taken into account, which did not perform well
since the considered system has a long impulse response. Another problem
was given by the high computational time and memory usage, which made
it difficult to work with a large amount of data.

Other SVM-like algorithms, based on the Least Squares SVM (LSSVM)
paradigm (Suykens et al., 2002), were employed in (Falck et al., 2009) and (De
Brabanter et al., 2009). The first paper makes use of an overparametrization
technique to deal with the Wiener-Hammerstein structure, while the sec-
ond approach considers a Fixed-Size LSSVM to handle very large data sets,
and uses a NARX model structure. In both cases good results in terms of
RMSE were obtained, though with models characterized by a high number
of parameters.

Nonlinear state-space models were used in (Paduart et al., 2009). Starting
from the Best Linear Approximation (BLA) of the system, a polynomial ex-
pansion is considered to model the system’s nonlinear behavior. This method
resulted in a model characterized by a very low RMSE value, with a rather
high number of parameters.

Another approach based on the BLA is presented in (Lauwers, 2011),
where good starting values for the linear dynamic blocks are obtained from
the poles and zeros of the BLA.
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Recently, another method that, starting from the BLA, performs a par-
titioning of the poles and zeros of the linear model to estimate the linear
blocks in the Wiener-Hammerstein structure has been applied to the bench-
mark problem, obtaining very good results in terms of RMSE (Sjöberg &
Schoukens, 2011).

A last successful example is given by the work described in (Wills & Nin-
ness, 2009), where a generalized Hammerstein-Wiener structure, expressed
as the concatenation of a number of Hammerstein systems, was considered.

A qualitative comparison between the approach proposed in this paper
and the methods presented above is provided in Section 4.8, in the discussion
of the results obtained on the benchmark problem.

3. Proposed method

In this section the different steps of the algorithm are presented, while the
application of the method to the benchmark problem is extensively discussed
in Section 4.

To describe the nonlinear dynamics in Eqs. (1-2) the following model
representation is considered:

f(x(t),u(t)) = Ax(t) + Bu(t) + fNL(x(t),u(t)) (3)

g(x(t)) = Cx(t) + gNL(x(t)) (4)

where matrices A, B and C denote the linear part of the system, and fNL and
gNL are the nonlinearities in the state equation and in the output equation
respectively. In this way, it is possible to identify the linear dynamics and
the nonlinear terms independently.

The initialization scheme proposed for the identification of nonlinear
state-space models consists of the following three main steps:

1. obtain a linear model to capture the dynamics of the system;

2. approximate the nonlinear states;

3. estimate the nonlinearities.

The approach presented in this paper is intended to target systems for
which the dynamics can be captured by the BLA. A typical example is given
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by Wiener-Hammerstein systems (defined as the cascade of two linear dy-
namic blocks with a static nonlinearity in between) and in that case even
very high nonlinearities, such as saturation, clipping and deadzone nonlin-
earities, can be handled without a problem (Pintelon & Schoukens, 2012).

Since in the proposed method there are a number of extra parameters that
need to be tuned by the user, the following splitting of the data is considered:
an estimation set used to build the model, a validation set used to tune these
parameters and for model selection, and a test set to assess the performance
of the model on previously unseen data.

3.1. Obtain a linear model

As a first step, the Best Linear Approximation (BLA) is estimated to get
an initial linear description of the system behavior (Pintelon & Schoukens,
2012). The BLA is a linear approximation G belonging to the class G of
linear models, such that:

ĜBLA = arg min
G∈G

E {|y(t)−G(u(t))|2}

where u(t) and y(t) are the input and output of the nonlinear system (Pin-
telon & Schoukens, 2012; Enqvist, 2005). Here it is assumed that u(t) belongs
to the class of Gaussian excitation signals (Schoukens et al., 2009a).

By transforming the resulting BLA into state-space form, matrices Â, B̂
and Ĉ are obtained, that capture the dynamics of the system.

3.2. Approximate the nonlinear states

Based on the obtained linear model, and on the set of available data
{u(t),y(t)}Nt=1, an approximation of the (unknown) nonlinear states x(t) is
obtained. If this can be done, it is possible to solve an approximate version
of (1-2), eliminating the recursion in the state equation.

The nonlinear states x̂LS are obtained by solving the following Least
Squares problem:

x̂LS(t) = arg min
{x(t)}

∑
t

(y(t)− Ĉx(t))2 + λ
∑

t

(x(t+ 1)− Âx(t)− B̂u(t))2

This equation expresses a trade-off between data fit (first term) and the lin-
ear model fit (second term), while λ is the trade-off parameter to be tuned
in order to give more emphasis on one of the two criteria. In practice, the
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optimal value of λ is chosen such that a given performance criterion is opti-
mized. In this work several initialized models resulting from different choices
of λ are compared, and the value of λ minimizing the RMSE between the
initialized model output and the measured output (for the validation data
set) is selected.

Here Kalman filtering represents an alternative method for approximating
the nonlinear states.

3.3. Estimate the nonlinearities

Thanks to the estimated states {x̂LS(t)}Nt=1, the problem to be solved
becomes the following static version of problem (3-4):

x̂LS(t+ 1) = f(x̂LS(t),u(t)) + rLS(t) =

= Âx̂LS(t) + B̂u(t) + fNL(x̂LS(t),u(t)) + rLS(t) (5)

y(t) = g(x̂LS(t)) + eLS(t) = Ĉx̂LS(t) + gNL(x̂LS(t)) + eLS(t) (6)

where rLS(t) and eLS(t) are error terms resulting from the fact that here the
approximated nonlinear states are introduced in the problem.

Regression methods can then be employed to estimate f(x̂LS(t),u(t)) and
g(x̂LS(t)) individually, as static mappings. The main advantage of such an
approach is that, having cut the recursion in the state equation, the process
of estimating f and g can be significantly speeded up, so that many different
nonlinear model structures can be tried out and tested more efficiently in
less time.

As will be explained in the next section, in this work a particular choice of
nonlinearities is considered, namely one-hidden-layer feedforward NNs with
sigmoids as activation functions, but it would be straightforward to replace
these nonlinear terms with other examples of nonlinear functions.

Once the estimates f̂NL and ĝNL are obtained, it is possible to go back
to problem (3-4), by including again the dynamics in a general nonlinear
state-space structure.

As a last step, all parameters of the nonlinear model need to be opti-
mized, starting from the obtained initialized model. This is done by using an
iterative search method, such as a Levenberg-Marquardt technique (Fletcher,
1987).

3.4. Computational savings due to the proposed initialization scheme

The main underlying idea of the approach presented in this paper, namely
the transformation of the nonlinear dynamic problem into a static approx-
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imate formulation that can be solved more efficiently, results not only in a
combination of the best features of two different worlds (system identifica-
tion and statistical learning), but also allows one to reduce the computational
costs involved in the identification procedure. If compared with a typical ap-
proach in which a linear model is used as initial guess to describe a nonlinear
system (i.e. the nonlinear terms of the model are initially set to zero), the
proposed scheme is of course more computationally expensive as far as the
initialization step is concerned, but guarantees significant savings in the later
stages, as explained in the remaining of this section.

A clear advantage is observed during the model selection phase. In par-
ticular, model selection can be performed already after initialization, and
some bad nonlinear models can be discarded without the need of optimizing
all model parameters to be able to assess the performance of the different
nonlinear models. Note that in the case of linear initialization, this is never
possible, since obviously no nonlinear estimates are available after initializa-
tion.

Moreover, the nonlinearities in the state and in the output equations are
estimated separately, as two different static regression problems, and there-
fore several different nonlinear functions can be tested much more efficiently
for f and g (while for a linear initialization, all combinations of the nonlin-
ear terms in f and g need to be tried out, after parameter optimization has
occurred).

Finally, since with the proposed method better initial estimates of the
model are generated, the time to convergence when fitting the model param-
eters is likely to be reduced.

4. Application of the method to the Wiener-Hammerstein bench-
mark

4.1. Benchmark problem description

In this work the proposed approach is applied to the problem of identify-
ing a Wiener-Hammerstein system on the basis of a set of real measurement
data. In particular, a benchmark problem that was studied during an invited
session at the IFAC SYSID conference in 2009 is considered. Details about
the benchmark data can be found in (Schoukens et al., 2009b), here some of
the most relevant information is recalled.

In general, a Wiener-Hammerstein system is described as the cascade of
two linear dynamic blocks with a static nonlinearity sandwiched in between.
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Figure 1: Wiener-Hammerstein system used to generate the benchmark data.
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Figure 2: Input and output signals. The black part of the data is used for the estimation
of the model, while the gray part is used for testing.

The benchmark data were generated from a nonlinear electronic system with
a Wiener-Hammerstein structure, as depicted in Figure 1.

The two linear blocks are a third order Chebyshev low-pass filter with
0.5 dB ripple and cut-off frequency at 4.4 kHz, and a third order inverse
Chebyshev low-pass filter with a -40 dB stop band from 5 kHz, respectively.
The static nonlinearity is built using two resistors and a diode.

The system was excited with a filtered Gaussian input signal, with cut-off
frequency at 10 kHz. The sampling frequency is chosen to be equal to 51.2
kHz.
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Figure 2 shows the measured input u(t) and the measured output y(t).
The dataset consists of two parts: an estimation set of 100000 input/output
data, and a test set made of the remaining 88000 data. The estimation
portion of the data is meant to be used to build and validate the model,
while the performance of the obtained model is assessed on the test data.

4.2. Considered model structure

In this work one-hidden-layer feedforward sigmoidal NNs are used to
model nonlinearities f and g. They are proved to be “universal approxima-
tors”, meaning that any continuous function can be approximated arbitrary
well by these networks (Hornik et al., 1989). In the model, since both non-
linearities in Eqs. (1-2) are estimated as a linear plus a nonlinear term, a
feedforward NN block is added in parallel to the linear model for both f and
g.

Figure 3 shows the considered model structure, for one input, one output
and nx states. Notice that the input and output signals of the benchmark
problem are one-dimensional, while the number of states nx is determined
by the order of the obtained BLA.

The first part of the model (Figure 3(a)) represents the state equation (1),
with x̂1

LS(t), x̂2
LS(t), . . . , x̂nx

LS(t) and u(t) as inputs, and x̂1
LS(t + 1), x̂2

LS(t +
1), . . . , x̂nx

LS(t + 1) as outputs. Figure 3(b) instead shows the model used for
the output equation (2), where the states x̂1

LS(t), x̂2
LS(t), . . . , x̂nx

LS(t) are the
inputs, and y(t) is the output signal.

Each NN block consists of the sum of sigmoid functions, characterized
by three types of parameters, namely center position, width and amplitude.
More details about the number of parameters in the model (coming from
both linear and nonlinear terms) will be provided later in this section, when
the obtained results will be discussed.

4.3. Identification of the BLA

Following the approach presented in Section 3, the first step towards
the identification of the considered Wiener-Hammerstein system consists of
obtaining a linear model that describes the input/output behavior.

The BLA is estimated following the Output Error approach (Ljung, 1999)
on a part of the estimation data, namely using {u(t),y(t)}55000

t=5001, excluding
the first 5000 data points to eliminate transient effects. Different model
orders have been tried out, by testing the performance of the resulting linear
model on the remaining portion of the estimation set (used for validation).
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Figure 3: Model structure used to describe (a) the state equation, (b) the output equation,
for one input, one output and nx states. The feedforward NN block is added in parallel
to the linear model.

The best result in terms of RMSE is given by a 6th order model. The RMSE
value obtained by this model on the test set is equal to 56.1 mV (the RMS
value of the output signal is equal to 242.3 mV).

Figure 4 shows the error of the BLA eBLA(t) = y(t)− ĜBLA(u(t)) on the
test portion of the data set, together with the output values y(t).

In this way, matrices Â, B̂ and Ĉ are obtained, and will be used in the
next steps.

4.4. Approximation of the nonlinear states

Once the best linear model is available, an approximation of the nx = 6
nonlinear states can be obtained, as explained in Section 3.2. Here several
values (on a logarithmic scale) of λ were tried out, and an optimal value
λ = 100 was chosen, since the resulting initialized models were characterized
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Figure 4: Error obtained with the BLA - 6th order linear model - on the test set (gray),
and measured output values (black).
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Figure 5: RMSE values on the validation data obtained by two initialized models, for
different choices of the trade-off parameter λ.

by the lowest RMSE on the validation data. Figure 5 shows an example in
which for every considered value of λ the RMSE obtained by two different
initialized models is reported.

4.5. Estimation of the nonlinear terms

In order to obtain good starting values for the model parameters, first
the static problem (5-6) is solved, by using the measured input/output data,
the approximate nonlinear states x̂LS, and the estimated Â, B̂ and Ĉ. The
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model structure described above is used, by adding sigmoidal NN blocks in
parallel to the linear model.

At this point the user needs to choose the structure of the NNs, in partic-
ular the number of neurons in the hidden layer (i.e. the number of sigmoids
that are summed up in the NN block) should be defined. Of course, this num-
ber affects significantly the final number of parameters in the model, that
can explode if a high number of sigmoids is considered. Since by using the
proposed initialization scheme model selection can be performed efficiently
(as pointed out in Section 3.4), several number of sigmoids were tried out
for f and g, and the resulting initialized nonlinear models were evaluated on
the validation data set. The best trade-off between RMSE and number of
parameters in the model was obtained when choosing one sigmoid for f and
two sigmoids for g.

It can be shown that the number of model parameters (for f and g),
including both linear and nonlinear contributions, is given by the following
formulas:

npar,f = nlin,f + nnl,f = ((nu + nx) · nx) + (nf · (nu + nx + 1) + nf · nx + nx)

npar,g = nlin,g + nnl,g = (nx · ny) + (ng · (nx + 1) + ng · ny + ny)

where nu and ny are the number of inputs and outputs, nx is the number of
states, and nf and ng are the number of sigmoids used to describe the two
nonlinear terms in f and g respectively.

For the specific choice of nf = 1 and ng = 2, this results in:

npar,f = (1 + 6) · 6 + 1 · (1 + 6 + 1) + 1 · 6 + 6 = 62 (7)

npar,g = 6 · 1 + 2 · (6 + 1) + 2 · 1 + 1 = 23 (8)

which gives 85 model parameters in total.
The initialized model is then obtained by including again the recursion

in the state equation, as already explained in Section 3.3.
The performance of the initialized model and of the final model obtained

after optimizing all parameters are discussed in the next two subsections.

4.6. Results obtained with the initialized model

The obtained initialized model results in a RMSE value of 34 mV on the
test set, to be compared with the 56.1 mV of the linear BLA model. Figure 6
shows the deviation of the estimated output values from the measured output
values.
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Figure 6: Error obtained with the initialized nonlinear model on the test set (gray), and
measured output values (black).

It can be observed that the initialized nonlinear model does not signifi-
cantly reduce the error, if compared with the BLA error in Figure 4, but it
does capture some of the nonlinearity, since the asymmetric behavior that
characterized the BLA error is partially removed.

4.7. Results obtained with the final fitted model

A Levenberg-Marquardt iterative search is then performed to optimize all
85 model parameters, starting from the parameters values of the initialized
model. The search algorithm was let run for 300 iterations, since it was
observed that the value of the cost function was decreasing slowly towards
its (local) minimum. The RMSE obtained on the test set by the final fitted
model is equal to 2.6 mV, a result that can be considered quite satisfactory
when compared to other state-of-the-art methods (see later for comments on
the use of the different techniques).

In Figure 7 a plot of the error obtained by the final fitted model is shown,
together with the measured output values.

Compared with the error given by the initialized model in Figure 6, a
significant improvement is observed after the optimization of the model pa-
rameters.

The errors of the initialized model and of the final model are shown also
in the frequency domain in Figure 8, together with the DFT spectrum of the
modeled output.

It can be observed that in the pass band of the system the final model
gives an error which is almost 20 dB lower than for the initialized model, but
the gain is smaller at higher frequencies.
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Figure 7: Error obtained with the fitted nonlinear model on the test set (gray), and
measured output values (black).
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Figure 8: DFT spectra of the modeled output (black), and of the errors of the initialized
model (light gray) and of the final fitted model (dark gray) on the test set.

Model Estimation Test

BLA 55.3 56.1
Initialized nonlinear 33.2 34.0

Final nonlinear 2.6 2.6

Table 1: RMSE values (in mV) on estimation and test sets for the different models.

The results obtained with the different models on the estimation and test
sets are summarized in Table 1.
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4.8. Comments
Comparing the results obtained with the proposed approach with the

ones given by the methods discussed in Section 2, it can be seen how a good
trade-off is obtained between the achieved RMSE value and the number of
parameters in the model.

A method that is fairly similar to the one presented in this paper is the
polynomial nonlinear state-space model (Paduart et al., 2009), that resulted
in very good RMSE results (0.42 mV), but where the final model was char-
acterized by nearly 800 parameters (i.e. almost ten times more than for the
model obtained in this work).

Other works that performed very well on the benchmark data (RMSE
values ranging between 0.30 mV and 0.49 mV) made somehow use of the
Wiener-Hammerstein structure (Sjöberg & Schoukens, 2011; Wills & Ninness,
2009; Lauwers, 2011) while for the algorithm presented here this was not
necessary.

A last remark on the previous work by two of the authors on the bench-
mark problem in (Marconato & Schoukens, 2009): the significant advantage
provided with the method proposed in the present paper clearly shows the
importance of addressing, in the identification procedure, both the nonlinear
behavior of the system and the linear dynamics part. The improvement was
only possible by adding explicitly the dynamics to the model.

5. Conclusion

In this paper a method for the identification of nonlinear state-space
models, based on a combination of ideas from statistical learning and classic
system identification, has been discussed. Thanks to the fact that system
dynamics and nonlinear terms are identified separately, it is possible to solve
an approximate version of the problem, making it possible to test efficiently
several choices of nonlinear functions.

The proposed approach has been applied to the Wiener-Hammerstein
benchmark problem. The obtained results are satisfactory, considering that
no knowledge about the system was used in the identification procedure, and
that the number of model parameters was kept very low.
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