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Abstract 

This paper reports the flow behaviour of Newtonian and Boger fluids through various 

axisymmetric contraction configurations by means of numerical predictions. A principal aim has 

been to evaluate the geometrical design choice of the hyperbolic contraction flow. The FENE-CR 

model has been used to reflect the behaviour of Boger fluids, with constant shear viscosity, finite 

(yet large) extensional viscosity and less than quadratic first normal stress difference.  Numerical 

calculations have been performed on six different contraction configurations to evaluate an 

optimized geometry for measuring extensional viscosity in uniaxial extensional flow. The 

influence of a sharp or rounded recess-corner on the nozzle has also been investigated. Few 

commercial measuring systems are currently available for measurement of the extensional 

rheology of medium-viscosity fluids, such as foods and other biological systems. In this context, a 

technique based on the hyperbolic contraction flow would be a suitable alternative. The pressure 

drop, the velocity field, the first normal stress difference and the strain rate across the geometry 

have each been evaluated for Newtonian and Boger fluids. This numerical study has shown that 

the hyperbolic configuration is superior to the other geometry choices in achieving a constant 

extension rate. In this hyperbolic configuration, no vortices are formed, the measuring range is 

broader and the strain rate is constant throughout the geometric domain, unlike in the alternative 

configurations tested. The difference between sharp and rounded recess-corner configurations 

proved to be negligible and a rise in excess pressure drop (epd) for increasing deformation rates 

has been observed.  

 

Keywords:  Viscoelastic fluid; Extensional viscous flow; hyperbolic contraction 

flow; pressure-drop 
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Introduction 

Shear flow has traditionally been considered to be the significant deformation 

around which rheometric instrumentation must be constructed. However, any 

change in geometry during the processing of a non-Newtonian, viscoelastic liquid 

generates a flow with an extensional component. The extensional response, 

described by the extensional viscosity can differ considerably from the shear 

response, making it an important factor in processing, product development and 

quality control of products.  The extensional properties during processing have 

been given increasingly more attention and further important applications are 

being discovered. Experimental determination of extensional viscosity is still a 

challenging task even though the research on extensional flow has progressed. 

Although various experimental techniques have been developed to measure 

extension, e.g. filament stretching (Sridhar et al. 1991), the Meissner elongational 

melt rheometer (Meissner 1972; Meissner and Hostettler 1994), capillary break-up 

(Entov and Hinch 1997) and opposed jets (Fuller et al. 1985), only the capillary 

break-up method (CABER) is currently available on the commercial market. 

While these techniques are suitable for either polymer melts or dilute fluids, an 

efficient technique for medium viscosity fluids (fluids in between dilute solutions 

and more solid-like systems such as polymer melts) is still lacking.  

 

Food systems are often viscoelastic with medium viscosities, and development of 

a technique that is able to determine extensional properties of food systems for 

quality control, product development and design is highly desirable. It would also 

be attractive to develop measurement systems that are capable of measuring at 

high strains and strain rates. Several simulations and experimental investigations 

have been performed to study extension in contraction flows, which would prove 

to be a suitable measuring system for determining the extensional properties of 

medium range viscosity fluids, like as some foodstuffs. The importance of being 

able to measure extensional properties in food science is its significant impact on 

sensory perception, texture and mouth feel and a deeper understanding of the 

extensional properties makes it possible to structurally engineer a desired texture 

and the behaviour of new food products.  
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Contraction flow through a hyperbolic nozzle has been suggested as a suitable 

system for measuring extensional properties for fluids such as foods (e.g. dough), 

dispersions and medical systems (Oom et al. 2008) by Wikström and Bohlin 

(Wikström and Bohlin 1999a) and Stading and Bohlin (Stading and Bohlin 2001, 

2000). Other groups that have utilized a hyperbolic nozzle in measuring 

extensional flow are Baird et al (Baird and Huang 2006; Baird 2010), Collier at al. 

(Collier et al. 1998; Kim et al. 1994) and James et al. (James et al. 1990), although 

these studies were for polymer melts.  

 

The complex flow arising in contraction flows containing both shear and 

extensional flow has received considerable attention over many years, see for 

instance (Boger 1987), (Binding et al. 1998) and review papers (Walters and 

Webster 2003) and (White et al. 1987). Regions with strong shearing are found 

along the wall and there is a region with non-homogenous uniaxial extensional 

flow at the centre of the flow. The aim of this work has been to numerically study 

the shear and extensional flow in different geometrical configurations to find an 

optimal geometry for achieving a reasonably constant uniaxial extensional flow, 

where there is small impact of shear flow on the measuring system, suitable for 

fluids in the medium viscosity range. Newtonian and Boger fluids has been used 

as model fluids to extract the extensional and shear behaviour in the contractions.  

 

A further aim has been to validate the assumptions made in the work by 

Wikström, Bohlin  and Stading (Stading and Bohlin 2001, 2000; Wikström and 

Bohlin 1999a),  based on Bindings work (Binding 1988). There, the extensional 

properties were determined based on calculations compensating for shear flow by 

assuming a simple Power law model. Here, the flow of constant viscosity 

viscoelastic fluids through several different axisymmetric contraction 

configurations has been analysed through strain and shear rate profiles, pressure 

drops and N1 profiles. This study reveals how maximum extensional viscosity can 

be extracted from specific geometry choices (hyperbolic) by avoiding the creation 

of vortices. In this manner, the stream traces of the different geometrical 

configurations are also investigated. 
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Governing equations and flow problem 

 

In this study, numerical simulations of the flow of Newtonian and viscoelastic 

Boger fluids through different contractions were considered over a wide range of 

Weissenberg numbers (We-numbers). The FENE-CR model (Chilcott and 

Rallison 1988), which displays a constant shear viscosity and an almost quadratic 

first normal stress difference (N1) was employed as a representation of a Boger 

fluid. The material functions used in the study are summarized in table 1. The 

numerical algorithm was a hybrid finite element/finite volume method(fe/fv(sc)), 

which is based on a Taylor-Galerkin (Hawken et al. 1990) and a pressure-

correction methodology, as presented by Wapperom and Webster (Wapperom and 

Webster 1999).  

 

Governing field equations 

The relevant equations used to describe the flow of an isothermal, incompressible 

viscoelastic fluid are the equations of continuity and motion expressed as: 

  (1) 

  (2) 

Here, u is the velocity vector, t the time, p the hydrodynamic pressure, D the rate-

of-deformation  and τ the total extra stress tensor. ß is the solvent-

viscosity ratio parameter ß  , where ηs is the solvent viscosity and 

ηp is the polymeric viscosity. Then, η0 is defined as the zero-shear-viscosity 

 (characteristic viscosity scale). The non-dimensional Re-number is 

defined as: , where ρ, L and Uavg are the density, the contraction gap 

width and the characteristic velocity (average upstream velocity), respectively. In 
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this study, creeping flow is assumed (Re≈0(10-2)) and as a result, the momentum 

convection term contribution is negligible.  

 

A further non-dimensional parameter of interest for the flow is the Weissenberg 

number, which is defined as , and depends on the characteristic 

relaxation time of the fluid (λ), density (ρ), characteristic velocity scale (U=Uavg) 

and length scale ( ). Throughout, the results of this study are presented non-

dimensionally, with in addition to the above scales that on time also of (U/L). 

 

Constitutive equation and flow problem 

 

The FENE-CR (Finitely Extensible Nonlinear Elastic-Chilcott Rallison) model 

(Chilcott and Rallison 1988) has been chosen as an appropriate constitutive model 

for modelling Boger fluids and Newtonian solutions were taken as a based 

reference for the viscoelastic calculations. The reason for selecting the FENE-CR 

model is that it predicts a constant shear viscosity. The first normal stress 

difference (N1) of the FENE-CR model is weaker than the strong quadratic form 

exhibited by the Oldroyd-B model, see Fig. 1a. Furthermore, unlike the Oldroyd-

B model the FENE-CR model does not encounter a singularity in extensional 

viscosity (hence, exhibiting finite extensional response). The constitutive equation 

for the FENE-CR is expressed as: 

            0f (Tr( A))A We A f (Tr( A))I ,


    (3) 

where A is a stress conformation tensor and the stress is calculated by the 

conformation transformation: 

          

   1 f (Tr( )) I
.

We

 


A A


 (4) 

  is the stretch function, which is dependent on the Hookean-dumbbell 

chain-length extensibility parameter L, the trace operator Tr(A) and the identity 

tensor I as:  
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2
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f(Tr( ))= .

1-Tr( ) / L
A

A   (5) 

The associated rheometrical functions are given by  
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    

     (6) 

where f = f(Tr(A))  is defined in Eq. 5. 

 

The limiting level of the extensional viscosity plateau in the model can be 

adjusted by changing the extensibility parameter, L, (so-called Hookean-dumbbell 

chain-length extensibility parameter) which measures the size of the polymer 

molecule in relation to its equilibrium size. Then, an increasing L parameter yields 

an increased plateau level approaching the Oldroyd-B model for high L-levels, 

Fig. 1b. In this study, the L-parameter has been set to the relatively modest level 

of 5 for the majority of FENE-CR solutions. 

 

Under Newtonian flow assumptions the shear viscosity is constant, the normal 

stress difference is zero and there is no elastic contribution. Then, the extensional 

viscosity is defined as  and the total stress is expressed as  (nb. 

η0 is defined above, as the zero-shear-viscosity). Under viscoelastic considerations 

and the present work, the solvent-viscosity fraction ( ) is set to 0.9, which implies 

a 90% solvent present to mimic common Boger fluid characteristics (see Aguayo 

et al. (Aguayo et al. 2008)).  

 

Problem domain and boundary conditions  

The geometrical configurations used and the corresponding meshes are presented 

in Fig. 2. The configurations differed in degree of contraction ranging from 90 

degrees, to 45 and 30 degrees, and down to 15 degrees; yet all share the same 

contraction ratio of 4:1. In addition two hyperbolic configurations have also been 
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studied, with the same contraction ratio of 4:1, where one configuration has 

rounded recessive corner and the other a sharp corner. Finite element meshes are 

composed of triangular elements and detailed mesh characteristics for each 

configuration is shown in table 2.  

 

The radius of the hyperbolic profile used is described by 

           
 

0

2 2

0 1

z
/ 1 1

H

r
r(z)=

r r  
  (7) 

In the above equation (Eq. 7) is the radius of the die inlet,  is the radius of the 

die outlet and H is the length of the contraction. A hyperbolic contraction is 

assumed to enable a constant strain rate to be established on the flow centre line 

throughout the contraction region, and the contribution from shearing there is said 

to be negligible. A series of three meshes for the hyperbolic contraction, depicted 

in Fig. 3, has been utilised to establish mesh convergence properties within the 

corresponding solutions generated. Due to axial symmetry, only half of the flow 

domain is modeled. The length after the contraction of the 90, 45, 30 and 15 

degrees configurations are about 50L allowing a fully developed flow at exit. This 

is not the case in the hyperbolic contractions, where the geometry ends, somewhat 

more abruptly, after the contraction to reflect and test the experimental set-up.  

 

No-slip boundary conditions are imposed on the geometry-wall and a symmetry 

condition is imposed along the centre of the geometry. The problem has thus been 

solved only for half of the fluid domain. A pressure-driven Poiseuille flow is 

prescribed at the inlet, and two different exit conditions are imposed at the outlet: 

a natural streamwise (open) boundary condition and a plug flow. In all cases, a 

pressure reference is fixed at a single location on flow-exit to remove the 

indeterminacy of pressure and all solutions are reported under steady-state 

conditions. 
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Pressure-drop  

Under contraction flow, Boger fluids have been shown to substantiate 

significantly larger pressure drops than those for their equivalent Newtonian fluids 

(see Nigen & Walters (Nigen and Walters 2001)). A measure of the pressure drop 

across a contraction can be expressed by the corrected Excess Pressure Drop (epd) 

defined as (Aguayo et al. 2008):   

         
 
 

B

N

fd

fd

p p
epd

p p

 


 
 and f d u u d dp p L + p L                (8) 

The epd1 is thus a fraction of the contribution from a Boger fluid (B) flow divided 

by the contribution for an equivalent Newtonian fluid (N) flow at the same flow 

rate, where the  is the total pressure difference between the inlet and outlet 

within fully-developed flow, here taken within 1-% of τ,  or . In this study 

the point was taken at 1% of τ. ,  represents the fully-developed pressure 

gradient in the upstream and downstream section respectively and  are the 

distances from an inlet sample-point to the start of the contraction and from the 

start of the contraction to the exit, respectively (Binding et al. 2006). 

Numerical solution procedure 

Hybrid finite element/finite volume scheme 

The numerical strategy used in this study to gain an approximate solution to the 

governing Eq. (1) and (2) is based on semi-implicit Taylor-Galerkin/pressure 

correction finite element (fe) algorithm (TGPC) (Donea 1984) modified by 

incorporating a sub-cell cell-vertex finite volume (fv) scheme, previously 

described and utilized in (Wapperom and Webster 1998a), (Webster et al. 2005b).  

The discretisation is performed based on triangular parent cells consisting of six 

nodes, three vertex nodes and three mid-side nodes. The velocity fe-solutions, 

located on the vertex and mid-side nodes of the finite element, is approximated 

with quadratic shape functions. The pressure solution is approximated by linear 

shape functions and is located only at the vertex nodes. To apply a flux 

distribution scheme, within the finite volume context only vertex reference is 

                                                 
1 A relative Couette Correction method 
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necessary, for which each parent triangular finite element cell is subdivided into 

four triangular fv-sub-cells.  

 

Concisely, the momentum and continuity equations are solved with a finite 

element strategy, while the differential constitutive equation of stress is solved 

with a finite volume strategy (Aboubacar and Webster 2001), both imposed on a 

time-stepping procedure. The time stepping procedure utilized consists of a two-

step Lax-Wenderoff time stepping method based on Taylor series expansion 

(Donea 1984). Through the pressure splitting and diffusion terms in Eq. (2), the 

incompressibility constraint is accommodated and second-order accuracy in time 

is obtained. The tolerance criterion for the time-stepping procedure used in this 

study is set to 10-6. On each time step, the numerical scheme transcends three 

separated stages, as described by Wapperom and Webster (Wapperom and 

Webster 1999).  

 

At the first stage the momentum and the stress equations are solved and 

divergence-free velocity fields are calculated given initial velocity and pressure 

fields. This is obtained by prediction (Eq. 9) and then a correction step (Eq. 10). 

In the following equations t denotes the time step and n the time level, u , p, τ, d 

the velocity, non-solenoidal velocity, pressure, extra-stress and first rate of strain, 

respectively. Re and We are the Reynolds and Weissenberg number defined 

above.  

Stage 1a (prediction): 

   

1

21
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n nn n n n n
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d d
    u u p p p F
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 
   
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   
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        (9)                                              

Stage 1b (correction): 

     
*

(1/2)* 1 (1/2)
1

Re
2 ( ) ,

2

n
nn n n n n

G

d d
u u p p p F

t
  
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 

        
     
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    
1

1 2
n

n n TWe
f I f We u L L

t
     


         

   (10) 

At the second stage (Eq. 11), pressure-correction is conducted via a Poisson 

equation, based on temporal pressure-difference, using the calculated  from 

stage 1. 

Stage 2: 

   2 1 *

2

Ren np p u
t

   
   (11) 

In a third stage (Eq. 12), incompressibility is enforced and a divergence-free 

velocity field  is constructed, appealing the calculated  and pressure-

difference  from stages 1 and 2.  

Stage 3: 

   1 * 1
2

2Re
.n n nu u p p

t
     

  (12) 

A combination of solvers is employed for the different stages in the numerical 

simulation scheme. For the resulting Galerkin mass matrix-vector equations, 

formed at stages 1 and 3, an iterative element-by-element Jacobi method is used, 

while a direct Choleski decomposition solver  is invoked for the pressure equation 

at stage 2 (Hawken et al. 1990).  

 Finite volume cell vertex scheme 

In the hybrid fe/fv context, we appeal to a cell-vertex finite volume (fv) approach 

to spatially discretise the extra-stress equations of Stage 1. This scheme is based 

upon an upwinding technique (fluctuation distribution), that distributes control 

volume residuals to provide nodal solution updates. Originally, such upwinding 

schemes were designed with pure-convection problems in mind. These fluctuation 

distribution schemes possess beneficial properties such as conservation, linearity 

preservation and/or positivity (Wapperom and Webster (Wapperom and Webster 

1998b)).  Concisely, by rewriting the extra-stress equation in non-conservative 

form, with flux ( ,™u.R ) and absorbing remaining terms under the source (Q), 

one may obtain: 
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                   t


 




R Q

 (13) 

 We consider each scalar stress component, τ, acting on an arbitrary 

volume l

l

   , whose variation is controlled through corresponding 

components of fluctuation of the flux (R) and the source term (Q), 

                l l l

d Rd Qd
t
  


    

   

 (14)  

 

The objective is to evaluate the flux and source variations over each finite volume 

triangle (Ωl), with their distribution to its three vertices according to the preferred 

strategy. The resulting nodal update for a particular node (l) is obtained by 

accumulating the contributions from its control volume Ωl, composed of all fv-

triangles surrounding node (l). The flux and source residuals may be evaluated 

over different control volumes associated with a given node (l) within the fv-cell 

T; namely, the contribution governed over the fv-triangle T, (RT, QT), and that 

subtended over the median-dual-cell zone2, (Rmdc, Qmdc). This procedure demands 

appropriate area-weighting to maintain consistency, which for temporal accuracy 

has been extended to time-terms likewise. With the candidate stress equation 

considered as split into time derivative, flux and source, and integrated over 

associated control volumes, the concise generalized fv-nodal update equation may 

be expressed per stress component as,  

             

   
1

1 1
l l l l

n
T T T T MDCl

T l T T l T l T l

T MDC T MDC

ö b b
t



   

  
       

 
        

              

(15) 

where  T

T Tb R Q   ,  
lMDC

l MDC MDCb R Q   . Here, T  is the area of the fv-

triangle T , whilst 
T

l̂  is that of its median-dual-cell (MDC). Parameter T  directs 

the balance taken between the contributions from the median-dual-cell and the fv-

triangle T , with 0 1T  , see Webster et al. (Webster et al. 2005a). This 

                                                 
2 See (Wapperom and Webster 1999) 
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expression recognizes segregated fluctuation distribution and median dual cell 

contributions, area weighting and upwinding factors ( T

l -scheme dependent).  

Results and discussion 

Mesh refinement 

Specifically, all the following solutions presented in the results section are 

expressed in a non-dimensional form. Firstly, to explore solution mesh 

convergence, simulations of increasing levels of mesh densities (table 2) are 

performed for both Newtonian and Boger fluid flow (Fig. 3). The velocity and 

strain rate solutions are analysed along the symmetry line in the flow direction. 

The velocity in the flow direction (z-direction) is depicted in Fig. 4a., for three 

mesh densities. The velocity is constant until the start of the contracting region 

(z=0), from which point it increases linearly. The strain rate in the flow direction 

is depicted in Fig. 4b., showing a considerable increase at the start of the 

contracting region and a relatively constant strain rate throughout the contraction. 

The solutions computed from the various meshes lie in close agreement, with no 

pronounced difference (less than 1%) being observed between the results for the 

coarse, medium and refined mesh. Thus the coarse-medium meshes have been 

used as the basis for further evaluation due to their efficiency in calculation time.  

Exit conditions 

Two different exit conditions have been trialled on the hyperbolic contraction 

configurations. In the one case, the boundary exit remained free (natural 

condition) and in the other case the exit boundary condition was set to be a jet-

plug flow with the velocity set to unity. Solutions for both Newtonian and Boger 

fluids were studied at We-numbers ranging from 0.1 to 50. The strain rates from 

the different exit conditions are at the same level but an oscillation can be seen 

near the exit, especially in the FENE-CR solutions when plug flow exit boundary 

conditions apply; this is due to the flow adjustment there, anticipating a jet outlet. 

The impact of the exit conditions in the solution along the wall was also analysed 

and there is no significant difference in shear rate noted between the different exit 

conditions. Once again, an oscillation is observed, especially for the plug-type 

boundary condition. Note, however, that this oscillation is a highly localised 
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effect, and does not disturb the solution in the domain; hence, the flow at exit may 

be ignored. The natural exit condition was used in the subsequent simulations 

performed in this study, due to the less pronounced oscillation.   

Vortex formation in different geometries 

The stream traces of the different geometries have also been studied to identify 

whether any vortices are formed in the fluid domain. Both Newtonian and 

viscoelastic Boger fluids were studied for all the contraction configurations for 

Weissenberg numbers ranging from We=0.1 up to We=100. From these 

simulations it can be seen that the only vortex formed is in the corner of the 90-

degree contraction for both Newtonian and Boger fluids, increasing with higher 

flow rate or elasticity. The vortex is already developing at We=0.1 and is depicted 

in Fig. 5a. No vortices are formed in the other geometries, even for higher We- or 

Re-numbers, see Fig. 5b, as illustrated in stream traces of the hyperbolic 

contraction at the extreme elasticity level of We=100. No vortices are formed 

because of the smoothed hyperbolic shape of the contraction and the relatively 

low contraction ratio. This can be compared with the experimental work of 

Nguyen, where vortices where formed for 90-degree and 60-degree contractions 

but not for 30-degree contractions (Nguyen and Boger 1984). Thus, stable steady 

flow is shown to be established for all geometries (in a reasonable velocity range). 

Shape of the Corner 

The impact of the shape of the corner has also been evaluated for the hyperbolic 

contraction configuration. Numerical simulations have been performed for 

hyperbolic contractions, one with a rounded corner and one with a sharp corner. 

Previous studies of 90-degree contractions have shown that a rounded corner 

delays the development of vortices to higher Weissenberg numbers as compared 

to a sharp corner (Rothstein and McKinley 2001). The viscoelastic FENE-CR 

solutions for the hyperbolic contraction can be seen in Fig. 6a-b., which plots the 

strain rate along the symmetry line at L=5, We=1, 5 and 10. The strain rate along 

the symmetry line is rising sharply at the start of the contraction (z=0) and finally 

reaches a relatively constant value of about 0.12 units. The strain rate is seemingly 

unaffected by the shape of the corner, sharp or rounded, except around z=5 where 

a minimal difference in (0.0006 units) can be observed.  
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The behaviour of the normal stress difference (N1) for increasing We -numbers is 

studied both along the symmetry line (in extension) Fig. 7a. and along the wall (in 

shear) Fig. 7b. in both geometries.  There is a rise in N1 along the symmetry line 

for both corner types in Fig.7a. and a slightly higher N1 (0.007 units) can be 

observed for the sharp corner compared to the rounded, indicating a larger stress 

in the flow direction for the sharp corner instance. The difference in N1 is more 

pronounced with rising We-numbers. Examining N1 along the wall in Fig. 7b., a 

rise in N1 throughout the whole contraction is observed, but there is no significant 

difference between sharp and round corner at increasing We-numbers.  

The shear rate along the wall for round and sharp corner is shown in Fig. 8. The 

shear rate rises sharply at the start of the contraction region to a relatively constant 

value of around 1.13 units. The influence of the corner shape on the solution is 

minor and thus the sharp corner option will be retained for future comparison with 

the experimental set-up.  

Flow behaviour in different geometries 

The predicted solutions of the dimensionless strain rate for viscoelastic Boger 

fluid (L=5, We=5) in different configurations are displayed through contour plots 

of the contraction domain in Fig. 9a-f. The appearance of the strain rate for both 

Newtonian and Boger fluids resembles each other. The area of high extension is 

concentrated around the regions of the contractions and increases for lower 

contraction angles. An inhomogeneous uniaxial extension along the flow 

centreline arises for the 90 to 15-degree contractions, while it is dispersed 

throughout the whole contraction for both hyperbolic contractions. Line graphs 

extracted from the contour plots of the strain rate for viscoelastic FENE-CR 

model (L=5, We=5) along the symmetry line are displayed in Fig. 10a. The start of 

the contraction is indicated by a dashed line. Peaks at the contraction are observed 

for all configurations, with the exception of the hyperbolic contraction case, 

where the strain rate reaches a nearly constant value of 0.13 units throughout the 

contracting domain. The 45-degree configuration displays a higher peak (1.24 

units) than the 90-degree one (1.02 units), but there is generally a smoothing of 

the curves and a decrease in the maximum strain rate moving from higher to lower 

contraction angles. The reason for the peak increase in the 45-degree contraction, 
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compared to the 90-degree contraction, is the vortex formation observed in the 90-

degree configuration (Fig. 5a).  

 

The impact of the first normal stress difference (N1) along the symmetry line for 

the different configurations is seen in Fig. 10b. The curves of N1 are observed to 

follow the trends in strain rate for all configurations except that of the hyperbolic 

contraction, where the level of N1 increases throughout the contraction geometry 

towards the exit. This is due to the fact that there is a small increase in strain rate 

towards the exit of the hyperbolic contractions, which will be more pronounced in 

the first normal stress difference N1. A further observation taken from Fig. 10 is 

that the peaks are shifted away from the start of the contraction plane with 

decreasing contraction angles. This is thought to be due to the sharper contraction 

taking place at the end of the contractions for the 45-degree, 30-degree and 15-

degree angle contractions. 

 

The variation of pressure along the symmetry line for a Newtonian fluid in the 

different configurations is presented in Fig 11. The flow is allowed to fully 

develop after the contraction in the 90-degree, 45-degree, 30-degree and 15-

degree contraction configurations. This is not the case for the hyperbolic 

contraction geometry, where the flow is interrupted immediately after the 

contraction, to mimic the experimental setup. The maximum pressure is somewhat 

similar and higher for the 45-degree, 30-degree and 15-degree contractions 

(around 560 units), than for the 90-degree contraction (400 units), again due to 

corner vortex formation. A low maximum pressure is observed for the hyperbolic 

contraction (20 units) and the pressure drop is smoothed around the contraction 

region as compared to the other configurations. Since the contracting region in the 

hyperbolic geometry is smoother, the force required to push the fluid through the 

contraction is necessarily lower, which in turn yields a lower pressure drop over 

the geometry. Higher forces can thus be used which will lead to a broader 

measuring range, enabling higher strains and strain rates. The vortex in the 90 

degree contraction contributes to a flow field that resembles the hyperbolic 

contraction configurations, eliminating the sharp corners and, thus reducing the 

pressure drop.  
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The excess pressure drop (epd) data at different We-numbers in the case of the 90-

degree contraction and the hyperbolic contraction is depicted in Fig. 12a-b., 

respectively. Solutions are shown for three increasing L-parameters (L=3, 5 

and10). Recall, that excess pressure drop is a corrected measure for pressure drop 

across the contraction, defined above in (Eq. 8).  Previously, (epd)-data has been 

studied extensively for the 90-degree contraction (4:1 and 4:1:4), showing both 

increases and decreases in epd with increasing We-numbers, dependent on 

geometry, solvent fraction and model choice –Oldroyd-B and FENE-CR models 

(Aguayo et al. 2008; H. R. Tamaddon-Jahromi 2010). Nevertheless, any epd 

increase derived for FENE-CR (β=0.9,L=5) in 4:1:4 contractions proved to be 

only modest (est. 28% up to We<70). In comparison and within the present study, 

notably pronounced increase in epd has been demonstrated with FENE-CR 

(β=0.9, L=5) at We<50 for both contraction geometries 90-degree and hyperbolic. 

For the 90-degree contraction data, epd results initially lie below the unit-

Newtonian reference line for We<10 (argued to be due to N1 dominance over 

extensional viscosity; see (Nigen and Walters 2001), (H. R. Tamaddon-Jahromi 

2010).  

 

In contrast, the hyperbolic contraction displays epd-data larger than unity for all 

We-numbers –adding greater weight to confirm the successful suppression of N1-

influence in this geometry choice. Upon increasing the extensibility parameter (L), 

epd-levels naturally rise: achieving impressively large relative increases of (24%, 

54%, 160%); for L=3, 5, 10. These results correlate well with the experimental 

results of Nigen and Walters (Nigen and Walters 2001), who reported significant 

enhancement in pressure drop over a Newtonian fluid for viscoelastic Boger fluids 

and a 90-degree contraction, as did McKinley and Rothstein (Rothstein and 

McKinley 1999) likewise for the 4:1:4 geometry. Moreover, McKinley and 

Rothstein (Rothstein and McKinley 2001) studied the influence of the contraction-

expansion ratio and found a generally enhanced pressure drop above that of a 

Newtonian fluid for increasing We-numbers, indicating a correlation between the 

pressure drop and strain rate for viscoelastic fluids. Thus, one may conclude that it 

is indeed a practical proposition to determine extensional fluid properties in the 

hyperbolic contraction geometry, based upon the sizable quantities that have been 

shown to be generated.  
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The numerical predictions in this study show that the shear rate is minimized and 

a nearly constant deformation is achieved along the flow centreline for the 

hyperbolic geometry-shape, as assumed in the work by Wikström and Bohlin 

(Wikström and Bohlin 1999a), notably in contrast to that generated in the other 

geometries tested. Due to the nearly constant extensional flow throughout the 

hyperbolic contraction configuration, this guarantee that test samples will be 

stretched for a longer period of time, which in turn facilitates practical 

determination of the extensional viscosity of the sample. The extensional viscosity 

can be determined from the first normal stress difference in extension 

( ) and the strain rate as follows: . The extensional 

viscosity thus reflects the strain rate, which is relatively constant on the centreline 

throughout the entire nozzle-length in the hyperbolic configuration. These results 

are consistent with earlier experimental findings that used Ultrasound Velocity 

Profiling (UVP) on hyperbolic contractions (Zatti et al. 2009).  

 

Moreover, such numerical predicted solutions may be compared to corresponding 

theoretical rheometric functions (see Fig. 13a –extensional viscosity ηe, and Fig. 

13b –first normal stress difference N1), which establishes the deformation ranges 

of agreement and the proximity to steady pure extensional flow. The predicted 

solutions are plotted against localised Weissenberg Number, determined at the 

steady deformation rate reached at a sample-point (z=9) along the flow centreline 

and on the wall for prediction of ηe and N1, respectively. The centreline 

extensional data findings are promising, in that there is close agreement 

established at all three L-values, (L=3, 5, 10), on limiting ηe plateaux reached at 

We≥10; trends agree well across a wide range of We with L=3; yet show a degree 

of departure during intermediate ranges of 0.3≤We≤5 for L=5 and 0.3≤We≤10 for 

L=10. Finally on shear data, the first normal stress difference results on the wall, 

shown in Fig 13b, are even more encouraging. The numerical predictions agree 

well with the theoretical results for We≥1 and for all values tested of the 

extensibility parameter, L=(3, 5, 10). Clearly, there is some N1 influence in this 

flow. Here, one may note the Szabo et al. (Szabo et al. 1997) argument re 

dependency upon the FENE(L)-parameter under a highly polymeric state, in that a 

trade-off applied between using small finite extensions (L) that produce smaller 
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extensional viscosities, but require less stretch to attain the extension (L), and 

hence become effective at lower Deborah numbers. This would appear to be the 

case here. Accordingly, this procedure also allows a functional relationship to be 

established between epd and extensional viscosity3, – one of our original targets, 

so eagerly sought after under experimental practice. 

Conclusion 

Various simulations have been performed in this work of contraction flows of 

Newtonian and viscoelastic Boger fluids. This covers different contraction 

geometries in an attempt to optimize on geometry selection with respect to 

extraction of constant extensional flow. Numerical computations of steady-state 

Boger fluid flow through various configurations have been analysed using the 

FENE-CR constitutive model. Stream traces of the flow reveal corner vortex 

development in the 90-degree contraction; and yet no vortices for the 45-degree, 

30-degree and 15-degree contraction options, nor for the hyperbolic contraction. 

Two different exit conditions were imposed on the hyperbolic contraction flow, 

and the influence of the exit conditions are seen to apply locally, only around the 

exit itself; hence, do not affect findings otherwise.  

 

In addition, the influence on the extensional deformation generated by the sharp 

or rounded recess corner of the hyperbolic contraction has been shown to be 

minor for a contraction ratio of 4:1. Nevertheless, with future experimental design 

firmly in mind, a contraction with a round corner would serve to further minimize 

shear stress contributions, especially at higher contraction ratios.  The pressure 

drop, strain rate and extensional viscosity through the various contraction variants 

reveal that the hyperbolic contraction is the one that is best suited for the 

generation of constant extension in the measuring system and in minimizing shear 

contribution at the flow centre-line. Theoretical to predicted solution 

correspondence has been established and leads to new means to practically 

measure extensional properties, linking these to pressure drops. The hyperbolic 

contraction flow exposes the fluid to a longer time period of deformation as 

compared to other contraction flow instances. This is a highly desirable property 

                                                 
3 See Cogswell analysis in Rothstein & McKinley paper (Rothstein and McKinley 1999) 
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in a measuring system for extensional flow and also indicates that the use of a 

hyperbolic contraction in pipe contractions will generate a more uniform flow.  

 

To resemble the numerical problem to the experimental set-up it would be 

illuminating to introduce a die swell exit condition on the hyperbolic 

configurations in a future study. It would also be of interest to analyse the flow 

with slip imposed on the die walls to further minimize the effect of shear stress on 

the sample and determine the properties of the flow for shear-thinning fluids 

through the hyperbolical die. This would prove particularly illuminating in 

attempting to segregate the various conflicting contributions to pressure-drops, 

namely extensional viscosity and first normal stress difference in shear.  
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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1

0.1

0.
2 0.6

Strain rate: 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

90 deg

FENE-CR L=5, We=5

a)  

0.1
0
.2

0
.5 1

Strain rate: 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

45 deg

FENE-CR L=5, We=5

b)  

0.1

0.2 0.5 0.8

Strain rate: 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

30 deg

FENE-CR L=5, We=5

c)

0.1

0.2

0.4 1

Strain rate: 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

15 deg

FENE-CR L=5, We=5

d)



30 

0.1

0.1

Strain rate: 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

Hyperbolic
sharp corner

FENE-CR L=5, We=5

e)

0.1

0.1

Strain rate: 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

Hyperbolic
round corner

FENE-CR L=5, We=5

f)  



31 

Figure 10 
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Figure 11 
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Figure Legend 

Fig. 1 a) First normal stress difference data for FENE-CR model, increasing L. 

Fig. 1 b) Extensional viscosity data for FENE-CR model, increasing L. 

Fig. 2. Different geometries used in the study with corresponding meshes. The flow direction for 

all geometries is from left to right. 

Fig. 3. Mesh refinement: Mesh A - coarse; Mesh B – medium; Mesh C - most refined. 
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Fig. 4. FENE-CR mesh-refined solutions: a) velocity, b) strain rate along symmetry line for 

hyperbolic 4:1 contraction with three different mesh densities. 

Fig. 5. Stream traces for a Boger fluid with a) 90 degree contraction, We=0.1; b) hyperbolic sharp 

contraction, We=100; FENE-CR (L=5). 

Fig. 6. Strain rate along symmetry line for hyperbolic contraction with sharp (dashed-dotted line) 

and rounded corner (dashed line) at a) We=5 and b) We=1, 5 and 10. 

Fig. 7 a) Normal stress difference (N1) (in extension) along symmetry line for hyperbolic 

contraction with round (dashed lines) and sharp (dotted lines) corner at We=1, 5 and 10 for a 

Boger fluid. 

Fig. 7 b) Normal stress difference (N1) (in shear) along the geometry wall for hyperbolic 

contraction with round (dashed lines) and sharp (dotted lines) corner at We=1, 5 and 10 for a 

Boger fluid. 

Fig. 8. Shear rate along the wall for hyperbolic contraction with round (dashed lines) and sharp 

(dotted lines) corner at We=5. 

Fig. 9. Contour plots of strain rate (0.1 to 1.2 units) through the different geometries.  

Fig. 10. FENE-CR solutions showing the a) strain rate along the symmetry line for different 

contractions at L=5, We=5. b) Normal stress difference (N1) along symmetry line for different 

contractions at We=1, 5 and 10. 

Fig. 11. Pressure along symmetry line for the different contractions for a Newtonian case at Re=0. 

Fig. 12 Excess pressure drop a) 90 degree contraction, b) hyperbolic contraction,  0.1≤ Welocal ≤ 

102, FENE-CR (L=3, 5, 10). 

Fig. 13 a) Extensional viscosity, d) First normal stress difference: hyperbolic contraction, 

theoretical (dashed) vs numerical prediction (solid lines); 0.1≤ Welocal ≤ 102, FENE-CR (L=3, 5, 

10). 

 

Tables 

Table 1 

Model Material function Model Properties 

β L 

FENE-CR 0.9 3 constant shear viscosity, 

controllable elongational 

leve, Nl is weaker than the 

quadratic form exhibited by 

the Oldroyd-B model 

 0.9 5 

 0.9 10 
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Table 2 

Configuration Elements Nodes Degrees of freedom 

Mesh 90 1140 2427 15 206 

Mesh 40 1245 2676 16 772 

Mesh 30 1245 2676 16 772 

Mesh 15 1325 2844 17 824 

Hyperbolic sharp 1350 2869 17 974 

Hyperbolic round 

(Mesh A) 

1350 2869 17 974 

 

Hyperbolic round 

(Mesh B) 

1700 3591 22 492 

 

Hyperbolic round 

(Mesh C) 

2160 4525 28 333 

 

 

Table Legend 

Table 1. Boger fluid, material functions for the FENE-CR model. 

Table 2. Mesh data 


