

Contextual Reasoning based Mobile Recommender

System

Master of Science in Applied Information Technology Thesis

- Intelligent System Design

ABHIROOP GUPTA
Department of Applied Information Technology

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden, 2009

Report No. 2011:087

ISSN: 1651-4769

The Author grants to Chalmers University of Technology and University of Gothenburg the

non-exclusive right to publish the Work electronically and in a non-commercial purpose make

it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work does

not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author has

signed a copyright agreement with a third party regarding the Work, the Author warrants

hereby that he/she has obtained any necessary permission from this third party to let Chalmers

University of Technology and University of Gothenburg store the Work electronically and

make it accessible on the Internet.

Contextual Reasoning based Mobile Recommender System

Abhiroop Gupta

© Abhiroop Gupta, February 2012.

Examiner: Claes Strannegård

Chalmers University of Technology

University of Gothenburg

Department of Applied IT

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 6032

Department of Applied Information Technology

Göteborg, Sweden September, 2011

Preface

This Master’s Thesis was carried out at Ericsson Research, Kista, Sweden from February of
2011 to July of 2011. The thesis is a prerequisite final work for a Master’s Degree in
Intelligent Systems Design at Chalmers University of Technology, Göteborg, Sweden. The
industrial supervisor at Ericsson Research was Mr. Simon Moritz and academic supervisor at
Chalmers University of Technology was Mr. Claes Strannegård.

Abstract

With the ever increasing popularity of Smartphone and reducing charges for device and data
Mobile applications users are estimated to quadruple in the next three years. With the
increase in the number of users Applications in the market are increasing by thousands
every day. The Users are flooded with so much of choices that it is hard for them to find
appropriate and Suitable apps. Recommender systems can aid the users in discovering new
applications in a personalized manner. The purpose of this thesis is to investigate how to
enhance the recommendations to a user in the process of discovering new mobile
applications by better utilization of context data available through various sensors in a
modern day Smartphone. The work of the thesis is divided into three phases where the aim
of the first phase is to study related work and related systems to identify promising concepts
and features. During the second phase, a prototype system is designed and implemented.
The outcome and result of the first two phases is then evaluated and analyzed in the third
and final phase. The prototype system integrates an existing mobile app recommender
system to add the features of context awareness and context reasoning. The major draw of
the thesis is to suitably define context and situations of interests and model them
appropriately. Learning techniques are applied to learn these models using the context data
generated by the user. The derived situation provides an added parameter in the process of
information filtering in a personalized manner.

Table of Contents

Introduction .. 8
Objectives .. 9
Problem .. 10

Collecting sensor originated data ... 10
Contextual Reasoning .. 10
Effective Use of derived knowledge in the Recommender

System ... 10
Presentation .. 11

Hypotheses .. 11
Towards expanding the context and addressing cold start 11
Towards expanding to Social Network, blogs etc 11
Towards diversifying the recommendations 12

Scope ... 12
Scope of Hypotheses ... 12
Adding features to existing App Recommender System 12
Focus 12
Limitations .. 12

Background Research .. 13
Recommender Systems .. 13

Techniques .. 13
Mobile Recommender Systems ... 14

Android Apps Market .. 15
Available App Recommender Systems .. 15

AndSpot (Market) .. 16
Appolicious ... 16
Appaware(Recommender App) .. 16
Appreciate ... 17
AppJoy 17
Appazaar ... 18
Summary ... 18

Current State of Research of Recommender Systems and Context
Aware Computing ... 19

Thinking ahead: HTML5 Vs Android App ... 21

Design 22
Goals .. 22

Research Goals .. 22
Industry Goals .. 22
Scientific Goal ... 22

Problem Formmulation ... 23
Concept .. 24
Use Cases .. 25

User sitting with friends ... 25
User works at a shopping mall .. 25
User exhausted after working but still in office 25

The Framework .. 26
Data Collection Layer ... 26
Context Inference Layer ... 26
Situation Reasoning Layer ... 27

Recommendation Process Flow Diagram .. 27

Data Collection Sub-Process ... 27
Context – Inference Sub-Process .. 27
Situation Inference Sub-Process ... 29
Request More Info Sub-Process .. 29
Recommendation Engine Sub-Process .. 29
Recommendation Decision sub-process and Recommendation

filtering ... 29
Situation Learning Sub-Process .. 29

Implementation ... 30
Place as a Context ... 31

What places can be of interest and can be inferred? 31
Algorithm for inferring places .. 31

POI Tags as a Context ... 33
POI Tags for Context Inference ... 33
POI Tags for Meta data enrichment ... 34

Movement as a Context ... 35
Algorithm for movement analysis ... 35

Date and time as a Context ... 37
Noise level as a context .. 37
Situation Reasoning Engine ... 37

An introduction to case based reasoning ... 37
Why case based reasoning for situation analysis?............................ 39
Implementation details of the CBR. ... 40

Situation based Recommender System ... 41
How to recommend items based on situation? 41

Data collection process .. 42
Android OS features to support data collection in phones 42

Process of Weight and Merge and Filtering .. 44
Recommendation Explanation & Situational Feedback 44

Qualitative Evaluation .. 45
Hypothesis Verification ... 45

Towards expanding the context and addressing cold start 45
Towards expanding to Social Network, blogs etc 46
Towards diversifying the recommendations 47

Consumption Analysis in different situations ... 47
Recommendation Utilization Analysis ... 50

Discussion and Conclusion ... 51

Future Work .. 53

Appendices ... 54
Application Package Structure .. 54
Application Screenshots ... 55
List of Android App Markets & App Statistics .. 57

Reference .. 59

Table of Figures

Sl. No. Title
Figure1 Sensor–Context –Situation-Recommendation Diagram

Figure 2 The Framework

Figure 3 Recommendation Process Flow Diagram

Figure 4 Situation Recommender Architecture

Figure 5 Outcome of tag association for metadata enrichment

Figure 6 Lifecycle of a CBR

Figure 7 Flow diagram of interaction between Recommender
System and CBR

Figure 8 Consumptions in Situation IDLE AT HOME

Figure 9 Consumptions in Situation WORKING

Figure 10 Consumptions in Situation Shopping

Figure 11 Recommendation Utilization

Introduction

Just about everyone loves the convenience of having their own personalized interests
delivered to them without much work. That’s exactly what recommendation engines do for
their users. With the advent and popularization of e-commerce recommender systems came
in forefront, these engines remember your preferences and make suggestions for you based
on your history. The field of Mobile apps has become so flooded with apps in the recent
times that Recommendation engines have become the need of the hour for Smartphone
users to aid them discover apps of their personal interest and rightly so it has gained
interests among the researchers and system developers.

With over 440,000 applications available for the iPhone and over 275,000 available for the
Android platform, there is an apparent information overload emerging in the domain of mobile
applications. The fact that these applications usually are browsed and downloaded from the
mobile device, with its smaller screen, makes this information overload even more intense.

Recommender engines uses a specific type of information filtering system technique that
attempts to recommend information items (movies, TV program/show/episode, video on
demand, music, books, news, images, web pages, scientific literature such as research
papers etc.) that are likely to be of interest to the user. Typically, a recommender system
compares a user profile to some reference characteristics, and seeks to predict the 'rating'
that a user would give to an item they had not yet considered. These characteristics may be
from the information item (the content-based approach) or the user's social environment (the
collaborative filtering approach).

The purpose of the thesis is to identify techniques and algorithms that work on the generated
data of the Smartphone App users to predict the context of the user and to build a prototype
of a system which can achieve this task and thereby help the underlying Recommender
System to enhance the recommendations.

In our approach we tried to model the relationship between context and situation effectively
so that the application can map the sensor originated context data to predict the situation of
the user with some degree of certainty. The outcome of the contextual reasoning adds an
extra level of information filtering which can be achieved on the User data to recommend him
with apps.

The project was initiated at Ericsson Research last year when a mobile recommender
system was developed based on an underlying Ericsson recommendation engine developed
initially to recommend media items to the users. The Recommender system also had to
capability to filter information based on “Apps popular around you” to address the cold start
problem.

The underlying Recommender engine incorporates the techniques of Collaborative Filtering
to compute the recommendations for a User/Item. Collaborative filtering (CF) is the process
of filtering for information or patterns using techniques involving collaboration among multiple
agents, viewpoints, data sources, etc. In Recommendation engines it can be applied as a
method of making automatic predictions (filtering) about the interests of a user by collecting
taste information from many users (collaborating). The underlying assumption of CF
approach is that those who agreed in the past tend to agree again in the future. It is to be

noted that these predictions are specific to the user, but use information gleaned from many
users.

Since the mid-1990s, recommender systems have become an important research area and
several systems have been developed and deployed. Systems such as Amazon.com have
presented recommendations on the form “people who bought this, also bought that” to users
for over a decade. A system which minimizes the information overload in a personalized way
would be beneficial not only for the end user, but for every actor in the mobile ecosystem;
end users, developers, operators and retailers. The utility of recommender systems was
reinforced when Amazon.com reported a 35% jump in sales the following year of their
deployment of recommender system[2].

With the advent and increased use of social networks in recent years, it is possible to filter
products and services based on what a user’s friends are consuming. Users could share or
recommend applications to each other, a digital equivalent to the analogue word-of-mouth, or
a user could be allowed to browse her friend’s applications. These methods are increasingly
becoming popular in recommendation systems. This method results in more personalized
recommendations but may introduce privacy issues and not everyone is keen on online
social networks.

With technology been moving beyond desktop computer to everyday devices, the field of
pervasive computing came to the forefront of research in the field of computer science. Many
concepts developed by the field of pervasive computing also find their place in other fields.
One such concept is Context and Context Awareness. A.K. Dey [5] in his work defines
Context as “Any information that can be used to characterize the situation of an entity. An
entity is a person, place, or object that is considered relevant to the interaction between a
user and an application, including the user and applications themselves.” He further says “A
system is context-aware if it uses context to provide relevant information and/or services to
the user, where relevancy depends on the user’s task”.

The concepts of Context Awareness is applied thereafter in many fields apart from pervasive
computing including Health care, UI design, Search Engines, Advertisement,
Recommendations etc. to name a few. It has been seen that Context Awareness aids in
better interaction between the User and the System. Gartner in its Report[1] notes that “By
2015, context will be as influential to mobile consumer services and relationships as search
engines are to the Web.”

Objectives

The Goal of the Thesis is to investigate, find and implement suitable features that can be
added to the existing Recommender System for Android Apps. The techniques being
implemented should fall under certain predefined boundaries namely:

 Good enough App Recommendations should be provided by the system

 The system should be capable of providing recommendations from the day one.

 The number of inputs required by the system from the user should be kept as
minimum as possible.

 Contextual data generated by the user should be utilized as effectively as possible.

 The system must possess some quality to learn about the choice of the user.

 The solution should preferably consist of a recommender system and possibly other
filtering solutions.

An in depth study of the Android market has to be performed to analyse the Android App
Market, Various other App Recommender System available to the user and their features.
Suggestions for modifications and enhancements to a recommender engine previously
developed at Ericsson AB should be presented.

Problem

After an in-depth study performed on the Android market and State of the current
research in the field of Recommender Systems, a set of features were identified to be
implemented on the underlying Recommender System and thus the problem was
defined.

The general problem addressed in this thesis report is addressing context awareness
and contextual reasoning in mobile app recommender systems. Defining proper
models for Context Reasoning, using the models effectively, predicting about the
users situations and effectively utilizing these deductions to better the
recommendations are the main challenges that are addressed in this thesis. The
effort in terms of time and cognitive work a user puts in to finding interesting and
relevant applications should be as low as possible. This problem was divided in to
sub-problems, namely; collecting and storing user’s sensor originated data;
Contextual Reasoning around the Sensor originated data; and utilizing the same for
an added level of information filtering by the Recommender System. These sub-
problems are described in greater detail in the following sections.

Collecting sensor originated data

In order to form the input data for Context Reasoning the System must collect
data about the Users environment using various sensors available in a modern
day Smartphone. An example of such Sensors can be GPS data telling the
Location of the User, Accelerometer to judge the motion of the User,
Microphone to analyze noise around the user etc. to name a few.

Contextual Reasoning

The heart of the current work on the Recommender System is adding a
Contextual reasoning engine. The Reasoning engine takes the various sensor
originated data as context inputs. It enhances the quality of the input data by
enriching it with data from Map APIs, GIS, Social Network etc. It then uses the
context history of the user to predict the situation of the user through different
machine learning algorithms/rule based systems. It also performs all necessary
steps in between including Outlier Removal, Feature Extraction, Classification
etc.

Effective Use of derived knowledge in the Recommender System

The general idea of filtering is to obtain a subset of items based on some
criteria. In the domain of this thesis, filtering applications is the process of
retrieving a subset of applications of high interest and relevance to the user
based on the current situation of the User. The resulting subset of applications

should be sorted to make applications at the top of the result more likely to be
interesting to the user.

Presentation

Once the system knows which applications to recommend to a user, it must be
able to present them. Presentation in this case does not only involve
visualization such as the layout of the graphical user interface but also includes
the available metadata for applications, the notion of correlation between
applications, the actions one can take on applications, and how this affects the
user’s workflow.

Hypotheses

A set of hypothesis were formulated initially after studying the current system which
some of which will be verified in the end if the scope of proving the hypothesis falls
under the purview of the formulated problem and its solution. The hypotheses are
presented in this section with their classification.

Towards expanding the context and addressing cold start

o Hypothesis 1: Data available in the Android OS can be effectively utilized
to analyze patterns. Example of such data can be Network Operator
Name, Sim Operator Name, Cell Location, Phone Number, whether in
roaming etc.

o Hypothesis 2: User Demographics information either collected via the
Mobile Operator or collected from the User directly from the
recommendation app can be utilized effectively to analyze patterns.

o Hypothesis 3: Content of the metadata of the apps can be effectively
utilized to find a list of relating apps and generate the similarity measure of
the apps.

o Hypothesis 4: Making it optional to provide the demographics data for
the user and providing them with statistics of how the data influences the
recommendations will reduce the concerns of the user in providing
personal information.

o Hypothesis 5: Providing users with explicit feedback options, e.g.
Like/Dislike, Agree/Disagree buttons can help in better User Modeling.

Towards expanding to Social Network, blogs etc

o Hypothesis 6: Providing the user with an option to share interesting
apps on social networking sites will open new source of generating
recommendations based on what apps the user’s friends are sharing etc.

o Hypothesis 7: Unstructured data from the web, blogs etc can be a
potential source of metadata of the apps.

o Hypothesis 8: Semi Structured data on twitter can be utilized effectively
to discover relations between apps.

Towards diversifying the recommendations

o Hypothesis 9: List of recommendations can be diversified based on
recommendations from different classes of relating apps.

o Hypothesis 10: The recommendation engine can adapt to the amount of
recommendations that is provided for different classes of
recommendations based on the user’s actions over a period of time
dynamically.

o Hypothesis 11: The list of recommendations can be filtered in multiple
levels to achieve diversity.

Scope

In this section, the scope of the thesis is presented along with a brief description of
what will be evaluated and how. The section defines the limitations and focus of the
project. The actual evaluation is presented in 6.

Scope of Hypotheses

A set of hypotheses are drawn after an initial study of the system some of which
will be verified or rejected based on argumentation on the behavior and
functionality of the system. The unverified ones will be presented in the future
work sections if they are found to be promising after the through background
study of the system. Some hypotheses may easily be verified by assuring that a
part of the system works, while others may require a qualitative study and
expert opinion in the form of a discussion.

Adding features to existing App Recommender System

An existing recommender system for Android apps is modified and used during
the project. Based on the enhancements done to the system a discussion is
presented on the new features and its utilization of the existing framework to
enhance the process of recommendation.

Focus

The focus of this thesis has mainly been concentrated in the topics of (a) App
recommendations techniques & concepts, (b) Context and consumption
collection and (c) Context Utilization. The main problem addressed in the thesis
the problem of Contextual reasoning and its utilization in the process of
Recommendation.

Limitations

The focus of this thesis has not been towards performing any usability tests for
the recommendations or any quantitative study of the recommender engine due
to constraint in data and time.

Background Research

Formal Research on recommendation engines for internet started in early 1990's at Xerox
PARC in response to the overwhelming number of emails. They created a system named
"TAPESTRY"[3] in which users could filter information from all incoming streams including e-
mails, news articles etc. It used both content based filtering and collaborative filtering. In the
last 10 years with the penetration of the internet into our day to day business,
recommendation engines were seen as a big way to boost the business as a result a lot of
research work has been done in the field. In 2007 the Netflix Prize, a contest with a dataset
of over 100 million movie ratings and a grand prize of $1,000,000, energized the search for
new and more accurate algorithms and many new algorithms were developed.

Recommender Systems

Recommender systems were developed to overcome the problem of information
overload by aiding users in the search for relevant information and helping them
identify which items (e.g. media, product, or service) are worth viewing in detail. This
task is also known as information filtering. This Section will introduce some
recommender system techniques and approaches and give an overview of mobile
recommendations.

Techniques

Recommender systems do the information filtering by predicting whether a user
will like or dislike an item. This prediction is based on the user’s explicit and
implicit ratings/preferences, other users’ ratings, and user and item attributes.
For example, a music recommender could make use of implicit user data (e.g.,
Sven bought the Beatles’ White Album), explicit data (e.g., Sven rated Neil
Young 4 out 5), user demographics (e.g., Sven is male), and item attributes
(e.g., Nirvana is labelled as Grunge and Rock) to make recommendations.

Content-based

Recommendations can be based on the content of items, comparing the
content of previously liked items with the content of unseen items and
recommending similar ones. This approach is referred to as the content-
based (CB) recommendation method. For example, a system
recommending movies would analyze the movies a user likes to find out
what they have in common in terms of content, i.e. actors, directors,
genres, et cetera. This information will constitute the user’s preferences
which are used to find movies with a high degree of similarity to the liked
ones.

The major drawback of the content-based approach is its inability to identify
qualities of items which are not machine readable or understandable.
Humour and visual appeal are examples of such qualities. Content-based
filtering also suffers from the new user problem, i.e. the user has to rate a
sufficient number of items before the user’s preferences can be

understood. Content-based recommender systems also require attribute
and feature data of items, and this data may be difficult to collect.

Collaborative Filtering
Collaborative Filtering (CF) recommender systems, on the other hand,
recommend items to a particular user based on how other users have rated
items. A movie recommender system would find peers, users who have
similar rating patterns to the user receiving recommendations. The movies
with the highest ratings according to the peers, and which the user has not
yet seen, would then be recommended. This approach is called User-
Based Collaborative Filtering. There is also Item-Based Collaborative
Filtering in which the items a user has rated are compared to all other items
in terms of user ratings, the most similar ones with the highest average
rating are then recommended.

Collaborative Filtering systems suffer from the new user problem, i.e. a new
user in the system does not have enough consumption history for the
system to find an overlap in ratings with other users. Collaborative Filtering
also suffers from the new item problem which causes new items to be
ignored (i.e. not recommended) until a substantial number of users have
rated the item [2].

Social
Utilizing a user’s social network, digital or not, to produce recommendations
is in most systems a matter of trust. Trust is a Social Network based
recommender system’s equivalent to user similarity of collaborative filtering.
If a user’s trusted connections are known, producing recommendations is a
matter of identifying the trusted connections’ highly rated items.

The difficulty is, just like in the collaborative filtering case, to identify and
rank the user’s trusted connections (or neighbourhood). But for the sake of
argument, one could identify a user’s trusted connections as all her friends
and friends of friends.

Hybrid
In an effort to avoid the limitations of Collaborative Filtering and Content-
based systems, hybrid approaches which combine the two have been
proposed [2]. As an example, such a system could implement the two
methods separately and then combine their results. A hybrid approach
could also incorporate any other method, such as recommending items
based on what has been consumed in locations close to the user.

Mobile Recommender Systems

Mobile devices, such as phones and PDAs, are evolving in to a major source of
information [4]. In the past, many recommender systems have been developed
for the desktop computer. However, these systems cannot be applied directly
as an aid for mobile users since mobile recommender systems need to
overcome many of the challenges generally present in the domain of mobile
devices.

Usability and Interaction
Recommending on a mobile device introduces new challenges due to the
qualities of the device itself and the context of its use. Compared to
traditional desktop computers, a mobile device has a smaller screen and
limited input capabilities [8]. The screen size of future devices is unlikely to
improve as it is a necessity for the device’s mobility. The users of mobile
devices will also be in a different environment compared to the desktop.
This environment is also likely to be changing continuously during use.
Theoretically any context must be considered when designing the user
interface and workflow of the application.

Possibilities
Mobile devices are not all about limitations, they also offer great
possibilities. The physical location of a device, sensory data and such could
prove an important and worthwhile source of information [4]. This type of
data reveals the context in which the device is used at a given time. This
contextual information could aid the recommendation process by providing
more data to base recommendations on. It may for instance be wise to
recommend travel related applications to a user who is located at an
airport.

The problem in hand needed an in-depth study of the Apps Market and App
Recommender Systems to be done as well as an in-depth study of the current
research been taken up in the field by different researchers. In this section both of
these are presented in detail.

Android Apps Market

The Android Apps market is growing leaps and bounds each day. The Users are
flooded with so much of information that it is just next to impossible for them to
discover interesting apps. Therefore the problem of information overload is more than
ever before and hence recommendation engines have their unique need in this area.
During the project was undertaken to identify different android apps markets and
currently available app recommender systems. Google’s Android Market is not the
only source of Android Apps however there exists 17 different markets out of which 6
are dedicated to Android Apps while 11 are shared markets, which are listed in the
table in Appendix I.

Available App Recommender Systems

Currently there are some App recommender systems available in the market from
different sources and companies which were studied in detail during the project to
identify their features and the taste of the users. It was seen that Social
Recommendations are the trend of the day as many of these systems use integration
with social network to generate recommendations as their key feature. In this section
some of the App Recommender Sytems studied are discussed in detail.

AndSpot (Market)

 AndSpot have incorporated a social network in their Android Market

Features of Interest

 Have little characters to choose from giving the users option to describe
their mood and personality.

 View what your friends are installing, rating and discussing

 Add friends and view their profiles

 Send receive messages from your friend in the application

 Discuss about apps in the client application(A blog for every application)

 Share apps in facebook or twitter.

Critiques

 It’s more of sharing and seeing what other people are sharing than
recommending.

 It is based on collaboration rather than collaborative filtering.

Appolicious

Appolicious Android Apps is the place to discover and share the latest Android
apps through social recommendations as well as reviews from users and their
editorial team.

Recommendations based on

 What apps you already own

 The apps the people you follow own

 What kinds of apps you’re interested in when you join Appolicious Android
apps.

Appaware(Recommender App)

The AppAware helps to find new Android apps that are currently installed by the
community. User can also Share installations and benefit by discovering apps
that are installed by friends, many users (the trend!) and around your location.

Features of interests:

 Displays and updates the list of application (what users around you are
doing) in real-time in the client app.

 Lets the user to tag applications and search by tags

 Lets the user to find his friends who are using appaware by accessing
Facebook friend list/Gmail contact list/twitter following and then get
updated with what friends are doing.

Appreciate

Appreciate is another cool app recommender for android. This one also tries to
capitalize on social network to generate recommendations

Features of Interests:

 Updates the user with a list of application what your friend has
installed/uninstalled.

 Let’s you set your preferences for recommendations Apps/Games,
Free/paid, New/All-time

 Let’s you login with your Facebook/ a nickname account.

 Recommendations are generated based on what you have installed
according to their site but I think they use some location data also as when I
used there were quite a few apps useful and applicable for Sweden and
Stockholm.

 The latest activity region features what other users are doing in the system.
It shows new users who have joined, user x has installed app y etc.

Critique

 What was striking was when you click on a user in the latest activity region
it opens up with a page in which all the apps installed by the user are
displayed. This might pose some serious privacy concern for some users.

AppJoy

AppJoy helps discovering interesting Android applications. Unlike other tools
that make recommendations based on applications' download popularity,
AppJoy uses the actual usage metric to rank applications and makes
personalized recommendations based on users own application usage.

Recommendations are divided into 5 lists namely

 My Recommendations (based on users application usage)

 Location based search(what is popular in your region)

 Most Recent Applications / Top Scored Applications(description not given
but I think based on the sum of user ratings given to the application. Also
shows the average rating of the application)

Appazaar

Although the available features on the current App from Appazaar is limited
their prototype system is described in a paper [6] where they discuss a
prototype system. The prototype is realized as a widget, the screenshot of
which is shown below.

In the prototype system a logger is implemented to keep track of the running
services and location of the device. The widget communicates with the server
via HTTP requests, mainly to upload the recorded data and receive
recommendations. The inference engine uses location and time as context
information and builds contexts independent from users. A further discussion is
presented in section 2.4.1 and 2.4.2 on some related articles as this work has
been one of the main motivations for the project.

Summary

Most of the recommendation engine studied during the work tries to leverage
the power of social network in improving their recommendations. 2.3.1, have
their own social network to which its users are registered. 2.3.2, use social
network to recommend apps to friends while in 2.3.4 a user can have their
Facebook Login to log onto the system and show others what they have
installed but poses serious privacy concerns. 2.3.4 also has social network
integration but the unique feature they have is providing the users with real-time
data of what is happening in and around them, what other users near the user
are consuming right now. 2.3.5, also have location based recommendation but it
is not real-time in nature and they also have results from classical collaborative
filtering, presented to the users in two separate lists rather than weighting and
merging them together. In this way they optimize the task of presenting the user
with information about the source of recommendation. While in 2.3.6 is a
recommendation system with tries to use contextual reasoning to build contexts
independent from the users in order to provide the recommendations which
became one of the driving motivations for this project.

Current State of Research of Recommender Systems and Context Aware
Computing

From the early 90’s the research on Recommender Systems have come a long way
and various techniques have been applied by different researchers to improve
recommendations and come up with new ways to generate recommendations. The
aim has always been to make recommendations more personalized. Researchers are
also trying to come up with algorithms which can not only generate personalized
recommendations but also recommendation suitable for a particular user in a specific
instant.

A lot of papers were studied in detail during the project to get a strong understanding
of the different techniques being used and implemented currently. Although papers
from all the domains where recommender systems have been applied are studied the
focus of the study has been towards the domain of Context awareness, Mobile
Applications and Services. In this section some key notes of the papers studied are
presented.
Research directly related to presenting the concepts of context awareness includes
some of the below mentioned works.

The term “Context Aware” was introduced by Schilt and Theimer and he refers it as
location, identities of persons and objects nearby and changes to those. It is difficult
to apply context by such definition by example and hence the [5] gives a formal
definition of the same as:

“Context is any information that can be used to characterize the situation of an entity.
An entity is a person, place or object that is considered relevant to the interaction
between the user and the system including the user and the system themselves.”

“A system is context aware if it uses context to provide relevant information and/or
services to the user, where relevancy depends on user’s tasks.”

The authors of [5] also present a framework called “The Context Toolkit” which aims
to aid the development of Context Aware Applications and is widely popular in the
community.
 [4] in their work titled “Reasoning in Context-Aware Systems” try to identify the main
challenges in future applications that take into account the user's context and use
some kind of context reasoning. The Author defines Context Reasoning as “deducing
new and relevant information to the use of application(s) and user(s) from the various
sources of context-data.” The Authors argue that Context by nature is hierarchical in
the sense that raw context data can be mapped to higher level context. The author
stresses on the importance of Sensor data fusion in integrating data from multiple
sensors (sources) in a reliable way, necessity to recognize new contexts, need for
Context monitoring for the system to be proactive and the need for model monitoring
in such systems.

Research in the application of context awareness includes some of the below
mentioned work

[6] in their work titled “The Case for Context-collaborative Filtering in Pervasive
Service environments” presented a high level design of a context sensitive
collaborative filtering model for mobile services. They conceptualized a design of two
approaches namely Context Aware user centric approach where applications are
projected relevant to the context and Context Aware Collaborative which mixes
context and collaborative filtering. The authors also in another of their work [7]

critically evaluate the design space and the different techniques that can be applied to
capture different data about the user and their applicability which provided a good
foundation for the work done under the scope of this thesis. [6] Presents a design for
context collaborative filtering and aim to use context reasoning along with usage
interpretation but didn’t describe context reasoning in detail however in their paper for
prototype implementation they used a tagging approach to collect data from the users
on “What are you Just doing? Tag it!” to get input of users activity. However this again
leads to problem (e).

M. Pryzybilski et al [8] defined a context reasoning framework. It is a generic
framework developed that can be used by any context reasoning systems. However,
it is difficult to induce situational knowledge in the framework. Moreover, as new
sensors are added to the system each and every reasoning mechanism will have to
be changed to incorporate the knowledge of the new sensor if the reading affects it.

D. Cheng [9] et al used in their work anonymous situations and unsupervised learning
to train the system. However, unsupervised learning of context and situation need a
lot of initial training data to provide recommendations from the beginning and that is
an essential requirement in recommender systems.

[10] presents a system for Context-Aware Recommendations in the Mobile Tourist
Application which is a good approach to build such systems. However, the application
of the framework is limited to tourism domain.

A lot of work has also been done in the field of multidimensional context filtering
[13][12][11]. In system where you have large number of contexts a multidimensional
approach involving Matrix Factorization is not flexible enough to add contextual
dimensions in a straightforward manner [7]. [12] Further describes a tensor
factorization that overcomes this problem. However using only a tensor factorization it
is difficult to explain to users the reason they received a particular recommendation.

[14] In their work discuss the importance of explanations in recommender systems
and argue that they give better understandability and acceptance of the system,
better control for the user and aids in building trust between the user and the system.
Defining the situations also opened the path to collect optional feedback from the
users about their correct situation if they feel the sensed situation is incorrect and
help the system in learning about the user.

C. Davidsson and S. Moritz [15] in their work used location and time of the day as a
context to enrich the personalization. While location, time etc. as context provides
personalization, higher level of personalization can be achieved by reasoning around
combinations of them rather than treating each individually.
Sholmo Berkovsky et al[16] use context reasoning using RDF/OWL format for User
Modeling task which is a good way to model the rules in a rule based reasoning
engine.

Thinking ahead: HTML5 Vs Android App

Since it is widely believed that everything in the future are moving towards HTML5 a
study was also undertaken during the project to analyze the merits and demerits of
keeping the recommender system client as an android app rather than moving to
HTML5 app. The results of the study [6] are briefly discussed as follows:

 Android Apps provide a way to improve web app using the Android SDK
Features. It is important to know before making the decision what features of
the Android SDK can provide potential improvement to the web app.

 In the case of HTML 5 the application has a larger audience and a wider appeal
and the web is likely to stay here for a long time unlike other platforms which
continuously keep on changing.

 The strengths of Android native aps are as follows :

› Strong Hardware integration

› Apps integrate system features

› Better inter app communication

› Faster execution time

› Ubiquitous nature

› Rich in multimedia

 Current Android platform features of interest

› Geo Services

› Sensors

› Inter process communications(Intents)

› Background process

› Full Database

› Camera and Microphone access

 Strengths of HTML5

› Support across multiple platforms.

› Support across multiple device types(PC/Laptop/Mobile/Other)

› Provides mechanisms to share data securely like O-Auth, Cross Origin Resource
sharing and Cross Document Messaging etc. but the boundaries are porous.

› HTML5 has the functionality to fetch Geo Location data but requires permission
from the user and hence not every app will get it.

› HTML5 supports orientation.

› HTML5 supports Speech detection.

› HTML 5 supports Idle detection.

› Camera and Microphone access

Design

Goals

Research Goals

After formulating the problem to be addressed in this thesis three specific
research goals were initially formulated focusing on two major issues: (1)
Understanding various options available to the users in the domain of App
Recommender System and analyzing the shortcomings of each and what can
be done (2) To design such a system which can effectively take the advantages
of information available in the mobile domain and overcome the challenges
which are as follows.

 To analyze constraints and additional sources of information available in
mobile domain.

 To design a flow based structure of a system which effectively utilizes the
available information and overcomes the constraints.

 To analyses the benefit such a system brings in.

The three goals questions formulate a rather large and comprehensive set of
research issues to be explored. The three goals involve a rather large number
of subsequent second level questions and issues to be worked on. It is
therefore not reasonable address all three research goals in the scope of this
thesis. In the beginning of this thesis the focus was therefore delimited to the
first and second question above. A problem was formulated to address the
research goals of this thesis which is mentioned in section 3.2 in detail.

Industry Goals

Recommendation engines create paths to purchase by reducing the bounce
rate and improving return on search marketing investment. From an industry
perspective this research work is expected to contribute to an enhanced
understanding of how a Contextual Reasoning based recommender system can
be build and utilized to improve the potential App Recommender System. This
industry objective is based on the premise that such a product will improve the
consumption of Apps by the users through better understanding of their usage
behavior and added level of personalization thereby potentially increasing the
business capacity of such systems. It will also provide opportunity to apply
such reasoning techniques and the theories of context awareness in other
similar applications and products and reusability of components being
developed in parts thereof or in totality in different systems.

Scientific Goal

From a scientific point of view this thesis is expected to contribute to an
enhanced understanding of how to apply and extend established design theory
and design methodology in order to improve the capabilities in a context aware
recommender system. An important element in achieving this will be designing

a generic flexible framework that can be applied in any future contextual
reasoning based recommender system. Other important aspects are to analyze
and define different reasoning mechanism involved, proposing algorithms to
achieve them, critically evaluate the different existing methods and identifying
suitable ones and the need to be able to define the system independent of the
technology domain of the design solutions.

Problem Formmulation

The ubiquitous nature of mobile devices provides added sources of information that, if
effectively utilized, can help address these challenges and add value to traditional
recommender systems. A major draw of the thesis has been in identifying ways to
utilize these information to achieve higher level of personalization.

As we can see from the mentioned works above in section 2.3 and 2.4 that the
current systems suffers from one of these problems

 They either need data for cold start training

 They are targeted to specific domain

 They require the user to train the system proactively

 The system is not flexible enough to add new sensors, contexts and situations
seamlessly without affecting other components

 They lack the capability to explain the recommendations to the user in a better
way and provide the opportunity to learn about the users.

For this to be dazed a framework generalized to be applied to any such systems
should be designed and be applied. The designed framework should be used for any
context aware recommender system irrespective of the domain of the application. The
various components of the framework can have varied implementation based on the
system requirements.

The concept of contextual reasoning around the sensor originated data from the
android OS was the one chosen for further research and implementation. In our
approach we will try to model the relationship between context and situation
effectively so that the application can map the sensor originated context data to
predict the situation of the user with some degree of certainty. The outcome of the
contextual reasoning will add an extra level of information filtering achieved on the
User data to recommend him with apps.

The design requirements of the system were that it can handle cold start issues,
doesn’t requires the user to train the system proactively and that is flexible enough to
add new sensors, contexts and situations seamlessly without affecting other
components and is capable to provide good enough explanations of recommendation
with capacity to learn misconstrued interpretations.

Concept

A sensor-context-situation-recommendation flow was proposed during the thesis to
model the sensor originated data into contexts and use contexts to define a situation
as described in figure below

 Figure1 – Sensor–Context –Situation-Recommendation Diagram

It is important to define here what are contexts and situations that we are referring to.
A situation can be defined as a position or status with respect to the conditions or
circumstances the user is in. A situation in our case is same as what the users
perceive their state as. A situation consists of different characteristics each of which
we call as a context. A context can be determined by reasoning around one or more
of the sensor readings. A situation is generally described by a few contexts together
with an expected value of each of them. A bottom up approach is more suitable as
the situations as a concept of human understanding is too broad and too complex to
be modelled perfectly, A bottom up approach will illustrate a system where situational
awareness can be considered when making e.g. App recommendations. Situation as
an input to recommender systems is important because users in different situations
tend to have different consumption habit.

In a classical collaborative filtering method the users are provided with
recommendations based on what other users similar to them have procured. While
the user may be interested in items procured by similar users he/she may be more
interested in items procured by similar users in a similar situation. The basic concept
of the system is to provide mobile device users with personalized recommendations
of mobile applications by using collaborative filtering and situational knowledge about
the user. Each of the situations can be defined by one or more context variables. The
context variables are defined by one or more sensor readings and the sensor data
originates directly from the mobile device. E.g. a PLACE context could be identified
as being “HOME” by analyzing the location history data collected from the GPS
sensor. A situation “FRIENDS-FAMILY GATHERING” can be reasoned around by
combining the context “SOCIAL RELATIONSHIP”, the context “IN THE SAME ROOM
AS” with other contexts such as “NOISE LEVEL”. The predicted situation is then
provided as an input to the recommender system.

Use Cases

User sitting with friends

Description:

 Harry is in his home.

 Sitting and chatting with some friends who have visited him.

 Requests for some recommendations

Intended Action:

 The recommender should recommend him with some apps
consumed by different users in a similar situation.

User works at a shopping mall

Description:

 Harry works in a shopping mall.

 He is in his workplace and working.

 Requests for some recommendations.

 Due to his surroundings the recommender might think Harry is
shopping.

 Recommends him based on consumptions of other users in a
situation similar to shopping.

 Harry disagrees and provides the system a feedback that he is
working

Intended Action:

 The recommender should learn when the surroundings are similar
Harry is actually working and not shopping.

User exhausted after working but still in office

 Description:

 Harry is in his workplace.

 Has been working for last 5 Hours continuously and is very
exhausted.

 Wants to calm and sooth his mind.

 Requests for some recommendations.

 The recommender recommends him based on consumptions of
other users in a situation similar to working.

Intended Action:

 The recommender is correct in this case in judging the situation
however is incorrect in judging the needs of the user. To handle
this the recommender should diversify recommendations as much
as possible to capture users entire taste spectrum.

The Framework

The designed framework can be used for any situational reasoning based
recommender system irrespective of the domain of the application. The various
components of the framework can have varied implementation based on the system
requirements. The framework consists of 4 layers as shown in figure and discussed
below.

 Data collection layer

 Context Inference layer

 Situation Reasoning Layer

 Recommender System Layer

Figure 2 : The Framework

Data Collection Layer

The Data Collection Layer resides in the client application being installed in the
device which the users will use. A device may be a mobile device, a PDA or any
other dedicated device etc. which possibly has source and access to some
sensors. The layer collects the sensor data from the mobile device and sends it
to the next layer residing in the server.

Context Inference Layer

The Context Inference Layer consists of independent sensor inference
components. The task of each component is to infer the value of a context
variable in the system. In identifying the components and their design, a loose
coupling approach should preferably be adopted. Each component should be
kept as independent as possible. In this way the scalability of the system can be
maximized.

Situation Reasoning Layer

The Situation Reasoning Layer consists of a reasoning engine that infers a
situation from the context variables. An inferred context can have different types
of values associated and possibly even have null values or unhandled values
due to lack of available data or unhandled data and therefore the reasoning
mechanism should be flexible to accommodate such cases. Since the situations
as a concept are difficult to be modeled our study in this domain showed that
case based reasoning systems are best suited for this layer over other
techniques like rule based systems or Bayesian learning based system. The
advantages are further described in section…….

Recommendation Process Flow Diagram

A process flow diagram was constructed to guide the process of development during
the Thesis. The diagram incorporates both the existing components and the new
extensions to be made to the recommender system which is shown in the below
diagram. Due to constraint of time it is not possible to develop all the components in
the scope of the thesis and the unimplemented components are mentioned more in
the future work sections.

Data Collection Sub-Process

Mobile devices were chosen as the preferred platform for making
recommendations. Presence of sensors such as Accelerometer, Camera, GPS,
Proximity, Microphone, Gyroscope, Magnetometer etc. provide a lot of input to
understand context better in today’s Smartphones. It also provides a possibility
to reason around the understood contexts thereby adding new dimensions to
the personalization. However all this sensors also present challenges such as
inconsistent readings, privacy concerns etc.

The device will host a recommendation client application. The application will
majorly focus on three tasks namely

 Requesting for new recommendations when requested by the users.

 Collecting application consumption data of the user along with the required
sensor data.

 Collecting optional feedback about the user to learn about users situation.

Context – Inference Sub-Process

The context inference sub-process comprises of different components which
are loosely coupled from each other, each of which tries to infer a specific
context of interest. It receives input when any of the three tasks being
performed by the data collection sub-process are called by the user or executed
by the system. The input may consist of a stream of consumptions made by the
user in a certain interval of time, in which case each of the consumption along
with the respective sensor reading at the moment of consumption.

Periodic Update (Consumption data + Sensor Data)

Consumption Data

Sensor Data

Consumption
Interpretation Action Values

User Profile
Database

Request More Info

MAPS, Social Network,Four
Square, etc.

Classify Metadata
Enriched

Meta-data
Database

Location
Consumed Nearby

Location
Consumption

Database

Request For Recommendation(UserId + Sensor Data)

Context Inference Sub-Process

Context(1) Inference

Sensor Data

Context(2) Inference Context(3) Inference Context(n) Inference

Situation Inference
Case Based
Reasoning

Context|Situation
Databse

Pattern AnalysisCase Recognizer

Admin

Update Rule
Decision

R
e

c
o

m
m

e
n

d
e

r E
n

g
in

e

Classical
Collaborative

Filtering

Content Based
Recommendation

Nearby
Consumption Based
Recommendation

Situation Based
Recommendation

Recommendation
DecisionProcess

Recommendation Filter

Recommendation

Recommendation Process Flow Diagram

Current Situation

Situation History

Context
Situation
Analysis

Situational Feedback(UserId + Sensor Data+ Feedback)

Feedback

Figure 3: Recommendation Process Flow Diagram

Each of the consumption is then treated separately by the sub-process and
executed independently. In case of request for recommendation and feedback
requests, the data consists of one tuple of sensor data. An output of this sub-
process consists of inferred values of each of the contexts. The inter-process
communication between the context-inference sub process and the client
application is achieved using REST APIs and JSON is used to send the data
from the client to the server.

Situation Inference Sub-Process

Situation inference sub-process is responsible for inferring the situation of the
user using the input from the context-inference sub process. The reasoning
mechanism involved is described in the future section. The output of the
process is a situation the user is in for a specific set of context values. In case
of the request being sent to context-inference is a stream of consumptions the
context-inference sends the tuple of context values individually and the situation
inference is called for each of the tuples.

Request More Info Sub-Process

This sub-process is responsible for generating meta-data of the apps so that
content based recommendations can be generated. Each of the consumptions
is marked with necessary info being taken with the help of data that is
generated from the internet using the context of consumptions.

Recommendation Engine Sub-Process

The recommendation Engine sub-process contains implementation of
recommender engines using various implementations of different techniques
like Situation Based Recommendations, Location Based recommendations,
Collaborative filtering based recommendations and content based
recommendation. Location based recommendation filters the consumption by
user’s current location and collaborative filtering is implemented using some
state of art techniques in collaborative filtering including Support Vector
Machines (for recommending items based on content similarities), Alternating
Least Squares (a matrix factorization method used in collaborative filtering) and
Feature Vector Similarities which were previously developed for generalized
recommendation purposes. Each of the recommendation process are called
separately either through a call to their interfaces or using REST APIs to get a
set of recommendations from them.

Recommendation Decision sub-process and Recommendation filtering

The recommendation decision sub-process aids in combining output from each
of the recommendation processes using a suitable weight and merge method
and prioritizes the recommendations to create a output list of Apps. The output
list is subjected to filtering as per the need of the user and requested by them. A
filter can be of two types, Internal filters to make recommendations effective and
external filters which choices are given to the user to filter out
recommendations.

 Situation Learning Sub-Process

It is the sub-process which is responsible for learning about the user’s
perceived situations which are misconstrued by the system. The mode of
learning can be either based on the feedback from the user or through mining
data about user’s contexts and sensory data to discover new situations that are
missing in the system.

Implementation

In this section the implementation details including theory and algorithms behind them for
each of the specific components. The emphasis of the implementation has been towards the
context awareness framework being built into the system during the thesis work. Figure 4
shows the architecture of situation recommender based on the context reasoning framework
presented in section 3.3. Each of the dotted boxes represents each layer in the framework.

 Figure 4: Situation Recommender Architecture

PLACE

HOME

WORK

OTHER

POI TAGS

RESTAURANTS

BUS-STOP

Etc.

MOVEMENT

STILL

MOVING

TIME

WORKING
HOURS

NON-WORKING

HOURS.

NOISE
LEVEL

HIGH

LOW

SILENT

Database

Situational Reasoning Engine(CBR)

Recommender Engine

 Raw Sensory Data

GPS Reading Location Trace

.

Time and Date Microphone

Place as a Context

What places can be of interest and can be inferred?

Place is one of the important contexts which can be used to describe different
situations. Place as a context refers to any information that can be generated
out raw location data of the user. Places like Home or Workplace can be of
immense interest as they can aid describing the most obvious situations when a
user is at those places. The location data when aggregated over a period of
time can be clustered to infer places like Home or Workplace of the user by
plotting against time. Apart from that information about the location can also be
fetched from the tags for the location in Maps which is further described in
section 4.2.

Algorithm for inferring places

Inferring places from location data is a problem which relates to clustering the
raw location data. Due to the ubiquitous nature of mobile devices they are used
anywhere and everywhere. Hence to find a location cluster in the data it is not
important to partition the data into few clusters rather to find a set of points
which are located in close proximity to each other in the dataset. All standard
algorithms of clustering were found to be infeasible to cluster data such dataset
and hence an algorithm was devised to find the clusters in such dataset which
is as follows:

Input: Dataset of Location Co-ordinates with Time.

Output: A set of probable clusters for Location Types.

Step 1: Treat each of the points in the dataset as a separate cluster.

 Maintain an array for count of cluster points. Initialize count to 1 for
each element.

 Maintain an array of visited and initialize it to false for each points.

Step 2: foreach Point Pi ∈ P(i1,i2,…in)

 Calculate dij = R X 2.a tan2(√a, √(1−a)) where i≠ j and visted[j] =
false and visited[i] = false
where a = sin²(Δlat/2) + cos(lati).cos(latj).sin²(Δlong/2)

 If(dij < dthreshold)
o lati = (lati*count[i] + lat2*count[j])/(count[i]+count[j]);
o set visited[j] = false
o set count[i] = count[i] + count[j]

 Step 3: foreach point Pi∈ P(i1,i2,…im)

 If(count[i]/n >Confidencethreshold)

 Add Pi to ClusterAnalysisResult

 Step 4: Return ClusterAnalysisResult

 Optimizations

Since after the cluster analysis has been performed it is important to infer what
those clusters are, one has to take into consideration the time of being in that
location so as to infer places like Home or Workplace.

In the system the clustering is performed from the gathered data of user’s
consumptions. Since while storing the consumptions the context of time is
computed it is reused in order to avoid redundant computation.

From the consumption data where context time is non-working hour the
clustering is performed and the highest confidence cluster is used by the
system as Home location of the user.

Similarly from the consumption data where context time is working hour the
clustering is performed and the highest confidence cluster is used by the
system as Workplace location of the user.

Threshold on number of records required in order to perform clustering needs
to be set for effective computation.

Since the process is computationally intensive process the computed user
location is cached in the database in order to prevent re-computation before a
specified amount of time. However, the models need to be updated after a
specified amount of time taking into consideration the new set of data of the
user to update any change of the behavior of the user. In the current system
the time to update is set to 2 days.

POI Tags as a Context

POI Tags for Context Inference

Historical data can be used to find limited contexts from the location data.
However there is other location data that is available in the internet like in Maps
and GIS applications like Google Maps, Open Street Maps etc.

This context is identified using the available data around the user’s current
location by fetching tags from maps, GIS applications, Foursquare etc. In our
implementation we used tags from Open Street Maps in a 200m radius from the
current location of the user. The tags were then assigned a score by calculating
the proximity of the tag to the current location.

The tags are then classified by tag types according to the following schema to
certain defined classes which to some extent could have an impact on the
usage. The classes with higher scores provide the value of this context with a
likelihood of being in. A more detailed schema of open street maps is
mentioned in Wiki of open street maps.

Going To Travel

 "aerodrome"

"aeroway"

 "terminal"

 "airport"

 "railway_station"

Eating Out

 “restaurant"

 "fast_food"

 "food_court"

 "cafe"

 "ice_cream"

Bank

"atm"

 "bank"

 "bureau_de_change"

Leisure

"leisure"

Healthcare

"pharmacy"

 "hospital"

 "dentist"

 "doctors"

Entertainment

"arts_centre"

 "cinema"

 "social_centre"

 "studio"

 "theatre"

 Shopping

 "shop"

App (X)

Super Market

Ericsson

Bus Stop

Here the tag supermarket clearly outscores all other and
hence can be associated with the App.

Restaurant

POI Tags for Meta data enrichment

In the previous work by C. Davidsson and S. Moritz [15] it was established that
mobile apps severely lack available meta-data, which made it hard to perform
content based recommendations on them.

A positive outcome of our design was that it gave us the opportunity to address
the above problem by developing an approach to generate more metadata for
apps using the contextual information available from various other sources such
as Foursquare, GIS services and maps. An example of this is when a user uses
an application at, say a restaurant. It may or may not be related with him/her
being in the restaurant. However, when large number of users uses a specific
app in restaurants, it may be useful associate the word restaurant with the App.
In this way the tags can be used in a collaborative approach to generate
suitable metadata content for the apps.

Assume an App which is consumed in two different locations. From the maps
and GIS services the system fetches tags for the App. However, there may be
some tags which are common in both the sets. If the scores of these tags are
added in the case they are common then eventually in a period of time the
related tag will outscore the unrelated tags in the system and the high scoring
tags can be viewed as metadata of the App. A score here can be for example
the based on the proximity of the tag to the current location. Figure 5
demonstrates a simple outcome of such an approach used. The arrows
represent consumption and the length of the arrow signifies the score. When
the scores for the consumption are added based on the tag eventually over a
period of time one of the tag outscores other as in this case the tag supermarket
does. Similarly user data from social networks etc. can also be used to enrich
the metadata.

Figure 5: Outcome of tag association for metadata enrichment

Movement as a Context

While one GPS reading results in a single location at a certain point of time, a series
of such readings collected over a period of time results in a trace of location. A
background service was implemented to collect such a trace from the device to
provide data for movement as a context. Once a trace is received it is not sufficient to
infer the context directly by comparing two consecutive points in the space due to
inconsistencies in readings of the service but rather a detailed analysis is required as
described by [18]. One has to take into consideration to discriminate an observed
point into one of two categories: moving point or staying point. If there is no
observation error, this identification process is not necessary. However, the observed
values of two coordinates at that time may not always remain at the same point even
if a traveller stays at one point. This is caused by the noise in the data collection
system such as the fluctuation of signal strength. The determination process of the
location position of a mobile object also produces measurement errors. An algorithm
was formulated based on the Move or Stay algorithm in [*] which is described below.

Algorithm for movement analysis

Input : Trace(P1{lat1,lon1}, P2{lat2,lon2},….., Pn{latn,lonn})

Output : Boolean(IS_MOVING)

Initialize : State staying, Nstaying0, movement_value 0

Step 1: For each point Pi ∈ (P1,P2…Pn)

a. CalculateDistance(Pi,Pi+1)

b. Switch(state)

i. Case: staying

a) If(distance > dthreshold)
State moving
Nstaying 0
movement_value movement_value + 0.5
(traet point as provisionally moving)

b) else

 Nstaying Nstaying + 1

ii Case : moving

 If(distance> dthreshold)
 movement_value movement_value + 1.0

 else
 Nstaying 2
 State staying

 Step 2:

 if(movement_value >THRESHOLD_MOVEMENT)

return true

 else

return false

 Procedure CalculateDistance(Pi,Pi+1)

a = sin²(Δlat/2) + cos(lati).cos(lati+1).sin²(Δlong/2)

 di,i+1 = R X 2.a tan2(√a, √(1−a))

return di,i+1

 Explanation:

The algorithm marks each of the point in the trace as in 3 states (a) Moving, (b)
Provisionally Moving and (c) Staying, based on the states of the preceding
points. To achieve this it maintains states of the preceding points till the state of
the point changes. If the point is staying at time t and the distance of the next
point is more than the threshold distance then the algorithm marks the point as
provisionally moving, if the point next to a provisionally moving point is moving
them the algorithms marks the point as moving. For each consecutive moving
point the algorithm updates the average of the latitude and longitude of those
points.

For each of the provisionally moving point it updates the value of
movement_value by adding 0.5 and for each moving point movement_value is
added by 1.

In the end if the movement_value crosses a certain threshold then the trace is
analyzed as moving else false.

Date and time as a Context

Time as a context can be utilized in different ways depending on the requirement of
the model to be constructed. E.g.

 Day(Monday, Tuesday,…………..)

 Date of the Month(1,2,3,….31)

 Is Working Hour(Y/N) - Person dependent – (Simple assumption 08-19 / 19-08)

 IsHoliday(Yes/No) – Complex country dependent – (Simple assumption
Saturday/Sunday/common Holidays)

 Hour(Morning (5-10), Noon (10 – 13), AfterNoon(13-16), Evening(16- 20),
Night(20-05)

In our implementation Date is used as an input to compute if it is a holiday or working
day of the user. A holiday database published by Outlook was used for this purpose.
The database has been populated with holidays of all the countries till 2020 after
which the same will be needed to be updated. Time is used to compute if it was a
working or non-working hour. Charging behavior is also a good indicator for working
hours of a person as [19] shows that almost all working person charges their phones
between 1800 hrs. to 0500 hrs. To simplify things we have currently assumed that
working hour of a user is from 0800 hrs. to 1800 hrs. in a working day and the
remaining hours are non-working hours. This is similar to creating date time profiles
for example in [11]. More detailed usage pattern can then also be studied by
correlating e.g. Wi-Fi network type, phone charging behavior etc. to working or non-
working hours.

Noise level as a context

Microphone reading can be a good indicator for different situations a user might be in.
Eg. When a high noise is coming from the microphone and the user is in home then
probably he is watching TV or listening to music. The same voice sample can be
analyzed against a set of samples to determine the exact kind of the sound. However
recording sound is a matter of much higher privacy concern than say getting location
or accelerometer readings which needs to be accounted for. The instantaneous
microphone reading is collected by the data collection unit when a recommendation is
requested. The maximum amplitude of the wave gives an indication of the amount of
surrounding noise which is sent back to the context analysis layer. Currently the
system tries to analyze the noise level by comparing it with some threshold values
which indicate the context values. However, one could also apply sound analysis to
figure out which type of noise it is. Such as, sound from a TV, sound from an CD,
sound from traffic etc.

Situation Reasoning Engine

An introduction to case based reasoning

A case is “a contextualized piece of knowledge representing an experience that
teaches a lesson fundamental to archiving the goal of the reasoner” [Kolodner,
1993].

A case based reasoning system has its knowledge and expertise embodied in
library of past cases. Each case ideally contains a problem definition along with
a solution or outcome to the problem. The knowledge or the steps required by
an expert to solve the problem is not recorded in the solution but is implicit to
the solution.

A case based reasoning (CBR) system works very much like the human mind
when it faces a new problem. When we face a new problem our mind generally
thinks of how we solved the problem last time we encountered it or our mind
tries to figure out did we faced similar problem in the past and if so how did we
solved it. This is especially true in a child’s mind which is the reason they learn
things so fast.

A case based reasoning system works in the same way. To solve a current
problem it tries to match the current problem against the cases in the case base
and retrieves a set of similar cases. The retrieved cases are used to suggest a
solution of the current problem to the user. The suggested solution may be
tested and evaluated for success and reused. If the solution is then revised the
current problem and the solution are held in the case base as a new case.

In a CBR system a case is described by a set of features each having a value in
defining the feature. A feature can be of any data type supported by the CBR
System. Each of the cases are compared to each other statistically by the
system to compute the similarity between them.

A typical lifecycle of CBR System is shown in figure 6:

At first instance a CBR system may look similar to a rule based reasoning
system, however there are fundamental differences between a CBR and a Rule
based system.

A rule based system requires eliciting an explicit model of the problem domain.
As we all know the process of knowledge acquisition has a lot of other
associated problems. In contrast a CBR doesn’t require any explicit model.
Cases that identify significant features are gathered and added to the case base
during development and remaining can be added incrementally after the
deployment is over. Thus it is easier to develop case base without passing the
knowledge acquisition bottleneck.

A CBR system is much faster and easier to be implemented than constructing a
rule-based system. Case bases do not have to be complete when they are
deployed for use, as even non-computer experts can add cases to the existing
structure or the cases can be added with the help of feedbacks from proposed
solutions or objective evaluations.

The output of a CBR system can be multiple cases with a hit probability of each
case while the output of a rule based system is ideally a single solution or no
solution. Case based systems are easier to maintain and adding or deleting
cases is much easier than similar operations in rule based system.

Case Base

Problem Test Case

Historical Cases

Adapted CaseRepaired Case

Learned Cases

Elaborate

Retrieve

Reuse

Revise

Retain

Figure 6: Lifecycle of a CBR

Why case based reasoning for situation analysis?

Situation as a concept of human understanding is too broad and too complex to
be modelled perfectly. The situational reasoning is called after the context
analysis is performed. It may be possible that some of the context may remain
un-inferred by the system due to lack of available data or unhandled input data.
E.g. POI tags around a location may be blank if no points are marked in the
maps in a location near the user. The reasoning engine should therefore be
flexible to accommodate such cases.

Situations for two users having the same context values can be different and
thus is not absolute but relative entities in modelling them. The cases can be
very close to each other and in such scenario the system can leverage by trying
to propose to the user the best possible solutions and thereby learning from
acceptability of them by the user.

A CBR system is found to be best suited for this, as the problem of situation
modelling is not well defined, completely understood and varies from person to
person.

A learning module is integrated by collecting optional feedback from the user
about the perceived situation and thereby adding new cases to the case base on
a new situation. Remembering new cases helps to avoid past mistakes. Also
CBR systems provide means to evaluate different potential solution which further
can be used in ranking, ordering and filtering of the recommendations. In
comparison to a rule based system adding new cases are often quite easier in a
CBR system. A brief flow diagram is shown below in Figure 7.

Recommender
System

Request

Response

Case Based
Reasoning

Retrieve Case

Search Case

User’s Evaluation

Criticize /
Feedback

Analyze

 Feedback New Case

Figure 7 : Flow diagram of interaction between Recommender System and CBR

Implementation details of the CBR.

The implementation of the case based reasoning has mainly 5 major tasks
which are listed as follows and discussed below:

 Choosing and creating data source for storing cases.

 Constructing the input query.

 Retrieving records.

 Evaluation of retrieved records.

 Learning new cases.

Choosing and creating data source for storing cases.

The possible data sources for a CBR can be Databases, XML files, Spread
Sheets etc. which can be used as per need in various scenarios.
Spreadsheets are generally used by CBR when the intended administrator
of the system is non-technical persons like managers maintaining an
organizational case based reasoning system. In this case as there was an
already implemented database for the system present, the data source was
chosen to be the same data base by adding separate tables for the CBR
system. Each distinct feature which constitutes the problem space for all
the cases in the system is stored in the features table. Each feature in this
system actually represents a context or a part thereof. The various cases
are stored in the case table and the output i.e. situations are stored in the
situations table.

Constructing the input query

This is the task of mapping the problem to the features and creating a new
case to be investigated for solution. In this system this problem refers to
mapping the context values to the set of features and then creating a new
case to be searched in the system. A static mapping is used currently in the
system which can be configured to a dynamic mapping in the future.

Retrieval of Records

Retrieval of records is the process by which the retrieval algorithm finds the
nearest matching case from the case base to the current problem in hand.
Case retrieval process is a combination of search and matching algorithm.
Two of the widely used techniques for case retrieval in a CBR system are:

 Nearest neighbor retrieval approach

 Inductive retrieval approach

Nearest neighbor approach:

In a nearest neighbor approach the system tries to compute the
similarity between the stored cases and the new input case based on
the values of the associated features and their respective weights
using some evaluation function like

Inductive retrieval approach

Inductive retrieval algorithm is a technique that determines which
features do the best job in discriminating cases and generates a
decision tree type structure to organize the cases in memory [17]

Situation based Recommender System

How to recommend items based on situation?

In our implementation of the recommender system we are focusing on providing
the users with recommendation of the apps consumed by similar user in a
similar situation. While in classical user based collaborative filtering a user is
provided with recommendations of the items the user’s similar to the given user
has consumed, these items falls broadly into two categories if we take the
situation into consideration (1) Items consumed by the similar users in same
situation (2) Items consumed by similar users in different situation. There is a
third category which is Items consumed by dissimilar users in the same
situation. We believe (1) outscores the other two and the remaining needs to be
differentiated statistically or using heuristics.

There are two ways in which this can be achieved:

o Applying a three dimensional collaborative filtering R: Users x Items x
Situation → Ratings. This is similar to doing context collaborative
filtering. There are many advanced algorithms available on three
dimensional collaborative filtering. It is very useful to do it this way if the
collaborative filtering system is not already implemented.

o If the collaborative filtering algorithm is already implemented in two
dimensions i.e. R: Users x Items → Ratings as in our case the same
can be extended by combining the output of the collaborative filtering
with that of applying filter on the consumption data based on the
situation, the steps of which are described below

Step 1: Situation Recs Get consumption where Situation = Situation(a) order
by Situation Value, Time of Consumption

Stpe 2: Normalize and Sort Situation Recs

Step 3: Get Collaborative Recs from collaborative filtering.

Step 4: Normalize and Sort Collaborative Recs

Step 5: for each x: Situation Recs

If Collabolrative Recs contains(x)

 x.weight = x_collaborative.weight + x.weight

 Remove x from collaborative recs

Step 6: Add remaining collaborative recs

Step 7: Normalize and Sort

Data collection process

For implementation purpose the Android platform was chosen because of the many
advantages. It is a flexible and attractive platform for building real world applications
and is maturing rapidly. In this section some of the features of the Android platform to
support data collection is listed.

Android OS features to support data collection in phones

The two major tasks of data collection in an App Recommender System is the
task of

a) Collecting App consumptions.

b) Collecting Sensor data.

Collecting App consumptions is the process of collecting running apps in the
system. The Android application Framework contains of very important
component named ApplicationManager the task of which is to manage running
applications in the system and hosts many different services one of which is
“getRunningAppProcesses”. A call to this method returns a list of all running
apps in the system in that instant. The process of collection is implemented as a
background process which runs periodically at a certain interval of time and
collects the running Apps.

Once the running apps at any instance is collected it is important to associate
the right context values to the particular consumption and for which different
sensor data should be collected by the system to associate with the
consumption. The Android platform is ideal for developers to create innovative
applications leveraging on the use of hardware sensors available on the mobile
phone due to its excellent available interfacing options to the sensor subsystem
and media recorder. Some of the interesting hardware oriented features
available in the platform includes the following.

o android.hardware.SensorManager

o android.hardware.SensorListener

o android.location.LocationProvider

o android.media.MediaRecorder

o android.hardware.Camera

SensorManager is the class that permits access to the available sensors in the
system. The SensorManager contains different constants to represent aspects
of Android sensor subsystem including Sensor Type (Accelerometer, Light,
Temperature, Orientation, Magnetic Field etc), Sampling Rate (Fastest, game,
normal), Accuracy (High, Low, Medium, unreliable etc). The Sensor Manager
provides comprehensive interface to access different sensors available in the
system. The SensorListener is the interface to be implemented by a class which
wants to receive updates to the sensor values as they change in the real time in
the system. An application implements this interface to monitor one or more
sensor values that change in the system.

LocationProvider is the abstract superclass for the various location providers. A
location provider provides periodic update to geographical location of the
device. Ideally there are many location providers in the system like GPS
provider, Cellular network based provider, internet based providers etc. Each of
the location providers have different levels of accuracy. The location package
also has different constants to define the access to the providers like
ACCURACY_FINE, ACCURACY_COURSE, POWER_HIGH, POWER_LOW
etc. which helps in choosing the location provider suitable for the application.
The LocationProvider also helps in judging the best location provider in the
system according to the required criterias using defined methods in the class.

MediaRecorder is a defined class to record media samples, which is useful in
recording audio activity within a specific location. Audio samples than also be
utilized in identification purposes or any other pattern recognition steps to
identify the sound or to upload the sound to any network location for
assessments. MediaRecorder class also provides option to record video. There
are different encoding schemes implemented in the media recorder which can
directly be used by any application like H263, H264, MPEG4 for video and
AMR_NB, Raw AMR, 3GPP etc. for audio. The recording is based on simple
state machines. Each of the states it enters has to be preceded by a valid state
after the initialization.

Process of Weight and Merge and Filtering

Since the system supported multiple type off recommender engines to achieve
diversity in recommendations, it is important to merge the end results of each of the
recommenders in a weighted manner to compile the final recommendation list. The
system currently supports predefined static weights attached to each of the
recommender engines which can hence be made configurable and used accordingly.
The output of each of the recommender engines is a list of Apps along with a ranked
normalized score of the recommendation in the range of 0 to 1. The scores are then
multiplied with the weight of the recommender engine to achieve the final score of the
recommendation. The final list consists of all the recommender engines
recommendations sorted by the final score of recommendation. The system also
currently supports two types of filters to filter out recommendation.

o Filter by recommendation type – In this case the specific recommender
engines are called and final list of recommendations are compiled only
using their output.

o Filter by category – The output of each recommender engines are filtered
for the requested categories and the process of weight and merge is
applied back.

Recommendation Explanation & Situational Feedback

Explanations in recommender engines are quintessential in building trust of the user.
Since the final output of the recommender engine is actually coming from different
recommenders it is necessary to tell the users in a human understandable way as to
why they received the recommendation. The system maintains different type of
explanation for each of the type of recommendation. E.g. A location based
recommendation is given an explanation “This app is recommended to you based on
the apps popular around you” while a random recommendation is given an
explanation “This app is recommended to you at random”. In case of situation based
recommendation it is not just enough to tell the user that the app was recommended
based on your situation as that virtually adds no information to the user. Rather we
tried to propose the explanation along with the perceived situation of the user by the
system.

Due to the insufficient domain knowledge in modeling situations due to its broad and
vast concept and the problem of knowledge elicitation situation modeling required
feedbacks from the user to learn about the situations for which the case based
reasoning approach was chosen. The situational feedback can be of two types

o Implicit situational feedback: Learning the frequently occurring context
patterns for the users by frequent pattern mining on the generated cases
being queried into the system. This step was proposed during the thesis but
not implemented due to constraints of time.

o Explicit situational feedback: Explicitly asking the user is their perceived
situation correct. This might be a step which may bother the user if asked
every time by the system and hence we implemented the feedback as an
optional step that can be filled by the user if they disagree with the perceived
situation and want to provide a feedback.

The perceived situation is provided as part of the explanation of the
recommendation in case of the recommendations from situation based
recommender. Once the feedback is provided the input values at that instant
is analyzed and a new case is retained by the system. This creates a
learning cycle in the recommender system.

Qualitative Evaluation

A through system testing was performed after the implementation to verify the expected
behavior of the system. Modifications were made wherever required and optimizations were
applied wherever it permitted. Some of the challenges faced during testing of the system are
presented in the discussion section. Some of the Hypothesis which were drawn initially and
fall under the purview of the designed system are analyzed and presented in detail in this
section. Consumption behavior of the users in different situations was also analyzed during
this phase which is also presented in this section along with the utility of different type of
recommendations by the user.

Hypothesis Verification

Towards expanding the context and addressing cold start

o Hypothesis 1: Data available with the Telephony Manager in the Android OS can
be effectively utilized to analyze patterns. Example of such data can be Network
Operator Name, Sim Operator Name, Cell Location, Phone Number, whether in
roaming etc.
The TelephonyManager class in the Android platform provides access to
many such information when the proper rights are given to the application
by the device owner. These rights can be requested by the application to
the user when the application is being installed by the user on the android
platform. Few of the information being utilized currently in this
implementation are

a) Network Country ISO Code: To identify the country where the

user currently is which is in turn used to determine if the day is a
holiday in the current country of the user using holiday database.

b) IMEI Number: The MSISDN number is currently used by the
system to identify each of the users uniquely by the system. To
preserve the privacy of the user the MSISDN number is encrypted
using MD5 algorithm in the client side and then sent to the server.
The use of MSISDN number enables the system to keep knowledge
about the user and their preferences even if the user changes his
mobile phone but uses the same mobile number/ SIM card.

Hence on these demonstrations it can be said that the Hypothesis 1
stand verified

o Hypothesis 2: User Demographics information either collected via the Mobile
Operator or collected from the User directly from the recommendation app can be
utilized effectively to analyze patterns.

After consultation with few experts in the telecom domain it was known
that such data can be collected about the user if proper collaboration is
made with the operator. However such arrangements can be difficult to
obtain and have a lot of complicacies involved. Also it is generally seen
that the end users are reluctant to share their personal information due to
lack of trust in the system which is the reason why this path was not
chosen for a complete verification.

o Hypothesis 3: Content of the metadata of the apps can be effectively utilized to find
a list of relating apps and generate the similarity measure of the apps.

It was found from a deeper background study that the mobile apps lack
metadata severely [15]. To address this problem we presented an approach
in this thesis on how to enrich the metadata in section 4.2.2. Hence this
Hypothesis stands partially verified.

o Hypothesis 4: Making it optional to provide the demographics data for the user and
providing them with statistics of how the data influences the recommendations will reduce
the concerns of the user in providing personal information.

Collecting demographic information was not a focus area during the thesis
due to the mentioned problems in analysis of hypothesis 2 as a result this
hypothesis also stands unverified.

o Hypothesis 5: Providing users with explicit feedback options, e.g. Like/Dislike
Agree/Disagree buttons can help in better User Modeling.

Agrre/Disagrre buttons were provided to collect optional situational
feedback from the user which helped the system to learn the situations of
the user better and achieve better situational modeling.

 Towards expanding to Social Network, blogs etc

o Hypothesis 6: Providing the user with an option to share interesting apps on social
networking sites will open new source of generating recommendations based on what
apps the user’s friends are sharing etc.

o Hypothesis 7: Unstructured data from the web, blogs etc can be a potential source of
metadata of the apps.

o Hypothesis 8: Semi Structured data on twitter can be utilized effectively to discover
relations between apps.

Three of the above hypothesis was left out as the scope of these three
hypotheses will in itself form a separate topic for a thesis. The direction
towards social recommendations is very interesting and has been

implemented by lot of established recommender systems in the market
and may be very good step in improving the recommendations in the
system further.

Towards diversifying the recommendations

o Hypothesis 9: List of recommendations can be diversified based on recommendations
from different classes of relating apps.

The list of recommendations in the current system are diversified by
combining outputs from 4 type of recommender engines to fetch the final
recommendation list in the system namely (a) situation based
recommendation (b) location based recommender (c) consumption based
recommender (d) random recommender. So the hypothesis stands
verified by the current system.

o Hypothesis 10: The recommendation engine can adapt to the amount of
recommendations that is provided for different classes of recommendations based on the
user’s actions over a period of time dynamically.

This hypothesis was not verified in the current scope of the thesis
however the functionality is a logical extension and is a potential future
work to be performed on the system and hence the hypothesis stands
unverified at this stage

o Hypothesis 11: The list of recommendations can be filtered in multiple levels to
achieve diversity.

The list of recommendations is filtered in multiple levels in the current
system. The system currently supports two filters (a) Filter by Category &
(b) Filter by recommendation type. Hence the hypothesis stands verified
in the current scope of the thesis. More filters may be added later to the
application.

Consumption Analysis in different situations

For testing and verification purposes the developed system was distributed to few
users after development which generated some amount of data about the
consumption and utilization being done by those users. Although the scope of the
thesis didn’t included usability tests, however a few tests were performed in the end.
The consumption data of different users were analyzed to verify a basic assumption
in situation based recommendations that the Users in different situations have
different needs.

Since the user base was small and the data were collected for a short period of time
only those situations were analyzed for which there were at least some considerable
amount of data. The results from of the following 3 situations were compiled and are
presented in the pie charts.

Idle at home – The top three categories in the consumptions of apps by the
users in this situation had been “Brain and Puzzle”, “Entertainment” & “Social”
While they were followed by the categories of “Tools” and “Communication”. So
clearly we can say that the consumptions of the user when the system
perceived their situation as the this were often towards the apps meant for
relaxing and soothing the mind then say of providing the users with productivity.

Figure 8: Consumptions in Situation IDLE AT HOME

Working – When the system perceived the situation of the user as working the
top three consumptions categories were “Social”, “Tools” and “Communication”.
The users here in this case were less interested in “Brain and Puzzle” but were
interested in apps relating to “Travel” and “News”. While their interest in apps of
the category “Casual” almost remain identical.

Figure 9: Consumptions in Situation WORKING

Shopping – When the perceived situation of the user by the system was
”Shopping” the top three consumed categories of Apps were “Tools”,
“Productivity” and “Travel” which were followed by Apps from the category of
“Social” and “Multimedia”.

Figure 10: Consumptions in Situation SHOPPING

Summary

It is evident from the above described data that the consumption of the Apps by
the users of the system varied in the different perceived situations. While the
users in the situation “Idle at home” favored mostly leisure type apps, the users
in situation “shopping” and “working” mostly favored productive apps. Some
apps of the category “shopping” was also actually logged in the situation
“shopping” which was quite encouraging. Some of the unexpected results were
many “Travel” category apps being used in the “Working” situation which to a
common sense can be said as unexpected however gain the users have varied
needs and taste and hence forces the need for diversity in recommendation.
The apps of the category “Social” found its usage in almost all situations more
or less in high percentage. This behavior is justified as people now a days use
Social Network almost anywhere and anytime. The Apps of the category
“Games” and “Entertainment” didn’t found much weightage in the situations
“shopping” and “working”.

Recommendation Utilization Analysis

The actions of the users were logged whenever they consumed a recommendation to
analyze the results. The application shows the recommendations as a list. The
elements of the list are the title of the Apps. On clicking the item the user is sent to a
next page where the details of the App are available with a button to install the App.
By saying “a recommendation is consumed” it is meant that the user has at least
propagated from the list to the details page even if they didn’t installed the app. If the
user views the details of the App it can be safely assumed that the recommendation
has generated some interest in the user. The result in the following chart is compiled
by taking into consideration that the user has either viewed the App details or has
installed the app and thus represents the recommendation utilization chart.

It is seen that the Situation Recommendations outnumbered the other two. Situation
Recommendations comprise of around 46% of the consumed recommendations
which throws some light on the need of Situation based recommendations. However
the system had a slightly higher weightage to situation based recommendations in the
weight and merge process and it will be interesting to study the recommendation
utilization by the user in the case where weights are equal or is low for the situation
based recommender.

The location based recommendations had the least utilization but that may be due to
the fact that the user base was quite low in number and spread around the world and
there was very less concentration of the user in a specific location and hence the
random recommendations outnumbered the Location based recommendations.

Situation
Recommendations

; 46%

Random
Recommendations

; 32%

Location
Recommendations

; 22%

Recommedation Utilization

Figure 11: Recommendation Utilization

Discussion and Conclusion

The work presented in this thesis is a first step towards building a situation based mobile
recommender system the findings of which show great promise. Although situation as a
concept of human understanding is too broad and too complex to be modeled perfectly, our
work illustrates a system where situational awareness can be considered when making e.g.
App recommendations by utilizing a case based reasoning to overcome the problem of
knowledge elicitation.

Situation as an input to recommender systems is important because users in different
situations tend to have different consumption habit which was re verified by the data from the
implemented system. Defining situations also opens up a possibility to give users better
explanations, in a human readable format, of the underlying reasoned context that has been
considered when making the recommendation. However, high number of situations in the
system may cause ambiguity and affect the response to overcome which advanced retrieval
methods must be applied in the case based reasoning system. Data mining techniques,
when applied to find frequent patterns of contexts together, can be used to figure out new
situations and provide as a way for implicit learning of new situations in the system along
with the existing explicit way of learning through the feedback of the user. However, a
challenge in such approach will be classifying and labeling the situations which are learned
by the patterns of context occurring together. The question that addresses how to find
situations that could be relevant to context aware recommender systems that operates in a
mobile environment requires a combination of qualitative and quantitative methodology.

Following a layered loosely coupled architecture in situation recommendations eases the
process of adding new sensors, contexts and situations. The framework presented in this
section 3.4 is very flexible in terms of this respect and so is the implemented system based
on the framework.

Having different type of recommenders working in the system helps achieving diversified
recommendations. The random recommender helped the system achieve serendipity and
increased the recommendation utilization. Diversity in the system is achieved by providing
user with the output of different recommenders. Currently if the user requests for
recommendation once and doesn’t finds any interesting apps and then requests back in few
minutes the system will show the same recommendations if all the state of the user remains
identical. However ideally the system should adapt a little based on the first
recommendations utilization and try to project some other interesting apps. This may be a
good direction to work in the future. However too much personalization causes filter bubble
problem in recommender systems and as Eric Schmidt says “It will be hard for people to
consume something that is not in some sense tailored for them” may become true.

Another challenge that still remains is the consistency of the sensory data available that
effectively could be used for inference. While sensors like GPS, Time, and Microphone etc.
are quite consistent if they are permitted to be used and if they are in a usable state while
other sensors such as accelerometer etc. are a little inconsistent. On the other hand, the
system provides ease in adding new sensors. I believe that in the near future new and more
advanced sensors will be available in phones which eventually will help discover the different
situations and improve the system immensely.

One of the innovations in the implementation of the system has been the effective use of the
POI tags. This which added a lot of meaning to the “Location as context” as mobile users
meaning to the “Location as context” as mobile users access their phones from anywhere
and everywhere. We have also demonstrated how POI tags can be used to enrich the
metadata of mobile apps as a side effect of our system design. This opened up for new
opportunities to make content based recommendations which prior had been hard to do on
mobile Apps due to lack of Meta data.

As we look towards the future in a networked society, where everything that will gain benefit
from being coherently linked will be connected to the network, I believe sensing contexts will
have lot more different avenues to enrich any type of service. A flexible system where it is
possible to gain knowledge by addressing context-awareness is therefore the need of the
hour. The framework is a small step towards this vision and I hope that the situational aware
mobile App recommender system and the initial results discussed are motivating and
interesting for the community.

Future Work

Some of the future work that can be performed on the system were listed and
presented in this section.

o To add more sensors, contexts and their effective utilization in situation
recommendations.

o To implement advanced retrieval methods in the Case Based Reasoning
system.

o To make weights of the different recommender dynamic and learn the weights
for each user individually from the recommendation utilization data of the user.

o To implement implicit learning of the undefined situations in the system by
applying frequent pattern analysis of the context inference results.

o To perform a comprehensive quantitative study of the system.

o Analyze different context reasoning mechanisms and implement new context
reasoning mechanisms as identified and deemed proper.

o To integrate system with various other sources of information like GIS systems
other than Open Street map, Weather APIs, Foursquare etc.

o To identify performance bottlenecks and apply optimizations in order to
transform the system to a production ready state.

o To integrate with social media and effective utilization of data generated therein.

o To use the data shared by the users about apps in social networks in the
process of recommendation.

o To extend the search process in the system from searching in the local apps
database to searching Apps in the Markets.

o To add diversity in recommendation not just by providing different types of
recommendation but also to diversify based on the utilization.

o Adding like/dislike buttons to learn the taste of the user about the apps may be
a good idea but might extend the problem of filter bubble and hence can be
studied in detail.

o To implement Content based recommendations utilizing the generated
metadata.

Appendices

Application Package Structure

Application Screenshots

Recommendation List Recommendation Explanation

Situational Feedback Recommendation Filter

Filter By Recommendation Type Application Details

Tag App Help Menu

List of Android App Markets & App Statistics

Name Available

apps

Device platform Development

platform(s)

AndSpot Unknown Android Android

SDK

AppsLib 445

(October

20, 2009)

Android Android

SDK

BloomWorlds Unknown Android Android

SDK

Cellmania Unknown Multiple

Android, BlackBerry OS, Flash

Lite, iOS, Java,Symbian, Windows

Mobile

Unknown

GetJar 68,625

(May

2010)[26]

~11k

DLs/app

Multiple

Android, BlackBerry OS, Flash

Lite, iOS, Java,Palm

OS, Symbian, Windows Mobile

Unknown

MobileRated 55,000

(December

2010)[28]

Multiple

Android, BlackBerry OS, Java

Android

SDK,Java

ME

Handmark Unknown Multiple

Android, BlackBerry

OS, iOS, Java, Palm

OS,Symbian, Windows Mobile

Unknown

Mobango Unknown Multiple

Android, BlackBerry

OS, iOS, Java, Palm

OS,Symbian, webOS, Windows

Mobile

Unknown

Handango 190,000[30] Multiple

Android, BlackBerry OS, Java, Palm

OS, PSP,Symbian, Windows Mobile

N/A

explorePDA.com 1,500 Multiple

Android, BlackBerry

OS, iOS, Java, Palm

OS,Symbian, webOS, Windows

Mobile

Java

ME, S60

MiKandi Unknown Android Unknown

MobiHand 5,000

(June 3,

2009)[36]

BlackBerry, Palm, Symbian, Windows

Mobile and Android

Unknown

Mobspot Unknown Multiple

Android, BlackBerry

OS, iOS, Java, Palm

OS,Symbian, webOS, Windows

Mobile

Unknown

Mobile2Day,Smartphone.net 140,000 Symbian OS, Palm OS, Windows

Mobile, BlackBerry,

Android, JavaME. webOS

N/A

PocketGear 140,000

(June

2010)[37]

Multiple

Android, BlackBerry OS, Java, Palm

OS,Symbian, Windows Mobile

N/A

AndroidGear Unknown Android N/A

SlideME 1,860

(July 21,

2010)

Android Android

SDK

Reference

1. http://www.gartner.com/it/page.jsp?id=1480514

2. http://davidcrow.ca/article/7609/recommendation-engines’

3. D. Goldberg, D. Nichols, B. M. Oki and D. Terry, “Using Collaborative Filtering to
Weave an Information Tapestry”,Communications of the ACM 35 (1992), 61–70

4. Petteri Nurmi, Patrik Floréen, “Reasoning in Context-Aware Systems”, 2004,
available at : http://www.cs.helsinki.fi/u/ptnurmi/papers/positionpaper.pdf.

5. Dey, A. K. (2001). Understanding and Using Context. Personal and Ubiquitous
Computing, 5(1), 4-7.’

6. Matthias Böhmer, Gernot Bauer: The Case for Context-Collaborative Filtering in
Pervasive Services Environments. In: MobileHCI '09 - Workshop on Context-
Aware Mobile Media and Mobile Social Networks. Bonn 2009, Germany.

7. Matthias Böhmer, Gernot Bauer, Antonio Krüger: Exploring the Design Space of
Context-aware Recommender Systems that Suggest Mobile Applications. In:
RecSys 2010 - Workshop on Context-Aware Recommender-Systems. Barcelona
2010, Spain

8. Przybilski, M., Nurmi, P., Floréen, P. ”A framework for context reasoning
systems”.

9. Cheng , D. , Song , H., Cho, H. , Jeong , S., Kalasapur, S. , Messer, A., “Mobile
Situation-Aware Task Recommendation Application”, Proceedings of the 2008
The Second International Conference on Next Generation Mobile Applications,
Services, and Technologies, p.228-233, September 16-19, 2008.

10. Setten, M.V., Pokraev, S., and Koolwaaij, J. Context-Aware Recommendations
in the Mobile Tourist Application COMPASS. Proceedings of AH. 2004, 235-244.

11. Adomavicius, G., and Tuzhilin, A. (2001c), "Extending recommender systems: A
multidimensional approach" Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI-01), Workshop on Intelligent Techniques for Web
Personalization.

12. Karatzoglou, A., Amatriain, X., Baltrunas, L., and Oliver, N. Multiverse
recommendation: n-dimensional tensor factorization for context-aware
collaborative filtering. In Proceedings of RecSys. 2010, 79-86.

13. Adomavicius, G., Sankaranarayanan, R., Sen, S. , Tuzhilin, A. Incorporating
contextual information in recommender systems using a multidimensional
approach, ACM Transactions on Information Systems (TOIS), v.23 n.1, p.103-
145, January 2005

14. Jonathan, L.H., Joseph, A.K., and John, R., “Explaining collaborative filtering
recommendations”. In proceedings of the 2000 ACM conference on Computer
supported cooperative work (CSCW '00), ACM

http://www.gartner.com/it/page.jsp?id=1480514
http://davidcrow.ca/article/7609/recommendation-engines
http://www.cs.helsinki.fi/u/ptnurmi/papers/positionpaper.pdf
http://www.dfki.de/~mabo04/publications/Boehmer-CARS10-DesignSpace.pdf
http://www.dfki.de/~mabo04/publications/Boehmer-CARS10-DesignSpace.pdf

15. Davidson C., Moritz S..: “Utilizing Implicit Feedback and Context to Recommend
Mobile Applications from First Use”, CaRR '11 Proceedings of the 2011 Workshop
on Context-awareness in Retrieval and Recommendation.

16. Berkovsky, S., Aroyo, L., Heckmann, D., Houben, G.J., Kroner, A., Kuflik, T.,
Ricci, F.: "Providing Context-Aware Personalization through Cross-Context
Reasoning of User Modeling Data", 11th International Conference on User
Modeling, pp. 2-7, Publ. User Modeling Inc. (2007)

17. Ian Watson, Farhi Marir, “Case-Based Reasoning: A Review”, http://www.ai-
cbr.org/classroom/cbr-review.html

18. Y. Asakura a, E. Hato, “Tracking survey for individual travel behaviour using
mobile communication instruments”, Transportation Research Part C 12 (2004)
273–291

19. Falaki, H., Govindan, R., Estrin, D., “Challenges of Smarter Power Management
on Smartphones”;
http://www.cs.ucla.edu/~falaki/pub/EnergyChallanges.pdfhttp://www.cs.ucla.edu/~
falaki/pub/EnergyChallanges.pdf

http://www.ai-cbr.org/classroom/cbr-review.html
http://www.ai-cbr.org/classroom/cbr-review.html

