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Abstract—For solving the nonlinear filtering problem, much
attention has been paid to filters based on the Linear Minimum
Mean Square Error (LMMSE) estimation. Accordingly, less
attention has been paid to MAP estimation techniques in this
field. We argue that, given the superior performance of the
latter in certain situations, they deserve to be more carefully
investigated. In this paper, we look at MAP estimation from
optimization perspective. We present a new method that uses
this technique for solving the nonlinear filtering problem and
we take a look at two existing methods. Furthermore, we derive
a new method to reduce the dimensionality of the optimization
problem which helps decreasing the computational complexity of
the algorithms. The performance of MAP estimation techniques
is analyzed and compared to LMMSE filters. The results show
that in the case of informative measurements, MAP estimation
techniques have much better performance.

Keywords: Nonlinear Filtering, MAP estimation, LMMSE

Estimation, Progressive Correction.

I. INTRODUCTION

The nonlinear filtering problem is to estimate the state of

a dynamic system using noisy observations (measurements)

made on the system. The system has a state-space description

comprised of a process equation and a measurement equation.

The purpose of filtering is to calculate the posterior density

which has all the information about the state [1]. By choosing

an appropriate optimality condition, the state can be estimated

from this density. The solution includes two steps, prediction

and measurement update. If the process equation or/and mea-

surement equation are nonlinear the posterior will be non-

Gaussian. We consider Gaussian filters where this density is

approximated by a Gaussian density.

When solving nonlinear filtering problems, much effort has

been put in finding estimates which are optimal in minimum

mean square error (MMSE) sense. Specifically much attention

has been paid to the class of Linear MMSE (LMMSE) estima-

tors, such as, Extended Kalman Filter (EKF) [1], Unscented

Kalman Filter (UKF) [1] and Cubature Kalman Filter (CKF)

[2]. These filters try to improve the moment approximation of

the Kalman Filter [3] for the nonlinear situation. As indicated

in [4] improved approximation of Kalman filter does not

necessarily result in improved approximation of the posterior

density. Therefore, in cases where LMMSE estimation meth-

ods do not accurately capture the posterior moments, it could

be beneficial to consider the Maximum A Posteriori as the

optimality condition. An example of such a situation would

be, when the measurement is very informative. It should be

noted that, we consider problems where the posterior density

is unimodal. In these problems mode of the posterior is usually

close to its mean.

This paper focuses on MAP estimation techniques for the

nonlinear update step and argues why more attention needs

to be paid to these techniques. We describe the condition

under which these techniques outperform LMMSE methods.

One way of calculating the MAP estimate in the nonlinear

filtering problem is to perform an iterative optimization in the

measurement update step [5]. Viewing the estimation problem

from an optimization perspective can give us new insight and

tools to improve estimation performance in certain situations.

Gauss-Newton is a common iterative optimization algorithm

which, used to find the MAP estimate, results in the iterative

extended Kalman filter (IEKF) [6] [5]. This method is sensitive

to the choice of the initial point, i.e., if the initial point is

far from the optimum, the convergence is not guaranteed [7].

To alleviate this problem we can adopt one of the following

approaches: I)change the optimization algorithm to a one that

better fits our problem or II)change our objective function

to better fit the Gauss-Newton method. The first approach

is developed in [8], where Levenberg-Marquardt replaces the

Gauss-Newton method. In our paper we take another look at

this method and investigate its cons and pros. Adopting the

second approach, we derive a new method which uses the

progressive correction idea proposed in [9] along with the

Gauss-Newton method to compute the updated state, the result

is PC-IEKF filter.

One disadvantage of using iterative optimization methods in

the filtering algorithm is the resultant computational complex-

ity. This problem becomes more evident as the dimension of

the state vector increases. For solving this issue we propose a

new method that reduces the dimensionality of the optimiza-

tion problem, thus reducing the overall computational com-

plexity of the filtering algorithm. Our method is suitable for

the situations where the measurement model is not dependent

on all the states.

Bearings-Only Tracking (BOT) and Range-Only Tracking

(ROT) are two benchmark scenarios that we use to evaluate



the performance of MAP estimation methods and compare

the result to that of LMMSE methods. Furthermore, we

investigate how well the MAP methods can approximate the

posterior density and compare their approximations to that of

LMMSE’s, i.e, Monte Carlo Kalman Filter (MCKF) [10]. The

results indicate that when the measurement is very informative,

MAP techniques perform better than LMMSE in terms of

position estimation, moreover, we see that MAP techniques

approximate the posterior more accurately.

The paper is structured as follows. Section II describes the

nonlinear filtering problem where BOT and ROT are presented

as two such problems. In section III we talk about MAP

estimation techniques and compare them to LMMSE methods.

The Existing algorithms IEKF, LM-IEKF are presented in

section IV and our new proposed methods PC-IEKF and

Dimension Reduction technique are described in section V.

Section VI includes the simulation and results. Finally con-

clusion will be made in section VII.

II. PROBLEM STATEMENT

We assume that we have a nonlinear discrete-time model

which is stated as

xk = Fxk−1 + vk−1

zk = h(xk) +wk (1)

where xk is the state vector at time k. Process and mea-

surement noise sequences are zero mean Gaussian which are

denoted by vk−1, wk with covariances Q and R respectively.

zk is the measurement at time k and Zk denotes all the

measurements up to and including time k. Since we’d like to

concentrate on the update step, we assume the process model

to be linear throughout this paper, whereas the measurement

model, h(x), is assumed to be nonlinear.

The purpose of filtering is to recursively estimate the

posterior density p(xk|Zk). From this density we extract the

unknown state xk under an appropriate optimality condition,

i.e., MMSE or MAP. To benchmark the filtering solutions

considered in this paper, we investigate two problems in this

family, i.e., the BOT and the ROT problems.

A. Bearing Only Tracking (BOT)

The Bearings-Only Tracking is to estimate the position and

the velocity of a moving target based on noisy observations of

the bearing to the target at times t1,...tk. The presented model

is the one described in [9] and [11]. The target moves with

constant velocity along a straight line. A maneuvering sensor

(ownship) measures the bearing of the target. The target and

the ownship state at time tk are defined as

xt
k = [xt

k, y
t
k, ẋ

t
k, ẏ

t
k]

T

and

xo
k = [xo

k, y
o
k, ẋ

o
k, ẏ

o
k]

T

respectively, where the dot notation means differentiation with

respect to time. The relative target state is

xk = xt
k − xo

k

= [xk, yk, ẋk, ẏk]
T

and the process model is described as

xk = Fkxk−1 + ωk + vk (2)

where

Fk =
(

1 tk − tk−1

0 1

)

⊗ I2

ωk = Fkx
o
k−1 − xo

k

The measurement function is nonlinear

h(xk) = arctan(
xt
k − xo

k

ytk − yok
) (3)

B. Range Only Tracking (ROT)

The Range-Only Tracking model that was used is the same

as presented in [1] and [12]. The purpose is to measure range

and range-rate of a target moving in a straight line with

constant velocity. The ownship (an airborne observer) moves

in a circular trajectory. The state vector is the same as in the

BOT problem. The measurement vector at time tk is

zk = [rk ṙk]
T

and the measurement function is described as

h(xk) = [hr(xk) hṙ(xk)]
T

Where

hr(xk) =
√

x2
k + y2k

hṙ(xk) =
xkẋk + ykẏk
√

x2
k + y2k

The process model is the same as the one given in (2), the

only difference is that for the ROT problem we assume the

process noise to be zero.

III. MAP ESTIMATION IN NONLINEAR FILTERING

In this section, first we look at using MAP estimation

techniques to solve the nonlinear filtering problem. This is

done by performing optimization in the update step. Second,

we illustrate why these techniques are more accurate and

robust than LMMSE methods in certain situations.

The LMMSE family of filters includes EKF, UKF and CKF.

These filters have received considerable attention during past

years and much research has been dedicated to improve their

performance [1] [2] [5] [9]. However, there are some problems

inherent in the assumptions upon which these algorithms are

constructed, which make them an undesirable choice in certain

situations. Considering this fact, we argue that more attention

needs to be paid to MAP estimation techniques and their

performance in comparison to LMMSE methods.

In the Bayesian framework, the solution to the nonlinear

filtering problem comprises of two steps: prediction and up-

date. We study Gaussian filters where the initial prior density



p(xk−1|Zk−1), the prediction density p(xk|Zk−1), and the

posterior density p(xk|Zk) are approximated by Gaussian

densities:

p(xk−1|Zk−1) ≈ N(xk−1;xk−1|k−1,Pk−1|k−1)

p(xk|Zk−1) ≈ N(xk;xk|k−1,Pk|k−1)

p(xk|Zk) ≈ N(xk;xk|k,Pk|k) (4)

Furthermore, having assumed the process model to be linear

and the measurement model to be nonlinear, the prediction

density is easily calculated. The posterior, however, is more

difficult to calculate.

The purpose of the update step is to calculate the posterior

density p(xk|Zk). In a Gaussian filter, it suffices to calculate

the posterior mean and covariance. Since true values of the

moments are difficult to compute, we need to approximate

them. A fair approximation of the posterior mean can be

obtained using LMMSE or MAP estimators.

A. MAP estimation

As mentioned earlier, our focus is on the measurement

update step. A MAP estimator calculates the posterior mean

as

x̂MAP

k|k = argmax
xk

p(xk|Zk)

According to Bayes’ rule, the posterior density can be written

as follows

p(xk|Zk) ∝ p(zk|xk)p(xk|Zk−1) (5)

where p(zk|xk) and p(xk|Zk−1) are the likelihood and the

prior, respectively. Using (4) and (5), we can write the poste-

rior density as:

p(xk|Zk) ∝ exp

(

− 1

2
((zk − h(xk))

TR−1(zk − h(xk))

+ (xk − xk|k−1)
TP−1

k|k−1(xk − xk|k−1)

)

(6)

Maximizing p(xk|Zk) is equivalent to minimizing its negative

log which means that we have a nonlinear least-squares

problem with the following objective function

L(x) =
1

2

[

(x− xk|k−1)
TP−1

k|k−1(x− xk|k−1)

+ (zk − h(x))TR−1(zk − h(x))

]

(7)

Iterative minimization of (7) yields an approximate MAP

estimate x̂MAP
k|k .

Once the iterations converge, we update the covariance

Pk|k . We use the same covariance update as many existing

methods’ such as EKF and IEKF which is

Pk|k = (I−KiHi)Pk|k−1 (8)

where Ki is the Kalman gain with respect to the last iterate’s

value xi = x̂k|k and Hi is the jacobian of the measurement

model

Hi = ∇xi
h(x)

∇xi
=

(

∂

∂(xi(1))

∂

∂(xi(2))
. . .

∂

∂(xi(nx))

)

xi ∈ Rnx×1

Bellaire et al. derived the same covariance update in [8]

by using the first-order necessary condition for extremism.

Furthermore, equation (8) has a close connection to Laplace

approximation as explained in the Appendix.

B. MAP vs. LMMSE

In LMMSE methods the measurement prediction zk|k−1

is based on the predicted state xk|k−1. Therefore prediction

errors compounded with additional errors due to measurement

nonlinearities can cause undesirable errors [5]. LMMSE meth-

ods try to improve the moment approximation of the Kalman

filter for nonlinear situation. As stated in [4], doing so does

not necessarily lead to improvement in the calculation of the

posterior. More specifically, when we have a poor prior and

an informative measurement, LMMSE methods often fail to

approximate the posterior accurately.

To illustrate this, we calculate the 3-σ ellipses for the

true posterior and the estimated posterior resulting from both

LMMSE and MAP estimation methods for the BOT problem

defined in Section II-A. The measurement model for this

problem is given in (3). True posterior samples are calculated

with the Metropolis-Hastings algorithm [13] using 2 × 104

samples.

We consider two cases, in the first case, the prior mean and

covariance are

(x1|0 y1|0 ẋ1|0 ẏ1|0 )
T

= ( 5 5 0 0 )
T

P1|0 =







1 0 0 0
0 0.1 0 0
0 0 1 0
0 0 0 1







The measurement is assumed to be far from the prior indi-

cating the situation in which we have a poor prior and an

informative measurement. The 3 − σ ellipses of the prior,

true posterior along with posterior approximation by different

algorithms are depicted in Figure 1(a). As we can see, the

MAP estimation method calculates the posterior more accu-

rately than the LMMSE method. In case II, the measurement

is further away from the prior. The prior mean and covariance

are

(x1|0 y1|0 ẋ1|0 ẏ1|0 )
T

= ( 5 2 0 0 )
T

P1|0 =







1 0 0 0
0 0.1 0 0
0 0 1 0
0 0 0 1







This case is depicted in Figure 1(b), as we can see, the

MAP estimation of the posterior density is superior to that



of LMMSE’s. These results provide a good motivation to

investigate the change of the optimality criteria from MMSE

to MAP.
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Figure 1. Comparison of posterior density approximation by MAP and
LMMSE

IV. EXISTING MAP ESTIMATION TECHNIQUES

The idea of using MAP estimation to perform Gaussian fil-

tering is not new and the use of Gauss-Newton and Levenberg-

Marquardt methods has been mentioned in the literature [5] [6]

[8] [14]. Properties of each method affect the behavior of the

nonlinear filter. For example, while the Gauss-Newton method

has possible quadratic convergence near the optimum and is

easy to implement in the nonlinear filtering framework, it lacks

robustness compared to the Levenberg-Marquardt method. On

the other hand, the Levenberg-Marquardt method is more

computationally complex than Gauss-Newton. In this section

we present an overview of two filters, each of which use one

of these two optimization methods in its update step.

A. IEKF

Newton’s solution to our optimization problem is

xi+1 = xi − (∇2L(xi))
−1∇L(xi) (9)

where ∇2L(xi) is the Hessian of L(x) and ∇L(xi) is its

gradient. Following the Gauss-Newton method for finding the

Hessian and the gradient and substituting them into (9) will

result in the IEKF iterations [5] [6]

xi+1 = x̂k|k−1 +Ki(zk − h(xi)−Hi(x̂k|k−1 − xi)) (10)

where Hi is the Jacobian of the measurement function h(x) at

xi and Ki is the Kalman gain which is calculated according

to

Ki = Pk|k−1H
T
i (HiPk|k−1H

T
i +R)−1

Note that with x1 = x̂k|k−1, the first iteration of IEKF

is equivalent to EKF. After iterating the sequence (10) to

convergence, x̂k|k is set to xi and the covariance is updated

to Pk|k according to (8).

IEKF, being based on the Gauss-Newton method, approx-

imates the measurement model as linear around xi. In cases

where this approximation is poor, successive iterates can

diverge [15]. Furthermore, when the initial point x̂k|k−1 is far

from the actual optimum e.g., when we have an informative

measurement, convergence is not guaranteed [7]. In an attempt

to overcome these problems, the Levenberg-Marquardt method

can be used instead.

B. LM-IEKF

The Levenberg-Marquardt method is an interpolation be-

tween the Gauss-Newton method and the steepest descent. The

iterations of the Levenberg-Marquardt method are calculated

according to

xi+1 = xi − (∇2L(xi) + µiI)
−1∇L(xi), (11)

where µi controls the behavior of the algorithm. When the

current iterate is far from the optimal point, µi should have a

large value causing the algorithm to behave similar to steepest

descent. When xi is close to the optimum, µi should have

a value close to zero which makes the algorithm behave

like Gauss-Newton. Using the Levenberg-Marquardt algorithm

for the nonlinear filtering problem, results in the following

iterations [8]

xi+1 = x̂k|k−1 +Ki(zk − h(xi)−Hi(x̂k|k−1 − xi))

− µi(I−KiHi)P̃k|k−1(x̂k|k−1 − xi) (12)

Where Ki and P̃k|k−1 are calculated according to

Ki = P̃k|k−1H
T
i (HiP̃k|k−1H

T
i +R)−1

P̃k|k−1 =

[

I−Pk|k−1(Pk|k−1 +
1

µi
I)−1

]

Pk|k−1

After the sequence of (12) is iterated to convergence, x̂k|k is

set to the last iteration’s value xi, and the covariance is updated

according to (8). Note that for covariance update Pk|k−1 is

used.

Although Levenberg-Marquardt is more robust than the

Gauss-Newton method, it is more computationally complex

and harder to implement.

V. NEW PROPOSED METHODS

As mentioned earlier, Gaussian filters that are based on

MAP estimation boil down to solving an optimization prob-

lem. There exists a rich optimization literature in which we

can find many tools for solving such optimization problems.

However, existing methods mentioned in Section IV cover



only two such techniques. In this section we propose a

new method (PC-IEKF) that uses a progressive correction

technique to modify the objective function. This modification

enables us to use the Gauss-Newton method while alleviating

some of its disadvantages.

Furthermore, one disadvantage of MAP estimation methods

is the added computational complexity due to the iterative

optimization process. We derive a new method that reduces

the dimensionality of the objective function, thus decreasing

the computational complexity. This method is suitable for the

situations where the measurement model does not depend on

all the states, e.g., the BOT problem given in Section II-A.

A. PC-IEKF

The main idea behind PC-IEKF is to use a homo-

topy/continuation method to minimize the objective function

(7). Homotopy methods are used to deal with difficult prob-

lems. The motivation behind such methods is to set up an

easy problem and gradually transform this easy problem into

the original difficult problem [16].

To interpret our optimization problem in this context we

should take a closer look at (7) where the first term is a

well behaved (twice differentiable) quadratic function. The

second term on the other hand has an element (h(x)) which is

nonlinear in x and that is the term that can pose difficulties for

the optimization algorithm. To set up an easy problem we use

the idea of progressive correction where we split the update

step into several steps [9]. We can partition the posterior at

time k as:

p(xk|Zk) ∝ p(xk|Zk−1)

N
∏

i=1

p(zk|xk)
ωi (13)

N
∑

i=1

ωi = 1

At the first iteration we have p(xk|Zk−1)p(zk|xk)
ω1 which

corresponds to the second term in (7) being multiplied by

ω1, thus reducing its effect. We continue by finding the MAP

estimate for

p(xk|Zk−1)p(zk|xk)
(
∑i

j=1
ωj)

in each iteration which corresponds to the following objective

function

Li(x) =
1

2

[

(x− x̂k|k−1)
TP−1

k|k−1(x− x̂k|k−1) (14)

+ (
i
∑

j=1

ωj)(zk − h(x))TR−1(zk − h(x))

]

With this procedure, we start from a simple objective

function and make it more difficult one step at a time so that

at the last iteration, LN (x) is equal to the original problem

given in (7). The solution to each iteration (subproblem) is

used to initiate the next iteration. Hopefully, the initial point

and the solution of each iteration are rather close in which

case we expect the Gauss-Newton method to work well. It

should be noted that, to solve each subproblem we only run

one iteration of the Gauss-Newton algorithm. Following this

method, the iterations are calculated according to

xi+1 = x̂k|k−1 +Ki(z− h(xi)−Hi(x̂k|k−1 − xi))

Ki = Pk|k−1H
T
i (HiPk|k−1H

T
i +Ri)

−1

Ri =
R

∑i
j=1 ωj

(15)

After N iterations, we set x̂k|k = xN and the covariance is

updated similar to (8). It should be noted that Ri given in (15)

is different from the one calculated in [9] where Ri = R/ωi.

B. Dimension Reduction

The iterative optimization methods mentioned earlier in-

crease the computational complexity of the filtering algorithms

compared to the filters with non-iterative update step. This

added complexity becomes more evident as the dimension of

the state vector increases. Reducing the dimensionality of the

original objective function given in (7) can, hence, decrease

the computational complexity.

In many nonlinear filtering problems, measurement model

does not depend on all the states. In this section we derive a

new method that reduces the dimensionality of the objective

function for such problems.

We start by partitioning the state vector as

xk = [aT ,bT ]T

where a ∈ R
na , b ∈ R

nb and na+nb = nx, i.e., the dimension

of the state vector. The partitioning is done in a way that we

can write the measurement equation of (1) according to

zk = h(a) +wk (16)

Therefore, a is part of the state vector that the measurement

model depends on. Following the same partitioning, we define

x̂k|k−1 = [x̂a, x̂b]

Accordingly, we can rewrite the objective function defined in

(7) as

L(a,b) = L1(a,b) + L2(a) (17)

where

L1(a,b) =

(

(

a

b

)

−
(

x̂a

x̂b

))T

P−1
k|k−1

(

(

a

b

)

−
(

x̂a

x̂b

))

L2(a) = (zk − h(a))TR−1(zk − h(a)) (18)

Now we can redefine our minimization problem as

min
x

L(x) = min
a,b

(L(a,b))

= min
a

(min
b

(L1(a,b)) + L2(a)) (19)

First, we find bmin that minimizes L1(a,b). This can be done

analytically by putting the gradient to zero.

∇bL1(a,bmin) = 0



For presenting the analytical solution of b, we use the follow-

ing block matrix definitions for Pk|k−1 and its inverse

P−1
k|k−1 =

(

Λaa Λab

Λba Λbb

)

Pk|k−1 =

(

Paa Pab

Pba Pbb

)

Each block of P−1
k|k−1 has the following dimensions: Λaa ∈

R
na×na , Λab ∈ R

na×nb , Λba ∈ R
nb×na , Λbb ∈ R

nb×nb

and so does each corresponding block of Pk|k−1. Considering

these definitions, bmin is calculated as

bmin = x̂b −Λ−1
bb Λba(a− x̂a) (20)

By substituting bmin into (18) we have

L1(a,bmin) = (a− x̂a)
TP−1

aa (a− x̂a) (21)

Equation (21) yields a very interesting result, i.e., that the

solution to (19) can be found by minimizing L(a)

L(a) =
1

2

[

(a− x̂a)
TP−1

aa (a− x̂a)

+ (zk − h(a))TR−1(zk − h(a))

]

(22)

As we can see L(a) in (22) is the objective function defined in

(7) with lower dimensionality. Therefore, instead of perform-

ing the iterations for the whole state vector, we only need to

iterate (solve) for the measurement dependent part using

amin = argmin
a

[

(a− x̂a)
TP−1

aa (a− x̂a)

+ (zk − h(a))TR−1(zk − h(a))
]

(23)

After the iterations over a converge, we substitute amin into

(20) to calculate bmin analytically. Finally the state update is

defined as

x̂k|k = [aTmin,b
T
min]

T

This procedure reduces the dimensionality of the objective

function which results in lower computational complexity of

the whole filtering algorithm.

VI. SIMULATION AND RESULTS

In this section, we compare the performance of UKF, EKF,

IEKF, PC-IEKF and LM-IEKF in BOT and ROT problems. We

also depict the effect of using Dimension Reduction for LM-

IEKF in the BOT problem. As a performance metric we use

Root Mean Square Error (RMSE) of the position estimation

in both BOT and ROT examples. The comparison is based on

1000 Monte Carlo simulation runs.

Let (xm
k , ymk ) and (x̂m

k , ŷmk ) denote the true and estimated

target position at time k respectively. Then the RMSE is

defined as [1]

RMSEk =

√

√

√

√

1

1000

M
∑

m=1

(xm
k − x̂m

k )2 + (ymk − ŷmk )2

Weights (correction factors) of PC-IEKF filter are calculated

according to [9]

ωi =
103(i−1)/11

∑12
j=1 10

3(j−1)/11

A. BOT Results

The scenario which we used for testing the performance

of the filters is the same as presented in [9] and [11]. It is

a single sensor scenario where a target is moving away from

the ownship on the course of 45 ◦ with the speed of 10 m/s.

The ownship initial heading is towards North with the speed

of 10/
√
2 m/s. It measures the bearing of the target every 20

seconds per scan for total 48 scans. At scans 12 and 36 the

ownship makes maneuvers and changes its heading to 90 ◦

and 0 ◦ respectively. This scenario is depicted in Figure 2.

The standard deviation of the bearing is σθ = 0.45 ◦. We ran

this scenario with the initial target range of 1, 2.2 and 10

Km. All filters are initialized with initial range of 50 km. This

scenario is used in [9] to show the weakness of EKF when

the measurement is informative.
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Figure 2. BOT scenario

The result is depicted in Figure 3. As we can see in all

three cases MAP estimation techniques, IEKF, LM-IEKF and

PC-IEKF perform much better than UKF and EKF. Among

the MAP techniques, while IEKF does not perform very well

in the first case, PC-IEKF and LM-IEKF perform well in all

three cases which indicates their robustness compared to IEKF.

Since LM-IEKF is the most computationally complex

among the filtering methods in this paper, we test the Dimen-

sion Reduction technique on this algorithm. We compare the

computation time for different number of iterations for LM-

IEKF with and without Dimension Reduction. The result is

depicted in Figure 4. We can see that for the same number of

iterations LM-IEKF with Dimension Reduction is 25% faster.

It should be noted that the complexity decrease depends on

the dimensions of a and b. It can also vary for each filtering

algorithm.
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(a) Target initial range is 1 Km
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(b) Target initial range is 2.2 Km
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(c) Target initial range is 10 Km

Figure 3. Position RMS error for the BOT problem

B. ROT Results

For the ROT problem we considered the following scenario

which is presented in [1] and [12]. The target is moving

on a course of 45 ◦ with a speed of 8 m/s. The ownship is

moving along a circular trajectory with a radius of 15 Km at

a speed of 150 m/s. This scenario is depicted in Figure 5. The

initialization of all filters is the same as mentioned in [1] and

[12].

z0 = ( r0 θ0 )
T

x0|0 = ( r0 sin(θ0) r0 cos(θ0) −ẋo
0 −ẏo0 )

T

P0|0 =







p11 p12 0 0
p21 p22 0 0
0 0 p33 0
0 0 0 p44







where

p11 = r20σ
2
θ cos

2(θ0) + σ2
r sin

2(θ0)

p12 = p22 = (σ2
r − r20σ

2
θ) sin(θ0) cos(θ0)

p22 = r20σ
2
θ sin

2(θ0) + σ2
r cos

2(θ0)

p33 = p44 = σ2
v

The RMS error is calculated for the case where σv = 10 m/s

which is the practical scenario according to [1] and [12]. The

result is depicted in Figure 6, similar to BOT cases, the MAP

techniques outperform both UKF and EKF. Among them, PC-

IEKF and LM-IEKF perform better than IEKF.

VII. CONCLUSION

In this paper, we discuss using MAP estimation techniques

for solving the nonlinear filtering problem. We show why

this is an attractive research topic whose potential is not

fully explored. We look at two existing MAP estimation

methods IEKF and LM-IEKF and we derive a new method

PC-IEKF. Furthermore, we derive a new method to reduce the

dimensionality of the optimization problem which decreases

the computational complexity of the overall filtering algorithm.

We compare the performance of the MAP based filters to UKF

and EKF as two members of LMMSE family. We also compare

how well the MAP estimation technique and the LMMSE

method calculate the posterior density. Our results show that

MAP estimation techniques have much more accurate cal-

culation of the posterior density in the situation where the

measurement is very informative. They also show that, for the

same situation, MAP estimation techniques perform better than
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Figure 6. Position RMS error for the ROT problem

LMMSE in position estimation for BOT and ROT problems.

Furthermore, the Dimension Reduction technique decreases

the computational complexity of LM-IEKF implemented for

the BOT problem by 25%.

APPENDIX

According to the laplace approximation [17], the inverse

of the posterior covariance can be calculated at the posterior

mode as

P−1
k|k = −∇T

xk
∇xk

log(p(xk|Zk))

∣

∣

∣

∣

x̂MAP
k|k

(24)

which is the hessian of our objective function described in (7)

at x̂MAP
k|k . Therefore P−1

k|k can be written as

P−1
k|k = ∇T

xk
∇xk

{L(xk)}
= P−1

k|k−1

− ∇T
xk
{(zk − h(xk))

TR−1∇xk
h(xk)} (25)

To derive the exact expression for Pk|k , it remains to calculate

the second term of equation (25). To continue the derivation

first we assume the dimensions of the state and the measure-

ment vector to be xk ∈ Rnx×1 and zk ∈ Rnz×1. If we write

the jacobian of h(xk) as

Jh = (∇xk
h(xk))

=
(

J1
h J2

h . . . J
nx

h

)

nz×nx

where each column of the jacobian matrix is denoted by Ji
h ∈

Rnz×1. We can rewrite equation (25) as

P−1
k|k = P−1

k|k−1 + JT
hR

−1Jh

− (c1 c2 . . . cnx)

where each column of the third term is

ci = ∇T
xk
(Ji

h)R
−1(zk − h(xk))

ci ∈ Rnx×1

Since we expect (zk − h(xk)) to have a very small value

near the posterior mode, we can neglect the third term. If we

implement the matrix inversion lemma on the remaining two

terms we will end up with the familiar covariance update of

the EKF and IEKF stated in equation (8).
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