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ABSTRACT 

The most well characterized eukaryote model organism Saccharomyces cerevisiae is not only preferred as a 

microbial cell factory for synthesis of industrial products, e.g. bioethanol, but this eukaryote host system is also 

defined as a robust scaffold for commercial production of diverse chemicals e.g. isoprenoids. Therefore, a 

number of tools in different emerging fields e.g. systems biology, evolutionary engineering and synthetic biology 

have been developed. Synthetic biology offers an alternative approach that is becoming more accessible as a tool 

for better performing metabolic engineering of yeast. Due to the fact that the regulations of gene dosage and 

gene transcription are the first two key steps allowing control of metabolic pathways, improve of both gene 

expression and gene dosage through modulating promoter choice and plasmid copy number were pursued. The 

strength of seven different constitutive or glucose based promoters, TEF1, PGK1 TPI1, HXT7, PYK1, ADH1 and 

TDH3, was compared at different stages of a batch cultivation using LacZ as reporter. A new divergent promoter 

was developed, containing two strong and constitutive promoters, TEF1 and PGK1, to support high level gene 

expression. Furthermore, this bidirectional promoter was used to construct new episomal plasmids, the pSP 

series, to optimize the endogenous mevalonate (MVA) pathway through gene overexpression and also to 

construct integration cassettes containing the synthetic methylerithritol phosphate (MEP) pathway genes. The 

last two studies showed the successful implementation of synthetic biology tools in metabolic engineering in 

terms of pathway optimization and pathway reconstruction in order to improve sesquiterpene production in S. 

cerevisiae. Optimization of the MVA pathway was performed in two steps, modulating the FPP branch point and 

modulating the possible nodes which are directly involved or related to the MVA pathway including 

overexpression of tHMG1, ERG20, GDH2 and upc2-1 and deletion of GDH1, DPP1 and LPP1. Combination of 

all these modifications led to a 4-fold improvement of α-santalene yield over the reference strain. In the second 

study, the bacterial MEP pathway, containing 8 genes, was reconstructed through stable integration into the yeast 

genome in two steps. However, a functional MEP pathway was not obtained even after reconstruction of the 

possible bacterial Fe/S trafficking routes and the bacterial electron transfer system in order to circumvent lack of 

the enzyme activity. In another approach, improvement of gene dosage via modulating plasmid copy number 

was investigated. Here, two strategies, individually and in combination,were applied in order to reduce the maker 

gene at both protein and RNA levels, and their impact on plasmid copy number of pSP-GM1was investigated. 

Both methods, destabilization of the marker protein using a ubiquitin/N-degron tag and down-regulation of the 

marker gene employing weak promoters, elevated the plasmid copy number. Combination of the weak promoter 

and ubiquitin tag showed a synergistic effect and increased the plasmid copy number by 3 fold. A proof-of-

concept study was performed to determine if the enhancement in plasmid copy number could affect patchoulol 

production when patchoulol synthase was expressed from the modified plasmid. The result showed that while 

the final biomass concentration was unchanged, patchoulol production reached about 30 mg/L when employing 

modified plasmid, which was more than 3 times higher compared to when the synthase gene was expressed from 

the original plasmid. 

 

Key words: S. cerevisiae, Synthetic biology, Metabolic engineering, Yeast promoter, MVA pathway, MEP 

pathway, Fe – S clusters, Multi-copy plasmid.  
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CHAPTER 1:  INTRODUCTION 

 

1.1.1. Introduction to synthetic biology and its impact on metabolic engineering of yeast  

The engineering of biological systems has enormous power to reshape the world in various fields, such 

as sustainment of all systems, environmental rehabilitation, and manufacturing at all macro- and 

micro-levels, preventative and curative health issues and general medicine. Synthetic biology is 

advancing capabilities for engineering biological systems through employing engineering principles 

and novel biological tools to the process of constructing and implementing human-designed biological 

systems, and to predictably produce a wide variety of pathways and regulatory networks. These 

innovations have offered a variety of applications in metabolic engineering of microorganisms aiming 

to give them new abilities which are not inherent to the microorganism, e.g. production of artemisinic 

acid in engineered yeast (Ro et al., 2006), production of n-butanol in Saccharomyces cerevisiae (Steen 

et al., 2008), enhancements in production of fatty acid derived biofuels by using dynamic sensor-

regulator system in E. coli (Zhang et al., 2012) and modulation of metabolic flux using synthetic 

protein scaffolds (Dueber et al., 2009). In the latter study, the authors presented synthetic protein 

scaffolds to physically emplace metabolic enzymes involved in the mevalonate biosynthetic pathway 

together. Using these synthetic protein scaffolds a dramatic enhancement was observed in mevalonate 

production due to substrate tunneling mechanisms by which metabolites moved quickly from one 

active site to another, without loss by diffusion or degradation (Dueber et al., 2009). These are few 

examples which have shown the implementation of genetic engineering and synthetic biology in 

metabolic engineering and have demonstrated the ability of synthetic biology to provide an alternative 

to traditional methods in order to transplant the genes related to biosynthetic pathways from natural 

hosts into heterologous hosts such as E. coli or S. cerevisiae.  

Similar to E. coli, among the eukaryote host systems, yeast contains the benefits of unicellular 

organisms i.e., the amenability for genetic manipulations and cell culture. It has also high capability 

for protein processing i.e., post-translational modifications and protein folding. These benefits are 

combined with a deep knowledge about yeast physiology, biochemistry and fermentation 

technologies, and also the lack of endotoxin production, as well as oncogenic or viral DNA-made 

yeast, S. cerevisiae, as suitable organism which has been widely used for heterologous expression of 

biochemical pathways in the field of pathway engineering and metabolic engineering (Szczebara et al., 

2003; Yan, Kohli, & Koffas, 2005; Ro et al., 2006; Dejong et al., 2006). Furthermore, due to its 

importance in traditional biotechnology such as baking, brewing and wine making, S. cerevisiae has 

been classified as GRAS (generally regarded as safe) and many research activities, historically, have 

focused on this organism. It was the first eukaryotic organism to have its genome completely 

sequenced (Goffeau et al., 1996). Besides the aforementioned advantages, S. cerevisiae is known as a 
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eukaryotic model organism because of two important criteria. First, it is a single celled organism with 

a short generation time (doubling time of 1.25–2 hours) and it can be easily cultured in both 

rich/complex and minimum/synthetic media. Second, S. cerevisiae can be transformed through 

homologous recombination, allowing for genetic manipulation such as knockout or mutation of native 

genes, changing the expression level of a desired gene, or insertion of a heterologous gene. These 

fundamental knowledge bases have led to the development of a number of tools in different emerging 

fields e.g. systems biology, evolutionary engineering and synthetic biology. Among them, synthetic 

biology offers an alternative approach that is becoming more accessible as a tool for improved 

metabolic engineering of yeast. Along this line, there will be discussed important synthetic biology 

tools developed for controlling enzyme expression levels and the progress in DNA transformation 

methods in yeast in this chapter. And finally, a short introduction to isoprenoid production through 

both MVA and MEP pathways will be considered.  

 

1.2. Synthetic biology tools for controlling enzyme expression levels 

From an economic point of view, high productivities, titers and yields are essential for microbial 

production of chemicals. Optimizing pathway flux, reducing toxic intermediates, and balancing stress 

on the cell are the most important factors required to reach maximal yields. Therefore, pathway 

optimization and, specifically, modulation of enzyme expression is the focus and is one of the key 

challenges in most metabolic engineering investigations aiming at production of fine chemicals and 

pharmaceuticals. Recent advancements in synthetic biology offer a set of novel tools which are useful 

for controlling enzyme expression levels (Siddiqui et al., 2012). In spite of the diversity, these tools 

attempt to modulate at process units of central dogma like transcription or translation leading to 

altered levels of central components, e.g. DNA, RNAs and proteins (Figure 1). In 1958 Francis Crick 

described the Central Dogma. This principle describes a framework which is useful for understanding 

the way of biological information. In addition to the three major process units (DNA replication, 

transcription and translation), many other sub-processes have been declared in last two decades, e.g. 

splicing, which is the process for modifying RNA molecules after transcription, and different types of 

post-translational processes, which is the chemical modification of protein molecules after translation. 

Understanding the principle of each process in the central dogma will enhance our ability to design 

novel tools to control the biological processes, which are performed inside the living cell, at a 

predictable level. As mentioned before, different and advanced biological tools have been developed 

for optimizing of biochemical pathways. In the following, the mechanisms of these biological 

apparatuses will be described with specific consideration of yeast, as the major eukaryotic model 

organism.      

  

http://en.wikipedia.org/wiki/Cell_culture
http://en.wikipedia.org/wiki/Transformation_(genetics)
http://en.wikipedia.org/wiki/Homologous_recombination
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Figure 1: The central dogma; Arrows represent the process units containing (A) transcription process, (B) post-

transcription process, (C) translation process and (D) post-translation process. 

 

1.2.1. Synthetic biology tools at DNA level 

DNA, which is coding the mystery of life, is the first component in the central dogma. Therefore, 

several toolsets have been developed for tuning expression of either endogenous or heterologous genes 

at the DNA level, and especially in yeast. Basically, they aim at altering gene copy number or gene 

dosage e.g., plasmid DNA and yeast artificial chromosomes (YAC) (Murray A. W, 1983) or offer an 

accurate control over gene copy number and stability, e.g., integration of heterologous gene via 

homologous recombination (Shao et al., 2009; Hawkins & Smolke, 2010) (Figure 2). 

As in E. coli, different plasmids have been modified for yeast, while their availability for use in yeast 

is much more limited than those for E. coli. These plasmids have been successfully applied in 

metabolic engineering investigations (Ro et al., 2006)(Maury et al., 2008). Yeast plasmids are 

classified into three different classes, YCp, YEp and YIp (Figure 2) (Silva & Srikrishnan, 2012). YCp 

and YEp have been employed for many applications. YCp (yeast centromeric plasmid) vectors contain 

both an origin of replication and a centromere sequence. These two elements give YCp vectors high 

segregation stability in selective medium, while maintaining 1-2 copies per cell (Clarke & Carbon 

1980). YEp (yeast episomal plasmid) vectors are maintained at more than 10 copies per cell (Romanos 

et al., 1992). This type of vector harbors either a full version of S. cerevisiae native 2µ sequence or 
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commonly, a 2µ sequence including both the origin and the stability locus (STB), REB3  (Futcher & 

Cox, 1983; Kikuchi 1983). The latter ones are generally more stable in comparison to those which are 

carrying full 2µ sequence.  

 

Figure 2: Different synthetic biology tools developed at DNA level. A: yeast centromeric plasmid (YCp); B: 

yeast episomal plasmid (YEp); C: yeast integrative plasmid (YIp); D: yeast artificial chromosome (YAC)  

  

Besides, the plasmid copy number can be modulated through the engineering of other elements on the 

plasmid such as the auxotrophic marker. For example, replacing the native promoter region of plasmid 

auxotrophic markers URA3 and LEU2 with the truncated and weak promoters URA3-d and LEU2-d, 

respectively, resulted in enhancement of the plasmid copy number (Erhartt & Hollenberg, 1983; 

Loision et al., 1989). Faulkner and co-workers (1994) had been able to improve the plasmid copy 

number to 150 and 111 copies per cell by using the URA3-d and LEU2-d marker, respectively 

(Faulkner et al., 1994). This type of plasmid with high copy number is recommended for 

overexpression of a product gene, rather than pathway optimization and metabolic engineering 

purposes (Jones et al., 2000). Despite over-expression of enzymes, results of such a high copy number 

may cause the depletion of precursors or resources, which are necessary for growth and production 

(Glick, 1995).  

The third class of yeast vectors are YIps, yeast integrative plasmids, which do not have any replication 

origin. Therefore, they need to be integrated into the chromosome in order to maintain them in the cell. 

YIp vectors can be integrated into the genome via homologous recombination occurring between 

complementary target sites on both plasmid and genome. Different target sites have been developed 

for YIp vector series e.g., auxotrophic markers which offer integration by single-crossover (Gietz & 

Sugino, 1988; Cartwright et al., 1994a; Alberti et al.,, 2007; Sadowski et al., 2007). Table 1 illustrates 

several vector series in all three classes.  

Both YCp and YEp vectors are uncomplicated to use and are ideal for gene overexpression at low or 

high levels. Although plasmids offer a quick appraisal of the degree of overexpression, which is 

necessary in a metabolic pathway, the maintenance of two or more YCp (CEN/ARS) and/or YEp (2µ) 
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vectors for stable existence in a single cell can be difficult. In addition, the use of plasmids is limited 

to carry small size of DNA molecule. However, this limitation is circumvented by employing yeast 

artificial chromosomes (YAC) which offer the possibility to transference large DNA molecule (more 

than several Mbps) (Murray A. W, 1983; Kouprina & Larionov, 2008).  

YAC constructs, as YCp and YEp, require a selective pressure, in order to be maintained in long term 

cell culture. On the other hand, chromosomal gene integration is efficient in yeast. This natural ability 

serves a robust expression platform, which allows highly stable maintenance in free-continuous 

selective pressure. Thus, different methods have been developed, based on this stable integration and 

they have been successfully employed, either for optimization of endogenous metabolic pathways (Ro 

et al., 2006) and/or transformation of heterologous pathways (Szczebara et al., 2003; Shao et al., 2009) 

which will be discussed later in this chapter. 

 

1.2.2. Tools for control of the transcription level  

Because most biological processes are regulated at the level of transcription as the first dedicated 

phase of gene expression (Sikder & Kodadek, 2005), the second toolset for controlling gene 

expression is, basically, developed for tuning transcription level. Based on these facts, different 

toolsets have been developed for modulating RNA levels in the cell and are classified into two groups. 

The first group modulates directly the RNA level during the synthesis process of this molecule 

performed by RNA polymerase e.g., employs different promoters with promising desired effects, and 

the second group controls the stability of RNA after being synthetized. The latter is defined as an RNA 

control device (Liang et al.,, 2011; Chang et al., 2012).  

A: Control of transcription process  

Promoters, which are a target for RNA polymerase, are one of the main regulatory elements 

controlling RNA synthesis and so they can play a significant role in modification of toolsets employed 

for tuning transcription level and also are potential target application in synthetic biological circuits 

(Ajo-Franklin et al., 2007; Bashor et al., 2008). Ajo-Franklin and co-workers presented a yeast 

memory device, which is controlled at the transcription level using two promoters GAL1/10 and 

minimal CYC1 (Ajo-Franklin et al., 2007). In another example, a synthetic feedback loop has been 

created for modulating the MAP kinase pathway through employing different modulators whose 

expression was controlled with constitutive or inducible promoters (Bashor et al., 2008). 

There are approximately 6000 promoter regions which have been found in S. cerevisiae, according to 

SCPD (The Promoter Database of S. cerevisiae: http://rulai.cshl.edu/SCPD). These promoters are 

classified into two categories, constitutive and regulatable (Figure 3), however, different promoter 
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libraries and chimeric promoters have been recently developed, employing DNA manipulation 

methods (Jensen, 2003; Alper et al., 2005; Zhang et al., 2012). Alper and co-workers have generated a 

promoter library of constitutive promoter TEF1, introducing mutations into the sequence of this 

promoter via error-prone PCR (Alper et al., 2005). They demonstrated a series of TEF1 promoters 

with activity range of 17 to 250% of the original.  

Promoters with constant activity have been widely employed for modulating gene expression in S. 

cerevisiae. These promoters usually apply in a simple manner, which makes it not necessary to use 

additional molecules as inducers or repressors and they provide closely constant levels of gene 

expression. These features make them favored for the introduction of new pathways in yeast, 

especially if active pathways are desired during cell growth. Most of the yeast glycolytic pathway 

genes in S. cerevisiae are controlled by constitutive promoters, e.g., TDH3, PGK1, PYK1 and TPI1. 

They have been widely used to construct expression cassettes of different plasmids (Table 1.1), 

allowing high expression levels during long-term cell culture.  

Although applying strong and constitutive promoters results in radical changes in target gene 

transcript levels, regulated promoters have an advantage of controlling the expression level of the 

specific gene in response to changing concentrations of specific molecules, either inducer or repressor. 

A small number of regulated promoters have been found and employed in yeast. The most important 

are GAL1 and GAL10, which are induced in the presence of galactose and repressed using glucose as a 

carbon source (Lohr et al., 1995). MET25 (Sangsoda et al., 1985), MET3 (Cherest et al., 1985) and 

CUP1  (Etcheverry, 1990) promoters which are responding to the presence of methionine and copper, 

respectively, are another example of yeast native regulated promoters. In order to redirect the flux of 

farnesyl diphosphate (FPP) to produce sesquiterpenes, the MET3 promoter has successfully been 

employed in down-regulation of ERG9 encoding squalene synthase (SQS) (Ro et al., 2006; Asadollahi 

et al., 2008). The Tet promoter is an example of a synthetic bacterial regulated promoter which is 

adapted for use in S. cerevisiae and which is induced by the antibiotic tetracycline (Dingermann et al., 

1992).  
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Regulated promoters have many advantages, e.g., there are easy employment, support well-defined 

and predictable expression levels and are also a useful tool for verifying the optimal expression level 

of a particular enzyme in a metabolic network (Westfall et al., 2011; Hawkins & Smolke, 2010). 

However, inducer or repressor molecules may show pleiotropic effects (Mumberg et al., 1994; Wishart 

et al., 2005; Labbe & Thiele 1999) or may be consumed by the cell, which both make it complicated 

system to control the expression level. In addition, the inducer molecules are typically expensive, and 

using inducible promoters may not be economical for industrial-scale fermentations. 

 

Figure 3: Schematic representation of expression level at transcription, which is controlled by different types of 

promoters. Promoters are orang chevrons, coding region are red pentagons, pies with different colors represent 

proteins, blue and green stars represent inducer and repressor molecules, respectively. A: constitutive promoter; 

B: regulated promoter; C: promoter library   

  

MGPA (multiple-gene-promoter-shuffling) offers a useful tool for metabolic engineering purposes (Lu 

& Jeffries, 2007). This tool has been implemented to optimize xylose fermentation in yeast. The rate-

limiting steps of the pentose phosphate pathway (PPP) have been modulated by employing the 

combination of multiple promoters with different strengths. The authors have demonstrated that the 

best ethanol production has been achieved via the optimal expression level of limiting steps of this 

pathway. Instead of constitutive or inductive expression, in metabolic engineering approaches the 

combination of different promoters is recommended in order to balance metabolic pathways.  

B: RNA control devices 

RNA molecules play varying functional roles in living cells e.g., regulation of gene expression 

through RNA secondary structure, catalytic activity (ribozyme) with functional roles in RNA 

replication, RNA stability, splicing and translation in both prokaryotes and eukaryotes (Serganov & 

Patel, 2007) and regulate protein synthesis through antisense-mediated regulation of translation. Due 

to these facts, recently different synthetic RNA switches with diverse roles including sensing, 

regulatory, information processing and scaffolding activities have been developed in order to aid 

programming of biological systems. These synthetic RNA switches are, generally, composed of two 
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domains. First, is the sensing domain that detects signals inside a cell (input) and second is the 

actuator domain that alters gene expression. In some cases, a distinct transmitter domain adds to the 

RNA switch in order to provide better communication between sensing domain and actuator domain 

(Figure 4). Based on the type of regulated process, RNA switches are divided into five different 

categories: transcription-modulation, splicing-modulation, RNA stability-modulation, RNA 

interference-modulation, translation-modulation and post translation-modulation switches (Chang et 

al., 2012). From these, different RNA switches for modulating biological systems at transcription, 

splicing and RNA stability level have been developed in S. cerevisiae (Buskirk et al., 2004; Weigand 

& Suess, 2007; Win & Smolke, 2007; Win & Smolke, 2008; Babiskin & Smolke, 2011a; Babiskin & 

Smolke, 2011b). In a recent study, Babiskin and Smolke added the synthetic Rnt1p hairpin, which is a 

target of RNase III at the 3´ UTR of ERG9, in order to control its expression (Babiskin & Smolke, 

2011b). The ability of this posttranscriptional control device in reducing the expression of ERG9, has 

been demonstrated through comparing the transcription level of ERG9 in strains carrying this module 

and wild type (Babiskin & Smolke, 2011b). The authors suggested that this new controlling system 

has a benefit, to systematically titrate pathway enzyme level while keeping cellular control strategies 

active. 

 

1.2.3. Tools for control at the protein level  

Proteins are the curtail players inside the cell and most biological activities are well-controlled by the 

functions of different proteins e.g., enzymatic activity, signaling and transporting, and structural 

proteins. The level of these multi-functional macromolecules plays an important role in modulating 

biological systems. During the last decade, different protein-based control elements acting through 

protein degradation have been developed and employed for tuning protein levels (Mateus & Avery, 

2000; Hackett et al., 2006; Grilly et al., 2007). These elements usually alter the protein half-lives to 

provide rigid dynamic regulation over biochemical pathways.  

The fundamental importance of these elements is to introduce a degradation tag signal at the N- or the 

C- terminus of target protein(s), leading them into the natural degradation machinery of the cell, e.g. 

ubiquitination in yeast which serves as an exquisite process for control of protein degradation (Figure 

4). For example, Mateus and Avery (Mateus & Avery, 2000) have constructed a new destabilized 

green fluorescent protein by fusing the C-terminal residues of yeast G1 cyclin, Cln2p into yeast-

optimized GFP (yEGFP3). The residues of Cln2p contain the PEST motifs of Cln2 and are anticipated 

to target the protein for ubiquitin (Ub) - dependent degradation. They have shown that the new and 

modified GFP is efficiently unstable and it can be implemented for monitoring dynamic changes in 

yeast gene expression (Mateus & Avery, 2000). It has also been shown that modification of the S. 

cerevisiae N-degron signal sequence can influence reporters half-life and bring it down to 2 min 
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(Hackett et al., 2006). Grilly and coworkers have constructed a synthetic protein degradation network 

in S. cerevisiae (Grilly et al., 2007). They have adapted the prokaryotic ssrA tagging system in S. 

cerevisiae by importing an E. coli degradation machinery, ClpXP protease. The reduction of the half-

life of GFP to as low as 22 min has been observed by employing ClpXP protease (Grilly et al., 2007). 

In contrast to other tagging systems, aforementioned, (Mateus & Avery, 2000; Hackett et al., 2006), 

the latter example offers a tunable protein degradation system with less undesired pleiotropic effects in 

yeast. 

In addition to the presented protein toolsets, different internal ribosome entry sites (IRES) have been 

reported in yeast, which have influence on protein expression (Zhou et al., 2001). Furthermore, a 

library of internal ribosome entry sites (IRES) have been developed (Zhou et al., 2003). Recent 

elements may offer a promising device for controlling protein expression in the future and also they 

can potentially be applied to construct polycistronic gene clusters in eukaryotic systems such as yeast. 

 

Figure 4: Schematic representation of synthetic biology tools developed for modulating protein stability. 

Promoters are orange, coding region are red pentagons, red pies represent protein, green boxes are peptide tag at 

C- and N- terminal, respectively; (A) non-tagged protein; (B) C-tagged protein; (C) N-tagged protein  

 

1.3. Synthetic biology and re-construction of metabolic pathways in S. cerevisiae 

The first step of most yeast metabolic engineering and synthetic biology studies aiming at design and 

construction of cell factories indicating non-native and desirable traits, is to reconstruct a completely, 

or partially, synthetic pathway. So, stable assembly and transfer of heterologous pathways with several 

enzymatic steps is a major challenge in metabolic engineering. Several methods have been developed 

which can be used for transferring DNA into S. cerevisiea as a desired host. Each of them has benefits 

and disadvantages. Here, I classify these methods into three categories: (i) Plasmid-based methods, (ii) 
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YAC-based methods for transferring DNA and (iii) DNA transfer through chromosomal integration. 

The principle of this classification is based on progression in DNA assembling methods.  

 

1.3.1. Plasmid-based method for transferring DNA  

Yeast plasmids offer a simple tool for transferring DNA sequences. Essentially, this method is 

developed based on restriction and ligation, in order to clone the desired ORF (insert) into a vector. 

Hence, finding at least one unique restriction site in both plasmid and DNA insert is the first necessary 

requirement which highlights the first limitation of this method. On the other side, yeast does not 

naturally express polycistronic operons like prokaryotes, which means that each gene requires its own 

promoter and terminator flanking sequences. The latter raises the requirement for a different set of 

promoters and terminators for cassette assembly and it can increase the size of the plasmid. These 

issues limit the application of either YEp or YCp for transferring a small number of genes e.g. two 

genes instead of a whole metabolic pathway containing several steps. In addition, maintenance of the 

plasmid requires selective media which can result in incomplete selection of cells for long-term 

cultivation. However, in spite of such limitations, episomal plasmids have successfully been employed 

to reconstruct the bacterial MEP pathway in S. cerevisiae (Maury et al., 2008). The seven enzymatic 

steps of the MEP pathway carried on two episomal plasmids were transformed into yeast.  

 

1.3.2. YAC-based method for transferring DNA 

Due to its high efficiency and ease to work with in vivo homologous recombination in Saccharomyces 

cerevisiae, different synthetic biology tools were developed for stable transfer of metabolic pathway 

steps containing large amounts of DNA sequences, e.g., yeast artificial chromosomes (YAC) (Murray 

A. W, 1983). YACs have been employed in reconstruction of a flavonoid pathway in S. cerevisiae 

(Naesby et al., 2009). Genes from different organisms encoding enzymes of a flavonoid pathway have 

individually been cloned to make a full expression cassette containing promoter and terminator and, 

furthermore, all cassettes randomly assembled on Yeast Artificial Chromosomes to construct the 

flavonoid pathway (Naesby et al., 2009). Kouprina and Larionov (2008) have developed a new 

protocol which is based on transformation-associated recombination (TAR) in S. cerevisiae employing 

TAR-cloning vector compassing targeting sequences homologous to a desirable region (Kouprina & 

Larionov, 2008). This method allows for transferring up to 250 kb of selective DNA sequences in size 

as a circular yeast artificial chromosome (Kouprina & Larionov, 2008). In another example, Gibson 

and co-workers (2008) have demonstrated assemblage of the Mycoplasma genitalium genome (582970 

bp) in S. cerevisiae in 4 steps using a combination of both in vitro enzymatic assembly and in vivo 

TAR-based cloning (Gibson, Benders, Andrews-pfannkoch, et al., 2008). Later, the same research 
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group reported the successful one-step assembly of the entire synthetic bacterial genome consisting of 

25 overlapping DNA constructs in yeast (Gibson et al.,, 2008). The methods described above are 

mainly based on in vivo DNA assembly which is operated efficiently by yeast because of its high 

potential for homologous recombination. Recently, an organisms-independent method has been 

developed, offering an in vitro assembly of large DNA sequences (Gibson et al., 2009). In contrast to 

the two-step thermocycled DNA assembly (Gibson et al., 2008), the one-step isothermal DNA 

assembly can be efficiently used to construct up to several hundred kilobases of DNA fragment by 

using a mixture of enzymes including 5’ exonuclease, DNA polymerase and DNA ligase in a single 

reaction (Gibson et al., 2009). In spite of successful assembly and transformation shown by these 

examples, the maintenance of such systems still requires selective pressure, provided by using 

selective media. 

 

1.3.3. DNA transfer through chromosomal integration  

Via homologous recombination large sizes of DNA can be integrated into the chromosome. Based on 

this natural ability different methods have been developed, aiming at heterologous DNA transfer into 

yeast e.g., DNA assembler (Shao et al., 2009). DNA assembler enables design and fast construction of 

large biosynthetic pathways in S. cerevisiae on both plasmids and by integration into the chromosome. 

Employing this method, Shoa and co-workers (2008) have demonstrated rapid assembly of a 

functional D-xylose utilization pathway consisting of 3 genes (≈9kb), a zeaxanthin biosynthetic 

pathway including 5 genes (≈11kb) and combined both pathways (≈19kb) with an efficiency of 70-

100%, either on plasmid or on a chromosome (Shao et al., 2009). Later, this method has been 

improved to easily perform genetic manipulations such as site-direct mutagenesis without going 

through the complicated multi-step procedures, and scar-less gene substitution and deletion which is 

useful for studying gene function (Shao & Zhao, 2011). The existence of target sites allowing efficient 

integration via crossing-over and also suitable selection markers for easily isolating correct 

transformants are two limitations of this method. However, the latter is circumvented by using a 

reusable selection marker, which allows multiple sequential gene transformation via homologous 

recombination. cre/loxP and FLP/FRT are the most famous examples of marker recycling systems 

with wide applications in yeast (Sauer, 1987; Güldener et al., 1996; Gueldener et al., 2002; 

Radhakrishnan & Srivastava, 2005).  

“Reiterative recombination” is a robust DNA manipulation method developed for direct integration 

into the yeast chromosome by Wingler and Cornish (Wingler & Cornish, 2011). The key point of this 

method is based on utilization of recyclable marker and endonuclease-stimulated homologous 

recombination offering an efficient and simple procedure for sequentially building large libraries of 

biosynthetic pathways in vivo (Wingler & Cornish, 2011). Although this method has been developed 
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in yeast, it can be used in other organisms which have endogenous or engineered recombination 

systems. 

Nowadays de novo DNA synthesis, especially in combination with codon optimization algorithms 

offer cheap and efficient tools for DNA manipulations. Through the progression in constructing 

metabolic pathway, using codon optimization algorithms provide inputs, e.g. genes with more 

efficiently translated heterologous host, subsequently, can improve the activities of pathway enzymes 

as efficiently as with native gene sequences (Redding-Johanson et al., 2011). Therefore, combining 

advanced methods for DNA transformation with the latest progression in DNA synthesis can improve 

not only DNA manipulation, but it may also improve protein activity. Figure 5 illustrates progress in 

DNA assembly methods.  

 

Figure 5: Schematic representation of assembly methods for forming DNA constructs; (A) Plasmid-based based 

on restriction and ligation; (B) chromosomal integration based in vivo homologous recombination; (C) YAC-

based method based on both in vivo or in vitro homologous recombination. 

 

1.4. Biosynthesis of isoprenoids compounds  

Isoprenoids are a large group of natural and chemical compounds with more than 50,000 known 

members. Besides their varied essential biological functions, e.g. cell membrane fluidity (steroids), 
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respiration (quinones), hormones (abscisic acid), protein regulation (glycosylation), isoprenoids have 

valued applications e.g. as fragrances, pharmaceuticals and potential biofuels  (Kirby and Keasling 

2009; Zhang et al., 2011). Although all organisms use isoprenoids for their basic cellular processes, 

these compounds are found in high variability in plants and play essential roles in specialized 

processes such as defense, pollinator attraction, communication and involvement in growth and 

development. However, extraction of these compounds from plants needs a massive amount of raw 

material and usually suffers from low yield. For example, about six 100-years old Pacific yew trees are 

needed for producing a sufficient amount of taxol (anti-cancer) required for treatment of one patient 

(Horwits, 1994). In addition, chemical synthesis and production of these natural compounds can be 

extremely difficult because of structural complexity which is important for their activity. Due to these 

facts, the use of microorganisms like E. coli or S. cerevisiae for producing heterologous isoprenoids is 

an attractive approach, both environmentally and economically.  

Despite the diversity, all isoprenoids are derived from five carbon isoprene units (2-methyl-1, 3-

butadiene) and depending on the number of isoprene units in carbon skeleton different groups of 

isoprenoids are formed (Maury, Asadollahi, & Møller, 2005). Isopentenyl diphosphate (IPP), which is 

the universal biological precursor for all isoprenoids, is produced via two different metabolic 

pathways, the mevalonate (MVA) pathway, which is operational in eukaryotic cells and the cytoplasm 

and mitochondria of plants, and the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway, which is 

specific to bacteria, other prokaryotes and the plastids in plants (Maury et al., 2005; Kirby and 

Keasling 2009).  

 

1.4.1. Mevalonate pathway  

As described in Figure 6, the mevalonate pathway is initiated by condensation of two molecules of 

acetyl-CoA by function of acetoacetyl-CoA thiolase (Erg10). Then, through 5 enzymatic reactions the 

final product, IPP is produced, which is isomerized to DMAPP by Idi1. The pathway has been targeted 

in several investigations aiming at heterologous production of different isoprenoids (Ro et al., 2006; 

Asadollahi et al., 2009; Westfall et al., 2011). In order to increase the isoprenoid production in yeast, 

the pathway flux is modulated by focusing on increasing the local concentration of pathway enzymes 

and intermediates through employing different strategies altering the transcriptional level of bottleneck 

steps, for example, over-expression of 3-hydroxy-3-methylglutaryl-CoA reductase (Hmg1) and down-

regulating squalene synthase (Erg9) (Ro et al., 2006; Asadollahi et al., 2008; Asadollahi et al., 2009) 

However, in a recent investigation, 10 fold enhancement in amorpha-4,11-diene production was 

achieved by over-expressing every enzyme of the mevalonate pathway to ERG20 using a strong 

promoter (Westfall et al., 2011). Furthermore, the combination of these modifications, with 

improvement of the fermentation process, led to producing more than 40 g L
-1

 amorpha-4,11-diene 
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(Westfall et al., 2011). In a different approach, Asadollahi and co-workers tried to increase the 

sesquiterpene production by addressing targets that are neither involved directly in the pathway nor in 

supplying the precursor (Asadollahi et al., 2009). Following the result of in silico analysis, 

enhancement of the sesquitrepene was achieved through increasing the pool of NADPH which is 

consumed by the MVA pathway enzymes (Asadollahi et al., 2009). 

Further improvement of pathway yields has been achieved by employing different approaches, such as 

direct protein fusion and subcellular compartmentalization. In several studies, protein fusion strategies 

have been employed to redirect flux from the native MVA pathway downstream of the FPP branch 

point into the heterologous branch, leading to higher production of isoprenoids (Tokuhiro et al., 2009; 

Ohto et al., 2010; Albertsen et al., 2011). In all of these examples, the farnesyl pyrophosphate synthase 

(Erg20) was subjected to fusion with synthase enzymes like patchoulol synthase (PTS) or 

geranylgeranyl diphosphate synthase (Bts1). Tokuhiro and co-workers (2009) demonstrated 

enhancement of geranylgeranyl diphosphate (GGPP) production by 8-fold while utilizing fused Bts1-

Erg20, in comparison to individual expression of Bst1 and Erg20 (Tokuhiro et al., 2009).  

Organelle targeting has advantages in providing important cofactors and natural scaffolding or 

sequestering toxic compounds. Therefore, targeting the specific protein into the specific organelle 

within the cell is another approach to enhance biosynthetic pathway flux. Farhi and co-workers (2011) 

have used the mitochondrial targeting signal to localize the plant isoprenoid synthases, TPS1 and ADS 

in yeast mitochondria. They have also localized the endogenous FPP synthase (Erg20) to mitochondria 

using the targeting sequences from the COX4 gene fused to the N-terminus of TPS1, ADS and Erg20, 

individually (Farhi et al., 2011). They have demonstrated 3- and 20-fold increases in valencene and 

amorpha-4, 11-diene, respectively.  

 

1.4.2. 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway 

The MEP pathway was first reported independently by Rohmer and Arigoni (Rohmer et al., 1993; 

Arigoni et al., 1997). As illustrated in Figure 6, this pathway initiates by condensation of one molecule 

each of pyruvate and D-glyceralaldehyde-3-phosphate through a thiamin diphosphate dependent 

reaction catalyzed by 1-deoxy-D-xylulose 5-phosphate synthase (Dxs), (Sprenger et al., 1997), 

followed by the NADPH dependent reduction process being catalyzed by 1-deoxy-D-xylulose 5-

phosphate reductoisomerase (Dxr) (Takahashi et al., 1998), generating 2-C-methyl-D-erythritol 
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Figure 6: The MEP pathway (left). Enzymes: Dxs, 1-deoxy-D-xylulose-5-phosphate synthase; Dxr, 1-deoxy-D-

xylulose 5-phosphate reductoisomerase; IspD, 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase; IspE, 4-

diphosphocytidyl-2-C-methylerythritol kinase; IspF, 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase; 

IspG, 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase; IspH, 1-hydroxy-2-methyl-butenyl 4-diphosphate 

reductase; Metabolites: 1, D-glyceraldehyde 3-phosphate;  2, pyruvate; 3, 1-deoxy-D-xylulose 5-phosphate; 4, 2-

C-methyl-D-erythritol 4-phosphate; 5, 4-diphosphocytidyl-2-C-methyl-D-erythritol; 6, 2-phospho-4-

diphosphocytidyl-2-C-methyl-D-erythritol; 7, 2-C-methyl-D-erythritol 2,4-cyclodiphosphate; 8, 1-hydroxy-2-

methyl-2-(E)-butenyl 4-diphosphate. 

The MVA pathway (right). Enzymes: Erg10, acetoacetyl-CoA thiolase; Erg13, 3-hydroxy-3-methylglutaryl-

CoA synthase; Hmg1/2, 3-hydroxy-3-methylglutaryl-CoA reductase; Erg12, mevalonate kinase; Erg8, 
phosphomevalonate kinase; Erg19, mevalonate pyrophosphate decarboxylase; Idi, isopentenyl diphosphate 

isomerase; Metabolites: 9, acetyl-CoA; 10, acetoacetyl-CoA; 11, 3-hydroxy-3-methylglutaryl-CoA; 12, 
mevalonate; 13, phosphomevalonate; 14, diphosphomevalonate; 15, dimethyl allyl diphosphate; 16, isopentenyl 

diphosphate.  
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4-phosphate (MEP). This intermediate is converted into the cyclic 2,4-diphosphate of 2-C-methyl-D-

erythritol by the sequential action of the enzymes specified by IspD, IspE and IspF (Rohdich et al., 

1999; Lüttgen et al., 2000; Herz et al., 2000) 2-C-methyl-D-erythritol-2,4-cyclodiphosphate is reduced 

by a reductase encoded by the ispG gene (Adam et al., 2002; Querol et al., 2002) followed by the 

production of IPP and DMAPP by the action of the ispH gene product. (Rohdich et al., 2003; Wolff, 

2003).  

Similar to the MVA pathway in yeast, the MEP pathway has been subjected to metabolic engineering 

in E. coli in order to produce different isoprenoid compounds (Huang et al., 2001; Yuan et al., 2006; 

Kim & Keasling, 2001; Farmer & Liao 2001). The enhancement in accumulation of taxadiene, which 

is an intermediate of anticancer drug paclitaxel has been achieved through the over-expression of the 

first enzyme of the MEP pathway (Huang et al., 2001). Over-expression of both dxs and dxr led to 

increased lycopene production in E. coli (Kim & Keasling, 2001). The authors suggested that, like 

Dxs, the second enzyme of the MEP pathway has also an appreciable control coefficient over the flux 

(Kim & Keasling, 2001). Later, replacing the native promoter of dxr with the strong and constitutive 

promoter T5 from bacteriophage resulted in increasing production of β-carotene by more than 3 fold 

(Yuan et al., 2006). Farmer and Liao (2001) attempted to increase the availability of MEP pathway 

precursors pyruvate and glyceraldehyde 3-phosphate (G3P) in order to increase the pathway flux 

(Farmer & Liao 2001). Although strong competition exists for these substrates which are central 

metabolites involved in several pathways, such as the tricarboxylic acid cycle, glycolysis and 

gluconeogenesis and the pentose phosphate pathway, they have shown that lycopene accumulation is 

controlled by the G3P/pyruvate ratio and not by substrate availability (Farmer & Liao 2001). 

In general, all efforts in both S. cerevisiae and E. coli aimed at increasing isoprenoid production can be 

divided into two different approaches. In the first approach researchers tried to re-optimizae and 

regulate of the metabolic flux of the endogenous pathway, whereas, introduction of a heterologous 

pathway to supplement the native pathway was core of the second approach. To address the second 

one, the MVA pathway has successfully been transferred and optimized in heterologous hosts, e.g. E. 

coli (Martin et al., 2003; Dueber et al., 2009; Ma et al., 2011). However, few records have been found 

for investigating the MEP pathway in a heterologous host like S. cerevisiae (Maury et al., 2008). In the 

next chapter, both re-optimization of the endogenous MVA pathway and reconstruction of the 

bacterial MEP pathway in Saccharomyces cerevisiae will be considered through the usage of the new 

synthetic biology tools, also discussed in the next chapter. 

. 
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CHAPTER 2: RESULTS AND DISCUSSION 

 

High-level expression of exogenous or endogenous genes in microorganisms is often a desired 

objective with applications in protein production or to over-express pathway enzymes leading to 

synthesis of, e.g. chemicals or biofuels. Promoter choice and gene copy number are the most important 

factors to ensure the desired gene transcription levels. Regulation of gene dosage and gene 

transcription are the first two key steps in biological systems, e.g. allowing control of metabolic 

pathway function. Both plasmid and chromosomal integration are widely used as tools in this kind of 

modulation. Like in E. coli, different plasmids with varying features have been developed in yeast, 

while there are not as many different plasmids available as for E. coli. They have been employed for 

many metabolic engineering applications. Yeast episomal plasmids (YEp) usually offer high 

expression levels. Despite the fact that various YEp series have been developed (Table 1), their 

structure consists of two parts. The expression cassette includes promoter, multi cloning site (MCS) 

and terminator, and the maintenance section usually consists of two selection markers allowing 

selection in E. coli and yeast, respectively, and also bacterial origin of replication and 2µ sequences 

providing the stable segregation in both E .coli and yeast, respectively. Based on these facts, I 

proposed to construct a new series of 2µ episomal plasmids which can provide, not only high constant 

gene expression, but also can improve gene copy number using synthetic biology tools. 

The commercially available and widely used plasmid, pESC-URA (Stratagene, La Jolla, CA, USA), 

was chosen as a vector back-bone for our purposes. pESC-URA harbors the divergent and inducible 

GAL1-GAL10 promoter on the expression cassette providing strong protein expression in presence of 

galactose as carbon source. The maintenance section of this vector consists of the pUC origin and 

ampicillin resistance (ble) ORF, which both are necessary for maintenance in E. coli; whereas, 2 

micron and f1 origins in addition to the yeast URA3 ORF are used to replicate and maintain the vector 

in yeast culture, respectively.  

Thus, my experiments were designed to improve gene expression and gene dosage through modulating 

the elements involved in expression and maintenance sections of pESC-URA, respectively. In this 

chapter, first I review the final results leading to construct new expression plasmids and further I show 

the application of these new synthetic biology tools in optimizing the endogenous MVA pathway and 

in transferring the heterologous MEP pathway into S. cerevisiae. Finally, the role of the iron-sulfur 

cluster maturation process in the functionality of the MEP pathway will be discussed.      

 

 



RESULTS AND DISCUSSION   19 

2.1. Regulation of expression level via promoter choice  

In spite of many advantages offered by employing the bidirectional plasmid pESC-URA, e.g. allowing 

high expression level and evaluation of two ORFs simultaneously, the galactose- dependent of the 

divergent GAL1/GAL10 promoter highlights the major disadvantage of pESC-URA in terms of time 

and economy, especially when aiming at industrial applications. Because, like most other organisms, 

S. cerevisiae has evolved to preferentially utilize fermentation carbohydrates, typically glucose, as 

carbon and energy sources (Ronne, 1995). Using glucose as a carbon source not only has economical 

benefits, this carbon source is 10 times cheaper in bulk as compared to galactose, but it is also possible 

to produce biomass faster and in higher amounts using glucose as compared to galactose. I initiated 

this study aiming at developing a glucose based system analogous to the GAL1/GAL10 system of the 

pESC vectors.  

Several strong constitutive promoters have previously been described and have been shown to be 

useful for expression of heterologous genes in yeast. In this study, the strength of seven different 

constitutive or glucose based promoters derived from the following genes - TEF1 (encoding 

transcriptional elongation factor EF-1 α) (Cottrelle et al., 1985), PGK1 (encoding phosphoglycerate 

kinase) (Ogden et al., 1986; Holland and Holland Biochemistry 1978) TPI1 (encoding triose 

phosphate isomerase), HXT7 (encoding a hexose transporter) (Diderich et al., 1999; Reifenberger et 

al., 1997), PYK1 (encoding pyruvate kinase 1) (Nishizawa et al., 1989), ADH1 (encoding alcohol 

dehydrogenase 1)(Denis et al.,1983) and TDH3 (GPD) (encoding triose phosphate dehydrogenase) 

(Bitter et al., 1984) have been compared in different stages of batch culture.  

 

2.1.1. Comparison based on β-galactosidase activity  

For this comparison, I used lacZ as a reporter gene and constructed 9 different integrative plasmids, in 

which lacZ expression was controlled by either of these promoters. In all cases, the constructed 

plasmids were integrated into the ura3-52 locus. Although, in the last decade, different reporter 

systems have been developed and used for promoter analysis in S. cerevisiae, such as green 

fluorescent protein (Li et al., 2000; Niedenthal et al.,1996), β-lactamase (Cartwright et al., 1994b) and 

β-D-glucuronidase (Nacken et al., 1996), β-galactosidase encoded by the lacZ gene of E. coli, is the 

most commonly employed reporter of gene expression in S. cerevisiae and is widely used for different 

purposes (Flick & Johnston, 1990; Hacker & Magdolen, 1992; Yocum et al.,1998). It was shown that 

lacZ, as a reporter, is not compatible with a high copy number vector, but suitable for expression 

monitoring in mono copy (Purvis et al., 1987). As I only wanted to compare the strength of different 

promoters and avoid gene copy number variations, I used lacZ on an integrative plasmid pSF01, a 

derivative of pRS306 (Sikorski & Hieter, 1989), for this comparison. The expression of lacZ 
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controlled by these promoters was assayed 8, 24 and 48 hours after inoculation in shake flasks with 

2% glucose. The results are shown in Table 2.1. Since the TEF1 promoter is one of the strongest 

constitutive promoters (Gatignol et al., 1990) and since it showed the most stable and highest activity 

at different time points, I chose to set the PTEF1 activity at 8 hours as 100% and compared the activity 

of the other promoters relative to PTEF1 activity at this time point.  

Five of these promoters (PPGK1, PTPI1, PPYK1, PTDH3 and PADH1) operate the key glycolytic genes and they 

are generally considered constitutive and strong promoters, in the literature. They did not show a 

constant activity during the cultivation condition. Therefore, the classification of “constitutive” 

promoters is often wrongly associated with a “constant” expression rate of the controlled genes. In 

fact, the expression of the majority of genes is a function of the specific growth rate (Regenberg et al., 

2006), nutrition supplementation (Seresht et al., 2011) and environmental condition under which the 

cells are being cultured, e.g. oxygenation or temperature (Tai et al., 2007).     

Table 2.1: Comparison of the promoters used in batch cultivation with 2% glucose. 

 

The activities were normalized by setting PTEF1 activity at 8 hours to 100%. (Partow et al., 2010) 

In conclusion, I observed that the promoter activity varied with the glucose concentration and whether 

the cells were growing on glucose or ethanol. Taken together, the promoter activities, with the 

exception of PHXT7, decreased during shake flask cultivation. The overall ranking of the promoters is as 

described below: 

When cells are in exponential phase:  

PTEF1 ~ PPGK1 ~ PTDH3 > PTPI1 ~ PPYK1 > PADH1 > PHXT7 

When glucose is exhausted and ethanol is consumed: 

PTEF1 ~ PHXT7 > PPGK1 > PTPI1 ~ PTDH3 > PPYK1 ~ PADH1 

 

Since the aim of this investigation was to construct a dual glucose based expression system to replace 

the GAL1/GAL10 promoters in pESC-URA, I needed two promoters with a similar expression profile. 

As the results of the first comparison (Table 2.1), the PGK1 and TDH3 promoters represent options for 

a promoter that can be combined with PTEF1. Although both of them start with the same activity as 

PTEF1 after 8 hours, their activities decline. After 24 hours, this loss of activity for the TDH3 promoter 
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is higher than for the PGK1 promoter. Previous investigations by Mellor et al. (Mellor et al., 1985) 

showed that when the PGK1 gene was cloned into a multicopy plasmid and expressed in yeast, Pgk1p 

accumulated to up to approximately 50% of total cell protein. Furthermore, different powerful 

expression vectors were constructed, based on the promoter region of the PGK1 gene and these 

vectors have been used to study the expression of a number of heterologous genes (Tuite et al., 1982; 

Derynck et al., 1983; Masuda et al., 1994). I therefore chose the TEF1 and PGK1 promoters and, 

thereby constructed a nucleotide sequence containing a bidirectional TEF1-PGK1 promoter. 

 

2.1.2. Comparison of PTEF1 and PPGK1 in different contexts 

Since the fusion may effect on the individual promoter strength, the activity of PTEF1 and PPGK1 in the 

newly bidirectional promoter was compared with the activity of individual PTEF1 and PPGK1, 

respectively, in shake flasks using the same conditions as previously described, in which bidirectional 

TEF1-PGK1 promotes were cloned in front of lacZ in different orientation and then each construct 

was integrated into the ura3-52 locus. The results show that the activity of both the PGK1 promoter 

and TEF1 promoter after fusion to TEF1 and PGK1, respectively, are not significantly different when 

compared with those of PPGK1 and PTEF1 alone (Figs. 7A and 7B).   

 

Figure 7: Activity of PPGK1 and PTEF1 in different contexts; A, red columns represents the activity of individual 

PPGK1, gray columns represents the activity of PPGK1 fused to PTEF1; B, brown columns represent the activity of 

individual PTEF1, gray columns represents the activity of PTEF1 fused to PPGK1. Error bars represent SEM (standard 

error of measurement). 

 

Finally, the new divergent promoter, TEF1-PGK1, was employed as the basis for construction of 2 

different expression vectors, pSP-G1 and pSP-G2 (Figures 8A and 8B), which are useful for 

evaluating and expressing 2 different genes at the same time. The two different promoter orientations 

in pSP-G1 and pSP-G2 allow for a greater variety of cloning strategies due to the different promoter – 

multi cloning site (MCS) combinations. Later, by adding extra cloning sites at the end of each 

terminator (CYC1 and ADH1 terminator) in these plasmids, two further vectors were constructed, pSP-
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GM1 and pSP-GM2 (Figure 8C and 8D). these offer the opportunity to clone additional features, e.g. 

further expression cassettes. 

 

Figure 8: Schematic of pSP series. Details are presented in the text. 

 

2.2. Improvement of gene dosage via modulating the plasmid copy number  

Plasmid copy numbers of yeast episomal plasmids (YEps) usually are maintained by employing either 

the entire  S. cerevisiae native 2µ sequence or commonly, a 2µ sequence including both the origin and 

the stability locus (STB), REB3 (Futcher & Cox, 1983; Kikuchi, 1983). However, enhancing plasmid 

copy number, via modulating the selection marker gene, has been demonstrated by employing 

defective promoters as for the LEU2-d and URA3-d allels leading to poorly express selection marker 

genes (Beggs, 1978; Erhartt & Hollenberg, 1983; Loision et al., 1989). It was shown that poor 

expression of the selection marker is a driving force to increase the plasmid copy number to ensure 

cell survival (Beggs, 1978)(Erhart & Hollenberg, 1983; Loision et al., 1989). Another possible 

approach for improving the dosage of the gene on the recombinant plasmid is destabilization of the 

marker at the protein level using protein-based control elements. These elements act through protein 

degradation and, usually, alter the protein half-lives (Mateus & Avery, 2000; Hackett et al., 2006; 

Grilly et al., 2007). We hypothesize that the destabilization of marker protein may indicate the same 

effect as poorly expressed marker gene on the plasmid copy number.  

I examined two strategies individually and in combination, in order to reduce the maker gene at both 

protein and RNA levels, and their impact on plasmid copy number of pSP-GM1 (Figure 8C). First, a 

ubiquitin/N-degron tag was fused to the N-terminus of Ura3 (selection marker of pSP-GM1). The S. 



RESULTS AND DISCUSSION   23 

cerevisiae N-degron signal sequence can lead to impressive destabilization of reporters down to a half-

life of 2 min (Hackett et al., 2006). Second, down-regulation of the marker gene URA3 at the 

transcriptional level was altered by replacing the URA3 native promoter with the constitutive weak 

promoter KEX2 (Fuller et al., 1989), the conditional promoter of HXT1 encoding a low affinity hexose 

transporter (Diderich et al., 1999) and the promoter of the URA3-d allele including only 47 nucleotides 

located upstream of the start codon (Faulkner et al., 1994; Loision et al., 1989), respectively. Further, I 

combined both stategies, i.e. weak promoter and ubiquitin/N-degron tag and evaluated plasmid copy 

number in these conditions. Figure 9 illustratesthe plasmid constructs.   

 

Figure 9: Schematic representation of the plasmid constructs. PURA3, PHXT1, PKEX2, and PURA3-d, promoters 

employed to control URA3 expression; Ubi-R, Ubi-M, Ubi-E and Ubi-Q, ubiquitin/N-degron tags leading to 

arginine, methionine, glutamate and glutamine as N-terminal residues of the Ura3 marker protein. 

 

2.2.1. Plasmid copy number determination via LacZ enzyme assay and quantitative PCR in 

continuous culture 

Novel culture strategies have been developed, which allowed the physiological characterization of 

cells under regulated and defined conditions, aiming at reproducible processes and conclusive 
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experimental designs. The invention of chemostat cultivations is one of such tools, and its first 

application goes back to the 1950s (Novic & Szilard, 1950). The unique feature of chemostat 

cultivation is the ability to grow a cell population under well-defined substrate-limited growth 

conditions for an indefinite duration. Hence, applying the same growth condition for different 

engineered strain in continuous culture would raise the potential of this cultivation systems usage for 

many biotechnological investigations, e.g. plasmid copy number. An aerobic glucose-limited 

continuous cultivation of S. cerevisiae at a fixed dilution rate below the maximum specific growth rate 

was performed in our experiments. Apart from strain SCISP23 (Table 2.2) carrying the the PHXT1-

URA3 plasmid indicating a lower final biomass formation, no apparent difference in growth 

characteristics and morphology was observed for the other strains. The observed decrease in biomass 

production may be the results of the high repression level of URA3 exerted by the HXT1 promoter 

under glucose limitation, not providing sufficient Ura3 protein to maintain higher growth rates or to 

elevate the dilution rate. This is consistent with the results observed in auxotrophic yeast strains during 

uracil-limited chemostat culture (Olitta et al., 2010).     

Altering the plasmid copy number was verified after applying the above mentioned modifications on 

plasmid structure (see section 2.3) by two different methods, LacZ enzyme assay and quantitative 

PCR. The results of these indirect and direct measurements are demonstrated in Table 2.2.  

Table 2.2: Comparison of fold changes in LacZ activity and plasmid copy number (PCN) 

 

The results showed that both the LacZ activity and the plasmid copy number can be further increased 

by combining (i) destabilization of the marker protein, and (ii) replacing the promoter of the marker 

gene with a weak promoter. However, fold changes revealed by the Ubi-tagged (Ubi-M, Ubi-E and 

Ubi-Q) strains are not really significant and less than 50%. Both LacZ and PCN measurements are 

comparable and show high correlation with little exception such as SCIYC68 showing different fold 
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change between LacZ activity and plasmid copy number (PCN). Combination of the weak promoter 

and ubiquitin tag showed a synergistic effect on plasmid copy number and LacZ activity. This 

synergistic effect induced by the PKEX2-Ubi-R was more stable in comparison to what was observed for 

the PHXT1-Ubi-R. SCYC68 displayed higher increase in plasmid copy number than increase of LacZ 

activity (Table 3). This could, conceivably, relate to the feature of the HXT1 promoter, in addition to 

the destabilizing residue arginine, resulting in very low expression of URA3 and, thereby, more 

pressure on the cells.  

 

2.2.2. Impact of plasmid copy number on patchoulol production  

Patchouli is a type of sesquiterpene obtained by steam distillation of the leaves of Pogostemon cablin 

(patchouli), a plant from the Lamiaceae family. This terpenoid derivative is an important ingredient in 

many fine fragrance products like perfumes, as well as in soaps and cosmetic products. Microbial 

production of this fragrance compound is of great interest in the perfume industry, as an alternative to 

extraction from plants. Like other sesquiterpenes, patchoulol is derived from farnesyl diphosphate 

(FPP), which is an intermediate of the sterol pathway (Figure 10A). The patchouli synthase gene has 

been isolated before (Munck & Croteau, 1990) and it has been shown that to convert FPP into 

patchoulol, only a single enzymatic step is sufficient (Asadollahi et al., 2008). To demonstrate the 

practical application of this new plasmid, the plasmid carrying the PKEX2-Ubi-R-URA3 construct was 

tested for production of the isoprenoid patchoulol. To ensure that enough FPP precursors are available, 

a truncated form of HMG-CoA reductase 1 (encoded by tHMG1) was also over-expressed from this 

plasmid. tHMG1 overexpression has previously been reported to lead to enhanced isoprenoid 

production in yeast (Ro et al., 2006; Asadollahi et al., 2010). Both tHMG1 and the patchoulol synthase 

gene (PatTps177) were expressed from the PKEX2-Ubi-R-URA3 plasmid(strain SCIYC76) as well as 

from the control plasmid (strain SCIYC72) (figure 10B). Patchoulol production and biomass 

formation were analysed in shake flasks (Figure 10C). While the final biomass concentration was 

unchanged, patchoulol production reached about 30 mg/L in SCIYC76, more than 3 times compared 

with control strain SCIYC72. This performance thus demonstrates that the new plasmid could also be 

beneficial to improve heterologous pathway expression. 
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Figure 10: Growth and patchoulol accumulation of strain SCIYC76 and control strain SCIYC72. A, mevalonate 

pathway, red arrows correspond to the over-expressed genes; B, map of modified expression plasmid, pIYC49 

(PKEX2-Ubi-R-URA3) which harbors a copy of tHMG1 and PatPs177 genes downstream of the TEF1 and PGK1 

promoter, respectively; C, Patchoulol production was evaluated in shake flasks using 2% glucose minimal 

medium. SCIYC76 contains plasmid pIYC49 (PKEX2-Ubi-R-URA3) and control strain SCIYC72 contains plasmid 

pIYC03 (PURA3-URA3). The data shown represent the mean +/- SD of three independent cultivations.  

   

2.3. Implementation of synthetic biology tools in metabolic engineering 

The goal of metabolic engineering is to optimize and modulate processes within cells by directed 

modifications of metabolic fluxes employing synthetic biology tools. Many of the described synthetic 

biology tools and techniques in Chapter 1 have already been applied to engineer yeast strain for 

production of valuable secondary metabolites, e.g. isoprenoids, in novel and efficient bioprocess that 

are environmentally friendly. Briefly, altering one or many of the following levels can be subjected in 

order to over-produce secondary metabolites through interruptions to cellular metabolism: (i) 

enhancement in the rate of substrate uptake, (ii) reduction of flux to undesirable by-products and 

enhancement of precursor and cofactor flux, (iii) introduction of a heterologous pathway and 

optimization of the activity of its constituent enzymes, and (iv) export of the product to the 

extracellular medium in order to shift the equilibrium towards product formation. In this principle, first 
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the application of various synthetic biology tools and techniques for metabolic engineering of the 

mevalonate pathway aiming at producing a sesquiterpenoid, α-santalene, are discussed and, 

furthermore, the last results of the re-construction of the bacterial MEP pathway and sophisticated 

challenges in cytosolic Fe/S cluster trafficking to the last two enzymes of this heterologous pathway in 

S. cerevisiae will be considered. 

 

2.4. Metabolic engineering of the MVA pathway 

The MVA pathway in yeast endogenously synthesizes different natural isoprenoids compounds which 

are responsible to control key functions in the cell, e.g. membrane fluidity (ergosterol) and mating 

response (a-factor). Therefore, yeast is naturally and potentially able to supply many precursors and 

intermediates which are needed for producing various heterologous isoprenoids, e.g. sesquiterpenoids 

(Ro et al., 2006; Asadollahi et al., 2008; Asadollahi et al., 2009; Asadollahi et al., 2010). 

Sesquiterpenoids are a type of isoprenoids produced by the cyclization and further modification of a 

single farnesyl diphosphate (FPP) intermediate, a branch point of the MVA pathway. α-Santalene, 

which is the precursor of α-santalol, one of the main components of East Indian sandalwood oil 

(Baldovini & Joulain, 2011), is a type of sesqiterpene with application in perfumery and aromatherapy 

industries. Like patchoulol, α-santalene is produced enzymatically in a one-step-conversion from 

farnesol diphosphate catalyzed by a plant santalene synthase (Schalk, 2011). Here, Re-optimization of 

the MVA pathway is investigated using synthetic biology tools aiming at enhancing the FPP pool for 

production of α-santalene. First, different and novel approaches are applied for modulating the FPP 

branch point. Second, the possible nodes which have direct influence on the MVA pathway flux or 

necessary co-factor are manipulated and finally, an efficient S. cerevisiae strain capable of reaching 

relevant titers and productivities of α-santalene during an optimized fermentation process is 

constructed combining all modifications. 

 

2.4.1. Modulating the FPP branch point  

Farnesyl diphosphate (FPP) is the universal precursor unit of all sesquiterpenes (C15) (Maury et al., 

2005)(Withers & Keasling, 2007). This intermediate is formed by multiple condensations of 

isopentenyl-diphosphate (IPP) and dimethyllallyl diphosphate (DMAPP) and, naturally, it serves as a 

precursor for production of essential compounds such as dolichol, ubiquinone, isoprenylated proteins 

and ergosterol (Daum et al., 1998) (Figure 11). Therefore, the FPP intracellular concentration is 

tightly regulated at different levels (Goldstein & Brown, 1990). During normal growth conditions 

most of the FPP is used for sterol biosynthesis, due to the fact that the cellular demand for sterols is 

greater compared to the demand for non-sterol FPP derived compounds (Kennedy et al., 1999). 
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Figure 11: Schematic representation of the farnesyl pyrophosphate (FPP) branch-point in S. cerevisiae; A, 

Cytosol; B, Mitochondria; C, Lipid particle; D, Endoplasmic reticulum.  

 

Squalene synthase (Erg9) is the first enzyme of the mevalonate pathway dedicated to sterol 

biosynthesis. Since disruption of the ERG9 gene is lethal and produces an ergosterol-dependent mutant 

(Jennings et al., 1991), several efforts have applied various methods down-regulating this essential 

genes, in order to increase the FPP pool (Ro et al., 2006; Paradise et al., 2008; Asadollahi et al., 2008). 

Generally, researchers have replaced the native ERG9 promoter with the regulatable promoter MET3, 

which is repressed in the presence of methionine (Cherest et al., 1985). However, applying the 
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regulatable-promoter MET3 is limited by several parameters such as the cost of methionine for 

repression and difficulty with controlling the system since the repressing agent, methionine is 

metabolized by the cells. So, we first hypothesized that the repression effect on the MET3 promoter 

may reduce over time. To verify this hypothesis, an integration cassette containing lacZ as a reporter 

downstream of the MET3 promoter was constructed (Figure 12A). The LacZ activity was measured at 

different time points after addition of 0 mM, 1 mM and 2 mM L-methionine, respectively. The results 

showed that LacZ activity was increased, about mid-exponential, after methionine addition and rapidly 

reached the levels measured in the non-repressed culture (Figure 12B). These results, thus, 

demonstrate and confirm the difficulties in controlling promoter activity when cells metabolize the 

repressing agent.  

In the following, down-regulation of ERG9 was evaluated using two synthetic biology tools, promoter 

choice and antisense mRNA. The chosen regulatory systems were (i) the low-level constitutive TEF1 

promoter mutant TEF1M2 selected after an evolutionary engineering approach based on error-prone 

PCR (Alper et al., 2005; Nevoigt et al., 2007), (ii) the glucose concentration controlled promoter of the 

hexose transporter gene HXT1 (Ozcan& Johnston, 1995; Lewis & Bisson, 1991), and (iii) the HXT2 

promoter potentially useful for a gene silencing approach expressing ERG9 antisense mRNA (Ozcan 

et al., 1995). These promoters were cloned and integrated in front of lacZ and integrated into the yeast 

chromosome, respectively (Figure 12A), and their effect was compared during high and low glucose 

concentration  using lacZ, as a reporter (Figures 12C and 12D). Further, the impact of different 

down-regulating methods on ergosterol and α-santalene production was evaluated in a fed-batch 

process (Figures 12E and 12F). Taken together, the results indicate that (i) PHXT1 appeared to be a 

suitable promoter for down-regulating ERG9 expression under glucose limiting conditions; (ii) The 

proportion of ergosterol decrease ranged from 50 to 91% using the above mentioned methods (Figure 

12E) as compared to the native ERG9 promoter, and (iii) a linear correlation was observed between 

the reduction in ergosterol content and the increase in α-santalene production. This is a good example 

of using synthetic biology in metabolic engineering showing the redirection of FPP flux through 

sesquiterpen production by replacing the native ERG9 promoter with conditional promoter HXT1. 

Besides, additional modifications for modulating the FPP branch point have been investigated, e.g. 

deletion of two phosphatases LPP1 and DPP1, which are responsible for most of the cytosolic 

isoprenoid and lipid phosphate phosphatase activity in S. cerevisiae (Toke et al., 1998; Faulkner et al., 

1999). However, no significant differences were observed in both α-santalene production and 

ergosterol content applying single deletion (lpp1∆) or double deletion (lpp1∆ dpp1∆) strains. 
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Figure 12: Result of the regulation of FPP branch point. (A) Integrative cassettes include promoter choice 

(MET3, HXT1, HXT2 and mutant TEF1) in front of lacZ as a reporter gene; (B) LacZ activity under control of 

PMET3 in response to different methionine concentrations, 0 mM (diamonds), 1 mM (triangles) and 2 mM 

(circles). Strains were cultivated in duplicates, glucose exponential growth phase was between 2 and 16 h of 

cultivation; (C and D) Characterization of promoter strength, PHXT1 (filled diamonds), PTEF1M2 (filled circles), 

PHXT2 (empty squares), and PERG9 (filled squares), during shake flask cultivation in glucose exponential growth 

phase was between 2 and 16 h of cultivation and in fed-batch mode, respectively. (E) Ergosterol production rate 

(mg*g biomass
-1

•h
-1

); (F) α-santalene and E,E-farnesol prodcution rate (mg•g biomass
-1

•h
-1

), Strains were grown 

in a two-phase partitioned fed-batch glucose limited cultivation mode. The error bars represent the standard 

deviation for two independent cultivations. 
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2.4.2. Modulating the possible nodes directly involved or related to the MVA pathway  

Manipulating a single gene pathway usually has little effect on metabolite fluxes as individual 

enzymes generally have only partial flux control in a pathway. Therefore, further improvement of 

sesquiterpene production was investigated by manipulating several direct and indirect rate-limiting 

steps of the FPP biosynthesis pathway (early portion of MVA pathway) which is illustrated in 

Figure13A.  

The MVA pathway initiates by condensation of 3 acetyl-CoA molecules to build one molecule of 

mevalonate which is through sequential phosphorylation and decarboxylation enzymatic steps, forms 

IPP and DMAPP. The final step in the early portion of the MVA pathway is the conversion of IPP and 

DMAPP into geranyl and farnesyl diphosphates (GPP and FPP, respectively). These steps are 

catalyzed by the product of ERG20 (Maury et al., 2005). The enzyme first combines one molecule of 

each DMAPP and IPP to make GPP and then by adding one molecule of IPP to GPP produces FPP. 

Several enzymatic steps and co-factor requirments make the regulation of the mevalonate pathway 

complex. A reductase (HMG-R), encoded by HMG1 is a highly regulated enzyme and it is considered 

to represent the major rate limiting enzyme in the MVA pathway (Basson et al., 1987; Donald et al., 

1997; Polakowski & Stahl, 1998).  

Several studies have demonstrated an enhancement in isoprenoid production by over-expression of the 

catalytic domain of the Hmg1 protein encoded by tHMG1 (Ro et al., 2006; Kirby et al., 2008; Engels 

et al., 2008; Asadollahi et al., 2010). Over-expression of ERG20 exposed a slight effect on 

sesquiterpene production (Ro et al., 2006). Further manipulation has been performed by over-

expression of a semi-dominant mutant allele of a global transcription factor regulating sterol 

biosynthesis in yeast, upc2-1, that enhances the activity of Upc2 (Davies et al., 2005) and the impact 

of this over-expression on isoprenoid production has been demonstrated (Ro et al., 2006; Engels et al., 

2008). Enzymes of the MVA pathway are NADPH-dependent e.g. Hmg1 (Maury et al., 2005). Hence, 

the last modification was implemented in order to increase the pool of NADPH available for Hmg1. 

Previously, it has been reported that an there was an improvement in sesquiterpene production by 

manipulating the ammonium metabolism in yeast (Asadollahi et al., 2009). Deletion of the GDH1 

encoding NADP-dependent enzyme which consumes a substantial amount of NADPH in the cell (dos 

Santos et al., 2003) and over-expression of the NADH-dependent enzyme, GDH2, has led to an, 

approximately, 85% increase in the final cubebol titer (Asadollahi et al., 2009).  

The impact of the above mentioned modifications on isoprenoid production have previously been 

investigated individually. Here, different combinations of all these modifications were investigated 

using chromosomal integration to ensure the genetic stability of the host strain. Unique cloning sites 

after ADH1 and CYC1 terminators of pSP-GM1 allowed simple and efficient construction of the two 

integration cassettes (Figure 13B). The synthetic cassettes were further introduced into the yeast 
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chromosome through homologous recombination. Modified strains were engineered into a 

sesquitrepene producing microorganism introducing the expression plasmid pISP15 containing a copy 

of tHMG1 and codon optimized SanSyn under control of the PGK1 and TEF1 promoter, respectively. 

Name and descriptions of the strains are listed in Table 2.3. In the following, continuous cultures were 

employed to evaluate the impact of different genetic modifications on α-santalene production. Results 

are shown in Figure 14. 

 

Table 2.3: List of S. cerevisiae strains used in this study 
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Figure 13: Schematic representation of the engineered α-santalene biosynthetic pathway through the 

modification of the mevalonate pathway and the ammonium metabolism pathway in S. cerevisiae. A, The 

directly up-regulated genes are shown in red and purple; those that are indirectly up-regulated by upc2-1 

expression are in blue; the pathway intermediates IPP, DMAPP and GPP are defined as isopentenyl 

pyrophosphate, dimethyl allyl pyrophosphate and geranyl pyrophosphate, respectively. Green arrow indicates the 

enzymatic step leading from farnesyl pyrophosphate (FPP) to α-santalene. B, Maps of the integrative constructs 

used for transferring all modifications into the yeast chromosome and plasmid expression cassette carrying 

additional copy of tHMG1 and SanSyn.   
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We showed that the combination of ERG9 down-regulation and double lpp1/dpp1 deletion increased 

α-santalene production by more than 3 times as compared to the wild type strain (SCIGS28) (Figure 

12E). Further modifications were implemented on SCIGS30 as background strain (Table 2.3). 

Introducing GDH1 deletion into SCIGS30 not only showed a decrease in α-santalene production 

(Figure 14), but also strongly affected the growth rate which decreased to 0.18 h
-1

. The latter effect is 

consistent with what has been previously reported by Asadollahi and co-workers (Asadollahi et al., 

2009); however, they have shown improvement in sesquiterpene production using a gdh1 mutant. 

Both growth rate and α-santalene production were enhanced dramatically (stain SCIGS24) while a 

combination of ERG20/GDH2 overexpression was introduced into SCIGS31. This can be explained 

by the fact that deletion of GDH1 has high impact on the efficiency of ammonium assimilation under 

these conditions (dos Santos et al., 2003) and this undesirable effect is considerably avoided over-

expressing GDH2 (Asadollahi et al., 2009). Thus, enhancement of α-santalene production could result 

from growth restoration by over expression of GDH2 and over-expression of the gene encoding FPP 

synthase (ERG20). However, the later has shown little effect on total sesquiterpene, amorphiadiene, 

production (Ro et al., 2006). To combine all modifications, an additional copy of tHMG1 and a copy 

of upc2-1 were integrated into the chromosome of SCIGS25 resulting in SCIGS25, although 

combining all these modifications did not show further improvement in α-santalene production in 

comparison to SCIGS24 (Figure 14). This result is consistent with previous reports which have shown 

that, at high mevalonate concentrations (>2.5 mM) the reaction rate of S. cerevisiae mevalonate kinase 

(ERG12) begins to decrease (Ma et al., 2011). It has also been demonstrated that there is substrate 

inhibition of the mevalonate kinase of S. aureus at high concentrations of mevalonate (Voynova et al., 

2004).  

 

Figure 14: α-(+)-santalene production rate Cmmol (g Biomass)
-1

 h
-1

 in S. cerevisiae in a two phase partitioned 

glucose limited aerobic chemostat. Strains SCIGS28, SCIGS29 (PHXT1-ERG9; Δdpp1), SCIGS30 (+Δlpp1), 

SCIGS31 (+Δgdh1), SCIGS24 (+ERG20; GDH2), SCIGS25 (+upc2-1, tHMG1) cultivated at dilution rate 

D=0.05 h
-1

. 
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2.5. Re-construction of the bacterial MEP pathway in S. cerevisiae 

Due to the importance of isoprenoid compounds involved, not only in several metabolic functions, e.g. 

photosynthesis (chlorophylls), respiration (ubiquinone), hormonal regulation of metabolism (steroids), 

intracellular interaction (RAS proteins), but also their many industrial applications such as food 

colorants (carotenoids), pharmaceuticals (artemisinin, taxol, and bisabolol), flavors and fragrances 

(limonene), synthesis of isoprenoid compounds through the natural metabolic pathways, MVA or 

MEP pathway, has extensively been considered (Maury et al., 2005; Chang & Keasling, 2006). As 

aforementioned, by employing synthetic biology tools, such as strong bidirectional promoters and high 

copy number plasmids, we re-optimized the endogenous MVA pathway in S. cerevisiae in order to 

over-produce α-(+)-santalene. Instead of all these efforts, the bacterial MEP pathway could be a 

potential target for isoprenoid production, which has not been investigated extensively, in particular in 

heterologous hosts like S. cerevisiae. These findings encouraged me to further evaluate the 

heterologous MEP pathway in S. cerevisiae aiming at generating an efficient yeast cell factory with 

both the MVA and MEP pathway for producing isoprenoid precursors. 

 

2.5.1. In silico analysis of the bacterial MEP pathway 

In order to better understand the behavior of the MEP pathway in yeast, the seven enzymatic reactions 

of the bacterial MEP pathway were evaluated in silico, using the yeast genome scale metabolic model, 

iIN800 (Nookaew et al., 2008). The efficiency of the pathway was compared with the endogenous 

MVA pathway. The model was optimized for maximum production of farnesyl pyrophosphate (FPP), 

which is a branch point intermediate in ergosterol biosynthesis, for two different conditions, using the 

endogenous MVA pathway and using the heterologous MEP pathway, respectively. The result showed 

that by consuming 1 mol of glucose 0.21 and 0.24 mol farnesyl pyrophosphate could be produced 

through the MVA and MEP pathway, respectively. According to this analysis, the FPP production 

through the MEP pathway results in a favourable theoretical yield.  

The stoichiometry calculation of glucose, NAD(P)H and ATP consumption to produce one molecule 

of  FPP for both pathways shown in Equation 1.  

 

The stoichiometry showed that, for producing one molecule of farnesyl pyrophosphate from glucose 

via the MVA pathway six molecules of NADPH and nine molecules of ATP are required, while 

production via the MEP pathway consumes nine molecules of NAD(P)H and six molecules of ATP. 
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Provision of sufficient cytosolic NADPH is, therefore, a critical factor for both pathways. In contrast 

to the MEP pathway, which consumes only 3 molecules of glucose, the MVA pathway consumes 4.5 

molecules of glucose for the biosynthesis of one molecule farnesyl pyrophosphate (these values are 

excluding use of glucose for production of ATP and redox co-factors).  

Combining the results derived from the yeast genome scale metabolic model and the stoichiometry 

calculations, it became evident that the MEP pathway is a more efficient route than the endogenous 

MVA pathway for isoprenoid production in terms of energy consumption and productivity. This result 

is consistent with previous reports about the efficiency of the MEP pathway, as compared to the MVA 

pathway (Ajikumar et al., 2010; Dugar & Stephanopoulos, 2011). This is the rationale for my attempt 

to express the bacterial MEP pathway in yeast for production of isoprenoids. 

2.5.2. Genomic integration of MEP pathway genes 

For further evaluation, the four DNA constructs containing the MEP pathway genes, expression 

elements and selection markers were well designed in silico, synthesized in vitro (chemically) and 

integrated into the yeast chromosome applied by a bipartite integration strategy (Erdeniz et al.,1997), 

respectively. The strains generated in this study are listed in Table 2.4.  

Table 2.4: List of strains and plasmids used in evaluation MEP pathway study 
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The in vitro DNA synthesis offers fast, cheap and efficient method for synthesis of large DNA 

sequences (Kosuri et al., 2010; Matzas et al., 2010). Besides, using synthetic genes with the possibility 

to manipulate codon bias can take much better control of the expression of heterologous MEP pathway 

in yeast. From the genetic engineering point of view, the codon bias is one of the first barriers in 

heterologous protein expression (Gustafsson et al., 2004) and it can prevent the efficient biosynthesis 

of a recombinant protein, because of altering the correlation between the frequency of the codon and 

the abundance of its corresponding tRNA, which impairs the translation machinery of the host 

(Ikemura, 1981). The high efficiency and ease to work with in vivo homologous recombination in      

S. cerevisiae allows stable manipulation without requirement of selective pressure for maintenance. In 

addition, previously, different transcription levels among various chromosomal regions in S. cerevisiae 

have been reported by using lacZ as a reporter gene (Flagfeldt et al., 2009). We have shown that the 

two integration sites, YPRCΔ15 and YPRCτ3, on chromosome XVI of S. cerevisiae provided 

potentially higher expression levels than other regions tested (Flagfeldt et al., 2009). Therefore, all 

genes involved in the bacterial MEP pathway were integrated into these two sites in two steps. Figure 

15 illustrates synthetic constructs and integration methods in greater detail. As can be seen in this 

figure, the constitutive bidirectional promoter TEF1-PGK1 was used to support strong transcription 

level, as I showed high constitutive activity of this promoter in glucose containing media before. In 

addition, direct repeat DNA sequences of 143 bp introduced at both sides of K.l.URA3, and loxP sites 

flanking the kanMX cassette allowed recycling of the selectable markers.   

 

 

Figure 15: Schematic representation of genetic engineering strategies for genomic integration of the bacterial 

MEP pathway genes into the yeast genome (chromosome XVI). 
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In spite of successful integration and transcription, which were confirmed by PCR and RT-PCR, 

respectively, the bacterial MEP pathway could not complement the lack of endogenous MVA pathway 

while being repressed in presence of lovastatin, which is a therapeutic agent and is a competitive 

inhibitor of an early pathway enzyme, HMG-CoA reductase (Alberts et al., 1980) (Figure 16). This is 

in contrast to previously reported findings (Maury et al., 2008). Maury and co-workers reconstructed 

the bacterial MEP pathway in S. cerevisiae by expression of seven enzymatic steps of the pathway 

from self-replicating, high-copy yeast plasmids. They have reported the ability of the bacterial MEP 

pathway in producing ergosterol, which is essential compound in S. cerevisiae, while the endogenous 

MVA pathway was inhibited through addition of lovastatin (Maury et al., 2008). We conclude that 

their result may have derived from incomplete repression of the MVA pathway, even when higher 

concentrations (2 g L-1) of lovastatin were used, which may result from errors in activation of 

lovastatin by hydrolysis reducing the actual concentration of the active inhibitor, or the higher-level 

expression from multi-copy plasmids may have resulted in partial activation of the enzymes resulting 

in a functional MEP pathway. However, later genetic inhibition of MVA pathway revealed the non-

functionality of the MEP pathway to the same level as the chemically inhibited. A brief overview of 

the enzymatic steps shows that, in general, the MEP pathway requires divalent metal cations such as 

Mn
2+

, Mg
2+

 or Co
2+

, ATP for providing energy and a reducing agent, such as NADPH (Maury et al., 

2005). Providing such requirements should not be limiting for a legitimate activity of the pathway. 

Metabolite analysis was therefore performed to identify possible bottleneck(s) within the MEP 

pathway. The detection of intermediates 3 and 5 (Figure 6) in the MEP-pathway carrying yeast strains 

indicated the proper activity of the Dxs, Dxr and the IspD enzymes (data not shown). In addition, non-

activity was observed for the last enzyme of the MEP pathway, IspH, while expressed in yeast 

(Formenti, 2011). We hypothesize that a potential reason for the non-functionality of the MEP 

pathway in S. cerevisiae is the lack of the enzyme activity of IspG and/or IspH, which catalyze the last 

two reactions of the pathway. Both the IspG and IspH are known to be iron-sulfur cluster proteins 

(Adam et al., 2002;
 
Querol et al., 2002;

 
Rohdich et al., 2003;

 
Seemann et al., 2005; Altincicek et al., 

2002;
 
Gräwert et al., 2010) and it has been reported that the cluster is directly involved in IspH activity 

(Gräwert et al., 2004). Our hypothesis was supported with findings of the essential role of ErpA, 

which is an A-type iron-sulfur cluster protein, in the maturation process of IspG, and probably IspH, in 

E. coli.(Loiseau et al., 2007). So, focus turned to the reconstruction of the bacterial Fe-S cluster 

trafficking routes involved in maturation of IspG and IspH in S. cerevisiae. 
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Figure 16: Growth of Saccharomyces cerevisiae strains CEN.PK 113-13D (black circles) and SCISP06 (gray 

circles) in SD minimal medium. Dashed lines represent the growth in 0 g L
-1

 of lovastatin; solid lines represent 

the growth in presence of 2 g L
-1

 of lovastatin. Error bars show the standard deviation from three cultivations. 

 

2.6. Fe-S clusters protein biogenesis in E. coli and S. cerevisiae  

In terms of evolution, Fe-S clusters are thought to be one of the first catalysts in nature. The Fe/S 

clusters combined within protein structure play several vital functions in living cells, e.g. enzymatic 

reactions, ribosome biogenesis, regulation of gene expression, respiration, co-factor biosynthesis and 

so on. Therefore, understanding of the mechanisms leading to assembly of this small inorganic 

molecule not only is interesting, but it is also necessary to solve many disorders which are connected 

to defective Fe/S-cluster biogenesis, e.g. Friederich’s ataxia, sideroblastic anemia or hereditary 

myopathy (Campuzano et al., 1996; Camaschella et al., 2007 and Ye and Rouault 2010). The rhombic 

[2Fe-2S] and cubic [4Fe-4S] are the most common and simplest types of iron-sulfur clusters found in 

nature. However, the distorted [3Fe-4S] type may be found in several proteins. Unlike bacterial 

biogenesis, in eukaryotes e.g. yeast, Fe-S clusters biogenesis mainly is performed in mitochondria and 

this organelle plays a central role in maturation of Fe/S proteins (Lill & Mühlenhoff, 2008; Py & 

Barras, 2010). The mitochondrial biogenesis is also necessary for maturation of the Fe/S cluster 

proteins localized in the cytosol and nucleus, which in yeast also involves the cytosolic Fe/S protein 

assembly (CIA) machinery (Sharma et al., 2010).  

Instead of the compartmental localization, the major elements involved in iron-sulfur cluster 

biogenesis are linked through the evolution from bacteria to eukaryote (E. coli / Yeast) comprising a 

cysteine desulfurase supplying the sulfur (IscS and SufS /Nfs1and Isd11), an iron sensor/doner (CyaY 

/ Yfh1), electron donor (Fdx / Yah1 and Arh1) and a scaffold protein which forms a platform to 
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assemble both the rhombic and cubic types (IscU / Iscu1 and Iscu2). In fact, Fe-S clusters are the 

result of close interaction between scaffold protein with cysteine desulfurase and an iron donor. 

Finally, the clusters are transferred to the acceptor apo-protein by action of the series of chaperone-like 

protein (HscA and HscB / Ssq1, Jac1 and Mge1), which occurs in collaboration with the scaffold 

protein. The clusters can be transferred into the cytoplasm, probably by a mitochondrial ISC export 

apparatus (Atm1 and Erv1) and, furthermore, through the activity of CIA machinery which contains 

Nbp35, Cfd1, Nar1, Cia1 and Dre2, the clusters are transferred into cytosolic and nuclear apo-proteins 

(Figure 17). The latter two apparatuses, mitochondrial ISC export and CIA, are not found in bacteria. 

There are other elements which are involved in Fe-S clusters biogenesis. However, the function of 

most of them is not clearly identified, such as A-type proteins (IscA, SufA and ErpA in E.coli and Isa1 

and Isa2 in yeast mitochondria). The A-type carriers in bacteria can bind both types of Fe-S clusters 

and can transfer them to apo-proteins in vitro (Loiseau et al., 2007; Tan, Lu et al., 2009). Hence, the 

scaffold function was initially proposed for this type of proteins. However, their inability to interact 

with cysteine desulfurase rejects this proposed role. Later, it has been shown that Fe/S clusters can be 

transferred from IscU to IscA (Ollagnier de Choudens et al., 2004). Moreover, purified A-types 

proteins containing Fe-S clusters have been isolated (Gupta et al., 2009; Zeng et al., 2007). Thus, 

transferring the Fe/S clusters to apo-targets from a scaffold is a more likely function for the A-type 

proteins. Indicating the role of ErpA in transferring Fe-S cluster to IspG and probably IspH, was the 

first report showing a specific target, apo-protein, in vivo (Loiseau et al., 2007). And finally, Vinnela 

and co-workers (2009) proposed different Fe/S trafficking models involved in maturation of E. coli 

enzymes, IspG and IspH, based on A-type carriers (Vinella et al., 2009). Therefore, here the suitable 

model composed of ErpA with either human IscA (hISCA1)(Song et al., 2009) or IscA from 

Arabidopsis thaliana (CpIscA)(Abdel-ghany et al., 2005) was re-constructed and expressed in the 

yeast cytosol, which is harboring the bacterial MEP pathway, and their influence on the functionality 

of the pathway was investigated. 
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Figure 17: Schematic representation of Fe-S clusters assembly machinery in S. cerevisiae (details are discussed 

in section 2.7). The dashed arrows represent the apparatuses which are not defined completely yet.   

 

2.6.1. Re-construction of the possible bacterial Fe/S trafficking routes and the bacterial electron 

transfer system 

As an attempt to solve the problem of the non-functionality of the MEP pathway in S. cerevisiae, the 

impact of the co-expression of genes involved in transferring of Fe-S cluster into IspG/IspH, E. coli 

electron transfer system and a copy of ispG and ispH both from A. thaliana on the functionality of 

MEP pathway were investigated. Thus, the coding region of genes including erpA, fpr and fldA from 

E. coli assembled on pISP08 (Figure 18) were transformed into SCISP06 generating SCISP16 (Table 

2.4). The empty plasmid pSP-GM1 was transformed into CEN.PK113-13D and SCISP06 resulting in 

SCISP28 and SCISP29, respectively (Table 2.4). A copy of each ispG and ispH from A. thaliana were 

cloned with iscA from either human or A. thaliana resulting in pISP24 and pISP25, respectively 
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(Figure 18). Strains SCISP31 and SCISP32 were constructed by co-transforming pISP08 with either 

pISP24 or pISP25 into SCISP12, respectively (Table 2.4). 

 

Figure 18: plasmid-based reconstruction of possible Fe/S trafficking routes involved in maturation of bacterial 

IspG/IspH, bacterial electron transfer systems and plant-derived ispG/ispH in S. cerevisiae. 

 

To rule out any possible additional effect on cell growth using lovastatin for inhibition the MVA 

pathway, the functionality of the bacterial MEP pathway was investigated by genetically blocking the 

MVA pathway, which offers promising and absolute inactivation of the MVA pathway. It has been 

indicated that yeast strains with deficiencies in ERG13, ERG19, ERG8, or ERG9 are non-viable under 

normal growth conditions (Servouse et al., 1984; Bergès et al., 1997;
 
Dimster-Denk & Rine, 1996;

 

Tsay & Robinson, 1991;
 
Jennings et al., 1991). Since the MEP pathway contributes to the ergosterol 

biosynthetic pathway through IPP and DMAPP intermediates, deletion of each ERG13, ERG19 or 

ERG8, which are located upstream of these intermediates, should be more efficient than using 

lovastatin for blocking the MVA pathway and evaluating the MEP pathway functionality. For our 

purpose, ERG13 was a good candidate since supplying the medium with exogenous mevalonate can 

complement its inactivation. ERG13 encodes HMG-CoA synthase (Maury et al., 2005), and its 

disruption results in a strain that requires exogenous mevalonate supplementation for viability 

(Dimster-Denk & Rine, 1996). The coding region of ERG13 was replaced by a KanMx integration 

cassette, which was confirmed by PCR (Figure 19). As it is illustrated in Figure 20, the ERG13 

deleted strains could not grow in media lacking mevalonate under aerobic conditions.  

 

Figure 19: Gel electrophoresis of PCR products to confirm deletion of ERG13 (1: SCISP28, 2: SCISP29, 3: 

SCISP16, 4: CEN.PK 113-13D (wild type), 5: SCISP30, 6: SCISP31, 7: SCISP32, M: 1 kb Plus DNA ladder. 
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Figure 20: Aerobic cultivation of MEP pathway. upper panel: strains co-expressing erpA, fpr and fldA; lower 

panel: strains co-expressing erpA, fpr, fldA, At-IspG , At-IspH with either CpIscA or hISCA. All strains were 

erg13 background.  

 

2.6.2. Evaluation of the bacterial MEP pathway in S. cerevisiae under anaerobic condition 

Fe-S clusters are sensitive to superoxide (O2
-
) and other oxidative agents (Liochev & Fridovich, 1994; 

Pantopoulos & Hentze, 1995). The Fe-S cluster contained in IspH is easily destroyed by exposure to 

molecular oxygen or other oxidative agents (Gräwert et al., 2004). Therefore, to prevent inactivation 

of the Fe-S clusters in IspG and IspH, all erg13 strains were also evaluated under anaerobic 

conditions. Yeast growing in anaerobic condition is ergosterol-dependent as the biosynthesis of 

ergosterol is disrupted in this condition. For this, exogenous ergosterol was added to the SD media at a 

final concentration of 1 mg L
-1

. None of the erg13 strains showed mevalonate-independent growth 

(Figure 21). This means that, even in anaerobic conditions, the MEP pathway was not able to 

complement the MVA pathway.  
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Figure 21: Anaerobic cultivation of MEP pathway. upper panel: strains co-expressing erpA, fpr and fldA; lower 

panel: strains co-expressing erpA, fpr, fldA, At-IspG , At-IspH with either CpIscA or hISCA. All strains were 

erg13 background.  

 

Besides demonstrating a strategy for easy integration of eight heterologous genes, here I present 

different strategies in order to make functional MEP pathway in Saccharomyces cerevisiae. My efforts 

can be approached from different angles, which are considered below. However, the results did not 

prove any activity of the MEP pathway.  

First, I constructed possible bacterial paths (aerobic and anaerobic), which have previously been 

proposed and shown transferring of Fe-S clusters into IspG and IspH in E. coli, in yeast cytosol 

(Figure 22) (Vinella et al., 2009). The authors have suggested that, depending on environmental 

conditions, e.g. aerobic, anaerobic or stress, Fe-S cluster is transferred from IscU or SufU scaffolds to 

apoIspG and apoIspH through the combination of A-type carriers, including ErpA, IscA and SufA 

(Vinella et al., 2009). Hence, erpA from E. coli was first expressed to build the direct transferring 

route of Fe/S cluster into IspG and IspH from their scaffold. It was shown that the Fe-S clusters can 

directly be transferred from IscU to ErpA in E. coli (Pinske & Sawers, 2012). I could not obtain 

functionality of the enzymes. Previously reported data have shown that the cytosolic localization has 

failed to generate a functional bacterial or human IscU while expressing in yeast (Gerber et al., 2004). 

Even yeast U-type homolog scaffolds (Isu1 and Isu2) playing a crucial role in maturation of both 
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cytosolic and mitochondrial Fe-S proteins need to be expressed in the mitochondria to show activity 

(Gerber et al., 2004). 

 

Figure 22: Schematic representation of possible Fe/S trafficking routes involved in maturation of bacterial 

IspG/IspH in E. coli (left) and reconstruction of possible routes preformed in this study in the yeast cytosol 

(right). Round dot arrows represent unknown mechanisms for transferring the Fe-S clusters from mitochondria to 

cytosol. For more information see text. 

Furthermore, IscA from either human or A. thaliana were co-expressed with erpA in order to create 

the second and third transferring routes of Fe/S clusters into IspG and IspH from scaffold proteins. 

Previously, localization and activity of human ISCA1 (hISCA1) was shown to be in the cytosol of 

HeLa cells (Song et al., 2009). The authors have also demonstrated interaction of the small domain of 

IOP1 (Iron-only hydrogenase-like protein I) with human ISCA1 using yeast two-hybrid systems 

(Song et al., 2009). CpiscA from A. thaliana is involved in Fe-S biogenesis in chloroplasts (Abdel-

ghany et al., 2005). The Fe-S cluster in CpIspA indicated stability in presence of oxygen (Abdel-ghany 

et al., 2005).  
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Second, the E. coli electron transfer system was reconstructed in yeast by co-expressing fldA encoding 

flavodoxin I and fpr encoding flavodoxin reductase. Puan and co-workers (Puan et al., 2005) identified 

fldA as an essential gene for isoprenoid biosynthesis in E. coli, as it provides reducing equivalents for 

the Fe/S clusters of IspG and IspH (Jenkins & Waterman, 1994). It has been reported that both 

enzymes, IspG and IspH, are dependent on NADPH and the flavodoxin/flavodoxin reductase redox 

system as electron donor for their catalytic activity (Puan et al., 2005;
 
Rohdich et al., 2003;

 
Wolff, 

2003;
  
Seemann et al.,2006;

 
Xiao et al., 2008;

 
Xiao et al., 2009)

.
 Gräwert and co-workers (Gräwert et 

al., 2004) have reported that the in vitro maximum activity for IspH was obtained with NADPH as co-

substrate, together with recombinant flavodoxin and flavodoxin reductase from E.coli. Flavodoxin and 

flavodoxin reductase are FMN and the FAD cofactor containing proteins, respectively, and it has been 

shown that NADPH is the preferred reducing equivalent of flavodoxin reductase compared to NADH 

(Jenkins & Waterman, 1994). Over-expression of flavodoxin and flavodoxin reductase might facilitate 

electron flux from NADPH to IspG and IspH and, therefore, result in increased activity of these 

enzymes. A similar phenomenon was observed in biosynthesis of hydrocortisone in yeast (Szczebara 

et al., 2003). Over-expression of the yeast essential reductase, Arh1 (adrenodoxin reductase homolog), 

using strong promoter increased the production of hydrocortisone up to 60% (Szczebara et al., 2003). 

Both Arh1 and human ADX protein (adrenodoxin) are responsible for transferring electrons from 

NADPH to the related enzyme. The authors have suggested that the flux of electrons was elevated as a 

result of the ARH1 overexpression (Szczebara et al., 2003). 

And finally, due to the above mentioned findings, we also hypothesized that the poor recognition of 

the bacterial apo-proteins, IspG and IspH, by the eukaryotic Fe/S cluster machinery leads to low 

amounts of active proteins and subsequently results in inefficient MEP pathway activity. Thus, the co-

expression of a copy of each ispG and ispH both from A. thaliana was investigated, in order to 

increase the pool of expressed enzymes and, subsequently, to overcome the probable lack of IspG and 

IspH. 

Furthermore, my findings indicate that, despite the presence of Fe-S assembly machineries in yeast, 

the ISC system present in mitochondria and the CIA system for cytosolic Fe-S cluster assembly, 

(Mühlenhoff et al., 2002;
 
Sharma et al., 2010;

 
Lill & Mühlenhoff, 2005) these may not be suitable for 

transferring iron-sulfur clusters to IspG and IspH. In addition, different known and unknown elements 

are involved in transferring the Fe-S clusters from the scaffold to apo-proteins. Some of these elements 

have been identified and isolated and their collaboration in such transmission has been proved in vivo 

(Loiseau et al., 2007; Vinella et al., 2009). In spite of some differences, these elements show similar 

biochemical properties and potential functional redundancy. However, such transmission might be a 

major challenge in order to have a functional MEP pathway in the yeast cytosol.  
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CHAPTER 3: CONCLUSIONS AND PERSPECTIVES 

 
Pathway optimization and, specifically, modulation of the enzyme expression is subjected and one of 

the key challenges in the most metabolic engineering investigations aiming at production of fine 

chemicals and pharmaceuticals. During my PhD study, I have focused on optimizing enzyme activity 

through the modulation of gene dosage and gene copy number in Saccharomyces cerevisiae. 

Furthermore, a new expression system was developed and implemented in optimizing the endogenous 

mevalonate pathway and in re-constructing the heterologous MEP pathway, in order to generate a new 

yeast strain as a microbial cell factory for over-production of isoprenoids.  

Due to advantageous use of glucose, in terms of economy and productivity, a new divergent promoter 

has been developed, containing two strong and constitutive promoters, TEF1 and PGK1. I showed that 

the two promoters, in the bidirectional construct, have expression profiles similar to the corresponding 

isolated promoters and can therefore support high level gene expression. Furthermore, the new 

divergent promoter was used to construct new episomal plasmids, pSP series (Paper I), to optimize the 

endogenous mevalonate pathway through gene integration (Paper IV) and also to construct the 

integration cassettes containing the synthetic MEP pathway (Paper V). Besides, the activities of 7 

different constitutive and glucose based promoters, PTEF1, PTPI1, PTDH3, PADH1, PPGK1, PHXT7 and PPYK1, 

were compared with each other and showed varying profiles of activity for each promoter. However, I 

used PPGK1 and PTEF1 for constructing the new vector, but depending on the purpose one can use 

different promoter pairs with comparable or different expression patterns. As we demonstrated in 

Paper III, using the PHXT1 promoter repressed the ERG9 transcription under glucose limitation in an 

efficient manner as similar to successful implementation of the synthetic posttranscriptional genetic 

tool, RNA control modules (Rnt1p), to reduce the transcription level of the ERG9 gene (Babiskin & 

Smolke, 2011b). Our results in paper III demonstrated pathway optimization through redirection of the 

carbon flux through employing synthetic biology tools at transcription level independent of addition of 

external compounds. In addition, engineering the pSP-G vector by introducing additional restriction 

sites after both terminator regions to generate pSP-GM allowed us simple construction of integration 

cassettes containing 4 genes for optimizing the endogenous mevalonate pathway.   

Modulating gene copy number at DNA level further improved enzyme activity. In paper II, a more 

than 3-fold improvement of the plasmid copy number was demonstrated through the modulation of the 

auxotrophic marker (URA3) level applying two different biological toolsets, a weak promoter leading 

to low transcription level and the ubiquitin-tag/N-degron system alerting the protein stability. 

Combination of both the weak promoter and the ubiquitin-tag/N-degron system indicated positive 

effect on plasmid copy number. Subsequently, I found a high correlation between the plasmid copy 

number and patchoulol production. In addition, in this paper, I reported the successful application of 



48  CONCLUSIONS AND PERSPECTIVES  

the signal peptide leading to protein-degradation in order to modulate plasmid copy number for the 

first time generating the new 2μm-based episomal plasmid. This expression vector is useful for 

metabolic engineering projects that aim at high level production of valuable products using yeast as a 

production platform. Furthermore, the system described here can potentially be applied to other 

systems using plasmid-based gene expression.  

Paper IV and paper V represent not only the high capacity of yeast for accepting several genetic 

manipulations through either chromosomal integration or plasmid transformation, but also it shows the 

efficiency of the bipartite gene targeting (Erdeniz et al., 1997) in combination with reusable marker for 

such manipulations. In paper IV, the outcomes was showed that introduction of all modifications in 

combination with a specifically developed continuous fermentation process led to a 4-fold 

improvement of α-santalene yield over the reference strain.    

In the last investigation, I demonstrated a strategy for easy and stable integration of the bacterial MEP 

pathway, containing 8 genes in two steps into yeast chromosome and I showed the expression of this 

pathway at the transcription level. However, a Functional MEP pathway was not achieved due to lack 

of enzyme activity. I found that, despite the presence of Fe-S assembly machineries in yeast, the ISC 

system present in mitochondria and the CIA system for cytosolic Fe-S cluster assembly, trafficking of 

Fe-S clusters into the last two enzymes of the MEP pathway is challenging. Inspecting the results 

presented in paper V, I believe that specific physical interaction and compartmentalization would be 

required for in vivo biogenesis and transfer of essential prosthetic groups, here the iron-sulfur clusters 

for activation of bacterial MEP pathway enzymes in yeast. Therefore, it seems interesting to evaluate 

IspG and IspH expression in the mitochondria as this may represent a new interesting engineering 

strategy, which may even be relevant for activation of other bacterial iron-sulfur cluster proteins in 

yeast. 
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