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A thunderstorm can be viewed as a consequence of Zeus’ anger or of a difference of 

potential between the clouds and the earth. A disease can be seen as the result of a spell cast on 

the patient or of an infection by a virus. In all cases, however, one watches the visible effect of 
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Advancing Metabolic Engineering through Combination of Systems Biology and Adaptive Evolution 

KUK-KI HONG 

Systems and Synthetic Biology Group 

Department of Chemical and Biological Engineering, Chalmers University of Technology 

ABSTRACT 

Understanding evolutionary strategies of microorganisms may provide opportunities for 

advanced strain development with the aim to produce valuable bio-products from renewable 

biomass resources. Through evolutionary processes, microorganisms can attain new traits 

associated with genetic changes that may be useful for the construction of improved strains. 

Therefore, the characterization of evolutionary strategies may result in identification of the 

molecular and genetic changes underlying newly obtained traits, and can hereby become an 

essential step in strain development. However, so far the depth of analysis has limited the range 

of comprehension. This thesis applied genome-wide analyses such as transcriptome, metabolome 

and whole-genome sequencing to investigate the evolutionary strategies of the yeast 

Saccharomyces cerevisiae. Three evolved mutants were independently generated by adaptive 

evolution on galactose minimal media to obtain the trait of improved galactose utilization by 

yeast. Those strains expressed higher galactose utilization rates than a reference strain in terms of 

both maximum specific growth rate and specific galactose uptake rate. Application of the 

genome-scale comparative analyses employing engineered strains as controls elucidated unique 

changes obtained by adaptive evolution. Molecular bases referred from the changes of 

transcriptome and metabolome were located around galactose metabolism, while genetic bases 

from whole-genome sequencing showed no mutations in those changes. Common mutations 

among the evolved mutants were identified in the Ras/PKA signaling pathway. Those mutations 

were placed on the reference strain background and their effects were evaluated by comparison 

with the evolved mutants. One of the site-directed mutants showed even higher specific galactose 

uptake rate than the evolved mutants, and just few number of genetic and molecular changes were 

enough to recover complete the adaptive phenotype. These results indicate that identification of 

key mutations provide new strategies for further metabolic engineering of strains. In addition, the 

pleiotropy of obtained phenotype that is improved galactose availability was tested. When the 

galactose-evolved mutants were cultured on glucose that is the most favorite carbon source of 

yeast, those mutants showed reduction of glucose utilization. Genome-wide analyses and site-

directed mutagenesis were applied again to understand underlying molecular and genetic bases of 

this trade-off in carbon utilization. The results indicated that loosening of tight glucose regulation 

was likely the reason of increased galactose availability. The implications of evolutionary 

strategies and the impact of genome-scale analyses on characterization of evolved mutants are 

discussed.  

 

Key words: metabolic engineering, evolutionary engineering, systems biology, galactose 

utilization, Ras/PKA signaling pathway, pleiotropy of evolutionary strategies 
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1. INTRODUCTION 

1.1. Yeast Saccharomyces cerevisiae for future biorefineries 

Even before recognizing the presence of microorganisms, mankind has used microbial 

fermentation to produce beverages and foods. Since 1920 industrial microbial fermentation has 

been used to manufacture organic acids, amino acids and vitamins (Kinoshita, et al., 1957, 

Nakayama, et al., 1961, Demain, 2000). The advent of genetic engineering in the 1970s led to the 

use of microbial fermentation for the production of pharmaceutical proteins such as human 

insulin and human growth hormone (Goeddel, et al., 1979, Johnson, 1983). Currently, the world 

is confronting serious challenges such as climate changes due to greenhouse gas emission and the 

depletion of petroleum oil causing limitation of energy and chemical resources. Microbial 

fermentation is considered as one of the possible solutions to these grand challenges, because it 

uses renewable biomass that can also absorb carbon dioxide during growth, and produce fuels and 

chemicals in eco-friendly processes (Lipinsky, 1981, Werpy & Petersen, 2004, Vennestrom, et al., 

2011). There are already several successful industrial trials to produce chemicals from biomass 

by microbial fermentations (Table 1-1).  

 

Table 1-1. Chemicals are recently produced from biomass, including major players and host 

strains 

 

Chemicals Products/Uses Major players Host strains 

succinic acid 
plastics, chemical 
intermediates, solvents, 
polyurethanes, plasticizers 

BASF/Purac(CSM) 

Basfia 
succiniciproducens 
 (from Bovin rumen, 
Gram-negative) 

3-hydroxypropionic 
acid 

acrylic acid: plastics, fiber, 
coatings, paints, super-
absorbent diapers 

Novozymes/Cargill 
Escherichia coli 
Saccharomyces 
cerevisiae 

isoprene synthetic rubber 
Genencor(Danisco) 
/Goodyear 

Bacillus subtilis, 
Escherichia coli, 
Pantoea citrea, 
Trichoderma reesei, 
Yarrowia lipolytica 

lactic acid plastics, synthetic fibers Cargill 
Kluyveromyces 
marxianus 
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lactic acid plastics, synthetic fibers Purac(CSM)/Arkema 
thermophilic Bacillus, 
thermophilic Geobacillus 

1,3-propanediol 
engine coolant, cosmetics, 
surfactants, emulsifiers, 
preservatives, polymers 

Dupont/Tate&Lyle Escherichia coli 

propylene Thermoplastic Braskem/Novozymes 
Propionibacterium 
acidipropionici 

 

Strain development is a pre-requisite to materialize bio-based chemical production, as it is 

directly related to not only improving yield, titer, and productivity of products, but also utilizing 

cheap raw materials efficiently (Tyo, et al., 2007, Patnaik, 2008, Elkins, et al., 2010). The yeast 

Saccharomyces cerevisiae has been used for the production of a wide range of industrial products 

due to its tolerance to industrial conditions and the vast amount of knowledge about its 

physiology, biochemistry, genetics, and long history of fermentation (Pronk, 2002, van Maris, et 

al., 2006, Nevoigt, 2008, Nielsen & Jewett, 2008, Krivoruchko, et al., 2011). Thus, its products 

range and available current technologies are quite broad (Table 1-2).  

 

Table 1-2. Examples of products and strains of S.cerevisiae  

(More detailed explanation is in Paper IV.) 

Categories Products Strains References 

Biofuels 

Ethanol CEN.PK102-3A (MATa ura3 leu2)  
(Guadalupe 
Medina, et al., 
2010) 

Biobutanol 
CEN.PK 2-1C (MATα leu2-3, 112 his3-Δ1 ura3-
52 trp1-289 MAL2-8(Con) MAL3 SUC3) 

(Chen, et al., 
2011) 

Biodiesels 
YPH499 (MATa ura3-52 lys2-801_amber 
ade2-101_ochre trp1-D63 his3-D200 leu2-D1) 

(Yu, et al., 2012) 

Bisabolene BY4742 (MATα his3D1 leu2D0 lys2D0 ura3D0) 
(Peralta-Yahya, et 
al., 2011) 

Bulk 
chemicals 

1,2-propanediol 
NOY386αA (MATα ura3-52 lys2-801 trp1-Δ63 
his3-Δ200 leu2-Δ1), BWG1-7a (MATa ade1-
100 his4-519 leu2-3,112 ura3-52 GAL+) 

(Lee & Dasilva, 
2006) 

L-Lactic acid 
CEN. PK2-1C (MATa ura3-52 trp1-289 leu2-
3,112 his3Ä1 MAL2-8C SUC2) 

(Zhao, et al., 
2011) 

Polyhydroxy-
alkanoates 

BY4743 (MATa/α his3Δ1/his3Δ1 
leu2Δ0/leu2Δ0 ura3Δ0/ura3Δ0) 

(Zhang, et al., 
2006) 
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Pyruvic acid CEN.PK113-7D (MATa MAL2-8C, SUC2) 

(van Maris, et al., 
2004) 

 
Succinic acid 

AH22ura3 (MATa ura3Δ leu2-3 leu2-112 his4-
519 can1) 

(Raab, et al., 
2010) 

Fine 
chemicals 

β-amyrin CEN.PK113-7D (MATa MAL2-8C SUC2) 
(Madsen, et al., 
2011) 

β-carotene CEN.PK113-7D (MATa MAL2-8C SUC2) 
(Verwaal, et al., 
2007) 

Amorpha-4, 11- 
diene 

CEN.PK2-1C  (MATa ura3-52 trp1-289 leu2-
3,112 his3Ä1 MAL2-8C SUC2), CEN.PK2-1D  
(MATα ura3-52 trp1-289 leu2-3,112 his3Ä1 
MAL2-8C SUC2) 

(Westfall, et al., 
2012) 

Cinnamoyl 
anthranilates  

BY4742 (MATα his3D1 leu2D0 lys2D0 ura3D0) 
(Eudes, et al., 
2011) 

Cubebol 
CEN.PK113-5D (MATa MAL2-8c SUC2 ura3-
52 ) 

(Asadollahi, et al., 
2010) 

Eicosapentaenoic 
acid (EPA) 

CEN.PK113-5D (MATa MAL2-8c SUC2 ura3-
52 ) 

(Tavares, et al., 
2011) 

Linalool 
BQS252 (MATa ura3-52 (derivative of 
FY1679)) 

(Rico, et al., 2010) 

Methylmalonyl-
coenzyme A 

InvSC1 (MATa, his3delta1, leu2, trp1-289, 
ura3-52 (Invitrogen, Carlsbad, CA, USA))  
BJ5464 (MATα, ura3-52, trp1, leu2-delta1, 
his3-delta200, pep4::HIS3, prb1-delta1.6R, 
can1, GAL). 

(Mutka, et al., 
2006) 

Patchoulol CEN.PK113-13D and CEN.PK113-5D 
(Albertsen, et al., 
2011) 

Resveratrol FY23 (MATa ura3-52 trplA63 leu2A1) 
(Becker, et al., 
2003) 

Vanillin 

 X2180-1A ( MATa his3D1 leu2D0 met15D0 
ura3D0 adh6::LEU2 bgl1::KanMX4 
PTPI1::3DSD [AurC]::HsOMT [NatMX]::ACAR 
[HphMX]) 

(Brochado, et al., 
2010) 

Se-methylseleno-
cysteine 

CEN.PK113-7D (MATa MAL2-8C SUC2) 
(Mapelli, et al., 
2011) 

Non-ribosomal 
peptides 

CEN.PK113-11C (MAT a MAL2-8c SUC2 ura3-
52 his3-D1) 

(Siewers, et al., 
2010) 

Protein 
drugs 

Insulin-like growth 
factor 1 (fhlGF-1) 

GcP3 (MAT a pep4-3 prb1-1122 ura3-52 leu2 
gal2 cir°) 

(Vai, et al., 2000) 

Glucagon 
SY107 (MATα YPS1 Δtpi::LEU2 pep4-3 leu2 
Δura3 cir+) 

(Egel-Mitani, et 
al., 2000) 
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single-chain 
antibodies  (scFv) 

BJ5464 (a ura3-52 trp1 leu2D1 his3D200 
pep40HIS3 prb1D1.6R can1 GAL) 

(Hackel, et al., 
2006) 

 
Hepatitis surface 
antigen  (HBsAg) 

INVSc1 (MATa his3D1 leu2 trp1-289 ura3-52) 
(Vellanki, et al., 
2007) 

 
Parvovirus B19 VP2 

HT393 (MATa leu2-3 leu2-112 ura3Δ5 prb1-1 
prc1-1 pra1-1 pre1-1) 

(Lowin, et al., 
2005) 

 
Epidermal Growth 
factor  (EGF) 

W303-1A (MATa leu2-3,112 his3-11,15 ade2-
1 ura3-1 trp1-1 can1-100), W303-1B (MATα 
leu2-3,112 his3-11,15 ade2-1 ura3-1 trp1-1 
can1-100) 

(Chigira, et al., 
2008) 

 
Immunoglobulin G 

BJ5464a (MATα  ura3-52 leu2~1 his3~200 
pep4::HIS3 prb1~1.6Rcan1 GAL) 

(Rakestraw, et al., 
2009) 

 

Hepatitis B virus 
surface antigen 
(HBsAg) 

S.cerevisiae 2805 (MATα pep4::HIS3 prb-Δ1.6 
his3 ura3-52 gal2 can1) 

(Kim, et al., 2009) 

 

L1 protein of 
human 
papillomavirus 
(HPV) type16  

S.cerevisiae 2805 (MATα pep4::HIS3 prb-Δ1.6 
his3 ura3-52 gal2 can1) 

(Kim, et al., 2010) 

 

There is also extensive research on extending substrate range of this yeast. Resources for 

traditional fermentations have been derived from food crops like corn, wheat and sugar cane, but 

to replace the large amounts of fuels and chemicals currently derived from mineral oil, the use of 

abundant and renewable non-food resources such as switchgrass, corn-cob, bagasse, cheese whey 

and algae is necessary. These biomass resources are composed of diverse kinds of carbon 

structure: polymers (cellulose, starch, xylan), dimers (cellobiose, melibiose, lactose) and 

monomers (glucose, fructose, galactose, arabinose, xylose). Except the hexoses (glucose, fructose, 

galactose) and a few dimers (sucrose, maltose), most of these carbon compounds are not 

endogenously metabolized by S. cerevisiae. Even among the hexoses there are broad differences 

in uptake rate, for example the uptake rate of galactose is much lower than for the other hexoses. 

Therefore, the extension of substrate range of S. cerevisiae provides an excellent opportunity to 

enhance its suitability for biofuels and biochemicals production (van Maris, et al., 2006, Hahn-

Hagerdal, et al., 2007, Nevoigt, 2008, Marie, et al., 2009) (Fig. 1-1). 

(For details, refer to Paper IV.). 
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Fig. 1-1. Overview of relevant carbon sources for yeast fermentation. Heterologous enzymes that 

are currently introduced are summarized for non-utilizable carbon sources (polymer, disaccharide 

and pentose sugar) and non-preferred one (galactose) in S. cerevisiae. 
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1.2. Evolutionary approaches in strain development 

 1.2.1. Evolutionary engineering 

Evolutionary engineering has been traditionally employed for strain development in industry, 

since it can generate specific traits relatively quickly at some level, even though governing 

biological principle may not be evident (Sauer, 2001, Zhang, et al., 2002). The term of 

evolutionary engineering is composed of evolution and engineering. The evolution is a strategy of 

life to adapt to changed environments by natural selection. It is operated through iterative process 

of creating variation in population and selecting proper individuals, consequently a specific trait 

in the population is enriched. This nature’s algorithms can be engineered to make 

biotechnological relevant traits by adjusting the rate of variant generation or defining new 

selection pressures. Therefore, evolutionary engineering is the application of suitable mutagenesis 

and artificially designed selection procedures based on evolutionary mechanisms for strain 

development. Success of evolutionary engineering is, hence, dependent on the ability to design 

mutagenesis and selection conditions (Sauer, 2001, Sonderegger & Sauer, 2003). On the one hand 

random mutagenesis by treatment of mutagens for adjusting mutation rate can be used; it 

generates a broader distribution of mutations in the genome, whereas it makes it more difficult to 

identify beneficial mutations (Sauer, 2001, Ikeda, et al., 2006). On the other hand, the methods 

that can generate traceable mutations in specific regions have been developed, which is called 

genome engineering such as gTME, MAGE and TRMR (Santos & Stephanopoulos, 2008, Boyle 

& Gill, 2012). Another important consideration is to understand the underlying evolution 

mechanisms. Basically, evolutionary engineering relies on evolutionary mechanisms such as 

natural selection or natural preservation (Darwin regretted using selection more frequently than 

preservation). Since natural preservation is the fundamental evolutionary mechanism, this 

concept is used in the design stage of evolutionary engineering. It is also important to be aware of 

other relevant evolutionary mechanisms for strain development such as clonal interference, trade-

offs in traits, negative epistasis (Elena & Lenski, 2003).  

  1.2.2. Inverse metabolic engineering 

Developed strains based on evolutionary engineering can be directly used for industrial 

application. In most cases, only a few specific traits from the mutant strains are needed; however 



Intro. Evolutionary approaches in strain development 

19 
 

industrial strains retain the combination of several non-necessary traits simultaneously (Ohnishi, 

et al., 2002, Ikeda, et al., 2006, Ikeda, et al., 2009, Warner, et al., 2009). Therefore, additionally 

the concept of inverse metabolic engineering has been used to make evolutionary engineering 

more useful. Inverse metabolic engineering starts from the identification of genetic basis of 

obtained phenotypes, and completed by transfer of that specific genotype(s) to an industrial strain 

(Bailey, et al., 2002, Ikeda, et al., 2006). The important part in this engineering is the 

identification of the genetic basis; not only in order to enable the transfer of genetic changes 

related to the gained trait, but also the specific trait(s) may not easily be reached to its optimum 

stage because of evolutionary constraints such as negative epistasis, clonal interference; therefore, 

additional engineering based on the identified genetic changes is sometimes required (Warner, et 

al., 2009). For these reasons, the identification of the genetic bases of selected traits is crucial. 

Recently, analytical capabilities that can scan molecular or genetic alteration at genome scale 

have been developed such as omics tools and next generation whole genome sequencing. The 

integration of data generated from those tools is expected to facilitate identification of molecular 

and genetic changes in a more comprehensive fashion (Bro & Nielsen, 2004, Heinemann & Sauer, 

2010, Oud, et al., 2012). 

  1.2.3. Adaptive evolution 

Adaptive evolution is often confused with several similar terms such as adaptive laboratory 

evolution, experimental evolution, and even evolutionary engineering (Sauer, 2001, Elena & 

Lenski, 2003, Conrad, et al., 2011, Portnoy, et al., 2011, Dettman, et al., 2012). Adaptive 

evolution has been used to explain adaptation process of life in biology. When this process can be 

imitated in a laboratory to understand evolution mechanisms or applied to strain development, 

derivative words have been generated. Therefore, adaptive evolution includes both natural 

processes in basic science and a tool in biotechnology. It generates mutations spontaneously 

based on the cell’s endogenous system, and finds a phenotype that have improved fitness to a 

given environment than an ancestor strain, simply by continuous exposure of a population to the 

given environment over a period of time.              
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1.3. Characterization of evolved mutants by genome-scale analysis  

Evolutionary engineering has made commercially successful stories in strain development, 

while the identification of molecular or genetic basis that is involved in phenotypic changes has 

remained an enduring challenge (Ohnishi, et al., 2002,Warner, et al., 2009). There have been 

several efforts to find genetic changes. If biological information about an obtained phenotype is 

present at the pathway level or its regulation, one can check molecular changes in that specific 

pathway. For example, the strain producing high concentration of lysine was characterized based 

on analysis of specific amino acid production pathways (Ikeda, et al., 2006). Key mutations that 

were likely related to release of allosteric regulation were detected, and partial contribution of the 

mutations on the overall phenotype was confirmed. Technological advance has led to 

accumulation of huge amount of knowledge about the biological reactions and regulations, 

facilitating better predictability of relative molecular changes. However, since the changes are 

happened at the whole genome level, and the complexity of biological reactions and regulations 

are still beyond full comprehension, advanced analytical tools that can scan overall molecular 

changes in a system level of a cell are required. During the last decade, omics techniques have 

been developed for genome-wide analysis (Bro & Nielsen, 2004, Herrgard, et al., 2008, 

Petranovic & Vemuri, 2009, Snyder & Gallagher, 2009), and omics approaches established a new 

field in life science, so called Systems Biology that aims to understand  a cell in an holistic view 

by using high-throughput omics data and mathematical models. Systems Biology has been 

implemented by quantifying each level of molecules through whole-genome sequencing, 

transcriptome, proteome, metabolome. Their usefulness and limitation especially for the 

characterization of evolved stains has been recently reviewed (Oud, et al., 2012).  

  1.3.1. Transcriptome analysis for the characterization of evolved strains 

Transcriptome analysis has been routinely used in the last decade because of standardization 

of techniques and data with the support of bioinformatics and models (Bro, et al., 2005, Patil & 

Nielsen, 2005, Bengtsson, et al., 2008, Reimand, et al., 2011). Not only technical maturation, but 

also it has the best coverage among other omics tools (Herrgard, et al., 2008, Reimand, et al., 

2011). The effect of environmental or genetic perturbation can be checked easily by counting the 

number of significantly changed genes. Identified differentially expressed genes between evolved 

mutants and a reference strain are routinely analyzed to find altered pathways, metabolisms, and 



Intro. Characterization of evolved mutants by genome-scale analysis 

21 
 

regulation circuits based on several gene enrichment methods. Therefore, the transcriptome 

analysis can enumerate all possible transcriptional changes that are related to obtained 

phenotypes. Although there are several restrictions such as mixing of transcriptional changes 

between cause and consequence or the desired phenotype related and the experimental condition 

related and so on, transcriptome analysis is essentially useful as a first scan of molecular changes 

in evolved mutants. Additionally, comparison of multi strains or combination with other omics 

data has identified key molecular changes in different mutants (Ideker, et al., 2001, Bro, et al., 

2005, Bengtsson, et al., 2008, Vijayendran, et al., 2008, Hazelwood, et al., 2009).  

  1.3.2. Metabolome analysis for the characterization of evolved strains 

Metabolites play important roles as intermediates of biochemical reactions, which means 

their concentration is a key factor for controlling the reaction rate and they further are involved in 

regulation of the metabolic network through allosteric regulation.  Thus, the level of metabolites 

represents integrative information of the cellular function; they can give critical clues to define 

the phenotype in evolved mutants (Zaldivar, et al., 2002, Kummel, et al., 2010). However, since 

metabolites have very diverse molecular kinds, it is almost impossible to analyze and quantify all 

metabolites in a cell simultaneously unlike the transcriptome. Practically targeted metabolome 

that analyze and quantify selected metabolites therefore has been more frequently used than 

metabolite profiling that tries to increase the number of covering metabolites. Targeted 

metabolomics can get clues from transcriptome data in selected metabolites of interest; and these 

metabolites data can be used to provide additional proof about the link between a desired 

phenotype and molecular changes.     

  1.3.3. Whole-genome sequencing for the characterization of evolved strains 

A genetic change is the first and direct origin of a phenotypic change. Other molecular 

alterations are reflections of the genetic change. Therefore identification of driving genetic 

changes is crucial in inverse metabolic engineering. The importance of the identification of 

genetic changes was mentioned by Bailey et al. in 1996, The power of the technology for 

deciphering the genetic basis for a given phenotype is a critical determinant of the feasibility of 

inverse metabolic engineering (Bailey, et al., 2002). At that time the main limitation was in the 

technical part, since whole genome sequencing was time consuming and had a high cost. 
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However, with next-generation sequencing there has been a revolution in genome sequencing 

technologies and this has reduced the costs many folds (Herring, et al., 2006, Mardis, 2008, 

Shendure & Ji, 2008, Le Crom, et al., 2009, MacLean, et al., 2009, Metzker, 2010, Oud, et al., 

2012). These techniques show the possibility of substantial reduction of the time and cost of 

genome sequencing such that it can be used for routine application similar to transcriptome 

analysis. As an example, the results of sequencing three yeast evolved mutants that were used in 

this thesis are explained in Table 3 and 4. 

 

Table 1-3. The price of the next-generation sequencing (Illumina/Solexa, at 13
th

 January 2010) 

  

Table 1-4. The performance of overall genome sequencing results 

   * 38 bases per sequence read for 2 cycles 
   † Based on genome consensus sequence length of CEN.PK113-7D of 12,155,742 base pairs 

Description  Quntity Unit Price (€) Total Price (€) 

Sample preparation for Genome Analysis,  
Genomic Shotgun 

3 (strains) 544 1632 

Sample preparation with bar-coded adapters 3 34 102 

Sequencing on the Genome Analyzer GAIIx,  
1 paired-ends channel 2x38 bp 

1 3,808 3,808 

Additional bar-coded sample in the same channel,  
paired-ends 

2 136 272 

Bioinformatics analyses 0 340 0 

  Total 5,814 

Sequencing Parameters Mutant A Mutant B Mutant C 

No. of Reads 5,605,504 18,203,846 5,239,106 

Total Bases (bp) * 213,009,152 691,746,148 199,086,028 

Coverage Fold 17 55 16 

Undetermined Base 158,723 86,791 171,362 

Genome percent reference coverage (%)† 98.7 99.3 98.6 

No. of supercontigs  17 17 17 

  Chromosomes 16 16 16 

  Mitochondria 1 1 1 
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In addition, whole genome sequencing of evolved mutants can give genetic proofs for 

evolutionary theories or related questions as Dettman et al. mentioned in 2012, How many 

mutations underlie adaptive evolution, and how are they distributed across the genome and 

through time? Are there general rules or principles governing which genes contribute to 

adaptation, and are certain kinds of genes (e.g. regulatory vs. structural) more likely to be 

targets than others? How common is epistasis among adaptive mutations, and what, if anything, 

does this reveal about the variety of genetic routes to adaptation? How common is parallel 

evolution, where the same mutations evolve repeatedly and independently in response to similar 

selective pressures? (Dettman, et al., 2012) Phenotypic results of mutations are constrained by 

evolutionary genetic context such as epistasis, pleiotropy, hitch-hiking of negative mutation with 

beneficial ones, and so on. Therefore, the whole genome sequencing can give vast amount of 

possibility for increasing our understanding about evolution itself, and prediction our ability to 

use evolutionary strategies in setting the further design in strain development. 
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1.4. Improving galactose utilization in Saccharomyces cerevisiae 

Galactose metabolism in S. cerevisiae was selected to generate evolutionary strategies and 

explore them through genome-scale analyses in this study. The galactose regulon of S. cerevisiae 

has been extensively investigated, since it has very strict gene expression control properties and it 

is a model system for human disease, galactosemia (Lai, et al., 2009). In addition, yeast strains 

retaining higher galactose utilization ability have been developed for industrial application, 

because galactose is one of the abundant renewable carbon sources (Panesar, et al., 2007, Wi, et 

al., 2009, Kim, et al., 2012). In previous studies, direct genetic engineering approach in galactose 

metabolism showed successful results (Ostergaard, et al., 2000, Bro, et al., 2005, Garcia Sanchez, 

et al., 2010, Lee, et al., 2011). For the next turn in the metabolic engineering cycle, new strategies 

are required.  

  1.4.1. Galactose metabolism in Saccharomyces cerevisiae  

    1.4.1.1. Leloir Pathway 

Even though the molecular structure of galactose is very similar with glucose, more 

enzymatic reactions for galactose utilization are needed to reach glucose-6-phosphate, a precursor 

of glycolysis. And the number of transporter specialized for galactose is just one, while there are 

at least 20 transporters for glucose (Boles & Hollenberg, 1997, Ozcan & Johnston, 1999, 

Wieczorke, et al., 1999). Galactose is metabolized through the Leloir pathway, after the Nobel 

Prize laureate, biochemist Louis Leloir (Cabib, 1970). This pathway is composed of 5 enzymes: 

galactose mutarotase (GAL10), galactokinase (GAL1), galactose-1-phosphate uridyltransferase 

(GAL7), UDP-galactose 4-epimerase (GAL10) and phosphoglucomutase (PGM1/PGM2), and 

expression of those enzymes is controlled by very tight regulatory system consisting of 3 

regulators, Gal3p, Gal4p and Gal80p (Timson, 2007). Further regulation is mediated by Mig1p, 

i.e. glucose is present, Mig1p is de-phosphorylated resulting in its transfer into the nucleus where 

it inhibits expression of GAL1 and GAL4 by binding to upstream repression site (URS) of those 

genes (Timson, 2007) (Fig. 2). Galactose enters the cells mainly through Gal2p, a specific 

galactose transporter. Intracellular galactose is structurally changed to alpha-D-galactose from 

beta-D-galactose by Gal10p, and phosphorylated to galactose-1-phosphate with ATP by galactose 

kinase, Gal1p (Holden, et al., 2003). Galactose-1-phosphate reacts with UDP-glucose resulting in 
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glucose-1-phosphate and UDP-galactose in a reaction catalyzed by galactose-1-phosphate 

uridyltransferase, Gal7p. This reaction has been studied more intensively because of its relation 

with the human disease galactosemia. Failure of this reaction accumulates galactose-1-phophate, 

which is a marker for diagnostic of the disease (Lai, et al., 2009). The toxicity of high 

concentration of galactose-1-phosphate is not clear, while there have been several proposes about 

the reasons such as inhibition of enzymes and ATP drain (Lai, et al., 2009). UDP-galactose is 

converted into UDP-glucose by a reaction of UDP-galactose 4-epimerase, Gal10p, which is also 

galactose mutarotase. This enzyme has dual activity, which is a unique feature of S. cerevisiae 

and Kluyveromyces fragilis (Thoden & Holden, 2005). Prokaryotes and higher eukaryotes have 

different enzymes to provide these two enzyme activities (Holden, et al., 2003). Since the Leloir 

pathway is a highly conserved system in most organisms, and yeast supposedly occupies a 

position between prokaryotes and higher eukaryotes, this distinctive evolutionary history is an 

open question. In the last step, glucose-1-phosphate is converted into glucose-6-phosphate in a 

reaction of isomerization by Pgm1p and Pgm2p. Pgm2p is responsible for about 80% of the total 

activity (Timson, 2007). Further detailed knowledge about the kinetic properties and structures of 

the enzymes in the Leloir pathway are well explained in biochemistry references (Daugherty, et 

al., 1975, Schell & Wilson, 1977, Segawa & Fukasawa, 1979, Fukasawa, et al., 1980, 

Reifenberger, et al., 1997, Holden, et al., 2003).        

    1.4.1.2. Regulation of GAL genes  

Regulation of GAL genes is an excellent model for studying a regulated eukaryal gene 

expression system (Acar, et al., 2005, Ramsey, et al., 2006, Pannala, et al., 2010). The promoter 

of the GAL genes has been used as a strong expression system with galactose induction (Li, et al., 

2008). Each of the galactose catabolism enzymes Gal1p, Gal7p and Gal10p exist at about 0.3 to 

1.5% of total soluble cytoplasmic protein during growth on galactose (St John & Davis, 1981). 

There are three regulation mechanisms. First, the presence of glucose represses expression of the 

GAL genes through the transcription factor Mig1p (Timson, 2007) (Fig. 2). The Mig1p interacts 

with the transcriptional co-repressor complex Cyc8p (Ssn6p)-Tup1p (Treitel & Carlson, 1995). 

The complex of these three proteins activates the histone deacetylases Hda1p, Hos1p, Hos2p and 

Rpd3p (Davie, et al., 2003), which ensures keeping the chromatin deacetylated, compact, and 

hereby in a transcriptionally inactive state. Second, at high glucose concentrations, the Mig1p is 
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dephosphorylated and stays in the nucleus where it together with the co-repressors block 

expression of the GAL genes, especially GAL4 that is an activator of the GAL genes. Therefore 

the presence of glucose completely blocks expression of the GAL genes.  

 

 

 

 

Fig. 1-2. Galactose pathway (Leloir pathway) and regulation in S. cerevisiae. Pointed arrows 

mean conversion of intracellular metabolites by enzymatic reactions, red arrows indicate 

transcriptional activation. Blue blunt arrows mean inhibition. Dotted lines indicate the direct 

connection between genes and proteins. 
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The absence of glucose, however, is not adequate to induce the galactose metabolizing 

enzymes. The existence of galactose is also necessary (Fig. 2). When external galactose is present 

as a sole carbon source, it can transfer at low rate to the cell through hexose transporters (Hxts), 

which are not specific to galactose as they have very high Km values for galactose transport. 

Galactose transporter gene, GAL2 can be expressed after galactose enters to the cells. Intracellular 

galactose is combined with Gal3p that is a sensor of galactose. Gal3p binds galactose and ATP, 

and then traps the repressor Gal80p. Gal80p is present in the cytoplasm and nucleus, which 

interferes proper binding of Gal4p to the upstream activating sequences (UASGAL) of the GAL 

genes. Thus, in the absence of galactose, the Gal80p blocks Gal4p and hereby prevents induction 

of the GAL gene expression. When only the complex of Gal3p with galactose and ATP is present, 

the blocking of the Gal80p binding to Gal4p is released since this complex catches Gal80p (Yano 

& Fukasawa, 1997). Dual feedback loops have been well elucidated in the galactose control 

system (Ramsey, et al., 2006). The Gal4p induces not only the Gal2p and Gal3p, but also Gal80p. 

Induction of Gal2p and Gal3p is positive feed-back loop because the increased expression of 

Gal2p and Gal3p result in further activation of Gal4p, while induction of Gal80p provides a 

negative feed-back loop since higher expression of Gal80p blocks Gal4p activation (Fig. 2). 

Simultaneous operation of these dual opposite controls has provided an excellent model for 

studies of the dynamics of gene expression regulation in eukaryotes. Third, Lap3p/Gal6p is 

supposed as a possible regulator, because deletion of this gene increases expression of the GAL 

genes (2.5 fold) (Zheng, et al., 1997). The Lap3p is a cysteine protease and the S. cerevisiae 

homologue of this enzyme is Gal6p. The exact mechanism of how Gal6p carries negative 

regulation remains unclear (Zheng, et al., 1997).          

  1.4.2. Galactose as a feedstock in industrial biotechnology 

    1.4.2.1. Galactose content of biomass 

In terms of its use as a carbon and energy source for production of fuels and chemicals 

galactose is mostly found in cheese whey, but with the prospect of using algae as source of 

biomass it is interesting to note that red seaweed has a high content of galactose (Gelidium 

amansii) (Wi, et al., 2009, Kim, et al., 2012). Cheese whey is an eluent from the dairy industry; 

and it contains about 85-95% of the milk volume and 55% of milk nutrients. Two types of the 

cheese whey, sweet (pH 6~7) and acid (pH < 5) are produced dependent on the procedure of 
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casein precipitation. The main components are lactose, whey protein and minerals (Table 5) 

(Jelen, 1979, Siso, 1996, Panesar, et al., 2007). Lactose is a disaccharide sugar composed of 

galactose and glucose through beta-1, 6-linkage. Galactose therefore contains around 22~26 g/l in 

cheese whey.  

Table 1-5. Typical composition of sweet and acid whey (Source: Jelen, 1979, Panesar, et al., 

2007) 

Components Sweet whey (g/l) Acid whey (g/l) 

Total solids 63-70 63-70 

Lactose 45-52 44-46 

Protein 6-10 6-8 

Calcium 0.4-0.6 1.2-1.6 

Phosphate 1-3 2-4.5 

Lactate 2 6.4 

Chloride 1.1 1.1 

Recently algae have been considered as an attractive biomass source for bio-based products, 

due to several advantages compared to terrestrial plant biomass such as high production yield, 

non-food and land usage, little recalcitrant lignin and crystalline cellulose, a higher growth rate 

and others (Kim, et al., 2011, Wargacki, et al., 2012). One algae, the red seaweed (Gelidium 

amansii) has high galactose content even comparable to the amount of glucose (Wi, et al., 2009, 

Kim, et al., 2012). Carbohydrate compositions of different biomass sources are given in Fig. 3. 

 

Fig. 1-3. Composition of non-food biomass (Source: Kim, et al., 2012) 
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    1.4.2.2. Metabolic engineering for improved galactose utilization 

Intensive research on galactose metabolism has generated vast amount of information about 

its metabolic structure and regulation. By exploiting this abundant resource, many elegant 

metabolic engineering approaches have been executed to improve galactose utilization in terms of 

a specific galactose uptake rate. Direct genetic modification of GAL genes and regulatory genes 

were done. Over-expression of GAL catabolic genes was implemented in a high-copy number 

plasmid with different combinations (de Jongh, et al., 2008). Over-expression of the GAL 

catabolic genes was expected to increase flux from galactose to glycolysis; however, the result 

showed reduction of galactose uptake and growth rate. The reason was that changed expression 

level of the GAL genes triggered the fluctuation of concentration of intermediate metabolites in 

the Leloir pathway. One of them, galactose-1-phosphate, was known as a toxic intracellular 

metabolite that interfere with galactose metabolism. Therefore genetic modification was focused 

on regulatory genes. By over-expression of the transcriptional activator, GAL4 and deletion of 

negative regulators, GAL80, MIG1 and GAL6 showed improved galactose uptake rate without 

growth retardation (Ostergaard, et al., 2000). Especially, the triple knock-out mutant (SO16, 

which was used as a control strain in this thesis study) showed the highest specific galactose 

uptake rate. In a follow up study, transcriptome data of these strains was used to find target genes 

that were related to improvement of galactose availability (Bro, et al., 2005). Commonly changed 

genes were screened in galactose related pathways and based on this PGM2, encoding 

phosphoglucomutase, was the only gene that showed significant up-regulation. Application of 

this gene in a high-copy number plasmid clearly showed improvement of galactose utilization 

(this strain was called PGM2, which was used as another control strain in this study). Since this 

gene was supposed to be quite highly expressed even at non-galactose growth condition, the 

result that the rate limiting step enzyme of the Leloir pathway was PGM2 was surprising. When 

galactose-1-phosphate was measured, this strain showed no reduction of this metabolite. Higher 

activity of phosphoglucomutase was checked by checking higher concentration of sugar-6-

phosphates that were considered as products of this enzyme such as galactose-6-phosphate, 

glucose-6-phosphate, mannose-6-phosphate and fructose-6-phosphate. Therefore, even though 

basal expression level of PGM2 was relatively higher than other GAL genes in the wild-type, 

over-expression of this gene was still needed to improve galactose utilization. Another study also 

supported the importance of higher activity of PGM2 for improved galactose utilization (Lee, et 
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al., 2011). In this study, a genomic library was used to find target genes that were related to 

galactose utilization. The constructed library was transformed into the wild-type strain, and 

improved strains were screened. Three beneficial over-expression targets, SEC3, tTUP1, and 

SNR84 were identified. All three targets displayed higher phosphoglucomutase activity. Two of 

them, Sec3p (phosphomannomutase having activity as phosphoglucomutase) and truncated 

Tup1p (complex of Mig1p repressor) were confirmative with the previous work due to the 

function of those genes; while the last target was a new discovery. SNR84 codes for H/ACA box 

small nucleolar RNA, and there is no report on the effect of this gene to galactose metabolism. 

However, higher activity of phosphoglucomutase in the transformant over-expressing SNR84 

proposed a relationship between this gene and galactose metabolism.  
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2. OVERVIEW OF THE THESIS 

The motivation of this study is to apply genome-scale analyses for unraveling the molecular 

and genetic basis of evolutionary strategy of microorganism.  

The galactose metabolism of yeast S. cerevisiae was chosen as a target for evolution, because 

of the following reasons.  

1) It has relevance for developing yeast strains that can use galactose more efficiently like other 

hexose carbon sources; since galactose is an abundant sugar in some renewable resources, and S. 

cerevisiae is a vastly useful strain in industrial applications. 

2) The galactose metabolism in yeast has been extensively studied, which has led to many trials 

for the construction of yeast mutant strains by direct genetic engineering. Consequently, several 

genetic targets related to the improvement of galactose utilization have already been identified, 

which means it is difficult to find new targets. However, rather less attention was paid on 

evolutionary engineering, thus if different targets are generated from an evolutionary approach, 

they are useful for a next round of strain development. 

3) Moreover, which was the main purpose of this thesis; can genome-scale analyses be used for 

the characterization of evolved mutants with the objective to find driving mutations? If this 

answered positively it could open up for wider use of evolutionary strategies in metabolic 

engineering. 

For these reasons, yeast S. cerevisiae CEN.PK113-7D was evolved on galactose minimal 

media through adaptive evolution for 62 days. Three evolved mutants were generated from 

independent populations grown in identical serial transfers. Improved galactose utilization ability 

was confirmed in precisely controlled bioreactors, and genome-scale analyses through 

transcriptome, metabolome and whole-genome analyses were applied to understand evolutionary 

strategies of the galactose-evolved yeast mutants. Furthermore, inverse metabolic engineering 

was applied using identified mutations and new combinations of the genetic changes. The 

comparison of reconstructed strains with the evolved mutants provided a good example how 

evolution and engineering work synergistically in strain development. Further characterization of 

the evolved mutants was done in glucose minimal media to explore the pleiotropy of obtained 



32 
 

traits. Molecular and genetic bases of that pleiotropy were elucidated by genome-scale analyses. 

The result increased the understanding of evolutionary strategies of the evolved mutants. 

Consequently, three research studies were designed. 

 

Paper I: Unravelling evolutionary strategies of yeast for improving galactose utilization 

through integrated systems level analysis 

Adaptive evolution generated improved galactose availability with different physiology. The 

molecular and genetic bases that were supposed to be related to improved galactose utilization 

were analyzed. The significant molecular changes in transcripts and metabolites were detected in 

around galactose metabolic pathways, but no mutations were found in those regions. Instead the 

Ras/PKA signaling pathway was detected as a common pathway that had mutations in all the 

evolved mutants. Introduction of one of those mutations in a reference strain partially provided 

the genetic bases of the galactose evolved physiology. It was confirmed that adaptive evolution 

can generate key mutations in unpredictable regions or non-canonical pathways. And the genetic 

basis (mutations) and resulting molecular basis (transcriptome and metabolome) for evolutionary 

changes were found to happen in different regions. 

 

Paper II: Recovery of phenotypes obtained by adaptive evolution through inverse metabolic 

engineering 

Through adaptive evolution and genome-scale analyses, new genetic targets for improving 

galactose utilization were identified. As only a few mutations were selected from many mutations, 

it was necessary to evaluate whether the adaptive phenotype can be recovered by a few mutations. 

Furthermore, it was speculated how inverse metabolic engineering could give more chances 

beyond evolutionary engineering itself for strain development. Two groups of engineered mutants 

were constructed; site-directed mutants that had the identified mutations in the reference strain 

genetic background, and combined mutants that had new combinations by transforming the 

PGM2 over-expression plasmid into the site-directed mutants. Surprisingly, some of the 

constructed strains showed complete recovery of the galactose adaptive phenotype with just one 
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or two genetic modifications. Even one of the reconstructed mutants exhibited further improved 

galactose utilization. These results indicated that far fewer genetic changes were enough to reach 

the same phenotype as the evolved mutants. Therefore inverse metabolic engineering is an 

essential step in the application of evolutionary approaches for strain development, i.e. it can 

enable more strategies for further improvement of desired phenotypes by sieving out beneficial 

mutations from negative ones and generated new artificial combinations of mutations. Detailed 

molecular changes by the mutations were also analyzed using transcriptome analysis and the level 

of a few metabolites. The introduction of key mutations that recovered the adaptive phenotype 

triggered fewer molecular changes compared to the evolved mutants. This result indicated again 

that all molecular changes were not necessary for reaching the same phenotype. 

 

Paper III: Adaptively evolved yeast mutants on galactose show trade-offs in carbon utilization 

on glucose 

The evolved mutants obtained the trait that was an ability to utilize galactose more efficiently 

than the ancestor strain. It was, however, interesting to evaluate whether this trait was associated 

with other effects, i.e. pleiotropy. The galactose-evolved mutants were therefore grown in glucose 

minimal media. Interestingly, these cultivations showed reduced glucose utilization in the 

evolved strains. This means that there is trade-off in galactose utilization and glucose utilization. 

In other words, the evolved mutants likely obtained the increased galactose availability by partly 

losing their ability to very efficiently utilize glucose. The underlying mechanisms of this trade-off 

were studied at the molecular and genetic level by integrated genome-scale analyses. 

Antagonistic pleiotropy was found to be the dominant evolutionary trade-off mechanism. The 

tight regulation system of glucose catabolic repression was loosened by the mutations in 

Ras/PKA signaling pathway and unidentified mutations that may be involved in hexokinase 

regulation and reserve carbohydrates metabolism. Therefore, the glucose utilization ability is 

likely collateral cost for having improved galactose availability in the evolved mutants. This 

finding indicates that genetic context such as pleiotropy causing trade-off in traits should be 

considered, when evolutionary approaches is applied in strain development. 
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3. RESULTS AND DISCUSSION 

This section provides a summary of the results, whereas the attached papers in the end of this 

thesis include detailed materials, methods and experimental design with expanded explanations.   

3.1. Molecular and genetic basis of evolutionary strategies of the galactose-evolved mutants 

(Paper I) 

Three evolved populations were generated from S. cerevisiae CEN.PK113-7D, an ancestor 

strain, by three independent serial transfers in a galactose (20g/l) minimal medium for 62 days 

(Fig. 3-1). Single clone isolates were obtained from the last shake flasks, and designated 62A, 

62B and 62C. Two engineered strains, SO16 (gal6∆ gal80∆ mig1∆) and PGM2 (over-expression 

of PGM2 gene), showed improved galactose uptake rates in previous studies were used as control 

strains to elucidate unique strategies of adaptive evolution (Ostergaard, et al., 2000, Bro, et al., 

2005).  

 

Fig. 3-1. Yeast strains used in this study. Engineered mutants were constructed in previous 

studies (Ostergaard, et al., 2000, Bro, et al., 2005) whereas the three evolved mutants were 

generated in this study. 
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Parallel fermentations at aerobic batch mode in precisely controlled bioreactors was performed to 

estimate physiological parameters and to take samples for omics analyses; and transcriptome and 

targeted metabolome analysis were applied to all strains including the two engineered strains; and 

whole-genome analysis were performed on the evolved mutants (Fig. 3-2).  

 

 

Fig. 3-2. Overall flow of the experiments in this study. 6 strains were cultivated in bioreactors, 

and at mid-exponential phase, samples for omics analyses were collected.  

 

Exact identification of improved galactose utilization in the evolved mutants was compulsory, 

since only one colony from each of the populations were selected. Population was composed of 

many diverse individuals, thus it was not sure if the selected colony was really evolved in terms 

of improved galactose utilization. Of course, based on Darwin’s theory, natural preservation, the 

variants that had higher fitness would take more portions in the population; therefore, there was 

high chance to select evolved clones with improved fitness. The purpose of this study was to 

detect evolutionary strategies; hence the confirmation of improved phenotype in the evolved 

mutants was a prerequisite. The evolved mutants achieved improved galactose utilization in terms 
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of a maximum specific growth rate and a specific galactose uptake rate, which were a different 

phenotype compared with the engineered strains (Fig. 3-3). The galactose-evolved mutants 

showed a 24% increase in the maximum specific growth rate and 18 ~ 36% increase in the 

specific galactose uptake rate compared to the reference strain. Interestingly, clear grouping was 

observed between all three evolved mutants and the reference strains in the plot of the specific 

galactose uptake rate versus a specific ethanol production rate (Fig. 3-3B). These two groups 

were separated by different regression curves, which observation means that the adaptive 

evolution has resulted in different phenotypes compared with the engineered strains. 

 

 

 Fig. 3-3. Phenotypic changes of evolved mutant strains 62A, 62B and 62C compared with the 

reference strain CEN.PK113-7D and the two engineered strains SO16 and PGM2. (A) 

Correlation between a maximum specific a growth rate and biomass yield. (B) Correlation 

between a specific galactose uptake rate and a specific ethanol production rate. The regression 

curves of the two lines (from right to left) had a slope of 2.95 and 3.19 and intercept of minus 

7.95 (R2 = 0.99) and minus 10.157 (R2 = 0.98), respectively. Both slope values were around 3, 

which indicated that catabolic repression induced flux re-direction from respiratory metabolism to 

fermentation one, because if there was not that repression, slope should be around 2. 

 

To investigate the molecular basis, firstly transcriptome analysis was used to check overall 

changes, and select significantly altered pathways (Paper I, Fig. 2). Secondly, target metabolome 

was implemented; around 40 metabolites were measured based on the results from the 

transcriptome data and quantified by diverse analytical instruments (Paper I, Fig. 3). Both data 
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sets were used to find the molecular basis for the evolutionary strategies by selecting commonly 

changed metabolisms in all evolved mutants (Fig. 3-4).  

 

 

Fig. 3-4. Changes in the galactose, reserve carbohydrates, and ergosterol metabolism in the 

evolved mutants are illustrated by changes in the concentration of metabolites and fold changes 

of transcriptome compared with the other strains. (A) The concentrations of sugar phosphates, 

storage carbohydrates, and sterols and the ratio of ATP to ADP. (B) Fold changes of all genes 

involved in galactose, reserve carbohydrates, and ergosterol metabolism are compared with the 

reference strain. 
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Up-regulation of the PGM2 gene and lower concentration of galactose-1-phosphate and glucose-

1-phosphate in the galactose pathway were common in all evolved mutants and engineered 

mutants compared to the reference strain; while up-regulation of genes in reserve carbohydrates 

metabolism and down-regulation of HXK2 that was one of the main glucose catabolic repression 

controllers (Gancedo, 1998), were unique for the evolved mutants. A unique change among 

evolved mutants was found in ergosterol metabolism. The 62B strain only showed up-regulation 

of ERG genes with different ratio of the concentration of ergosterol and dihydroergosterol. In 

terms of fermentation physiology, there was big difference between the 62A and 62C strains; 

however, in terms of transcriptome and metabolome data, they looked almost identical. 62B was 

positioned between them in terms of gross physiology, whereas this evolved mutant showed vast 

differences in the transcriptome and the metabolome. The reason of differences among the 

evolved mutants was not clear, while the common changes of the evolved mutants from the 

reference strain likely explained the molecular bases of evolutionary strategies for improving 

galactose utilization. 

To identify the genetic basis of evolutionary strategies, whole-genome sequencing was 

applied to the evolved mutants (explanation of overall process and raw data are in the 

supplementary data of Paper I). Surprisingly, there were no mutations or duplications in the GAL 

genes and the regulatory genes involved in galactose metabolism including their promoter and 

terminator regions. The reaction step by PGM2 was earlier found as a rate-controlling step in 

galactose metabolism; hence PGM2 over-expression was already proven as a beneficial target for 

metabolic engineering, and several genetic modifications that induced higher expression of this 

gene were also identified. However, mutations from previous studies were not detected in the 

evolved mutants. This result indicated that new mutations that induced up-regulation of PGM2 

were generated. Furthermore, genes of the reserve carbohydrates metabolism and hexokinases 

had no mutations, even though they showed significant alteration in their transcription. 

Exceptionally, the 62B evolved mutant had mutation in the EGR5 gene that seemed to be related 

to changes in ergosterol metabolism (Kelly, et al., 1995) (Table 3-1). No mutations in the 

metabolisms that showed common molecular changes in all the evolved mutants implied that the 

key mutations may be involved in regulatory regions. Common genes, pathway or cellular 

metabolism that had mutation in all three evolved mutants was searched, and it was found that 

there were common mutations in the regulatory, Ras/PKA signaling pathways (Table 3-1). The 
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Ras/PKA signaling pathway has been known to take key role in global regulation of glucose 

sensing and stress response (Estruch, 2000). And PGM2 and UGP1 had STER element in their 

promoter region. Therefore, the mutations in Ras/PKA signaling pathway were suggested as a 

driven mutation that increased galactose utilization by triggering the activation of galactose and 

reserve carbohydrates metabolism (Fig. 3-5). Introduction of mutations in RAS2 genes into a 

reference strain clearly showed the increase of galactose utilization (supplementary data from 

Paper I and Paper II). The 62B unique mutation in the EGR5 gene could explain the changes of 

transcripts and metabolites in the ergosterol pathway; it may also be explicable why this mutant 

showed large differences from other evolved mutants by this mutation. However it was not clear 

how there is a relationship between galactose metabolism and ergosterol pathway.  

 

Table 3-1. Genetic changes in the evolved mutants 
 

Strains Mutations Functions Specific features 

62A RAS2 [Gln
77

  Lys] 

Ras/PKA signaling pathway 
Commonly mutated 

pathway 
62B RAS2 [Asp

112
  Tyr] 

62C CYR1 [Asp
822

  Asn] 

62B ERG5 [Arg
370

  Pro] Ergosterol metabolism Uniquely mutated gene 

 

In conclusion, key genetic changes were identified in non-canonical metabolism, but in the 

Ras/PKA signaling pathway; which meant no mutation detected in galactose metabolism not like 

other direct genetic engineering studies (Ostergaard, et al., 2000, Bro, et al., 2005, Lee, et al., 

2011). And, molecular changes were well related to canonical metabolisms; up-regulation of 

PGM2 in galactose metabolism, and up-regulation of genes in reserve carbohydrates metabolism 

that shared the intermediate of galactose metabolic pathway, i.e. glucose-1-phosphate. 

Hypothetical evolutionary changes were plotted in Fig. 3-5. Therefore, insight about evolutionary 

strategy that results in non-canonical genetic changes with canonical molecular changes could be 

applied as an evolutionary approach in strain development.  
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Fig. 3-5. Summary of evolution changes in the three evolved mutants; 62A, 62B, and 62C. Color 

circular boxes indicate genes having genetic mutations. Color lines indicate activated fluxes 

inferred from transcriptome and metabolome analysis.  
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3.2. Complete recovery of adaptive phenotype through inverse metabolic engineering 

(Paper II) 

The initial purpose of this step was to evaluate the identified mutations. Furthermore, the 

objective was to explore how inverse metabolic engineering was useful in connection with 

evolutionary approaches for strain development. Site-directed mutants and combined mutants 

were constructed for the application of inverse metabolic engineering.  

The genome-scale analyses suggested that the genetic basis for the improved galactose 

utilization could be present in the Ras/PKA signaling pathway, which is not directly involved in 

galactose metabolism, since all the evolved mutants commonly had mutations in this signaling 

pathway. One of the evolved mutants, 62B showed significant changes in ergosterol metabolism 

both at the level of transcripts and metabolites and it carried a mutation in the ERG5 gene. To 

clearly confirm the effect of identified mutations on galactose availability, and to examine how 

much those mutations recovered the adaptive phenotype of the evolved mutants, site-directed 

mutants carrying each of the mutations independently were constructed. In addition, combined 

mutants were constructed by introduction of the known beneficial change (PGM2 overexpression) 

into the site-directed mutants. These combined mutants were designed to generate new 

combination of the genetic basis for improving galactose utilization that was not present in the 

evolved mutants (Table 3-2).  

The gross phenotype of the reconstructed strains was compared to the evolved strains (Fig. 3-

6). The results of the site-directed mutants clearly confirmed the effects of the identified 

mutations on galactose utilization. Two site-directed mutants (RAU and RBU) that had mutations 

in the RAS2 gene showed a significant increase in the maximum specific growth rate and the 

specific galactose uptake rate compared with their reference strain (5DU). Especially, the RAU 

strain that carried the mutation RAS2
Lys 77 

exhibited the highest specific galactose uptake rate 

among all the strains including the evolved mutants. Additionally, when its improvement of 

maximum specific growth rate was compared to the evolved mutants in terms of increased extent 

from each of their reference strains, i.e. RAU from 5DU, and the evolved mutants from 7D, even 

the RAU has a higher relative increase in the specific growth rate than the evolved mutants. 

Interestingly, even though two mutations were positioned in the same gene, their effect on 

galactose utilization was quite different. These results highlighted why the concept of inverse 



Inverse metabolic engineering in systems biology 

43 
 

metabolic engineering was important for strain development, because new targets from 

evolutionary engineering should be re-evaluated and there was space for more improvement of 

the desired traits by surveying more mutations in that target gene. The results of the combined 

mutants also showed improvement of the galactose availability. They almost fully recovered the 

adaptive phenotype of the evolved mutants, since the maximum specific growth rate and the 

specific galactose uptake rate were in the same level as the evolved mutants. This result again 

confirmed the importance of inverse metabolic engineering in connection with evolutionary 

approaches for strain development, because the same phenotype was realized with much fewer 

traceable genetic modifications providing more space for new engineering strategies. 

Table 3-2. Reconstructed strains and control strains. Saccharomyces cerevisiae CEN.PK113-5D 

was used to construct site-directed mutants and combined mutants due to its availability of URA3 

marker gene. Prototrophic site-directed mutants (RAU, RBU and EBU) were constructed by 

transformation with the plasmid, pSP-GM2 containing the URA3 gene. The combined mutants 

RAP, RBP and EBP were constructed by transformation of the plasmid pPGM2 into the site-

directed mutants.   
 

Strains Ancestor strains and Genotype Groups References 

7D MATa SUC2 MAL2-8c (CEN.PK113-7D) Reference strain SR&D* 

62A 7D, total no. SNPs: 21 including RAS2 Lys 77  

Evolved  
mutants 

This study 62B 
7D, total no. SNPs: 104 including RAS2 Tyr112, 

ERG5 Pro 370  

62C 7D, total no. SNPs: 29 including CYR1Asn822 

5D 
MATa SUC2 MAL2-8c ura3-52  

(CEN.PK113-5D)  
SR&D* 

5DU 5D, pSP-GM2(URA3)  Reference strain This study 

RAU 5D, pSP-GM2(URA3); RAS2 Lys 77 (from 62A)  

Site-directed 
mutants 

This study RBU 5D, pSP-GM2(URA3); RAS2 Tyr112 (from 62B)  

EBU 5D, pSP-GM2(URA3); ERG5 Pro 370  (from 62B)  

PGM2 5D, pPGM2(URA3, PPMA1-PGM2)  Engineered mutant Bro et al 2005 

RAP 5D, pPGM2(URA3, PPMA1-PGM2); RAS2 Lys 77  

Combined 
mutants 

This study RBP 5D, pPGM2(URA3, PPMA1-PGM2); RAS2 Tyr112  

EBP 5D, pPGM2(URA3, PPMA1-PGM2); ERG5 Pro 370  

*Scientific Research & Development GmbH, Oberursel, Germany. 
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Fig. 3-6. Data on overall fermentation physiology of the site-directed mutants (RAU, RBU and 

EBU) and the combined mutants (RAP, RBP and EBP) are compared to the reference strains 

5DU, 7D and the engineered strain PGM2, and the corresponding evolved mutants 62A and 62B. 

A: Correlation between the maximum specific growth rate and biomass yield B: Correlation 

between the specific galactose uptake rate and the specific ethanol production rate. Error bars 

represent standard deviation from biological duplicates. 

 

The critical points were, 1) the evolved mutants accumulated many genetic changes that 

seemed to be not necessary for improving galactose utilization, because the reconstructed strains 

showed full recovery of the galactose adaptive phenotype with much fewer genetic changes; 2) 

the combination effect of genetic changes was different from the sum of each of the changes, for 

example, the RAP strain that contained a combination of RAU (RAS2
Lys 77

) and PGM2 

overexpression, showed an increase of the maximum specific growth rate (58% from 5DU); 

however, the sum of each of genetic changes was bigger (69% = 42% (RAU) + 27% (PGM2 

strain)). This phenomenon was much clearer in the specific galactose uptake rate; the 

combination (RAP) showed even reduced value compared with the RAU and PGM2 strains. 

Another combination case, the RBP strain with a combination of RBU and PGM2, also showed a 

negative synergy of beneficial genetic changes even though the extent of the physiological 

changes was different. On the contrast, the combination of ERG5 mutation and PGM2 over-

expression looked like synergetic epistasis. The mutation in the ERG5 gene showed only a small 

effect on galactose utilization. It looked almost neutral when it was solely present, while the 
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combination of this mutation with the over-expression of PGM2 presented the same phenotype 

like the other combined mutants. In evolutionary biology, the accumulation of negative or neutral 

mutations and epistasis among mutations is a well-known event during adaptive evolution (Ikeda, 

et al., 2006, Warner, et al., 2009). That was one of the reasons why cells may not always reach to 

the optimum point of a specific trait by adaptive evolution, especially in asexual reproduction. 

Even for a versatile biological system, natural selection or preservation that could enrich only 

beneficial mutations would possibly require infinite generation time. Thus, to reach the optimum 

point by laboratorial adaptive evolution could be almost impossible (Sauer, 2001). Therefore, 

there is likely space for further improvement of desired traits by removing negative mutations and 

reconstruction of new combinations that may generate synergetic epistasis. Because of these 

reasons, inverse metabolic engineering is an essential step in evolutionary approaches for strain 

development. 

The molecular basis of the reconstructed strains was investigated to clarify the relationship 

between the identified mutations and the molecular changes of transcripts and metabolites in 

specific pathways. First, the overall number of differentially expressed genes was compared (Fig. 

3-7). Like the case of genetic changes, the reconstructed mutants showed a much smaller number 

of differentially expressed genes than the evolved mutants. It confirmed again that many changes 

in the evolved mutants were not necessary to reach the same phenotype. Second, the detailed 

molecular changes indicated that the mutations in the RAS2 gene induced PGM2, but not reserve 

carbohydrates metabolism (Fig. 3-8). This result indicated that there were unidentified mutations 

triggering up-regulation of reserve carbohydrates metabolism. Maybe the up-regulation of this 

metabolism was not closely related to improving galactose utilization, or there would be negative 

epistasis between the mutations in Ras/PKA signaling pathway and the unidentified mutations 

that activated the reserve carbohydrates metabolism. Both cases could explain the recovery of the 

galactose adaptive phenotype by the mutations in the RAS2 gene. Another finding is that the two 

mutations in the RAS2 gene showed substantial difference in terms of molecular changes. The 

RAU strain (RAS2
Lys 77

) showed much fewer numbers of transcriptional changes than RBU 

(RAS2
Tyr112

), while the RAU exhibited higher improvement of galactose utilization than RBU 

(Fig. 3-7). This finding again emphasized the space for further improvement of galactose 

utilization by inverse metabolic engineering. The ERG5 mutation was confirmed as a reason of 

the changes in the ergosterol pathway (Paper II).     
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Fig. 3-7. Effect of reconstructed strains compared to the evolved strains 62A and 62B by 

differentially expressed genes. Differentially expressed genes (adjust p < 0.01) are categorized as 

Venn diagrams. The functional enrichment of genes in each part was analyzed by hyper-

geometric distribution based on the KEGG, Reactome and GO term databases. Upper numbers in 

a pair of two numbers mean up-regulation and lower number mean down-regulation. 
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Fig. 3-8. Changes in the galactose and reserve carbohydrates metabolisms in the reconstructed 

strains are shown by changes in fold changes of the transcriptome and the concentration of 

carbohydrates. A: Fold changes of all genes involved in galactose and reserve carbohydrates 

metabolisms are compared to the reference strains. B: The concentrations of glycogen. C: The 

concentration of trehalose. Error bars represent standard deviation from biological duplicates. 
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3.3. Characterization of molecular mechanism of trade-offs in carbon utilization (Paper III) 

When galactose is used as a carbon source in industry, glucose would almost always also be 

present. Therefore, further characterization of the galactose-evolved mutants for growth on 

glucose was carried out. In addition, it was wondered if there was another effect from the 

obtained phenotype or traits, or there was collateral cost to get new traits. Considering the short 

adaptive evolutionary history of the evolved mutants to grow faster on galactose compared to the 

millions of year of evolution to maximize growth on glucose, a decline in glucose utilization to 

compensate for the cost of improving galactose utilization was not expected. However, 

interestingly all galactose-evolved mutants showed reduced glucose utilization (Fig. 3-9). In other 

word, the trade-off in carbon utilization between galactose and glucose was clearly detected in the 

evolved mutants. Two engineered mutants, PGM2 and SO16 strains also showed the trade-offs in 

the specific carbon uptake rate and the specific ethanol production rate (Fig. 3-9B). Since the 

genetic changes of these engineered strains were known, the genetic bases of this trade-off were 

easily identified. However, in case of evolved mutants, they showed different pattern of trade-offs, 

for example the maximum specific growth rate (Fig. 3-9A). Characterization of molecular and 

genetic bases of this trade-off was the main purpose of this study. 

 

Fig. 3-9. Fermentation physiology of the evolved mutants and the engineered mutants compared 

to the reference strain in galactose (gal) and glucose (glu) through correlation between different 

values (∆) of maximum specific growth rate and biomass yield (A), specific carbon uptake rate 

and specific ethanol production rate (B). Error bar represents standard error from biological 

duplicates in bioreactors. 
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Trade-offs among traits is one of the fundamental concepts in evolutionary biology. Two 

mechanisms for evolutionary trade-off have been suggested (Cooper & Lenski, 2000, Elena & 

Lenski, 2003, Wenger, et al., 2011); antagonistic pleiotropy (AP) in which the same mutation is 

related to gain and loss of adaptation in different environment, and mutations accumulation (MA) 

where different mutations are responsible for the gain and loss of adaptation. Characterization of 

the trade-off mechanisms is important in the evolutionary approach for strain development, since 

the strategy for inverse metabolic engineering will dependent on the reason for evolutionary 

trade-off, AP or MA. 

In this study, integrated genome-scale analyses were again applied to elucidate molecular 

and genetic evolutionary mechanism of the trade-off in the evolved mutants. Firstly, overall 

transcriptome profile was compared by principal component analysis; the distance between the 

evolved mutants and the reference strains looked almost identical during growth on both carbon 

sources (Fig. 3-10). This means that the evolved mutants responded to both carbon sources by 

similar transcriptional changes. More detailed molecular changes were analyzed by comparison 

of the differentially expressed genes and functional enrichment of them.  

 

Fig. 3-10. Transcriptome analysis of the evolved mutants and the reference strain in galactose 

(gal) and glucose (glu) through principal component analysis (PCA). The results are projected by 

the first three PCs, which covered 89% of the variance. 
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Fig. 3-11. Patterns of common molecular changes of the evolved mutants compared to the 

reference strain based on separation of glucose-independent and glucose-dependent. Glucose-

independent, differentially expressed genes in both carbons; glucose-dependent, differentially 

expressed genes only in glucose (A), Specific pathways and targeted metabolites in glucose-

independent (B), Specific pathways in glucose-dependent (C). Error bars in the concentration of 

glycogen and trehalose represent standard error from biological duplicates in bioreactors. 

 

Conserved pattern of transcripts in specific parts of the metabolisms and reserve 

carbohydrates were detected (Fig. 3-11); and specific molecules that were likely involved in the 

trade-off mechanism were identified such as up-regulation of 1) PGM2, 2) two non-glucose 

inducible hexokinase HXK1, GLK1 and 3) genes in reserve carbohydrates metabolism, and down 

regulation of 4) HXK2 that is one of the key enzymes of glucose metabolism and is also a 

regulator of glucose catabolic repression (Gancedo, 1998). Additionally, commonly up-regulated 

genes on growing both carbon sources had the same transcription factor (TF) binding site 



System-level analysis of evolutionary trade-off mechanism 

51 
 

(AGGGG). And TFs related to this site were Gis1p, Rph1p, Msn2/4p and Nrg1p, which are 

involved in nutrient signaling pathway (Orzechowski Westholm, et al., 2012). These results at the 

molecular level implied that antagonistic pleiotropy was the dominant mechanism for the trade-

off, and the result was loosening the tight glucose control of metabolism.  

The genetic bases of the trade-off in carbon utilization were explored. There were three 

identified mutations; two of them were confirmed as a beneficial mutation for galactose 

utilization such as mutations in the RAS2 genes, and one of them was neutral for galactose 

availability. The site-directed mutants that had each of those mutations supported antagonistic 

pleiotropy as the mechanism for trade-off (Fig. 3-12).  

 

 

Fig. 3-12. Fermentation physiology of the site-directed mutants compared to the reference strain 

in galactose (gal) and glucose (glu) through correlation between different values (∆) of maximum 

specific growth rate and biomass yield (A), specific carbon uptake rate and specific ethanol 

production rate (B). A reference strain for site-directed mutants is CEN.PK 113-5D having URA3 

marker in plasmid. Error bar represents standard error from biological duplicate on galactose in 

bioreactors and biological triplicate on glucose in baffled flasks. Longer error bars in the 

reference were from glucose culture, shorter ones came from galactose culture. 

 

The Ras/PKA signaling pathway is involved in the control of transcription factors, Gis1p, 

Rph1p, Msn2/4p and Nrg1p (Orzechowski Westholm, et al., 2012). The identified mutations in 

the RAS2 gene showed up-regulation of PGM2 in the previous study (Paper II). The mutations 



52 
 

that triggered the molecular changes in reserve carbohydrates metabolism and hexokinases are 

not still clear. There would be unidentified mutations, which mutations may adjust the change 

between maximum specific growth rate and specific glucose uptake rate, because that change was 

the main difference between the evolved mutants and the site-directed mutants containing 

mutations in the RAS2 gene. Hypothetical interpretation of the trade-off mechanism in the 

galactose evolved mutants is illustrated in Fig. 3-13.  

 

 

 

Fig. 3-13. Summary of possible molecular mechanism for the trade-off in galactose and glucose 

utilization. Colored letters (red and green) mean transcriptional change, up-regulation and down-

regulation, respectively. Gray boxes (square and arrow shape) exhibit the changes in the evolved 

mutants. A dotted box means the change only in SO16 strain (knock-out of MIG1). Dot arrows 

represent signaling flow, solid arrows represent metabolic flow. 
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4. CONCLUSIONS 

Adaptive evolution generated new strategies for improving galactose utilization in yeast 

S.cerevisiae. Those evolutionary strategies were characterized by integrated genome-scale 

analyses. Significantly, through this approach, evolutionary strategies of galactose-evolved 

mutants were elucidated at the molecular and genetic level. This characterization allowed inverse 

metabolic engineering to be more useful in evolutionary approaches for strain development. In 

addition, more characterization of the evolved mutants elucidated pleiotropy of the obtained traits. 

Through examples of this study, one could know what can be expectable or predictable in the 

application of evolutionary approaches for strain development. The most important findings in 

this Ph.D. study could be summarized as follow,  

Evolutionary changes of galactose-evolved yeast mutants can be characterized by integrated 

genome-scale analyses 

- Integration of genome scale analyses such as transcriptome, metabolome and whole-genome 

sequencing is crucial to identify the molecular and genetic basis of evolutionary changes. 

Each of these techniques does not allow for drawing comprehensive interpretation, but the 

combination of them provide a picture that enables understanding of the evolutionary 

strategies.  

- It is important to use several evolved mutants with a reference strain, because this comparison 

allow identification of conserved mutations that result in the same phenotype. Each of the 

three evolved mutants has several mutations that probably do not contribute to the evolved 

phenotype, but by identifying conserved mutations, a clear picture emerged. 

Non-canonical genetic changes results in canonical molecular changes of the evolved 

mutants 

Transcriptome and metabolome analyses lists up significantly changed metabolisms; and 

among them, molecular changes likely related to galactose metabolism were found. Whole-

genome sequencing identified several mutations, while there were no mutations in the genes or 

promoter regions that show the molecular changes. Key mutations for improving galactose 

utilization were found in non-canonical pathways.      
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- Common molecular changes in all the galactose-evolved mutants are 1) Up-regulation of 

PGM2 with reduced concentration of galactose-1-phosphate and glucose-1-phosphate, 2) Up-

regulation of reserve carbohydrates metabolism with increased concentration of trehalose and 

glycogen (Fig. 6-4). 

- Adaptive evolution of yeast on galactose generates no mutations in the galactose pathway and 

its regulatory region, which had been considered as modification targets for metabolic 

engineering; also no mutations in reserve carbohydrate metabolism.  

- A common pathway that contains mutations in all the evolved mutants was the Ras/PKA 

signaling pathway (Table 6-1). 

- Two identified mutations in the RAS2 gene result in improved galactose utilization with up-

regulation of PGM2 but not reserve carbohydrate metabolism (Fig. 6-6, Fig. 6-8). 

Importance of inverse metabolic engineering in connection with use of evolutionary 

approaches for strain development 

Few genetic and transcriptional changes are required to reach adaptive phenotypes. 

Accumulation of deleterious mutations or negative epistasis among beneficial mutations seems to 

be quite high during adaptive evolution. Therefore, inverse metabolic engineering can give a lot 

of new strategies for further engineering, such as sieving out beneficial mutations from negative 

ones and generation of new artificial combination of mutations. 

- Site-directed mutants containing only one mutation in the RAS2 gene, [Gln
77

→Lys] or 

[Asp
112

→Tyr] show similar improvement in the specific galactose uptake rate with the 

evolved mutants; also those strains display much smaller transcription changes compared to 

the evolved mutants (Fig. 6-6, Fig. 6-7). 

- The site-directed mutant having RAS2 [Gln
77

→Lys] mutation even presents the highest 

specific galactose uptake rate among all the evolved and engineered strains (Fig. 6-6), and 

also relatively the highest maximum specific growth rate. 

- Two mutations in the RAS gene have different effects on galactose utilization. 

- New combinations of beneficial genetic changes almost completely recovers adaptive 

phenotypes in terms of galactose utilization, such as constitutive PGM2 over-expression on a 

plasmid combined with mutation in RAS2 [Gln
77

→Lys] or [Asp
112

→Tyr], and in ERG5 
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[Arg
370

→Pro], respectively. These results indicate that new combinations of beneficial targets 

are one of the strategies for inverse metabolic engineering. 

Molecular and genetic bases of evolutionary pleiotropy: trade-offs in carbon utilization  

Galactose-evolved yeast mutants show trade-offs in carbon utilization between galactose and 

glucose. Adaptation on galactose seems to be realized by losing capacity for glucose utilization. 

The characterization results at the molecular and genetic level of this trade-off mechanism reveals 

that antagonistic pleiotropy is the dominant mechanism in the evolved mutations and this is likely 

realized by loosening the tight glucose catabolic repression system.  

- The cost for improving galactose utilization may come from diminishing glucose utilization. 

- Transcriptional changes with key metabolites of the three evolved mutants reveal antagonistic 

pleiotropy between glucose and galactose. 

- Conserved molecular changes on both carbon sources are considered underlying the 

molecular mechanism by loosening tight glucose catabolic repression such as up-regulation of 

1) PGM2, 2) non-glucose metabolism related hexokinase HXK1, GLK1 and 3) reserve 

carbohydrate metabolism; down-regulation of 4) glucose catabolic repression regulator 

HXK2; and 4) involvement of transcription factors in nutrient sensing, GIS1, RPH1, MSN2/4, 

and NRG1.   

- The mutations in the RAS2 gene indicate antagonistic pleiotropy mechanisms for trade-off in 

carbon utilization by covering the phenotypic changes of the evolved mutants on both carbon 

sources. 

- As mutations in the RAS2 gene triggered up-regulation of PGM2 and involved the 

transcription factors in nutrient sensing (Paper II), there are other unidentified mutations that 

induce transcriptional changes in the reserve carbohydrate metabolism and hexose kinases.   

- Antagonistic pleiotropy between galactose and glucose utilization by attenuation of glucose 

regulation 
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5. PERSPECTIVE 

Engineers have established significant development in the massive production of fuels and 

chemicals from petroleum and our generation is taking benefits from these technical advances. 

However, since the petroleum based production is using limited resources and generating serious 

environmental problems, our generation should prepare new technologies for the next generation, 

which uses renewable resources and alleviates environmental issues. Microbial fermentation 

processes could be one of the possible solutions, because this process utilizes biomass that is 

continuously produced with absorbing carbon dioxide in connection with its growth.  

Engineering or reconstructing of microorganisms is the requisite step for the development of 

fermentation process. The engineering of biological systems is certainly different from 

mechanical or chemical engineering, since the biology is not only vastly complicated in their 

reaction networks and regulations, but also has emergent properties. Endy suggested four 

challenges in the engineering of biological system; 1) biological complexity, 2) the tedious and 

unreliable construction and characterization of synthetic biological systems, 3) the apparent 

spontaneous physical variation of biological system behavior, 4) evolution (Endy, 2005). One of 

the strategies for engineering the microorganism is to learn and apply nature’s algorithm 

(Rothschild, 2010). Nature has produced relevant traits in specific environment; one also has used 

this valuable mechanism for making domesticated species from wild ones. Currently there are 

tools available for analysis genome-wide molecular and genetic changes. This means one can 

trace nature’s strategies for obtaining new traits.  

In this thesis, mutations in the RAS2 gene were identified as the genetic bases for improving 

galactose utilization in yeast S. cerevisiae. This result indicates two important finding. Firstly, 

these mutations were only designable by nature’s algorithm, random mutagenesis and natural 

preservation; because not only the relationship between these mutations and galactose utilization 

was not predictable, but also even though they were located in the same gene, the effects of each 

of them were vastly different. Therefore, there are still vast amounts of opportunity to find new 

strategies for strain development by evolutionary approaches. Recently, artificial mutagenesis 

methods have been developed, which are called genome engineering techniques that make it 

possible to generate random mutations on specific regions such as promoters, regulators and 

limited pathway genes (Santos & Stephanopoulos, 2008, Boyle & Gill, 2012). However, these 
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techniques still cannot cover the mutations that were found by random mutagenesis. Secondly, 

these mutations were only detectable by genome-scale analyses, since these analyses can only 

scan whole genome level changes. Of course there were still unidentified mutations that could be 

related to the changes in reserve carbohydrates metabolism and hexokinases. Whole-genome 

sequencing in this study had limitation such as incomplete coverage of whole DNA, insufficient 

coverage folds, missing copy number changes and rearrangement and so on. In spite of these 

limitations, whole genome sequencing detected the key mutations. It was also important point to 

focus on common changes by employing several parallel evolved mutants. 

In industry, a lot of mutations are normally accumulated in producing strains, because of 

long history of evolution and high mutation rate by treating mutagen. The limitation in the 

number of evolved mutants could make it difficult to find common mutations generated in the 

same gene or pathways. Therefore, identification of beneficial genetic changes is practically very 

difficult. As shown in this study, there is a possible solution, namely to do more characterization 

of the mutants at different conditions with other omics tools such as transcriptome and 

metabolome analysis. Perturbation of culture conditions could separate conserved changes from 

others. And those conserved related mutations could be the main reason for the obtained 

phenotype. For example, the galactose-evolved mutants kept the changes of transcripts and 

metabolites in specific metabolism when growing on two different carbon sources. So those 

changes could be interpretive as induced by the same mutations. This process could reduce the 

number of mutations that is involved in desired traits. 

Another point to consider is that engineering of the Ras/PKA signaling pathway might be an 

efficient way to achieve multiple phenotypes of industrial interest. Two mutations in the same 

gene showed different phenotypes, and just one mutation was enough to reach the entire adaptive 

phenotype. These results indicate that the effect of mutations in the RAS2 gene could be beyond 

the change of activity of Ras/PKA signaling pathway. In addition, when some mutations in the 

RAS2 gene were combined with PGM2 over-expression, the more diverse phenotype could be 

expectable. Therefore, constructing a mutation library of the RAS2 gene or another mutation 

library of the whole Ras/PKA signaling pathway with adjusting PGM2 expression could be very 

useful for the next step in strain development.        
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It is important to keep in mind that there are several evolutionary mechanisms or genetic 

context that may be related to strain development, such as negative epistasis and trade-offs in 

traits. These mechanisms indicate that there are many chances to lose beneficial mutations and 

their combinations. Therefore, system-level characterization of evolutionary process could detect 

more number of beneficial mutations, and one can design new combinations of them or generate 

mutation library of the identified target gene. It is crucial to accumulate the examples of 

evolutionary mechanisms at detailed molecular levels supported by genome-scale analyses for 

further advancement of the use of evolutionary engineering in industrial biotechnology. 
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