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Nonlinear Mechanics of Graphene and Mass-loading Induced Dephasing in
Nanoresonators
JUAN ATALAYA
Condensed Matter Theory
Department of Applied Physics
Chalmers University of Technology

ABSTRACT
I summarize the results of my research in the subjects of nonlinear mechanics
of graphene resonators, mass-loading induced dephasing in nanomechanical
resonators and spintronics-based mesoscopic heat engines for cooling the fun-
damental flexural mode of a CNT resonator.

This thesis consists of three parts. In the first part I present a mechanical
description for monolayer graphene membranes. The equations of motion are
derived in the long wavelength limit starting from an atomistic model, which
accounts for the energy cost to change the length of the sp2 covalent bonds
and also the angle between neighboring bonds in graphene. I also propose to
use nonlinear dynamics of square graphene resonators to measure the mass
and position of a single adsorbed particle using only narrow-band frequency
sensors.

In the second part, I consider the effects of random mass loading in nanome-
chanical resonators. Random mass loading leads to random modulation of the
resonance frequency (dephasing process) of the vibrational eigenmodes of the
resonator. I consider first the situation where the dephasing process is not af-
fected by the motion of the resonator (no backaction). Here, the random mass
loading is caused by adsorption, desorption and diffusion of small particles
along the resonator. I discuss the method of interfering partial susceptibili-
ties to calculate the susceptibility of underdamped vibrational eigenmodes. I
find that the final shape of the eigenmode absorption spectrum line depends
on the intensity and correlation time of the frequency noise. In the presence
of dephasing, the eigenmode energy relaxation rate cannot be measured from
the width of the absorption line. I also discuss a method to characterize the
dephasing process. Then, I consider the case of backaction in the dephasing
process for the case of particles diffusing along the resonator. The backaction
is induced by an inertial force, which drives the particles towards the antin-
ode(s) of the excited eigenmode. I show that dephasing subject to backaction
can lead to bistability and rare interstate switching between small and large
amplitude vibrational states (with the particles delocalized and localized at
the antinode(s), respectively) if the particles diffuse comparatively fast. The
diffusion induced bistability in driven resonators has a different origin from
the conventional bistability and interstate switching, which occurs in driven
nonlinear oscillators subject to a weak source of additive noise.

Finally, the third part deals with a proposal for a physical realization of



a mesoscopic heat engine which consists of two spin polarized leads held
at different temperatures (heat reservoirs) linked by a CNT resonator in the
presence of a nonuniform magnetic field. The latter induces spin-mechanical
coupling between the electronic subsystem (two-level system inside the CNT)
and the mechanical subsystem (fundamental flexural mode). One would ex-
pect that the effective temperature of the mechanical subsystem should be
between the temperatures of the leads. However, I show that if the leads have
spin polarization & 50 % and the coupling between the mechanical subsystem
and other baths is weaker than the spin-mechanical coupling, then it is pos-
sible for the effective temperature of the mechanical subsystem to be smaller
than the temperature of the leads. In this regime, I discuss the conditions re-
quired to achieve mechanical ground state cooling.

Keywords: Graphene Mechanics, Nonlinear Dynamics, Dephasing in Nanome-
chanical Resonators, NEM-based Mass Spectrometry and Mesoscopic Heat
Engines.
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CHAPTER 1

Introduction

1.1 Nanomechanics

An important line of research in condensed matter is Nanomechanics. The lat-
ter studies the mechanical [1–3] and dynamical properties [4–6] of nanoscale
massive objects, and also the interaction between the latter and much big-
ger systems (reservoirs or baths), containing large number of degrees of free-
dom [4, 7, 8]. Nanomechanics is not only important for fundamental research
but it also has practical value. In fundamental research, nanomechanics pro-
vides an opportunity to investigate the crossover between the validity of the
classical and quantum descriptions of nanoscale massive objects [9, 10]. For
instance, graphene-based nanomechanical resonators could be used to imple-
ment nonclassical dynamical states such as a superposition of macroscopically
distinct states, known as Schrödinger cat states [11]. Other research fields
related to nanomechanics are nanooptomechanics [12] and nanoelectromechan-
ics [13]. The former deals with the interaction between light and a mechanical
element (e.g., a movable mirror). Nanoelectromechanics investigates the inter-
action between a mechanical element (e.g., a doubly clamped nanotube) and
electrons, moving along the latter, in the presence of electric fields [14]. Exper-
imentally, it has been demonstrated that nanomechanical resonators can be
used as switches (e.g., carbon nanotube based field effect transistors [15–17]
and nanorelays [18]) and ultrasensitive sensors of mass [19–25], charge [26]
and spin [27]. This high level of sensitivity is due to the high quality factors,
Q ∼ 105, of vibrational modes [28–30]. The high quality factors of the eigen-
modes imply that their absorption spectrum line shapes can be distorted with
ease by deterministic (e.g., Duffing nonlinearity [4]) or random fluctuations of
the eigenfrequency (dephasing). In this thesis I investigate the latter possibil-
ity in the context of mass sensing applications, cf. appended papers IV and
VII.

The discoveries of carbon nanotubes and, more recently, graphene have
had a positive impact and raised the interest in the field of Nanomechanics.
The reason is that these carbon allotropes have excellent electrical and me-
chanical properties [31]. They also provide the raw material for fabricating
low weight, mechanically stable high frequency nanoelectromechanical res-
onators with very low intrinsic losses [29, 30, 32, 33]. An important feature
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1.2. Thesis overview

of these nanoresonators is the tunability of the eigenfrequencies of the vibra-
tional modes [34, 35]. My PhD research work started with the study of the
mechanical properties of monolayer graphene membranes. Specifically, I de-
veloped a nonlinear elasticity theory for graphene resonators, cf. appended
papers I and II. I also studied the possibility to develop a mass sensing de-
vice using the nonlinear dynamical response of square graphene resonators,
cf. appended paper III.

The high sensitivity of nanomechanical resonators makes them also sen-
sitive to random disturbances (noise) caused by the environment (other sys-
tems which weakly interact with the nanoresonator). An important part of my
PhD research has been devoted to the study of dephasing of vibrational eigen-
modes of nanoresonators induced by random mass loading of small particles
onto the resonator surface, cf. appended papers IV, V and VII. The "good"
coupling of nanoresonators with the environment (not necessarily in thermal
equilibrium) makes them also ideal candidates for energy harvesting applica-
tions [36]. In paper VI, I investigate the situation where a nanotube resonator
is coupled to two electrodes, held at different temperatures (no mutual equi-
librium), and demonstrate that the mechanical element can exhibit different
stationary regimes; namely, cooling, heating and heat engine regimes. In par-
ticular, in the heat engine regime, the nanotube develop sustained self oscilla-
tions which can be thought as the cyclic motion of, e.g., a Stirling heat engine.

1.2 Thesis overview

Chapter 2 deals with the elasticity theory for monolayer graphene membranes.
The theory can be employed to model long wavelength displacements of the
membrane in graphene-based resonators. The theory accounts for the built-in
tension when the membrane is subject to comparatively large out-of-plane dis-
placements (it is assumed that all or some edges of the membrane are clamped
to a rigid substrate). I present molecular dynamics results to validate the the-
ory. Experimental data also agrees with the nonlinear elasticity theory. I refer
the reader to the appended papers I and II.

Chapter 3 deals with an application of the elasticity theory for monolayer
graphene to design a graphene-based mass sensing device. This work was
initially motivated by Mark Kac’s paper: "can one hear the shape of a drum" [37].
Mark Kac asked the question if there exist isospectral two-dimensional do-
mains (i.e., two domains Ω1 and Ω2 with the same set of eigenvalues, λ, of
the Helmholtz eigenvalue problem: ∆u − λu = 0 with Dirichlet boundary
conditions, u = 0 at ∂Ωi). The answer is positive if we restrict to convex do-
mains. Gordon, Webb and Wolpert have made a construction of two simply
connected nonconvex domains with the same set of eigenvalues [38]. In my
case, I am not interested in the shape of the resonator but in the mass distribu-
tion. Different mass distributions gives different eigenfrequency shifts of the
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1.2. Thesis overview

vibrational modes. I find that a mass sensing scheme, employing the nonlin-
earity and the degeneracy of square graphene resonators, can be developed to
determine both the mass and position of a single (static) analyte adsorbed on
the membrane. I refer the reader to the appended paper III.

Chapter 4 deals with a problem of high quality factor resonators; namely,
dephasing. Dephasing means uncertainty in the eigenmode phase due to ran-
dom fluctuations of its eigenfrequency (frequency noise). These fluctuations
can significantly distort the, typically Lorentzian, eigenmode absorption spec-
trum line. The final shape of the latter depends on the intensity and correla-
tion time of the frequency noise. I emphasize that dephasing alone can lead to
significant changes of the absorption line without extra dissipation or nonlin-
ear damping. My research focuses on investigating dephasing due to random
mass loading in nanomechanical resonators. I discuss a model which accounts
for frequency noise due to diffusion, adsorption and desorption of analytes
onto the resonator surface. The results presented in this chapter are relevant
for mass sensing applications. I argue that it also possible to determine mass
transport coefficients, such as diffusion coefficient. I refer the reader to the
appended papers IV and VII.

Chapter 5 deals with diffusion induced bistability of driven nanomechani-
cal resonators. Generally speaking, nonlinear phenomena in nanomechanical
resonators can be effectively induced by a comparatively fast frequency noise
process subject to backaction (i.e., the frequency noise is influenced by the
motion of the resonator). In particular, I consider the situation of particles dif-
fusing along a one-dimensional resonator, whose fundamental flexural mode
is underdamped and driven near resonance. Here, the backaction is caused
by an inertial force, which drives the particles towards the vibrational antin-
ode. I find that if the particles diffuse comparatively fast (i.e., the diffusion
length, within the eigenmode energy relaxation time, is much larger than the
resonator length), then the eigenmode dynamics exhibits bistability between
a large amplitude vibrational state, where the particles are accumulated at
the antinode, and a small amplitude state, where the particles are almost uni-
formly distributed along the resonator. Moreover, the interstate switching
events occur on a time scale much larger than the eigenmode energy relax-
ation time. I investigate the onset of the bistability near the bifurcation points
and find that the interstate switching rate depends exponentially on the num-
ber of particles,N , and diffusion coefficient,D, with an exponent proportional
to (ND)−1. I refer the reader to the appended paper V.

Finally, in chapter 6, I study the performance of a mesoscopic heat engine
using a quantum mechanical description. In particular, I consider a spintronic-
based mesoscopic heat engine which consists of a carbon nanotube suspended
between two spin polarized leads held at different temperatures. The system
is subject to a nonuniform magnetic field, which induces an electronic two-
level system (TLS) inside the nanotube and also a spin-mechanical coupling
between the TLS and the fundamental flexural mode of the nanotube (me-
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1.2. Thesis overview

chanical subsystem). I find that there exist three distinct regimes of opera-
tion of the mesoscopic heat engine; namely, cooling, heating and heat engine
regimes. In the cooling (heating) regime, the mechanical subsystem acquires
an effective temperature which is smaller (larger) than the temperatures of
the baths. In the heat engine regime, the mechanical subsystem develops sus-
tained self oscillations [39]. This work was motivated by Linden et al.: "How
Small Can Thermal Machines Be? The Smallest Possible Refrigerator" [40]. Linden
et al. use a three-particle interaction (hard to realize experimentally) between
three qubits in order to show that it is possible to cool one of the qubits (the
other two qubits are in contact with reservoirs held at different temperatures)
to a temperature smaller than the temperatures of the heat reservoirs. In this
chapter I consider a realistic realization (the structure under consideration has
been recently realized experimentally by Hueso et al. [41]) of a mesoscopic
heat engine. I refer the reader to the appended paper VI.

4



CHAPTER 2

Elasticity theory of graphene membranes

In this chapter I briefly describe the elasticity theory for graphene membranes
at zero temperature. A more detailed derivation is given in my master the-
sis [42] and also in the papers I and II. At finite temperature T , the shape of a
free-standing graphene membrane exhibits small out-of-plane ripples which
have a correlation length lc . 8 nm and amplitude h . 1 nm at temperatures
T . 300 K [2, 43, 44]. In the absence of external applied tension, ripple forma-
tion also lead to in-plain contraction of the membrane. The elasticity theory
discussed below accounts for the motion of the membrane in the long wave-
length limit where the graphene is modeled as a smooth surface. Here, I do
not consider the small ripple corrections [1, 3, 45–49].

The elasticity theory for monolayer graphene is derived from an atomistic
model which accounts for the energy cost, Usp2 , to change the length of the sp2

bonds and also the angle between neighboring bonds in the membrane [50–
52],

Usp2 =
N∑
i=1

∑
ik

α

8a20

(
r̄2iik − a20

)2
+

∑
ij<ik

β

a20

(
r̄iij · r̄iik +

1

2
a20
)2

+ γD̄2
i

 .(2.1)

In the above formula, the parameters α = 155.9 J/m2, β = 25.5 J/m2 and γ =
7.4 J/m2 are obtained by fitting the phonon spectrum that results from Eq. (2.1)
to experimental data [52]. The index i labels one of the N carbon atoms of the
graphene flake and the indices ij or ik label one of the three nearest neighbor
atoms of i. Thus, r̄iik is a bond vector, a0 = 1.421 Å is the equilibrium bond
length of graphene at zero temperature, and

D̄i = r̄ii1 + r̄ii2 + r̄ii3 ,

where i1, i2 and i3 are the indices of the three nearest neighbor atoms of the
ith atom.

The first two terms of Eq. (2.1) quantify the energy cost to stretch the mem-
brane. The last term in Eq. (2.1) quantifies the energy cost to bend the mem-
brane. In a general deformation, such as a spherical shape, both stretching
and bending terms give finite contributions to the potential energy, Usp2 .

The equations of motion for the membrane in the long wavelength limit are
obtained in two steps. First, I derive an expression for the elastic energy, which
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is a long wavelength approximation of the atomistic formula Usp2 [Eq. (2.1)].
Then, I use the least action principle to obtain the Euler-Lagrange equations of
motion for the membrane. I also introduce concepts of continuum mechanics
such as strain and stress and discuss two regimes of deformation; namely, the
stretching and the bending regimes.

In the long wavelength approximation of the equations of motion of a
graphene membrane, the shape of the membrane is approximated by a smooth
surface, Ω. This surface is parametrized by two parameters ξ1 and ξ2, which
are defined in a two-dimensional parameter space Ωξ, cf. Fig. 2.1, by

Ω : r̄ = r̄(t, ξ1, ξ2),

where t is the time parameter. Here, r̄(t, ξ1, ξ2) represents the position of the
graphene surface in the three-dimensional physical space. Similarly, I use the
same parameters ξ1 and ξ2 to parametrize the undeformed graphene surface
Ω0 in physical space, cf. Fig. 2.1,

Ω0 : r̄0 = r̄0(ξ
1, ξ2).

At a given instant of time, the relative displacement between two points r̄
and r̄ +∆r̄ on the deformed graphene surface Ω is approximately given by

∆r̄ ≈ ḡk∆ξ
k +

1

2
Γm
kl∆ξ

k∆ξlḡm +
1

2
Lkl∆ξ

k∆ξln̄, (2.2)

and the corresponding points in parameter space are ξ̄ and ξ̄+∆ξ̄, respectively.
I use the convention of summation over repeated indices. The tangent vectors
ḡk = ∂r̄(ξ̄, t)/∂ξk, k = {1, 2}, span the tangent space T at the point r̄, cf. Fig. 2.1.
The unit normal vector to the surface at r̄ is n̄ = ḡ1 × ḡ1/∥ḡ1 × ḡ2∥. The coef-
ficients Γm

kl are known as the Christoffel symbols and the coefficients Lkl are
the components of the curvature tensor L̂ = Lklḡ

kḡl where Lkl = n̄ · ∂ḡk/∂ξl =
−∂n̄/∂ξl · ḡk. Also, ḡk = gklḡ

l and ḡk = gklḡl where gkl = ḡk · ḡl are the com-
ponents of the metric tensor and gkl are the inverse metric tensor components
defined by gklglm = δkm and δkm is the Kronecker delta. The coefficients Γm

kl and
Lkl are related by the following relation

∂ḡk
∂ξl

= Γm
kl ḡm + Lkln̄. (2.3)

In Eq. (2.2), the first two terms belong to the two-dimensional tangent space
T . For ∥ξ̄∥ ≪ 1, I may neglect the second order terms in ξk and keep only the
first order contribution: ḡk∆ξk. Note that the second order terms along the
normal direction can not be neglected because there are no first order terms
along this direction. Thus, I obtain

∆r̄ ≈ ḡk∆ξ
k +

1

2
Lkl∆ξ

k∆ξln̄, (2.4)

6



and similarly for the undeformed surface Ω0,

∆r̄0 ≈ ḡ0k∆ξ
k +

1

2
L0kl∆ξ

k∆ξln̄. (2.5)

I use the latter two equations for two carbon atoms forming a covalent bond,
i.e. ∆r̄ = r̄ij and ∆r̄0 = r̄0ij where r̄ij and r̄0ij are the same covalent bond in
the deformed and the undeformed graphene membranes, respectively. From
Eq. (2.5), it follows

∆ξk ≈ r̄0ij · ḡk0 , (2.6)

and substitution of the above relation in Eq. (2.4) leads to (no summation over
i, j)

r̄ij ≈ r̄0ij · ḡk0 ḡk +
1

2

(
r̄0ij · Lklḡ

k
0 ḡ

l
0 · r̄0ij

)
n̄

= r̄0ij · ∇̄0r̄ +
1

2

(
r̄0ij · ḡr0ḡr · Lklḡ

kḡl · ḡsḡs0 · r̄0ij
)
n̄

= r̄0ij · ∇̄0r̄ +
1

2

(
r̄0ij · Ľ · r̄0ij

)
n̄. (2.7)

Above, ∇̄0r̄ = ḡk0∂r̄/∂ξ
k = ḡk0 ḡk is the gradient of the map r̄(t, r̄0). In the above

equation, Ľ is the curvature tensor projected onto the tangent plane T0 of the
undeformed graphene surface Ω0,

Ľ = ∇̄0r̄ · L̂ · ∇̄0r̄
†. (2.8)

The elastic energy density W0(r̄0) is obtained by inserting the approxima-
tion (2.7) for the deformed bond vector r̄ij in the atomistic formula for the po-
tential energy Usp2 , cf. Eq. (2.1). The sum over the carbon atoms i in Eq. (2.1)
is approximated by an integral,

Usp2 ≈
∫∫

Ω0

dΩ0 W0(r̄0),

where W0(r̄0) is given by

W0(r̄0) =
4
√
3

9

{∑
j

α

8

(
r̄ij
a0

· r̄ij
a0

− 1

)2

+
∑
j<k

β

(
r̄ij
a0

· r̄ik
a0

+
1

2

)2

+ γ
D̄i

a0
· D̄i

a0

}
,

(2.9)
and

r̄ij · r̄ij = r̄0ij · ĝ · r̄0ij +
1

4
[r̄0ij · Ľ · r̄0ij]2,

r̄ij · r̄ik = r̄0ij · ĝ · r̄0ik +
1

4
(r̄0ij · Ľ · r̄0ij)(r̄0ik · Ľ · r̄0ik),

D̄i · D̄i =
1

4
[r̄0ij1 · Ľ · r̄0ij1 + r̄0ij2 · Ľ · r̄0ij2 + r̄0ij3 · Ľ · r̄0ij3 ]2. (2.10)

7



2.1. Stretching regime

In the above formula, ĝ = ∇̄0r̄ · ∇̄0r̄
† = gklḡ

k
0 ḡ

l
0 is the deformation tensor in the

basis ḡk0 . Assuming that the undeformed graphene surface Ω0 is on the z = 0
plane, the undeformed bond vectors r̄0ij of the atom depicted as black dots in
Fig. 2.1 are

r̄0ij = {a0ēx,−
a0
2
ēx +

√
3a0
2

ēy,−
a0
2
ēx −

√
3a0
2

ēy}, (2.11)

and the corresponding bond vectors for the atoms depicted as red dots in
Fig. 2.1 are the opposite of the above bond vectors. Below, I will assume that
the displacement of both type of atoms are described by the same displace-
ment field

ū ≡ r̄(t, ξ̄)− r̄0(ξ̄).

Then, the contributions of both type of atoms to the elastic energy are equal.
This assumption is reasonable if we are interested in modes whose wave-
length is much larger than the typical distance (∼ a0) between the two atoms
of the unit cell of monolayer graphene.

For a general deformation, the elastic energy density W0(r̄0) [Eq. (2.9)] de-
pends on the deformation tensor, ĝ, and the curvature tensor, L̂. Now, I will
consider two regimes of the graphene mechanics; namely, the stretching and
bending regimes where the main contribution to the elastic energy comes from
the deformation tensor ĝ and the curvature tensor L̂, respectively.

2.1 Stretching regime

In the stretching regime the main contribution to the elastic energy density
W0(r̄0) comes from the local in-plane deformation of the bond configuration.
The elastic energy is then approximated by the formula (2.9) where only the
ĝ-dependent terms are kept. Below, I use Cartesian coordinates ξ1 = x, ξ2 =
y and assume that the undeformed membrane is on the z = 0 plane. The
displacement field is

ū =
(
u(x, y), v(x, y), w(x, y)

)
,

where u and v represent in-plane displacements, parallel to the z = 0 plane,
and w represents the out-of-plane displacement, perpendicular to the z = 0
plane. The stretching energy W S

0 is then given by [53]

W S
0 =

Eh

2(1− ν2)

[
E2

xx + E2
yy + 2νExxEyy + 2(1− ν)E2

xy

]
, (2.12)

where Exx, Exy and Eyy are the components of the Cauchy strain tensor Ê

Exx = ux +
(
u2x + v2x + w2

x

)
/2,

Exy =
(
uy + vx + uxuy + vxvy + wxwy

)
/2,

Eyy = vy +
(
u2y + v2y + w2

y

)
/2. (2.13)
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2.1. Stretching regime

Undeformed graphene surface Deformed graphene surface
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Figure 2.1: The flat surface Ω0 and the smooth surface Ω depict an undeformed and
deformed graphene membrane, respectively. The surface Ω is defined by a time-
dependent mapping Ω : r̄ = r̄(t, ξ1, ξ2) from a two-dimensional domain Ωξ (top)
to the three-dimensional physical space spanned by the unit vectors ex, ey and ez .
Here, t is the time parameter. The figure also depicts the tangent plane T to Ω at the
point r̄. The curves Cξk , k = {1, 2}, are the images of the straight lines depicted in Ωξ.
The tangent vector to Cξk is ḡk = ∂r̄/∂ξk. Similar definitions also hold for Ω0.
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2.1. Stretching regime

In the above equations, the subscripts on u, v, w denote differentiation, i.e.
ux = ∂u/∂x etc. and the coefficient Eh is, in the theory of thin plates, the
Young modulus multiplied by the thickness of the plate [53, 54]. I point out
that, in the present elasticity theory for graphene, Eh is a single parameter.
It is not necessary to assume a thickness for graphene. The Poisson ratio is
ν. Both parameters Eh and ν are related to the Lamé parameters λ and µ as
Eh = 4µ(λ+µ)/(λ+2µ), ν = λ/(λ+2µ). The Lamé parameters are in turn de-
termined by the parameters of the atomistic formula for the potential energy
Usp2 : µ = 4

√
3(α/8 + β)/3 and λ = 4

√
3(α/8− β/2)/3.

The elastic energy density W S
0 can also be written in the invariant form

(basis independent)

W S
0 =

λ+ 2µ

2
I21 (Ê)− 2µI2(Ê). (2.14)

Above, I1 and I2 are the two principal invariants of the strain tensor Ê defined
as

Ê =
1

2
(ĝ − Î),

= ϵ̂0(ū) +
1

2
∇̄0ū ·

(
∇̄0ū

)†
, (2.15)

and
ϵ̂0(ū) =

1

2

(
∇̄0ū+ (∇̄0ū)

†),
is the infinitesimal strain tensor. The identity tensor is Î = ḡkḡ

k. The first prin-
cipal invariant I1(Ê) corresponds to the trace of Ê and the second invariant is
I2 =

[
I21 (Ê)− I1(Ê

2)
]
/2. The form (2.14) for the elastic energy also shows that

graphene is an isotropic elastic material.
The strain tensor Ê is a nonlinear function of the derivatives of the dis-

placement field ū. The general expression for the stretching energy (2.14) can
be simplified in the case that the out-of-plane displacement is dominant. This
is typically the case in graphene-based resonators where the driven modes
are the out-of-plane vibrational modes. Neglecting the second order terms
u2x, v

2
y , uxuy and vxvy in the expression for the strain components, i.e. Exx ≈

ux + w2
x/2, Eyy ≈ vy + w2

y/2 and Exy ≈ (uy + vx)/2 + wxwy/2, results in the
following expression for the elastic energy of the membrane

W vK
0 =

λ+ 2µ

2

(
u2x + v2y + uxw

2
x + vyw

2
y +

(
w2

x + w2
y

)2
/4
)

(2.16)

+λ
(
uxvy + uxw

2
y/2 + vyw

2
x/2

)
+
µ

2

((
uy + vx

)2
+ 2uywxwy + 2vxwxwy

)
.

The above formula coincides with the von Karman’s expression for the elastic
energy of a thin plate [53].
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2.2. Bending regime

Figure 2.2: Folding a graphene membrane without applying tension (stretching).

If the membrane is subject to an initial strain (such that ux = δx, vy = δy
and uy = vx = 0 with δx,y ≪ 1) at zero vertical deflection (w = 0) and the out-
of-plane displacement is small such that the induced in-plane displacement
gradients are smaller than δx,y, then we have the following expression for the
elastic energy

W S
0 =

λ+ 2µ

2

(
δ2x+δ

2
y+δxw

2
x+δyw

2
y+

(
w2

x+w
2
y

)2
/4
)
+λ

(
δxδy+δxw

2
y/2+δyw

2
x/2

)
.

(2.17)
Above, it has been assumed that ux ≈ δx and vy ≈ δy, uy ≈ 0 and vx ≈ 0. The
initial strain, considered in Eq. (2.17), may be the result of the manufacturing
processes of graphene resonators. I refer to Eq. (2.17) as the out-of-plane ap-
proximation since it only involves the out-of-plane displacement field w(x, y).

2.2 Bending regime

This regime refers to a process of folding a graphene membrane without ap-
plying any tension. For instance, Fig. 2.2 shows the folding of a graphene
membrane into a cylinder-like shape (deformation into a sphere-like shape
requires both stretching and bending energy cost). The energy cost due to
bending can be estimated as

∫∫
dΩ0W

B
0 , where the bending energy density is

given by [1]
WB

0 ≈ κ

2
(2a0H)2, (2.18)

and κ =
√
3a20γ/2 is the bending rigidity. H = I1(L̂)/2 is the local mean curva-

ture and I1(L̂) is the first principal invariant of the curvature tensor L̂. Using
γ = 7.4 J/m2 [52], the bending rigidity for monolayer graphene is approxi-
mately κ ≈ 0.8 eV.

In typical graphene resonators, graphene is clamped to a rigid substrate
and we are mainly interested in the out-of-plane displacement. It turns out
that in this case the stretching energy accounts for most of the elastic energy.
Figure 2.3 shows that for a given out-of-plane deformation the stretching en-
ergy is almost equal to what we would obtain using the atomistic formula Usp2

11



2.3. Equations of motion in the stretching regime
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Energy cost due to change of bond length (first term of U [Eq. (2.1)])

and change of in-plane bond angles
sp2

(second term of U ).sp2

Energy cost due to bending (third term of ).Usp2

Stretching energy [Eq. (2.12)].

Bending energy [Eq. (2.18)].

Figure 2.3: Stretching and bending energies as functions of deflection for a square
clamped graphene flake of side 2a ≈ 6 nm. The energy calculations correspond to
displacements given by u = u0 sin(πx/a) cos(πy/2a), v = v0 cos(πx/2a) sin(πy/a)
and w = w0 cos(πx/2a) cos(πy/2a) where u0 = v0 = a0, w0 ∈ [10a0, 20a0] and
a0 = 1.421 Å is the graphene lattice constant. The figure shows that the stretching en-
ergy [Eq. (2.12)] accounts for most of the energy cost to deform a clamped graphene
membrane. Here, the stretching energy is at least two orders of magnitude greater
than the bending energy calculated using Eq. (2.18).

[Eq. (2.1)] and the stretching energy is at least two orders of magnitude larger
than the bending energy computed using Eq. (2.18).

2.3 Equations of motion in the stretching regime

The classical equations of motion for the graphene surface Ω(t) are obtained
from the least action principle. The classical action S[r̄] is

S[r̄, t] =

∫ t

0

dt

∫∫
Ω0

dΩ0 L(r̄, ˙̄r),

where L(r̄, ˙̄r) = ρ0(∂tr̄)
2/2 − W S

0 (r̄) is the Lagrangian density and ρ0 is the
graphene mass density. The classical trajectory r̄cl satisfies the equation

δS

δr̄
[r̄cl] = 0.

12



2.3. Equations of motion in the stretching regime

Figure 2.4: Interpretation of the Piola stress tensor P̂ . The latter gives the forces on
the boundary ∂Ω of Ω per unit of length of the boundary ∂Ω0. That is, the differential
of force on ∂Ω is equal to ds0(t̄0 × n̄0) · P̂ , where ds0, t̄0 and n̄0 are the length element,
tangent and normal unit vectors at ∂Ω0. External body forces b̄0 are also depicted.

In order to identify the stress tensor in the theory, it is useful to write the
equation of motion in its integral form [42]∫∫

Ω0

dΩ0 ρ0r̈ =

∮
∂Ω0

ds0 (t̄0 × n̄0) · P̂ . (2.19)

Above, t̄0 is the unit vector tangent to the boundary ∂Ω0, n̄0 is the unit vector
normal to the surface Ω0, ds0 is the differential of length in the boundary ∂Ω0,
cf. Fig. 2.4. In Eq. (2.19), I identity P̂ as a measure of the stress built in the
membrane because the inertial force

∫∫
dΩ0 ρ0r̈ is balanced by the force ap-

plied only on the boundary:
∮
ds0(t̄0 × n̄0) · P̂ . In the literature, P̂ is known as

the Piola stress tensor and, for graphene, it is measured in units of N/m.
The differential form of the equations of motion, in Cartesian coordinates,

is
¨̄u(x, y) + c ˙̄u(x, y) = ρ−1

0 DP̂ [ū(x, y)] +mc
−1F̄0(x, y, t), (2.20)

where I have also included a (phenomenological) viscous dissipative term, c ˙̄u,
with a damping rate coefficient c, F̄0 is an external force distribution, mc is the
carbon mass and the linear differential operator D acts on P̂ as

DP̂ =
∑

χ=x,y,z

χ̂(∂xPxχ + ∂yPyχ).
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2.3. Equations of motion in the stretching regime

The components of the Piola stress tensor in Cartesian coordinates are

Pxx = (1 + ux)[(λ+ 2µ)Exx + λEyy] + 2µuyExy,

Pxy = 2µ(1 + vy)Exy + vx[(λ+ 2µ)Exx + λEyy],

Pxz = λwx(Exx + Eyy) + 2µwxExx + 2µwyExy,

Pyx = 2µ(1 + ux)Exy + uy[(λ+ 2µ)Eyy + λExx],

Pyy = (1 + vy)[(λ+ 2µ)Eyy + λExx] + 2µvxExy,

Pyz = λwy(Exx + Eyy) + 2µwyEyy + 2µwxExy. (2.21)

Equations (2.20) and (2.21) are the equations of the elasticity theory for graphene
membranes subject to finite strain [cf. Eq. (2.13)] in the stretching regime.
These equations may be simplified by assuming that ux, uy, vx, vy ≪ 1 and I
obtain

Pxx ≈ (λ+ 2µ)Exx + λEyy,

Pxy ≈ 2µExy,

Pxz ≈ λwx(Exx + Eyy) + 2µ(wxExx + wyExy),

Pyx ≈ 2µExy,

Pyy ≈ λExx + (λ+ 2µ)Eyy,

Pyz ≈ λwy(Exx + Eyy) + 2µ(wyEyy + wxExy), (2.22)

where the strain components are given by Eq. (2.13) without the quadratic
terms in the in-plane displacements: u2x, uxuy, etc. The equations of motion
for the membrane that results from Eq. (2.22) are known as the von Karman
equations of thin plate theory [53, 54].

In the out-of-plane approximation [cf. Eq. (2.17)], the equation of motion
for w(x, y, t) is

ẅ(x, y, t) + cẇ(x, y, t)−
∑
χ=x,y

∂χ(wχTχ)

ρ0
=
F0z

mc

, (2.23)

where

Tx = (λ+ 2µ)δx + λδy + (λ/2 + µ)(w2
x + w2

y),

Ty = (λ+ 2µ)δy + λδx + (λ/2 + µ)(w2
x + w2

y). (2.24)

Above, I have introduced again the parameters δx and δy representing initial
strains in the x and y directions, respectively. Note that Tx and Ty depend
nonlinearly on the displacement field w(x, y).

If one mode is expected to dominate the out-of-plane deformations, the
out-of-plane approximation [Eq. (2.23)] may be projected onto the dominant
mode to obtain an ordinary rather than a partial differential equation. For
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2.4. Comparison of the elasticity theory with molecular dynamics and
experiments

instance, if the dominant mode in a square graphene resonator of side 2a is
the fundamental mode,

w(x, y, t) = w(t) cos
(πx
2a

)
cos

(πy
2a

)
,

then the equation of motion for the vibrational amplitude w(t) is the Duffing
equation [55]

ẅ(t) + cẇ(t) + ω2
0w(t) +

5π4(λ+ 2µ)

128a4ρ0
w3(t) =

F (t)

mc

. (2.25)

The driving force is

F (t) =
1

a2

∫∫
dxdy F (x, y, t) cos

(πx
2a

)
cos

(πy
2a

)
,

and the vibrational resonant frequency ω0 of the driven mode is

ω0 =
π

a

√
(λ+ µ)(δ + δ2/2)

ρ0
.

Above, I have assumed that δx = δy = δ. It is not necessary to project the
membrane dynamics onto one mode. Interaction between different vibra-
tional modes in the membrane may be also studied within the out-of-plane
approximation. In this case, a system of coupled Duffing equations is ob-
tained, cf. Eq. (3.6).

2.4 Comparison of the elasticity theory with molec-
ular dynamics and experiments

Validation of the elasticity theory is performed by comparison with molecular
dynamics calculations and with experimental data of graphene resonators. In
the validation of the theory with molecular dynamics, I consider a rectangular
fully clamped graphene flake with dimensions of 6.6 nm by 7.6 nm and subject
to a uniform constant external force of 1 nN per atom applied along the z axis
(graphene is initially on the z = 0 plane). I solve numerically the equations
of motion of molecular dynamics (MD) [56] and of the continuum elasticity
theory (CET) and calculate the out-of-plane displacement w(x, y). The relative
difference in w(x, y) obtained from MD and CET is evaluated by

r(x, y) = 100 · |
(
wMD(x, y)− wCET(x, y)

)
/wMD(x, y)|%.

Figure 2.5 shows the comparison between MD and the general elasticity the-
ory [Eqs. (2.20)-(2.21)]. It is also compared MD and the approximations of the
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2.4. Comparison of the elasticity theory with molecular dynamics and
experiments

general elasticity theory: von Karman’s theory [Eqs. (2.20), (2.22)], the out-of-
plane approximation [Eq. (2.23)] and the fundamental mode approximation
[Eq. (2.25)]. The figure shows that the general elasticity theory is in excel-
lent agreement with molecular dynamics with a relative difference r . 2%.
The von Karman’s theory shows good agreement at the central region of the
graphene flake, where the out-of-plane displacement w(x, y) is much larger
than the in-plane displacements u(x, y), v(x, y). Close to the clamping regions,
the difference can be r & 20% because the dismissed terms related to the in-
plane displacements, u and v, become important. The out-of-plane approxi-
mation also shows good agreement with the molecular dynamics at the cen-
tral region. In the case of study, the fundamental mode approximation is a bit
worse than the out-of-plane approximation because the uniform applied force
distribution also excites other modes.

Experimental data on doubly and fully clamped graphene resonators is
used to test the elasticity theory. Comparisons with experimental data of J. S.
Bunch et al. [57], C. Lee et al., and C. Chen et al. [58,59] show that the elasticity
theory is able to predict the equilibrium shapes for a given applied pressure.
Furthermore, the dynamical features of the Duffing equation [Eq. 2.24] have
also been observed in these experiments [57,58]. Agreement with such exper-
iments is achieved for values of Poisson ratio and effective Young modulus
(Eh) equal to 0.18 and 300 N/m, respectively. The above mechanical descrip-
tion for single layer graphene membranes may also be used to study few layer
graphene membranes [57] by appropriately changing the Young modulus and
Poisson ratio parameters.
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Figure 2.5: (a): Comparison between molecular dynamics (MD) and general elasticity
theory [Eqs. (2.20)-(2.21)]. (b): Comparison between MD and von Karman’s theory
[Eqs. (2.20), (2.22)]. (c): Comparison between MD and the out-of-plane approximation
[Eq. (2.23)]. (d): Comparison between MD and fundamental mode approximation
[Eq. (2.25)]. Color bars indicate the relative difference r(x, y) (%) between continuum
elasticity theory and MD, see text.
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CHAPTER 3

Narrow-band mass measurement scheme using
nonlinear dynamics of graphene resonators

It has been demonstrated that nanoelectromechanical (NEM) devices are very
suitable for sensor technology. In particular, it has been shown that NEM res-
onators can be employed to measure mass [20–25, 60] and charge [14, 26, 61]
with very high precision. In the case of mass measurement applications, NEM
resonators are useful because of the combination of properties such as low
mass density, high vibrational frequencies and low intrinsic losses. These fea-
tures are present, e.g., in carbon nanotube based nanoresonators where vibra-
tional frequencies of f0 & 4 GHz and quality factors of Q ∼ 105 have been
recently achieved [29, 30, 33, 62]. NEM resonators are also interesting because
they can be driven into the nonlinear dynamical regime [5,63–65]. In this chap-
ter I demonstrate how to exploit nonlinear dynamical properties of graphene
resonators to develop a scheme that determines not only the mass but also the
position of an adsorbed particle on the membrane. Realization of this scheme
may open the possibility for on-chip mass spectrometry [20, 23, 32, 66].

3.1 NEM-based mass measurement

Mass measurement using NEM resonators is based on the measurement of
the resonance frequency shift, ∆ω < 0, of certain vibrational mode(s) of the
resonator. For particles with mass, m, much smaller than the effective mass,
M0, of the vibrational mode, the frequency shift is proportional to the particle
mass

−∆ω

ω0

≈ R(X̄p)
m

M0

, (3.1)

where ω0 is the bare resonance frequency of the vibrational mode and the coef-
ficient R(X̄p) depends on the position, X̄p, of the particle on the resonator and
also on the spatial profile ϕ(x) of the vibrational mode. The mass responsivity
coefficient R(x̄) is equal to

R(X̄) =
1

2
ϕ2(X̄),

and the vibrational mode effective mass is M0 =
∫
d2X̄ ρ0ϕ

2(X̄) where ρ0 is
the bare mass density of the resonator.
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3.2. Single particle mass measurement scheme

Figure 3.1: A square graphene resonator working as a mass measurement device.
Mechanical vibrations are driven by a gate electrode which is symmetric along the
x axis and asymmetric along the y axis. One of the first two degenerate vibrational
modes is also depicted.

Figure 3.1 depicts a square graphene resonator working as a mass measure-
ment device. The resonator is actuated by a gate electrode. It is also depicted
one of the first two degenerate vibrational modes. Below, I will discuss a mass
measurement scheme for this type of resonator. The aim is to determine the
mass and the position of a single adsorbed particle on the membrane.

3.2 Single particle mass measurement scheme

Equation (3.1) has so far been the fundamental equation for mass measure-
ment using NEM resonators [25]. It is easy to see that in order to uniquely
determine the mass, m, of the adsorbed particle from the frequency shift ∆ω
it is necessary to know in advance the position of the particle, X̄p. In the case
of two dimensional resonators the position of the particle introduces two new
unknowns: X̄p = (Xp, Yp). The three unknowns m, Xp and Yp may be deter-
mined from the frequency shifts of three different vibrational modes. Thus,
a scheme probing only the linear response of the system requires three de-
tectors tuned to three different vibrational modes. Below, I demonstrate that
by exploiting the intrinsic nonlinearity of graphene resonators, it is possible
to develop a scheme where only one detector (e.g., tuned to the fundamental
mode) is required to determine the position and mass of the adsorbed particle.
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3.2. Single particle mass measurement scheme

3.2.1 The model

The mechanics of graphene is described within the out-of-plane approxima-
tion, cf. Eq. (2.23),

ρẅ + ρ0cẇ −
∑

ξ=X,Y

∂ξ(Tξ∂ξw) = Pz(X,Y, t), (3.2)

where w(X, Y, t) is the membrane out-of-plane displacement, Pz(X,Y, t) is the
applied force per unit of area, ρ is the mass density of the system, the dissipa-
tive term ρ0cẇ is introduced phenomenologically and ρ0 is the mass density
of pristine graphene. The tension of the membrane TX,Y depends on the out-
of-plane displacement

TX = TY = T0 + T1∥∇w∥2,

where T0 is the initial uniform biaxial tension and T1 = λ/2 + µ ≈ 112 N/m,
cf. Eq. (2.24). The tension at zero deflection, T0, is a free parameter which
determines the vibrational resonance frequency of small oscillations.

Adsorption of a small particle on the membrane changes the bare mass
density ρ0 to

ρ(X̄) = ρ0 +mδ(X̄ − X̄p), (3.3)

where the mass and position of the particle are m and X̄p = (Xp, Yp), respec-
tively, and δ(X̄) is the Dirac delta function in two dimensions. I assume that
the particle size is much smaller than the membrane size.

Below, I consider two-dimensional resonators with degenerate eigenmodes
and, in particular, a square graphene resonator with side length L0 and bare
mass M = ρ0L

2
0. I also introduce relative coordinates x̄ = X̄/L0, length

scale h0 = L0

√
T0/T1 for the out-of-plane displacement and time scale t0 =

L0

√
ρ0/T0. The out-of-plane displacement w(X, Y, t) is scaled as

u(x, y, τ) = w(L0x, L0y, t0τ)/h0. (3.4)

I expand u(x̄, τ) in terms of the normalized eigenmodes ϕm(x̄) of the corre-
sponding linearized problem, cf. Eq. (3.7),

u(x̄, τ) =
∞∑

m=1

um(τ)ϕm(x̄). (3.5)

The eigenmode vibrational amplitudes um(τ) satisfy the following system of
coupled Duffing equations

Dm(üm + ω2
mum) + γu̇m +

∞∑
r, s, t=1

Amrsturusut = pm(τ), (3.6)
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3.2. Single particle mass measurement scheme

where ωm is the scaled eigenfrequency of the mth eigenmode,

Dm = 1 + (m/M)ϕ2
m(x̄p),

the scaled damping coefficient is γ = ct0, the coefficients of the nonlinear terms
areAmrst =

∫∫
dxdy (∇ϕm ·∇ϕr)(∇ϕs ·∇ϕt), the scaled driving force of themth

mode is
pm(τ) =

∫∫
dxdy ϕm(x̄)pz(x̄, τ),

and pz(x̄, τ) = Pz(L0x̄, t0τ)t
2
0/(ρ0h0) is the scaled applied pressure.

3.2.2 Graphene resonators in the linear regime

The eigenmodes (vibrational modes) are defined by the following eigenvalue
problem

∇2ϕn = −ρ̃(x̄)ω2
nϕn, (3.7)

where ϕn(x̄) and ωn are the spatial profile and the scaled eigenfrequency of
the nth eigenmode, respectively. The parameters of the adsorbed particle m,
x̄p enter in the scaled eigenfrequencies ωn through the scaled mass density

ρ̃(x̄) = 1 + (m/M)δ(x̄− x̄p).

For ϵ ≡ m/M ≪ 1, the eigenvalue problem (3.7) may be solved using pertur-
bation theory with ϵ as the small parameter. The unperturbed problem is

∇2ϕn0 = −ω2
n0ϕn0. (3.8)

For nondegenerate modes of the unperturbed problem, the scaled eigen-
frequencies ωn are equal to

ω2
n = ω2

n0(1− ϵϕ2
n0(x̄p)) +O(ϵ2). (3.9)

Thus, for nondegenerate eigenmodes, the mass responsivity function Rn(x̄) is

Rn(x̄) =
1

2
ϕ2
n0(x̄). (3.10)

In general, for two degenerate modes of the unperturbed problem (3.8),
the added mass splits the frequency degeneracy in such a way that only one
of the eigenmodes lowers its eigenfrequency whereas the other does not vary
its eigenfrequency to all orders in ϵ. The latter eigenmode has a node line
which contains the adsorption point of the particle, x̄p.

For a square resonator, the spatial profiles of the first two degenerate modes
of the eigenvalue problem (3.8) are

ϕ20(x, y) = 2 sin(πx) sin(2πy) and ϕ30(x, y) = 2 sin(2πx) sin(πy). (3.11)

22



3.2. Single particle mass measurement scheme

Figure 3.2: Amplitudes for the three lowest lying flexural eigenmodes as functions of
drive frequency ω for weak driving. Dashed lines: Linear response in the absence
of added mass. The unperturbed mode shapes are written ϕ10, ϕ20 and ϕ30 and are
indicated on the plaquettes. The plaquettes show the location of nodelines and the
’±’-signs show the antinodes. The two modes ϕ20 and ϕ30 are degenerate. Solid
lines: Linear response in the presence of an added mass. The mode functions are ϕ1,
ϕ2 and ϕ3. Their shapes are indicated on the plaquettes with a blue dot at the location
of the added mass.

These eigenmodes have scaled eigenfrequencies equal to ω20 = ω30 =
√
5π.

The added mass splits the frequency degeneracy and the new eigenfrequen-
cies are

ω2
2 = ω2

20(1− ϵN 2)

ω3 = ω30, (3.12)

where N = [ϕ̃2
2 + ϕ̃2

3]
1/2, ϕ̃k = ϕk0(x̄p) and k = {2, 3}. Also, the correspond-

ing eigenmodes spatial profile, to zeroth order in ϵ, are ϕ2(x̄) = [ϕ̃2ϕ20(x̄) +

ϕ̃3ϕ30(x̄)]/N and ϕ3(x̄) = [ϕ̃2ϕ30(x̄) − ϕ̃3ϕ20(x̄)]/N . Note that ϕ3(x̄p)=0. These
results are depicted in Fig. 3.2.

The analytical formulas (3.9) and (3.12) can be used to uniquely deter-
mine the parameters m, xp and yp of the adsorbed particle. Using Eqs. (3.9)
and (3.12) for, e.g., the modes 1, 2 and 4 (modes are labeled in ascending order
with respect to their eigenfrequency), I obtain the following equations for the
particle position, x̄p = (xp, yp),

1− s ≡ 1

10

ω2
20 − ω2

2

ω2
10 − ω2

1

≈ cos2(xpπ) + cos2(ypπ), (3.13)

1

16

∆ω4/ω4

∆ω1/ω1

≈ cos2(xpπ) cos
2(ypπ).
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Figure 3.3: Determination of the location x̄p = (xp, yp) of the analyte using Eqs. (3.9)
and (3.12). The exact values are xp = 0.4 and yp = 0.3.

The solution of the above equations is depicted in Fig. 3.3. The position of the
analyte is obtained up to the symmetry of the square. The analyte mass m is
obtained from m = R−1

1 M∆ω1.

3.2.3 Graphene resonators in the nonlinear regime

Nonlinear dynamics is treated in the weakly nonlinear regime and it is also
assumed that the system is underdamped. The equation of motion for the
vibrational mode amplitudes um(τ) are, cf. Eq. (3.6),

üm + ω2
mum + ϵ̃γu̇m +

∞∑
r, s, t=1

ϵ̃(1− ϵϕ̃2
m)Amrsturusut = ϵ̃pm(τ)(1− ϵϕ̃2

m) +O(ϵ2),

(3.14)
where ϵ ≡ m/M ≪ 1, ϕ̃m = ϕm0(x̄p) and ϕm0(x̄) is the spatial profile of the
mth unperturbed eigenmode, cf. Eq. (3.8). Above, I have also introduced
another small parameter ϵ̃≪ 1 to point out that we are dealing with a weakly
nonlinear underdamped system. In what follows I neglect all second order
terms in ϵ and ϵ̃ in Eq. (3.14).

In the mass sensing scheme only the first three vibrational modes are di-
rectly driven near resonance. Hence, it is only necessary to consider the equa-
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Figure 3.4: Dynamical response of the system when modes 1, 2 and 3 are simultane-
ously driven near resonance, cf. Eq. (3.15). Mode 1 is driven in the linear regime at
resonance with p1(τ) = p1 cos(ω1τ) and the modes 2 and 3 are driven in the weakly
nonlinear regime with p2(τ) = p2 cos(ωτ) and p3(τ) = p3 cos(ωτ), respectively. These
modes are parametrically coupled through Eqs. (3.15). This type of coupling enables
us to determine the resonance frequencies and saddle-node bifurcation frequencies
ωc,2± and ωc,3± of the system from measurements performed only on mode 1.

tions of motion of these modes and Eq. (3.14) simplifies to (ϵ̃ = 1)

u′′1 + γu′1 + (ω2
1 + 5[Au22 + Au23])u1 + Au31 = p1(τ),

u′′2 + γu′2 + (ω2
2 + 5[Au21 + Cu23])u2 +Bu32 = p2(τ),

u′′3 + γu′3 + (ω2
3 + 5[Au21 + Cu22])u3 +Bu33 = p3(τ), (3.15)

where A = 5π4, B = 161π4/4 + 3π4ϕ̃2
2ϕ̃

2
3/(2N 4), C ≈ 41π4/5 and N ≡

[
ϕ̃2
2 +

ϕ̃2
3

]1/2. To first order in ϵ, the resonance frequency of the fundamental mode
is ω1 = ω10(1 − ϵϕ̃2

1/2), and, for a square membrane, ω2 = ω20(1 − ϵN 2/2) and
ω3 = ω20. The unperturbed scaled eigenfrequencies are ω10 =

√
2π and ω20 =

ω30 =
√
5π. Comparison between numerical solution of the full equations (3.6)

and the approximate equations (3.15) justifies the approximations leading to
Eqs. (3.15).

Figure 3.4 depicts the response of the system when modes 1, 2 and 3 are
simultaneously driven near resonance. Mode 1 is driven in the linear regime
with p1(τ) = p1 cos(ω1τ), and modes 2 and 3 are driven in the nonlinear regime
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3.2. Single particle mass measurement scheme

with p2(τ) = p2 cos(ωτ) and p3(τ) = p3 cos(ωτ), respectively. If the frequency
splitting |ω2 − ω3| is not too small, the dynamics of modes 2 and 3 can be de-
scribed by two Duffing oscillators [55]. These two Duffing oscillators, above
certain critical drive strength, exhibit bistability in a narrow frequency range:
ω ∈ [ωc2−, ωc2+] (mode 2) and ω ∈ [ωc3−, ωc3+] (mode 3), where ωc2± and ωc3± are
the saddle-node bifurcation frequencies of the second and third eigenmode,
respectively, cf. Fig. 3.4. The stable dynamical states within the bistability re-
gions are states with constant amplitude and phase. However, if the bistability
regions of modes 2 and 3 significantly overlap (for small enough |ω2−ω3|), then
stable states with oscillating amplitude and phase may also develop (limit cy-
cles) [5].

Equation (3.15) indicates that the resonance frequency of one mode de-
pends parametrically on the square of the oscillation amplitude of the other
modes. I refer to this type of coupling as parametric coupling. Specifically,
from Eq. (3.15), the parametric coupling between the driven modes 1, 2 and 3
leads to an effective resonance frequency of the fundamental mode: ω1eff =
ω2
1 + 5A2

(
⟨u2⟩2 + ⟨u3⟩2

)
, where ⟨·⟩ denotes time average over the oscillation

period (≈ 2π/ω20) of modes 2 or 3. This type of coupling can be used to deter-
mine the frequencies ω2,3, ωc2± and ωc3± from measurements performed on the
mode 1. For instance, for the situation depicted in Fig. 3.4, each time that the
driving frequency ω is swept through ω2,3±, the abrupt jumps in the oscillation
amplitudes of modes 2 and 3 induce also jumps in the oscillation amplitude
of the probed mode 1, which is driven all the time at resonance in the linear
regime [6].

3.2.4 The mass measurement scheme

The goal of the present mass measurement scheme is to determine the posi-
tion and mass of the adsorbed particle on the square membrane. The particle
position is determined from the parameters r and s,

r ≡ cos2(πyp)/ cos
2(πxp), (3.16)

s ≡ 1− [cos2(πxp) + cos2(πyp)]. (3.17)

The parameter s(ω1, ω2) is determined by the resonance frequencies of the
modes 1 and 2, cf. Eqs. (3.9) and (3.12),

1− s ≈ 1

10

ω2
20 − ω2

2

ω2
10 − ω2

1

. (3.18)

In order to determine r, the resonator is driven into the nonlinear regime with
a special scaled pressure pz(x̄, τ) = p(τ)g(x̄) where g(x̄) obeys the symmetry
relation: g(x, y) = g(|x − 0.5|, y) and x, y ∈ [0, 1]. Then, the scaled forces that
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3.2. Single particle mass measurement scheme

appear in Eq. (3.15) are

p1(τ) = D1p(τ),

p2(τ) = D2p(τ) cos(πyp)

p2(τ) = D2p(τ) cos(πxp),

where D1 =
∫
d2x̄ ϕ10(x̄)g(x̄) and D2 =

∫
d2x̄ ϕ30(x̄)g(x̄)/N . The ratio of the

scaled forces p2(τ) and p3(τ) is equal to
√
r. For a Duffing oscillator, it can be

shown that, cf. appendix of paper III, (ω2
n − ω2

cn−)
3 ≈ (9/4)2Bp2n (n = 2, 3)

where ωcn− is the smallest saddle-node bifurcation frequency of the nth mode,
cf. Fig. 3.4. The parameter r(ωc2−, ωc3−) is given by

r =

(
ω2
2 − ω2

c2−

ω2
3 − ω2

c3−

)3

. (3.19)

Hence, both parameters s(ω1, ω2) and r(ωc2−, ωc3−) are determined by frequency
measurements in the linear and nonlinear regimes, respectively. The posi-
tion of the particle is determined up symmetry of the square from r and s, cf.
Eqs. (3.16) and Eq. (3.17), the mass responsivity R1 can be written in terms of
r and s as

R1(x̄p) = −2ω10
(s+ r)(1 + rs)

(1 + r)2
, (3.20)

and the mass of the particle is m = R−1
1 M∆ω1.

Figure 3.5 depicts the scheme for single-particle mass measurement. First,
we find out whether there is a single analyte adsorbed on the resonator. This is
done by measuring the frequency shifts of the fundamental mode, ∆ω1, and of
the mode 3, ∆ω3. A finite ∆ω1 indicates that there are adsorbed particles on the
membrane. A vanishing ∆ω3 indicates that the adsorbed particles are located
on the nodal line of mode 3 (very unlikely for a uniform flux of particles). If
∆ω1 ̸= 0 and ∆ω3 = 0, we have a single-particle adsorption event and then
we may proceed with the nonlinear part of the scheme. Here, the resonator is
driven into the nonlinear regime and the saddle-node bifurcation frequencies
ωc2− and ωc3−, cf. Fig. 3.4, are measured. Then we use Eqs. (3.18), (3.19) and
(3.20) to calculate the particle position x̄, mass responsivity R1 and the particle
mass m.

All the quantities needed by the mass measurement scheme (ω1,2,3, ωc2−
and ωc3−) can be measured by a narrow-band detector tuned at the funda-
mental mode resonance frequency, cf. appended paper III.

3.2.5 Performance study

In this section I discuss the sensitivity and range of applicability of the mass
measurement scheme. Let us consider first the range of values of m where the
scheme is applicable. The upper limit for m comes from the requirement that
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Figure 3.5: Single-particle mass measurement scheme.
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the analyte mass should be much smaller than the resonator mass, i.e. m≪M ,
for the above results, based on perturbation theory in ϵ, to hold [cf. Fig. 3.6 (a)].
The lower limit for m comes from the requirement that the bistability regions
of modes 2 and 3 should not overlap, cf. Fig. 3.4. This imposes the following
condition on the resonance frequencies of modes 2 and 3

ω3 − ω2 ≥ δω2c ≡
√
3ω2

2Q
, (3.21)

where Q and δω2c are the quality factor and frequency detuning of the critical
point for the onset of Duffing nonlinearity of the second eigenmode. Using the
approximations for the resonance frequencies of modes 2 and 3, cf. Eqs. (3.9)
and (3.12), in Eq. (3.21) leads to

ϵ
[
sin2(πxp) sin

2(2πyp) + sin2(2πxp) sin
2(πyp)

]
≥

√
3

4Q
. (3.22)

The above inequality does not hold for analytes landing close to the center
of the square membrane, x̄c = (0.5, 0.5). However, for ||x̄p − x̄c|| ≪ 1, the
knowledge of the particle position is not critical because the mass responsivity
of the fundamental mode, R1(x̄p) ≈ 1 +O

(
∥x̄p − x̄c∥2

)
, is not very sensitive to

x̄p. For a square resonator of side L0 = 1 µm (M ≈ 760 ag) and with a quality
factor ofQ = 3000, the scheme should work for analytes with mass larger than
1 ag (1 ag ≡ 10−21 kg.).

Thermal noise and the system nonlinearity limit the relative precision with
which the resonance frequency of the nth mode can be measured. The relative
precision of the frequency measurements, |∆ωn/ωn|, is given by [67],

|∆ωn/ωn| < Q−110−DRn/20,

where DRn is the dynamical range (determined by the thermal noise intensity
and the nonlinearity of the system) of nth mode. For graphene, the dynamical
ranges for modes n = 1, 2, 3 are

DRn = 10 log10

[
Rn

Q

(
T0
T1

)
T0L

2
0

kBT

]
, (3.23)

where R1 ≈ 0.6, R2 = R3 ≈ 0.3 are constants, T0 is the initial tension for
flat graphene, T1 = λ/2 + µ ≈ 112 N/m, T is the environment temperature
and kB is the Boltzmann constant. For instance, for a device with L0 = 1 µm,
Q = 3000, ω1/2π =

√
T0/2M = 2 GHz and T = 300 K, the modes resonance

frequencies can be determined with a precision of 1 ppm.
The saddle-node bifurcation frequencies (ωc2±, ωc3±) can be measured by

sweeping the driving frequency ω upwards and downwards and making note
of the driving frequencies when jumps in the fundamental mode vibrational
amplitude occur [55]. This method fails in the presence of significant thermal
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3.2. Single particle mass measurement scheme

additive noise because the latter causes the jumps to occur before the onset of
the saddle-node bifurcation [4]. However, it has been demonstrated that the
saddle-node bifurcation frequencies (and also the natural resonance frequen-
cies) can be indirectly determined by measuring the basin activation energies
for transition between the stable foci. This method has been employed to mea-
sure the bifurcation saddle-node frequencies and the natural fundamental res-
onance frequency of a nanobeam with a relative precision of ≈ 0.1 ppm [68].

Figure 3.6 depicts the performance of the scheme. Figure 3.6 (a) demon-
strates the applicability of the perturbation theory, cf. Eqs. (3.9) and (3.12).
Inside the contour lines, perturbation theory holds up to an error of 5% for
particles with relative mass ϵ ≡ m/M ≤ ϵmax. Figure 3.6 (b) depicts the con-
tours of minimum ϵQwhere Eq. (3.19) is applicable. Recall that the latter equa-
tion was obtained in the limit of Q→ ∞ (cf. appendix of paper III) and under
the assumption that the bistability regions of modes 2 and 3 do not overlap,
cf. Eq. (3.22). Figure 3.6 (c) depicts a comparison between the true and pre-
dicted values of the mass and position of the adsorbed particle.
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3.2. Single particle mass measurement scheme

Figure 3.6: (a) Maximal values of ϵ ≡ m/M due to limitations of first order perturba-
tion theory. Within each contour, first order perturbation theory in ϵ allows mass
fractions up to ϵmax to be determined with a 5% accuracy. (b) Contours of mini-
mum ϵQ where Eq. (3.19) is applicable. In the shaded area, Eq. (3.19) is valid for
ϵ > 1.6/Q. (c) Determination of randomly deposited masses using numerical integra-
tion of Eq. (3.6) for a sheet with Q = 3000. The masses were uniformly distributed
in the range 0.02% < ϵ < 0.35%. Frequencies were determined using an accuracy
of |∆ω/ω| ≈ 0.5 · 10−4. The positions of the deposited masses are shown by shaded
symbols. The open symbols are the positions determined by using equations (3.18)
and (3.19). The size of the markers are proportional to ϵ. The dashed lines indicate
regions where the relative error |(ϵ− ϵexact)/ϵexact| is less than 2% or 10%.
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CHAPTER 4

Mass-loading induced dephasing in nanomechanical
resonators

In the previous chapter I described a mass sensing scheme to determine the
mass and position of a particle, adsorbed on a square graphene resonator. It
was assumed that the particle remains at the same spot during the frequency
shifts measurements. In this chapter, I consider the case that the particle is not
static. It performs a Brownian motion and attaches and detaches at random
positions on the resonator. In this situation, the resonator vibrational modes
change their eigenfrequencies because their effective masses change.

I study the effect of a fluctuating eigenfrequency in the susceptibility of
a vibrational mode. One would think that the susceptibility is given by a
weighted sum of partial susceptibilities, corresponding to the different possi-
ble values of the eigenfrequencies. I show that this simple picture does not
apply when the frequency fluctuations have a comparatively short correla-
tion time. I describe a general method, based on the Einstein-Fokker-Planck
equation [69], to calculate the susceptibility and higher order moments of the
vibrational amplitude of underdamped resonantly driven vibrational modes.
I assume that the eigenfrequency noise does not depend on the vibrational
state (no backaction). Backaction can arise in high frequency nanomechanical
resonators loaded with particles and it can lead to bistability and rare inter-
state switching, cf. chapter 5.

I emphasize that the eigenfrequency noise can be characterized by study-
ing the amplitude and phase fluctuations of forced oscillations. Specifically,
under certain conditions, cumulants of the (complex, see below) amplitude
fluctuations are nonzero if frequency noise is nonzero. Hence, nanomechan-
ical resonators could be used to measure not only the mass of small particles
but also transport-related quantities such as diffusion coefficients and binding
energies [25]. The realization of these applications requires good models for
the frequency noise. The transport-related parameters can then be obtained
by comparison between the model predictions for the cumulants and experi-
mental data.
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4.1 The model

Nanomechanical resonators are known to have vibrational modes with very
high quality factors (e.g., quality factors ofQ ∼ 105 have been recently achieved
in CNT-based resonators [29, 30]). Thus, it is a good approximation to model
the dynamics of the mode amplitude, q(t), as a harmonic oscillator weakly
coupled to a thermal bath (e.g., phonons [4,8]). The equation of motion for the
amplitude of the mode, driven near resonance, is

q̈ + 2Γq̇ + ω2
0q = 2

F

M
cos(ωF t) + fT (t)/M, (4.1)

where M is the effective mass of the vibrational mode, F cos(ωF t) is the driv-
ing force and ωF is the driving frequency. The terms 2Γq̇ and fT (t) are in-
troduced by linear coupling to the bath modes for the special case of Ohmic
dissipation [7]. The dissipative term is 2Γq̇ and fT (t) is a white and Gaussian
stochastic force with two-time correlation function:

⟨fT (t1)fT (t2)⟩ = 4kBTΓMδ(t1 − t2).

Here, ⟨·⟩ denotes ensemble average, T is the bath temperature, kB is the Boltz-
mann constant, δ(·) is the Dirac function and ω0 is the renormalized vibrational
frequency, which is approximately equal (again for weak coupling to the bath)
to the bare mode eigenfrequency (given by the square root of the ratio between
the spring constant and the effective mass) [7].

Because of the weak coupling to the bath (Γ ≪ ω0), the oscillator state
changes very little within the oscillation period 2π/ωF . Thus, it is meaningful
to introduce the slow complex dynamical variables u(t) and u∗(t), defined by

q(t) = u(t) exp(iωF t) + u∗(t) exp(−iωF t),

q̇(t) = iωF

[
u(t) exp(iωF t)− u∗(t) exp(−iωF t)

]
. (4.2)

The above transformation implies the condition

u̇(t) exp(iωF t) + u̇∗(t) exp(−iωF t) = 0.

The equation for u(t) is (neglecting fast oscillating terms with frequency 2ω0)

u̇(t) = −[Γ + iδω]u(t) +
F

2iMωF

+ f̃T (t), (4.3)

where f̃T (t) = fT (t) exp(−iωF t)/(2iωFM) and

⟨f̃T (t1)f̃ ∗
T (t2)⟩ = (kBTΓ/Mω2

F )δ(t1 − t2).

The equation for u∗(t) is the complex conjugate of the equation for u(t). The
Markovian equation (4.3) for the slow dynamic variable u(t) is also known as
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the rotating wave approximation (RWA). The conditions for the applicability
of the RWA are weak coupling to the bath (Γ ≪ ω0) and that the coupling
function F (ω) (this function is given by the density of states of the bath modes
weighted by the coupling factors between the bath modes and the oscilla-
tor [7]) be smooth at ω ≈ ω0. The frequency detuning δω ≡ ωF − ω0 is also
assumed to be small (|δω| ≪ ω0). In the presence of frequency noise, Eq. (4.3)
takes the form

u̇(t) = −[Γ + i(δω − ξ(t))]u(t) +
F

2iMωF

+ f̃T (t), (4.4)

where the ξ(t) is the frequency noise. The stochastic process ξ(t) is assumed
to be stationary and it is characterized by its standard deviation ∆ ≡

⟨[
ξ(t)−

⟨ξ(t)⟩
]2⟩1/2 and its correlation time τc, which is defined by

⟨(
ξ(t)−⟨ξ(t)⟩

)
ξ(0)

⟩
∼

∆2 exp(−t/τc). In what follows, the vibrational frequency ω0 is the largest fre-
quency in the theory,

∆, τ−1
c ,Γ, |δω| ≪ ω0, δω ≡ ωF − ω0, (4.5)

and there is no restriction in the relative size between the quantities appearing
at the left-hand side of the above inequality.

The theoretical model is complete when the model for the stochastic pro-
cess ξ(t) is given. This process is assumed to be Markovian and defined by the
master equation,

∂tp(ξ, t) = Ŵp(ξ) ≡
∑
ξ′

Ŵ (ξ, ξ′)p(ξ′, t), (4.6)

where p(ξ, t) is the probability distribution of ξ(t) at time t and Ŵ (ξ, ξ′) is the
matrix of transition probabilities per unit of time between different ξ-states. It
is assumed that Ŵ does not depend on the oscillator state, u(t). From Eq. (4.4),
the joint probability density P (u, u∗, ξ, t) satisfies the Einstein-Fokker-Planck
equation [69]

∂tP (u, u
∗, ξ, t) = ŴP + ∂u

(
[Γ + i(δω − ξ)]uP

)
− F

2iMωF

∂uP (4.7)

+∂u∗
(
[Γ− i(δω − ξ)]u∗P

)
+

F

2iMωF

∂u∗P +
kBTΓ

Mω2
F

∂2u,u∗P.

The average response of the oscillator to forced oscillations is given by

⟨q(t)⟩ = ⟨u∗(t)⟩e−iωF t + ⟨u(t)⟩eiωF t ≡ F

2MωF

[
χ(δω)e−iωF t + χ∗(δω)eiωF t

]
. (4.8)

The above equation defines the oscillator (scaled) susceptibility function, χ(δω).
The scaled susceptibility can be calculated from

χ(δω) =

(
2MωF

F

)∑
ξ

∫
dudu∗ u∗Pst(u, u

∗, ξ), (4.9)
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where Pst(u, u
∗, ξ) is the stationary solution of Eq. (4.7). Because the additive

noise f̃T (t) in Eq. (4.4) does not enter in the calculation of the moments of
u(t) [70], I set f̃T (t) to zero.

The oscillator susceptibility is determined by the interrelation between the
oscillator energy relaxation rate, Γ, and the standard deviation, ∆, and the
reciprocal correlation time τ−1

c of the frequency noise. Now, I discuss the limit
cases of slow (τc → ∞) and fast (τc → 0) frequency noise.

Let us assume for a moment that the process ξ(t) has a discrete range of
values. In the slow frequency noise limit, the correlation time, τc, is the largest
time scale: τc ≫ Γ−1,∆−1. This implies that the noise process stays at a certain
value ξ(t) = ξ0 for a time long enough for the vibrational mode to relax to
its stationary amplitude value, given by (2MωF/F )u

∗ = i[Γ − i(δω − ξ0)]
−1,

cf. Eq. (4.4). Assuming that the system is ergodic, the susceptibility function
χ(δω) is given by a sum of partial susceptibilities, χ(ξ; δω) = i[Γ− i(δω− ξ)]−1,
weighted by the probability pst(ξ),

χ(δω) ≡
∑
ξ

χ(ξ; δω) ≈
∑
ξ

ipst(ξ)

Γ− i(δω − ξ)
, τc ≫ max{Γ−1,∆−1}. (4.10)

In the limit of fast frequency noise, the correlation time of the latter, τc, is
much smaller than the oscillator ring down time, Γ−1, and the characteristic
time to resolve a frequency change equal to ∆ (this time is & ∆−1). In this
limit, the oscillator can not resolve the frequency changes, separated by a time
∼ τc, and the partial susceptibilities corresponding to different ξ can not be
distinguished,

χ(δω) ≈
∑
ξ

ipst(ξ)

Γ + ∆2τc − i(δω − ⟨ξ(t)⟩)
, ω−1

0 ≪ τc ≪ min{Γ−1,∆−1}. (4.11)

The oscillator absorption spectrum (imaginary part of the susceptibility) is a
Lorentzian centered at ⟨ξ(t)⟩. The increase ∆2τc in the linewidth is the result of
phase diffusion. The accumulated phase φ(T̄ ) =

∑i=N−1
i=0

∫ ti+1

ti
ds

[
ξ(s)−⟨ξ(s)⟩

]
(where t0 = 0, tN = T̄ , ti+1 − ti = ∆t and τc ≪ ∆t ≪ Γ−1,∆−1) can be
seen as the position of a random walker on the line with diffusion coefficient
Dφ = 2∆2τc and ⟨φ2(T̄ )⟩ = DφT̄ . The Lorentzian shape of the absorption
spectrum in the limit of fast frequency fluctuations is known in the field of
nuclear magnetic resonance as motional narrowing (the absorption spectral
line becomes narrower as the frequency fluctuations get faster). Moreover,
this is the limit case where the theory of spectral linewidths of Weisskopf-
Wigner [71] cannot be applied because the assumption that the linewidths be
smaller than the transition energies or frequencies does not hold.
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4.2. The method of the interfering partial susceptibilities

4.2 The method of the interfering partial suscep-
tibilities

Here, I derive the equation that determines the partial susceptibilities for a
Markovian type of frequency noise, cf. Eq. (4.6). Multiplying equation (4.7) by
u∗ and integrating over the variables u and u∗ (and assuming that P → 0 for
|u| → ∞), I find that the partial susceptibilities χ(ξ; δω) satisfy the equation

(Λ∗ + iξ)χ(ξ; δω)− Ŵχ(ξ; δω) = ipst(ξ), (4.12)

where Λ = Γ + iδω and pst(ξ) is the stationary solution of Eq. (4.6). Note that
the operator Ŵ , defining the frequency noise, couples the partial susceptibili-
ties. The total susceptibility, χ(δω), results from the interference of the coupled
complex partial susceptibilities, χ(ξ; δω),

χ(δω) =
∑
ξ

χ(ξ; δω). (4.13)

In the limit case of slow frequency noise (τc ≫ Γ−1,∆−1), the second term
on the left-hand side of Eq. (4.12) can be neglected and then we obtain the
result given by Eq. (4.10). In the limit of fast frequency noise (τc ≪ Γ−1,∆−1),
we have that Ŵχ(ξ; δω) ≈ 0 and the partial susceptibilities are proportional
to pst(ξ). The proportionality constant can be obtained by projecting Eq. (4.12)
over the left eigenvector, with zero eigenvalue, of Ŵ . This leads us to the
result (to zeroth order in τc) given by Eq. (4.11).

4.3 Specific cases

In this section I consider frequency noise models, which are relevant for mass
measurement applications based on NEM resonators. I discuss first the case
where one analyte freely diffuses along a one-dimensional resonator. The an-
alyte is not allow to leave the resonator. Next, I consider the situation where
analytes enter (adsorption) and leave (desorption) a certain fixed point of the
resonator. Here, there is no diffusion. Finally, I present a frequency noise
model which accounts for diffusion and adsorption and desorption of parti-
cles at random points on the resonator.

4.3.1 Diffusion-induced dephasing in nanomechanical res-
onators

This section summarizes the results of paper IV for diffusion-induced dephas-
ing in nanomechanical resonators. As discussed in chapter 3, the eigenfre-
quency shift ξ(t) = ∆D(x(t)) of a certain eigenmode, due to a particle located
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Figure 4.1: Oscillator absorption spectrum, Imχ(δω), for the fundamental mode of
a doubly clamped resonator with a particle freely diffusing along it. The frequency
detuning, δω = ω − ω0, is scaled by the standard frequency deviation ∆. Curves 1
through 5 refer to ∆τc = 50, 5, 0.5, 0.05 and 0.005, respectively. These results refer to
resonator damping rate Γ = 0.

at x(t), is
∆D(x) = −mω0

2M
ϕ2(x), (4.14)

where m is the particle mass, M ≫ m is the eigenmode vibrational effective
mass and ϕ(x) is the mode shape. Below, I consider the fundamental flex-
ural mode with ϕ(x) =

√
2 cos(πx/L) (this mode shape is an approximation

for the mode profile of the fundamental flexural mode of a doubly clamped
nanobeam near the antinode). The Brownian motion of the adsorbed particle
is described by the (Stratonovich) stochastic differential equation [69]

mκẋ = −∂xU(x) +mκD1/2ζ(t), (4.15)

where κ is the friction coefficient of the particle, D is the diffusion coefficient
and ζ(t) is a Gaussian white process with two-time correlator: ⟨ζ(t1)ζ(t2)⟩ =
2δ(t1 − t2). The diffusion coefficient is related to the friction coefficient by the
Einstein relation Dκm = kBT . I have also included a potential U(x) (imple-
mented by, e.g., surface functionalization), which may confine the motion of
the particle to a certain region on the resonator. The particle is assumed to be
overdamped; i.e., the inertia term mẍ has been neglected in Eq. (4.15). Note
also that U(x) does not depend on the oscillator state. This possibility (back-
action) will be discussed in chapter 5.

38



4.3. Specific cases

The equation for the partial susceptibility density χ(x; δω) is(
Λ∗ + i∆D(x)

)
χ(x; δω)−D

[
∂2xχ(x; δω) +

1

kBT
∂x(U

′(x)χ(x; δω))
]
= ipst(x).

(4.16)
In paper IV, the above equation has been solved for U(x) = α(x − x0)

2 (har-
monic confining potential) and U(x) = 0 (free diffusion), subject to the condi-
tion that the particle is not allowed to leave the resonator (this implies reflect-
ing boundary conditions in χ(x; δω): D∂xχ(x; δω) + (1/kBT )U

′(x)χ(x; δω) = 0
at x = ±L/2).

Figure 4.1 depicts the results for free diffusion. In this case, the frequency
noise has a standard deviation equal to ∆ = ω0m/(M

√
8) and correlation time

equal to τc = (L/2π)2/D. The latter is proportional to the time for the particle
to diffuse a distance equal to the resonator length, L. Figure 4.1 shows how
the oscillator absorption spectrum, Imχ(δω), changes as function of the scaled
frequency detuning, δω/∆. For particles diffusing fast along the resonator
(τc ≪ ∆−1), the absorption spectrum converges to a Lorentzian line with a
linewidth ≈ Γ +∆2τc (motional narrowing).

For slow diffusing particles (τc ≫ ∆−1), the absorption spectrum acquires
a shape very different from the conventional Lorentzian shape, cf. Fig. 4.1. In
this particular case, the absorption spectrum has two peaks at δω = {−γ, 0},
where γ = ω0m/M . These peaks are a consequence of a divergent (density of
states) pst(ξ) at ξmin = −γ and ξmax = 0. This density of states is defined by
pst(ξ) ≡

⟨
δ
(
ξ −∆(x(t))

)⟩
x(t)

= [−∆(γ +∆)]−1/2/π, and

χ(δω) ≈
∫ 0

−γ

dξ
ipst(ξ)

Γ− i(δω − ξ)
, τc → ∞.

From the above expression, the absorption spectrum can be calculated in the
limit of Γ → 0+,

Imχ(δω) ≈
∫ 0

−γ

dξ πδ(δω−ξ)pst(ξ) =
1√

−δω(γ + δω)
Θ(−δω)Θ(γ+δω), (4.17)

where Θ(·) is the Heaviside function. Thus, the scaled susceptibility diverges
as |δω|−1/2 close to the edges of the frequency noise range.

4.3.2 Dephasing induced by adsorption and desorption of
particles in a nanomechanical resonator

The method of the interfering partial susceptibilities has been used in the pre-
vious section to calculate the susceptibility of an oscillator subject to a con-
tinuous, non-Gaussian and colored (finite correlation time) frequency noise
process. In this section, I consider the case where the frequency noise results
from particles attaching and detaching at a fixed point, x0, on the resonator
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Figure 4.2: Oscillator absorption spectrum, Imχ(δω), for a resonator eigenmode with
particles attaching and detaching from a fixed spot (no diffusion). The spectrum is
given as function of the scaled frequency detuning, δω/γ, where γ is the frequency
shift caused by adsorption or desorption of a particle. The desorption rate is W . In-
set: Limit case of comparatively fast adsorption and desorption, W & γ. The dashed
curves depict the partial absorption spectra, Imχ(N ; δω), corresponding to N parti-
cles on the resonator. The solid curve depicts the total absorption spectrum in the
motional narrowing limit.

and the particles do not diffuse [72]. The frequency noise is discrete and it is
given by

ξ(t) = −γN(t), (4.18)

where γ = ϕ2(x0)ω0m/2M [Eq. (4.14)] is the size of the frequency jump when a
particle attaches or detaches from the resonator andN(t) = {0, 1, ...}. I assume
that N(t) follows a Poisson process with master equation

Ṗ (N) = −W (N + N̄)P (N) +W (N + 1)P (N + 1) +WN̄P (N − 1), (4.19)

where N̄ is the average number of particles on the resonator and W is the
desorption rate per particle. The standard frequency deviation is ∆ =

√
N̄γ.

The desorption rate is given by the Kramer’s formula W ≃ ω̄ exp(−Eb/kBT ),
where ω̄ is the attempt frequency,Eb is the binding energy between the particle
and the resonator surface [73]. In the stationary regime, the Poisson process
describes a balance between a flux of particles impinging on the resonator and
a flux of particles leaving the resonator.

The equation for the partial susceptibility, χ(N ; δω), is

W [(N + N̄)χ(N ; δω)− N̄χ(N − 1; δω)− (N + 1)χ(N + 1; δω)]

+ (Λ∗ − γNi)χ(N ; δω) = iP0(N), (4.20)
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where P0(N) = e−N̄N̄N/N ! is the Poisson distribution and Λ = Γ + iδω.
The oscillator absorption spectrum is depicted in Fig. 4.2 as function of the

scaled frequency detuning δω/γ. In the limit case of slow frequency noise, the
partial susceptibilities, χ(δω;N), decouple and acquire the limit form

χ(N ; δω) ≈ iP0(N)

Γ + ΓN − i(δω +Nγ)
, W−1 ≫ max{Γ−1, γ−1}, (4.21)

where ΓN = W (N̄ + N) is the decay rate of the N th frequency noise state.
As depicted in Fig. 4.2, the absorption spectrum exhibits a fine structure with
Lorentzian lines centered at δω = −γN and linewidths ≈ Γ + ΓN .

In the limit case of fast and small frequency jumps the partial susceptibili-
ties acquire the form,

χ(N ; δω) ≈ iP0(N)

Γ + γ2N̄/W − i(δω + N̄γ)
, W−1 ≪ min{γ−1,Γ−1}. (4.22)

As depicted in the inset of Fig. 4.2, the partial absorption spectra, Imχ(N ; δω),
interfere so that the total absorption spectrum tends to a Lorentzian line (for
small but finite W−1∆ the spectrum is slightly asymmetric).

4.3.3 Dephasing induced by adsorption, diffusion and des-
orption of particles in a nanomechanical resonator

Here, I consider dephasing due to adsorption, diffusion and desorption of
small particles on a one-dimensional resonator. The frequency noise, ξ(t),
varies either continuously when particles diffuse along the resonator or dis-
continuously when the particles enter or leave the resonator. I discuss first the
case of a single particle and then the case of many particles acting indepen-
dently on the resonator.

Single particle case. The state of the particle is described by its position on
the resonator, x(t) ∈ [−L/2, L/2], and by a discrete variable η(t) = {0, 1}. The
resonator length is L. The variable η(t) has the value of one (zero) when the
particle is (is not) on the nanoresonator. The frequency noise ξ(t) is given by,

ξ(t) = −νη(t)ϕ2(x(t)), (4.23)

where ϕ(x) is the mode shape, ν = mω0/2M , m is the analyte mass, M =∫
dx ρ0ϕ(x)

2 is the mode effective mass and ρ0 is the bare resonator mass den-
sity.

The transition probability matrix Ŵ (x, η;x′, η′), cf. Eq. (4.6), for the fre-
quency noise process, ξ(t), is defined by

∂tpη=1(x, t) = −Γo(x)p1(x, t) + Γi(x)f(x)p0(t) + L̂D(x)p1(x, t), (4.24)

∂tpη=0(t) =

∫ L/2

−L/2

dx [Γo(x)p1(x, t)− Γi(x)f(x)p0(t)],
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where p1(x, t) is the probability density that the particle is at position x at
the instant t. Similarly, p0(t) is the probability that the particle is not on the
nanoresonator at the instant t. The incoming flux distribution per particle is
f(x), which is normalized as

∫
dx f(x) = 1, and Γi(o)(x) is the probability per

unit of time that the particle is adsorbed (desorbed) at the position x. The
operator L̂D(x) describes diffusion of an overdamped particle, cf. Eq. (4.15),

L̂Dp1(x, t) = ∂x(U
′(x)p1)/κm+D∂2xp1, (4.25)

where κ and D are the particle friction and diffusion coefficients, respectively,
and U(x) is a potential acting on the particle. Equation (4.25) does not consider
the effect of inertia trapping discussed in Ref. [74] and in chapter 5. I also as-
sume reflecting boundary conditions: U ′(x)p1(x, t)/κm + D∂xp1(x, t) = 0 at
x = ±L/2. Note that Eq. (4.24) can be extended to include other subsystems.
For instance, the substrate may be considered as a new subsystem which ex-
changes particles with the resonator subsystem through the clamping regions.
In this case additional particle exchange rates, Γi/o(x = ±L/2), need to be pro-
vided.

Below, I consider the nanoresonator fundamental flexural mode with shape

ϕ(x) =
√
2 cos(πx/L).

This mode shape corresponds to the vibrational fundamental mode of a string.
Here, it is used as an approximation to the fundamental flexural mode of
a doubly clamped nanobeam near the antinode. The particle may be ad-
sorbed at any point on the resonator with equal probability; i.e., f(x) = 1/L in
Eq. (4.24). Also, the adsorbed particle freely diffuses along the resonator.

The susceptibility χ(δω) is given by the solution of Eq. (4.12) with Ŵ de-
fined by the master equation (4.24), whose stationary solution is p0,st = Γo/(Γi+
Γo) and p1,st(x) = (1/L)× Γi/(Γi + Γo). The total susceptibility, χ(δω), is equal
to the sum of the partial susceptibilities χ0(δω) (no particle on resonator) and
χ1(x; δω) (particle at position x),

χ(δω) = χ0(δω) +

∫ L/2

−L/2

dxχ1(x; δω). (4.26)

The partial susceptibilities satisfy the equations[
Λ∗ − iνϕ2(x) + Γo −D∂2x

]
χ1(x; δω)− Γif(x)χ0(δω) = ip1,st(x),(

Λ∗ + Γi

)
χ0(δω)− Γo

∫
dxχ1(x; δω) = ip0,st, (4.27)

where Λ∗ = Γ − iδω. The analytical solution for the above equation can be
obtained by writing the partial susceptibility χ1(x; δω) as

χ1(x; δω) =
∑
k≥0

Ak cos(2πkx/L).
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Figure 4.3: Oscillator absorption spectrum, Imχ(δω), for the fundamental mode of
a doubly clamped resonator with a particle attaching, diffusing and detaching from
arbitrary points on the resonator. Curves 1 (dashed) and 2 (solid) depict the partial
absorption spectra Imχ0(δω) and Im

∫
dxχ1(δω, x), corresponding to zero and one

particle on the resonator, respectively, and curve 3 (dotted) depicts Imχ(δω) for the
case of nondiffusing particles (D = 0). Inset: Curve 4 (dotted) depicts Imχ(δω) for
the limit case of infinitely fast diffusing particles (telegraph noise) and curves 5 and
6 depict Imχ(δω) for diffusion coefficients D = 25ΓoL

2 and D = 2ΓoL
2. Adsorption

and desorption rates are Γi = Γo = ν/30 and 2ν is maximum frequency shift of a
particle landing at center of the resonator. The oscillator damping rate is Γ = 0.

The coefficients Ak satisfy a difference equation system which can be solved
in terms of continued fractions and then I obtain∫ L/2

−L/2

dxχ1(x; δω) =
L · ip1,st. + iΓip0,st./

(
Γ + Γi − iδω

)
R(D, δω)− ΓiΓo/

(
Γ + Γi − iδω

) ,

χ0(δω) =
Γo

∫
dxχ1(x; δω) + ip0, st.
Γ + Γi − iδω

, (4.28)

where R is given by

R(D, δω) = Θ(0) +
ν2/2

Θ(1) +
ν2/4

Θ(2) +
ν2/4

. . .

, (4.29)

and Θ(n) = Γ+Γo−i(δω+ν)+n2τ−1
D , where τD = D−1(L/2π)2 is the frequency

noise correlation time due to only diffusion, cf. section 4.3.1.
Equations (4.26) and (4.28) are the solution for the susceptibility. In par-

ticular, it contains the cases of single particle diffusion (cf. section 4.3.1) and
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dephasing due to a two-state frequency noise process, discussed in the cele-
brated papers by Anderson [75] and Kubo and Tomita [76, 77].

Figure 4.3 depicts the results for the oscillator absorption spectrum, Imχ(δω),
for the limit cases of slow (τD → ∞) and fast (τD → 0) diffusing particles along
the resonator, and for comparatively small adsorption and desorption rates:
Γi,Γo,Γ ≪ ν.

In the limit case of slow diffusion (τD → ∞) and finite Γi,o, the absorption
spectrum line is similar to the one depicted in Fig. 4.1 with some distinct fea-
tures; namely, a pronounced peak at δω = 0 and no divergencies at the edges
of the frequency noise range when Γ → 0+ and τD → ∞, cf. Eq. (4.17). These
features can be understood in terms of the partial susceptibilities. The pro-
nounced peak in the absorption line at δω = 0 is due to the contribution of the
partial susceptibility corresponding to no particle on the resonator, Imχ0(δω).
This peak is approximately Lorentzian with a half linewidth ≈ Γ + Γi and
height ∝ p0,st = Γo/(Γo + Γi). The departure from the Lorentzian shape is
caused by coupling with the partial susceptibilities corresponding to a parti-
cle being at position x, χ1(x; δω ≈ 0). For the frequency range δω < −(Γ + Γi),
the absorption spectrum is given mainly by the contribution χ1(x; δω). The
latter has a form similar to the one found in section 4.3.1. In particular, for
δω ≈ −2ν and Γ → 0+, the total susceptibility is approximately given by

χ(δω) ≈
∫
dxχ1(x; δω) ≈

∫
dx

ip1,st(x)

Γo − i(δω + νϕ(x)2)

=
iLp1,st√(

Γo − iδω
)(
Γo − i(δω + 2ν)

) , τD → ∞,Γ → 0+. (4.30)

Note that the susceptibility does not diverge at δω = −2ν. The above results
agrees with Eq. (4.17) if we set the desorption rate to zero, Γo = 0.

The inset of Fig. 4.3 depicts the limit case of fast diffusing particles (τD → 0)
again for small but finite adsorption and desorption rates: Γi,o ≪ ν. The ab-
sorption spectrum line is approximately given by two Lorentzian lines cen-
tered at δω = 0 and δω = −⟨νϕ(x)2⟩, where the average is performed with
the stationary distribution p1,st(x). The heights and half linewidths of these
Lorentzians are approximately equal to p0,st/(Γi+Γ), p1,stL/(Γo+Γ) and Γ+Γi,
Γ + Γo; respectively. This corresponds to the results obtained previously for
dephasing of an oscillator subject to telegraph-noise [70, 75–77]. The effect of
diffusion is to broaden the Lorentzian centered at δω = −ν by an amount ≈
ν2L2/8π2D. As the particle diffusion gets slower (τD increases), this Lorentzian
gets broader and it eventually loses its Lorentzian form and it acquires the
shape given by Eq. (4.30). The Lorentzian line centered at δω = 0 is not af-
fected by diffusion.

The stationary values of the (scaled) moments of the complex amplitude
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Figure 4.4: Effect of diffusion on the third cumulant κ3 of the complex vibrational am-
plitude u(t). Curve 1 (dotted) depicts the limit case of nondiffusing particles. Curves
2 (solid), 3 (dashed) and 4 (dash-dotted) depict the results for particles with diffusion
coefficients D = 10−3 · ΓoL

2, 2 · 10−3ΓoL
2 and 4 · 10−3ΓoL

2, respectively. Inset: Curve
5 (dotted) depicts the limit case of infinitely fast diffusing particles (telegraph noise).
Curves 6 (solid) and 7 (dashed) depict the results for D = 250ΓoL

2 and D = 20ΓoL
2,

respectively. Other parameters: Γi = Γo = ν/30 and Γ = 0.

u(t), χ(n)(δω), are given by

χ(n)(δω) ≡
(
2MωF

F

)n

⟨un(t)⟩st

=

(
2MωF

F

)n∑
ξ

∫
du du∗ unPst(u, u

∗, ξ), (4.31)

where Pst(u, u
∗, ξ) is the stationary solution of Eq. (4.7).

From Eq. (4.31), it follows that the scaled stationary values of the higher or-
der moments of u(t) can be expressed in terms of the scaled partial moments,

χ(n)(ξ; δω) =

(
2MωF

F

)n ∫
du du∗ unPst.(u, u

∗, ξ). (4.32)

The scaled partial moments χ(n)(ξ; δω) are complex quantities and they satisfy
the following coupled equations, cf. Eq. (4.7), [72, 78]

Ŵχ(n)(ξ; δω)− n
(
Λ− iξ

)
χ(n)(ξ; δω) = niχ(n−1)(ξ; δω), (4.33)

where Λ = Γ + iδω, χ̃(0)(ξ; δω) = pst(ξ) and pst(ξ) is the stationary distribution
of Eq. (4.6). In particular, for the type of frequency noise considered in this
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section, the equations for the coupled scaled partial moments χ(n)
1 (x; δω) and

χ
(n)
0 (δω) are[
− n(Λ + iνϕ2(x))− Γo +D∂2x

]
χ
(n)
1 (x; δω) + Γif(x)χ

(n)
0 (δω) = niχ

(n−1)
1 (x; δω),

−
(
nΛ + Γi

)
χ
(n)
0 (δω) + Γo

∫
dxχ

(n)
1 (x; δω) = niχ

(n−1)
0 (δω).

(4.34)

Higher-order moments of u(t) are calculated by solving numerically the
coupled system (4.33). Figure 4.4 depicts the third cumulant κ3 = ⟨u3⟩ − 2⟨u⟩ ·
⟨u2⟩+ 2⟨u⟩3 for both limit cases of fast and slow diffusing particles. The mag-
nitude and shape of the higher order moments, as function of the scaled fre-
quency detuning δω/ν, depend on the parameters that define the dephasing
process (i.e., diffusion coefficient, adsorption and desorption rates) and these
dependencies are more significant for higher-order moments and cumulants
of u(t). In practice, their measurement may provide enough information to
characterize the dephasing process based on a frequency noise model such as
the one discussed in this section.

Many particles case. Now I consider the problem of how to calculate the
susceptibility when many particles act on the resonator. This problem can in
general be solved in terms of partial susceptibilities with an appropriate mas-
ter equation for the frequency noise. However, the problem simplifies when
the particles act independently on the resonator. Also, assuming that the par-
ticles have identical parameters (mass, diffusion coefficient, adsorption and
desorption rates), the total frequency noise is equal to a sum of independent
and identical processes ξi(t), which are realizations of the one-particle pro-
cess (4.23),

ξ(t) =
N∑
i=1

ξi(t), (4.35)

where N is the total number of particles in the system (in or out of the res-
onator).

Particles can be either in the resonator or outside of the resonator. For the
process (4.35), the number of particles on the resonator n(t) evolves according
to a Bernoulli process with master equation

Ṗn = −[Γon+ Γi(N − n)
]
Pn + (n+ 1)ΓoPn+1 + Γi

(
N − (n− 1)

)
Pn−1, (4.36)

where Γi(o) is the adsorption (desorption) rate per particle and N̄ = NΓi/(Γi+
Γo) is the average number of particles on the resonator. For N̄ ≪ N and
Γi = (N̄/N)Γo ≪ Γo, the stationary distribution of Eq. (4.36) becomes in-
dependent of total number of particles in the system, N , and it tends to the
Poisson distribution.
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The linear differential equation (4.4) can be formally solved for u∗(t) (for a
given realization of ξ(t)) to obtain the following result for the susceptibility

χ(δω) = i

∫ 0

−∞
dt eΛ

∗tgξ(t), (4.37)

where Λ∗ = Γ − iδω and gξ(t) ≡
⟨
exp

(
i
∫ t

0
dt1ξ(t1)

)⟩
ξ(t)

. For the frequency
noise, ξ(t), given as a sum of independent processes ξi(t),

gξ(t) =
N∏
i=1

⟨ei
∫ t
0 dt1ξi(t1)⟩ξi(t), (4.38)

and for identical processes gξ(t) = gN(t), where g(t) ≡
⟨
exp

(
i
∫ t

0
dt1ξi(t1)

)⟩
ξi(t)

.
Thus, for identical and independent processes, ξi(t), the oscillator susceptibil-
ity is

χ(δω) = i

∫ 0

−∞
dt eΛ

∗t · gN(t). (4.39)

The above equation suggests a solution for the partial susceptibilities (for sin-
gle particle) in the form

χ1(x; δω) =

∫ 0

−∞
dt eΛ

∗tχ̃1(x, t), χ0(δω) =

∫ 0

−∞
dt eΛ

∗tχ̃0(t). (4.40)

Using Eq. (4.27), the equations for the time-dependent partial susceptibilities,
χ̃1(x, t) and χ̃0(t), are

∂tχ̃1(x, t) =
[
Γo − iνϕ(x)2 −D∂2x

]
χ̃1(x, t)− Γif(x)χ̃0(t),

∂tχ̃0(t) = Γiχ̃0(t)− Γo

∫
dx χ̃1(x, t), (4.41)

with initial conditions χ̃1(x, 0) = ip1st(x) = i(1/L)Γi/(Γi + Γo) and χ̃0(0) =
ip0st = iΓo/(Γo + Γi), and reflecting boundary conditions: ∂xχ̃(x = ±L/2, t) =
0. The frequency-noise-dependent function g(t) is equal to

g(t) =

∫
dx χ̃1(x, t) + χ̃0(t). (4.42)

The solution to the problem for many identical particles acting independently
on the resonator is then given in terms of the single-particle problem (4.41)
and Eqs. (4.39) and (4.42).

Figure 4.5 shows the oscillator susceptibility function χ(δω) for an aver-
age number of adsorbed particles N̄ = 3. The limit case of infinitely fast
diffusing particles (τD → 0) corresponds to the results obtained previously
for discrete frequency jumps with a stationary Poisson distribution [72]. In
particular, for Γo,Γ ≪ ν, the oscillator susceptibility exhibits a fine structure
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Figure 4.5: Oscillator absorption spectrum Imχ(δω) for an average number of ad-
sorbed particles N̄ = 3. The dotted curve depicts the results for the limit case of
infinitely fast diffusing particles (D → ∞). The solid line depicts the result for diffu-
sion coefficient D = 500ΓoL

2. Inset: Limit case of slowly diffusing particles (D → 0).
Other parameters: N = 104, Γo = 0.002ν, Γi = (No/N)Γo and Γ = 0.

as shown in Fig. 4.5 (dotted curve). Here, the total susceptibility is formed
by Lorentzians centered at frequencies δω = −jν (j = 0, 1, · · · ) with half
linewidths Γ + (j + N0)Γo and heights proportional to Pj = exp(−N̄)N̄ j/j!
(Poisson distribution). In the case of particles with finite diffusion coeffi-
cients, D, the half linewidths of these Lorentzians is increased by an amount
≈ jν2L2/(8π2D), cf. Fig. 4.5 (solid curve). The inset depicts the limit case
of slowly diffusing particles (τD → ∞). Here, we observe that the absorption
spectrum line, Imχ(δω), exhibits sharp peaks. These peaks are not Lorentzians
and they become sharper as Γo decreases. They also appeared for a single par-
ticle acting on the nanoresonator, cf. Eq. (4.30). The above results agree with
Monte Carlo simulations [79, 80].

4.4 The fluctuation-dissipation theorem in the pres-
ence of dephasing

The aim of this section is to relate the results for the oscillator susceptibility,
given by the oscillator response to a weak driving force, and the oscillator
power spectrum, determined by the oscillator response to a thermal additive
white noise force. Under certain conditions, the latter are directly propor-
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4.4. The fluctuation-dissipation theorem in the presence of dephasing

tional, cf. Eq. 4.43. I point out that the results for the susceptibility are not
affected by a white source of additive noise if Eqs. (4.46) and (4.47) hold. I
also discuss the conditions that allow us to take the averages over the thermal
additive noise and frequency noise independently, cf. Eq. (4.55).

The fluctuation-dissipation theorem states that the oscillator absorption
spectrum, Imχ(δω), is proportional to the oscillator power spectrum, ReQ(δω),

Imχ(δω) = (2πMω2
0/kBT )ReQ(δω), (4.43)

where the power spectrum is defined by [4],

ReQ(δω) ≡ π−1Re
∫ ∞

0

dt eiωt⟨q(t)q(0)⟩ξ(t),fT (t);F=0, (4.44)

and the average is performed over the thermal additive noise, fT (t), and the
frequency noise, ξ(t), with zero driving field, F = 0 in Eq. (4.1).

It turns out that the fluctuation-dissipation relation holds if the joint sta-
tionary probability density of the undriven system (F = 0) can be written as

ρst(u, u
∗, ξ) = ρB(|u|2)pst(ξ), (4.45)

where ρB(|u|2) ∝ exp(−CT |u|2) is the Boltzmann distribution with C−1
T ∝ kBT ,

and pst(ξ) is the frequency noise stationary distribution, cf. Eq. (4.6). In par-
ticular, the fluctuation-dissipation theorem does not hold when the frequency
noise depends on the oscillator state (backaction).

The Einstein-Fokker-Planck (EFP) equation for the joint distribution, ρ, is

∂tρ(u, u
∗, ξ, t) = L[ρ]− F

2iMωF

[
eitδω∂uρ− e−itδω∂u∗ρ

]
, (4.46)

where L[ρ] is given by

L[ρ] = ∂u(K(|u|2, ξ)uρ) + ∂u∗(K∗(|u|2, ξ)u∗ρ) + kBT

Mω2
0

∂2u,u∗

(
Γnl(|u|2, ξ)ρ

)
+ Ŵρ.

(4.47)
Above, the slow dynamical variables u(t) and u∗(t) are defined by

q(t) = u(t)eiω0t + u∗(t)e−iω0t

q̇(t) = iω0

[
u(t)eiω0t − u∗(t)e−iω0t

]
. (4.48)

Note that in this section I use the bare eigenfrequency ω0 as the reference fre-
quency for the rotating wave approximation (RWA). The functions K and Γnl

can only depend on the slow variable |u|2; u and u∗ can not appear separately
because the corresponding terms (prior to averaging over the period 2π/ω0

in the RWA) are proportional to exp(±iω0t) which are averaged to zero in the
RWA. Similarly, the operator Ŵ , defining the frequency noise process, can de-
pend only on |u|2.
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If we neglect ⟨u(t)u(0)⟩ξ(t),fT (t);F=0 (weakly nonlinear oscillator weakly cou-
pled to the thermal bath) and also fast oscillating terms with frequency 2ω0,
the power spectrum can be written in the form

ReQ(δω) ≈ π−1Re
∫ ∞

0

dt eitδω⟨u∗(t)u(0)⟩ξ(t),fT (t);F=0, (4.49)

where

⟨u∗(t)u(0)⟩ξ(t),fT (t);F=0 =
∑
ξ

∫
dudu∗ u∗eLtuρst(u, u

∗, ξ), L[ρst] = 0. (4.50)

Now, I find an expression for the oscillator absorption spectrum, Imχ(δω).
To first order in F , the stationary solution of the EFP equation is

ρ(t) ≈
(

F

2iMωF

)
e−itδω

∫ ∞

0

dt1 e
it1δωeLt1∂u∗ρst + c.c. (4.51)

The scaled oscillator susceptibility is χ(δω) = (2MωF/F ) exp(iδωt)⟨u∗⟩ρ(t),

χ(δω) ≈ −i
∫ ∞

0

dt1e
it1δω

∑
ξ

∫
dudu∗ u∗eLt1∂u∗ρst

+ ie2itδω
∫ ∞

0

dt1e
−it1δω

∑
ξ

∫
dudu∗ u∗eLt1∂uρst, (4.52)

the second term at the right hand side of Eq. (4.51) is a spurious term which
should disappear for the fluctuation-dissipation theorem to hold. The absorp-
tion spectrum is equal to

Imχ(δω) ≈ −Re
∫ ∞

0

dt1e
it1δω

∑
ξ

∫
dudu∗ u∗eLt1∂u∗ρeq+spurious term, (4.53)

The expressions for the oscillator power spectrum [Eqs. (4.49) and (4.50)]
and for the absorption spectrum [Eqs. (4.52) and (4.53)] suggest that the condi-
tion for the fluctuation-dissipation relation to hold is: ∂u∗ρst = −CTuρst with
CT = 2Mω2

0/kBT . This implies that ρst(u, u∗, ξ) = (1/Z)pst(ξ) exp(−CT |u|2)
where Z is a normalization constant. Note that this form for ρst cancels the
spurious term of Eq. (4.53). Moreover, ρst(|u|2, ξ) must satisfy that L[ρst] = 0;
this requires that Ŵ should not dependent on |u|2 (no backaction) and

ReK(r, ξ)− Γnl(r, ξ) +
kBT

2Mω2
0

∂rΓnl = 0. (4.54)
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4.5. Dephasing of a nonlinear oscillator

4.5 Dephasing of a nonlinear oscillator

Here, I discuss under which conditions the averaging over the thermal ad-
ditive noise, fT (t), and the frequency noise, ξ(t), can be performed indepen-
dently. If this is possible, then the oscillator susceptibility can be written in a
convolution form,

χ(δω) =

∫
dω1 χosc(ω1)χξ(δω − ω1), (4.55)

where χosc(ω) is the oscillator susceptibility in the absence of frequency noise
and χξ(ω) is a dephasing dependent quantity equal to

χξ(ω) =

∫ ∞

0

dt e−iωt⟨e−i
∫ t
0 dt1 ξ(t1)⟩ξ(t). (4.56)

A necessary condition for the validity of Eq. (4.55) is that the fluctuation-
dissipation relation holds. That is, in the absence of driving, the joint proba-
bility density of the system is given by Eq. (4.45). The sufficient conditions are
discussed in this section.

For Eq. (4.55) to hold, it is also required that the EFP operator, L, can be
separated as L(·) = Losc(·)− iξ∂u(u(·)) + iξ∂u∗(u∗(·)) + Ŵ , where Losc contains
only nondephasing terms. This separation is possible if ∂ξReK = ∂ξΓnl = 0
and ∂2r,ξImK = 0, where r = |u|2. That is, the vibrational frequency is mod-
ulated as ξ + K̃(r), where the first term is due to the frequency noise and
the second term is due to an intrinsic nonlinearity (e.g., Duffing nonlinearity).
From Eq. (4.52), the susceptibility is given by

χ(δω) ≈ iCT

∫ ∞

0

dt eitδω
∑
ξ

∫
dudu∗ u∗eLtuρB(r)pst(ξ)

= iCT

∫ ∞

0

dt eitδω
∫
dudu∗ u∗etLoscuρB(r) ·

∑
ξ

p̄ξ(t), (4.57)

where p̄ξ(t) satisfies
∂tp̄ξ(t) = Ŵ p̄ξ(t)− iξp̄ξ(t), (4.58)

and p̄ξ(0) = pst(ξ). Equation (4.57) can also be written as [75]

χ(δω) ≈ i

∫ ∞

0

dt eitδω
⟨u∗(t)u(0)⟩osc
⟨|u(0)|2⟩osc

·
⟨
e−i

∫ t
0 dt1 ξ(t1)

⟩
ξ(t)
. (4.59)

Hence, the oscillator susceptibility can be determined in terms of the corre-
lator ⟨u∗(t)u(0)⟩osc, which is determined only by the intrinsic nonlinearity of
the system, and the dephasing-dependent factor:

⟨
exp

(
−i

∫ t

0
dt1 ξ(t1)

)⟩
ξ(t)

. In
other words, if the fluctuation-dissipation theorem holds and also ∂ξReK =
∂ξΓnl = 0 and ∂2r,ξImK = 0, then it is possible to take the thermal and fre-
quency noise averages separately. The convolution form (4.55) for the suscep-
tibility follows from Eq. (4.59) and a well-known property of Fourier trans-
form.
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CHAPTER 5

Diffusion-induced bistability of driven
nanomechanical resonators

In the previous chapter I discussed decoherence of a vibrational mode of a res-
onator subject to random mass loading. Here, it was assumed that the motion
of the resonator does not affect the frequency noise process (i.e., the motion
of the particles, adsorbed onto the resonator, is not affected by the resonator
dynamics). It was shown that fluctuations in the eigenfrequency can broaden
and even change the shape of the oscillator absorption line from the standard
Lorentzian shape (e.g., the oscillator absorption spectrum may develop a fine
structure if the eigenfrequency fluctuations are discrete and comparatively
slow). However, if the frequency fluctuations are comparatively fast, the ef-
fect of the frequency noise is reduced to a simple shift and to a small increase
of the linewidth which is proportional to the noise correlation time and to the
variance of the frequency noise (motional narrowing limit, cf. Eq. (4.11)).

In this chapter, I consider the possibility that the frequency fluctuations
are affected by the motion of the resonator (backaction). For the problem of
Brownian particles diffusing along the resonator, backaction means that the
particles are influenced by an inertial force which drives them toward the vi-
brational antinodes. I show that backaction and dephasing can lead to bista-
bility and rare interstate switching behavior when the particles diffuse com-
paratively fast along the resonator. The bistability discussed here is different
from the one commonly observed in driven nonlinear oscillators subject to a
weak source of additive noise [4, 64, 65].

5.1 Trapping of molecules at the antinodes of vi-
brational modes

The inertia trapping of molecules at the antinodes of vibrational modes of a
resonator (e.g., nanobeam) can be understood by looking at the kinetic term
of the system Lagrangian,

Tkin =
1

2

∫
dx µ(x)ϕ2(x)q̇2(t), (5.1)
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5.1. Trapping of molecules at the antinodes of vibrational modes

where µ(x) is the mass density of the system and the resonator displacement,
due to a mode with shape ϕ(x) and amplitude q(t), is φ(x, t) = ϕ(x)q(t). Be-
low, I consider a one-dimensional resonator with mass density µ(x) =M/L+

m
∑N

i=1 δ(x−xi) where M and L are the bare mass and length of the resonator,
respectively, and the mass loading is due to N particles with mass m at posi-
tions xi. I also consider the fundamental vibrational mode with bare resonance
frequency ω0 and mode shape ϕ(x) = 21/2 cos(πx/L). This mode is assumed
to be underdamped and driven by a force F cos(ωF t). The vibrational ampli-
tude has the form q(t) = (F/4MωFΓ)[u(t)e

iωF t + u∗(t)e−iωF t], where the scaled
complex amplitude u(t) changes over a time scale given by the reciprocal of
the mode energy relaxation rate, Γ ≪ ωF ≈ ω0, and

u(t) = (2MΓ/F )(ωF q − iq̇) exp(−iωF t).

The kinematic interaction given by Eq. (5.1) is not only responsible for the shift
of the mode eigenfrequency, ∆ωD({xi}), which depends on the mass distribu-
tion as

∆ωD({xi}) = −ω0m

2M

N∑
i=0

ϕ2(xi), (5.2)

but also provides an effective potential, Ueff , acting on the diffusing particles:

Ueff ({xi}, t) ≈ −m⟨q̇2⟩TF

2

∑
i

ϕ2(xi),

= −m
(
F/4MΓ

)2|u(t)|2∑
i

ϕ2(xi). (5.3)

Above, I assume that the diffusion is slow within the oscillation period TF =
2π/ωF ; i.e., (DTF )1/2 ≪ L where D is the diffusion coefficient.

Figure 5.1 depicts the effective potential Ueff acting on the diffusing parti-
cles. In the absence of diffusion, the particles are driven toward the vibrational
antinode.

Inertia trapping has been observed in recent experiments and it has been
suggested that this effect could be used to trap diffusing particles along the
resonator in mass measurement experiments [20, 24].

Diffusion induced bistability (DIB) of driven resonators results from the
competition of two counteracting factors: inertia trapping and diffusion. In-
ertia trapping tries to confine the particles at the antinode of the fundamental
flexural mode. This results in a mass distribution peaked at the center of the
nanobeam, x = 0, cf. Fig. 5.2 (b). Diffusion opposes to the effect of inertia con-
finement and favors a uniform mass distribution (assuming reflecting bound-
ary conditions at the nanobeam ends: x = ±L/2), cf. Fig.5.2 (a). Moreover, the
mode eigenfrequency depends on the mass distribution according to Eq. (5.2).
One condition for DIB is that the vibrational mode, with mass configuration
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5.2. Mean field theory

Figure 5.1: Effective potential driving the particles on the resonator to the vibrational
antinode of the fundamental flexural mode.

depicted in Fig. 5.2 (b), is driven near resonance and that the resulting oscilla-
tion amplitude is sufficiently large: m⟨q̇2⟩TF

& kBT , where kBT is the thermal
energy. The other condition is that L . (D/Γ)1/2; that is, the particles diffuse
comparatively fast within the time Γ−1. If these two conditions are satisfied
then the configuration depicted in Fig. 5.2 (b) is selfconsistently sustained for
a time much longer than Γ−1. Moreover, if the particles are spread over the
whole resonator, then the vibrational amplitude is small (because the mode
eigenfrequency is larger than the driving frequency) and the confinement is
week [m⟨q̇2⟩TF

≪ kBT ]. Consequently, the configuration depicted in Fig. 5.2
(a) can also be selfconsistently sustained for a time much longer than Γ−1.

5.2 Mean field theory

There are two time scales in the problem. One time scale is the time over which
the scaled complex vibrational amplitude, u(t), changes. This time scale is set
by the reciprocal of the mode energy relaxation rate, τosc = Γ−1. The other time
scale is set by the time τD ≡ L2D−1 for a particle to diffuse a distance equal to
the resonator length. Mean field theory applies in the limit: θ ≡ τosc/τD → ∞.
In this limit, the particle distribution is given by

ρa({xi}; t) ≈
∏
i

ρa(xi; |u2(t)|), (5.4)

where ρa(x; |u2|) = Z−1 exp(−Ueff (x; |u2|)/kBT ) is the single particle station-
ary distribution function for a fixed oscillation amplitude, |u|, and Z is a nor-
malization constant. Here, I use the Einstein relation: mκD = kBT , where κ
is the friction coefficient of the overdamped Brownian particles. In the mean
field picture, the effect of the fast diffusing particles is just a frequency shift,
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5.2. Mean field theory

Figure 5.2: Nanobeam resonator with diffusing particles. (a) In the low-amplitude
vibrational state, the particle density, ρD(x), is almost uniform. (b) In the high-
amplitude vibrational state the particles are driven toward the antinode and the dis-
tribution has a pronounced maximum there. The eigenfrequency of the mode is de-
termined by the mass distribution. Diffusion induced bistability arises when the res-
onator is driven by an external field which resonates with the high-amplitude state
configuration.

which effectively depends on the vibration amplitude |u|,

∆ωD({xi}) → ∆ωD(|u|2) ≡ ⟨∆ωD({xi})⟩a

= −ω0mN

2M

∫
dx ϕ2(x)ρa(x; |u|2). (5.5)

Thus, after eliminating the fast variables of the problem, we are left with an
oscillator which has become effectively nonlinear (the eigenfrequency now
depends on |u|). The dimensionless equation for u(t = τΓ−1) is given by

du

dτ
= −

[
1 + i

(
Ω + ν00(|u|2)

)]
u− i, (5.6)

where Ω = (ωF − ω0)/Γ is the scaled frequency detuning, τ = tΓ is the scaled
time and ν00(|u|2) = −∆ωD(|u|2)/Γ > 0 is the scaled mean of the frequency
fluctuations. The above equation determines the amplitude of the stationary
solutions, ust,

|u2st| =
1

1 +
[
Ω + ν00(|u2st|)

]2 . (5.7)

The number of roots of Eq. (5.7) depends on two parameters; namely, Ω =
(ω − ωF )/Γ and βD = (F/4MΓ)2/κD, where κ is the friction coefficient of the
Brownian particles. Using the Einstein relation, mκD = kBT , the latter pa-
rameter can be interpreted as the ratio between the maximum kinetic energy
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5.3. Nonadiabatic corrections to the mean field theory

∼ m(F/4MΓ)2 that the particle gains at the antinode due to the resonator mo-
tion, and the thermal energy kBT . Thus, βD measures the relative strength of
the forces that lead to confinement with respect to the forces that cause diffu-
sion. Equation (5.7) can have one or three roots. In order to have three roots,
it is necessary that βD > βmin [βmin ≈ 1 for ν̄ ≡ Nmω0/2MΓ = 10], as depicted
in Fig. 5.3. Mean field theory predicts the regions in parameter space where
bistability may arise. I say "may" because within the mean field picture the
deviations of ∆ωD({xi}) from its mean field value ∆ωD(|ũ|2) are neglected. I
refer to these deviations as fluctuations or nonadiabatic corrections. If the lat-
ter are comparatively large, then the stationary distribution of the oscillator
subsystem does not exhibit two distinguishable peaks in phase space and also
the interstate switching rates can be as large as Γ. Bistability can only arise
if the fluctuations are comparatively small such that the oscillator distribu-
tion has two distinguishable peaks. This in turn guarantees that the interstate
switching to be much smaller than Γ (condition for bistability). Below, I dis-
cuss the nature of the nonadiabatic corrections and show that their intensity
is ∝ θ−1.

5.3 Nonadiabatic corrections to the mean field the-
ory

In this section I consider the nonadiabatic corrections to the mean field theory
in the limit of fast diffusing particles, θ ≡ τosc/τD ≫ 1, where τosc = Γ−1 and
τD = L2/D are the two time scales present in the problem. In this limit, it is
clear that the fluctuations have a short correlation time ∼ τD/N ≪ τosc and
they can be considered white (noise with zero correlation time). The probabil-
ity distribution function of the fluctuations, at a given time, does not have to
be Gaussian. However, if there is a large number of particles on the resonator,
N ≫ 1, then the fluctuations become Gaussian. This bears on the property
of stability of the Gaussian distribution (the distribution of the sum of a large
number of random numbers is approximately Gaussian). Thus, the nonadia-
batic corrections to the mean field theory for a large number of fast diffusing
particles are effectively white Gaussian fluctuations. Then, the dimensionless
equations of motion for the oscillator are (in polar coordinates: u = Reiφ)

dR

dτ
= −R− sin(φ),

dφ

dτ
= −

[
Ω + ν00(R

2)
]
− cos(φ)

R
+D1/2ξ(τ), (N ≫ 1) (5.8)

where ξ(τ) is a white and Gaussian noise source with a two-time correla-
tion function equal to ⟨ξ(τ1)ξ(τ2)⟩ = 2δ(τ1 − τ2) and δ(·) is the Dirac func-
tion. Above, I have used a dimensionless time τ = Γt and the relative fre-
quency shift is ν00(R2) ≡ −∆ωD(|u|2)/Γ with ∆ωD(|u|2) given by Eq. (5.5). The
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Figure 5.3: Wedge-like regions in parameter space where there are three stationary
states (two stable and one unstable) according to the mean field picture, cf. Eq. (5.7).
The parameter βD = (F/4MΓ)2/κD is the scaled driving intensity and Ω = (ω −
ωF )/Γ is the scaled frequency detuning. The solid, dashed and dotted lines shows the
pairs of bifurcation lines for ν̄ = mNω0/2MΓ = 5, 10, and 20, respectively, and for
the mode shape: ϕ(x) = 21/2 cos(πx/L). Bistability occurs inside the corresponding
wedges. The inset shows a simulated scaled square amplitude of forced vibrations
|u|2 as a function of the scaled time Γt for θ ≡ τosc/τD = D/ΓL2 = 1.01, ν̄ = 10 and
Ω = −18.95, and βD = 5.

strength of the frequency fluctuations, causing phase diffusion, is given by the
parameter D,

D =

∫ ∞

0

dτ
⟨[
ζ(τ)− ⟨ζ(τ)⟩a

]
ζ(0)

⟩
a
, (5.9)

where ζ(τ) = N−1
∑N

i=1 ν(zi(τ)) and ν(z) = (ω0mN/2MΓ)ϕ2(Lz) is the scaled
frequency shift due a particle at position x = Lz. The average ⟨·⟩a is calcu-
lated over realizations of particle trajectories zi(τ), given by Eq. (5.13), with
fixed |u|. Since the particles are noninteracting (this is only correct if |u| varies
slowly within the time scale relevant for diffusion; strictly speaking the parti-
cles indirectly interact through the oscillator), the strength of the fluctuations
can be written as

D = N−1

∫ ∞

0

dτ ⟨[ν(zi(τ))− ⟨ν(zi(τ))⟩a]ν(zi(0))⟩a. (5.10)

Below, I consider the case of a single particle and show that the above integral
is ∝ D−1, cf. Eq. (5.21). Thus, the strength of the nonadiabatic corrections for

58



5.3. Nonadiabatic corrections to the mean field theory

N ≫ 1 fast diffusing particles is D ∼ (ND)−1.
In the case that there is only one particle on the resonator and τD ≪ τosc,

the eigenfrequency fluctuations can be considered white but they are non-
Gaussian (this is due to the nonlinear relation between the particle position,
x, and the relative frequency shift ∆ωD(x)/ω0 ∝ ϕ2(x), where ϕ(x) is the mode
profile). However, I demonstrate that the reduced equation of motion for the
oscillator (5.8), where the noise source Dξ(τ) is Gaussian and white, can be
used to calculate the shape of the oscillator stationary probability density near
the stationary points ust, predicted by the mean field theory. I also show that
Eq. (5.8) can be used to calculate the the escape rates from the metastable equi-
librium state for controlling parameters near the boundary of the wedge-like
regions of bistability depicted in Fig. 5.3 (bifurcation points).

The dimensionless equation of motion for the oscillator is

du

dτ
= Kr +KD, (5.11)

where
Kr = −(1 + iΩ)u− i, KD = −iuν(z). (5.12)

Above, Ω = (ωF − ω0)/Γ is the scaled frequency detuning and

ν(z) = (mω0/2ΓM)ϕ2(Lz)

is the scaled frequency shift due a particle at a point x = Lz and ϕ(x) is
the mode shape. The dimensionless equation of motion for the overdamped
Brownian particle is

dz

dτ
= −|u2|∂zΦ(z) + θ1/2ξ(τ), θ = τosc/τD, (5.13)

where Φ(z) = −(F/4MΓL)2(Γκ)−1ϕ2(Lz), κ is the particle friction coefficient,
τosc = Γ−1 is the time scale where oscillator state changes and τD = L2/D is
the time for a particle to diffuse a distance equal to L. The noise drive ξ(t) is
Gaussian and white with autocorrelation function ⟨ξ(τ1)ξ(τ2)⟩ = 2δ(τ1 − τ2).
Below, I consider the situation where there are two distinct time scales and
θ is the large parameter of the theory. The limit θ ≫ 1 also implies that the
diffusion length, lD = (D/Γ)1/2, over the time τosc is much larger than the
resonator length, L.

The Einstein-Fokker-Planck equation for the probability density of the sys-
tem, ρ, is

∂τρ(u, u
∗, z, τ) = −{∂u[(Kr +KD)ρ] + c.c.}+ Lzρ,

Lzρ = ∂z[|u|2∂zΦ(z) + θ∂z]ρ. (5.14)

The boundary conditions are ρ → 0 for |u| → ∞ and [|u|2∂zΦ + θ∂z]ρ = 0 at
z = ±1/2 (reflecting boundary condition). The solution of the above equation
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5.3. Nonadiabatic corrections to the mean field theory

can be sought in the form

ρ(u, u∗, z, τ) =
∑
α≥0

pα(u, u
∗, τ)ψα(z; |u|2), (5.15)

where ψα satisfies the eigenvalue problem Lzψα = −λαψα with boundary con-
ditions

[
|u|2∂zΦ+θ∂z

]
ψα = 0 at z = ±1/2. This problem has eigenvalues λ0 = 0

(with ψ0 as the stationary distribution) and λα>0 ∼ θ ≫ 1. Note that the eigen-
functions, ψα, and eigenvalues, λα, depend parametrically on |u|. Below, I also
use the eigenfunctions ψ̄α of the adjoint eigenvalue problem: L†

zψ̄α = −λαψ̄α,
where L†

z is the adjoint operator of Lz and ψ̄α satisfies the same boundary con-
ditions as ψα. The expansion (5.15) is appropriate in the adiabatic limit θ ≫ 1.
Substitution of Eq. (5.15) into Eq. (5.14) leads to the following set of equations
for pα,

∂τpα =
∑
β

Lαβpβ,

= −λαpα − [∂u(Krpα) + c.c.] +
∑
β

ναβ∂φpβ −
∑
β

kαβpβ, (5.16)

where φ = ln(u/u∗)/2i is the oscillator phase coordinate,

ναβ =

∫
dz ψ̄α(z)ν(z)ψβ(z),

kαβ =
∫
dz ψ̄α(Kr∂u + c.c.)ψβ and, since ψ̄0 = 1, k0α = 0.

Note that the coefficient p0 evolves in a dimensionless time scale of 1. The
other coefficients, pα>0, decay to their quasi-stationary values in a dimension-
less time ≈ λ−1

α ≪ 1. Since we are interested in the dynamics of the system for
time scales ≫ Γ−1, we may assume that ∂τpα ≈ 0,

∂τp0 = −[∂u(Krp0) + c.c.] + ν00∂φp0 +
∑
β>0

ν0β∂φpβ, (5.17)

and, for α > 0,

λαpα + [∂u(Krpα) + c.c.] +
∑
β>0

kαβpβ −
∑
β>0

ναβ∂φpβ ≈ −kα0p0 + να0∂φp0. (5.18)

To first order in θ−1, the quasi-stationary solution of pα>0 is (pα adiabatically
follows p0)

pα>0 =
1

λα

[
− kα0p0 + να0∂φp0

]
+O(θ−2). (5.19)

Using the above approximation for pα>0 in the equation for p0, Eq. (5.17), we
arrive at

∂τp0 = −[∂u(Krp0) + c.c.] + ∂φ

[(
ν00 −

∑
β>0

ν0βkβ0
λβ

)
p0

]
+
(∑

β>0

λ−1
β ν0βνβ0

)
∂2φp0

+a(2)θ−2∂3φp0 + a(3)θ−3∂4φp0 + · · · , (5.20)
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5.3. Nonadiabatic corrections to the mean field theory

where the coefficients a(n)(|u|, φ) ∼ O(1). It is tempting to dismiss the terms
in the second line of Eq. (5.20) for θ ≫ 1. This is possible if θ−n|∂nφp0| ≫
θ−(n+1)|∂(n+1)

φ p0| for n ≥ 2. If the stationary solution of Eq. (5.20) has the
Eikonal form pst0 ∼ exp

(
− θS(|u|, φ)

)
, the latter inequality essentially requires

that |∂φS|n ≪ 1. This can be verified near the maxima of pst0 ; i.e., near the sta-
tionary points ust predicted by the mean field theory cf. Eq. (5.6). Mean field
theory results if we consider only the zeroth order in θ−1 terms of Eq. (5.20).
Near the points ust, the first order in θ−1 terms of Eq. (5.20) give the leading
contribution to the oscillator probability density, p0(u, u∗, t). In this approx-
imation we have phase diffusion with diffusion coefficient D ∝ 1/D given
by

D =

∫ ∞

0

dτ
⟨[
ν(z(τ))− ⟨ν(z(τ))⟩a

]
ν(z(0))

⟩
a
,

=

∫ ∞

0

dτ

∫ 1/2

−1/2

dz

∫ 1/2

−1/2

dz0 ν(z)ν(z0)P (z, τ |z0, 0)ψ0(z0)− ν200,

=
∑
α>0

λ−1
α ν0ανα0, (5.21)

where the average ⟨·⟩a is taken over realizations of z(τ) given by Eq. (5.13)
with fixed |u| and P (z, τ |z0, 0) =

∑
α e

−λατψα(z)ψ̄α(z0) is the probability that
the particle gets to z at time τ given that it was at z0 at time 0.

Far from the points ust, we only have that |∂φS| . 1 and the terms in the
second line of Eq. (5.20) become important. Here, the distribution is not Gaus-
sian and exponentially small. In problems of escape from a basin of attraction
of a dynamical system, the escape probability is approximately given by 1/2
times the probability that the system reaches the saddle point, assuming that
at t→ −∞ the particle was at the bottom of the basin of attraction. The factor
1/2 comes from the probability that the system will actually cross the basin
boundary due to small fluctuations.

Figure 5.3 depicts the wedge-like regions of bistability according to the
adiabatic picture. If we choose the controlling parameters Ω (scaled frequency
detuning) and βD (scaled drive intensity) well inside the bistability region,
the saddle point is far from the two stable points, u(1,2)st . Consequently, the
switching rates are exponentially small and their calculation requires to take
into account all the terms of Eq. (5.20). The calculation simplifies near the
lines of bifurcation (boundary of the wedge-like region of bistability) where
the saddle point is near one stable point, e.g. u(1)st . Thus, the switching rate
from the metastable point, u(1)st , to the point u(2)st , can be calculated by taking
into account only the first order term in θ−1 ≪ 1 of Eq. (5.20).
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5.4. Bistability and interstate switching near the adiabatic bifurcation points

5.4 Bistability and interstate switching near the
adiabatic bifurcation points

The inset of Fig. 5.3 depicts a numerical simulation for the scaled vibrational
amplitude, |u|, as function of the the scaled time, τ = Γt, for Ω = −18.95,
βD = 5, and ν̄ = mω0/2MΓ = 10 (this point in parameter space is close to
the adiabatic bifurcation point (ABP): ΩB = −19.145 for the same values of
βD and ν̄), and θ = 1.01. We note that the system switches between the low-
and large- amplitude vibrational states depicted in Fig. 5.2 (a) and (b), respec-
tively. Moreover, the switching rates (reciprocal of the mean residence times)
are much smaller than Γ. This shows that the interstate switching events are
rare near but not too close to the bifurcation points as long as θ & 1. Near the
ABPs and for θ ≫ 1, we can calculate the switching rates from the metastable
vibrational state (large-amplitude state) by considering the reduced equation
of motion for the oscillator (in polar coordinates: u = Reiφ),

dR

dτ
= −R− sin(φ),

dφ

dτ
= −

[
Ω + ν00(R

2)
]
− cos(φ)

R
+D1/2ξ(τ), (5.22)

where D(R) is given by Eq. (5.21) and ξ(τ) is a white and Gaussian noise
source with a pair-time correlation function equal to ⟨ξ(τ1)ξ(τ2)⟩ = 2δ(τ1 − τ2)
and δ(·) is the Dirac function.

The calculation of the switching rate, W , from the metastable state pro-
ceeds as follows. We expand the the right-hand sides of Eq. (5.22) about the
bifurcation point in phase space: (RB, φB). Here, it is important to keep the
second order terms in δR = R−RB and δφ = φ−φB. The effective phase diffu-
sion coefficient is set to D(RB). If we consider only the linear terms δR and δφ,
the corresponding linear system has a direction where the drift term vanishes
at Ω = ΩB. Let us call the coordinate along this direction x1 and the coordinate
along the orthogonal direction x2 . Then, we have (near a bifurcation point:
Ω ≈ ΩB),

dx1
dτ

= −δΩ/2− 2x1 + ax21 + bx1x2 + cx22 +O(x31, x
3
2),

dx2
dτ

= −δΩ/2 + dx21 + ex1x2 + gx22 +O(x31, x
3
2), (5.23)

where δΩ = Ω−ΩB and a > 0, b < 0, c < 0, d > 0, e > 0, g > 0 are constants de-
pending on RB and φB. From the above equations, we adiabatically eliminate
x1 by setting ẋ1 = 0 and then x1 ≈ −δΩ/4. The equation for the slow dynamic
variable x2 is

dx2
dτ

≈ d(δΩ/4)2 − e(δΩ/4)x2 − δΩ/2 + gx22 + (D/4)1/2ξ(τ). (5.24)
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Figure 5.4: The switching rate W near a bifurcation point as function of the product
of the diffusion coefficient D and the number of particles N for βD = 5, ν̄ = 10 and
Ω − ΩB = 0.03 (ΩB = −19.145). Inset: scaling of lnW/Γ with the distance to the
bifurcation point Ω − ΩB for the same βD and ν̄; θ = 5.1 and N = 1. The discrete
points are the results of simulations, the solid lines show the analytical predictions.

Neglecting the first two terms at the right-hand side of the above equation for
|δΩ| ≪ 1, we find the standard Kramer’s escape problem of an overdamped
Brownian particle escaping from the metastable potential: U(x2) = (δΩ/2)x2−
gx32/3. The escape rate, W , is given by

W ∼ exp
[
−∆U/(D/4)

]
(5.25)

where ∆U ∝ |Ω− ΩB|3/2 is the effective barrier height that system must over-
come in order to escape to the other basin of attraction. Notice that the expo-
nent of the switching rate scales with the distance to the bifurcation point as
|Ω−Ω|3/2. The power 3/2 is what one should expect if the fluctuations or noise
leading to the escape are effectively Gaussian and white. This is what I find
in numerical simulations, cf. inset of Fig. 5.4. I emphasize that the 3/2-scaling
is valid only near the adiabatic bifurcation points. Other types of scaling have
been predicted for the scape rates in other dynamical systems far from bifur-
cation points [81].
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5.5 Experimental realization of DIB

In order to observe DIB it is necessary that βD ≈ mA2ω2
0/2kBT & βmin (cf.

Fig. 5.3) and L2Γ . D . L2(ω0/2π). Here, A is the vibrational amplitude, ω0 is
the bare eigenfrequency, Γ = ω0/2Q is the energy relaxation rate of the driven
mode, Q is the quality factor, L is the resonator length, m and D are the mass
and diffusion coefficient of the diffusing particles, respectively, and kBT is the
thermal energy.

CNT resonators are probably the best candidate to observe DIB. Recently,
Chaste et al. have managed to make very short CNT resonators working at
low temperatures T & 6K with parameters: ω0/2π ≈ 2 GHz (fundamental
flexural mode), L ≈ 150 nm, diameter d ≈ 1.7 nm, mode effective mass M ≈
3× 10−19 g and quality factor Q & 103. They have demonstrated that CNT res-
onators can be used as mass sensors with yoctogram resolution (1 yg =10−24 g)
after current annealing the CNT to eliminate contaminants. They have also
seen the frequency dips when Xenon atoms or naphthalene molecules are ad-
sorbed on the CNT [25,33]. For Xenon atoms (m ≈ 2.2×10−25 Kg), and assum-
ing A = 1 nm, I find that βD ≈ 0.2. The latter value for βD marginally satisfies
the condition for DIB when there are N & 10 Xe atoms on the CNT [βmin . 0.2
for ν̄ = Nmω0/2MΓ ≈ 27.5 with N = 10]. The diffusion coefficient should be
in the range 2.25× 10−4 cm2s−1 < D < 0.45 cm2s−1.
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CHAPTER 6

Spintronics-based mesoscopic heat engine

In this chapter I present a quantum mechanical description of a mesoscopic
heat engine, which has the simplest possible components; namely, a quan-
tum harmonic oscillator (mechanical element) and a two level system (work-
ing substance). The latter is directly connected to two heat reservoirs held at
different temperatures. I find that there exist three distinct regimes of oper-
ation of the heat engine; namely, cooling, heating and heat engine regimes.
In both cooling and heating regimes, the vibronic distribution of the oscilla-
tor has a Boltzmann form with a certain effective temperature. The latter is
smaller (larger) than the temperature of the cold (hot) reservoir in the cool-
ing (heating) regime. In the heat engine regime, the Wigner distribution of
the oscillator acquires a nonGaussian form. Its shape corresponds to a circular
trajectory (with center at the origin) in phase space, cf. Fig. 6.4. Here, the oscil-
lator develops sustained self oscillations, which can be thought of as the cycles
of, e.g., a Stirling heat engine. Below, I consider a possible physical realization
of a mesoscopic heat engine which can be used, e.g., to cool the fundamental
flexural mode of a nanotube resonator.

6.1 Physical realization of a mesoscopic heat en-
gine

I consider a mesoscopic heat engine which consists of a mechanical subsystem
and a pair of spin polarized electrodes (baths) held at different temperatures
with opposite spin polarizations. The left (right) electrode has spin polar-
ization ↑ (↓) along the z direction. No bias voltage is applied between the
electrodes. The mechanical subsystem is the fundamental flexural mode of a
carbon nanotube resonator suspended between the ferromagnetic electrodes,
cf. Fig. 6.1. This structure has been recently realized experimentally [41]. The
working substance is composed of electrons which flow along the nanotube
under certain conditions. When the electrodes are 100 percent spin polarized,
the current is zero if there is no spin-flipping mechanism inside the nanotube.
The spin-flipping mechanism is induced by a nonuniform magnetic field, lo-
calized near the nanotube, as depicted in Fig. 6.1. When the nanotube is at its
rest position (x = 0), only the z component of the magnetic field, Bz, is non
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6.1. Physical realization of a mesoscopic heat engine

zero and it induces inside the nanotube an electronic two level system (TLS)
with Zeeman energy ∆ = ϵ↑ − ϵ↓. The energy of the spin-up (spin-down) level
of the TLS is ϵ↑(ϵ↓). The motion of the nanotube induces coherent transitions
between the TLS levels due to the x component of the external magnetic field,
Bx, which is assumed to vary as Bx(x) ≈ B′

x(x = 0)x. These coherent tran-
sitions are modeled by the following (spin-mechanical coupling) term in the
Hamiltonian of the nanotube system,

Hsm = gû
(
d̂†↑d̂↓ + d̂†↓d̂↑

)
, (6.1)

where d̂σ (d̂†σ) is the annihilation (creation) operator for electrons in the σ-level
of the TLS, û = (b̂† + b̂)/

√
2 is the (dimensionless) nanotube displacement op-

erator, and b̂ (b̂†) is the annihilation (creation) operator of mechanical quanta
of the fundamental flexural mode of the nanotube. The spin-mechanical cou-
pling factor g is proportional to µBx0B

′
x(0), where x0 ≡ (~/Mω0)

1/2 ∼ 10 pm is
the vibrational amplitude of the nanotube at its mechanical ground state and
µB is the Bohr magneton. I assume that the fundamental flexural mode has an
effective mass M ≈ 10−21 kg and resonance frequency ω0 = 2π × 100 MHz.

Below, I consider the case of weak spin-mechanical coupling and also weak
electronic coupling between the nanotube and the electrodes. Specifically, I as-
sume that g/~ and the tunneling rate at the left (right) junction, ΓL(R), are much
smaller than the vibrational frequency; i.e., ω0 ≫ g/~,ΓL,R. I also assume the
resonance condition ∆ = ~ω0.

The operators d̂†↑d̂↓ and b̂ vary in time as exp
(
it∆/~

)
and exp(−iω0t), re-

spectively, in the interaction picture. If we neglect the fast oscillating terms
in the Hamiltonian (rotating wave approximation), the following simplified
version of Eq. (6.1) results,

Hsm =
g√
2

(
d̂†↑d̂↓b̂+ H.c.

)
, (6.2)

which describes the following coherent transitions within the nanotube sub-
system,

|n+ 1, ↓⟩ → |n, ↑⟩ (cooling process), (6.3)
|n, ↑⟩ → |n+ 1, ↓⟩ (heating process). (6.4)

Above, |n, σ⟩ is the state where the mechanical subsystem is in the nth Fock
state and the TLS is in the σ-spin level [σ = ↑, ↓]. Note that the cooling (heat-
ing) process decreases (increases) by one the number of mechanical quanta in
the mechanical subsystem.

In the absence of coupling to the electrodes, Eqs. (6.3)-(6.4) imply that the
transition rate between the TLS levels is ∼ g

√
n+ 1. In order to favor the

cooling (heating) process, it is necessary that the occupation probability of
the σ =↓ (σ =↑) level to be higher than the occupation probability of the σ =↑
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Figure 6.1: (a) A nanotube suspended between two spin-polarized leads and in prox-
imity to a magnetic STM tip with magnetization M. The leads have opposite polar-
izations along the z direction. (b) Nonuniform magnetic field, B, created by the
magnetic tip. The nanotube (circles) deflection, u, is in the x direction. (c) A doubly
spin-degenerate electronic level exists in the nanotube at energy ϵ0. The applied mag-
netic field splits this level into two levels σz =↑, ↓ separated by an energy ∆ ∝ BzµB.
The leads are held at different temperatures TL,R with a zero bias voltage.
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(σ =↓) level. This is achieved by coupling the nanowire system with electrodes
at different temperatures [82] or different electrochemical potentials [83–86].
In particular, for the situation depicted in Fig. 6.1, effective cooling (heating)
of the mechanical subsystem is achieved if the temperature of the right (left)
electrode, TR (TL), is larger than the temperature of the left (right) electrode.

6.2 The effective temperature of the mechanical
subsystem

In this section I discuss the result for the effective temperature, T eff , of the
mechanical subsystem. It turns out that T eff can be made smaller (cooling
regime) or larger (heating regime) than the temperature of both electrodes. In the
cooling (heating) regime the heat engine works as a refrigerator (heat pump).
There is also a regime of sustained self oscillations of the mechanical subsys-
tem similar to the cycles of, e.g., a Stirling engine. In this regime the equilib-
rium position at u = 0 of the oscillator becomes unstable and self oscillations
develop with a finite amplitude but random phase, cf. Fig. 6.4. I refer to this
regime as the heat engine regime.

The effective temperature, T eff , of the mechanical subsystem in the cooling
and heating regimes can be found by an argument based on detailed balance
(In paper VI, I use a method based on the Liouville-von Neumann equation
to investigate also the regime of sustained self oscillations where detailed bal-
ance does not hold). If the mechanical subsystem exhibits detailed balance,
then the following holds,

Pm(n+ 1)

Pm(n)
=

Γup(n)

Γdown(n+ 1)
,

=
nB

nB + 1
, (6.5)

where Pm(n) = (1 + nB)
−1 exp

(
− ~ω0n/kBT

eff
)

is the stationary distribution
of the mechanical subsystem, Γdown(n + 1) gives the transition rate from the
(n+ 1)th Fock state to the nth Fock state [cooling process, cf. Eq. (6.3)], Γup(n)
gives the transition rate from the nth Fock state to the (n + 1)th Fock state
[heating process, cf. Eq. (6.4)], and nB = [exp(~ω0/kBT

eff )− 1]−1.
For the case of the spintronics-based mesoscopic heat engine, we have

Γup(n)

Γdown(n+ 1)
=
fL ·

√
n+ 1g · (1− fR)

fR ·
√
n+ 1g · (1− fL)

, (6.6)

where fL(R) ≡ fF [(ϵ↑(↓) − ϵFL(R))/kBTL(R)], fF is the Fermi-distribution, and
ϵFL(R) is the Fermi energy of the left (right) lead. Inserting Eq. (6.6) into Eq. (6.5),
we find that the effective temperature, T eff , of the mechanical subsystem is
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Figure 6.2: Effective temperature T eff of the vibrational mode as function of the ratio
Θ = TR/TL. For Θ > 1: T eff < min{TL, TR} (cooling regime). For Θ∗ < Θ < 1:
T eff > max{TL, TR} (heating regime). For Θ < Θ∗: no stationary distribution exits
unless additional dissipation mechanisms are included (heat engine regime). Inset:
Vibron stationary distribution in logarithmic scale when the mechanical subsystem
interacts only with ferromagnetic leads (curve 1), only with a bosonic bath at tem-
perature Tb and coupling parameter γ (curve 2) and, both the fermionic and bosonic
baths (curve 3). We use ω0/2π = 100 MHz, TL = 0.02 K, Θ = 10, Tb = (TL + TR)/2,
ϵ0 = kBTR/2, ΓL =

√
2g/~, ΓR = 1.62g/~ and γ = 0.002g/~.

equal to

T eff = TL
~ω0

ϵ0

[
1−Θ−1 +

~ω0

2ϵ0

(
1 + Θ−1

)]−1

, (6.7)

where Θ = TR/TL and ϵ0 = (ϵ↑ + ϵ↓)/2 is the zero field energy of the TLS
inside the nanotube. Equation (6.7) gives the effective temperature for the
mechanical subsystem in the case where the latter interacts only with the spin
polarized leads through the TLS.

Figure 6.2 depicts the results for the effective temperature, T eff , of the me-
chanical subsystem as function of Θ = TR/TL. For Θ < Θ∗ ≡ (1−~ω0/2ϵ0)/(1+
~ω0/2ϵ0), Eq. (6.7) gives T eff < 0 and there is no stationary vibron distribution
(a stationary distribution, Pm(n), exists if the mechanical subsystem also in-
teracts with other thermal baths, cf. paper VI). This is the heat engine regime
where mechanical self oscillations develop, cf. Fig. 6.4. For Θ∗ < Θ < 1, the
mechanical subsystem acquires an effective temperature that is larger than
the temperature of both leads; this is the heating regime. For Θ > 1, the me-
chanical subsystem acquires an effective temperature that is smaller than the
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Figure 6.3: Vibron stationary distribution Pm(n) when Θ < Θ∗. We include a bosonic
bath with temperature Tb and coupling parameter γ. The stationary distribution ex-
hibits a peak at nmax, which increases as γ gets smaller. We use nbγ~/g ≫ 1 (curve 1),
nbγ~/g = 0.021 (curve 2) and nbγ~/g = 0.01 (curve 3). Inset: The width of the distri-
bution Pm(n) scales inversely with Tb. Tb(A) = 1.5 K, Tb(B) = 0.3 K, Tb(C) = 0.06 K
and nbγ~/g = 0.01 for all curves A, B and C.

temperature of both leads; this is the cooling regime. Here, T eff is always
greater than T eff

min = 2TL/(1 + 2ϵ0/~ω0), approaching this value as Θ → ∞.
In other words, the mechanical subsystem does not achieve its mechanical
ground state because there exist infrequent heating processes due to the fi-
nite temperature of the cold lead. Nevertheless, the average vibron number
⟨n⟩ =

∑
n nPm(n) ∼ exp(−ϵ0/kBTL) can be exponentially small if ϵ0 ≫ kBTL.

Figure 6.3 depicts the vibron stationary distribution, Pm(n), in the heat en-
gine regime (Θ < Θ∗). Here, the mechanical subsystem also interacts with a
bosonic bath at temperature Tb = (TL + TR)/2 with a coupling factor γ (γ de-
termines the oscillator energy relaxation rate due to coupling with the bosonic
bath, cf. paper VI). Clearly, the stationary distribution is not of the Boltzmann
form since detailed balance does not hold in the heat engine regime. The sta-
tionary distribution has a maximum at nmax ∼ Γ/γ where Γ = min{ΓL,ΓR}.

Figure 6.4 depicts the Wigner distribution of the stationary state of the me-
chanical subsystem for the three regimes of the spintronics-based heat engine
(weak interaction with a bosonic bath is assumed). In particular, in the heat
engine regime, the vibrational mode has a finite vibrational amplitude but ar-
bitrary phase. From a classical point of view, the stationary state observed
in Fig. 6.4 (for Θ < Θ∗) is similar to a classical Van der Pol oscillator with
a nonlinear friction coefficient, Γeff (n), depicted in Fig. 6.5. For small vibra-
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Figure 6.4: Wigner distribution, Pm(x, p), of the stationary state of the mechanical
subsystem corresponding to the three regimes of the spintronics-based heat engine;
namely, heat engine regime (Θ < Θ∗), heating regime (Θ∗ < Θ < 1) and cooling
regime (Θ > 1).

Figure 6.5: Oscillator effective damping rate, Γeff (n), in the heat engine regime (cf.
Figs. 6.3 and 6.4) as function of the oscillator quantum number n (solid line). The
dashed line represents the contribution due to the heating processes, cf. Eq. (6.4); it
saturates at Γ = min{ΓL,ΓR} and it has a slope ∝ g for small n. The dashed dotted
line represents the contribution due to the bosonic thermal bath. This curve has a
constant slope, ∝ γ, where γ determines the oscillator quality factor, Q ∝ ω0/γ.
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Figure 6.6: Transition rates between leads with partial spin polarization and the TLS.

tional amplitudes (|u| . (~nmax/Mω0)
1/2) we have negative damping and for

large vibrational amplitudes we have positive damping. Hence, the station-
ary point at u = 0 becomes unstable and the dynamical system develops an
attractor in the form of a limit cycle with a finite amplitude ≈ (~nmax/Mω0)

1/2

but with a random phase, cf. Fig. 6.4 for Θ < Θ∗.

6.3 The case of leads with partial spin polariza-
tion

In this section I discuss the situation where the leads are partially spin po-
larized. In order to quantify the spin polarization I introduce the parameter
ηL(R), defined by

ηL(R) = 1−
ν
↓(↑)
L(R)

ν
↑(↓)
L(R)

, (6.8)

where ν↑L(R) and ν↓L(R) are the density of states with spin ↑ and ↓ at the left
(right) lead, respectively. Figure 6.6 depicts the transition rates between the
TLS and the partially spin polarized leads. The Lindblad master equation for
the system is

∂tρ = − i

~
[Hnw, ρ] +

∑
α=L,R;σ=↑,↓

Γσ
αLασ, (6.9)

where ρ and Hnw are the reduced density matrix and Hamiltonian of the nan-
otube system (cf. paper VI), respectively, and the rates Γσ

α are given in Fig. 6.6.
The operators Lασ are defined by

Lασ[ρ] = (1− fασ)d̂σρd̂
†
σ + fασ(d̂

†
σρd̂σ − ρ)− (1/2− fασ){d̂†σd̂σ, ρ}, (6.10)
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6.4. Mechanical ground-state cooling

where {Â, B̂} denotes anticommutator, fασ = fF [(ϵσ − ϵFα)/kBTα], fF is the
Fermi distribution and ϵFα is the Fermi level of the α lead. The stationary
vibron distribution P st

m (n) has again a Boltzmann form with effective temper-
ature T eff given by

exp
(
−~ω0/kBT

eff
)
=

[
(1− fR↓)Γ

↓
R + (1− fL↓)Γ

↓
L

]
·
[
Γ↑
LfL↑ + Γ↑

RfR↑
][

fR↓ΓR↓ + fL↓Γ
↓
L

]
·
[
Γ↑
L(1− fL↑) + (1− fR↑)Γ

↑
R

] . (6.11)

I point out that if the leads are not spin polarized [ηL(R) = 0], then the effective
temperature of the mechanical subsystem is smaller than max{TL, TR} and
larger than min{TL, TR}. The correction to the average vibron number due to
partial spin polarization of the leads is [assuming TL = 0 and (1− ηα) ≪ 1],

⟨n⟩ ≈ ⟨n⟩ηα=1 +
ΓR(1− fR↓)fR↑

ΓLfR↓
(1− ηR). (6.12)

6.4 Mechanical ground-state cooling

In this section I discuss the conditions for the mechanical subsystem to reach
a stationary state with minimum average vibron number, ⟨n⟩. Here, I have
to consider the possibility that the mechanical subsystem also interacts with
the phononic thermal baths of the electrodes. For symmetric coupling, the
effect of these baths is modeled by a single bosonic bath with temperature
Tb = (TL + TR)/2 and coupling factor γ (i.e., the intrinsic oscillator quality
factor isQ = ω0/2γ). The dissipation Lindblad operator, Lb, due to the bosonic
bath is given by

Lb[ρ] = (nb + 1)
(
2bρb† − b†bρ− ρb†b

)
+ nb

(
2b†ρb− bb†ρ− ρbb†

)
, (6.13)

where nb = [exp(~ω0/kBTb)− 1]−1.
In the absence of coupling between the mechanical subsystem and the

bosonic bath, the minimum average vibron number is obtained in the limit
Θ ≡ TR/TL ≫ 1 and ϵ0 ≫ ~ω0 [cf. Eq. (6.7)]. In the presence of coupling
between the mechanical subsystem and the bosonic bath, mechanical ground
state cooling [⟨n⟩ . 1] can be achieved if the maximum cooling rate ∼ gfR (this
cooling rate is obtained if ΓR(1 − fR) . g/~ . ΓL) is larger than the heating
rate due to coupling to the bosonic bath, i.e.,

gfR ≫ ~ω0nb/Q.

Our analysis shows that for a nanotube with a fundamental flexural mode
with resonance frequency ω0 = 2π · 100 MHz (~ω/kB ≈ 6 mK) and realistic
coupling parameter g ≈ 2π · 106 Hz (cf. paper VI) and quality factor Q = 105,
the average vibron number can be reduced to ⟨n⟩ = 0.44 for TR=200 mK and
TL=20 mK. From Eq. (6.12), I find that ground state cooling of the mechanical
vibrations with vibron number ⟨n⟩ . 1 can still be achieved with a partial spin
polarization of η & 50%.
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CHAPTER 7

Conclusions

In this thesis I have summarized the main results of my PhD research within
the field of Nanomechanics. I have discussed modeling of the mechanics of
graphene resonators, mass sensing using the nonlinear dynamics of square
graphene resonators, dephasing of the underdamped vibrational modes of
nanomechanical resonators, and quantum mechanical study of the regimes of
operation of a mesoscopic heat engine.

The mechanical description of monolayer graphene is a finite-strain elastic-
ity theory, which can be used to model the (long wavelength) deformations of
the membrane in graphene-based resonators, cf. papers I and II. This elasticity
theory has been used to study the possibility of using the nonlinear dynami-
cal response of graphene resonators to determine the mass and position of a
single particle adsorbed on a square graphene resonator, cf. paper III.

I have also studied the effects of frequency noise, caused by random mass
loading of small particles onto the resonator, in the response of underdamped
vibrational modes of nanomechanical resonators. I consider a type of mass
loading which is relevant for mass sensing applications. Here, the particles
enter and leave at arbitrary points on the resonator and also the particles may
diffuse along the nanoresonator. The results presented in chapter 4 apply to
one-dimensional resonators. However, the main conclusions apply in gen-
eral to harmonic oscillators with multiplicative noise. The main conclusions
are the method of the interfering partial susceptibilities to calculate the os-
cillator susceptibility, the understanding of the existence of the fast and the
slow frequency noise limits. As discussed in chapter 4 and in papers IV and
VII, the slow frequency noise limit corresponds to a frequency noise whose
correlation time, τc, is larger than the oscillator ring down time, Γ−1, and the
reciprocal of the standard deviation of the frequency fluctuations, ∆. In this
limit, the oscillator susceptibility can deviate significantly from the standard
Lorentzian susceptibility of underdamped oscillators. On the opposite limit,
i.e. τc ≪ Γ−1,∆−1, the oscillator susceptibility tends to a Lorentzian suscepti-
bility.

I have also considered the situation where the frequency noise is affected
by the oscillator vibrational state (backaction). In particular, I study diffusion
induced bistability of driven nanomechanical resonators where the backac-
tion is induced by an inertial force, which drives the particles towards the
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vibrational antinodes. If the particles diffuse comparatively fast along the
resonator, the oscillator exhibits nonlinear phenomena in the form of bista-
bility between a large amplitude vibrational state (with particles accumulated
at the antinode) and a small amplitude vibrational state (with particles almost
uniformly distributed along the resonator), cf. paper V. This type of nonlin-
ear phenomena may have been already observed in recent experiments, per-
formed by Bachtold et al. [25]. They observe sudden upward jumps in the
eigenfrequency of the driven mode (fundamental flexural mode of a CNT res-
onator). These jumps would correspond to switching from the particle mass
distribution peaked at the vibrational antinode to the mass distribution which
is almost uniformly distributed.

I have also discussed the operation regimes of a spintronics-based meso-
scopic heat engine. The latter is composed of spin polarized electrodes (heat
baths), held at different temperatures, and the fundamental flexural mode of
a carbon nanotube resonator (mechanical subsystem), suspended between the
electrodes. I find that the stationary state of the mechanical subsystem is de-
scribed by an effective temperature, which can be larger (heating regime) or
smaller (cooling regime) than the temperatures of the heat baths. Moreover, it
is possible to drive sustained mechanical self oscillations (heat engine regime),
which can be thought of as the cyclic motion of, e.g., a Stirling heat engine. The
mechanical subsystem in this latter regime behaves as a Van der Pol oscillator
with nonlinear damping, which is negative (positive) for comparatively small
(large) oscillation amplitudes. Here, the stationary state has a finite amplitude
but random phase, cf. Fig. 6.5.

My recent research in dephasing of the vibrational modes of nanomechan-
ical resonators indicates that the latter can be used to study surface physics
and transport phenomena in nanomechanical resonators. For instance, it has
been demonstrated that phase transitions of adsorbed atoms on the surface
of carbon nanotubes or the formation of monolayers on the nanotube sur-
face can be studied by monitoring the changes in the resonance frequency
of, e.g., the fundamental flexural mode [87]. Here, the fluctuations in the mass
density of the adatoms lead to fluctuations in the vibrational frequency (de-
phasing), which could be characterized by measuring the cumulants of the
(complex) amplitude fluctuations of a driven vibrational mode. It is also im-
portant to investigate the contribution to dephasing due to typical driving se-
tups of nanoelectromechanical resonators. For instance, electrostatic driving
induced dephasing can exist if the charge fluctuations in the nanoresonator
or the substrate below are comparatively slow. Similarly to mass loading in-
duced dephasing, the net effect of charge fluctuations with a comparatively
short RC time is a weak broadening of the absorption spectrum of the vibra-
tional modes. The effect of the charge fluctuations is significant (e.g., change
of shape of the absorption spectrum lines) if the charge fluctuations are com-
paratively slow. This occurs in poor conductors, where the RC time can be
comparable to the oscillator ring down time and to the reciprocal of the typi-
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cal size of the induced frequency fluctuations.
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