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Adaptive radar sensor model for tracking structured
extended objects

Lars Hammarstrand, Malin Lundgren, and Lennart Svensson senior member, IEEE

Abstract—In this paper, we propose a tracking framework
jointly estimating the position of a single extended object and
the set of radar reflectors that it contains. The reflectors are
assumed to lie on a line structure, but the number of reflectors
and their positions on the line are unknown. Additionally,
we incorporate an accurate radar sensor model considering
the resolution capabilities of the sensor. The evaluation of the
framework on radar measurements shows promising results.

Index Terms—Radar, Sensor model, Extended targets, Track-
ing.

I. INTRODUCTION

H ISTORICALLY, multi target radar tracking research has
focused on tracking targets at large distances in the

presence of clutter [1], [2]. In such scenarios, the return from
a target, e.g. an aircraft, is accurately modelled as a point
source, and the radar (with limited resolution) is not capable of
resolving multiple features on the object. Thus it is common to
assume that the object’s physical extent is negligible compared
to the measurement noise and that each object generates at
most one measurement, which is known as the point source
assumption.

In many other applications, such as vehicle tracking in
automotive active safety systems [3], the situation is different.
Here, the distance to objects is instead in the order of tens of
metres and at these distances, the physical extent of objects is
typically larger than the resolution of the radar sensor. Con-
sequently, the radar is capable of resolving multiple features
(reflection centres) on an object, which can lead to multiple
measurements originating from the same object. The radar
literature refers to these types of objects as extended targets
[4]. Attempting to track this type of object using methods
originally developed for point source targets will likely lead to
large estimation errors as the multiple received measurements
are not accurately described as originating from a point source.
This is illustrated in, e.g. [3], where a detailed extended object
model of radar returns from a car is compared to a simpler
point source model. The extended object model provides both
a better description of the vehicle-generated detections and
a more accurate tracking performance compared to the point
source model.
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Clearly, it is possible to benefit from the fact that an
object generates multiple radar measurements. In addition to
a more accurate tracking it is also possible to extract more
detailed information about the object, e.g., the spread of the
measurements provides information about the extension and
heading of the object. However, there are several difficulties
that arise when tracking extended objects. For example, a
considerably more complex sensor model is needed to describe
the object-generated measurements with sufficient accuracy, as
the measurements are spread across the whole extension of the
object. Additionally, it needs to handle the situation that sev-
eral features on an object might or might not be resolved by the
radar sensor [5], and moreover, also describe the measurement
uncertainty caused by measurements from unresolved features.
The resulting tracking framework consequently, needs to treat
the occurrence of possibly multiple measurements from each
object, in contrast to at most one measurement in the point
source case.

A comprehensive overview of the research in the area of
tracking extended objects, and the closely related problem
of group tracking, up to the year 2004, can be found in
[6]. The PHD framework, proposed by Mahler [7], has been
used extensively to address the problem of tracking groups of
targets and adaptations to track extended targets are presented
in [8] and [9]. In [10] and [11], Koch and Saul present a
Bayesian framework for tracking an extended object or a
group of closely spaced objects, under the assumption that
multiple measurements can originate from the same object.
The object/group extension is modelled by an elliptical shape,
defined by a symmetric positive definite random matrix. This
matrix is included in the state vector together with the kine-
matical states, and all states are jointly estimated from data. A
similar model of extended objects is also in [12] but here in
a combined set-theoretic and stochastic estimator. Both these
models has shown to be robust against object shape but it
is difficult to exploit more specific shape information if such
information is available. A different approach is to model the
extended object as a set of point features positioned on a
(semi-) rigid structure, where each feature may be the origin
of at most one measurement. This idea is adopted in, for
example, [13]–[17]. However, little attention has been given
to practical issues such as how to handle the uncertainties
associated with limited sensor resolution or how to consider
an unknown number of features on the object.

The problem of data association using possibly unresolved
measurements is treated in [18] and [19], which propose two
different sets of models for a joint measurement from two
unresolved point sources and for the probability that the two
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sources are unresolved. Using these models, the traditional
data association hypotheses and measurement models are
expanded to also consider merged measurements. Proposals
that consider resolution uncertainty for a known but arbitrary
number of sources are [3], [20]. The approach proposed
in [20] is a generalised version of the probabilistic model
in [19], evaluating all possible combinations of associating
measurements to inter-resolved clusters of sources. In [3],
the resolution uncertainty is handled by letting sources that
are possibly unresolved form independent groups, where each
group is capable of generating multiple measurements. In
contrast to [20], the solution in [3] considers only the more
probable formations of inter-resolvable sources.

In this paper, we propose a complete framework for tracking
a single extended object, including estimation of both the
position and kinematics of the object as well as the positions
of radar reflecting features. The object is modelled, similar
to [13]–[17], as (loosely) structured reflection centres sharing
a common kinematic description. However, the concept is
extended here to also consider uncertainty in the number of
features on the structure. Additionally, we propose a radar
sensor model that considers the arbitrary and unknown number
of reflection centres, and which incorporates the limited reso-
lution model presented in [20]. As a result, we are capable of
adapting the description of the object-generated measurements
over time as the same object might look very different to the
radar depending on angle and distance. The proposed tracking
framework is compared to that in [3], using data from two
types of automotive radars, a 77 GHz long range radar1 and
a 24 GHz medium range radar, and the true position of the
tracked vehicle is provided by an accurate differential GPS.

The paper is organised as follows. Section II introduces
the notation and the problem considered in this paper. In
Section III, the extended object model is presented, and
Section IV describes the proposed radar sensor model in detail.
A derivation of the posterior density is found in Section V
while Section VI discusses how this is treated in a tracking
framework. Finally, Section VII presents the results from the
proposed models in a tracking framework.

Notation: To facilitate the reading of this paper, we here
explain the general structure of the notation used. Vector
variables are boldface, e.g. x. Subscripts and superscripts in
italic are used as indexes of some sort, e.g. time index in
xk, whereas regular letters shall be interpreted as part of the
variable name, e.g., Pd for the probability of detection. Regular
calligraphic letters are used to indicate probabilistic events or
hypotheses (C, D, E) and boldface calligraphic letters (X , G)
denote sets and graphs.

II. PROBLEM FORMULATION AND MODELLING
ASSUMPTIONS

The problem that is studied in this paper is twofold: to use
measurements from a radar to jointly estimate the position and
kinematics of an extended object, and to adapt a structure that
describes the possibly multiple radar returns from the object.

1Long range radar in automotive applications entails a detection range of
150 m and above.

The ultimate aim is to improve the tracking of an extended
object through adaptation of the radar sensor model to fit the
unknown and changing behaviour of the object’s radar returns.

In the coming sections we define the conditions and as-
sumptions needed to solve this problem in a Bayesian track-
ing framework. The extended object model is introduced
in Section II-A. In Section II-B, the radar observations are
described and finally Section II-C formally defines the problem
considered in the paper.

A. Extended object model

Similarly to the approach in [21], the radar return from
the object of interest is assumed to be accurately modelled
as originating from a set of reflection centres, i.e., a set of
features on the object that are more likely to generate a strong
return. The reflection centres are organised on a structure (rigid
body) capturing the position, kinematics and shape of the
extended object. We assume that we know that there exists
one and only one visible extended object but, in contrast to
[21], we assume that neither the number of reflection centres
nor their initial positions are known. The information about the
extended object at a discrete time instance k is summarised in
an extended object state

xk =
[
(zk)

T
, (ξk)

T
]T
. (1)

The vector zk, called the structure state (bulk) vector, typically
describes the common position and velocity of the extended
object. The feature vector,

ξk =

[(
ξ1
k

)T
, . . . ,

(
ξ
nξk
k

)T]T
, (2)

contains parameters describing the positions of nξk reflection
centres in relation to the structure. For a line structure, like the
one in Figure 1a, ξik describes the distance (length on the struc-
ture) from the target centre to the ith reflector. The position
of reflection centre i in the global coordinate system is found
using the mapping function g(zk, ξ

i
k). This representation can

be interpreted as the positions of the reflector centres in state
space being restricted to a subspace S(zk) ⊆ Rnz defined by
the structure state vector zk.

Using this general description, it is possible to model
different types of extended objects with a variety of imposed
structures for positioning of individual reflection centres. Fig-
ure 1 shows three examples of how one can represent extended
objects on the form in (1). In all the examples, the kinematic
description of the object is included in the structure state
vector, zk, which for the arc and box object also includes some
description of the curved and rectangular shape, respectively.
For the graph representation, the imposed structure is more
limited and the position of the individual reflectors make up
the shape of the object.

It is assumed in this paper that the time evolution of the
extended object state, xk, can be divided into two parts,

xk+1 =

[
zk+1

ξk+1

]
=

[
fz(xk,v

z
k)

fξ(xk,v
ξ
k)

]
, (3)
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(a) Line structure (b) Box structure (c) Graph structure

Figure 1. Different structure model alternatives for representing an extended object. Example (a) models the extended object as a line with the reflectors
positioned along it, example (b) as a rectangle and example (c) as a more general graph shape.

where fz(·) describes the dynamic behaviour of the structure
and fξ(·) captures the dynamics of the reflector centres in rela-
tion to the structure and the change in the number of reflectors.
The variables, vzk and vξk, are noise process accounting for
model uncertainties.

B. Radar observations
Observations on the positions of the reflection centres are

provided by radar sensors mounted on a possibly moving host
platform, and it is assumed that both the position of the sensors
and the state of the host platform, denoted zh

k, are known
parameters in the measurement model. The sensors are similar
in that if a feature on the extended object is a strong scatterer
for one sensor, this is also true for the others. At each time k,
only one of the radar sensors provides a set of measurements,
and as a result, although we have a multi-sensor system, we
only need to consider measurements from one sensor at each
update step. All sensors are thus treated separately and in a
similar manner and to simplify notation, the presentation is
limited to one of the sensors.

At each time instance k, a sensor provides Mk detections,
where mt

k detections are generated by the extended object
and mc

k observations are clutter. All detections are stored in
the unlabelled measurement vector,

yk =
[
(y1
k)T , (y2

k)T , . . . , (yMk

k )T
]T
. (4)

Each measurement in (4) contains an observation of the
relative range, rik, angle, φik, and range rate, ṙik, between one
radar reflection source (object related or clutter) and the sensor,
such that

yik = [rik, φ
i
k, ṙ

i
k]T . (5)

The collection of all measurement vectors up to and including
time instance k is denoted Yk , {y1,y2, . . . ,yk}.

Let us define an ordered collection of the detections which
originate from the extended object and those which originate
from clutter as

yt
k =

[(
yt,1
k

)T
, . . . ,

(
y

t,mt
k

k

)T]T
(6)

yc
k =

[(
yc,1
k

)T
, . . . ,

(
y

c,mc
k

k

)T]T
. (7)

These two vectors are connected to the measurement vector,
yk, through an unknown random permutation matrix, ΠMk

p ,
with dimension [Mk ×Mk]. This relation can mathematically
be expressed as

yk = (ΠMk
p ⊗ I3×3)

[
yc
k

yt
k

]
, (8)

where ⊗ is the Kronecker product and I3×3 is a three-
by-three-dimensional identity matrix. The purpose of ΠMk

p

is to describe the uncertainty in measurement origin (data
association uncertainty). The treatment of this uncertainty is
an important part in the derivation of the tracking framework,
and is further discussed in Section VI.

The clutter measurement vector, yc
k, is assumed to behave

according to a known and object-independent clutter model
describing both the number of clutter detections mc

k and their
spatial distribution. The mt

k object-generated detections are
naturally described by the reflection centres on the structure.
Given a state vector xk with Nξ

k reflectors2, the positions
of these reflectors in the observation space, denoted rk, and
the parameter describing the expected return signal amplitude
from the reflectors, denoted σk, are given by a known function

[(rk)T , (σk)T ]T = hξ(xk) (9)

where rk = [(r1
k)T , . . . , (r

Nξk
k )T ]T and σk = [σ1

k, . . . , σ
Nξk
k ]T .

Under ideal conditions, the object measurement vector, yt
k,

would contain one detection from each reflection centre,
i.e., yt,i

k = rik. However, due to limitations in radar signal
bandwidth and pulse duration as well as antenna aperture size,
radar sensors are not capable of resolving reflection centres
that are too closely spaced. As such, all reflectors are not
always resolvable and the response from a cluster of reflectors
might merge to form a joint detection. Additionally, a reflector
or a cluster of reflectors will be detected only if the signal to
noise ratio of its radar return is sufficiently large. We assume
that the object measurements from a reflector or a cluster of
reflectors can be described as

yt
k = hc (rk,σk,wk) , (10)

2Conditioned on xk , the number of reflection centres is known. This is
indicated by denoting the number of reflectors using uppercase N instead of
lowercase.
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where hc(·) is a stochastic function and wk is a measurement
noise process capturing both model uncertainties and measure-
ment disturbances. The function hc(·) describes mt

k detections
from inter-resolved reflector clusters and is stochastic in the
sense that it changes depending on how the nξk reflectors are
partitioned into resolvable reflector clusters, and which of the
clusters that are detected by the sensor.

C. Tracking problem

As aforementioned, the aim of this paper is to derive a
Bayesian tracking framework for jointly estimating the struc-
ture state, zk, as well as the number of reflection centres, nξk,
and their positions, ξk, on the extended object, based on noisy
radar observations, Yk. As new measurements are available,
the posterior density, p

(
xk
∣∣Yk

)
, is recursively calculated.

From this density it is possible to compute estimates including
uncertainty measures under different optimality constraints.

For the type of problem considered in this paper, the
calculation of p

(
xk
∣∣Yk

)
is feasible using knowledge from

two types of probabilistic models: the process model defined
by (3) and the measurement model defined in (8). Furthermore,
we need to consider three additional types of uncertainties
influencing our ability to interpret the measurements. First,
we need to handle that the number of reflection centres on the
structure is unknown and time-varying (existence uncertainty).
Second, even under known number of reflection centres, the
object measurement model (10) is stochastic due to uncer-
tainty regarding how the reflectors are partitioned into inter-
resolvable reflector clusters (resolution uncertainty). Finally,
we do not know which of the clusters that are detected by the
sensor and which of the measurements in yk corresponds to
which object detection (data association uncertainty).

These aspects of the calculation of the posterior density are
addressed in the following sections. In Section III, we define
the parametrisation of the extended object considered in this
paper, together with the process model (3). The radar sensor
model which incorporates resolution uncertainty is derived
in Section IV. By introducing interdependent hypotheses to
handle the existence, cluster and data association uncertainties
with associated probabilistic models, the derivation of the
posterior density based on the process and radar sensor model
is concluded in Section V. The existence, cluster and data
association hypotheses indicate which reflectors on the object
exists, which of these form inter-resolvable clusters and which
measurement originated from which cluster, respectively. Fi-
nally, to arrive at a more computational tractable solution,
we marginalise over the hypotheses and introduce suitable
approximations in Section VI.

III. STRUCTURE MODEL

This section describes the specific extended object model
used in this paper, i.e., a structure to which a collection
of reflector centres are attached. We will discuss the state
parametrisation of the extended object as well as models for
its evolution over time. This includes both the motion of the
structure and the reflection centres, as well as how the number
of reflectors changes over time.

A. Structure parametrisation
In this paper we propose to use a simple yet useful structure

model. We assume that an extended object can be modelled
as a straight line to which the unknown number of reflector
centres are associated, as shown in Figure 2. All parameters of
interest for describing this structure are collected in a discrete
time state vector, xk. As in [21], this vector consists of two
parts, namely a structure state vector zk containing, e.g., the
position, velocity and heading of the line, and a feature vector,
ξk, describing the positions of the reflector centres on the
structure.

The state vector for the line structure in this paper is
parameterised as

zk = [xk, yk, ψk, vk, ck, ak, θk]T , (11)

where (xk, yk) is defined as the mid point as well as the
rotation point of the line, and is expressed in global Cartesian
coordinates. The rotation point travels at an instantaneous
speed vk and acceleration ak in the direction of travel de-
scribed by the heading angle ψk. Further, the heading and the
line rotates along the trajectory described by the curvature ck3,
and the line itself is rotated relative to its heading according
to θk.

The feature vector ξk, that describes the reflector positions
on the structure, is defined as

ξk = [l1k, l
2
k, . . . , l

nξk
k ]T , (12)

where nξk is the unknown (and stochastic) number of re-
flectors, and lik is the distance from the line centre to the
ith reflector. The complete extended object state vector is

xk =

[
zTk , l

1
k, l

2
k, . . . , l

nξk
k

]T
.

B. Structure process model
The structure state evolves over time according to the time-

continuous motion model

ż(t) =



v(t)cos (ψ(t))
v(t)sin (ψ(t))

c(t)v(t)
a(t)

0
0
0


+



0
0
0
0

νc(t)
νa(t)
νθ(t)


, (13)

where νc, νa and νθ are white time-continuous zero-mean
Gaussian noise processes with variances σ2

c , σ2
a and σ2

θ ,
respectively. A discrete-time version of (13) is readily available
on the form

zk = fz(zk−1) + vzk−1 (14)

derived assuming constant noise increments during one sam-
pling period, and where vzk ∼ N (0,Qz) is the corresponding
discrete time noise process. The exact expression of (14) is
not given here for brevity, but the interested reader can find
the discrete time version of a similar model in [3].

3The curvature ck is here used to describe the heading change rate of the
line structure as a function of distance. Definition: The rotation point travels
on the circumference of a circle with radius 1/ck (see Fig. 2).



HAMMARSTRAND et al.: ADAPTIVE RADAR SENSOR MODEL FOR TRACKING STRUCTURED EXTENDED OBJECTS 5

Figure 2. In this paper an extended object is modelled as a line to which a collection of reflection centres is associated. The state vector, zk , describing the
structure is parameterised in a global Cartesian coordinate system.

C. Feature process model
The process model for the feature state, as defined in

(3), needs both to describe how the reflectors move on the
structure, and account for changes in the number of reflectors.
The number of reflectors can change in part due to existing
reflectors disappearing and in part due to new reflectors
appearing. Let us assume that the feature process model can
be partitioned as

ξk =

[
ξs
k

ξb
k

]
=

[
f s
ξ(xk−1,v

s
k−1)

f b
ξ (xk−1,v

b
k)

]
, (15)

where ξs
k and ξb

k are random vectors containing the positions
of the ns

k surviving reflectors from time k − 1 and the nb
k

appearing reflectors at time k. Both ns
k and nb

k are assumed
unknown and random and the respective feature vector is
modelled by the survival process model f s

ξ(·) and the birth
process model f b

ξ (·). The noise processes, vs
k−1 and vb

k, de-
scribe uncertainties in the dynamics of the surviving reflectors
and in the position of born reflectors.

1) Survival model: To indicate whether reflector i in ξk−1

is still present at time k (survives until time k) or not, we
introduce an existence (survival) variable eis,k ∈ {0, 1}, where
eis,k = 1 indicates that the ith reflector survived and vice versa

for eis,k = 0. Further, we denote P is,k = Pr
{
eis,k = 1

∣∣ ξk−1

}
and 1 − P is,k as the probability of the respective outcome.
Let the survival hypothesis, denoted E s

k, indicate one possible
ordered set of N s

k surviving reflectors, {s1, . . . , sN s
k
} = {i :

eis,k = 1}, such that 1 ≤ s1 < · · · < sN s
k
≤ Nξ

k−1. Using
this hypothesis, the survival process model is modelled as a
simple random walk,

ξs
k = f s

ξ(ξk−1, E s
k,v

s
k−1) =

 ls1k−1
...

l
sNs
k

k−1

+

 vs,s1
k−1
...

v
s,sNs

k

k−1

 , (16)

where vs,i
k−1 ∼ N (0, σ2

s ) is a noise process included to allow
for a small movement of a reflector along the line structure.

From the survival model, the transition density for ξs
k can

be formed as

p(ξs
k

∣∣ ξk−1) =
∑
E s
k

p(ξs
k

∣∣ E s
k, ξk−1)Pr

{
E s
k

∣∣ ξk−1

}
(17)

where

p
(
ξs
k

∣∣ E s
k, ξk−1

)
=

N s
k∏

j=1

N
(
ljk; l

sj
k−1, σ

2
s

)
(18)

Pr
{
E s
k

∣∣ ξk−1

}
=

Nξk−1∏
i=1

(
1− P is,k

) N s
k∏

j=1

P
sj
s,k

1− P sjs,k
. (19)

2) Birth model: At a time k, we assume that a maximum
number of Bk new reflectors appear on the structure, each with
a position described by a Gaussian density lb,ik ∼ N

(
l̄b,ik , σ

2
b

)
.

Again, we introduce an existence variable, eib,k ∈ {0, 1}
stating whether reflector i is born or not and denote the corre-
sponding birth probability as P ib,k. Similarly as in the survival
process, we let a birth hypothesis Eb

k indicate one possible
ordered set of N b

k appearing reflectors, {b1, . . . , bN b
k
} = {i :

eib,k = 1}, such that the birth process can be written as

ξb
k = f b

ξ (Eb
k,v

b
k) =


l̄b,b1k

...

l̄
b,b

Nb
k

k

+


vb,b1
k
...

v
b,b

Nb
k

k

 , (20)

where vb,bi
k ∼ N

(
0, σ2

b

)
. Using (20), the pdf of ξb

k can be
formed as

p
(
ξb
k

)
=
∑
Eb
k

p
(
ξb
k

∣∣ Eb
k

)
Pr
{
Eb
k

}
(21)
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where

p
(
ξb
k

∣∣ Eb
k

)
=

Nbk∏
j=1

N
(
ljk; l

b,bj
k , σ2

b

)
(22)

Pr
{
Eb
k

}
=

Bk∏
j=1

(
1− P jb,k

) N b
k∏

j=1

P
bj
b,k

1− P bjb,k

. (23)

D. Extended object process model

Through forming an existence hypothesis, Ek =
{
E s
k, Eb

k

}
,

and using the process models for the structure and the reflector
centres, the complete process model for the extended object,
conditioned on the existence hypothesis, can be stated

xk = f (xk−1, Ek,vk−1) =

 fz (zk−1) + vzk−1

f s
ξ(ξk−1, E s

k,v
s
k−1)

f b
ξ (Eb

k,v
b
k)

 . (24)

The corresponding conditional transition density can be ex-
pressed as

p
(
xk
∣∣ Ek,xk−1

)
= N (zk; fz(zk−1),Qz)×
N s
k∏

j=1

N
(
ljk; l

sj
k , σ

2
s

) N s
k+N b

k∏
j=N s

k+1

N
(
ljk; l

b,bj
k , σ2

b

)
, N

(
xk; x̄Ek ,Q

E
k

)
, (25)

where x̄Ek = f (xk−1, Ek,0) is the determinstic part of (24),
and QEk is the process noice covariance. The transitional
existence hypothesis probability is found as Pr

{
Ek
∣∣ ξk−1

}
=

Pr
{
E s
k

∣∣ ξk−1

}
Pr
{
Eb
k

}
.

IV. RADAR SENSOR MODEL

The objective of this section is to present the radar sensor
model for the clutter measurement vector, yc

k, and the object
measurement vector, yt

k, in (8) given an extended object state
vector xk. Recall that xk includes both the structure state as
well as the number of reflectors and their positions on the
structure. From yc

k and yt
k it is then possible to form the

measurement vector, yk, by generating a random permutation
matrix ΠMk

p .
For the clutter measurements we adopt the assumption that

yc
k is described by a homogenous Poisson process in the

observation space according to

yc,i
k ∼ Uniform(V ), (26)
mc
k ∼ Poisson(µV ), (27)

where yc,i
k is the ith clutter measurement, µ is the clutter

intensity and V the volume of the observation space. In
addition, we assume that the clutter detections are independent
from each other and from the object detections.

Under ideal conditions the object measurement vector, yt
k,

would contain one detection from each reflection centre, and
the vector yt,i

k would be the corresponding reflector position
in observation space as defined in (9). However, due to
measurement noise, limited sensor resolution and a probability
of detection less than one, the situation is not that simple.

To start with, the exact physical model for determining
which reflectors that are resolved and which are clustered,
i.e. unresolved, is not easily derived. For this reason, we
resort to a stochastic description of the phenomenon based on
evaluating all possible cluster formations. Given a state vector
xk, a cluster formation is a partitioning of the Nξ

k reflectors
in ξk into a set of inter-resolvable clusters of reflectors, i.e.,
the returns from reflectors in a cluster are unresolvable to
the radar while the radar is capable of distinguishing returns
from reflectors in different clusters. Let a cluster hypothesis Ck
indicate one of these formations and let the probability of Ck
be modelled by Pr

{
Ck
∣∣xk}. The resolution capabilities of a

sensor can thus be probabilistically described by generating all
possible cluster formations and evaluating their probabilities
using Pr

{
Ck
∣∣xk}.

Under a given cluster hypothesis, it is assumed that each
cluster in the formation can generate at most one detection.
This holds for both clusters containing only one reflector
and clusters containing multiple unresolved reflectors. Con-
sequently, to model the object-generated measurements given
a cluster hypothesis, we need to describe: 1) the probability
of detecting a cluster, and 2) the distribution of that possible
detection. The model of the individual reflector positions in
the observation space and the model of their received signal
amplitudes are discussed in Section IV-A. Based on these
models, both the distribution of the object-generated detections
and the probability of detecting a cluster is presented for
a given cluster hypothesis in Section IV-B. Finally, how to
generate the possible cluster hypotheses, Ck, and evaluate their
probabilities, Pr

{
Ck
∣∣xk}, is given in Section IV-C.

A. Reflector model

The full mathematical details of the reflector model (9) are
given in Appendix A and summarised here for clarity. The
purpose of the model, defined as

[(rk)T , (σk)T ]T = hξ(xk) (28)

is twofold: to, given xk, describe the position of the reflection
centres in measurement space, rk, and to model the expected
return signal amplitude from each centre, described by the
parameter vector σk. In our case, σk is a vector of Rayleigh
parameters as we assume that the return signal power of
reflector i, denoted Aik, is behaving according to the Swerling I
model [22]. The Swerling I model stipulates that the amplitude
of the received signal fluctuates between scans according to
the Rayleigh distribution

Aik ∼ Rayleigh(σik), (29)

where E
{
Aik
}

= σik
√
π/2.

B. Cluster model

We assume that the jth measurement in yt
k originated from

the ith cluster in the cluster formation indicated by Ck. This
cluster is assumed to consist of a number of unresolved
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reflectors4, and is defined by a set of reflector indices,

ICi = {l: reflector number l is in cluster number i}. (30)

A simple, yet useful, model is to describe the (state dependent)
signal component of a merged detection from this cluster as a
weighted sum of the included reflection centres,

cC,ik =
∑
l∈ ICi

wlkr
l
k, (31)

where the weights are determined by the relative signal
strength of the reflection centres according to

wlk =
Alk∑

m∈ ICi

Amk
. (32)

The signal amplitude of the cluster detection, denoted AC,ik , is
also Rayleigh distributed but with parameter

σC,ik =

√√√√√
∑
l∈ ICi

(
σlk
)2. (33)

Assuming additive Gaussian measurement noise, the
jth measurement in yk is

yt,j
k = cC,ik + wj

k (34)

where wj
k ∼ N (0,Wk) denotes (sensor dependent) measure-

ment noise, and the probability of receiving this detection is
given by

PC,id,k = Pr
{
AC,ik > γsA

∣∣xk} . (35)

Note that, even given xk, the signal component of the clus-
ter measurement, cC,ik , is stochastic as the weights wjk are
stochastic. The distribution of cC,ik is defined by (29) – (32),
which is difficult to evaluate. For this reason, we propose
to approximate the cluster density as a Gaussian density,
p
(
cC,ik
∣∣xk) ≈ N (cC,ik ; c̄C,ik ,CC,ik

)
, with the same first two

moments as the underlying distribution.
Let overscore denote the expected value of stochastic vari-

ables conditioned on xk, such that, e.g., c̄C,ik = E
{

cC,ik
∣∣xk}.

The first moment of cik, as given by (31), is

c̄C,ik =
∑
l∈ ICi

w̄lkr
l
k (36)

and after some manipulations, an expression for the covariance
can be found as

CC,ik =
∑

s, t∈ ICi

(
rsk − c̄C,ik

)(
rtk − c̄C,ik

)T
Cov

{
wsk, w

t
k

}
.

(37)

The position of each reflector, rik, is given by (100) in Ap-
pendix A, but we also need to express w̄ik and Cov {wsk, wtk}.
As the moments of a Rayleigh distribution are well known,
approximations of these quantities are readily found through
Taylor expansion.

4A resolved reflector can be viewed as a cluster of reflectors where
containing only one reflector.

C. Sensor resolution model

In [11], [19], a simple but qualitatively correct and tractable
model is proposed for describing the probability that two point
sources (targets) are unresolved by a radar sensor. Based on
this two-source model, a sensor resolution model covering
an arbitrary number of sources was derived in [20]. This
model is also used in this paper to model the probability of
receiving merged measurements from the reflection centres on
the structure. We start by presenting the model in the case
of two sources followed by the expansion to a more general
formulation with multiple interacting sources.

1) Two source model: Denoting by Uij the event that
reflector i and reflector j are positioned sufficiently close to be
unresolved, a model for the probability of this pairwise cluster
event is found in [11], [19] as,

Pr
{
Uij
∣∣xk} = e−

1
2 (∆rijk )T (Ru)

−1∆rijk

= |2πRu|1/2N (0; ∆rijk ,Ru), (38)

where ∆rijk = rik − rjk is the distance between the reflectors
in observation space and Ru = (2 ln 2)

−3/2 diag {[δr, δφ, δṙ]}2
represents the modelled resolution of the sensor. The parame-
ters, δr, δφ and δṙ, describe the specified resolution capability
of the sensor in each dimension of the observations space and
are set based on sensor parameters such as the bandwidth,
pulse duration and the antenna beam width. Note that the
diagonal form of Ru implies that the resolution capability
of the sensor is modelled as independent in the different
dimensions.

2) Multi-source model: The sensor resolution model for
multiple sources in [20] is based on evaluating all possi-
ble pairwise interactions between the reflection sources. It
is assumed that each reflector only has the possibility to
independently interact with (to be pairwise connected to) its
direct neighbours in each dimension of the observation space.
In other words, projecting the position of the reflectors onto
each dimension, a reflector can only interact with (connect to)
the first reflector to the left and right in each dimension. The
event that two neighbouring reflectors, i and j, are pairwise
unresolved is modelled by the pairwise cluster event Uij and
the probability of this event is assumed to be described by
the two source resolution model in (38). Additionally, the
cluster events for two different neighbours, Uij and Uik,
are assumed mutually independent, and reflectors that are
not direct neighbours are considered unresolved if they are
connected through a series of pairwise cluster events.

The formulation of the resolution problem can be repre-
sented by a simple and undirected graph, here denoted GX ,
where the set of reflector indexes, X = {1, 2, . . . , N ξ

k}, are
vertices and all possible pairwise cluster events, Uij , are edges.
Thus, an edge between reflector i and j in GX describes the
possibility for reflector i and j to be pairwise unresolved.
Figure 3 shows two examples of the cluster hypothesis graph
GX for three reflectors in two dimensions. In Figure 3a
the reflectors are positioned on a straight line (as with our
structure), whereas in Figure 3b, the reflectors are positioned
in a triangular pattern. In Example B, all cluster events are
possible between the three reflectors, but in Example A, the
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cluster hypothesis graph has only two possible edges (cluster
events), U12 and U23. As the area spanned by reflector 1 and
3 encloses reflector 2 it is not possible that the cluster event
U13 is independent of U12 and U23.

Let us again consider a cluster described by ICi , as defined
in (30). All possible pairwise cluster events (edges) between
the reflectors in ICi can be described by an induced subgraph5

to GX , denoted GICi . This induced subgraph has the vertices
ICi and the same edges between these vertices as in GX . In
this context, a sufficient requirement for the reflectors in ICi
to be unresolved (form a joint detection) is that there exist at
least one walk through GICi including all reflectors (vertices).
Generally there may exist multiple spanning subgraphs6 to
GICi for which this holds true. Returning to Example B in
Figure 3b, if ICi = {1, 2, 3} (all reflectors are clustered),
then any graph that contains at least two edges is a spanning
subgraph. Let SICi be the set of all unique spanning subgraphs
for which there exists a walk including all reflectors in ICi .
Again, using the assumption that all possible cluster events
are mutually independent, the probability that the reflectors in
ICi form a joint detection can be written as

Pr
{
ICi unresolved

∣∣xk} , Pc{ICi
∣∣xk} =∑

Gj∈ SIC
i

Pu
{
Gj
∣∣xk}Pr

{
Ḡj
∣∣xk} ,

(39)

where Gj denotes one of the spanning subgraphs in SICi and
Ḡj is its complement, i.e., if an edge exist in Gj it is not in
Ḡj and vise versa. Further, Pu{·

∣∣xk} and Pr{·
∣∣xk} denote the

probabilities that the reflectors connected by an edge in G are
unresolved or resolved, respectively, and are defined as

Pu
{
G
∣∣xk} ,

∏
Umn∈ G

Pr
{
Umn

∣∣xk} (40)

Pr
{
G
∣∣xk} ,

∏
Umn∈ G

(
1− Pr

{
Umn

∣∣xk}) , (41)

For the example shown in Figure 3a, the probability that all
reflectors are unresolved, i.e. ICi = {1, 2, 3}, is

Pc

{
ICi
∣∣xk} = Pr

{
U12

∣∣xk}Pr
{
U23

∣∣xk} , (42)

as there is only one walk, namely U12 and U23, that connects
all reflectors. For the example in Figure 3b, however, the same
probability is formulated as

Pc{ICi
∣∣xk} = Pr

{
U12

∣∣xk}Pr
{
U23

∣∣xk} (1− Pr
{
U13

∣∣xk})
+ Pr

{
U12

∣∣xk}Pr
{
U13

∣∣xk} (1− Pr
{
U23

∣∣xk})

+ Pr
{
U13

∣∣xk}Pr
{
U23

∣∣xk} (1− Pr
{
U12

∣∣xk})

+ Pr
{
U12

∣∣xk}Pr
{
U13

∣∣xk}Pr
{
U23

∣∣xk} ,
(43)

as there exist four spanning subgraphs where there is one walk
connecting all reflectors.

5An induced subgraph is a graph with a subset of the vertices of its parent
but the same edges between these vertices.

6A spanning subgraph is a subgraph with the same vertices as its parent.

In the most general case, a cluster hypothesis Ck indicates a

set of disjoint cluster sets, J Ck =
{
ICi
}NCk
i=1

, where we want to
evaluate the probability that all reflectors are unresolved within
each cluster and resolved between clusters. The probability of
this cluster hypothesis can thus be written as

Pr
{
Ck
∣∣xk} =

NCk∏
i=1

Pc{ICi
∣∣xk}

Pr

GX \
NCk⋃
u=1

GICu

∣∣xk


=

NCk∏
i=1

∑
Gj∈ SIC

i

Pu
{
Gj
∣∣xk}Pr

{
Ḡj
∣∣xk}


× Pr

GX \
NCk⋃
u=1

GICu

∣∣xk
 . (44)

The first part in (44) describes the probability that the reflectors
in each clusters are unresolved and the second part considers
that all possible connections between different clusters, de-
scribed by the graph GX \

⋃NCk
u=1 GICu , are resolved.

D. Summary

In this section we give a summary of the radar sensor
model proposed in this paper. The clutter measurement vec-
tor, yc

k, can be found by generating the number of clutter
measurements, mc

k, according to (26), and then generate mc
k

independent clutter measurements in the manner of (27). To
generate the target measurements, yt

k, the reflector positions
in xk are mapped to the measurement space using (100).
In order to probabilistically model the sensor’s resolution
capability we construct a set of cluster hypotheses, i.e. possible
ways of partitioning the reflectors into inter-resolvable clusters,
and evaluate their probabilities using (44). Under a cluster
hypothesis, Ck, there is a formation of NCk inter-resolvable
clusters. Each of these clusters is detected with a probability,
PC,id,k, as described in (35), and the measurement generated by
a detected cluster is given by (34). Conditioned on Ck, the
ordered object measurement vector can hence be described as

p(yt
k

∣∣ Ck,xk) =

NCk∏
j=1

(
1− P C,jd,k

)
×

∑
1≤d1<···<dmt

k
≤NCk

mt
k∏

j=1

P
C,dj
d,k

1− P C,djd,k

N
(
yt,j
k ; c̄

C,dj
k ,C

C,dj
k + Wk

)
.

(45)

This concludes the radar sensor model from which we can
generate clutter as well as object-originated measurements, and
where the limited resolution and detection capability of the
sensor is taken into account.

V. POSTERIOR DENSITY

In this section we derive one recursion in the calculation
of p

(
xk
∣∣Yk

)
. That is, we describe the update of the pos-

terior from the previous scan, p
(
xk−1

∣∣Yk−1

)
, with the new

information in the observations made at time k. To accomplish
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(a) Example A: Reflectors on a straight line. (b) Example B: Reflectors on triangle formation.

Figure 3. Example of two cluster hypothesis graphs containing three reflectors and two and three pairwise cluster events respectively.

this, we need to define the density from which the derivation
starts. Furthermore, as mentioned in Section II-C, there are
three types of uncertainties that need to be considered. There
is uncertainty in the number of reflectors on the structure, in
which reflectors that are resolved and which that are clustered,
as well as in the association between the measurements in yk
and the reflector clusters.

We start by introducing the posterior from the previous scan,
followed by the introduction of a hypothesis set to handle the
three types of uncertainties discussed above. Last but not least
we derive an expression for the exact posterior density.

A. Posterior from the previous scan
We assume that the information in the observations up to

and including time k − 1 indicate that a maximum number
of Nξ

k−1 reflector centres exist on the structure. The existence
variable, eik−1 ∈ {0, 1} indicates whether the ith reflector exist
or not and we let P ie,k−1 = Pr

{
eik−1 = 1

∣∣Yk−1

}
denote

the probability of existence of reflector i at time k − 1.
Using this description, the density is assumed to be formulated
(approximated) as,

p(xk−1

∣∣Yk−1) =

Nξk−1∏
j=1

(
1− P je,k−1

)

×
∑
Ek−1

nξk−1∏
j=1

P
ij
e,k−1

1− P ije,k−1

N (xk−1; x̂Ek−1,P
E
k−1

)
. (46)

where nξk−1 is the number of reflectors in xk−1 and Ek−1 is
an existence hypothesis specifying an ordered set of existing
reflector indices, {i1, . . . , inξk−1

} = {i : eik−1 = 1}, such that

1 ≤ i1 < · · · < inξk−1
≤ Nξ

k−1. The vector x̂Ek−1 and the

matrix PEk−1 are defined as

x̂Ek−1 = E
{
xk−1

∣∣ Ek−1,Yk−1

}
(47)

PEk−1 = Cov
{
xk−1

∣∣ Ek−1,Yk−1

}
(48)

Note that the covariance matrix PEk−1 may include non-zero
off-diagonal elements as the structure and feature states are
correlated conditioned on data.

B. Hypothesis set

To compute p
(
xk
∣∣Yk

)
from p

(
xk−1

∣∣Yk−1

)
we need to

handle what we call existence, cluster and data association un-
certainties. To facilitate this we introduce a coupled hypothesis
set

Hk = {Ek, Ck,Dk} (49)

where Ek indicates the existence of one possible combina-
tion of reflector components, Ck indicates one possible inter-
resolvable cluster formation out of the existing reflectors and
Dk indicates one possible association between the clusters
stipulated by Ck and the measurements in yk. The set is
coupled in the sense that an existence hypothesis generates
a set of cluster hypotheses which, in turn, results in a set
of possible measurement-to-cluster associations. More formal
definitions of the different hypotheses are given below.

1) Existence hypotheses: Given that xk|Yk−1 can be de-
scribed using a maximum of Nξ

k = Nξ
k−1 +N b

k reflectors, we
can define an existence hypothesis Ek = {E s

k, Eb
k} indicating

which of these reflectors actually exist at time k. The first part,
E s
k, indicates which of the Nξ

k−1 possible reflectors existed at
time k−1 and survived, whereas the second part, Eb

k, indicates
which of N b

k possible new reflectors that are born.
2) Cluster hypotheses: The cluster hypotheses are thor-

oughly discussed in Section IV-C and summarised here for
clarity. A cluster hypothesis Ck stipulates one possible way of
forming inter-resolvable cluster formations out of the reflectors
given by the existence hypothesis, Ek. Each Ck describes a set
of NCk disjoint reflector sets as

J Ck = {IC1 ,I
C
2 , . . . ,I

C
NCk
}, (50)

where ICi = {ij}
NCi
j=1 such that ij 6= il if j 6= l and if m ∈ ICi

then m /∈ ICj .
3) Data association hypotheses: Given an existence hy-

pothesis and a cluster hypothesis, there are still uncertainties
regarding which of the clusters that are detected and the
order of the measurement vector modelled by the permutation
matrix ΠMk

p in (8). These uncertainties are treated with a
data association hypothesis, Dk, which indicates one possible
association between the clusters, given by a cluster hypothesis
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Ck, and the Mk measurements in yk. Each data association
hypothesis is connected to a data association vector,

dk = [d1, d2, . . . , dMk
], (51)

where dj = 0 implies that yjk originated from clutter and dj >
0 implies that yjk originated from cluster number dj . Recall
that the information regarding which reflectors that belong to
cluster dj is given by the cluster hypothesis Ck.

C. Derivation of posterior density

From the previous posterior defined in Section V-A and
using the hypothesis set introduced in Section V-B we want to
derive a manageable expression for p

(
xk
∣∣Yk

)
. By marginal-

ising over the hypothesis set, using Bayes’ rule and the Markov
property, the posterior density can be found as

p
(
xk
∣∣Yk

)
=
∑
Hk

p
(
xk
∣∣Hk,Yk

)
Pr
{
Hk
∣∣Yk

}
=
∑
Hk

p
(
yk
∣∣Hk,xk,Yk−1

)
p
(
xk
∣∣Hk,Yk−1

)
p
(
yk
∣∣Hk,Yk−1

)
×
p
(
yk
∣∣Hk,Yk−1

)
Pr
{
Hk
∣∣Yk−1

}
p(yk

∣∣Yk−1)

=
∑
Hk

p
(
yk
∣∣Hk,xk)Pr

{
Ck,Dk

∣∣ Ek,xk} p (xk∣∣ Ek,Yk−1

)
p(yk

∣∣Yk−1)Pr
{
Ck,Dk

∣∣ Ek,Yk−1

}
× Pr

{
Ck,Dk

∣∣ Ek,Yk−1

}
Pr
{
Ek
∣∣Yk−1

}
=
∑
Hk

p
(
yk
∣∣Hk,xk)Pr

{
Ck,Dk

∣∣ Ek,xk} p (xk∣∣ Ek,Yk−1

)
p(yk

∣∣Yk−1)

× Pr
{
Ek
∣∣Yk−1

}
. (52)

Ignoring the proportionality constant, p(yk
∣∣Yk−1), and by

splitting the sum over Hk into the individual hypotheses, the
sought posterior can be partitioned as

p
(
xk
∣∣Yk

)
∝
∑
Ek

Pr
{
Ek
∣∣Yk−1

}∑
Ck

Pr
{
Ck
∣∣ Ek,xk}

×
∑
Dk

Pr
{
Dk
∣∣ Ck, Ek,xk} p (yk∣∣Hk,xk) p (xk∣∣ Ek,Yk−1

)
.

(53)

From (53), we see that the posterior can be partitioned into
three mixtures, the sought posterior, and

pE,C
(
xk
∣∣Yk

)
=∑

Dk

Pr
{
Dk
∣∣ Ck, Ek,xk} p (yk∣∣Hk,xk) p (xk∣∣ Ek,Yk−1

)
(54)

pE
(
xk
∣∣Yk

)
=
∑
Ck

Pr
{
Ck
∣∣ Ek,xk} pE,C (xk∣∣Yk

)
. (55)

Each mixture considers one of the three uncertainties. Start-
ing from the right in (53), an unnomalised mixture density,
denoted pE,C

(
xk
∣∣Yk

)
, is produced of posteriors for all data

associations conditioned on an existence and a cluster hypoth-
esis. Similarly, the mixture, pE

(
xk
∣∣Yk

)
, is created for all

cluster formations under an existence hypothesis. Finally, the
sought posterior is formulated as the mixture of pE

(
xk
∣∣Yk

)
over all reflector existence hypotheses.

TABLE I
TRACKING FRAMEWORK ALGORITHM

1: Given p (xk−1,Yk−1)
2: Construct existence hypotheses Ek
3: For each Ek
4: Calculate predicted density:

p
(
xk
∣∣ Ek,Yk−1

)
≈ N

(
xk; x̂

E
k|k−1

,PE
k|k−1

)
4: Construct cluster hypotheses Ck
5: For each Ck
6: Construct data association hypotheses Dk
7: For each Dk
8: Measurement update (EKF or UKF):

qE,C,D (Yk)N
(
xk; x̂

H
k ,P

H
k

)
≈ p

(
yk
∣∣Hk,xk) p (xk∣∣ Ek,Yk−1

)
9: end

10: Form pE,C
(
xk
∣∣Yk

)
=∑

Dk Pr
{
Dk
∣∣ Ck, Ek,Yk−1

}
qE,C,D (Yk)N

(
xk; x̂

H
k|k,P

H
k|k

)
11: Moment matching:

qE,C (Yk)N
(
xk; x̂

E,C
k|k ,P

E,C
k|k

)
≈ pE,C

(
xk
∣∣Yk

)
12: end
13: Resolution model update:

pE
(
xk
∣∣Yk

)
≈
∑
Ck βC(E,Yk) qE,C (Yk)N

(
xk; x̃

E,C
k|k , P̃

E,C
k|k

)
14: Moment matching: qE (Yk)N

(
xk; x̂

E
k|k,P

E
k|k

)
≈ pE

(
xk
∣∣Yk

)
15: end
16: Form posterior density:

p(x
∣∣Yk) ≈

Pr
{
Ek
∣∣Yk−1

}
qE (Yk)N

(
xk;x̂

E
k|k,P

E
k|k

)
∑
Ek

Pr
{
Ek,
∣∣Yk−1

}
qE (Yk)

17: Prune and merge

VI. TRACKING FRAMEWORK

In this section we propose a Bayesian tracking framework
for calculating the posterior density derived in Section V, and
an estimator for the extended object state. In order to arrive
at a tractable solution we will find suitable approximations
for each mixture density in (53) separately. Furthermore, we
will propose methods for controlling the maximum number
of possible reflection centres on the structure, Nξ

k . This is
important as the number of possible reflectors will influence
the dimensionality of the hypothesis set Hk and, consequently,
also the number of components in the mixtures and the
computational complexity.

The approach described here is a Kalman filter-like frame-
work where each mixture is approximated by a Gaussian
density with the same first two moments. Table I gives an
overview of the different steps in the proposed framework
and is intended as a guide throughout this section. A detailed
discussion of the steps is given below, where the included
densities are defined using the hypothesis set,Hk, the structure
and process models defined in Section III and the sensor model
derived in Section IV.

A. Measurement update mixture

Given knowledge of which reflectors that exist on the struc-
ture (Ek), and how they are partitioned into inter-resolvable
clusters (Ck), the tracking problem boils down to a non-
linear point source multi-target tracking problem. The data
association hypotheses specified by Dk can be generated
considering any suitable multi-target (point source) data as-
sociation algorithm, such as JPDA [23] or GNN [1].
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1) Predicted density: Conditioned on an existence hypoth-
esis, the predicted density is given by (25) and (46) as

p
(
xk
∣∣ Ek,Yk−1

)
=

∫
p
(
xk
∣∣ Ek,xk−1

)
p
(
xk−1

∣∣ Ek,Yk−1

)
dxk−1

=

∫
N
(
xk; x̄Ek ,Q

E
k

)
N
(
xk−1; x̂Ek−1,P

E
k−1

)
dxk−1. (56)

Like above, Ek = {E s
k, Eb

k} states which reflectors that survive
and which appear, and therefore (56) reduces to the problem of
propagating a Gaussian density through a nonlinear function.
A Gaussian approximation of this density is found as

p
(
xk
∣∣ Ek,Yk−1

)
≈ N

(
xk; x̂Ek|k−1,P

E
k|k−1

)
, (57)

by propagating N
(
xk−1; x̂E

s

k−1,P
E s

k−1

)
, given by (47) – (48),

through the process model (24). In practice, the prediction is
carried out in three steps. First, the structure state zk−1 is
propagated through the non-linear process model (14) using
the unscented transform [24]. Second, the predicted positions
of the surviving reflectors, stated in E s

k, are found using the
survival process model (16) and the Kalman filter. Last, the
predicted positions of the born reflectors in Eb

k, are found
through the birth process model (20).

2) Measurement update: Due to the assumption that the
measurements are independent conditioned on xk and Hk =
{E , C,D}, the likelihood function, p

(
yk
∣∣Hk,xk), can be

decomposed as

p
(
yk
∣∣Hk,xk) =

Mk∏
j=1

p
(
yjk
∣∣Hk,xk) . (58)

Conditioned on the current data association hypothesis, the
measurement equation for the object generated measurements
in (34) can be written as

yjk = c
C,dj
k + wj

k, (59)

where c
C,dj
k

∣∣xk ∼ N
(
c̄
C,dj
k ,C

C,dj
k

)
and

wj
k ∼ N (0,Wk). Note that c̄

C,dj
k is a nonlinear function

of the state according to (36). Using the measurement model
in (59) and the clutter density in (27), each component in (58)
is described by

p
(
yjk
∣∣Hk,xk) =

{
N
(
yjk; c̄

C,dj
k ,C

C,dj
k + Wk

)
if dj 6= 0

1/V if dj = 0

(60)

where V is the volume of the observation space.
The predicted density in (56) can now be updated using the

likelihood in (58). From the Gaussian re-factorisation lemma
[25], it is known that the product of two Gaussian densities
describing two linearly dependent random vectors, e.g., x and
y = Hx + n, where n ∼ N (0,R), can be rewritten as

N (y; Hx, R)N (x; x̂0, P0) = N (y; ŷ, S)N (x; x̂, P) .
(61)

As a function of x, this is a scaled Gaussian density. The
mean ŷ and the covariance S are the first two moments of

y = Hx + n, whereas x̂ and P are given by the Kalman
filter equations. To be able to apply this lemma on the
product p

(
yk
∣∣Hk,xk) p (xk∣∣ Ek,Yk−1

)
, where the mean of

yk is a non-linear function of xk, we resort to a Gaussian
approximation

p
(
yk
∣∣Hk,xk) p (xk∣∣ Ek,Yk−1

)
≈ qE,C,D (Yk)N

(
xk; x̂Hk|k,P

H
k|k

)
. (62)

Here, qE,C,D (Yk) is regarded as a scaling factor, and the den-
sity N

(
xk; x̂Hk|k,P

H
k|k

)
is obtained from the update equations

of the unscented Kalman filter (UKF) [24]. The scaling factor
is found using the approximation

qE,C,D (Yk) ≈
(

1

V

)Mc
k

N
(
yt,D
k ; ŷHk|k−1,P

H
yy

)
, (63)

where M c
k is the number of clutter measurements and yt,D

k

is an ordered vector of the object measurements, under the
current data association hypothesis. Approximations of the
predicted measurement mean and covariance, ŷHk|k−1 and PHyy,
are found as a part of the UKF update by propagating (56)
through (59) using the unscented transform.

3) Data association probability: As stated in Section IV-A,
the probability of detection, P id,k, is assumed to be locally
state independent. That is, P id,k is regarded as approximately

constant where N
(
xk; x̂Hk|k,P

H
k|k

)
has significant support,

and thus, Pr
{
Dk
∣∣ Ck, Ek,xk} ≈ Pr

{
Dk
∣∣ Ck, Ek,Yk−1

}
. This

hypothesis probability, is calculated as

Pr
{
Dk
∣∣ Ck, Ek,Yk−1

}
= Pr

{
dk
∣∣ Ck, Ek,Yk−1

}
=

(
M t
k +M c

k

M t
k

)−1

×
NCk∏
i=1

(
1− PC,id,k

) ∏
dj> 0

PC,djd,k

1− PC,djd,k

Pr {M c
k} , (64)

where M t
k and M c

k are the number of object and clutter
measurements, respectively. The probability PC,id,k is found
using xk = x̂Ek−1 in (35), and since M c is Poisson distributed
Pr {M c

k} = (µV )M
c
k exp(−µV )/M c

k !.
4) Moment matching: Using (62) and (64) the measurement

update mixture can be approximated as

pE,C
(
xk
∣∣Yk

)
≈∑

Dk

Pr
{
Dk
∣∣ Ck, Ek,Yk−1

}
qE,C,D (Yk)N

(
xk; x̂Hk|k,P

H
k|k

)
.

(65)

In concurrence with the general idea of JPDA, this mixture is
approximated as a single scaled Gaussian

pE,C
(
xk
∣∣Yk

)
≈ qE,C (Yk)N

(
xk; x̂E,Ck|k ,P

E,C
k|k

)
, (66)

using moment matching. The new scaling factor

qE,C (Yk) =
∑
Dk

Pr
{
Dk
∣∣ Ck, Ek,Yk−1

}
qE,C,D (Yk) , (67)

ensures that the integral
∫
pE,C

(
xk
∣∣Yk

)
dxk is identical

in (65) and (66).
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B. Resolution model mixture

In this section we discuss the resolution model mixture
which, in (53), is defined as

pE
(
xk
∣∣Yk

)
=
∑
Ck

Pr
{
Ck
∣∣ Ek,xk} pE,C (xk∣∣Yk

)
. (68)

In (66) the measurement update mixture is approximated as
pE,C

(
xk
∣∣Yk

)
≈ qE,C (Yk)N

(
xk; x̂E,Ck|k ,P

E,C
k|k

)
, where the

density N
(
xk; x̂E,Ck|k ,P

E,C
k|k

)
will be affected by the resolution

model, Pr
{
Ck
∣∣ Ek,xk}. In contrast to Pr

{
Dk
∣∣ Ck,xk}, the

cluster hypothesis probability is not approximately locally
constant. In fact, the resolution probability is strongly de-
pendent on the relative distance between the reflectors in the
measurement space (cf. (38)). As a result, Pr

{
Ck
∣∣ Ek,xk} will

not only influence the scaling of pE,C
(
xk
∣∣Yk

)
, but it will also

contain information regarding the state and thus actually have
effect on the shape of pE

(
xk
∣∣Yk

)
as a function of xk.

In [19] it is shown how Pr
{
Ck
∣∣ Ek,xk} influences a Gaus-

sian density in the case of maximum two sources, which is
extended to the case of an arbitrary but known number of
sources in [20]. The principle derived in [20] is used also in
this paper. We illustrate it for a simple two source example in
Section VI-B1, and later generalise it to the case of multiple
sources in Section VI-B2. For a more detailed description we
refer the reader to [20].

1) Two source example: Suppose the existence hypothesis,
Ek, states that there exist two reflection centres on the struc-
ture, here called reflector i and j. Consequently, we have two
possible cluster hypotheses; the reflectors are either resolved or
clustered. Let us denote these cluster hypotheses as Ck = 1 and
Ck = 2, respectively. Note that Pr

{
Ck
∣∣ Ek,xk} = Pr

{
Ck
∣∣xk}

since if xk is known, there are no uncertainties regarding
the existence. This allow us to state the cluster hypothesis
probabilities according to (44) as

Pr
{
Ck = 1

∣∣ Ek,xk} = 1− Pr
{
Uij
∣∣ Ek,xk} (69)

Pr
{
Ck = 2

∣∣ Ek,xk} = Pr
{
Uij
∣∣ Ek,xk} , (70)

where

Pr
{
Uij
∣∣ Ek,xk} = |2πRu|1/2N

(
0; ∆rijk ,Ru

)
, (71)

as given by (38).
Additionally, assuming that the object state after measure-

ment update under each of the two cluster hypotheses can
be described by the Gaussian densities N

(
xk; x̂E,1k|k,P

E,1
k|k

)
and N

(
xk; x̂E,2k|k,P

E,2
k|k

)
, respectively, the resolution mixture

components are

Pr
{
Ck = 1

∣∣ Ek,xk}N (xk; x̂E,1k|k,P
E,1
k|k

)
=
(
1− Pr

{
Uij
∣∣ Ek,xk})N (xk; x̂E,1k|k,P

E,1
k|k

)
= N

(
xk; x̂E,1k|k,P

E,1
k|k

)
−

= |2πRu|1/2N
(
0; ∆rijk ,Ru

)
N
(
xk; x̂E,1k|k,P

E,1
k|k

)
(72)

Pr
{
Ck = 2

∣∣ Ek,xk}N (xk; x̂E,2k|k,P
E,2
k|k

)

= Pr
{
Uij
∣∣ Ek,xk}N (xk; x̂E,2k|k,P

E,2
k|k

)
= |2πRu|1/2N

(
0; ∆rijk ,Ru

)
N
(
xk; x̂E,2k|k,P

E,2
k|k

)
. (73)

In this context, the factors N
(
0; ∆rijk ,Ru

)
can be considered

as describing a non-linear pseudo-measurement model, with
additive Gaussian noise

δijk = ∆rijk + wu
k = rik − rjk + wu

k (74)

where rjk and rik are non-linear functions of xk as de-
scribed in (100), and wu

k ∼ N (0,Ru). The received pseudo-
measurement of the relative distance between the reflectors is
always δijk = 0. As a result, the product
N
(
0; ∆rijk ,Ru

)
N
(
xk; x̂E,Ck ,PE,Ck

)
can be considered as a

measurement update step using the non-linear measurement
equation (74) and the measurement δijk = 0. Again using
the approximation of the Gaussian re-factorisation lemma, a
Gaussian approximation of this measurement update is found
using the UKF update equations as

|2πRu|1/2N
(
0; ∆rijk ,Ru

)
N
(
xk; x̂E,Ck|k ,P

E,C
k|k

)
≈ |2πRu|1/2N

(
0; δ̂

ij

k ,P
ij
δδ

)
N
(
xk; x̂

E,C,Uij
k|k ,P

E,C,Uij
k|k

)
(75)

where δ̂
ij

k the predicted relative distance between the reflectors
and Pij

δδ is the corresponding covariance conditioned on Yk.
We approximate these using the unscented transform and
the “pseudo-measurement equation” in (74). The updated
mean x̂

E,C,Uij
k|k and covariance P

E,C,Uij
k|k are found using the

corresponding Kalman filter update equations with δijk = 0 as
observation. Denoting

βUij (Ek,Yk) = |2πRu|1/2N
(
0; δ̂

ij

k ,P
ij
δδ

)
, (76)

the expressions in (72) and (73) can be written as

Pr
{
Ck = 1

∣∣ Ek,xk}N (xk; x̂E,1k|k,P
E,1
k|k

)
≈ N

(
xk; x̂E,1k|k,P

E,1
k|k

)
−

βUij (Ek,Yk)N
(
xk; x̂

E,1,Uij
k|k ,P

E,1,Uij
k|k

)
(77)

Pr
{
Ck = 2

∣∣ Ek,xk}N (xk; x̂E,2k|k,P
E,2
k|k

)
≈

βUij (Ek,Yk)N
(
xk; x̂

E,2,Uij
k|k ,P

E,2,Uij
k|k

)
.

(78)

By again approximating the updated mixture densities
for each cluster hypothesis as a scaled Gaussian den-
sity, βC(Ek,Yk)N

(
xk; x̃E,Ck|k , P̃

E,C
k|k

)
, the resulting resolution

model mixture can be written as

pE
(
xk
∣∣Yk

)
≈
∑
Ck

qE,C (Yk)βC(Ek,Yk)N
(
xk; x̃E,Ck|k , P̃

E,C
k|k

)
. (79)

Here, x̃E,Ck|k and P̃E,Ck|k denote the first and second moment of
the updated mixture density, whereas βC(Ek,Yk) is selected
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to ensure that
∫

Pr
{
Ck
∣∣ Ek,xk}N (xk; x̂E,Ck|k ,P

E,C
k|k

)
dxk =∫

βC(Ek,Yk)N
(
xk; x̃E,Ck|k , P̃

E,C
k|k

)
dxk = βC(Ek,Yk). For in-

stance, in (77) we get βC(Ek,Yk) = 1− βUij (Ek,Yk).
2) General example and further approximations: In its

most general form, the cluster hypothesis probability, as de-
fined in (44), consists of a product of sums

Pr
{
Ck
∣∣ Ek,xk} =

NCk∏
i=1

 ∑
Gj∈ SIC

i

Pu
{
Gj
∣∣xk}Pr

{
Ḡj
∣∣xk}


× Pr

Gξ \
NCk⋃
u=1

GICu

∣∣xk
 .

Through expansion, this expression can be transformed into a
sum of products where each term can be considered indepen-
dently. Each term in the sum will have the same form as the
terms in (72) – (73), however, in the general case each term
can be the product of several probabilities, Pr

{
Uij
∣∣xk}, and

a Gaussian density. We have seen how to treat the product of

Pr
{
Uij
∣∣xk}N (xk; x̂E,Ck|k ,P

E,C
k|k

)
,

in the case of two sources and in the general case this is done
recursively to replace the full product by a scaled Gaussian
density. The resulting sum of scaled Gaussian densities is
then approximated by βC(Ek,Yk)N

(
xk; x̃E,Ck|k , P̃

E,C
k|k

)
in the

same manner as for the case of two sources. The mixture
pE
(
xk
∣∣Yk

)
is found by considering all possible cluster hy-

potheses

pE
(
xk
∣∣Yk

)
≈
∑
Ck

qE,C (Yk)βC(Ek,Yk)N
(
xk; x̃E,Ck|k , P̃

E,C
k|k

)
≈ qE (Yk)N

(
xk; x̂Ek|k,P

E
k|k

)
, (80)

where x̂Ek|k and PEk|k are found as the first two moments of

∑
Ck qE,C (Yk)βC(Ek,Yk)N

(
xk; x̃E,Ck|k , P̃

E,C
k|k

)
qE (Yk)

, (81)

and the scaling factor is

qE (Yk) =
∑
Ck

qE,C (Yk)βC(Ek,Yk). (82)

C. Existence model mixture

The final expression of the posterior density is found
using (80) as

p
(
xk
∣∣Yk

)
∝
∑
Ek

Pr
{
Ek
∣∣Yk−1

}
pE
(
xk
∣∣Yk

)
≈
∑
Ek

Pr
{
Ek
∣∣Yk−1

}
qE (Yk)N

(
xk; x̂Ek|k,P

E
k|k

)
,

(83)

where

Pr
{
Ek
∣∣Yk−1

}
= Pr

{
E s
k

∣∣Yk−1

}
Pr
{
Eb
k

∣∣Yk−1

}
=
∏
i/∈E s

k

(
1− P is,kP ie,k−1

) ∏
i∈E s

k

P is,kP
i
e,k−1

×
∏
i/∈Eb

k

(
1− P ib,k

) ∏
i∈Eb

k

P ib,k. (84)

The updated existence hypotheses probabilities are found as

Pr
{
Ek
∣∣Yk

}
=

Pr
{
Ek
∣∣Yk−1

}
qE (Yk)∑

Ek Pr
{
Ek
∣∣Yk−1

}
qE (Yk)

. (85)

Using (85), the probability of existence for a reflector i at time
k can be calculated as

P ie,k =
∑
Eik

Pr
{
E ik
∣∣Yk

}
, (86)

where E ik are the existence hypotheses where reflector i exists.
Using this expression, the posterior density can be written on
the same form as the posterior from the previous time index
from which we started,

p(xk
∣∣Yk)

=

Nξk∏
j=1

(
1− P je,k

)∑
Ek

 nξk∏
j=1

P
ij
e,k

1− P ije,k

N (xk; x̂Ek ,P
E
k

)
.

(87)

D. Merge and prune

To limit the number of possible reflectors on the structure
to a tractable number, we propose to prune unlikely reflection
centres, and to merge reflection centres that are closely spaced.
The pruning of reflectors is performed by removing reflectors
with a probability of existence lower than a pre-specified
threshold γe.

Like the algorithm proposed in [26], the merging algorithm
proposed here starts by choosing the most probable reflector,
i.e., the reflector with the largest P ie,k, and then grouping the
reflectors that are within some distance from this reflector.
Subsequently, the most probable reflector out of the remaining
reflectors is considered in the same manner. This is repeated
until all reflectors are included in a group. Consequently, N g

k ≤
Nξ
k groups are constructed where the ith group is formed as

gik = [gi1, . . . , g
i
Ni ], (88)

where gij is the index of the jth reflector in group i.
Each group of reflectors is replaced by one new reflection

centre. The probability of existence for the new reflector is
calculated using local existence hypotheses defining which
reflectors within the group that exist. To indicate whether a re-
flector exists or not, we use an existence variable ei,jg,k ∈ {0, 1},
such that ei,jg,k = 1 indicates that reflector gij exists and vise
versa for ei,jg,k = 0. An existence hypothesis for group i can
then be described by the vector eig,k = [ei,1g,k, ..., e

i,Ni
g,k ], and the
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probability of existence for the new reflector is

P ig,k =
∑

eig,k 6=0

Pr
{
eig,k

∣∣Yk

}
=
∑

eig,k 6=0

∏
{j:ei,jg,k=0}

(
1− P g

i
j

e,k

) ∏
{j:ei,jg,k=1}

P
gij
e,k. (89)

The position of the group reflector is described as

lg,ik =
1

P ig,k

∑
eig,k 6=0

Pr
{
eig,k

∣∣Yk

}
f ig(ξk, e

i
g,k) (90)

where f ig(·) models the position of the new reflector for a
given existence hypothesis as,

f ig(ξk, e
i
g,k) =

1

Ni

∑
{j:ei,jg,k=1}

ljk. (91)

From the Ng
k groups of reflectors, the state vector repre-

senting the extended target can be stated as

xg
k =

[
zTk , l

g,1
k , . . . , l

g,Ng
k

k

]T
∼ N

(
x̂g
k|k,P

g
k|k

)
(92)

where

x̂g
k|k = E

{
xg
k

∣∣Yk

}
, Pg

k|k = Cov
{
xg
k

∣∣Yk

}
. (93)

The full description of the extended target given measurements
up to time k, is found using (89), (92) and the model for the
updated density in (87).

VII. EVALUATION

In this section, we evaluate the proposed models and the
tracking framework on a vehicle scenario. The evaluation is
performed using real radar data and we compare our proposed
tracking framework to that presented in [3]. This comparison is
performed both regarding estimation error in position, heading
and speed of the vehicle, and regarding how well the vehicle
extent is described.

A. The evaluation setting

This section describes the scenario and the radar data used
for evaluation. The model to which we compare our proposed
model will also be briefly discussed and last we give some
details about the implementations.

1) Sensor types: For the evaluation, radar data is collected
from three sensors mounted on a host vehicle as illustrated in
Figure 4. The sensor denoted s1 is a 77 GHz long-range radar
with an update rate of 10 Hz, a field of view of 16° and a
detection range of approximately 150 metres. The sensors s2

and s3, are 24 GHz medium-range radars covering a 150° field
of view up to approximately 70 metres using 13 independent
receive beams, each delivering detections every 40 ms. The
resolution cell for the sensor s1 is described by the vector
[δr, δφ, δṙ]

s1 = [2m, 3.5°, .5m/s], and for each receiving beam
in s2 and s3, the resolution is given by [δr, δφ, δṙ]

s2,3 =
[2m,∞, 6m/s]. The measurement noise covariance for a
point target is specified as Ws1

k = diag
{

[.4, 1π
180 , .5]

}2
and

W
s2,3
k = diag

{
[.4, 1.2π

180 , 2]
}2

. The host and target reference
positions are acquired using accurate DGPS data.

Figure 4. Host vehicle equipped with three radar sensors, one mechanically
scanned 77 Ghz long range radar, denoted s1, and two medium range 24
GHz radars looking to the right and left, denoted s2 and s3, respectively. In
the evaluated tracking scenario the host vehicle is travelling at constant speed
along a straight path. The target vehicle drives at a crossing path stopping in
front of the host vehicle before making a left turn.

2) Tracking scenario: Data is collected in the scenario
depicted in Figure 4, where the host is driving at a constant
speed towards an intersection. The target vehicle approaches
from the right, and makes a short stop before it turns left to
meet the host. This scenario has been chosen since it is a
challenging situation for tracking using radar measurements,
as the target vehicle is travelling almost radially to the sensor
which means that the observability of the full velocity vector
is low.

3) The vehicle tracking framework used for comparison:
As a reference we use the vehicle tracking framework in
[3]. In this framework it is assumed that the positions of
the reflection centres are deterministic, conditioned on the
target vehicle state. Hence in contrast to our framework, there
are no uncertainties regarding the dimension of the tracked
vehicle, the number of reflection centres or their positions.
The framework uses the same state representation as the
structure state, zk, but without the angle θk, and the rotation
point is fixed to the middle of the rear axle. Moreover, this
framework incorporate a radar sensor model that considers the
effects of limited resolution for a general number of reflection
centres. Reflectors that are likely to be unresolved by the
sensor form groups where each group is capable of generating
multiple measurements. Included are models for the number
of detections from a group as well as the distribution of the
resulting detections.

4) Filter parameters: Both filters are initiated in the ref-
erence state, [x0, y0, ψ0, v0, c0, a0]T , provided by the
DGPS. In addition, our filter is initiated in the angle θ0 = 0
and with the feature state vector ξ0 = l10 = 0, i.e., the
structure has only one reflector. The corresponding covariances
are P0 = diag

{
[1, 1, 3π

180 , .5, .001, 1.5, 5π
180 , .4]

}2
for our

proposed model, and P0 = diag
{

[1, 1, 3π
180 , .5, .001, 1.5]

}2

for the vehicle tracking model. The process noise used in
the filters are acceleration noise, σ2

a = 1.52, curvature noise
whose variance σ2

c depends on the velocity, and additional for
our proposed framework, σ2

θ = ( 0.1π
180 )2 and σ2

l = .052. At
each time k, the birth model allows a maximum of Bk = 2
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Figure 5. Error in estimated lateral position, elat, heading angle, eψ , and
velocity, ev . The solid (blue) lines shows the result for our proposed tracking
framework and the dashed (red) lines for the vehicle tracking framework

new reflectors to appear on the structure. The reflectors are
uniformly distributed on lb,ik ∈ [−5, 5] and the position
of each new reflector is Gaussian distributed N (lb,i, σ2

b ),
where σ2

b = .752 and the corresponding birth probability
P ib,k = 0.1

Bk
. To reduce the computational complexity, the

number of reflection centres on the structure is limited to
four in this implementation. In our proposed filter we have
a uniform clutter intensity set to µ = 0.1 for all sensors,
while in the vehicle tracking framework, the clutter intensity is
estimated from data. The matrix, Ru, that represents the sensor
resolution in the resolution models is set based on the specified
resolution cell, [δr, δφ, δṙ], and is described in Section IV-C
above and in Section IV-B in [3], respectively.

B. Tracking filter comparison

During the evaluated scenario, the side of the target vehicle
is headed towards the host so that most measurements originate
from features along that side, and consequently, the structure
will adapt to represent the side of the target vehicle. This
allows us to evaluate both lateral position and longitudinal
extension together with the errors in angle and speed.

Figure 5 displays the absolute errors in lateral position, elat,
heading angle, eψ , and speed, ev . The error in lateral position
is calculated as the mean distance between the reference
vehicle side and the estimated side, i.e., the line structure or
the estimated position of the side in the vehicle model. For
the

most part, it is shown that the errors using our framework
are similar as for the reference vehicle tracking framework.
The main difference is found in ev at t ∈ [3, 6]s which is
when the target slows down until standstill. Because of the
low observability of the velocity, this is not clearly captured in
the measurements. This situation causes problem for our model
due to the uncertainties regarding the number and the positions
of the reflection centres on the structure. The model thus needs
to determine whether a received measurement originates from

0 2 4 6 8 10
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Figure 6. The top figure shows the estimated front and rear (dashed lines)
using the vehicle tracking framework and the grey dashed lines shows the
front and rear of the reference vehicle. The middle figure shows the same
estimates for our proposed framework (solid line) while the bottom figure
shows the expected number of reflector centres on the structure.

a reflection centre already on the structure or if a new reflector
has become visible, and as a result, the model may add new
reflectors to the structure instead of changing the velocity.
However, as measurements are received while the target is
stationary, the structure model recovers and the speed errors
again resemble the ones for the reference vehicle tracking
framework.

There are no obvious measures for evaluating how well
the models describe the vehicle, since the object size is not
included in our model but is a given parameter in the vehicle
model. Nevertheless, to get an idea of how the structure model
behaves, we compare the longitudinal extension of the two
object models to the reference vehicle. The extension of the
structure is here defined as the largest distance between any
two reflectors, without taking into account the uncertainty
regarding which reflectors that exist. Figure 6 shows the
estimated front and rear positions of the vehicle side, using the
vehicle tracking model (top) and the structure model (middle).
The positions of the front and rear of the reference vehicle
are indicated by the dashed grey lines in both cases. The
bottom figure shows the expected number of reflection centres
on the structure, E{nξk

∣∣Yk}, and it is worth noting that the
structure in this implementation is limited to have at most
four reflectors. During t ∈ [2, 4]s, it is clearly illustrated how
the structure moves along the reference vehicle as it starts to
break which causes an increase in the absolute speed error.
An additional increase in ev , and also a longitudinal error,
occur after approximately 4.2 s as the structure adapts to some
clutter measurements ahead of the vehicle. This is shown by
the peak in the upper blue curve which clearly exceeds the
reference front, and is also seen in the expected number of
reflectors which increases at this time. The figures also show
how the structure drops reflectors at t ∈ [4.5, 5]s when it
no longer accurately describes the received measurements.
After that, it starts to recover and as the target gets closer
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to the host and generates more measurements, the number
of reflectors increases and the structure is covering almost
the whole side of the reference. At two times in t ∈ [6, 7]s
the structure again adapts to clutter in front of the vehicle,
which temporarily causes a longitudinal error. However, the
probabilities of existence of these new reflectors soon get low
and the reflectors are pruned.

VIII. CONCLUSION

In this paper we have presented a Bayesian filter framework
for tracking an extended object using radar measurements.
The object is modelled as a set of reflection centres on a line
structure. The position of the object and the reflection centres
are estimated recursively from data. This includes both esti-
mating the number of reflectors and their positions. Moreover,
the filter framework incorporates a radar sensor model that
treats the limited sensor resolution and describes unresolved
measurements from an arbitrary number of reflection centres.

The tracking framework has been evaluated using real radar
data from an automotive scenario, and for reference we used
the vehicle tracking framework in [3]. In contrast to our
proposed model, the object size is known in the reference
model, and conditioned on the state, the number of reflection
centres and their positions are deterministic. For most parts,
the evaluation shows similar results for the two models even
though our model must use the received radar data to learn
about the object. At a few occasions, it shows that our adaptive
model is more sensitive to clutter than the reference model.
That is when the structure adapts to clutter that is interpreted
as a new reflection centre that has become visible.

APPENDIX A

There are two parts to the reflector model in (9): the
deterministic positions of the reflectors in measurement space,
rk, and a stochastic model of received signal amplitudes, σk.
In this section we present these two parts separately, starting
with the reflector positions.

A. Reflector model

To formulate rik, we start by finding the position of the
reflector and the sensor in global Cartesian coordinates. The
ith reflection centre is positioned on the structure zk at an
offset lik from the rotation centre and, as a result, its global
position is given as[

xik
yik

]
=

[
xk
yk

]
+ lik

[
cos(ψk + θk)
sin(ψk + θk)

]
. (94)

In addition, the velocity of the reflection centre has two
components, one from the global velocity of the structure,
viv = vk in the ψk direction, and one from the rotation of the
structure, vi⊥ = vkckl

i
k in the π − (ψk + θk) direction.

The global position of the host platform is described by the
known host state,

zhk = [xhk , y
h
k , v

h
k , ψ

h
k , c

h
k ]T (95)

on which a sensor, m, is mounted at pms = [xms , y
m
s ]T with

an mounting angle of ψms . The global position of the sensor
can, hence, be written as[

xsk
ysk

]
=

[
xhk
yhk

]
+ R(ψegok )

[
xms
yms

]
. (96)

From (94) and (96), the relative azimuth angle between
sensor m and reflector centre i is found as

αi,s = arg

([
xik − xsk
yik − ysk

])
. (97)

The velocity component of the reflector in this direction (range
rate) is given as

ṙrk =
(
vk cos(ψk − αi,s) + v⊥ cos

(π
2

+ ψk + θk − αi,s
))
(98)

and for the host platform

ṙhk =
(
vhk cos(ψhk − αi,s) + vh⊥ cos

(π
2

+ arg(xs)− αi,s
))
(99)

where v⊥ = vhkc
h
k‖pms ‖ is the velocity component due to

rotation of the host platform.
The position of the ith reflector in each dimension of the

measurement space of sensor s can now be expressed as

rik =

 √(xik − xsk)2 + (yik − ysk)2

αi,s − ψhk − ψms
ṙrk − ṙhk

 . (100)

B. Signal amplitude

The expected signal power of a reflector is characterised by
two known functions, the angle dependent reciprocal antenna
gain pattern, gs

φ(·), and the range dependent signal attenuation,
gs

r (·). Using these models, the expected return amplitude of
reflector i is calculated as,

σik = gs
φ(rik)gs

r (r
i
k)σrcs, (101)

where σrcs is the expected radar cross section of a reflector
which is assumed to be known and constant. Furthermore,
it is assumed that the functions, gs

φ(·) and gs
r (·), are locally

constant. As a result, the probability of detecting reflector i,
determined by Pr

{
Aik > γA

}
, is assumed to be locally state

independent.
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