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Capacity Bounds for AF Dual-hop Relaying in
G Fading Channels

Caijun Zhong, Member, IEEE, Michail Matthaiou, Member, IEEE, George K. Karagiannidis, Senior
Member, IEEE, Aiping Huang, Member, IEEE, and Zhaoyang Zhang, Member, IEEE

Abstract— We investigate the ergodic capacity of amplify-and-
forward (AF) dual-hop relaying systems in composite Nakagami-
m/Inverse-Gaussian fading channels. This type of fading, which
is known in the literature as G fading, has recently attracted
increasing research interest thanks to its ability to better ap-
proximate the Nakagami-m/lognormal model compared to the
Nakagami-m/gamma model. We study both fixed and variable-
gain relaying systems, and present analytical upper and lower
bounds for the ergodic capacity of dual-hop relaying systems
with not necessarily identical hops; these bounds provide an
efficient means to evaluate the ergodic capacity of AF dual-
hop relaying systems over G fading channels. We also establish
sufficient conditions for the existence of the bounds depending on
the values of the fading parameters. In both cases, our simulation
results demonstrate that the proposed upper and lower bounds
remain relatively tight for different fading conditions.

Index Terms— Amplify-and-forward relaying, dual-hop trans-
mission, ergodic capacity, Nakagami-m/inverse-Gaussian fading

I. INTRODUCTION

Dual-hop relaying, where an intermediate relay node helps
forward the signal from the source node to the destination
node, is an efficient means to extend the coverage and improve
the throughput of communication systems. Among various
relaying protocols proposed in the literature, the amplify-
and-forward (AF) relaying scheme is of particular interest
both in academy and industry due to its low implementa-
tion cost [1]. In this case, relays only amplify the source
signal and forward it to the destination without performing
any decoding. Depending on the availability of instantaneous
channel state information (CSI) at the relay node, AF relaying
schemes generally fall into two categories: fixed-gain relaying
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(or blind relaying) [2] and variable-gain relaying (or CSI-
assisted relaying) [3]. The former configurations do not require
knowledge of the instantaneous CSI, but need to know the
average fading power of the previous hop, while variable-
gain relaying systems amplify the received signal using the
instantaneous CSI of the previous hop.

Understanding the ergodic capacity performance of AF
dual-hop relaying systems in various practical environments
has been an active area of research. The ergodic capacity of
AF dual-hop relaying systems in Rayleigh fading channels
was investigated in [4–7], while the cases of Nakagami-m
fading and Weibull fading channels were studied in [8, 9] and
[10], respectively. It is also worth mentioning the seminal
work of [11] which established a generic Moment Generating
Function-based framework for the performance analysis of
relaying systems. Finally, [12] proposed a general framework
for analyzing the ergodic capacity of variable-gain multi-hop
relaying systems, although the presented results either apply
for identically distributed fading distributions (e.g. Nakagami-
m) or rely on the classical moment-based approach of [11].

The common characteristic of [4]–[10] is that they consider
only small-scale fading and neglect large-scale fading (or shad-
owing). This can be attributed to the difficulty in averaging the
end-to-end Signal-to-Noise ratio (SNR) over the shadowing
distribution. In the analysis of composite fading channels,
the prevalent model is the Nakagami-m/lognormal model
which has been extensively used to approximate the fading
fluctuations in radar and RF communication systems [13].
Note that the Nakagami-m distribution has been shown to
yield good fit with empirical data in various propagation
scenarios [14, 15]. This can, for example, occur for multi-
path scattering with relatively large delay-time spreads or
when two strong paths of comparable power are dominating
the other multipath components. Yet, the main disadvantage
of the Nakagami-m/lognormal model is that the composite
probability density function (p.d.f.) cannot be expressed in
closed-form. Consequently, the most important performance
measures of interest, such as the ergodic capacity and symbol
error rate, cannot be analytically evaluated. For this reason,
some alternative models were recently proposed with the most
tractable being the Nakagami-m/gamma model, often referred
to as the generalized-K model [16–19]. The performance of
relaying systems in generalized-K fading channels has been
investigated in [12, 20–22] and the references therein.

On the other hand, it was pointed out in [23] that the
gamma distribution does not yield a good approximation of
the lognormal distribution with large variance. In addition, the
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accuracy of this approximation deteriorates significantly in the
tails of the distribution (i.e. low outage region). Motivated by
this limitation, the authors in [23] suggested to replace the
gamma model with the inverse-Gaussian (IG) model; it was
further demonstrated that the composite Rayleigh/IG model
gives better characterization of fading channels in compari-
son with the Rayleigh/gamma distribution. Later in [24], the
authors introduced the more general Nakagami-m/IG model
(hereafter referred to as the G distribution) and studied the
performance of such fading channels. Despite the importance
of this composite fading model, to the best of our knowledge,
very little is known about the performance of relaying systems
in such fading channels.

On this basis, in this paper, we study the ergodic capacity of
AF dual-hop relaying systems in composite G fading channels.
In particular, we provide new analytical upper and lower
capacity bounds for both fixed-gain and variable-gain AF
dual-hop relaying systems. The derived bounds involve only
standard mathematical functions, and therefore can be easily
and efficiently evaluated. More importantly, they apply to the
case where the first and second hop experience non-identically
distributed fading. Our simulation results indicate that these
bounds remain relatively tight across the entire SNR range
and under different fading conditions. Thus, they can provide
an efficient means to evaluate the capacity of AF dual-hop
relaying systems in composite G fading channels. It is also
shown that the ergodic capacity of AF dual-hop relaying
systems increases when the fading of either hop is less severe.

The remainder of the paper is organized as follows: In
Section II, the AF dual-hop relaying system model is presented
while Section III introduces some new and fundamental results
on the statistics of IG variates. In Section IV, we provide new
analytical upper and lower bounds on the ergodic capacity
of fixed-gain relaying systems while Section V elaborates on
the case of variable-gain relaying systems. Finally, Section VI
concludes the paper.

II. SYSTEM MODEL

Let us consider a dual-hop relaying system with one source,
relay and destination node as shown in Fig. 1.

S R D
h1 h2

Fig. 1. System model: S, R and D stand for source, relay and destination
nodes, respectively, while h1 and h2 denote the channel fading coefficients
for the source-relay and relay-destination links, respectively.

In this case, the end-to-end input-output relationship can be
succinctly expressed as [2, 3]

y = h2G(h1x + n1) + n2 (1)

where x denotes the source symbol with E{xx∗} = P1,
while (·)∗ and E{·} denote complex conjugate and expecta-
tion, respectively. The term h1 represents the random fading
coefficient of the source-relay link, while h2 is the random

fading coefficient of the relay-destination link. Also, G is the
power scaling factor which depends on the relay operation
mode, and will be defined explicitly in the corresponding
sections. In addition, n1 and n2 are the additive Gaussian
noises at the relay and destination nodes with power N1 and
N2, respectively.

We assume that |h1| and |h2| are independent, and follow
the G composite distribution, where |x| denotes the amplitude
of a complex number x. This implies that the small-scale
fading follows a Nakagami-m distribution, which is charac-
terized by the Nakagami-m parameter, while the large-scale
fading follows an IG distribution with parameters λi, θi. In
the following, we are particularly interested in the statistics of
the power of each hop, that is |hi|2, i = 1, 2. For the case
under consideration, this can be expressed as a product of two
independent random variables [24]

|hi|2 = uivi

where ui follows the gamma distribution with p.d.f.

fui
(x) =

mmi
i

Γ(mi)
xmi−1e−mix, x > 0, mi ≥ 0.5

while vi follows the inverse Gaussian distribution with param-
eters λi, and θi with p.d.f.

pvi
(x) =

√
λi

2πx3
exp

(
−λi(x− θi)2

2θ2
i x

)
, x, θi, λi ≥ 0.

Following the methodology of [24], it can be shown that the
p.d.f. of |hi|2 reads as

f|hi|2(x) =
αix

mi−1

(
√

x + γi)mi+
1
2
Kmi+

1
2
(βi

√
x + γi) (2)

where Kν(·) denotes the ν-th order modified Bessel func-
tion of the second kind [25, Eq. (8.407.1)], while αi ,
m

mi
i

Γ(mi)

(
λi

θ2
i βi

)mi+
1
2

√
2λi

π exp
(

λi

θi

)
, βi ,

√
2λimi

θ2
i

and γi ,
λi

2mi
.

From (1), it is easy to see that the end-to-end SNR equals
to

ρ =
G2|h1|2|h2|2P1

G2|h2|2N1 + N2
.

In the following analysis, the hop SNRs defined as ρ1 ,
P1|h1|2

N1
, ρ2 , P2|h2|2

N2
will be extensively used. Unfortunately,

their statistical characterization is not always straightforward,
especially when shadowing is taken into account. In this light,
we henceforth present some novel results on the statistical
properties of ρi for the case of composite G fading.

III. STATISTICAL PROPERTIES OF FUNCTIONS INVOLVING
THE HOP SNRS ρi

In this section, we provide a set of new statistical results
for functions involving ρi , Pi

Ni
|hi|2, i = 1, 2. Note that the

following results will be handy when studying the ergodic
capacity of AF dual-hop systems. Having this in mind, we
start with the first positive moment of ρi.
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Lemma 1: The first positive moment of ρi is given by

E{ρi} =
Pi

Ni
θi. (3)

Proof: Due to the independence of ui and vi, we have
that

E{ρi} =
Pi

Ni
E{ui}E{vi}.

Utilizing the fact that E{vi} = θi [26, Eq. (2.6)] yields the
desired result.

Lemma 2: The first negative moment of ρi is given by

E{ρ−1
i } =

Ni

Pi

mi

mi − 1

(
1
λi

+
1
θi

)
. (4)

Proof: See Appendix I-A.
Lemma 3: The expectation of the logarithm of ρi is given

by

E{ln ρi} = ln
Piθi

Nimi
+ ψ(mi) + exp

(
2λi

θi

)
Ei

(
−2λi

θi

)

(5)

where ψ(x) is the digamma function [25, Eq. (8.360.1)] and
Ei(x) =

∫ x

−∞
et

t dt, x < 0 is the exponential integral function
[25, Eq. (8.211.1)].

Proof: See Appendix I-B.
Lemma 4: The first moment of ρi

a+ρi
can be expressed as

E

{
ρi

a + ρi

}
= αi ((−b)miRmi(b, γi − b, βi)

+
mi∑

k=1

(
mi

k

)
(−b)mi−kImi,k(b, 1, γi − b, βi)

)
(6)

where Rn(u, v, w) is defined as

Rn(u, v, w) ,
∫ ∞

1

Kn+ 1
2
(w
√

ux + v)

x(
√

ux + v)n+ 1
2

dx (7)

while Ip,q(u, v, w, z) reads as

Ip,q(u, v, w, z)

, (q − 1)!
q∑

s=1

2suq−s

(vz)s(q − s)!

Kp−s+ 1
2
(z
√

uv + w)

(
√

uv + w)p−s+ 1
2

. (8)

Proof: See Appendix I-C.

IV. FIXED-GAIN AF DUAL-HOP SYSTEMS

In this section, we elaborate on the ergodic capacity of fixed-
gain AF dual-hop relaying systems. As was previously men-
tioned, fixed-gain relying schemes do not require instantaneous
CSI at the relay node and as such they are more attractive from
a practical point of view. For fixed-gain relaying systems, the
relaying gain is given by [2]

Gf =

√
P2

E{|h1|2}P1 + N1

where P2 is the power of the transmitted signal at the output
of the relay. Hence, the end-to-end SNR for fixed-gain AF
dual-hop relaying systems is equal to

ρf =
ρ1ρ2

c + ρ2

where c , P2
G2

f N1
. With this definition in hand, we can obtain

the ergodic capacity of the system under consideration as
follows

Cf =
1
2
E

{
log2

(
1 +

ρ1ρ2

c + ρ2

)}
(9)

where the factor 1/2 accounts for the fact that the entire
communication takes place in two time slots. Unfortunately,
an exact evaluation of the ergodic capacity in (9) is in general
intractable, due to the presence of the nonlinear log function.
Motivated by this, we hereafter seek to deduce upper and lower
bounds on Cf . We start with the following Jensen’s upper
bound:

Theorem 1: The ergodic capacity of fixed-gain AF dual-hop
relaying systems in G fading channels is upper bounded by

Cu1
f =

1
2

log2

(
1 +

P1θ1α2(−d2)m2

N1
(Rm2(d2, γ2 − d2, β2)

+
m2∑

k=1

(
m2

k

)
(−d2)−kIm2,k(d2, 1, γ2 − d2, β2)

))

(10)

where d2 , cN2
P2

, Rn(u, v, w) is defined in (7) while
Ip,q(u, v, w, z) in (8).

Proof: Exploiting the concavity of the log function and
applying Jensen’s inequality, the ergodic capacity of fixed-gain
AF dual-hop systems can be upper bounded by

Cu1
f =

1
2

log2

(
1 + E {ρ1} E

{
ρ2

c + ρ2

})
.

The proof concludes after invoking Lemma 1, Lemma 4 and
factorization.

Corollary 1: When m2 = 1, the capacity upper bound (10)
reduces to

Cu1
f =

1
2

log2

(
1− P1θ1α2

N1

(√
2πe−β2

√
γ2

β
3/2
2

√
γ2

− d2A1

))

(11)

where A1 , R1(d2, γ2 − d2, β2).
Proof: When m2 = 1, we notice that I1,1(u, v, w, z) =

2K1/2(z
√

uv+w)

vz
√

uv+w
1/2 . The desired result can then be obtained after

some mathematical simplifications.
The main limitation with the Jensen’s upper bound Cu1

f

is that it is not sufficiently tight in the high SNR regime.
Motivated by this, we propose the following upper bound
which is asymptotically exact in the high SNR regime.

Theorem 2: The ergodic capacity of fixed-gain AF dual-hop
systems in G fading channels is upper bounded by Cu2

f shown
in (12) at the bottom of next page.

Proof: We know from [21] that the ergodic capacity of
fixed-gain AF dual-hop systems is upper bounded by

Cu2
f =

1
2

log2

(
1 + cE

{
ρ1
−1

}
E

{
ρ2
−1

}
+ E

{
ρ1
−1

})

+
1
2
E {log2 ρ1 + log2 ρ2 − log2(c + ρ2)} . (13)

To this end, the desired result can be obtained by combining
Lemma 2, Lemma 3 and a result from [24, Eq. (21)].
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Note that taking into account the condition for the existence
of the first negative moment in (13) (see Lemma 2), the upper
bound Cu2

f exists only for mi > 1. This implies, that the
second upper bound does not exist if small-scale fading in
one of the hops is Rayleigh distributed. Now, we turn our
attention to the ergodic capacity lower bound, and present the
following new result:

Theorem 3: The ergodic capacity of fixed-gain AF dual-hop
systems in G fading channels is lower bounded by Cl

f shown
in (14) at the bottom of the page.

Proof: From [21], the ergodic capacity of fixed-gain dual-
hop relaying systems is lower bounded by

Cl
f =

1
2

log2(1 + exp(E{ln ρ1}+ E{ln ρ2} − E{ln(c + ρ2)})).
As a next step, we invoke Lemma 3 and a result from [24,
Eq. (21)], and the desired result can be obtained after some
basic algebraic manipulations.

We note that all bounds require m2 to be a positive integer
while for Cu2

f , i.e., m2 = 2, 3, . . .. When both the first and
second hop channels are subjected to Rayleigh/IG fading, we
have the following simplified lower bound:

Corollary 2: When m1 = m2 = 1, the ergodic capacity
lower bound in (14) reduces to Cl

f shown in (15) at the top
of next page, where γ0 = 0.57721 is the Euler-Mascheroni
constant.

Proof: When mi = 1, we have

E{log2(c + ρ2)} = ln c +
2α2

β2
R0 (b2, γ2 − b2, β2) (16)

and the desired result follows immediately.
It is worth pointing out that the ergodic capacity upper and

lower bounds presented in the above theorems only involve
standard functions, and hence, can be very fast and efficiently
evaluated in popular software packages such as Matlab or

Mathematica. More importantly, Cu2
f and Cl

f become exact
at high SNRs, as shown in the following corollary:

Corollary 3: At high SNRs, the upper bound Cu2
f and lower

bound Cl
f become exact as

Cu2
f = Cl

f = Ce
f , (17)

where Ce
f is shown in (18) at the top of next page.

To illustrate the tightness of the proposed ergodic capacity
upper and lower bounds, we compare the analytical results
against Monte-Carlo simulation results. For all simulations, the
parameters of the IG distributions are obtained by matching
the first and second moment with those of the lognormal
distributions as per [24]

λ =
expµ

2 sinh(σ2/2)
, θ = exp

(
µ +

σ2

2

)

where sinh(x) is the sine hyperbolic function, while µ and
σ are the mean and the standard deviation of a lognormal
distribution.

Figure 2 shows the impact of small-scale fading on the
ergodic capacity of fixed-gain AF dual-hop systems. In the
simulations, we set µi = 0.115 and σi = 0.115, i = 1, 2,
which corresponds to an infrequent light shadowing scenario
[27]. As can be readily seen, the second upper bound Cu2

f

is much tighter than the first upper bound Cu1
f in the high

SNR regime; in fact, Cu2
f almost overlaps with Cl

f when
P1/N1 ≥ 20dB, thereby demonstrating that Cu2

f and Cl
f

are asymptotically exact at high SNRs. We also observe the
intuitive result that the ergodic capacity of the system improves
when the fading severity level is reduced, i.e., when mi

increases from 2 to 20. Moreover, the tightness of all three
bounds improves when mi becomes larger. To further examine
the impact of mi, in Fig. 3, we set P1

N1
= 10dB, P2

N2
= 2 P1

N1
,

µ1 = µ2 = 0.115, σ1 = σ2 = 0.115. As can be seen, when
mi increases, the ergodic capacity of the system improves;

Cu2
f =

1
2

log2

(
1 +

N1m1

P1(m1 − 1)

(
1
λ1

+
1
θ1

)(
cN2m2

P2(m2 − 1)

(
1
λ2

+
1
θ2

)
+ 1

))

+
log2 e

2

(
ln

P1P2θ1θ2

N1N2m1m2
+ ψ(m1) + ψ(m2) + exp

(
2λ1

θ1

)
Ei

(
−2λ1

θ1

)
+ exp

(
2λ2

θ2

)
Ei

(
−2λ2

θ2

))

− log2 c

2
− log2 e

2

m2∑

k=1

α2Γ(m2)2k

βk
2 (m2 − k)!

(−d2)
m2−k

Rm2−k (d2, γ2 − d2, β2)

− log2 e

2

m2∑

k=1

α2Γ(m2)2k

βk
2 (m2 − k)!

m2−k∑

j=1

(
m2 − k

j

)
(−d2)

m2−k−j
Im2−k,j (d2, 1, γ2 − d2, β2) . (12)

Cl
f =

1
2

log2

(
1 +

P1P2θ1θ2

N1N2m1m2
exp

(
ψ(m1) + ψ(m2) + exp

(
2λ1

θ1

)
Ei

(
−2λ1

θ1

))

× exp

(
exp

(
2λ2

θ2

)
Ei

(
−2λ2

θ2

)
− ln c−

m2∑

k=1

α2Γ(m2)2k

βk
2 (m2 − k)!

(−d2)
m2−k

Rm2−k (d2, γ2 − d2, β2)

−
m2∑

k=1

α2Γ(m2)2k

βk
2 (m2 − k)!

m2−k∑

j=1

(
m2 − k

j

)
(−d2)

m2−k−j
Im2−k,j (d2, 1, γ2 − d2, β2)





 . (14)
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Cl
f =

1
2

log2

(
1 +

P1P2

N1N2c
exp

(
−2γ0 + exp

(
2λ1

θ1

)
Ei

(
−2λ1

θ1

)
+ exp

(
2λ2

θ2

)
Ei

(
−2λ2

θ2

))

× exp
(
−2α2

β2
R0 (d2, γ2 − d2, β2)

))
. (15)

Ce
f =

log2 e

2

(
ln

P1P2

N1N2m1m2
+ ψ(m1) + ψ(m2) + exp

(
2λ1

θ1

)
Ei

(
−2λ1

θ1

)
+

)
− log2 c

2

+
log2 e

2

(
exp

(
2λ2

θ2

)
Ei

(
−2λ2

θ2

)
−

m2∑

k=1

α2Γ(m2)2k

βk
2 (m2 − k)!

(−d2)
m2−k

Rm2−k (d2, γ2 − d2, β2)

)

− log2 e

2

m2∑

k=1

α2Γ(m2)2k

βk
2 (m2 − k)!

m2−k∑

j=1

(
m2 − k

j

)
(−d2)

m2−k−j
Im2−k,j (d2, 1, γ2 − d2, β2) . (18)

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

P
1
/N

1
 (dB)

E
rg

od
ic

 C
ap

ac
ity

 (
bp

s/
H

z)

 

 
Monte Carlo simulation

Analytical upper bound C
f
u1

Analytical upper bound C
f
u2

Analytical lower bound C
f
l

20 21 22
2.8

3

3.2

3.4

 

 

m
i
=2

m
i
=20

Fig. 2. Ergodic capacity of fixed-gain AF dual-hop systems in composite G
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however, this improvement gradually diminishes when mi

becomes sufficiently large, i.e., mi > 10.
Similarly, Fig. 4 investigates the impact of shadowing on

the ergodic capacity of fixed-gain AF dual-hop systems when
mi = 20. As we can observe, when the shadowing effect
becomes more frequent and heavy, the ergodic capacity of the
system is reduced.

V. VARIABLE-GAIN AF DUAL-HOP SYSTEMS

In this section, we study the ergodic capacity of variable-
gain AF dual-hop relaying systems. The variable-gain relaying
scheme exploits the instantaneous CSI at the relay node, such
that corresponding relay amplification factor is given by [3]

Gv =

√
P2

|h1|2P1 + N1
.
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Hence, the end-to-end SNR for variable-gain AF dual-hop
relaying systems equals

ρv =
ρ1ρ2

ρ1 + ρ2 + 1
. (19)

From (19), the ergodic capacity of the system can be expressed
as

Cv =
1
2
E

{
log2

(
1 +

ρ1ρ2

ρ1 + ρ2 + 1

)}
.

Similar to the fixed-gain relaying case, an exact expression for
Cv is in general very difficult to derive. Hence, we focus on
deriving closed-form upper and lower bounds on Cv.

Theorem 4: The ergodic capacity of variable-gain AF dual-
hop relaying systems in G fading channels is upper bounded by
Cu

v shown in (20) at the bottom of next page, where fi , Pi

Ni
,

i = 1, 2.
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Proof: From [7], the ergodic capacity of variable-gain AF
dual-hop systems can be alternatively expressed as

Cv =
1
2
E {log2(1 + ρ1)}+

1
2
E {log2(1 + ρ2)}

− 1
2
E {log2(1 + ρ1 + ρ2)} . (21)

Since the first two terms can be expressed in closed-form
expressions, the key task is to bound the third term. It is easy
to show that f(x, y) = log2(1+ ex + ey) is a convex function
with respect to x and y, hence, we have

E {log2(1 + ρ1 + ρ2)} ≥ log2(1 + eE{ln ρ1} + eE{ln ρ2}).

The desired result is finally obtained by using Lemma 3.
When both the first and second hop channels are subjected

to the Rayleigh/IG fading, we have the following simple
capacity upper bound:

Corollary 4: When m1 = m2 = 1, the ergodic capacity

upper bound in (20) reduces to

Cu
v =

α1 log2 e

β1
R0

(
1
f1

, γ1 − 1
f1

, β1

)

+
α2 log2 e

β2
R0

(
1
f2

, γ2 − 1
f2

, β2

)

− 1
2

log2

(
1 + f1 exp

(
−γ0 + exp

(
2λ1

θ1

)
Ei

(
−2λ1

θ1

))

+f2 exp
(
−γ0 + exp

(
2λ2

θ2

)
Ei

(
−2λ2

θ2

)))
. (22)

Proof: The result follows immediately by invoking (16).
Now, we turn our attention to the ergodic capacity lower

bound, and we have the following key result.
Theorem 5: The ergodic capacity of variable-gain AF dual-

hop relaying systems in G fading channels is lower bounded
by Cl

v shown in(23) at the top of next page.
Proof: Applying Jensen’s inequality on the third term of

(21), we have

E {log2(1 + ρ1 + ρ2)} ≤ log2(1 + E {ρ1}+ E {ρ2}).
Hence, the desired result can be obtained by invoking Lemma
1.

When both the first and second hop channels are subjected
to Rayleigh/IG fading, we have the following simple capacity
lower bound:

Corollary 5: When m1 = m2 = 1, the ergodic capacity
lower bound in (23) reduces to

Cl
v =

α1 log2 e

β1
R0

(
1
f1

, γ1 − 1
f1

, β1

)
+ (24)

α2 log2 e

β2
R0

(
1
f2

, γ2 − 1
f2

, β2

)
− 1

2
log2 (1 + f1θ1 + f2θ2) .

Proof: The result follows immediately by invoking (16).
We note that both the upper bound in (20) and the lower

bound in (23) require that both m1 and m2 are positive
integers. We can now examine the tightness of the above
upper and lower capacity bounds. Figure 5 shows the impact
of small-scale fading on the tightness of the capacity bounds
when µi = 0.115, σ1 = 0.115, i = 1, 2. Generally speaking,

Cu
v =

log2 e

2

m1∑

k=1

α1Γ(m1)2k

βk
1 (m1 − k)!

(
− 1

f1

)m1−k

Rm1−k

(
1
f1

, γ1 − 1
f1

, β1

)

+
log2 e

2

m2∑

k=1

α2Γ(m2)2k

βk
2 (m2 − k)!

(
− 1

f2

)m2−k

Rm2−k

(
1
f2

, γ2 − 1
f2

, β2

)

+
log2 e

2

m1∑

k=1

α1Γ(m1)2k

βk
1 (m1 − k)!

m1−k∑

j=1

(
m1 − k

j

)(
− 1

f1

)m1−k−j

Im1−k,j

(
1
f1

, 1, γ1 − 1
f1

, β1

)

+
log2 e

2

m2∑

k=1

α2Γ(m2)2k

βk
2 (m2 − k)!

m2−k∑

j=1

(
m2 − k

j

)(
− 1

f2

)m2−k−j

Im2−k,j

(
1
f2

, 1, γ2 − 1
f2

, β2

)

− 1
2

log2

(
1 +

f1

m1
exp

(
ψ(m1) + exp

(
2λ1

θ1

)
Ei

(
−2λ1

θ1

))

+
f2

m2
exp

(
ψ(m2) + exp

(
2λ2

θ2

)
Ei

(
−2λ2

θ2

)))
. (20)
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Cl
v =

log2 e

2

m1∑

k=1

α1Γ(m1)2k

βk
1 (m1 − k)!

(
− 1

f1

)m1−k

Rm1−k

(
1
f1

, γ1 − 1
f1

, β1

)

+
log2 e

2

m2∑

k=1

α2Γ(m2)2k

βk
2 (m2 − k)!

(
− 1

f2

)m2−k

Rm2−k

(
1
f2

, γ2 − 1
f2

, β2

)

+
log2 e

2

m1∑

k=1

α1Γ(m1)2k

βk
1 (m1 − k)!

m1−k∑

j=1

(
m1 − k

j

)(
− 1

f1

)m1−k−j

Im1−k,j

(
1
f1

, 1, γ1 − 1
f1

, β1

)

+
log2 e

2

m2∑

k=1

α2Γ(m2)2k

βk
2 (m2 − k)!

m2−k∑

j=1

(
m2 − k

j

)(
− 1

f2

)m2−k−j

Im2−k,j

(
1
f2

, 1, γ2 − 1
f2

, β2

)

− 1
2

log2 (1 + f1θ1 + f2θ2) . (23)

the effect of mi on the capacity becomes less pronounced
as mi gets larger (i.e. the relatively difference between the
capacity curves gets smaller).

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

P
1
/N

1
 (dB)

E
rg

od
ic

 C
ap

ac
ity

 (
bp

s/
H

z)

 

 
Monte Carlo simulation
Analytical upper bound C

u

Analytical lower bound C
l

m
1
=m

2
=1

m
1
=m

2
=10

Fig. 5. Ergodic capacity of variable-gain AF dual-hop systems in composite
G fading channels: Simulation results vs. Analytical upper and lower bounds,
P1
N1

= P2
N2

.

In addition, Fig. 6 illustrates how the large scale fading
affects the performance of the capacity bounds when mi = 10,
i = 1, 2. For all cases under consideration, it can be readily
observed that the capacity bounds perform much better for the
less severe fading scenarios.

Finally, Fig. 7 investigates the impact of asymmetric fading
channels on the system capacity. The curves indicate that the
capacity bounds become tighter when the fading level of either
hops improves.

VI. CONCLUSION

The capacity characterization of AF dual-hop relaying sys-
tems has not so far properly addressed the effects of shad-
owing. On this basis, we have considered the generic G dis-
tribution which is the combination of small-scale Nakagami-
m fading and large-scale IG fading. We note that the G
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fading model can more effectively approximate the Nakagami-
m/lognormal model than the widely used Nakagami-m/gamma
model. On the other hand, the mathematical analysis becomes
more challenging.

In this paper, we investigated the ergodic capacity of
AF dual-hop relaying systems in G fading channels. More
specifically, some new analytical upper and lower bounds
were derived for the ergodic capacity of both fixed-gain and
variable-gain AF dual-hop relaying systems. It was demon-
strated that the performance of the capacity upper and lower
bounds remain good across the entire SNR range and under
different fading conditions; therefore they can be used to
efficiently assess the ergodic capacity performance of AF
dual-hop systems over composite channels. Moreover, our
numerical results suggested that the ergodic capacity of the
system is degraded when the small-scale fading becomes more
severe or when the shadowing becomes more frequent and
heavy.

APPENDIX I
MAIN PROOFS

A. Proof of Lemma 2

Due to the independence of ui and vi, the first negative
moment of ρi simplifies to

E{ρ−1
i } =

Ni

Pi
E{u−1

i }E{v−1
i }.

The first negative moment of ui can be computed as

E{u−1
i } =

mmi
i

Γ(mi)

∫ ∞

0

xmi−2e−mixdx =
mi

mi − 1

where we have used [25, Eq. (3.381.5)] to solve the cor-
responding integral. It is noteworthy that E{u−1

i } requires
mi > 1 to exist.1 Now, the first negative moment of vi can be
computed as

E{v−1
i } =

√
λi

2π

∫ ∞

0

x−
5
2 exp

(
−λi(x− θi)2

2θ2
i x

)
dx

=

√
λi

2π
exp

(
λi

θi

) ∫ ∞

0

x−
5
2 exp

(
−λix

2θ2
i

− λi

2x

)
dx

(25)

=

√
λi

2π
exp

(
λi

θi

)
2θ
− 3

2
i K 3

2

(
λi

θi

)
(26)

=
1
λi

+
1
θi

(27)

where from (25) to (26) we have used [25, Eq. (3.471.12)]
while from (26) to (27) a property of Bessel functions of order
equal to an integer plus one-half [25, Eq. (8.468)].

B. Proof of Lemma 3

The expectation of the logarithm of ρi can be trivially
expressed as

E{ln ρi} = ln
Pi

Ni
+ E{lnui}+ E{ln vi}.

1For a detailed discussion of this condition, the interested readers are
referred to [21].

With the help of the integral identity [25, Eq. (4.352.1)], the
expectation of lnui becomes

E{lnui} = ψ(mi)− lnmi.

To compute the expectation of ln vi, we first work out the
general moment of vi as

E{vn
i } =

√
2λi

π
exp

(
λi

θi

)
θ

n− 1
2

i Kn− 1
2

(
λi

θi

)
.

To this end, the expectation of ln vi can be derived as

E{ln vi} =
dE{vn

i }
dn

∣∣∣∣
n=0

where we have used the following derivative property

dxn

dn
= xn lnx.

Hence, we get

E{ln vi} =
√

2λi

πθi
ln θi exp

(
λi

θi

)
K 1

2

(
λi

θi

)

+
√

2λi

πθi
exp

(
λi

θi

)
K
{1,0}
n− 1

2

(
λi

θi

)∣∣∣∣
n=0

where K
{1,0}
ν (x) denotes the derivative of the Bessel-K func-

tion with respect to the order ν. Using [28], K
{1,0}
n− 1

2

(
λi

θi

)∣∣∣
n=0

can be explicitly expressed as

K
{1,0}
n− 1

2

(
λi

θi

)∣∣∣∣
n=0

=

π

2

(
I 1

2

(
λi

θi

)
+ I− 1

2

(
λi

θi

))(
Chi

(
2λi

θi

)
− Shi

(
2λi

θi

))
−

θi

λi
K 1

2

(
λi

θi

)
+

√
πθi

λi

(
I 1

2

(
λi

θi

)
+ I− 1

2

(
λi

θi

))
K 1

2

(
2λi

θi

)

where Iν(·) denoting the ν-th order modified Bessel function
of the first kind [25, Eq. (8.406.1)], while Chi(x) and Shi(x)
are the hyperbolic cosine integral and hyperbolic sine integral,
respectively. After some algebraic manipulations, we arrive at

E{ln vi} =
(

ln θi − θi

λi

)
+

√
πλi

2θi
exp

(
λi

θi

)(
I 1

2

(
λi

θi

)
+ I− 1

2

(
λi

θi

))

×
(

Chi

(
2λi

θi

)
− Shi

(
2λi

θi

)
+

θi

λi
exp

(
−2λi

θi

))
. (28)

We now invoke the following properties of Bessel functions
[25, Eq. (8.467)]

I 1
2
(z) =

√
2
πz

sinh(z)

I− 1
2
(z) =

√
2
πz

cosh(z)

and combine them with the relationship sinh(z) + cosh(z) =
exp(z) to reformulate (28) as

E{ln vi} = ln θi + exp
(

2λi

θi

)(
Chi

(
2λi

θi

)
− Shi

(
2λi

θi

))
.
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We now recall the integral definitions of Chi(x) and Shi(x)
[25, Eq. (8.221)]

Chi(x) = γ0 + lnx +
∫ x

0

cosh(t)− 1
t

dt (29)

Shi(x) =
∫ x

0

sinh(t)
t

dt. (30)

We can now combine (29)–(30) with the trigonometric rela-
tionship cosh(z)− sinh(z) = exp(−z), to get

E{ln vi}

= ln θi + exp
(

2λi

θi

) (
γ0 + ln

(
2λi

θi

)
+

∫ 2λi
θi

0

e−t − 1
t

dt

)

= ln θi + exp
(

2λi

θi

)
Ei

(
−2λi

θi

)
.

Note that for the evaluation of the integral we have used the
integral identity [25, Eq. (8.212.1)]. This concludes the proof.

C. Proof of Lemma 4

With the p.d.f. given in (2), the considered first moment can
be re-expressed as

E

{
ρi

a + ρi

}
= E

{
|hi|2

aNi

Pi
+ |hi|2

}

= αi

∫ ∞

0

xmi

(x + b)(
√

x + γi)mi+
1
2
Kmi+

1
2
(βi

√
x + γi)dx

where b , aNi

Pi
. We now make a change of variables, t = x+b,

and apply the binomial theorem, to get

E

{
ρi

a + ρi

}
= αi

mi∑

k=0

(
mi

k

)
(−b)mi−k

×
∫ ∞

b

tk−1

(
√

t− b + γi)mi+
1
2
Kmi+

1
2
(βi

√
t− b + γi)dt. (31)

For the first term k = 0, we get

term1 = αi(−b)mi

∫ ∞

1

Kmi+
1
2
(βi

√
bx− b + γi)

x(
√

bx− b + γi)mi+
1
2

dx

= αi(−b)miRmi
(b, γi − b, βi). (32)

Note that an explicit expression for Rn(u, v, w) is provided
in [24, Appendix C]. With the help of [24, Appendix A], the
rest of the terms k ≥ 1 can be computed as

term2 = αi

mi∑

k=1

(
mi

k

)
(−b)mi−kImi,k(b, 1, γi − b, βi). (33)

Substituting (32) and (33) into (31) yields the desired result
after appropriate factorization.
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