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Abstract—We present performance of the first ALMA Band 5  to the ALMA project for integration into the ALMA frontend
production cartridge, covering frequencies from 163 GHz t0211  receiver. Similar to other ALMA bands, the Band 5 receiver is
GHz. ALMA Band 5 is a dual polarization, sideband separation also divided into two separate units, a warm cartridge abigem

(2SB) receiver based on all Niobium (Nb) Superconductor- .
Insulator-Superconductor (SIS) tunnel junction mixers, providing (WCA) and a cold cartridge assembly (CCA).

16 GHz of instantaneous RF bandwidth for astronomy observa- ~ The Group for Advanced Receiver Development at
tions. The 2SB mixer for each polarization employs a quadratre  Chalmers University with Onsala Space Observatory is re-

configuration. The sideband separation occurs at the outpubf  gponsible for the design and development of the cold carid
the IF hybrid that has integrated bias-T for biasing the mixers, assembly (CCA) and the STFC Rutherford Appleton Labora-

and is produced using superconducting thin film technology. . . .
Experimental verification of the Band 5 cold cartridge per- tory, UK, is responsible for the design and development of

formed together with warm cartridge assembly, confirms that the Band 5 warm cartridge assembly (WCA) and the local
the system noise temperature is below 45 K over most of oscillator (LO) chain.
the RF band, which is less than five photon noise (5 hflk).  The CCA is a unit which is cryogenically cooled using
This is to our knowledge, the best results reported at these , yhree stage cryo-cooler of the ALMA front end cryostat.
frequencies. The measurement of the sideband rejection inchtes . .
that the sideband rejection better than 10 dB over 90% of the Different components of the cartridge are thermally comet:c
observational band. to different temperature stages of the cooler. The coldidge
Index Terms—Terahertz System, Astronomy instruments, assembly hosts, re(_:e'ver OPt'CS’_ O”hom‘?‘?‘e tran_sduce_ﬂ'(}OM
ALMA, Superconducting devices, Milimeter wave mixers, SIS mixers, IF hybrid, IF low noise amplifiers, mixer bias and
Superconductor-insulator-superconductor mixers, Thin fim cir- ESD protection circuitry and x6 multiplier which is deliest
cuits. by RAL.
The warm cartridge assembly is a unit which resides outside
. INTRODUCTION the cryo-cooler and provides a blind mate interface to the co

HE Atacama Large Millimeter/sub-millimeter Arraycartridge assembly. The warm cartridge assembly hosts the

(ALMA) is a radio interferometer under construction by°¢@! oscillator source operating from 14 GHz to 17 GHz, a
an international consortium consisting of European céemtr X2 Multiplier, phase lock loop for LO after the x2 multiplier
(ESO), USA, Canada, Chile, Taiwan and Japan. ALMA iStage, warm IF amplifiers and bias and control circuitry.
located at 5000 meters above sea level in the Atacama Desert
in Chile, where the earth’s atmosphere provide the most II. ALMA B AND 5 cOLD CARTRIDGE

favorable conditions for radio astronomy observationias¢ L o .
frequencies. ALMA will cover the frequencies from 31 GHz The ALMA Band 5 receiver is a dual polarization, sideband

. - eparating, heterodyne receiver, covering frequenaes 163
to 950 GHz spiit into ten frequency bands. With its moréﬁz to 2%1 GHz w)i/th 4-8 GHz down cognverqced intermediate
than 60 antennas of 12 m diameter and a reconfigura?r '

e . .
baseline ranging from 150 m to 18 Km, ALMA will offer equency (IF) for each channel. Band 5 receiver employs-sid
unprecedented sensitivity and resolution.

band separation quadrature configuration (2SB) based on all
The work presented here concerns the design and devel?fl)?-(zlrirﬂl(;\l b%rlseuztzrc;)gctiité%tocrj}lq;ﬂa;?[hiugi;clong;‘ fg):?ions
ment of the ALMA Band 5 receiver. ALMA Band 5 is fundedi realized. using a Fi/)vave uide orthomodegtransgucer [2]. For
by the European Commission’s sixth Framework Prograr% using 9 . . ; :
. . , each polarization branch, the receiver will provide 8 GHz
(FP6), an infrastructure enhancement project. In this &am

. : . . Instantaneous RF band for observations. Among the other
work program, the project will supply 6 receiver cartridge . )
prog prol PRl g ?requency bands of the ALMA project, Band 5 is the lowest

Manuscript received on August 01, 2011. This work was sugpoby frequency band that uses all cold optics. Consequently, the
EC Framework Program 6 (FP6), under infrastructure enfmene contract physical dimensions for all the optics components for Band
515906 .

Bhushan Billade, Olle Nystrom, Denis Meledin, Erik Sundigor Lap- 5 are largest compar_ed_to all _Ot_her ALMA bands. The optics
kin, Mathias Fredrixon, Vincent Desmaris, Hawal Rashid,ghizs Strand- components packed inside a limited spac@ @70 mm, leave
berg, Sven-Erik Ferm, Alexey Pavolotsky and Victor Beltskre with the very little room for the other receiver components.
Group of Advanced Receiver DevelopméB®ARD) at Chalmers University . . . .
of Technology, Gothenburg, Sweden. (phone: +46 31 772 185hail: Fig. 1 shows a CAD drawing of the cold cartridge, with the

bhushan.billade@chalmers)se fiberglass supports removed for better visibility. It cansken
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integrate the DC bias circuit for the SIS mixers at the 4 K
stage [7]. Therefore, in our design, as shown in Fig. 1, the DC
biasing to the mixer is done using a bias circuitry placedat t
15 K plate and integrating a bias-T with the IF hybrid; the DC
Magnatic Gol orETEETES biasing is thus achieved through the output SMA connector of
HORN the mixers. The hybrid is followed by a 4-8 GHz isolator and

MIRROR Il

a cryogenic HEMT low noise amplifier.
Part of the local oscillator chain resides inside the cold
—»

cartridge assembly and is placed on the 300 K plate of the
cartridge. The LO chain placed at 300 K stage includes a
x3 active multiplier from QuinStar, followed by an amplifier
and isolator both produced by RPG GmbH and a x2 doubler
developed by RAL [8], [9]. The LO signal is then guided from

Iﬁ

L.L ‘_. the 300 K stage to 4 K stage to the mixers using overmoded
1 = o ‘ (WR10) waveguide. In order to reduce the thermal coupling
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between the different temperature stages, we use stasibsss
waveguide with heat sinks at all the temperature stages.

IIl. BAND 5 COLD CARTRIDGE KEY COMPONENTS
A. Mixer assembly

-WR5L° The 2SB mixer employs a modular design approach to
h G
!‘ T facilitate characterization of each component separafaly 2

shows an assembly comprising of a corrugated horn, or-
thomode transducer (OMT) and the mixer assembly. The
90° waveguide twist after the OMT is used so that both
polarizations have the same orientation.

1 LO SOURCE

LO SOURCE —;r

POL 0 :r‘:h
-- )
o <
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Fig. 1. A CAD drawing of the entire cold cartridge assembl{C&J, showing

different temperature stages and arrangement of recetv@panents inside Gorated Horn% i
the cartridge envelop, the fiberglass supports separaiffggetht temperature g

stages are removed for visibility of components inside.

=

WG 90° twist

from the figure that the mirrors along with the optics support
occupy much of the space on the 4 K stage. The desigl
parameters of Band 5 mirrors and corrugated horn are base
on the design proposed by M. Carter et al., [3] and has bee
verified using physical optics simulation by M. Whale et al.,
[4]. The optics dimensions put strong constraints on thessiz
of all the receiver components and demand a very compac
design. A mixer block design with waveguide back pieceff
layout [1], [5], [6] allows very compact design of the mixer
block and also the IF output pointing in desirable direction
Furthermore, to avoid extra cables, all the componentseén th!
chain are directly attached to each other with SMA connector
Keeping compactness of all the components in mind afj- 2, A picture of the cartridge showing, the hom, OMT, 28iers and

e 90” waveguide twist. Coils, mirrors and optical support stes are
in order to take advantage of cold temperature, we choseegoved for better visibility.
custom made superconducting IF hybrid that fits the distance
between the SMA connectors of the 2SB mixer IF outputs The sideband separation mixer [1] uses end piece configu-
avoiding any unnecessary cabling. Apart from tight comstsa ration, with identical back pieces for both DSB mixers while
on the size of all the receiver components, we have vettye mixer chips in the two DSB back pieces are mirrored copy
limited cooling capacity at the 4 K stage, restricting th&ako of each other. Fig. 3 shows the picture of the 2SB mixer. The
power dissipation at the 4 K stage to merely 36 mW. These &éiddle piece houses an in-phase LO splitter [10] 80t RF
mW are shared between the four SIS mixers, magnetic coitgbrid. All the mechanical components of the 2SB mixer are
low noise amplifiers and thermal load due to heat conductianachined in tellurium copper and electroplated with gold.
A lot of effort has been put to reduce the contribution from The RF hybrid is an 8-section waveguide branch line
each of these components but still it does not allow us tmupler designed to achieve broadband performance [11],

LO input
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/ Fig. 5. Simulation of the RF hybrid, top left plot shows theput at through
IF Output and coupled port, bottom left plot shows the amplitude irabe¢, and the

dotted line represents 0.85 dB. Top right plot shows theated! port and

Fig. 3. Picture of middle piece, with RF hybrid and LO splitte reflection at one of the port (reflection at other three pods shown but
similar), bottom right plot shows the phase imbalance.

Second Oxide layer High impedance line _ Bond pad for IF

Port 1 Port 2

sp
=N EEENEN
W=360 um
Port 3 S=175 um Port 4 On chip LO injection Twin Junction Virtual ground
T P=380 um pE—

. . ) . : Fig. 6. ALMA Band 5 mixer chip layout showing the RF choke sture, RF
Fig. 4. Layout of the RF Hybrid, the waveguide dimensions 5260 UM  ang LO probe, LO coupler, RF and LO matching circuitry, onpctesistive
630 pum. termination and SIS junctions.

[12]. The RF hybrid is designed and simulated using CSEpresents as low capacitance as possible at the IF freigsenc
microwave studio and Agilent EMDS. Fig. 4 shows the layoust the same time it is very important that the LO coupler has
of the RF hybrid. The simulation results in Fig. 5 indicatetth minimal losses at RF frequencies. Therefore, the LO coupler
the maximum amplitude imbalance @8 dB can be achieved has been designed to have very low Coup”ng_dB dB, this
across the whole RF band, with negligible phase imbalancensures that the LO circuitry does not introduce any losses a
For the SIS mixer, we employ a MMIC-like approactRF frequencies, and we chose a coupler design with slots in
where most of the DSB mixer components along with thée ground plane, which ensures that the coupler contribute

LO coupler are integrated on the same z-cut crystal quagry little to the overall IF capacitance of the chip.
substrate. The dimensions of the on-chip LO coupler are

defined by photolithography, providing greater precisioero .
the definition of coupler geometry and thus allowing acaurap- F Hybrid
control over the LO coupling. In order to avoid unnecessary IF cabling inside the Band 5
As shown in Fig. 6 an E-plane probe is used for theartridge, all the components are directly connected td eac
waveguide to microstrip transition for both RF and LO signabther via SMA connectors. For this reason, any commercially
a RF choke structure provides virtual RF ground for thavailable IF hybrid cannot be used, and hence the IF hybrid
RF and LO signals in microstrip mode. The choke is alswas specially designed and built. The pitch between the two
DC/IF grounded to the chassis using bond wires. The LEOMA connectors of 2SB mixer defines the distance between
circuitry includes a probe and an impedance transformer ttze two input SMA connectors of the hybrid. The IF hybrid is
bring the probe impedance to a desirable value. LO injectidabricated on 500 micron thick Alumina substrate and glued
is implemented using a microstrip line coupler with slotéha to the gold plated copper housing using a silver conductive
ground plane. The isolated port of the coupler is terminategoxy.
using a wideband elliptical floating load [13]. The down The IF hybrid is designed for frequency 4-8 GHz using
converted signal at intermediate frequency (IF) is ex&@ctLange coupler layout, and to take advantage of the cryogenic
between the RF and LO waveguide. temperatures the IF hybrid is fabricated with supercoridgct
At intermediate frequencies, the RF and LO matching corib lines to eliminate conductive losses. A thin Palladiugela
ponents, including the transmission lines and the LO caupie deposited onto the Niobium to allow bonding where it is
structure appears as a capacitor and hence affect the mixecessary.
IF performance, especially at the higher end of the IF band.In order to avoid substrate modes, which could compromise
It is therefore necessary that the whole RF and LO circuittite hybrid performance, the complete IF hybrid is dividet in
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Fig. 8. Simulation result of the IF hybrid, top left plot shewhe output at
through and coupled port, bottom left plot shows the amgétimbalance,
and the dotted line represents 0.6 dB. Top right plot showsidblated port
and reflection at one of the port (reflection at other thredspaot shown but
similar), bottom right plot shows the phase imbalance.

Measured noise temperature of a ALMA Band 5 low noise amplifier
at 12K ambient temeprature
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Fig. 7. IF hybrid with integrated bias-T (a) Layout of the higbwith
capacitive feed-through for DC bias, (b) SEM image of the lriidge
fabricated along with the Lange coupler.

Fig. 9. Measurement of one of the ALMA Band 5 low noise ampffie
performed at 12 K ambient temperature, showing 35 dB gain raoide
temperature below 6 K. Measurements of all other amplifieosvs consistent
performance.

five separate sections, one for the Lange coupler, twéFdp

connecting line and two for the bias-T. The lines, bias-T amdLMA Band 5 project) and for the subsequent two stages

the Lange coupler are connected using paired bond wiresues Mitsubishi MGFC4419G InGaAs pseudomorphic HEMT.

reduce parasitic inductance of the inter-connection. Fig. 9 shows the measured performance for one of the Band
Fig. 7 (a) shows the layout of the IF hybrid. The width o6 low noise amplifier. The amplifier has 35 dB gain over the

the coupled lines of the Lange coupler is 45 pm with spaciig8 GHz band with noise temperature less than 6 K over the

between the lines 34 um. The Lange coupler uses air bridgagire band, while consuming merely 6 mW of power.

fabricated together with the hybrid using thin film techrgyo

Fig. 7 (b) shows the scanning electron microscope image of IV. MEASUREMENT RESULTS

the air bridge that connects the fingers of the Lange couplgr, Nojse temperature measurement

the measured height of the air bridge is 3 um. e .
Fig. 8 shows the simulation result with 3 micron height of The performance verification of the Band 5 cold cartridge

A . . S 5 ...was carried out together with the warm cartridge assembly

the air-bridge, the maximum amplitude variation is 0.7 d8 an, .
A - delivered by the Rutherford Appleton Laboratory, UK. To

phase variation is negligible.

perform these tests we used the NAOJ cartridge test cryostat
- [15]. Most of the measurements are done using an automated
C. IF Amplifiers system, built around the test cryostat [16].

The cold IF amplifier used for ALMA Band 5 is based on The noise specifications for the ALMA Band 5 project
previously developed 3-stage HEMT amplifier for the Swedisiequires the system noise temperature to be below 65 K over
Heterodyne Facility Instrument for the APEX telescope [14B0% of the band and less than 108 K at any frequency. Fig. 10
In contrast to the earlier design, the amplifier uses HRihows the measured noise performance of the first Band 5
InP transistors for the first stage (provided by ESO for th@oduction cartridge. The noise was measured over the 4-8
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Sideband rejection measured over IF = 4 GHz — 8 GHz with 100 MHz step
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the contribution from the dewar windows, IR filters and takes % 4 5 6 8 9
. . . . IF Frequency (GHz)
into account all the noise contributions up to the IF output
ports of warm cartridge assembly. The noise measurements (b)

were carried out using standard Y-factor method with liquiglg. 11. measurement of sideband rejection/image rejedto ALMA Band
nitrogen and room temperature loads. The presented ndiSeCA 01, for both polarization, (a) Sideband rejection vE. [R) Sideband
temperature also takes into account the correction for tfféection vs. IF.

sideband rejection [17]. Our measurements confirm that the

receiver performance meets all the noise specification fo Power amplitute stability for LO 171, 181 and 203 GHz,

= measured over 4-8 GHz IF band
. . . [ -6

the I_3_and_ 5 project and is in ‘most cases better than th§10 e U
specifications with a good margin. = -=-LO@171POL 0LSB
2 == LO@171 POL 1 USB
5 q' ---LO@171 POL 1LSB
. . . o R LO@181 POL 0 USB
B. Sideband rejection measurement B \'w:;;: +tgglg1 PoLOLSS

. . - . 2107 P .

In sideband separation millimeter wave receiver, knowtedg § '° T Lo@retpoLiLes
of image rejection is very important. Unless the image rejec E e - ":"tg%ggg poLoLse
. . . . . . . o A/ TR -
tion is very high, a correction term is required for the esim g LO@203 POL 1LSB
tion of the system noise temperature. We use the techniqLs e S 410
proposed by A. Kerr [17] to estimate the sideband rejection £ 10
Fig. 11 (a) shows the sideband rejection measurement sesuli<

10” 10" 10°
Time (sec)

performed at RF frequencies from 163 to 211 GHz with 100 10

MHz frequency steps and Fig. 11 (b) shows the same mea-
surements plotted across the IF band for all RF frequenci€g. 12. Measurement of receiver stability using the Allamiance method,
The measurements confirm that the sideband rejection isrbetfe total IF power is measured over the 4-8 GHz bandwidth.

than 10 dB over 9% of the band and better than 7 dB over

99%. 2) Signal path phase stabilityAlong with signal amplitude

] - stability, for a radio interferometer it is equally impantato
C. Receiver stability have very good phase stability of the signal path. To ensure a
1) Amplitude stability: One of the most important designstable baseline, ALMA Band 5 project specification requires
parameter for a modern radio telescope is the stability ef tthat for all frequencies within the IF pass-band the signal
instrument. The stability of the receiver is generally digsd  path transfer function should maintain phase stabilitytdvet
in terms of its Allan variance timeT{y). The Allan variance than 0.9 degrees on timescales up to 300 seconds. The phase
time describes the integration time for a receiver beyormting the average value measured in 16 msec. The signal
which the observing efficiency is reduced. Fig. 12 showsath includes all components between the RF window and
the receiver stability measurements using the Allan vaganthe IF outputs of the warm cartridge assembly that houses
method. Measurements were performed at 3 different Libe second-stage amplifier and the local oscillator chalre T
frequencies and total output power over 4-8 GHz IF band iiequired phase stability excludes any contribution frora th
used to calculate the Alan variance. It is evident from tHecal oscillator chain residing in the WCA but takes into
Fig. 12 that the receiver meets the specification with margatcount contributions from the LO components inside the
for all the measured frequencies. CCA. Fig. 13 shows the measured phase stability of the signal
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Phase Variation Over 300 seconds, Pol 0, RF 176 GHz, LO 180 GHz thanks to Dr. Hui Wang and Prof. Brian Ellison. We would
o —Measured phase variation over 300 s @ RF 176GHz also like to thank Monica Obrocka and Hui Xu.

-—-0.9 degree span The author would also like to thank Gert Johnsen and Dr.
Dimitar Dochev.
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