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ABSTRACT 

 

High power microwave systems filled with gas run the risk of corona breakdown. The exponential growth of free 

electrons in the gas might cause a number of problems, ranging from noise and detuning to the generation of intense 
heat and severe damage to the system. Normally, when considering the risk for corona breakdown, it is not relevant to 

investigate the post-breakdown evolution of the plasma. However, when the electric field is inhomogeneous, the initial 

breakdown region might be very small, and not necessarily harmful in itself. In addition, small areas of field 

enhancement will suffer breakdown at much lower power levels than what is required to cause breakdown in the whole 

system. It is therefore of interest to investigate the possible mechanisms for such a small breakdown plasma to expand 

and lead to a full scale breakdown.  

The electron avalanche is generally stopped by the suppression of the field in the plasma, and for a short time a 

quasi-steady state will persist. On longer time scales, the motion of the electrons will heat the gas, and lower the 

breakdown threshold. The critical question becomes that of determining the thermal balance, and the connection 

between electron density and temperature. A general description of the interplay between a breakdown plasma and an 

incoming EM wave is theoretically intractable, and to gain fundamental knowledge of the different processes, a 
simplified scenario was conceived and analyzed. We consider the evolution of a small spherical breakdown plasma in a 

homogeneous microwave electric field in atmospheric pressure air. It is shown that the situation is thermodynamically 

unstable, and the plasma sphere will either shrink and disappear, or expand indefinitely, depending on the initial radius 

of the plasma. This allows us to determine a critical size in realistic microwave systems, under which regions of intense 

field or heating should be kept to avoid full scale breakdown. 

 

INTRODUCTION 

 

When one normally estimates the risk for microwave breakdown in air filled rf equipment, one tries to determine the 

breakdown threshold in terms of the electric field strength, voltage or power level. The assumption is that breakdown 

anywhere in the device will lead to large disruptions on the operation of the device, or even complete system failure. At 
the same time, it is well known that small microwave discharge regions can exist in areas of field intensification without 

influencing the overall performance of the device. Such regions will on the other hand generate heat, and if the break-

down volume is large enough, this heat will be enough to melt parts of the device. This is typically seen experimentally, 

where small protrusions in the conducting surfaces will be molten after intense operation. Breakdown will be localized 

around such small protrusions since there will be an intensification in the electric field strength, and the local field 

might be above the breakdown threshold at the same time as the ambient field will be well below the threshold, [1] and 

[2]. If such field intensifications are taking into account when trying to estimate the breakdown threshold one might get 

a far too restrictive value, it is therefore necessary to examine what the risks are with small local volumes of breakdown 

discharges. This was done and published in [3], and we shall only present the most important features and the results 

below.  

It is well known that in the high pressure region of the Paschen curve, the homogeneous breakdown field can be 

approximated with,   
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where p is the effective pressure, meaning that it has a dependence on temperature as Tp /1 , [4], [5] and [6]. This 

leads to the following expression for the breakdown field 

 
T

T
ETE bdbd

0

0,)(   (2) 

 

Therefore, in a homogeneous field with amplitude 0E , we can induce local breakdown at a point by heating the gas to 

the temperature 1T , given by 
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It is also clear that such a discharge region will absorb energy from the field and heat the surrounding gas. If this heat-

ing is strong enough, the breakdown region should be able to expand by the continuous heating of the gas on the edge of 

the discharge region. 

We wish to investigate this mechanism of expansion, and what it means for rf systems in general. Of course, the 

complete treatment of this problem is more or less impossible. The fundamental reason for this is that rf discharges span 

such a wide range of combinations of pressure, field strength, frequency and geometry. We will have to restrict our-

selves to the range which is of highest interest, namely atmospheric pressure Air breakdown conditions. This restriction 

enables us to neglect diffusion when solving the electron continuity equation, which results in Eq. (1). This simplifica-

tion is justifiable as long as the dimension of the discharge, or breakdown plasma, pL , is much larger than the attach-

ment length pDL aa /1/   , where D  is the diffusion coefficient, and a  is the attachment frequency. Fur-

thermore, we restrict the analysis to a plasma volume which is much smaller than the wavelength of the field, i.e. 

pL . This enables us to use the quasi-static approach for the interplay between the breakdown region and the 

electric field. In addition to this, we assume that any gradients in the field, which are not caused by the presence of the 

discharge, are very weak, allowing us to treat the field as homogeneous. We also assume that the initial breakdown is 

spherical, and has been created by some unspecified instantaneous heating of this spherical region. The general temper-

ature distribution will be 
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We can instantly determine the internal field in the breakdown plasma. Analogous to a dielectric sphere, the in-

ternal field will be given by  
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where ))(/( 22

0

2   mNen , N  is the electron density, e  is the electron charge, m  is the electron mass, 0  

is the vacuum permittivity,   is the field frequency,   is the electron-neutral collision frequency, [6] and [7]. 

The electron density will grow until the internal field is suppressed to the breakdown threshold. This is a very 

fast process, and the temperature of the discharge will not change significantly under this process. We therefore have 

the equality 
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Here we will make the assumption, or approximation, that this rapid saturation of the electron density will lead to a qua-

si-static state, where we have a spherical discharge region, and the temperature on the edge is 1T . It is unclear how ex-

act this approximation will be, since the polarization of the discharge volume will lead to field intensification on the 
poles of the sphere (with respect to electric field direction). This polarization field will have a phase difference with 

respect to the motion of electrons and the external field, and it is unclear how much it will contribute to an increase in 

the electron energy in the vicinity of the poles. Assuming that this approximation is appropriate we can regard the inter-
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play between electron density and external field as solved, and the remaining problem is to determine the thermody-

namical stability properties of the breakdown plasma.  

 

THE THERMODYNAMICAL INSTABILITY 

 

The discharge region will absorb energy from the electric field and undergo heating, and also heat the surrounding gas. 
If the heating inside the discharge is larger than the amount of heat that can be transported over the edge the breakdown 

gas will start to heat up, and the temperature on the edge of the discharge will heat up. Consequently, the breakdown 

sphere will expand. To solve the problem of thermal balance we employ the heat conduction equation 
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where   is the gas density, vc  the heat capacity of air,   the heat conductivity and q  the heating caused by the mo-

tion of the free electrons, i.e. Joule heating. In the above equation we have neglected convection due to the smallness of 

the discharge region, and radiation due to the relatively low temperatures we are interested in.  

Since we know the internal field in the sphere, we can solve for the electron motion, and the heat generated by 

the motion. We find an approximation for the heating term, viz. 
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where 
2

003 EqE  . The heat conductivity also has a dependence on temperature as 
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where 0T  is the temperature in the far distance Rr  , [8]. 

Since the temperature is highest in the center of the sphere, and heating goes down with temperature, we can get 

an upper limit on the heating in the sphere by using the edge temperature, 1T , throughout the volume. If we integrate 

Eq. (7) over the volume 3/4 3R , and use the expressions for Joule heating and heat conduction, we get 
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where TotalW  is the total heat energy content in the sphere. The heat loss over the edge is given by 
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The maximum heating in the volume of the sphere is  
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As pointed out above, the heating scales as the radius cubed, and the heat loss is proportional to the radius. We illustrate 

this fact in Fig. 1. 
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Fig 1. The radial dependence of heating and heat loss for the spherical discharge volume. Red curve is heating and blue 

curve is heat loss. 

 

There is obviously a point of equilibrium radius, *R , where the heat loss balances the heat generation. If the radius 

increases slightly above this value, the heating will be stronger than the heat loss, and the discharge region will start to 

expand. In the same way, if the radius decreases slightly from this value, the sphere will start to shrink. In this way, we 

can make a rough estimate of how large regions of heating or field intensification above the breakdown threshold can be 

without leading to an expanding breakdown region. 

The dimension of the critical radius can be calculated using this formula, see [3], 
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where 00, / EEbd . This radius can be evaluated numerically for any combination of parameters using empirical 

approximations for the heat conduction etc., [3]. If we assume room temperature far away, and a ratio between the 

breakdown field and the ambient field 5.4 , we get 7* R . If we further assume an operating frequency 

1  GHz we get 02.0* R  cm. This means that a plasma sphere with a radius smaller than roughly 02.0  cm will 

shrink and vanish, whereas a larger sphere will expand indefinitely (within this model). Keeping   constant one can 

find a formula for the dependence of the radius on pressure and frequency.  
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This means that the previous result can be rescaled quite easily, and for example, if one desires a critical radius of 1  cm, 

and to keep the frequency at 1 GHz, one has to decrease the pressure to 001.0 p . However, it is very important to keep 

in mind the assumptions of the model, so as not to end up with a discharge region larger than the wavelength, or smaller 

than the attachment length, for in that case, the model does not apply. But, the model does say something about the case 

when we are at high frequencies and high pressures and the critical radius is smaller than the attachment length. In this 

case the model does not incorporate the mechanisms that are important when the discharge sphere is smaller than the 

attachment length, but it does say that any sphere which can be considered as much larger than the attachment length 

will generate more heat than it can transport over the edge, and consequently expand. 
 

CONCLUSIONS 

 

We have made a qualitative analysis of the mechanisms which determine if a small microwave discharge region will 

expand and cause a full scale breakdown. We were able to determine a critical radius, above which any breakdown re-

gion of spheroid shape will generate more heat than what can be transported over the discharge edge. This will heat the 

surrounding gas and consequently lower the surrounding breakdown threshold, allowing the initially small breakdown 

region to expand. On the other hand, any discharge spheroid smaller than this critical radius will cool down and disap-
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pear. This model should be able to give order of magnitude estimates for the maximum size of regions of heating or 

intensified field in rf equipment, so that they will be safe from this type of thermally initiated breakdown.  

This model highlights the most important physical mechanisms for the thermal evolution of a discharge volume 

under the conditions of high pressure and quasi-static electric field. But this clarity in exposition comes at the prize of 

severe limitations. New and interesting effects would most likely be found by the inclusion of diffusion or external heat 

sources into the model. This might allow the discharge to become stabilized at a radius below the critical one.        
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