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Thermal modelling and evaluation of borehole heat transfer  
 
Saqib Javed 
Building Services Engineering 
Chalmers University of Technology 
 
 

Abstract  
 

The use of ground source heat pump systems to provide heating and cooling in 

buildings has increased greatly in the last decade or so. These systems have a high 

potential for energy efficiency, which has environmental and economic 

advantages. Moreover, the energy efficiency of the ground source heat pump 

systems can be further enhanced by optimizing the performance of the system. 

However, a key obstacle to the performance optimization of ground source heat 

pump systems is the scarcity of mathematical models that can rapidly, yet 

accurately, simulate the dynamic thermal response of the borehole system. 

  

This study aims to develop analytical models and methods that can simulate the 

thermal response of a borehole system in time scales from minutes to years. An 

analytical solution to model the short-time response of the borehole system is 

presented. The solution studies the heat transfer problem in the Laplace domain 

and provides an exact solution to the radial heat transfer problem in the borehole. 

A finite-length line-source solution to determine the long-term response of the 

borehole system is also presented. The line-source solution can be used for 

modelling both single and multiple borehole systems. The analytical and finite-

length line-source solutions were combined to obtain step-response functions for 

various configurations of borehole systems. The step-response functions are valid 

from short (hours) to long (years) periods. A load aggregation method is also 

presented to speed up the simulations of the borehole systems. All the proposed 

models and methods can be easily implemented in any building energy simulation 

software to optimize the overall performance of ground source heat pump 

systems. 

 

The study also analyzes various aspects of the thermal response testing and 

evaluation of borehole systems. A ground source heat pump test facility with nine 

boreholes was used for the experimental investigations. Several thermal response 

tests were conducted for issues that include random variations between tests, 

sensitivity of system design to uncertainties in test results, convective heat 

transport in boreholes, and recovery times after a test. The evaluations of multi-

injection rate tests on groundwater-filled boreholes were also extensively studied. 

Recommendations regarding each of these issues are suggested to improve the 

testing and evaluation procedure of borehole systems.  

                

 

 

Keywords: ground source heat pump, ground-coupled, ground heat exchanger,   

borehole, short-term, long-term, step-response, load aggregation, 

groundwater-filled, fluid temperature, thermal response test, recovery 

times, design, simulation, optimization 
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1 Introduction 
The use of ground source heat pump (GSHP) systems to provide heating and 

cooling in buildings has increased greatly in the last decade or so. During this 

period, the worldwide installed capacities of GSHP systems have increased from 

approximately 5,300 MW in 2000 to over 33,000 MW in 2010, at a compound 

annual rate of 20 %. At present, the total energy use of GSHP systems exceeds 

200,000 TJ/year. Sweden now stands third behind the USA and China in having 

the largest installed capacities of GSHP systems. The energy use of the GSHP 

systems installed in Sweden is also behind only those of China and the USA
[38]

.  

 

The most common application of a GSHP system is with vertical borehole heat 

exchangers. The current focus of vertical GSHP systems-related research is on the 

performance optimization of these systems. A key prerequisite for this 

optimization process is the accurate knowledge of the temperature of the 

circulating fluid that exits the borehole heat exchanger. The borehole exit fluid 

temperatures are determined using either numerical or analytical solutions. 

Numerical solutions are more accurate but have extended computational time 

requirements and limited flexibility, especially when analyzing multiple borehole 

systems. On the other hand, analytical solutions have better flexibility and are 

more efficient in terms of superior computational time. However, existing 

analytical solutions are less accurate and their ability to analyze multiple borehole 

systems remains largely untested.  

 

In Sweden, there are approximately 250,000 installations of vertical GSHP 

systems, and this number is increasing at a steady rate of about 10 % a year
[5]

. 

Sweden is unique in the respect that it uses groundwater-filled boreholes. In much 

of the country, the underground structure is solid bedrock, which allows the 

boreholes to be filled naturally with groundwater, eliminating the need for 

grouting. Casing is used only at the very top of the borehole, where sediments 

overlay the bedrock, to avoid intrusion of the surface water. Heat transfer between 

the borehole and the surrounding ground is by conduction and buoyancy-driven 

natural convection, which is sometimes assisted by advection (horizontal water 

currents in fractured bedrock). Analysis and evaluation of groundwater-filled 

boreholes presents challenges that are somewhat different to those of grouted 

boreholes.   

 

1.1 Previous work 

Various analytical, semi-analytical and numerical models have been developed for 

the modelling and simulation of borehole heat transfer. A detailed review of these 

models has been provided in Paper 1. This section provides an overview of 

several of the most significant mathematical models and methods used for 

modelling and simulation of borehole heat transfer.  

 

Classical analytical models for determining the thermal response of a borehole 

system include the line-source
[28]

 and the cylindrical-source
[19]

 solutions. The line-

source solution treats the radial heat transfer in a plane perpendicular to the 

vertical borehole, which is assumed to be a line source of constant heat output and 

infinite length, and is surrounded by an infinite homogeneous ground. On the 
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other hand, the cylindrical-source solution models the borehole as a cylinder 

surrounded by homogeneous ground and having constant heat-flux across its outer 

boundary. Both the classical line-source and cylindrical-source solutions 

oversimplify the geometry of a borehole and thus have limited application for 

short-time analysis of the borehole heat transfer. The issue of the accuracy of line-

source and cylindrical-source solutions has been addressed by many researchers. 

The solution proposed by Lamarche and Beauchamp
[35]

 assumes a steady heat-

flux condition across a concentric hollow pipe instead of the borehole outer 

boundary considered by the classical cylindrical-source solution. The authors also 

proposed a finite-length line-source solution
[34]

 based on the integral mean 

temperature along the borehole. Gu and Neal
[25]

 developed an analytical solution 

assuming a cylindrical source in an infinite composite region. They solved the 

transient heat transfer problem of the borehole heat exchanger using the 

generalized orthogonal expansion technique, which requires calculation of 

multiple Eigen-values. Young
[53]

 modified the classical buried electric cable 

solution to develop his borehole fluid thermal mass solution. The solution is based 

on an analogy between a buried electric cable and a vertical borehole. 

Bandyopadhyay et al.
[9]

 adapted the classical Blackwell solution
[17]

 in their 

‗virtual solid‘ solution, which was developed for thermal analysis of boreholes 

backfilled with the borehole cuttings.   

 

Beier and Smith
[12]

 and Bandyopadhyay et al.
[9]

 presented semi-analytical 

solutions that first solve the heat transfer problem of a borehole heat exchanger in 

the Laplace domain and then use numerical inversion methods to obtain the 

solution in the time domain.  

 

In his superposition borehole model (SBM), Eskilson
[22]

 used a numerical 

approach that considered the transient radial-axial heat transfer in the borehole to 

develop non-dimensional thermal response solutions, also known as g-functions. 

The SBM also determines thermal interactions between boreholes using an 

intricate superposition of numerical solutions for each borehole. Yavuzturk and 

Spitler
[52]

 extended the work of Eskilson and developed the so-called short time 

step g-functions using a numerical approach. Austin
[7]

 and Shonder and Beck
[44]

 

also developed solutions that numerically solve the heat transfer in the borehole 

heat exchanger. However, these solutions are aimed at the evaluation of thermal 

response tests (TRTs). Other significant numerical solutions include the work of 

Muraya
[41]

, Zeng et al.
[54]

, Al-Khoury et al.
[3, 4]

, Xu and Spitler
[50]

 and He et al.
[27]

, 

among others.   

 

The principal applications of the above mathematical models include evaluating a 

TRT conducted on a borehole, designing a borehole system, and performing 

simulations of a borehole system
[27]

. The models extensively used for evaluation 

of TRTs include the line-source solution and the numerical models of Austin
[7]

 

and Shonder and Beck
[44]

. Gehlin
[23]

 developed a simple and straightforward 

approach to evaluate TRTs using an approximation of the line-source solution. 

Shonder and Beck‘s model was implemented in the Geothermal Properties 

Measurement
[43]

 (GPM) computer program to evaluate TRTs using a parameter 

estimation approach. Austin‘s numerical model was also implemented in the 

Vertical Borehole Analysis and Parameter Estimation Program
[7]

. The design of a 

borehole system is generally carried out using commercial software, such as Earth 

Energy Designer (EED)
[18]

 and the Ground Loop Heat Exchanger Program 
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(GLHEPRO)
[47]

, among others. These programs are based on the g-functions 

developed by Eskilson
[22]

. Monthly aggregated values of heating and cooling 

loads are used, and the peak loads are superimposed on the aggregated values. 

Simulations of a borehole system can be performed using any of the above-

mentioned models. However, each model has both merits and demerits with 

regard to issues such as accuracy of short- and long-term response, thermal 

interactions between boreholes, and computational time requirements when 

performing a simulation. To perform rapid multi-year simulations, load 

aggregation techniques have been presented by Yavuzturk and Spitler
[52]

, Bernier 

et al.
[16]

, Liu
[37]

, and Marcotte and Pasquier
[39]

, among others. 

 

1.2 Research objectives 

The main objective of this research is the development of analytical models and 

methods to perform multi-year simulations of borehole systems. The aim is to 

develop analytical solutions for both single and multiple borehole systems, which 

can model the heat transfer in borehole systems from short periods (minutes) to 

long periods (years or longer).  

 

Another objective is to contribute to the already existing range of research in the 

area of thermal response testing. The goal is to increase the knowledge of testing 

and evaluation of vertical borehole systems in general and groundwater-filled 

boreholes in particular.  

 

1.3 Research methodology and limitations 

This study started with an extensive survey of literature to gain insight into and 

understanding of the state-of-the-art modelling and simulation of GSHP systems 

in general and of borehole systems in particular. The emphasis of the literature 

review was on the analytical modelling of heat transfer in borehole systems, 

which is the primary area of focus in this research.   

 

Next, mathematical modelling was used to develop analytical models and 

methods for the simulation of borehole systems. Mathematical modelling was 

utilized to develop analytical solutions for single and multiple borehole systems. 

A method to perform multi-year simulations of borehole systems was also 

developed through mathematical modelling.  

 

Simulation and experimental studies were used for validation of the proposed 

models and methods. Simulations were performed using state-of-the-art research 

and commercial tools. Experiments were performed mostly in a carefully 

controlled experimental setup that was designed and built in the initial phase of 

this study. Experimental investigations to study various other aspects of heat 

transfer in borehole systems were also designed and conducted. Issues pertaining 

to thermal response of borehole heat exchangers, convective heat transfer in 

groundwater-filled boreholes, and recovery times of a borehole system were all 

comprehensively studied through a systematic series of experiments. 
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The method presented in this thesis to develop step-response functions was tested 

for small- to medium-sized borehole fields. Its application to determine the step-

response functions for large-sized borehole fields requires further testing and 

validation. Another limitation is that the experimental investigations reported in 

this thesis were carried out on groundwater-filled borehole systems. Hence, some 

of results reported and conclusions drawn in this thesis hold true only for 

groundwater-filled boreholes.  

 

1.4 Thesis outline 

This thesis is divided into five chapters, of which Chapters 2, 3 and 4 comprise 

the main body. The chapters are organized as follows.  

 

Chapter 1 provides an overview of the research context with a description of the 

motivations, perspectives, and methods of research. The chapter also includes a 

brief literature review of the models and methods used for modelling and 

simulations of borehole systems.   

 

In Chapter 2, an analytical solution to model the radial heat transfer problem in a 

borehole is presented. The chapter describes the background, the mathematical 

formulation and the validation of the analytical solution in considerable detail. 

Chapter 2 is an extended version of Paper II.   

 

Chapter 3 deals with the simulations of borehole systems. The chapter first 

presents the development of step-response functions for single and multiple 

borehole systems by combining the analytical solution of Chapter 2 with a finite 

line-source solution. A load aggregation scheme is then presented to perform 

rapid, yet accurate, multi-year simulations of borehole systems. Chapter 3 extends 

Paper V. 

 

In Chapter 4, several key aspects of thermal response testing and evaluation are 

investigated. The chapter first reports the thermal response testing of nine adjacent 

boreholes. Case studies are used to analyze the effects of the uncertainties in TRT 

results on the design of a borehole system. Next, the chapter examines issues of 

convective heat transfer in a borehole system and the recovery times after a 

thermal response test. Finally, a method to evaluate thermal response tests on 

groundwater-filled boreholes is presented. Chapter 4 draws from Papers III, IV, 

VI and VII.   

 

Chapter 5 concludes the thesis with a summary of research findings and 

suggestions for continued research on this topic.  
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2 Analytical solution 
This chapter is based on Paper II. 

 

An analytical solution has been developed to enable modelling and simulation of 

borehole systems. The emphasis of the new solution is very much on short-term 

modelling of borehole heat transfer. The analytical solution accounts for thermal 

conductivities, thermal resistances, thermal capacities and thermal properties of all 

borehole elements. One limitation is that the solution considers only radial heat 

transfer in the borehole and the surrounding ground. The development and 

validation of the analytical solution were summarized in Paper II and reported in 

detail in other publications
[20, 29]

.  

 

2.1 Introduction 

The analytical solution studies the radial heat transfer and the related boundary 

conditions in the Laplace domain. To meet the radial heat transfer requirement, an 

equivalent-diameter pipe is used to model the U-tube. The model considers a 

constant heat flux qinj injected to the circulating fluid at temperature Tf (τ) starting 

from time τ = 0. The thermal capacity Cp of the circulating fluid in the equivalent-

diameter pipe is kept equal to that in the U-tube. A resistance value of Rp is 

introduced to account for fluid and pipe resistances. The resulting outer boundary 

temperature of the equivalent-diameter pipe is Tp(τ). A grout region of thermal 

conductivity λg and thermal diffusivity ag surrounds the equivalent-diameter pipe. 

The borehole is surrounded by infinite homogeneous ground (soil) of thermal 

conductivity λs and thermal diffusivity as. The heat flux from the fluid to the grout 

region through the pipe wall is qp(τ). Similarly, the heat flux from the grout region 

to the surrounding ground through the borehole radius is qb(τ). The resulting radial 

heat transfer problem is shown in Figure 2.1.  

    

 

 
 

Figure 2.1 The geometry and the thermal properties of the borehole 
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2.2 Mathematical background 

For the heat transfer problem shown in Figure 2.1, the temperature distribution 

T(r, τ) must satisfy the following radial heat conduction equation in both the grout 

and the ground (soil) regions. 

 

 

    
 
  

  
 
   

   
 
 

 
 
  

  
       

          
       

   (2.1) 

The radial heat flux in the grout and the soil regions is 

 

                  
  

  
       

          
       

   (2.2) 

The heat flux at the grout-soil interface is continuous, and hence the boundary 

condition from Equation 2.2 at r=rb is 

 

    
  

  
 
      

     
  

  
 
      

  (2.3) 

The pipe is filled with a heat transfer fluid at temperature Tf (τ). A thermal 

resistance Rp exists over the pipe periphery between the fluid in the pipe and the 

grout just outside the pipe. This resistance accounts for the pipe wall and the fluid 

boundary layer. The heat flux over this thermal resistance is equal to the radial 

heat flux in the grout just outside the pipe. The boundary condition at the pipe-

grout interface then is  

 

                          (2.4) 

Here, the thermal resistance Rp is defined as 

 

   
 

  
  

 

      
     

 
    
    
   

 

          
  (2.5) 

The first part of Equation 2.5 refers to the conductive resistance of the pipe, and 

the second part refers to the fluid convective resistance. 

  

The heat balance of the fluid in the pipe with the injected heat qinj is 

 

        
   

  
          (2.6) 

The initial temperatures in the pipe, the grout and the ground (soil) are all taken as 

zero. 

 

                       (2.7) 
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2.2.1 Laplace transform for the pipe region 

Taking Laplace transforms of Equations 2.4 and 2.6 give 

 
                         (2.8) 

and 

     

 
                         (2.9) 

Here,        and        are temperature and heat flux in the borehole at the pipe 

wall and s is the complex-valued argument of the Laplace transform.  

2.2.2 Laplace transform for the annular region 

The Laplace transform of the radial heat equation for the annular region gives 

 

    

   
 
 

 
 
   

  
 
 

  
           

 

  
 

 

          (2.10) 

We can scale r together with       to have 

 

    
 

  
                  (2.11) 

Now Equation 2.10 can be written as an ordinary differential equation as 

 

   

   
 
 

 
 
  

  
          (2.12) 

The solutions of Equation 2.12 are I0(z) and K0(z), which are modified Bessel 

functions of zero order
[1]

. Using these functions to get a general solution of 

Equation 2.10 gives 

 

                  
 

  
            

 

  
              (2.13) 

Let us define:  

 

      
 

  
       

 

  
   (2.14) 

Now Equation 2.13 can be written as the following two equations for the 

temperatures at the two boundaries (i.e. rp and rb) of the annular region.  

 
                               (2.15) 

and 

 
                                (2.16) 
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Another set of equations can be obtained for the boundary fluxes by taking the 

Laplace transform of the radial heat flux (Equation 2.2) and inserting the Laplace 

transforms from Equation 2.13 and taking r = rp and r = rb. 

 

                                          (2.17) 

and 

                                           (2.18) 

A(s) and B(s) may be eliminated from Equations 2.15 to 2.18, and thus two 

equations between the Laplace transforms of the boundary temperatures and 

boundary fluxes are obtained. These equations may be written as follows: 

 

                                                (2.19) 

and 

 
                                                  (2.20) 

Equations 2.19 and 2.20 can be represented in the form of a thermal network for 

the borehole annulus as shown in Figure 2.2. 

 

 
 

Figure 2.2 Thermal network for the borehole annular region 

 

 

The values of one transmittive and two absorptive conductances (and their 

inverse, the resistances) used in Equations 2.19 and 2.20 and in the thermal 

network for the annular region are as follows:   

 

       
 

      
 

    

                            
   (2.21) 

 

       
 

      
 
                                 

      
   (2.22) 

and 

 

       
 

      
 
                                 

      
   (2.23) 
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2.2.3 The soil region 

Regarding the soil region outside the borehole radius, a solution exists that is 

similar to the one given by Equation 2.13: 

 

                  
 

  
            

 

  
   (2.24) 

The function I0 in Equation 2.24 increases exponentially with r and is finite at       

r = 0. On the other hand, the function K0 decreases exponentially with r and is 

infinite at r = 0. Because the radius outside the borehole tends to infinity, the value 

of coefficient A(s) must be zero. This gives 

 

                  
 

  
        (2.25) 

The coefficient B(s) can be eliminated if the temperature in the ground outside the 

borehole is expressed in the following form:  

 

        

     
 
  
 

      
 
  
 

         (2.26) 

For the soil region, we define 

 

      
 

  
   (2.27) 

Equation 2.26 can now be written as 

 

        

     
 
  
 

      
         

(2.28) 

Taking the Laplace transform of the radial heat flux (i.e., Equation 2.2) for the soil 

region (at r = rb) and using Equations 2.3 and 2.28, we obtain 

 

                 

 
 
  
   

      

      
         

(2.29) 

In Equation 2.29, the derivative   
             . Here, K1 is the first order 

modified Bessel function. 

  

We obtain the following relations between the Laplace transforms of temperature 

and heat flux at boundary r = rb. 

 

                       (2.30) 
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The following relation for the ground thermal resistance (and its inverse, the 

ground thermal conductance) is obtained from Equations 2.29 and 2.30: 

 

       
 

      
 

 

    
 
      

         
 (2.31) 

2.2.4 The whole thermal network 

The whole network (Figure 2.3) for the equivalent-diameter pipe, the circulating 

fluid, the borehole annulus region and the infinite ground outside the borehole can 

now be drawn using Equations 2.8 and 2.9 for the pipe boundary, Equations 2.19 

and 2.20 for the annular region, and Equation 2.30 for the soil region.  

 

 
 

Figure 2.3 The whole thermal network for a borehole in ground 

 

 

The Laplace transform for the fluid temperature can be readily obtained from the 

thermal network.  

 

       
    

 
 

 

     
 

   
 

       
 

       
 

             

  

(2.32) 

The network involves a sequence of composite resistances. We start from the right 

in Figure 2.3. The conductances        and        lie in parallel and are added. 

The inverse of this composite conductance is added to the resistance       . This 

composite resistance lies in parallel with                , and their inverses are 

added. This composite resistance lies in series with the resistance of the pipe wall 

Rp. The total composite resistance from Rp towards the right lies in parallel with 

the thermal conductance Cp ∙ s. 

2.2.5 Fluid temperature 

In the type of problems considered here, the inversion formula to obtain f(τ) from 

      is given by the integral: 

 

     
 

 
  

   
     

 
  

 
          

 

 

 (2.33) 

The function L(u) in the above equations is given by 

qinj 
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1 

Cp∙ s
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(2.34) 

Here, Im[...] denotes the imaginary part and τ0 (in seconds) is an arbitrary time 

constant that makes both τ0 ∙ s and the integration variable u dimensionless. The 

first factor in the integral of Equation 2.33 is independent of the particular Laplace 

transform       and depends only on dimensionless time τ/τ0. The second factor, 

the function L(u) in Equation 2.33, represents the particular Laplace transform for 

the considered case and is independent of time τ. The inversion integral in 

Equation 2.33 is obtained by replacing the original integral along the vertical line 

   with an integral along the negative real axis  . A closed-loop integration path 

in the complex s-plane is used instead, as shown in Figure 2.4. The following 

conditions must be fulfilled:     
 

       
  

  
        (2.35) 

There is a pole at s = 0 and a cut in the complex s-plane along the negative real 

axis to account for   . A final requirement, which is fulfilled in our applications, 

is that no other poles lie inside the closed loop of Figure 2.4.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.4 Considered closed path for the inversion integral to get Equations 2.33 

and 2.34 

 

 

Using Equation 2.33, we can now write the fluid temperature Tf (τ) as 

 

      
 

 
  

   
     

 
  

 
         

 

 

 (2.36) 

 

The Laplace transform for the fluid temperature is given by Equation 2.32. When 

taken for s on the negative real axis  , we obtain 
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(2.37) 

The four thermal resistances (and the corresponding conductances) for the 

Laplace transforms are given by Equations 2.21 to 2.23 and Equation 2.31. On the 

negative real axis  , these become functions of the real variable u. From 

Equations 2.14, 2.27 and 2.34, we obtain 

 

                                   (2.38) 

and 

 

   
  

      
    

  

      
    

  

      
   (2.39) 

 

The arguments in the formulas for the resistances are now imaginary numbers. In 

this case, the modified Bessel functions may be expressed as ordinary Bessel 

functions. The final formulas for the thermal resistances taken on the negative real 

axis   become 

 

       
 

    
 

                 

                       
       (2.40) 

 

       
                               

   
   (2.41) 

 

       
      

                                              
   (2.42) 

and 

 

       
      

                                              
   (2.43) 
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2.3 Validation of the analytical solution 

The analytical solution has been validated using multiple approaches. The first 

approach involved development of a one-dimensional numerical solution to 

validate the results of the analytical solution. In the second approach, the 

analytical solution was validated against an existing semi-analytical solution
[12]

. 

The third approach validated the analytical method using the experimental results 

from a laboratory setup. The following sections provide further details on the 

validation of the analytical solution using these different approaches.   

2.3.1 Validation using a numerical solution 

A numerical solution has been developed to validate the results of the new 

analytical solution. For consistency with the analytical solution, which solves the 

radial heat transfer problem, the numerical solution has also been developed to 

solve the one-dimensional heat transfer problem in the borehole and the ground. 

The new numerical solution uses a special coordinate transformation for which 

the heat flux has the simplest possible form. The mathematical background of the 

numerical solution is given in detail in the following section.     

2.3.1.1 Mathematical background of numerical solution 

The radial heat equation in its general form is 

  

          
  

  
 
 

 
 
 

  
        

  

  
            (2.44) 

In Equation 2.44, the thermal conductivity λ, the density ρ and the specific heat 

capacity c can be constant or any positive functions of radial distance r. The heat 

equation can also be rewritten as 

 

       
  

  
  

  

  
                         

  

  
        (2.45) 

For steady-state condition the heat flux in a radial direction is constant: 

 

                   
  

  
   

  

  
                       (2.46) 

Equation 2.45, when written for steady-state conditions, is 

 

              
    
  

       
   

         
    (2.47) 

The temperature difference over the annular region between pipe radius rp and any 

radial distance r is equal to the heat flux times the thermal resistance of the 

annular region rp ≤ r < ∞:  

 

                             (2.48) 

Comparing Equations 2.47 and 2.48 gives the thermal resistance R(r): 

 

      
 

          
   

 

  

 
  

  
 

 

        
              (2.49) 
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The transient heat conduction for variable thermal conductivity λ(r) may be 

simplified by using the steady-state thermal resistance of an annular region as a 

new dimensionless coordinate u= u(r): 

 

              
  

          
   

 

  

          
  

  
 

  
        

  (2.50) 

Here, λ0 is a reference thermal conductivity the value of which can be chosen 

arbitrarily.  

 

The radial heat flux of Equation 2.45 can now be written as 

 

                 
  

  
           

  

  
 
  

  
     

  

  
   (2.51) 

The heat flux as a function of u and  becomes 

 

            
   
  

   
   
  

    
    
   

      (2.52) 

The heat balance of Equation 2.45 can now be written as 

 

       
  

  
 
  

  
  

  

  
 
  

  
  

   
  

    
    
   

  (2.53) 

Heat capacity for an annular region is the volumetric heat capacity times the area 

of the annular region. For the new coordinate u the heat capacity becomes 

 

              
  

  
      

 

  
          

   

  
            (2.54) 

In Equation 2.54, we used the expression for du/dr from Equation 2.50 to obtain 

the expression of capacity. The final expression for the heat equation with the new 

coordinate u is obtained by inserting Cu(u) from Equation 2.54 in Equation 2.53: 

 

      
   
  

  
   
  

             
   
  

     (2.55) 

The new numerical solution is based on the one-dimensional heat conduction 

problem represented by Equation 2.55, using a constant thermal conductivity λ0. 

We consider an equivalent-diameter pipe inside a borehole surrounded by 

homogeneous ground (soil). The two sets of thermal properties for the borehole 

and the ground (soil) region are 

 

      
  
  
                 

    
    

             
                  
               

   (2.56) 

For the case of an equivalent diameter pipe in a borehole in the ground, the new 

coordinate u(r) from Equation 2.50 is 
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      (2.57) 

We choose λ0 = 2π ∙ λg. Equation 2.57 becomes 

 

     

 
 
 

 
    

 

  
                                     

   
  
  
  

  

  
    

 

  
                  

  (2.58) 

The u-coordinate at pipe and borehole radii become 

 

                                         
  
  
    (2.59) 

The radius as a function of u is obtained from Equation 2.57: 

 

      
                                                          

                                                 
    (2.60) 

The borehole region and the soil outside the borehole are divided into Nb and Ns 

cells, respectively. The total number of cells is N = Nb + Ns. The temperature at 

the midpoint of cell n at time step v is Tn,v and the heat flux from cell n to n + 1 is  

qn,v [W/m]. The initial temperatures for v = 0 are zero: Tn,0 = 0, n = 0,1,2,...N.  
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Figure 2.5 Notations for the numerical solution 

 
A constant cell width ∆u and a time step of ∆τ are used for the heat transfer 

problem of Figure 2.5: 

 

∆  
  
𝑁 
 𝑁        

  

∆    
    

             
  

     (2.61) 

Here, τmax is the end time for the computations, and int[…] denotes the integer 

part. The number Ns is chosen so that the heat flux at the outer boundary is 

negligible for τ ≤ τmax. The particular expression is obtained from the line-source 

solution in soil. The criterion is that the heat flux at the outer boundary is smaller 

than               up to the maximum time τmax. The choice pmax=4 is sufficient 

(e
-4

=0.02). 
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We use explicit forward differences to get the heat fluxes and the temperatures. 

The heat fluxes are 

 
                            

(2.62) 
 

                              𝑁     

The temperatures at the new time step, τ = (v + 1) ∙ ∆τ, are given by 

 
            

          

  
 ∆   

(2.63) 
 

            
            

  
 ∆          𝑁  

The above set of Equations 2.62 and 2.63 gives the iterative numerical calculation 

procedure. The conductances K0 and Ku, the heat capacities Cn of all cells, and the 

time step ∆τ must be specified. The thermal conductances, in accordance with 

Equation 2.51 for λ0 = 2π ∙ λg, are  

    

    
     

  
    

 

                  
   (2.64) 

Here, Rp is the pipe resistance and 0.5∙Δu/(2π ∙ λg) is the resistance from the pipe 

wall to the centre of the first cell. The heat capacity of cell n is equal to the area of 

the annular cell times the volumetric heat capacity: 

 

          ∆   
       ∆  ∆       

               𝑁 
               𝑁     𝑁

  (2.65) 

To ensure numerical stability, the time step must satisfy the inequalities: 

 

∆      
    
   

 
  

  
            

     

     (2.66) 

2.3.1.2 Comparison of analytical and numerical solutions 

The analytical and numerical solutions were compared in a number of cases. The 

comparisons showed that the results from the analytical and numerical solutions 

are in complete agreement and that the deviations between the two solutions are 

smaller than 0.01 K in all cases. Figure 2.6 presents simulated fluid temperatures 

from both analytical and numerical solutions for one comparison. For this 

comparison, a heat injection rate of 50 W/m was used for 100 hours. The thermal 

properties of the fluid, pipe, grout and soil considered for the comparison are 

shown in Table 2.1. In this case, the response from the numerical solution was 

determined using 5 cells in the grout region and 38 cells in the soil region.      

Figure 2.7 shows the absolute difference in the predicted fluid temperatures from 

the analytical and numerical methods. The maximum absolute difference in fluid 

temperatures predicted by the two very different approaches is 0.004 K, while the 

average absolute difference is smaller than 0.002 K.  
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Table 2.1 Thermal properties of the fluid, grout and soil considered for the 

comparison of the new models 

 

Element Fluid + Pipe Grout Soil 

Thermal conductivity 
(W/(m∙K)) 

0.47 (pipe) 1.5 3.0 

Heat capacity (J/(kg∙K)) 4182 (fluid) 2000 2500 

Density (kg/m
3
) 1000 (fluid) 1550 750 

 

 

 

 
 

Figure 2.6 Fluid temperature predicted by new analytical and numerical solutions 

for a test simulation  

 

 

 

 
 

Figure 2.7 Difference in fluid temperature predicted from analytical and 

numerical solutions for a test simulation   
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2.3.2 Validation using a semi-analytical solution 

The analytical solution has also been validated against the composite model of 

Beier and Smith
[12]

. The composite model also uses the Laplace transformations 

approach to determine the borehole thermal response. The major difference 

between the composite model and the analytical solution is that the new solution 

is a fully analytical solution. The composite model, on the other hand, uses a 

numerical inversion technique
[48]

 to invert the Laplace transforms in the real time 

and hence is semi-analytical. Another significant difference between the two 

solutions is that the composite model does not explicitly account for pipe and 

fluid resistances. Instead, the composite model accounts for the pipe and fluid 

resistances indirectly by adjusting the radius of the equivalent-diameter pipe or by 

adding the fluid temperature increase—because of the pipe and fluid resistances—

to the predicted fluid temperature. On the contrary, the analytical solution directly 

considers all resistances, including those from the pipe and fluid when simulating 

the fluid temperatures.  

 

Figure 2.8 shows the comparison of the analytical solution and the composite 

model for the test case of the previous section. The effects of fluid and pipe 

resistances were implicitly added to the fluid temperatures predicted from the 

composite model. As seen in Figure 2.8, the results from the analytical solution 

and the semi-analytical composite model are in very close agreement.  

 

 

 
 

Figure 2.8 Fluid temperatures from new solutions and the composite model  

 

2.3.3 Validation using experimental data 

The new analytical solution was also validated using the experimental data from a 

medium-scale laboratory setup. The sandbox setup has been used by various 

Oklahoma State University researchers 
[8, 12, 51]

 to simulate and validate their 

models under controlled conditions. Recently, Beier et al.
[14]

 made reference data 

sets from the sandbox setup available for researchers to test and validate their 

borehole models. The sandbox setup is shown in Figure 2.9. The setup consists of 

a sandbox of dimensions 1.8 m x 1.8 m x 18 m. An aluminium pipe is centred 

horizontally along the length of the wooden box to simulate a borehole in the 

ground. The aluminium pipe contains a grouted U-tube, which is kept centred in 
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the aluminium pipe by means of spacers. Detailed specifications of aluminium 

pipe, U-tube, the grouting material and other sandbox elements can be found in 

the work of Beier et al.
[14]

      

 

 

 
 

Figure 2.9 Sandbox setup used to validate the new solution (Pictures courtesy of 

Professor Jeffrey Spitler
[45]

) 

 

 

The sandbox was used to conduct the two different tests shown in Figure 2.10. 

The first test continued uninterrupted for approximately 50 hours. The power 

input used for the test had an average value and a standard deviation of 

approximately 1050 W and 4 W, respectively. The second test was also conducted 

for approximately 50 hours but with an input power interruption between 9 and 11 

hours. The average value and the standard deviation of the input power used 

beyond the interruption period were approximately 595 W and 3 W, respectively. 

The supply and return temperatures of the fluid circulating in the U-tube were 

measured once a minute for both tests.  

 

 

 
 

Figure 2.10 Input powers for uninterrupted and interrupted sandbox tests 
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Before conducting the tests, independent measurements of the thermal properties 

of the sandbox elements were made. The independently measured thermal 

conductivity and volumetric heat capacity values of grouting material and soil are 

given in Table 2.2.  

  

  

Table 2.2  Independently measured thermal properties of the sandbox elements  

 

Element Grout Soil 

Thermal conductivity 

 (W/(m∙K)) 
0.73 2.82 

Volumetric Heat Capacity 

(MJ/(m
3
∙K)) 

3.84 1.92 

 

 

The new analytical solution was also validated against the two sandbox tests. The 

mean temperatures of the circulating fluid for the two sandbox tests were 

simulated by the analytical solution using independently measured thermal 

properties of Table 2.2 and average values of input powers used in the respective 

tests. The comparison of the simulated fluid temperatures in the new analytical 

solution and the experimentally measured temperatures for the uninterrupted 

sandbox test is presented in Figure 2.11. The mean fluid temperatures obtained in 

the new analytical method and experimental measurements are very similar.  

 

 

 
 

Figure 2.11 Comparison of fluid temperatures from the analytical solution and the 

experimental data from the uninterrupted sandbox test 
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Figure 2.12 shows that the maximum absolute difference between the predicted 

and the measured temperatures is approximately 0.2 K, whereas the average 

absolute difference between the two data sets is less than 0.1 K. This difference is 

despite the fact that the variations in input power, though quite small, were not 

accounted for by the new analytical solution because an average value was used 

instead.  

 

 

 
 

Figure 2.12 Difference in fluid temperature from the new analytical solution and 

the experimental data from the uninterrupted sandbox test 

 

 

Figure 2.13 presents the comparison of the mean fluid temperatures simulated in 

the analytical method and the experimentally measured temperatures for the 

interrupted test. The fluid temperature in the analytical solution is simulated by 

superposition of the temperature response on the average values of heat input 

levels used in the test.  

 

 

 
 

Figure 2.13 Comparison of fluid temperatures from the analytical solution and the 

experimental data from the interrupted sandbox test 
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Figure 2.14 shows the absolute difference between the simulated and the 

measured temperatures. The maximum absolute difference is approximately    

0.26 K, whereas the average absolute difference is less than 0.1 K. Because the 

power to the circulation pump was also switched off during the interruption 

period, the fluid temperatures for 9-11 h were not measured. 

 

 

 
 

Figure 2.14 Difference in fluid temperature from the new analytical solution and 

the experimental data from the interrupted sandbox test  

 

2.4 Conclusions 

An analytical solution that is valid even for short periods has been developed. The 

solution was tested and validated using different approaches. Comparison of the 

analytical solution with a numerical solution shows that the results of the two 

solutions agree with a deviation less than 0.01 K. The results of the analytical 

solutions are also consistent with the results of an existing semi-analytical method 

adjusted for pipe and fluid resistances. The fluid temperatures predicted by the 

analytical solution are also in very good agreement with the experimental results 

of tests conducted under controlled laboratory conditions. A maximum difference 

of less than 0.3 K is observed between the simulated and the experimental results. 
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3 Multi-year Simulations  
Accurate knowledge of the fluid temperatures exiting the borehole heat exchanger 

is necessary in order to optimize the design and performance of GSHP and ground 

storage systems. The fluid temperature exiting a borehole heat exchanger depends 

upon the thermal response of the borehole and the surrounding ground. For a 

multiple borehole heat exchanger, the exiting fluid temperature also depends upon 

the thermal interactions between the boreholes. The development of the thermal 

response of the ground surrounding the borehole field is a slow process because 

the thermal capacity of the ground surrounding a borehole field is very large. 

Hence, typically, a time resolution of months or years is used to study the 

temperature development of the ground. On the other hand, the borehole heat 

exchanger itself has limited thermal mass and capacity and, consequently, the heat 

transfer inside the borehole is more sensitive to any changes in the prescribed 

injection or extraction rates. As a result, the thermal response of the borehole is 

quite rapid and is, therefore, studied using a time resolution ranging from minutes 

to hours. The development of thermal interactions between different boreholes is 

again a slow and long-term process and thus requires monthly or yearly time 

resolution. Determining the accurate borehole fluid temperatures is an intricate 

procedure because it involves thermal processes that vary from short- to long-term 

intervals, with time resolutions ranging from minutes to years. At present, no 

single analytical model exists that can perform rapid simulations of single and 

multiple borehole heat exchangers—from short to long time durations—that 

accurately determine the extraction fluid temperatures. Another key challenge 

associated with multi-year simulations of borehole heat exchangers is the use of 

hourly load values. The heating and cooling demands of a building and the 

resulting loads on a borehole heat exchanger are presented typically as annual 

hourly values. Simulations using hourly borehole loads to determine extraction 

fluid temperatures—15-25 years forward in time—involve high computational 

effort and therefore are very time-consuming.  

 

This chapter addresses the above issues and presents an analytical approach to 

compute step-response functions that are valid in short- to long-time scales. The 

step-response functions are then used together with a load aggregation scheme to 

conduct multi-year simulations. The presented approach can be used to calculate 

extraction fluid temperatures for both single and multiple borehole heat 

exchangers. 

 

3.1 Background  

Let Qstep, as shown in Figure 3.1a, be a constant heat injection rate starting at τ = 0 

for a single borehole or a system of multiple vertical boreholes. The required 

temperature of the heat carrier fluid in the pipes of the boreholes to sustain this 

injection rate is a basic tool in the analysis of the dynamic relations between heat 

injection/extraction and fluid temperatures. This step-response temperature 

Tstep(τ), shown in Figure 3.1b, increases monotonously from zero at τ = 0 to a 

steady-state value Tstep(∞) at very large times.  
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(a) 

 
(b) 

 

Figure 3.1 Temperature response Tstep(τ) for a constant heat injection step Qstep 

 
The step-response solution for temperature concerns the excess temperature above 

undisturbed ground and borehole conditions. This means that the initial 

temperature of the ground and the borehole with the heat carrier fluid is zero for 

the step-response solution. The steady-state temperature defines the thermal 

resistance Rss between the heat carrier fluid and the surrounding ground: 

 

                                       (3.1) 

For time-varying heat loads, the prescribed heat injection rate can be treated as 

constant during each time step. Figure 3.2 shows an example of piece-wise 

constant heat injections for each time-step. The prescribed injection rate Qin(τ) can 

include any number of heat pulses Qn. The heat injection to the ground is taken as 

positive, whereas the heat extraction from the ground is treated as negative. The 

length h (seconds or hours) of the time step may be chosen at will. The number of 

pulses nmax is very large to cover a calculation period of up to, for example,         

τmax = 20 years. 

 
                         

(3.2) 
                            

 

 

 

Figure 3.2 Piece-wise constant heat injections for each time-step 

 
Due to the preceding pulses, the fluid temperature, Tf (nh) at the end of pulse n 

may be obtained by superposition of the solution from each of the preceding 

pulses Qn+1-ν, ν=1, … n:  
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                            (3.3) 

Here, ν enumerates the pulses backwards in time. By superposition, pulse ν may 

be considered a step that starts at the time νh before τ = nh minus a second step 

that starts at the time νh-h before τ = nh, as given by the expression within the 

brackets. Figure 3.3 provides further explanation of the super-positioning 

principle. 

 

 

 
 

Figure 3.3 Superposition of heat pulses  

 
Alternatively, we can use a second notation for the injection values for a better 

representation: 

 

         
   

                         (3.4) 

The fluid temperature at time step n is given by the sum (Equation 3.3) of the 

preceding injection rates times a factor that depends on ν: 

 

          
   

 

   

            
   

 

   

      (3.5) 

The thermal resistance factors Rν and the dimensionless factors κν are given by 

 

   
                     

     
      

(3.6) 
 

   
                     

        
 
  
   
  

An advantage of using the thermal resistance factors Rν is that the final steady-

state value Tstep(∞) is not needed. However, the dimensionless weighting factors 

κν directly give the relative influence of the preceding injection rates. The 

weighting factor is determined by the increase of the step-response function over 

the time from νh-h to νh divided by the total increase of Tstep(τ) from zero to 

infinity, as shown in Figure 3.4. The sum of the weighting factors tends to 1 as ν 

tends to infinity.  
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Figure 3.4 Step-response fluid temperature over time step h 

 

 

The calculations are performed for consecutive time steps. The loads are shifted 

one step from time n-1 to n: 

 

    
   

   
     

            
   

            (3.7) 

The required number of terms in the summation of Equation 3.5 increases with the 

number of time steps. After 10 years, with h=1 hour, a summation of 87,600 

preceding values is required. The weighting factors decrease strongly with ν, but 

the factors for larger ν cannot be neglected since there are so many. The idea of a 

solution that uses some kind of aggregated values for preceding loads in suitable 

time intervals before the considered time is implemented later in this chapter.  

 

3.2 Step-response functions  

This section is based on Paper V. 

 

Step-response is an important tool for the thermal analysis of borehole heat 

exchangers. The step-response solution gives the fluid temperature required for a 

constant injection rate q0 (W/m). The time derivative of the step-response shows 

how the preceding extraction rates influence the extraction fluid temperature. In 

other words, the time derivative of the step-response provides a weighting 

function for the preceding injection rates. The step-response functions may be 

computed using different approaches. They can be determined using analytical 

methods, such as classical line
[28]

 and cylindrical
[19]

 source solutions or numerical 

methods like superposition borehole model
[22]

. The step-response functions 

determined from these approaches are valid for medium- to large-periods. 

Yavuzturk
[51]

 and Xu and Spitler
[50]

 determined step-response functions for short 

times using numerical methods. This section provides a methodology to calculate 

the response function from very short periods (minutes) to very long periods 

(years or longer). For short times, up to 100 hours, the analytical radial solution 

presented in Chapter 2 is used. After this point, a finite line-source solution 

described in the following sections is used. The line-source response function for 

single boreholes and any configuration of vertical boreholes has been reduced to 

one integral only.  
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3.2.1 Finite line-source solution 

We assume that the borehole acts as a continuous line heat source of strength      

q0 (W/m) at x = 0, y = 0, and 0 < z < H. If the initial ground temperature is zero 

and the heat emission starts at τ = 0, the temperature distribution T(r, z, τ) can be 

obtained by a double integration of the point heat source solution
[19]

 in time from 

zero to τ and along the borehole length from zero to H. 

 

             
 

 

    
 

 

  
                

  
 
         

 

          
(3.8) 

 
                     

Equation 3.8 can be rewritten as 

 

         
  
   

       
     

 

  
     

 

 

 

      

   
        

 

  

(3.9) 

 
               

To achieve zero temperature at ground level z = 0, a mirror sink is introduced 

above the ground surface. The line-source solution corrected by the addition of a 

mirror sink is obtained by subtracting T(r, -z, τ) from the above solution. In the 

following line-source solution, the last exponential in the second integral 

represents the mirror sink:  

 

           
  
   

       
     

 

      

 

(3.10) 
 

 

  
    

 

 

    
             

            

We are particularly interested in the mean temperature over the borehole length    

0 < z < H at any radial distance r:  

 

          
 

 
               

 

 

  (3.11) 

The integral mean temperature over the borehole length is obtained by 

substituting Tls(r,z,τ) from Equation 3.10 into Equation 3.11: 

 

           
  
   

       
     

 

      

 

(3.12)  
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The above expression of integral mean temperature is further simplified by 

evaluating the double integral I. Firstly, substitutions sz = u and sz′ = v are made: 

 

  
 

   
 
 

  
     

  

 

    

  

 

        
 
         

 
   (3.13) 

Equation 3.13 can be rewritten as 

 

  
 

   
               (3.14) 

We now evaluate the double integral Ils(h): 

 

       
 

  
     

 

 

    

 

 

        
 
         

 
   (3.15) 

To solve the Equation 3.15 further, we define 

 

       
 

  
     

 

 

    

 

 

        
 
   (3.16) 

The function F(X, −Y) becomes 

 

        
 

  
     

 

 

    

  

 

        
 
   (3.17) 

Substituting v = – v′ in Equation 3.17 gives 

 

        
 

  
     

 

 

       
 

 

       
      (3.18) 

 

                
 

  
     

 

 

   

 

 

        
 
  (3.19) 

Equation 3.15 can now be written as 

 
                       (3.20) 

We now consider the second integral of Equation 3.16 and make the substitution    

u – v = v′ in this integral:  

 
 

  
     

 

 

        
 
 

 

  
            

                    

   

 

 (3.21) 

Here, erf (u) denotes the error function. 

 

Equation 3.21 is used to rewrite Equation 3.16 as:  

 

         

 

 

           

 

 

              (3.22) 
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Substituting u – Y = u′ in Equation 3.22 results in 

 

         

 

 

           

   

  

              (3.23) 

We have 

 

          

 

 

                  
 

  
      

 
    (3.24) 

We can now rewrite Equation 3.23 as 

 
                                   

(3.25) 
 

                                       

Similarly, F(X, −Y) of Equation 3.19 is equal to: 

 
                                     (3.26) 

Equations 3.25 and 3.26 can now be used to rewrite Equation 3.20 to give the 

final expression of the double integral: 

 

                           (3.27) 

The mean temperature (Equation 3.12) over the borehole length can now be 

represented as a single integral: 

 

          
  
   

        
    

       

   

 

      

  (3.28) 

The mean temperature at the borehole radius rb gives the long-term response for a 

single borehole:  

 

                  (3.29) 

3.2.2 Finite line-source solution for multiple boreholes 

The new line-source solution can also be extended to determine the long-term 

response of multiple borehole systems. Let us assume a field of N vertical and 

parallel boreholes, each of height H. The boreholes are taken to be at positions    

(xj ,yj ,z), 0 < z < H, j = 1,2,…,N. The temperature distribution for the total field 

becomes 

 

                       
 
       

 
      

 

   

 (3.30) 

The mean temperature is needed along the borehole wall (bw) for any borehole i.  

 

                       

 

   

  (3.31) 
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Here ri,j denotes the radial distance between borehole i and j (i ≠ j). The 

contribution from the internal heat source of the borehole i is obtained for the 

radial distance rb: 

 

                      
 
        

 
           𝑗  (3.32) 

The mean borehole wall temperature for the entire set of N boreholes is 

 
 

𝑁
           

 

𝑁
               

  

   

 

   

 

   

  (3.33) 

This mean temperature is used as the response function. Using Equation 3.28, the 

response function for N boreholes may now be written in the following way:  

 

      
  
   

           
       

   

 

      

         𝑁      (3.34) 

Here, the function Ie(s) involves a double sum in the exponentials 

 

      
 

𝑁
        

     

 

   

 

   

 (3.35) 

For multiple borehole heat exchangers, the exponential function Ie(s) depends 

upon the size and the configuration of the borehole field. The following examples 

show how the exponential function Ie(s) can be obtained for different 

configurations of multiple borehole heat exchangers.  

 

The first example considers three boreholes in a straight line (Figure 3.5), 

separated by the spacing B. The double sum in Equation 3.35 involves nine terms. 

The exponent involves the distances ri,j.. Three terms involve rb, four terms 

involve B, and two terms involve 2B. The exponential function Ie(s) for three 

boreholes in a line configuration is given by Equation 3.36. The sum of the factors 

before the exponentials is 3+4+2=9.  

 

      
 

 
        

          
            

      (3.36) 

 

 

 
 

Figure 3.5 Three boreholes in a 1 x 3 line configuration  

 

 

The second example considers four boreholes (Figure 3.6) in a 2 x 2 square 

configuration with spacing B. The double sum (Equation 3.35) now involves 4 x 4 

= 16 terms. The exponent involves distances rb, B, and    . For example, in 

Figure 3.6, the distance B occurs eight times between boreholes: 1 to 2, 1 to 3, 2 

to 1, 2 to 4, 3 to 1, 3 to 4, 4 to 2 and 4 to 3. Similarly, diagonal distance     

occurs four times between boreholes: 1 to 4, 2 to 3, 3 to 2, and 4 to 1. Counting 

B1 2 3

 2 B



   

 31 

the number of occurrences for each distance gives exponential function Ie(s) for 

four boreholes in a square configuration as 

 

 
      

 

 
        

          
             

      (3.37) 

 

 

 
 

Figure 3.6 Four boreholes in a 2 x 2 square configuration.    

 

 

The third example considers five boreholes in a 3 x 3 L-configuration           

(Figure 3.7). For five boreholes, the double sum of Equation 3.35 involves 25 

terms. The exponent involves the distances rb, B,    , 2B,    , and    . The 

exponential function Ie(s) for five boreholes in L-configuration is obtained by 

counting the number of occurrences for each distance.  

 

 
       

 

 
        

          
             

 
    

(3.38) 
 

        
             

             
      

 

 

 
 

Figure 3.7 Five boreholes in a 3 x 3 L-configuration    

 

 

In the fourth example, we consider six boreholes in a 2 x 3 rectangular 

configuration with spacing B (Figure 3.8). The double sum (Equation 3.35) 

involve 36 terms. The exponent involves the distances rb, B,    , 2B, and    . 

The exponential function Ie(s) for 2 x 3 rectangular configuration becomes 
 

 
       

 

 
        

           
             

 
    

(3.39) 
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Figure 3.8 Six boreholes in a 2 x 3 rectangular configuration   

 

 

The next example considers seven boreholes in a 5 x 2 U-configuration       

(Figure 3.9). For seven boreholes, the double sum of Equation 3.35 involves 7 x 7 

= 49 terms. The exponent involves the distances rb, B,    , 2B,    , 3B,     , 

4B, and     . The exponential function Ie(s) for seven boreholes in a 5 x 2       

U-configuration is 

 

 
       

 

 
        

            
             

 
    

(3.40) 
 

        
             

            
    

           
            

               
      

 

 

 
 

Figure 3.9 Seven boreholes in a 5 x 2 U-configuration   

 

 

Next, we consider eight boreholes in a 3 x 3 open rectangular configuration with 

spacing B (Figure 3.10). The double term (Equation 3.35) involves 64 terms. The 

exponent involves distances rb, B,    , 2B,    , and    . The exponential 

function Ie(s) for eight boreholes in open rectangular configuration becomes: 

 

 
       

 

 
        

           
             

 
    

(3.41) 
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Figure 3.10 Eight boreholes in a 3 x 3 open rectangular configuration 

 

 

Finally, we consider nine boreholes in a square configuration of Figure 3.11. The 

double sum of Equation 3.35 now involves 9 x 9 = 81 terms. The exponent 

involves the distances rb, B,    , 2B,    , and    . Counting the number of 

occurrences for each distance yields 

 

 
       

 

 
        

           
              

 
    

(3.42) 
          

              
             

      

 

 

 

 
 

Figure 3.11 Nine boreholes in a 3 x 3 rectangular configuration    

 

 

3.2.3 Combined step-response functions 

The short-term solution presented in Chapter 2 and the finite line-source solution 

demonstrated in the previous sections are used together to obtain a combined step-

response. In comparison with the finite line-source solution, the short-term 

analytical solution is computational heavy. Hence, it is used only up to a certain 

time to account for the short-term response. After that time, the finite line-source 

solution is used. However, the line-source solution needs to be adjusted for 

thermal processes inside the borehole because the line-source solution does not 

account for thermal resistances over the pipe and the grout. In order to obtain the 

circulating fluid temperatures, the effects of pipe and grout resistances are added 
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to the borehole wall temperatures obtained by the finite line-source solution. This 

adjustment is illustrated in Figure 3.12. 

  

 
 

Figure 3.12 Response temperatures from analytical and finite line-source 

solutions 

 

 

The top curve in the figure shows the temperature response of a ground heat 

exchanger from the analytical solution, which accounts for the local thermal 

processes inside the borehole. The lower curve shows the corresponding response 

from the finite line-source solution, which does not consider the local thermal 

processes inside the borehole. The difference between the two curves after a 

certain time, which is 100 hours in this case, is due to the effects of the pipe and 

grout resistances on the temperature of the circulating fluid. In order to account 

for the temperature increase due to the pipe and grout resistances, the response of 

the finite line-source solution is shifted upwards so that the analytical and the line-

source solutions coincide at a suitable breaking time. This adjustment results in a 

step-response function that uses the response from the analytical solution up to the 

breaking point in addition to the response, including the upward shift, from the 

finite line-source solution after the breaking point. The choice of the breaking 

time is not critical because the difference between the two curves is almost the 

same—between 10 and 1000 hours.  

 

Figure 3.13 shows the combined response functions obtained for three example 

cases of a single borehole, three boreholes in a straight line (Figure 3.5) and nine 

boreholes in a square (Figure 3.11). The step-response functions were developed 

for a heat flux of 10 W/m injected into a 110 mm diameter borehole with a single 

equivalent-diameter pipe. The ground surrounding the borehole heat exchangers 

was assumed to have thermal conductivity, density and heat capacity values of     

3 W/(m∙K), 2500 kg/m
3
 and 750 J/(kg∙K), respectively. The considered values of 

these properties for the grout region were 1.5 W/(m∙K), 1550 kg/m
3
 and          

2000 J/(kg∙K), respectively. 

 

The figure also compares the combined step-response functions to the fluid 

temperatures predicted by the Eskilson‘s g-functions approach
[22]

. The comparison 

is performed only for medium to large periods due to the limitations of the          

g-function approach for shorter time scales. It can be seen that, in all three cases, 
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the difference between the two approaches is reasonably small up to 25 years       

(2.2.E+05). The difference between the two approaches increases with time and 

with the number of boreholes. However, it should be noted that using a higher 

injection rate of 10 W/m for the considered cases, instead of unit injection rate, 

increased the differences shown in Figure 3.13 by a factor of ten. 

 

 
 

Figure 3.13 Combined step-response functions for one, three and nine boreholes    

 

3.3 Load aggregation scheme for multi-year 
simulations  

This section is based on one of the additional publications (Paper 7 on Page viii).   

 

Multi-year simulations of a borehole heat exchanger performed over a period from 

20 to 25 years involve approximately 200,000 hourly load values. These values, if 

not aggregated, can lead to unacceptably long computational times. A load 

aggregation scheme is presented to perform rapid yet accurate multi-year 

simulations of borehole systems. The starting point is the step-response function 

for the considered borehole system and the annual hourly heating and cooling 

loads:  

 
                                 

(3.43) 
 

                    

In this study, the combined step-response function approach discussed in the 

previous section is used. However, it is also possible to implement the load 

aggregation scheme using step-response functions or g-functions determined from 

other approaches. First, the thermal resistance between the circulating fluid and 

the surrounding ground is determined from Equation 3.1 by using the step-

injection rate and the steady-state temperature. The time step h and the magnitude 

of the injection step are not critical and thus can be chosen at will.     

 

Next, the loads to be aggregated are placed in a long sequence of ―cells‖. The 

original loads from cells =1 to =P1 are kept without aggregation on the first 

level q=1. Loads are aggregated on the following levels. At the second level q=2, 
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there are P2 lumped cells each with a width 2h. Similarly, the third level q=3 has 

P3 lumped cells, each with a width 4h. The doubling of cell width is continued to 

the last level qmax so that the aggregated cells cover all original non-aggregated 

loads. The number of lumped cells with the width 2q-1 on level q is Pq. The 

number Pq is chosen so that a suitable accuracy is obtained by comparing the fluid 

temperatures for the original and lumped-load sequences. Any choice of Pq 

between 5 and 20 serves the purpose. The formulas for the width of lumped cells 

on level q, the very last ν-value, and the number of lumped cells are 

 
                    

(3.44)  

𝜈               

    

   

 𝑁                 

    

   

  

The -value for all the cells in each lumped cell p on level q needs to be 

determined. A simple expression can be used to enumerate all the -values from 1 

to max. Let νq,0 denote the very last ν-value on level q-1, and νq,p the last ν-value 

in lumped cell p on level q, which gives 

  
 𝜈      𝜈                      𝜈       

(3.45) 
 𝜈    𝜈                            

Now, q, p, r) can be expressed as     

 
 𝜈  𝜈                                   (3.46) 

Equation 3.5, which gives the fluid temperature at time step n, may now be 

written in the following way: 

 

                  
   

    

   

   

  

   

    

   

    

(3.47) 

 
 𝜈  𝜈                 

In the aggregated representation of the loads, the fluid temperature is determined 

from the following approximation: 

 

                   
   
      

  

   

    

   

  (3.48) 

Here, the lumped weighting factor is equal to the sum of the corresponding 

original weighting factors, Equation 3.6, lower line: 

 

         

    

   

 
                           

        
  (3.49) 

In Equation 3.48, a suitable average load is used in each lumped cell p on level q: 

 
  
   

      
   
                𝜈  𝜈                 (3.50) 
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The original sequence of loads is shifted one cell position at each time step n, 

(Equation 3.7), which corresponds to a time displacement h. The problem is how 

to do this time displacement h for the aggregated cells with the width 2h, 4h, etc. 

The immediate answer is to displace the lumped cells by the length h and 

conserve the energy. This gives the following set of equations to calculate the 

aggregated loads at step n from the values at step n-1: 

 
      
   

                              
   

          
     

  

(3.51) 
 
                             

   
       

     
 
 

  
        

     
      

     
   

The shift for the aggregated cell q,p is given on the lower line. One value from 

cell p-1 is shifted into the cell, and one value from the cell is shifted out of the 

cell, as shown within the brackets. This difference divided by the width rq of the 

aggregated cell gives the change of the average value in the aggregated cell in the 

time shift. The first line ensures that the formulas are also valid for p=1. The new 

heat injection at time n is put in cell 1,0, and the old value in cell q-1,Pq is put into 

cell q,0. 

 

3.4 Examples of multi-year simulations 

The load aggregation scheme of the previous section and the step-response 

functions of Section 3.2 have been used to perform multi-year simulations of 

borehole systems. Both single and multi-borehole cases have been used for the 

simulations.  

3.4.1 Single borehole system 

The multi-year simulations of a single borehole system were performed using the 

synthetic load profile of Pinel
[42]

. The reason for using this particular load profile 

is that it has been used by many researchers, including Bernier et al.
[15]

, Lamarche 

and Beauchamp
[33]

 and Lamarche
[32]

, when performing multi-year simulations of 

GSHP systems. The load profile is shown in Figure 3.14.   

  

 
 

Figure 3.14 Synthetic load profile of Pinel
[42]

 for a single borehole  
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First, the fluid temperatures are determined using the non-aggregated loads. The 

initial ground temperature is taken as 0 °C. The sum (3.5) for the non-aggregated 

scheme is calculated from n=1 to nmax. The number of operations increases as 

(nmax)
2
. For a 20-year simulation, nmax is 20∙365∙24 = 175,200. The simulation 

time, gauged by using an Intel ® dual core 2.10 GHz processor, is approximately 

88 minutes. Simulation times for other durations are given in Table 3.3. The 

simulated fluid temperatures for the 20th year using non-aggregated loads are 

shown in Figure 3.15. The temperatures lie in the range from -4 to +9 °C. 

 

 

 
 

Figure 3.15 Twentieth year fluid temperature using non-aggregated loads 

 

 

Next, the fluid temperatures are determined by using the load aggregation scheme. 

The number of lumped cells assumed on all levels is Pq=5. The required number 

of load aggregation levels for the simulation is qmax=16. The number of 

aggregated cells is 5∙16 = 80. The limits νq,p of the aggregated cells and the 

lumped weighting factors for this case are given in Tables 3.1 and 3.2, 

respectively. The right hand limits νq,p of the aggregated cells are determined from 

Equation 3.45. In the first line, q=1, the first 5 cells are given. In the second line, 

the right hand value of the doubled cells, 7 to 15, are shown. The value 5 from the 

first level is transferred to the next level in the p=0 column. The last line indicates 

that 16 levels are needed to exceed 175,200 values of loads. The lumped 

weighting factors of Table 3.2 are calculated from Equation 3.49. The first value 

of 0.246 indicates that the first cell affects the extraction temperature by 25 %. 

The next four cells affect the extraction fluid temperatures by 7, 4, 3 and 2 %, 

respectively. A lumped weighting factor of 0.01 in the third cell of third level 

represents an influence of 1 % on the extraction fluid temperature.   
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Table 3.1 Right hand limits νq,p of the aggregated cells 

 

q 
p 

0 1 2 3 4 5 

1 0 1 2 3 4 5 

2 5 7 9 11 13 15 

3 15 19 23 27 31 35 

4 35 43 51 59 67 75 

5 75 91 107 123 139 155 

6 155 187 219 251 283 315 

7 315 379 443 507 571 635 

8 635 763 891 1019 1147 1275 

9 1275 1531 1787 2043 2299 2555 

10 2555 3067 3579 4091 4603 5115 

11 5115 6139 7163 8187 9211 10235 

12 10235 12283 14331 16379 18427 20475 

13 20475 24571 28667 32763 36859 40955 

14 40955 49147 57339 65531 73723 81915 

15 81915 98299 114683 131067 147451 163835 

16 163835 196603 229371 262139 294907 327675 

 

 

Table 3.2 Lumped weighting factors 1000 ∙       of the aggregated cells  

 

q 
p 

1 2 3 4 5 

1 245.7 68.1 35.7 23.3 17.1 

2 24.4 17.4 13.5 11.0 9.3 

3 15.1 12.0 10.0 8.6 7.5 

4 12.6 10.4 8.8 7.7 6.8 

5 11.6 9.6 8.1 7.1 6.3 

6 10.9 9.2 7.9 6.9 6.2 

7 10.7 9.0 7.8 6.8 6.1 

8 10.5 8.9 7.7 6.7 6.0 

9 10.4 8.7 7.5 6.6 5.9 

10 10.2 8.5 7.4 6.5 5.7 

11 9.9 8.3 7.1 6.2 5.5 

12 9.4 7.9 6.7 5.9 5.2 

13 8.8 7.3 6.2 5.4 4.7 

14 8.0 6.5 5.5 4.7 4.1 

15 6.8 5.4 4.5 3.8 3.2 

16 5.2 4.0 3.2 2.6 2.1 
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Figure 3.16 shows the extraction fluid temperatures simulated for 20 years from 

the load aggregation scheme. The computational time for a 20 year simulation is 

25 seconds, which is approximately 200 times faster than the non-aggregated 

scheme. Simulation times for other durations are given in Table 3.3. 

 

 

Table 3.3 Computational times for non-aggregated and aggregated loads  

 

Simulation time 
(years) 

Computational time (seconds) 

Non-aggregated loads Aggregated loads 

1 14 (< 1 min) 3 

3 31 (2.2 min) 5 

5 330 (5.5 min) 7 

10 1321 (22 min) 14 

20 5289 (88 min) 25 

 

 

 
 

Figure 3.16 Extraction fluid temperatures for 20 years using the aggregated loads 

 

 

 

 

 

 

 

 

 

 

 

-5

0

5

10

0 43800 87600 131400 175200

Fl
u

id
 T

e
m

p
e

ra
tu

re
 (

°C
)

Time (hours)



   

 41 

The errors in the extraction fluid temperatures calculated for the 20th year by 

using the load aggregation scheme are shown in Figure 3.17. The errors are 

measured with reference to the extraction fluid temperatures determined from 

non-aggregated loads. The maximum absolute error is 0.039 K for Pq=5. Using 

Pq=10 and 20 reduces the maximum absolute errors to 0.018 and 0.006, 

respectively.     

 

 
 

Figure 3.17 Errors in simulated fluid temperatures for the 20th year introduced by 

the load aggregation scheme (Pq=5) 

 

3.4.2 Multiple-borehole system 

Multi-year simulations of a multiple borehole system were performed using the 

ground loads of Figure 3.18. The loads from an actual building in the southwest of 

Sweden were scaled down to suit a nine-borehole system of 3 x 3 rectangular 

configuration. The borehole system is designed to provide minimum mean fluid 

temperature of -3 °C in the heating mode. Each borehole is 165 m deep and the 

spacing between adjacent boreholes is 5 m. The undisturbed ground temperature 

level of 8 °C was considered.  

 

 
 

Figure 3.18 Ground loads considered on nine boreholes in a square configuration 
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The load aggregation scheme discussed in Section 3.3 was used to determine the 

mean fluid temperatures. The combined step-response function based on the finite 

line-source solution of Equation 3.42 for nine boreholes in a square configuration 

was used. Five lumped cells are assumed on all levels of aggregation (i.e., Pq=5). 

In total are 80 aggregated cells on 16 levels of aggregation (i.e. qmax=16). The 

right hand limits νq,p of the aggregated cells are identical to those shown in    

Table 3.1. The lumped weighting factors, determined from Equation 3.49, are 

shown in Table 3.4. Comparison of the lumped weighting factors for this example 

to those determined for a single borehole (Table 3.2) yields some interesting 

observations. For a single borehole, the extraction fluid temperatures were greatly 

influenced by the most recent loads. The weighting factors fall sharply with 

passing time. Consequently, loads in the distant past had relatively small influence 

on the extraction fluid temperatures. On the other hand, for a multiple borehole 

system, the thermal interaction between boreholes increases over time. Hence, the 

weighting factors for loads in the distant past are also quite large. 

     

 

Table 3.4 Lumped weighting factors 1000 ∙       of the aggregated cells 

 

q 
p 

1 2 3 4 5 

1 80.4 22.3 11.7 7.6 5.6 

2 8.0 5.7 4.4 3.6 3.0 

3 4.9 3.9 3.3 2.8 2.4 

4 4.1 3.4 2.9 2.5 2.2 

5 3.8 3.1 2.7 2.3 2.1 

6 3.6 3.0 2.7 2.4 2.2 

7 3.9 3.5 3.3 3.1 3.0 

8 5.7 5.4 5.2 5.0 4.8 

9 9.2 8.7 8.3 7.9 7.5 

10 14.1 13.0 12.0 11.2 10.5 

11 19.1 17.1 15.4 14.0 12.8 

12 22.8 19.8 17.5 15.6 14.1 

13 24.6 21.0 18.2 16.1 14.4 

14 24.7 20.8 17.8 15.5 13.8 

15 23.4 19.4 16.4 14.2 12.4 

16 20.8 16.9 14.0 11.9 10.2 

 

 

Figure 3.19 shows the simulated mean fluid temperatures over 20 years. The 

computational times for performing simulations using aggregated loads remain 

similar to those shown in Table 3.3. It takes approximately 26 seconds to run a 

20-year simulation in this case. The annual minimum and maximum mean fluid 

temperatures obtained from the commercial software EED
[18]

 are also shown as 

dotted lines in Figure 3.19. Some discrepancy between the two approaches is 

expected as (among other things) the EED software determines the monthly 

minimum and maximum fluid temperatures by superimposing the peak loads of 
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that month on the aggregated load values. However, the difference between the 

two approaches is relatively small. The errors in simulated fluid temperatures with 

reference to the non-aggregated loads are shown in Figure 3.20 for the 20-year 

period. The maximum difference between the fluid temperatures calculated from 

the aggregated scheme (Pq=5) and non-aggregated loads for the 20-year period is 

only 0.046 K.   

 

 

 
 

Figure 3.19 Extraction fluid temperatures for 20 years using the aggregated loads 

 

 

 
 

Figure 3.20 Errors in simulated fluid temperatures for 20 years introduced by the 

load aggregation scheme (Pq=5) 
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The extraction fluid temperatures for the 20th year and the errors in reference to 

the non-aggregated scheme are shown in Figures 3.21 and 3.22, respectively.  

 

 

 
 

Figure 3.21 Twentieth year fluid temperature using aggregated loads 

 

 

 
 

Figure 3.22 Errors in simulated fluid temperatures for the 20th year introduced by 

the load aggregation scheme (Pq=5)    

 

 

Figure 3.23 shows loads for peak heating and cooling days. It is quite interesting 

to follow the development of fluid temperatures for these days. On the peak 

heating day, the heating load gradually increases from approximately 27 kW at 

the beginning of the day to over 53 kW by the end of the day. The fluid 

temperatures follow the heating loads closely. They decrease from a positive 

value at the beginning of the day to below -3 °C by the end of the day. On the 

peak cooling day, the cooling load is approximately constant at 22-23 kW for the 

first six hours of the day. It then starts increasing and reaches a value of 

approximately 53 kW at mid day. The cooling load remains fairly constant for the 

next eight hours before it starts decreasing in the late evening. The simulated fluid 

temperature is lower at the start of the day. Following the pattern of the cooling 

loads, the extraction fluid temperature increases during the day before decreasing 
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again in the late afternoon. In both cases, the fluid temperatures from the borehole 

heat exchanger closely follow the heating and cooling loads on the system. 

 

 

 
 

(a) 

 
 

(b) 

 

Figure 3.23 Extraction fluid temperatures for peak heating and cooling days 

  

 

3.5 Conclusions 

 

Energy simulations of ground source heat pump systems are critical for the design 

and optimal operation of these systems. However, it is very time consuming to 

perform hourly simulations of borehole systems over multiple years. The 

extraction fluid temperature depends on a long sequence, backwards in time, of 

heat extraction and injection rates. This chapter presented a load aggregation 

scheme to perform multi-year simulations of borehole systems. The starting point 

is the step-response function for the considered borehole system and the 

corresponding long sequence of cells, each with a load and a weighting factor. 

The step-response function was computed using a combination of the short-term 

analytical solution of Chapter 2 and a finite line-source solution. The analytical 

solution was used for times up to 100 hours. The finite line-source solution was 

used afterwards. Multi-year simulations of single and multiple borehole systems 

were performed using aggregated loads and step-response functions. The load 

aggregation was performed on different levels. At the first level, the original 

weighting factors were kept. At levels 2, 4, 8, etc., weighting factors were lumped 

together. The accuracy of the scheme depends on the number of lumped cells on 

each aggregation level. The number of cells to be lumped can be chosen freely to 

obtain the desired accuracy level. A choice of 5 lumped cells on each of 16 

aggregation levels required for a 20-year simulation gives a maximum absolute 

error of less than 0.05 K. Approximately 80 aggregated loads are used, and the 

new scheme was found to be 200 times faster than the non-aggregated case. 
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4 Thermal response testing and analysis 
It is now a standard practice to perform a thermal response test (TRT) when 

designing medium- to large-sized borehole systems. Thermal response tests are 

conducted on pilot boreholes to determine thermal properties including ground 

conductivity, borehole resistance and undisturbed ground temperature. These 

properties are used in the design of borehole systems as inputs in manual 

calculations or design software to determine the size and configuration of the 

borehole heat exchanger.  

 

The idea of using TRT to measure ground thermal properties was first presented 

by Mogensen
[40]

. Gehlin
[23]

 introduced a now commonly used testing and 

evaluation procedure. Other noteworthy evaluation methods were developed by 

Austin et al.
[8]

 and Shonder and Beck
[44]

. Beier and Smith
[13]

 and Beier
[10]

 

proposed methods to evaluate tests interrupted by a power failure. Distributed 

thermal response tests were used by Acuña
[2]

 to determine the local variations of 

ground conductivity and borehole resistance along the borehole depth. Kavanaugh 

et al.
[31]

 investigated the effects of test duration, power quality and borehole 

retesting using experimental studies. Witte et al.
[49]

 analyzed the impact of 

groundwater flow on the thermal response of a borehole heat exchanger. Gehlin
[23]

 

reported on the influence of natural convection and thermosiphon effects on 

testing of groundwater-filled boreholes. Gustafsson and Westerlund
[26]

 suggested 

multiple injection rates to investigate the presence and influence of natural 

convection and advection on groundwater-filled boreholes.  

 

Despite widespread interest and research on thermal response testing, many areas 

remain that call for more study. There is a dearth of research on issues such as test 

accuracy, the sensitivity of borehole system design to uncertainties in TRT results, 

the role of natural convection in groundwater-filled boreholes, the evaluation of 

multi-injection rate tests, and the required recovery times after a TRT. This 

chapter deals with some of the uncertainties and unresolved issues in testing of 

borehole systems. The chapter first reports on the development of a new GSHP 

test facility and its TRT setup. Testing and evaluation of test facility boreholes is 

presented next. Case studies are then used to perform sensitivity and uncertainty 

analysis of TRT results. Finally, the analytical solution derived in Chapter 2 is 

used to develop an evaluation method for multi-injection rate tests on ground-

water filled boreholes and to determine the waiting times needed before 

performing a retest. 

     

4.1 Test facility  

A newly developed GSHP test facility
[30]

 was used to conduct most of the TRTs 

reported in this chapter. The GSHP system of the test facility consists of a nine-

borehole system drilled in a 3x3 rectangular configuration. All the boreholes are 

groundwater-filled and have single U-tubes as ground loop heat exchangers. The 

distance between adjacent boreholes is approximately 4 m and each borehole has 

an active depth of approximately 80 meters. The spacing between the two legs of 

the U-tube and between the U-tube legs and the borehole boundary is not 

controlled. The horizontal cross-section of an individual borehole and the layout 

of the whole borehole system are shown in Figure 4.1. Additional details of the 

borehole field and its elements are given in Table 4.1.  
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Table 4.1 Details of the borehole system 

 

Element Specification 

Borehole  

Effective borehole depth 80 m 

Borehole diameter 110 mm 

Borehole filling material Groundwater 

Surrounding ground type Bedrock 

Heat exchanger  

Type Single U-tube 

Material Polyethylene 

Pipe outer diameter 40 mm 

Pipe thickness 2.3 mm 

Thermal conductivity 0.42 W/(m∙K) 

Shank spacing Not controlled 

Circulating fluid  

Type Ethanol (29.5 %) 

Thermal conductivity 0.401 W/(m∙K) 

Freezing point -20 °C 

Specific heat capacity 4180 J/(kg∙K) 

 

 

  
 

Figure 4.1 Geometry and layout of the test-facility boreholes 

 

 

The experimental setup of the test facility to conduct TRTs is shown in Figure 4.2. 

The setup includes an electric heater, nine circulation pumps, and temperature and 

flow sensors. The installed electric heater is of variable capacity and can operate 

at various power levels between 2.5 and 15 kW. All nine boreholes have 

dedicated variable speed pumps and flow control valves to monitor and control 

the flow of circulating fluid in individual boreholes. The circulation pumps used 
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in the TRT setup are designed specifically for GSHP system applications. Each 

pump has a nominal motor power of 100 W. The pumps can be operated between 

1400-3900 rpm. Depending on the pump speed, the power and current inputs to 

the pump vary between 8-130 W and 0.07-0.95 A, respectively. These inputs are 

significantly smaller than those typical of ordinary circulation pumps. A state-of-

the-art data acquisition and storage system is used for recording TRT 

measurements. Temperature measurements in the system are made using 

electronic immersion temperature transmitters. Temperature measurements of the 

circulating fluid are made in two instances: first, when the fluid enters or leaves 

the laboratory building; and second, before and after the electric heater. The flow 

rate is also measured twice: first, by using an installed vortex flow meter; and 

second, over the individual borehole valves. The input power to the electric heater 

is measured by means of a high-accuracy meter that also provides the possibility 

of waveform analysis. The accuracy of the power meter is 0.15 % of the reading 

plus 0.025 % of the full scale, resulting in a total accuracy of < 1 %. Other 

measurements that may be taken include ambient air temperature and indoor air 

temperature of the test facility. All the data can be recorded for any interval over 

10 seconds. 

 

 
 

Figure 4.2 Test facility‘s TRT setup 

 

4.2 Response testing and evaluation of the test 
facility boreholes  

This section is based on Paper IV. 

 

The laboratory borehole system provides a unique opportunity to study thermal 

properties, including undisturbed ground temperature, ground thermal 

conductivity and borehole thermal resistance of nine boreholes in close proximity. 

Issues such as repeatability and reproducibility of TRTs can be comprehensively 

studied. Such investigations, which show the effects of the random test errors and 
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local inhomogeneities on TRT results, have rarely been conducted on an academic 

level in controlled laboratory conditions for a borehole field of this size.  

 

The TRTs of the nine laboratory boreholes were conducted over a period of four 

months. Before conducting the tests, undisturbed ground temperatures were 

measured for all nine boreholes. Following the undisturbed ground temperature 

measurements, TRTs were conducted in the heat injection mode. Tests were 

conducted for different times between 48 and 260 hours. Similar heat injection 

and flow rates were used for all tests. The power level used for the tests was 

approximately 4.5 kW. The chosen power level resulted in a heat injection rate of 

approximately 55 W/m, which is in accordance with the ASHRAE 

recommendations
[6]

. The flow from the circulation pumps was kept at more than 

1.4 m
3
/h to ensure turbulent flow in the ground loop. Readings of the circulating 

fluid temperatures, power input, flow and ambient temperature were taken at 

regular intervals of 3 to 5 minutes. After a test, measurements obtained from the 

test were analyzed, and the ground thermal conductivity and borehole thermal 

resistance were estimated.  

 

The undisturbed ground temperature for each borehole was determined using two 

different approaches. In the first approach, the fluid was circulated a number of 

times through the undisturbed borehole. The inlet and outlet fluid temperatures 

were recorded at intervals of 10 seconds. The variations in circulating fluid 

temperature diminish after approximately 30 minutes. The undisturbed ground 

temperature is then approximated from the stabilized fluid temperature. A 

problem with this approach is that, for longer times, the undisturbed ground 

temperatures are affected by the heat gains from the circulation pump. However, 

use of pumps custom made for borehole applications avoided this problem. The 

highly efficient pumps add only a few watts to the circulating fluid. The 

measurements of the undisturbed ground temperature calculated by this approach 

are shown in Table 4.2. The measurements vary between 8.1 and 9.2 °C. The 

variations in the undisturbed ground temperature measurements are due to 

different initial temperatures of the fluid present in the circulation loop outside the 

borehole. 

 

 

Table 4.2 Undisturbed ground temperature from flow circulation approach 

 

Borehole Undisturbed ground temperature (°C) 

1 9.1 

2 8.7 

3 8.9 

4 8.5 

5 8.4 

6 8.2 

7 8.1 

8 8.3 

9 9.2 
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The second approach used to measure the undisturbed ground temperature was to 

monitor the start-up exit fluid temperatures from the U-tube. Figure 4.3 shows the 

temperatures of the exit fluid from the nine boreholes. The decline in temperatures 

from the start-up to the first set of troughs is because of the fluid present in the 

return horizontal piping from the boreholes to the test facility building. The fluid 

had remained in the piping for several weeks before the tests and hence was in 

equilibrium with the corresponding ambient temperatures. After the first set of 

troughs, the fluid from the U-tube flows past the temperature sensor. The flow 

from the U-tube continues until the start of the second set of troughs. The 

temperature of the fluid from the U-tube, highlighted in Figure 4.3, remains fairly 

constant at approximately 8.2-8.3 °C for all boreholes. Next, the fluid present in 

the supply horizontal piping to the boreholes flows past the temperature sensor. 

This is represented by the second set of troughs in the figure. At this time, the 

fluid has completed the first round of circulation. During the next rounds, the 

variations diminish and the fluid temperature stabilizes. Figure 4.3 also indicates 

that after 20-30 minutes of circulation, the stabilized fluid temperature is 

influenced by the initial temperatures of the fluid present in the circulation loop. 

The undisturbed ground temperatures, calculated from the start-up exit fluid 

temperature approach, were used for further analysis.  

 

 
 

Figure 4.3 Undisturbed ground temperature from start-up exit fluid temperatures  

 

 

The power levels used for the TRTs of the boreholes and the resulting mean fluid 

temperatures are shown in Figures 4.4 and 4.5, respectively. The ground 

conductivity and borehole thermal resistance estimations for the tests were 

estimated using the line-source approximation methods of Gehlin
[23]

 and Beier 

and Smith
[11]

, respectively. The results of the TRTs of the boreholes are given in 

Table 4.3. The ground thermal conductivity estimations for the nine boreholes 

vary between the extreme values of 2.81 and 3.2 W/(m∙K). The ground 

conductivity estimations have a mean value of 3.01 W/(m∙K). The whole range of 

ground conductivity estimations of the nine boreholes can be represented and 

expressed as 3.01 W/(m∙K) ± 7 %. The estimations of borehole thermal resistance 

for the nine boreholes vary between the extreme values of 0.049 and               

0.074 (m∙K)/W. The borehole resistance estimations exhibit larger variations. The 

borehole resistance values of the nine boreholes lay in a range of 0.062 (m∙K)/W 

± 20 %.     
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Figure 4.4 Power inputs for TRTs of nine boreholes 
 

 

 
 

Figure 4.5 Mean fluid temperatures for TRTs of nine boreholes 
 

 

Table 4.3 Ground conductivity and borehole resistance estimations for the test 

facility boreholes 
 

Borehole 
Duration 
(hours) 

Heat injection 
rate 

(W/m) 

Ground 
conductivity 
(W/(m∙K)) 

Borehole 
resistance 
((m∙K)/W) 

1 75 54.7 2.88 0.059 

2 54 54.9 3.06 0.064 

3 267 56.2 3.04 0.074 

4 48 54.6 2.81 0.049 

5 68 54.9 2.98 0.064 

6 91 53.2 2.89 0.063 

7 48 54.5 3.19 0.064 

8 69 55.0 3.20 0.065 

9 98 55.0 3.12 0.069 
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The results of thermal response tests on nine nearby boreholes suggest that the 

ground conductivity and borehole thermal resistance values, determined from a 

carefully conducted TRT, can have uncertainties on the order of 7 and 20 %, 

respectively. These uncertainties in the TRT results are induced from the 

experimental setup, the evaluation method, and the input parameters to the 

evaluation method as well as possible inhomogeneities in the bedrock properties. 

A sensitivity analysis was carried out to determine the effects of the different 

uncertainties shown in Table 4.4 on the TRT results. The analysis indicates that 

the considered uncertainties can result in ground conductivity and borehole 

resistance estimations varying up to 10 and 40 %, respectively. The variations in 

ground thermal conductivity and borehole thermal resistance estimations of nine 

nearby boreholes are well within the range determined from the sensitivity 

analysis shown in Table 4.4.  

    

 

Table 4.4 Sensitivity of ground thermal conductivity and borehole thermal 

resistance estimations of test facility‘s boreholes 

 

Factors  
Sensitivity of ground 

conductivity 
estimations (%) 

Sensitivity of 
borehole resistance 

estimations (%) 

Test duration between 50 and 

100 hours  
± 4 % ± 7 % 

Power fluctuations of ± 1 % ± 1 % ± 2 % 

Temperature measurement 

uncertainty of ± 0.2 K 
<  ±1 % <  ±1 % 

Uncertainty of  ± 0.2 K in 

undisturbed ground 

temperature measurement  

- ± 8 % 

Uncertainty of  ± 10 % in the 

volumetric heat capacity  
- ± 6 % 

Borehole geometry 
 

 

± 1 % uncertainty in 

borehole depth 
± 1 % <  ±1 % 

± 3 % uncertainty in 

borehole radius 
- ± 4 % 

Estimation method ± 2.5 % ± 10 % 

Total sensitivity ~ ± 10 % ~ ± 40 % 
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4.3 Sensitivity of borehole system design to 
uncertainties in TRT results 

This section is based on Paper III. 

 

The effect of the variations in ground conductivity and borehole resistance 

estimations of the test facility boreholes on the design of borehole systems have 

been analyzed using case studies. For the case studies, a hypothetical office 

building
[24]

, based on three floors of an actual office building in Tulsa, Oklahoma, 

has been used. The building has a square footprint of 49 m x 49 m. Approximately 

60 % of the building facade is covered by double-pane glass windows. The 

building has high occupancy (1 person per 5 m
2
) and high lighting and equipment 

heat gains (combined 23.1 W/m
2
) with office-appropriate schedules. The hourly 

heating and cooling loads of this office building have been determined for 

different climate conditions of Tulsa, Oklahoma (warm-humid) and Burlington, 

Vermont (cold-humid) using building energy simulation software. The annual 

hourly demands for the Tulsa and Burlington buildings are shown in Figures 4.6 

and 4.7, respectively. 

 

 
 

Figure 4.6 Annual heating and cooling demands for the Tulsa case 

 

 
 

Figure 4.7 Annual heating and cooling demands for the Burlington case 
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Table 4.5 Monthly heating and cooling demands of the case study buildings  

 

Month 

Tulsa Burlington 

Heating 
(MWh) 

Cooling 
(MWh) 

Heating 
(MWh) 

Cooling 
(MWh) 

January 16.3 - 36.4 - 

February 5.0 1.8 30.4 - 

March 1.6 9.7 18.3 0.1 

April 0.4 21.4 4.5 5.7 

May - 54.3 0.5 23.4 

June - 103.5 - 37.0 

July - 127.9 - 63.0 

August - 128.2 - 54.5 

September - 54.1 0.4 18.7 

October 0.3 31.0 1.8 - 

November 1.7 4.0 7.6 - 

December 6.9 - 23.4 - 

Year 32 536 123 202 

 
The commercially available software, Earth Energy Designer (EED)

[18]
, was used 

to design the borehole systems for both cases. For the Tulsa case, the building has 

predominant cooling requirements of 536 MWh and heating requirements of just 

32 MWh, as shown in Table 4.5. Therefore, the borehole system of the Tulsa 

building is designed to maximize the heat transfer between the ground heat 

exchanger and the surrounding ground. The limiting factors considered for the 

Tulsa borehole system include maximum area utilization of 125 m x 50 m, 

borehole depth of approximately 100 m and minimum and maximum fluid 

temperatures of -5 and 35 °C to the heat pump(s) in heating and cooling modes, 

respectively. A field of 225 boreholes in a rectangular configuration of 9 x 25 was 

chosen for the Tulsa case. The borehole spacing between adjacent boreholes is     

5 m. The layout of the borehole field is shown in Figure 4.8.  

 

 
 

Figure 4.8 Layout of the borehole field considered for the Tulsa case 
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The simulated heating and cooling demands of the Burlington building, as shown 

in Table 4.5, are 123 and 202 MWh, respectively. The heating and cooling 

demands are fairly balanced and hence the chosen borehole field should exploit 

the seasonal heat storage ability of the ground. The borehole field in the 

Burlington case was also designed to provide a minimum fluid temperature of       

-5 °C in heating mode and a maximum fluid temperature of 35 °C in cooling 

mode to the heat pump(s). Other restrictions included a maximum borehole field 

area of 40 m x 50 m and individual borehole depth of approximately 100 m. The 

layout of the borehole field chosen for the Burlington case is shown in Figure 4.9. 

There are 70 boreholes in a 7 x 10 rectangular configuration. The spacing between 

the boreholes of the chosen field is 5 m.          

 

 

 
 

Figure 4.9 Layout of the borehole field considered for the Burlington case 

 

 

The two case studies of the Tulsa and the Burlington buildings were used to 

perform a sensitivity analysis of random variations in the TRT results on the 

design of a borehole system. This analysis was done by calculating the required 

length of the borehole field, for both Tulsa and Burlington cases, using ground 

thermal conductivity and borehole thermal resistance values estimated for each of 

the nine test facility boreholes. The results of the sensitivity analysis are shown in 

Table 4.6. In the case of the Tulsa building, the random uncertainties in the TRT 

results vary the total borehole length between the extremes of 20,870 and    

22,615 m. The difference between the smallest and largest lengths is 1,745 m, 

which is approximately equivalent to 17 boreholes out of 225 boreholes. For the 

Burlington case, 6860 and 7,500 m are, respectively, the smallest and largest 

required borehole lengths. The 640 m difference between these two lengths 

corresponds to approximately 6 out of 70 boreholes. The random uncertainties 

between TRTs affect the total length requirements of Tulsa and Burlington fields 

by 8-9 %. Thus, a safety factor on the order of 10 % should be considered when 

designing borehole systems based on thermal conductivity and the borehole 

resistance estimations from a single careful 50+ hour test conducted in accordance 

with ASHRAE recommendations
[6]

.  

 

  

 

 

 

 

 

 

 

 

 45 

3
0

 



   

 57 

Table 4.6 Effects of random variations in TRT results of adjacent boreholes on 

the size of the borehole fields for the Tulsa and Burlington cases   

 

TRT 

Tulsa Burlington 

Total length 
(m) 

Individual 
borehole depth  

(m)  

Total length 
(m) 

Individual 
borehole depth  

(m)  

1 22,410 99.6 7,120 101.7 

2 21,600 96.0 7,120 101.7 

3 22,500 100.0 7,500 107.1 

4 22,165 98.5 6,860 98.0 

5 22,140 98.4 7,195 102.8 

6 22,615 100.5 7,260 103.7 

7 20,870 92.7 6,955 99.3 

8 20,890 92.8 6,980 99.7 

9 21,595 96.0 7,235 103.4 

 

4.4 Convection in groundwater-filled boreholes 

This section is based on Paper III and one of the additional publications (Paper 8 

on Page viii).   

 

Heat transport in groundwater-filled boreholes is driven by natural convection and 

advection. During a TRT, the magnitude of natural convection in groundwater-

filled boreholes depends on the heat-injection rate used for the test. Gustafsson 

and Westerlund
[26]

 showed that for groundwater-filled boreholes located in solid, 

unfractured bedrock, the estimated values of borehole thermal resistance decrease 

with increasing injection rates, while the ground thermal conductivity estimates 

remain unchanged. In contrast, for groundwater-filled boreholes located in 

fractured bedrock, a larger heat injection results in higher ground thermal 

conductivity estimations, whereas the borehole thermal resistance values remain 

unchanged. This difference is because a larger heat injection rate increases the 

convective heat transport in a solid bedrock borehole which, consequently, 

decreases the borehole thermal resistance. On the other hand, in the case of a 

groundwater-filled borehole in fractured bedrock, a larger heat injection rate 

increases the convective heat flow through the surrounding rock, which results in 

a higher estimate of the ground thermal conductivity.  

 

This section reports on the effects of natural convection in groundwater-filled 

boreholes on the TRT results, which were studied using a series of investigations. 

Multiple tests have been conducted on borehole 9 of the test facility. The tests 

were conducted using different heat injection rates between 25 and 140 W/m. The 

ground conductivity and borehole resistance estimations obtained for these tests 

are shown in Figure 4.10. For tests on borehole 9, larger injection rates result in 

lower borehole thermal resistance values, whereas ground thermal conductivity 

values remain nearly constant.  
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Figure 4.10 Ground conductivity and borehole resistance values for TRTs with 

different heat injection rates on borehole 9   

 

 

Similar tests were also conducted on borehole 7 of the test facility. The ground 

conductivity and borehole resistance estimations for TRTs on borehole 7 are 

shown in Figure 4.11. For borehole 7, ground conductivity values increase at high 

injection rates, whereas borehole thermal resistance remains nearly constant.   

 

 

 
 

Figure 4.11 Ground conductivity and borehole resistance values for TRTs with 

different heat injection rates for borehole 7   

 

 

The results from TRTs conducted on borehole 7 and 9 of the test facility are in 

line with the observations of Gustafsson and Westerlund
[26]

 of fractured and 

unfractured boreholes, respectively. However, what is of particular interest is that 

the two boreholes from the same field appear to have different degrees of 

fracturing in the surrounding bedrock. The results suggest that borehole 9 has 

fractured bedrock, whereas borehole 7 appears to be in solid, unfractured bedrock. 

However, despite the seemingly different patterns of ground conductivity and 

borehole resistance estimations for boreholes 7 and 9, tests conducted with larger 

injection rates on both boreholes tend to suggest shorter length requirements of 
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borehole heat exchangers. For the case studies of Tulsa and Burlington discussed 

in Section 4.3, the required lengths of borehole heat exchangers determined from 

the tests conducted with 140 W/m on boreholes 7 and 9 are approximately 10 % 

shorter than those determined from tests conducted with 55 W/m for both 

boreholes. This difference is due to the higher convective heat transport in the 

borehole, which improves the thermal contact between the U-tube and the 

surrounding ground, and consequently, shorter lengths of the borehole heat 

exchanger are suggested for tests conducted with larger injection rates. 

  

The effects of convection on TRT results of groundwater-filled boreholes have 

been further investigated in a research collaboration
[36]

 with the Department of 

Geology and Mineral Resources Engineering at Norwegian University of Science 

and Technology. Two multi-injection rate tests were conducted on a 150 m deep 

groundwater-filled borehole located in Lade, Norway. Before conducting the 

TRTs, the borehole was tested for hydraulic active fractures. The test for 

hydraulic fractures was performed by lowering a propeller in the borehole. The 

groundwater was pumped at a flow rate of 0.78 m
3
/hour using a pump installed at 

a depth of 20 m. The active fractures and the flow through them were determined 

using the rotational speed of the propeller. Figure 4.12a shows the reduction in 

propeller speed at the depth of approximately 34 m, indicating the presence of a 

notable fracture. The televiewer image
[21]

 shown in Figure 4.12b also confirms the 

presence of the fracture. 

 

 

(a) (b) 

 

Figure 4.12 An active fracture at 34 m indicated by a) flow measurement test and 

b) Televiewer image (Source: Elvebakk
[21]

)   
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Following the pumping test, two multi-injection rate TRTs were conducted on the 

borehole. Both tests were conducted using four injection rates each. The first test 

was conducted without any pumping of groundwater. For this test, the convective 

heat flow expected through the facture at 34 m depth is nominal. Video recordings 

also indicated minimal groundwater movement in the borehole before the test. 

However, some buoyancy-driven convective movement was detected in the 

borehole during the test. The injection rates used for the test and the resulting 

mean fluid temperatures are shown in Figure 4.13. 

 

 
 

Figure 4.13 Injection rates and mean fluid temperature increase for TRT without 

pumping of groundwater 

 
A second test using groundwater pumping was later performed on the same 

borehole. A submersible water pump installed at the bottom of the borehole was 

used to create artificial convection in the borehole by discharging water at the top 

of the borehole. Video recordings suggest that the forced convective flow driven 

by the pump in the borehole is much greater than the buoyancy-driven convective 

flow with no pumping. The heat injection rates and the mean fluid temperatures 

for this test are shown in Figure 4.14. 

     

 
 

Figure 4.14 Injection rates and mean fluid temperature increase for TRT with 

pumping of groundwater 
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The effects of convection on the design of a borehole field were studied for a 

single borehole system. The choice of single borehole simplifies the analysis 

because thermal interference from neighbouring boreholes is avoided. The annual 

hourly heating loads shown in Figure 4.15, simulated by Spitler et al.
[46]

 for a 

modern two-story single family house in Sweden, are used as borehole loads.  

 

 
 

Figure 4.15 Annual hourly heating loads on the borehole  

 
The required length of the borehole heat exchanger was calculated using the 

ground conductivity and borehole resistance estimations for every individual 

injection rate of two tests of Figures 4.13 and 4.14. The effects of increasing 

injection rates on the required borehole lengths for both tests are shown in     

Figure 4.16. In the first test, without artificial pumping of groundwater, higher 

injection rates tended to give shorter borehole lengths. The borehole length 

calculated from the thermal conductivity and borehole resistance values for the 

injection rate of 25 W/m is approximately 140 m, which reduces to approximately 

115 m for an injection rate of 83 W/m. These results are generally similar to those 

for the Tulsa and Burlington cases.  

       

 
 

Figure 4.16 Simulated borehole lengths for a test case using multi-injection rate 

TRTs with and without pumping of groundwater    
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On the other hand, the borehole lengths calculated from the results of the second 

TRT, which was conducted with pumping of groundwater, remain almost equal 

for all injection rates. As seen in Figure 4.16, the average value of borehole length 

for this test with artificial convection is 106 m. A comparison of the results of the 

two tests, conducted with and without pumping of groundwater, for lower 

injection rates provides an estimate of maximum uncertainty from convection in 

the borehole heat exchanger. Although more research is needed, the initial results 

reported here suggest that uncertainties on the order of 25 % in the borehole 

length can be caused by convective heat transport in the fractured boreholes. 

 

4.5 Recovery times after a TRT 

This section is based on Paper VI. 

 

Thermal response tests are sometimes affected by problems that can create 

detrimental effects on the estimations of ground thermal conductivity and 

borehole thermal resistance. These issues include problems such as power outage, 

equipment failure and fluid leakage, among other unexpected circumstances. If 

the problem cannot be resolved quickly, or if it is caused by equipment 

malfunction or a data logging failure, conducting a retest might be indispensable. 

The retesting of boreholes is also needed in the research setting to perform 

experimental parametric analysis and to investigate the repeatability and 

reproducibility of the thermal response test results. 

 

For a retest to be conducted, the loop temperature must be allowed to return to 

within 0.1-0.3 K of the undisturbed loop temperature
[31]

. The existing guidelines
[6]

 

suggest a recovery time of minimum 10-14 days for the loop temperature to return 

to the desired temperature level after a typical TRT. A significant issue is that the 

effects of factors such as ground formation, heat injection rates, and test duration 

on borehole recovery times are not fully addressed by the existing guidelines. In 

order to supplement the current guidelines, a systematic series of tests was 

conducted to determine the recovery times following TRTs conducted with 

various heat injection rates and conducted for different time durations.  

 

Before conducting a TRT, the undisturbed loop temperature of the borehole was 

determined. Following a test, the development of ground temperatures over time 

was measured regularly. The measurements were taken every 2 to 5 days for two 

weeks after the test was initially conducted and every 7 to 10 days thereafter. The 

measurements continued until the loop temperature returned to approximately   

0.1 K of its initial undisturbed value. Next, the short-term response solution of 

Chapter 2 was used to validate the experimentally measured recovery times. The 

solution was used to simulate ground temperatures after a TRT by superposition 

of the temperature response with the heat injection rates used in the tests. The 

recovery times were determined using actual injection rates during the test 

followed by a zero injection after the test.  

 

Figure 4.17a shows the details of a TRT conducted in compliance with ASHRAE 

guidelines
[6]

. The test was conducted for approximately 48 hours with a mean 

injection rate of 67 W/m. Figure 4.17b presents the experimentally measured and 

simulated recovery times after the TRT. The experimentally measured recovery 

time for the loop temperature to return to 0.3 K of its initial undisturbed value was 
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approximately 10 days. Simulated results suggest a recovery time of 

approximately 11 days. 

 

 

 

(a) 

 

(b) 

 

Figure 4.17 Recovery times (4.17b) for a TRT (4.17a) conducted in accordance 

with ASHRAE guidelines
[6]

 

 

 

Figure 4.18b shows recovery time after a 72-hour TRT conducted with a higher 

injection rate of 140 W/m (Figure 4.18a). The experimentally measured recovery 

time for this test was between 35-40 days. The simulation results indicate a 

recovery time of approximately 36 days.     

 

 

 

(a) 

 

(b) 

 

Figure 4.18 Recovery times (4.18b) for a TRT (4.18a) conducted with a high 

injection rate 

 

 

Figure 4.19b presents recovery times following a TRT conducted with multiple 

injection rates. The test, shown in Figure 4.19a, was conducted using an injection 

rate of 70 W/m for the first 48 hours followed by a higher injection rate of        

140 W/m for the next 64 hours. Experimental measurements suggested a recovery 

time of approximately 40 days. Simulated recovery time for this test is 43 days. 
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(a) 

 

(b) 

 

Figure 4.19 Recovery times (4.19b) for a TRT (4.19a) conducted with multiple 

injection rates 

 

 

The recovery times, which were determined experimentally and simulated using 

the mathematical model, are in close agreement in all cases. The mathematical 

model can now be used to extend the results by simulating recovery times for 

various testing conditions. Table 4.7 gives the recovery times for various 

combinations of ground formation, heat injection rate and test duration. Recovery 

times for longer tests and for tests conducted with higher injection rates are also 

available in Paper VI.   

 

 

Table 4.7 Recovery times (in days) for various test conditions 

 

Formation 
Heat injection 

rate (W/m)  

Recovery times (days) after a 
TRT of duration  

10 hours 25 hours 50 hours 

Soil, dry 

[λ = 1.0 W/(m∙K)]  

25 3 7 13 

50 6 14 27 

75 9 21 41 

Clay, moist 

[λ = 1.6 W/(m∙K)] 

25 2 4 8 

50 4 9 17 

75 5 13 25 

Rock, average / 

Sand, saturated 

[λ = 2.4 W/(m∙K)] 

25 1 3 5 

50 3 6 11 

75 4 9 17 

Rock, dense 

[λ = 3.4 W/(m∙K)] 

25 1 2 4 

50 2 4 8 

75 3 6 12 
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Table 4.7 shows that the recovery times after a TRT are strongly related to the test 

duration, the heat injection rate and the ground formation. For a specific ground 

formation and a fixed injection rate, increasing the test duration twofold doubles 

the recovery times. Similarly, for a particular test duration, the recovery times 

increase proportionally with an increase in the injection rates. The recovery times 

for medium and low conductivity formations are two to four times longer than for 

high conductivity formations. The existing recommendations for recovery times 

should be revised to incorporate these findings.  

 

4.6 New TRT evaluation method 

This section is based on Paper VII. 

 

The evaluation of TRTs conducted on groundwater-filled boreholes poses 

challenges that are different than those conducted on grouted boreholes. A larger 

injection rate in a groundwater-filled borehole enhances convective heat transfer 

in the borehole, which subsequently affects the estimations of ground thermal 

conductivity and borehole thermal resistance. The effects of injection rates on 

ground conductivity and borehole resistance estimations of groundwater-filled 

boreholes can be examined using tests with multiple injection rates. Most existing 

evaluation methods are not designed to analyze tests in which ground conductivity 

and borehole resistance estimations vary in time with changing heat injection 

rates. 

 

A new method to evaluate TRTs on grouted and water-filled boreholes was 

developed. The new method for evaluating TRTs uses the short-term response 

solution derived in Chapter 2 with a parameter estimation technique. The inputs to 

the method include the following: the heat injection rate; the borehole geometry, 

including the borehole depth and the inner and outer diameters of the U-tube; the 

thermal conductivities of the pipe, grout and ground; and the volumetric heat 

capacities of the grout and ground. The equivalent diameter of the pipe, the 

thermal capacities, and the resistances of the circulating fluid and the U-tube are 

determined from the input values. The ground and grout conductivities are 

assumed to be unknowns and their initial values are guessed.  

 

The method first simulates the fluid temperature from Equations 2.36 and 2.37 

using guessed and input parameters. The simulated fluid temperature is then 

compared with the experimentally measured fluid temperature. Next, the initial 

guess values are iteratively refined to minimize the sum of squared errors between 

the experimental and simulated fluid temperatures. The optimized guess values 

that provide the minimum squared error are taken as the final conductivity 

estimations. The borehole thermal resistance is estimated next. An effective value 

of steady-state borehole resistance is estimated by taking the ratio of the 

temperature difference of the circulating fluid and the borehole wall to the specific 

heat-injection rate. The borehole wall temperature is estimated from Equations 

3.28 and 3.29 using the previously estimated ground thermal conductivity value as 

an input.   

 

The proposed evaluation method is accurate even for short times because it is 

based on a short-term analytical solution, which considers the thermal capacities, 

thermal resistances, and thermal properties of all borehole elements. Hence, unlike 
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other analytical solution-based evaluation methods, there is no need to discard any 

initial data when evaluating a TRT. Thus, the duration of the test can be reduced 

to a certain extent. Another advantage of the proposed method is that it can be 

used to evaluate tests conducted with both single and multiple injection rates. It 

has been implemented in such a way that the grout conductivity and the borehole 

resistance values can be estimated for any given time range. This implies that 

ground conductivity and borehole resistance values can be estimated for a specific 

injection rate when evaluating multiple injection rate tests on groundwater-filled 

boreholes.  

 

The thermal response tests reported in the last section were used for testing of the 

proposed evaluation method. Thermal response tests shown in Figures 4.17a, 

4.18a and 4.19a were all evaluated. The validation was performed against existing 

evaluation methods, including the direct line-source method
[23]

, line-source 

method with parameter estimation approach, Geothermal Properties Measurement 

(GPM) program based on Shonder and Beck‘s method
[44]

, and Austin et al.‘s
[8]

 

Vertical Borehole Analysis and Parameter Estimation program. For details of 

these methods and for further description of the new method, readers are referred 

to Paper VII. 

 

Table 4.8 shows thermal conductivity and borehole resistance estimations for 

TRT of Figure 4.17a. The evaluation of the first test, conducted over 48 hours 

with an injection rate of approximately 68 W/m, gives similar results for all 

evaluation methods. The ground conductivity estimations from the existing 

methods vary between 2.99 and 3.24 W/(m∙K). The estimations of borehole 

resistance lie between 0.059 and 0.063 (m∙K)/W. The new method estimates 

ground conductivity and borehole resistance values of 3.02 W/(m∙K) and       

0.053 (m∙K)/W, respectively. Figure 4.20 shows the fit of the models to the 

experimentally measured temperatures.  

 

 

Table 4.8 Ground conductivity and borehole resistance estimations for TRT of 

Figure 4.17a 

 

Evaluation method 
Ground 

conductivity 
(W/(m∙K)) 

Borehole 
resistance 
((m∙K)/W) 

Line-source (direct) 3.24 0.059 

Line-source (parameter estimation) 3.13 0.060 

GPM (Shonder and Beck) 2.99 0.063 

Austin et al.  3.09 - 

New method 3.02 0.053 
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Figure 4.20 Model fits to experimentally measured fluid temperature for TRT of 

Figure 4.17a  

 

 

For the TRT of Figure 4.18a, the ground conductivity and borehole resistance 

estimations from different methods are shown in Table 4.9. The test was 

conducted for 72 hours using an injection rate of 140 W/m. The ground 

conductivity estimations from the existing methods are between 3.24 and         

3.57 W/(m∙K). The borehole resistance estimations are in the range of 0.058 to 

0.060 (m∙K)/W. The new method estimates ground conductivity and borehole 

resistance values of 3.36 W/(m∙K) and 0.054 (m∙K)/W, respectively. The fit of the 

models to the experimentally measured temperatures is shown in Figure 4.21.       

 

 

Table 4.9 Ground conductivity and borehole resistance estimations for TRT of 

Figure 4.18a 

 

Evaluation method 
Ground 

conductivity 
(W/(m∙K)) 

Borehole 
resistance 
((m∙K)/W) 

Line-source (direct) 3.57 0.060 

Line-source (parameter estimation) 3.41 0.060 

GPM (Shonder and Beck) 3.24 0.058 

Austin et al.  3.42 - 

New method 3.36 0.054 
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Figure 4.21 Model fits to experimentally measured fluid temperature for TRT of 

Figure 4.18a   

 

 

The thermal response test illustrated in Figure 4.19a was conducted with stepwise 

increasing injection rates of 68 and 140 W/m for 52 and 67 hours, respectively. 

This test cannot be evaluated using the direct line-source method and the GPM 

program. The direct line-source method can evaluate only tests with constant 

injection rates. The GPM program has also similar limitations. These methods can 

evaluate only the first injection rate part of the test with multiple injection rates. 

On the other hand, although the line-source-based parameter estimation method 

can be implemented to evaluate this test with two injection rates, the data 

corresponding to the first 10-15 hours of each injection rate must be discarded. 

The test can be evaluated using the computer program
[8]

 based on the method of 

Austin et al. However, this program does not provide a direct estimation of 

borehole resistance and only estimates ground conductivity values. The ground 

conductivity and borehole resistance values for the two injection rates of the test, 

as estimated by the existing methods, are given in Table 4.10.          

 

The new method estimates the ground conductivity and borehole resistance 

estimations of 3.10 W/(m∙K) and 0.060 (m∙K)/W, respectively, for the first 

injection rate. These values are similar to the ground conductivity and borehole 

resistance values estimated from other methods for the first injection rate. The 

estimated values are also comparable to those estimated for TRT of Figure 4.17a, 

which was also conducted with the same injection rate. The ground conductivity 

and borehole resistance estimations from the new method for the second injection 

rate are 3.48 W/(m∙K) and 0.055 (m∙K)/W, respectively. As discussed previously, 

the direct line-source method and the GPM program cannot evaluate the second 

injection rate of this test. The results from the Austin et al. and line-source-based 

parameter estimation methods are comparable to results from new method. The 

results of the new method for the second injection rate of TRT shown in       

Figure 4.19a and the TRT of Figure 4.18a, which were conducted with similar 

injection rates, are also similar.  

 

 

 

 

0

10

20

30

0 15 30 45 60 75

Te
m

p
er

at
u

re
 R

is
e

 (
K

)

Time (hours)

Experimental data
Line-source (direct)
Line-source (paramater estimation)
Shonder and Beck (GPM)
Austin et al.
New method



   

 69 

 

Table 4.10 Ground thermal conductivity and borehole resistance estimations for 

TRT of Figure 4.19a 

 

Evaluation method 
Ground 

conductivity 
(W/(m∙K)) 

Borehole 
resistance 
((m∙K)/W) 

Line-source (direct)   

1st injection rate 3.08 0.060 

2nd injection rate - - 

Line-source (parameter estimation)   

1st injection rate 3.07 0.059 

2nd injection rate 3.68 0.060 

GPM (Shonder and Beck)   

1st injection rate 3.01 0.062 

2nd injection rate - - 

Austin et al.    

1st injection rate 3.15 - 

2nd injection rate 3.61 - 

New method   

1st injection rate 3.10 0.060 

2nd injection rate 3.48 0.055 

 

 

 

 
 

Figure 4.22 Model fits to experimentally measured fluid temperature for TRT of 

Figure 4.19a   
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4.7 Conclusions 

Thermal response tests conducted on nine adjacent boreholes were reported. It 

was shown that the fluid exiting the U-tube at start-up provides consistent and 

more accurate measurement of the undisturbed ground temperature. The ground 

conductivity and borehole resistance estimations for the nine boreholes exhibit 

considerable variations. The variations in the estimated parameters were analyzed 

using two case studies. The random variations in the estimated parameters tend to 

change the borehole length requirements of the case study buildings up to 10 %. 

 

The role of convective heat transfer in groundwater-filled boreholes was 

investigated. The results of TRTs performed on groundwater-filled boreholes 

using a larger injection rate tend to suggest borehole heat exchangers with 

considerably shorter lengths than would result from a lower injection rate.   

 

The recovery times needed after a TRT were simulated for various test conditions 

by using the analytical model derived in Chapter 2. The simulated recovery times 

were validated against experimental data. It was observed that the required 

recovery times are strongly related to the test duration, the heat input to the 

borehole and the ground formation surrounding the borehole. 

 

A new method for evaluating multi-injection rate tests on groundwater-filled 

boreholes was developed, tested and validated. The proposed method is also based 

on the analytical solution given in Chapter 2. The method estimates ground 

conductivity and borehole resistance values for all levels of a multi-injection rate 

test with good accuracy. 
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5 Concluding remarks 
In the structure of this thesis, each chapter is self contained, having its own 

introduction, results, discussion and conclusions. Specific conclusions have been 

drawn and reported at the end of Chapters 2 to 4. This chapter provides a 

summary of the major conclusions of each chapter in the context of the overall 

research objectives.  

 

5.1 Summary and conclusions 

The research objectives of this work included the development of analytical 

methods for modelling and simulation of borehole heat transfer in GSHP systems 

in addition to a contribution to scholarly knowledge on thermal response testing of 

borehole systems. Chapters 2 and 3 of this thesis deal with the analytical 

modelling and simulations of borehole heat transfer, whereas Chapter 4 focuses 

on testing of boreholes.   

 

Chapter 2 presents an analytical solution to model the radial heat transfer problem 

in borehole systems. The solution is valid for short time scales because it accounts 

for the thermal properties of all borehole elements, including the circulating fluid 

and the pipe, the grout, and the surrounding ground. The solution derives from 

modelling of the heat transfer in a borehole and the related boundary conditions in 

the Laplace domain. A thermal network is used to represent the Laplace transform 

equations. The inversion of Laplace to time domain is carried out analytically 

using very concise formulas. The analytical solution was validated against semi-

analytical and numerical solutions and experimental data. The validation results 

indicate that the analytical solution can accurately predict the dynamic thermal 

response of a borehole.  

 

Chapter 3 of this thesis presents an analytical approach to performing dynamic, 

multi-year simulations of borehole heat transfer. The analytical solution of 

Chapter 2 was used together with a finite line-source solution to develop step-

response functions valid from very short (minutes) to very long (years, or longer) 

periods. The analytical solution was used for periods up to 100 hours. The finite 

line-source solution, which was reduced to one integral only, was used for periods 

longer than 100 hours. The step-response functions were developed for both 

single and multiple borehole systems. For small- to medium-sized borehole 

systems, comparison of analytically-developed response functions to numerically-

obtained response functions showed very good agreement up to 20 to 25 years. 

The step-response functions were then used to perform multi-year simulations of 

borehole systems for prescribed heating and cooling loads. Simulations performed 

using non-aggregated loads require a lot of computational time. The time required 

to perform a 20-year simulation using annual hourly loads is approximately two 

hours. A load aggregation scheme was presented to reduce computational time 

requirements with little penalty in terms of simulation accuracy. The aggregation 

is performed on different levels. The first level corresponds to most recent loads, 

which are not aggregated. At the next level, two load values are lumped together 

in each aggregated cell. Similarly, on level 3, four load values were lumped 

together in each aggregated cell. The doubling continued to the very last level. 

The number of aggregated cells on each level was chosen freely. For the two cases 

discussed in Chapter 3, a 20-year simulation performed with five lumped cells on 
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each of the 16 aggregation levels, had an absolute error of less than 0.05 K 

compared with the non-aggregated scheme. The aggregation scheme is over 200 

times faster than the non-aggregated case and reduces the computational time 

requirements to greater than 99 %.  

 

Chapter 4 of this thesis brings together research findings on various aspects of 

thermal response testing. Firstly, results of TRTs conducted on nine adjacent 

boreholes were presented. The ground thermal conductivity and borehole thermal 

resistance values for the nine boreholes showed moderate variations. The ground 

conductivity estimations vary within a 7 % range on either side of the mean value. 

The borehole resistance estimations have approximately 20 % variations around a 

central value. Secondly, the effects of the variations in ground conductivity and 

borehole resistance values on the design of the borehole field were analyzed using 

case studies. It was shown that the random uncertainties in TRT results can affect 

the length requirements of borehole heat exchangers by approximately 10 %. 

Next, the effect of convective heat transfer on thermal response testing was 

determined in a series of tests. The initial results suggest that the length 

requirements of a single borehole heat exchanger can be affected up to 25 % 

because of the convective heat transfer inside the borehole. The recovery time 

requirements of a borehole system after a TRT were determined next. The 

analytical model of Chapter 2 was used to estimate the recovery time for various 

sets of ground formations, heat injection rates and test durations. The recovery 

times determined from the analytical solution were validated using a series of 

TRTs. It was shown that the recovery times are strongly related to the test 

duration and to the heat injection rates used for the TRT. Recommendations on 

revising recovery times for low to medium conductivity formations were made. 

Lastly, development and validation of a TRT evaluation method were presented. 

The method is based on the analytical solution in Chapter 2 and can be used to 

evaluate tests on both grouted and groundwater-filled boreholes. The method was 

shown to work well in cases where most existing methods cannot be used. For 

example, for a multi-injection rate test on a groundwater-filled borehole, the 

proposed method correctly estimates ground conductivity and borehole resistance 

values for each injection rate of the test.  

  

5.2 Future work 

The following recommendations are made for extending the present work and for 

future research. 

 

 The analytical solution presented in Chapter 1 of this thesis is for the 

radial heat transfer in the borehole and the surrounding ground. The 

development of an analytical solution to the two-dimensional heat 

transfer problem in the borehole is suggested as a next step. Such a 

solution will eliminate the requirement of the U-tube to be approximated 

as an equivalent diameter pipe and will further improve the accuracy of 

modelling and simulations of borehole heat transfer.  

 

 The choice of the equivalent-diameter, to approximate the two legs of 

the U-tube as a single pipe, affects the outcome of the analytical solution 

of Chapter 2. Although some research has been done, issues remain on 

the choice of the most suitable equivalent-diameter approximation, 
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particularly for groundwater-filled boreholes. A computational fluid 

dynamic (CFD) analysis to develop and/or validate the equivalent 

diameter approximations for different U-tube shank spacings is 

suggested for both groundwater-filled and grouted boreholes.  

 

 Another recommendation regarding the analytical solution derived in 

Chapter 2 is to develop simpler approximation formulas for the solution. 

The approximation formulas will reduce the computational time required 

for solving the Laplace transform and hence will lead to rapid 

simulations of borehole heat transfer and faster evaluation of TRTs. 

 

 The load aggregation scheme and the step-response functions, presented 

in Chapter 3 of this thesis, should be combined with heat pump and other 

subsystem models to perform dynamic modelling and simulations of the 

complete GSHP system, which can be done by implementing the load 

aggregation scheme and the step-response functions in building energy 

simulation software. Alternatively, a stand-alone computer program can 

be developed using the load aggregation scheme and the step-response 

functions integrated with a simulation model for the transient response 

of the heat pump. 

 

 The step-response functions of Chapter 3 use the finite line-source 

solution for long-term response. The long-term response of a multiple 

borehole system depends on an exponential function, which in turn is 

based on the size and the configuration of the borehole field. The 

complexity of the exponential function increases with the asymmetry of 

the configuration and the number of boreholes. A computational tool to 

automatically generate the exponential function and/or the finite line-

source response of a multiple borehole system should be developed. 

Additionally, development of a database of step-response functions for 

different geometries and configurations of borehole fields is suggested.  

 

 The role of convection in groundwater-filled boreholes was discussed in 

Section 4.4 of this thesis. Future work in this regard should include the 

development of a convective heat transfer coefficient correlation for the 

annulus region of groundwater-filled boreholes. Such a correlation 

would simplify the estimation of borehole resistance for groundwater-

filled boreholes with natural convection in their annulus regions.  
 

 In Section 4.5, the recommended waiting times required before 

performing a retest were presented in a tabular form for different sets of 

ground conductivity values, heat injection rates and duration of the 

previous test. The development of a mathematical expression to directly 

calculate the required recovery times using ground conductivity, heat 

input, and previous test duration values as inputs is recommended. 
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