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ABSTRACT

This study deals with the modelling of stormwater runoff
in urban catchments. An analysis of the basic governing
equations shows that the kinematic wave equations repre-
sent a suitable approximation for urban runoff modelling
in general. The Manning formula was found to be a reason-
ably valid friction relation for the modelling of over-
Tand flow. A modified numerical solution algorithm is
proposed which reduces the calculation volume in compari-
son with conventional methods.

Different approaches to discretization of the geometric
input data (size of base catchments) were investigated in
six small urban catchments (< 1 ha contributing area) and
two large ones. From the tests it was concluded that:

o Independent of the model used and the base catchment
size, the choice of input parameters in the base
catchment model (overland flow parameters) has a
significant effect on the attenuation of the outflow
hydrograph.

o The kinematic wave model is both simple to use and
adequate as a base catchment model.

o With this model, relatively big simplifications can
be made in the input data geometry with reasonably
well maintained performance, provided the catchment
characteristics are properly evaluated.

0 The catchment characteristics can be evaluated using
relations derived from the kinematic wave theory,
assuming constant rain intensity.

In a separate study the ability of the Rational Method
to reproduce statistical peak flows was tested. Using a
time of concentration based on kinematic wave theory,
the method performed well.
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ABSTRACT

This study deals with the modelling of stormwater runoff
in urban catchments. An analysis of the basic governing
equations shows that the kinematic wave equations repre-
sent a suitable approximation for urban runoff modelling
in general. The Manning formula was found to be a reason-
ably valid friction relation for the modelling of over-
land flow. A modified numerical solution algorlthm is
proposed which reduces the calculation volume in compari=-
son with conventional methods.

Different approaches to discretization of the geometric
input data (size of base catchments) were investigated in
six small urban catchments (< 1 ha contributing area) and
two large ones. From the tests it was concluded that:

o' Independent of the model used and the base catchment
size, the choice of input parameters in the base
catchment model (overland flow parameters) has a
significant effect on the attenuation of the outflow
hydrograph.

o The kinematic wave model is both simple to use and
adequate as a base catchment model.

o With this model, relatively big simplifications can
be made in the input data geometry with reasonably
well maintained performance, provided the catchment
characteristics are properly evaluated.

o The catchment characteristics can be evaluated using
relations derived from the kinematic wave theory,
assuming constant rain intensity.

In a separate study the ability of the Rational Method
to reproduce statistical peak flows was tested. Using a
time of concentration based on kinematic wave theory,
the method performed well.



PREFACE

The investigations presented in this thesis deal with
urban runoff modelling and are mainly concerned with the
relevance of basic equations, numerical solution methods
and discretization of geometrical input data. The work
has been carried out at the Department of Hydraulics,
Chalmers University of Technology and is a part of a
major research effort by the Urban Geohydrology Research
Group at the University.

Other studies in the field of urban runoff modelling
carried cut by the research group have dealt with
selection of storm input for the design of sewer systems,
optimization in the design of sewer systems, and storm

water quality.

All relations presented in the report are based on SI-
units. The SI-unit for rain intensity and discharge per
unit area (m/s) is not very practical. Both in figures
and when magnitudes of intensities are discussed the unit
litres/(second - hectare) 1 1/s+ha = 107/ m/s = 0.36 mm/h)
has been used. It is the most commonly used unit among
Swedish sanitary engineers. In describing magnitudes of

catchment areas, hectares have been used (1 ha = 104 m2).

G&teborg, March 1985

Sven Lyngfelt
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SUMMARY

The study deals with modelling of the urban runoff
process. The main objectives were to make recommendations
for the selection of a basic model and suitable numerical
solutions, and also to investigate the importance of dis-
cretization of the geometrical input data and develop
usable base catchment models. (A base catchment model is
the smallest part into which the catchment is subdivided
and defines the sewer net modelled.) Runoff from perme-

able surfaces is not considered in the study.

The runoff process in surfaces, gutters and sewers is
described by one continuity and one momentum equation,
the shallow water equations. These are not very practical
in application and a lot of computation can be saved by
simplifying the basic formulation.By neglecting certain
terms in the momentum equation, simplified sets of equa-
tion systems are obtained. A study of the influence of
different terms shows that there are two approaches of
interest in urban runoff modelling, the kinematic and the

diffusive wave approximations.

The kinematic wave_ approximation is defined by a very
simple set of differential equations and boundary con-
ditions. The momentum equation is reduced to an unique
relation between flow and water depth. Despite this, in
the general case the equations have to be solved by
numerical methods. In the case of constant lateral inflow
an analytical solution is obtained. It is then possible
to derive relations for the evaluation of the time of
concentration based on the kinematic wave model. In the
model, the flow waves travel with the kinematic wave
velocity which is greater than the mean velocity and
varies in both time and space. The kinematic wave model
does not take backwater into account and in theory it is
not able to reproduce the dynamic attenuation of a flow

wave.
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In the diffusive wave approximation a downstream
boundary condition is needed. Then it is possible to
analyse systems significantly influenced by backwater.
The model also reproduces the main part of the dynamic

attenuation of the wave.

In urban runoff modelling where the geometries usually
have to be simplified, it is difficult to formulate the
relevant downstream boundary conditions (with the excep-
tion of the main sewer line). Flow in lateral inflow
reaches, such as surfaces, gutters or sewers with lateral
inflow, is exposed to a characteristic (not dynamic
attenuation). This "attenuation®" is generally more signi-
ficant than the dynamic attenuation and is properly re-
produced by the kinematic wave model. From a theoretical
point of view the kinematic wave model appears to be

suitably sophisticated for base catchment modelling.

In the kinematic wave approximation the momentum equation
is represented by a friction relation. In the study
results from reported investigations of friction losses
over rough surfaces have been put together. The study
gives no base for using differentiated roughness para-
meters at different types of surfaces in an ordinary
urban catchment. Neither could a relation between the
friction factor and rain intensity be specified.Several
friction relations for instance the Danish L-formula, the
quadratic formula and the Manning formula, were compared
with the reported friction loss studies. They were found
to fit reasonably well to the test data, provided a
suitable roughness parameter was used. As a general rela-
tion for overland flow, the Manning formula was selected
with a roughness coefficient n=0.016 for surface flow and

n=0,013 for gutter flow.

The numerical solution method commonly used for the
kinematic wave equations gives rise to considerable
numerical attenuation of flow waves. In order to keep

this to a level close to the dynamic attenuaticn very



small space steps have to be used (Ax/L < 1/15). For each
space step the solution is evaluated by an iterative
technique. By a slight modification of the solution
algorithm (the B-diffusive model) greater space steps may

be used with retained low numerical attenuation.

By assuming the wave velocity to be constant in space,
time or both space and time, simplifications of the
solution algorithm can be made. The non linear reservoir
model and the Time~Area Method are examples of the first
two alternatives; the Rational Method is an example of
the third. It was found that the performance of the
Time~Area Method in simulating real storm events is as
good using a linear time-area diagram as using diagrams

of any other shape.

Recorded rainfall and runoff from six small catchments
(<1 hectare contributing area) were used to test the
kinematic wave model. It was found that the kinematic
wave model based on a detailed description of this catch-

ment reproduced the runoff process reasonably well.

The detailed model was used to test the effect of differ-
ent degrees of simplification of the catchment parameters
and to test the Time-Area Method. It was found that the
performance of the kinematic wave model is still very
good even for quite great simplifications of the catch-

ment geometries such as

- replacement of gutters with increased surface lengths

- assuming only lateral surface inflow to the

main sewer line
- using the mean slope of the main sewer line

- excluding minor branches in the sewer system.
The simulations by the Time-Area Method showed that

reasonably accurate values of single flow peaks may be

obtained. However, the general shape and delay of the
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simulated hydrographs were not in level with those of the

kinematic wave models.

Independent of which model is used the main difficulty

is to choose input data, such as surface length, slope

or time of concentration, in order to get properly
attenuated hydrographs. In the study the choice was based
on the evaluation of representative times of concentra-
tion by kinematic wave based relations. As the evaluation
is approximate there is a risk of incorrect attenuation.
The risk of large errors is greatest for the simplest
models (the KW3 model and the Time-Area Method). A closer
evaluation of the time of concentration would increase
the accuracy of the models. However, a more sophisticated
way of estimating this time is not meaningful when the
basic idea is to develop a simplified method of creating

input data for the models.

The optimal geometric simplification for the kinematic
wave model, regarding both the demand for simplicity in
input data and accuracy, is described by the KW6S model.
The model is built up of a sewer with the length and mean
slope of the main sewer line in the catchment. The sewer
is lateraly fed by a surface with length and slope
corresponding to an estimated time of concentration which

is representative for runoff to the main sewer line.

The tested runoff models were also applied as base catch-
ment models in two urban catchments with total areas of
15 and 19 hectares. Three levels of subdivision into base
catchments were tested where the finest division corre-

sponds to sizes round 0.5 ha.

The simple KW6S model was applied as base catchment model
at the three different levels of subdivision. Using
greater base catchment sizes the performance is not quite
as good. However, there are no drastic changes and it is
obviously possible to obtain a very good performance

using quite large base catchments, provided the catchment

XIT



characteristics (the representative times of concentra-
tion) are properly evaluated. It should here be stressed
that as the base catchment area increases the effects of
making misjudgements in this evaluation increases. It was
also found that when the main sewer system contains
several long branches these have to be included in the
input data system and should not be replaced by cne main

sewer line.

The Time-Area Method does not perform gquite as well as
the kinematic wave model despite the fact that the same
amount of catchment data is required. Though the model
properly used has a performance which is acceptable in
many applications there is no obvious argument for its

use.

From the tests with base catchment models it was

concluded:

Independent of model and base catchment size, the
input parameters in the base catchment model (over-
land flow parameters) has a significant effect on the

attenuation of the cutflow hydrograph.

The kinematic wave model (KW6S-model) is both simple

to use and adequate as base catchment model.

With this model relatively great simplifications
of the input data geometry can be used with
reasonably well maintained performance provided the

catchment characteristics are properly evaluated.

These catchment characteristics can be evaluated
using relations derived from the kinematic wave

theory assuming constant rain intensity.

The Rational Method is the traditional method in urban
drainage design and is used to evaluate single design
flow values. Basically the method relates the distribu-

tion functions of rain intensity and runoff in a catch-
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ment. The relevance of the method was tested by compari-
sons with distribution functions evaluated for a number
of catchments. The distributions were obtained from simu-
lations of a series of historical storms by a detailed
runoff model (the CTH-model). The method was found to
perform well when a time of concentration evaluated by
relations based on kinematic wave theory was used (also

used in base catchment modelling}.

Based on the results of the study, the following recom-

mendations are given for use in urban runoff modelling:

- A distributed kinematic wave model is the
most suitable model for all parts of the run-

off system.

- A numerical solution method with the smallest
possible artificial attenuation (preferably the
B-diffusive model) should be used. If the con-
ventional solution is used, Ax should be small
(Ax/L about 1/10}).

- The Manning formula is a suitable friction
relation which, in the model proposed above and
for ordinary applications, should use the
roughness coefficient n=0.016 and 0.013 for

surface and gutter flow respectively.

- It is advantageous to keep the time step
constant beween different applications. For
typical Swedish conditions and applications

At=60s is an appropriate value.

- By using a model as recommended above, guite
complex runoff system geometries may be replaced
by simple ones. This is true provided that the
equivalent parameters in the simplified geometric

model are estimated on the basis of equal times



of concentration in the 'real' and simplified
geometries (using kinematic wave based rela-
tions). One example of a suitable simplified

geometric model is the KW6S model.

The Time Area Method (though not recommended
here) should be used with a linear time area
diagram and a time of concentration evaluated

by kinematic wave based relations.

The Rational Method is a suitable method for

calculating flow rates in the preliminary design

stage of a network system, in small or ‘'simple’

systems, and also for checking the input data

for more complex models. When this method is

used, again, the time of concentration should be

evaluated by kinematic wave based relations.

Particular care should be taken in estimating tC

when this time is short.
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1. INTRODUCTION

1.1 Urban runcoff modelling

The analysis and design of urban drainage systems was
traditionally, and is still often, executed using the
Rational Method. That method, however, has for a long
time been regarded as too approximate for many applica-
tions. With the introduction of computers intc the
calculations, several advanced runoff models have been
developed and brought into use among consulting engin-
eers., At least five advanced models fcr the design and
analysis of urban network systems are now in commercial
use in Sweden. These models use traditional hydraulics in
a systematic way giving a very accurate and detailed
description of the flow thrcocugh the drainage system for

a prescribed storm input.

Detailed runoff models have been shown to be very useful,
especially in the analysis of existing systems and in the
design of complex systems (containing detention basins
overflows, constricticnsz and so on). In the design of

for estimates and checks,

"simpie” network
the Rational Method is still an important alternative

model.

The user working in the field of urban drainage design
must be able to handle models intended for both detailed
analysis and meking rough estimates. Regardless of the
problem to be sclved the modelling work should be per-

formed in four main steps

selection of a suitable mcdel

tranef wation of the "reeal" catchment into
the "input data" catchment
o selection of the hydrological design event

Q

nterpretation cof the ocutput obtained from
he computation step.



The second step is very important and may be accomplished
at many different levels of precision. Crucial for the
success of this step is a thorough knowledge of the
properties of the model in use. This is also very import-
ant in the last step. An advanced interpretation of the
performance of a simple mocdel is always better than a
poor interpretation of the performance of an advanced

model.

Every detailed runcff model is built up of two main
submodels. Cne treats the collection of stormwater on the
surface including the transport to the sewer network
system. The other describes the transportation of water
within the network system. In available runoff models a
wide range of approach is used for overland flow routing
from the Time-Area Method to the kinematic wave approxima-

tion.

The model user is in practice not able to describe the
catchment geometry with every pavement and roof in
detail. In generating the model input he has to simplify
upstream ends of the network are connection points to
what will here be called base catchments. These will
normally contain several different runoff surfaces,

gutters and small diameter sewers.

The base catchment is represented by a simplified ge-

ometry and the runoff from it by a model containing an

+hus given by the definition of the main network. As the
network is usually well specified, the main approxima-
tions and difficulties will be in the modelling of runoff
from the base catchment. Essential for the effective and
precise use of urban runoff models is a balanced geometri-

cal discretization and a sound base catchment modelling.



1.2 Scope of the study

The scope of the study is to

o} discuss various approaches for overland flow
models

discuss different levels of geometric
discretization

O

o} develop a methodology for base catchment
modelling.

The first point includes discussion of both basic equa-

tions and numerical methods of solution.

Generally the study is based on theoretical considera-
tions and numerical experiments based on field data. This
rather fundamental approach is considered to make the
results generally applicable to any runoff model in use
today.

In runoff simulation the primary result is a runoff
hydrograph. This hydrograph is characterized by its
volume and shape. For a given storm the runoff volume is
governed only by the prescribed runoff areas and the
retention storage and not by the properties of the model
(with the exception of systems containing overflows).
Comparisons between different models and geometric
discretizations will therefore be focused on differences

in hydrograph shapes.

All simulations in the report have been executed assuming
that there is no influence from permeable urban surfaces.
The assumption is applicable to the majority of Swedish
urban catchments and runoff cases. It is based on experi-
ence from a series of field measurements made over the
last ten years in Sweden, see for instance Arnell and
Lyngfelt (1975), Falk and Niemczynowicz (1978) and Arnell
(1980) .



1.3 Arrangement of the contents

The report is made up of three main parts:

The first part deals with the properties of the basic
differential equations for free surface flow including
the diffusive and kinematic wave equations. Friction
relations are also discussed and a literature review of

friction loss investigations of surface flow is given.

The second part deals with numerical methods of solution

for the kinematic and diffusive wave equations. In connec-
tion with these methods, further simplified overland flow
models, such as the Time-Area Method and reservoir models,

are analysed.

The third part deals with the problem of geometrical dis-
cretization and representation in base catchment modelling.
The analysis is mainly based on comparative numerical ex-

periments. Simulated hydrographs are given in appendix II.

The basis of the study is a series of field measurements
in urban areas and a specially developed runoff model.
Details of this work are given in several reports and

also in appendix I.

To give a background to the mathematical analysis, an
attempt is made in the next chapter to describe the char-
acteristics of urban runoff, such as rain intensity, vel-
ocity of rain drops, surface/sewer flow and catchment/

network geometry.



develop successively . If the time taken for water
particles from the upstream part of the surface to reach
the outflow section is denoted by tc, the profile A-H
will be fully developed at time t=tC after the onset of
rain. When t<tC the part of the surface that has not
been reached by water from the upstream end will have

uniform water depth (profiles B-E, C=F, D=G).

Typical recession water profiles when the rain has ceased
(t>tc) are shown in figure 2.3.2. The water depth is
gradually decreasing with time all over the surface (A-D-—»
A-C - A-B).

Figure 2.3.2 Water profiles when i=0 and t>t
(The scaling of water depths is
not realistic)

This two-dimensional representation of surface flow with
constant slope is called sheet flow. The water profiles
are valid provided the influence from the downstreém
boundary is negligible. This is the case for ordinary
urban runoff surfaces and the water depth then normally
increases downstream (3Y/9x>0). Typical values are 0.5 -
3 millimetres. Corresponding flow velocities are 0.01 =
0.4 m/s.

Evaluation of Reynolds' numbers representative for
surface flow indicates laminar flow. This is, however,
turned into a turbulent state by the impact of raindrops
and by the unevenness of the surface. As the rain recedes,
with the decreasing waterdepth, the flow may, however,

take on a laminar character.



The main part of the storm water is collected on imper-
meable surfaces such as roofs, streets and parking areas.
Normal flow lengths L, are 5 to 30 metres. In special
cases (for instance at airports) greater lengths are
accepted but rarely exceed 70 m. The slope Ss is usually
around 0.03 or more and very seldom less than 0.01. The
most important reason for using relatively large slopes
on surfaces is to avoid the risk of ponding caused by

local settings.

When rain starts to fall over the initially dry imper-
meable surface it first wets the surface and then fills
up all the depressions. This part of the rain volume,
usuvally denoted depression storage will evaporate when
the rain ceases. The magnitude of depression storage
depends basically on the "roughness" of the surface
(asphalt, concrete etc.) and the large scale depressions.
These are the effects of settlings and the lack of
precision in laying the surface. Several investigators
have analysed the depression storage, see Pecher (1969,
1970), Arnell and Lyngfelt (1975), Kidd (1978), Falk et
al. (1979). For impermeable surfaces most investigators
suggest a depression storage ranging from 0.4 to 0.7 mm

for surface slopes greater than 0.01.

[
Street — \ \ T~

Gutter —
Pavement| —% —¥ _—*

Figure 2.3.3 A part of a street with gutter,
pavement and inlet

Very often urban surfaces have a main slope that is not
parallel to the boundaries, see for example figure 2.3.3.
In this case and others with irreqular surfaces, strips

along the direction of mean slope have different lengths.

10



Thus cross—~sections perpendicular to this direction will
have different water-depths. These differences introduce
velocity components perpendicular to the direction of the
mean slope. In addition the cross-section is not actually
plane which also introduces such components and make the
moving water form rills. The water depths are often of
the same order as the the irregularities caused by the
surface material, for instance asphalt has local differ-
ences in level of several millimetres. Furthermore the
water is accelerated or retarded because of local differ-

ences in slope in the direction of flow.

Surface flow is obviously far more complex and irregular
than that described here as sheet flow. In practical
modelling it is, however, impossible to get closer to the

physical behaviour of surface flow than this assumption.

2.4 Gutter flow

The gutter flow is characterized by the mean flow velocity
Ug and the water depth Yg’ It is governed by»the surface
flow and the geometric parameters length Lg’ slope Sg,

cross-sectional shape and roughness.

The gutters, in the same way as surfaces, are exposed
only to lateral inflow as source. Therefore the develop-
ment of the water depth in the gutter is, in principle,

the same as that described for surfaces.

Normal flow length is 30 to 60 metres but a length up to
100 metres may exist. The slope is generally in the range
given for surface flow but sometimes smaller slopes are
accepted and a lower limit would be around 0.005. The
cross—-section of roof drains are well defined, rectangu-
lar or circular. The gutters at the side of the pavement
or rills on a large surface have usually the same side
wall slope as the surface. A standard side wall slope
would then be around 0.03. The cross-section for these

flows will become relatively wide and have properties
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similar to those of the downstream end surface flow.

Considering the geometrical and hydrological factors
given above, gutter flow should be mainly turbulent.
Laminar flow may occur at the upstream end at low

intensities. Typical mean velocities are 0.4 - 0.8 m/s.

The lateral inflow to the gutter will have a velocity
vector with a direction angle ¢ as defined in figure
2.4.1. At ¢ = 90° the surface flow vector is perpendicu-
lar to the gutter flow. This direction angle depends on
the slopes of the gutter and surface, Sg and SS respect-
ively. (SS is here the surface slope perpendicular to the
gutter). For small slopes tan é~S /S which corresponds
to values of ¢ in the interval 10° - 85°.

Lateral inflow g

Figure 2.4.1 Gutter flow with lateral inflow

The gutter flow is collected in inlets, which do not al-
ways have the required capacity, in which case parts of the
flow will pass the inlet. Important properties of the inlet

are the grating and the inflow velocity, Eskenazi (1984).

2.5 Flow in conduits

The flow in conduits is characterized by the mean veloc-
ity Up and the water depth Yp. It is governed by the
inflow and the geometric parameters length Lp' slope Sp,

diameter Dp and roughness.

12



The sewers in an urban drainage system are geometrically
better defined than the part above ground. This is true
in both the analysis of existing systems and the design
of new ones. The flow section is also better defined. The
sewers are connected by manholes in order to simplify
inspection. Between the manholes the sewer is usually
straight and has constant slope. The distance between
manholes rarely exceeds 100 m. The slope is primarily
governed by topography and consequently varies within a
wide range of values. In order to avoid sedimentation a
minimum slope of 0.001 to 0.005, depending on the diameter,
is used, VAV (1976). This limitation of slope and the low
friction factor of sewers causes relatively high veloc-
ities and often supercritical flow. Typical flow veloc-
ities are 0.5 - 1 m/s. Of special interest in this report
are sewers connecting gullies or down pipes to the main
sewer system. Standard diameters in this part of the
network system are 200-400 mm. These sewers are compara-
tively long and run with small water-depths, both factors
which significantly affect the runoff hydrograph.

Despite the use of minimum slopes sedimentation in sewer
systems is not unusual. This affects the runoff with
respect both to capacity of sewers and attenuation of

flow waves, Berg (1983).

Figure 2.5.1 Network system of the band and the tree
type
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The network system may be characterized by two basic
structures, the tree and the band types, see figure

2.5.1. The two structures may of course be combined to
give more irregular types.
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3. BASIC EQUATIONS FOR UNSTEADY GRADUALLY
VARIED FREE SURFACE FLOW

3.1 General

In application, the modelling of storm water runoff cannot
be accomplished in great detail. Simplifying assumptions
have to be accepted in the formulation of the differential
eguations and in their numerical solution, as well as in
the geometrical description of the catchment. Despite the
fact that the complete basic eguations are almost never
used in urban runoff modelling, it is necessary to discuss
their properties in order to understand the simplified ver-

sions.

The movement of water over surfaces, in gutters and in
sewers caused by rain can be regarded as unsteady, spa-
tially varied, free surface flow in a prismatic channel.
A flow with these characteristics is described by the
shallow water eguations, which are two partial differen-
tial equations derived from the laws of conservation of
mass and momentum. The equations are based on several
assumptions which appear to limit their application,
Yevijevich (1975). However, the equations have been found
to be valid for a wide range of unsteady flow cases. The
shallow water equations have been verified in natural
channels as well as in man made channels, see for in-

stance, Yevjevich (1975) and Brausert (1971).

The derivation of the shallow water eguations can be
found in several references, for example, Eagleson (1970),
Ligget (1975) and Sjdberg (1976), and is therefore not
presented here. In this chapter their basic properties

and relevance to urban runoff are discussed.
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3.2 The shallow water equations

The equations describe the continuity and dynamic prop-
erties of the flow. If the lateral inflow is considered

they may be written

90 3A _
5-}—{.~*—-a-—t~_.q ce. (3.2.1a)
and
2
30 . 9 (s 9 L 3Y . GA(S -5 )- =
Pr + BX(B z } +gA Ppe gA(SO Sf) gUcosg 0 .. (3.2.1Db)

where (as also given in chapter 2)

= coordinate in flow direction
= time

= Y(x,t)
= A(x,t) = cross~sectional area of flow
= Q(x,t)
tan a = bottom slope, where a = slope angle

]

water depth

!

flow rate

]

£ = friction slope (defined in section 5.1)
= g(t) = lateral inflow (flow/unit length)
= i(t) = rain intensity (flow/unit area)

= mean velocity of lateral inflow

&C}P'LQU)OU]IOD’K:#N
]

= angle between main and lateral flow
(figure 2.4.1)

= ji-B in the surface flow case
¢ in the surface flow case (figure 2.2.3)
= width of cross sectional area

= correction factor for the cross-sectional
velocity distribution

™ W e QO
1}

acceleration due to gravity

Q
il

In the derivation it is assumed that sino= tana and

cosa=1, which gives a resulting error less than about 1%
for tana<0.05. Morris (1979) analysed this approximation
for a range of overland flow cases and found no signifi-

cant effect on depth and velocity profiles.
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The terms in the momentum equation are here called

o local acceleration term %%
) . " . 3 2
o convective = (B-Q /A)
" Y
o pressure force gA'S;
] i ] —
o slope gA - (8~ S¢)
o lateral momentum " qUcos &
3.3 Initial and boundary conditions

A solution of the shallow water equations requires
initial and boundary conditions to be specified. The
basic properties of the equations and their connection
to these conditions are best illustrated by applying the

method of characteristics.

The basic equations may be transformed to a system of
ordinary differential equations, see Sjdberg (1976).

Using the formulation from the previous section gives

a9 _ S N <V -
a -~ ggrar - 9 A5, - Sg)

g ( (Vv - ﬂg%) - U.cos é) =0

which is valid if

«.o (3.3.1a)

dx ‘, A

3% = vV o+ 93 oo (3.3.1Db)
and

do A, dA

Tt - (VtVgR) - gF — 9A(S,-Sg) +

q((v+\/g§) - Ucosé) = 0

co. (3.3.1c)
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which is valid if

dx _ _ A
5% - v 93 ce. (3.3.14)

where B = B(x,Y) is the width of the cross-sectional area
at the water table.

Equations (3.3.1b) and (3.3.1d) express two wave veloc-
ities of a disturbance emanating from an arbitrary point
in the channel. The velocities appear in the x-t plane as
two lines or characteristics. The line corresponding to
equation (3.3.1b) is here called the p-characteristic,

and that corresponding to eguation (3.3.1d) is the n-
characteristic. Equation (3.3.la) is satisfied along the
p-characteristic and equation (3.3.1d) along the n-charac-
teristic. In each point where two known characteristics
meet, the equations may be solved for Q and A. This is

what is known as the method of characteristics.

The equations (3.3.1b) and (3.3.1d) may be written

.g.zé. ="9’%'(Fo £ 1) ce. (3.3.2)

where the Froude number F is given by

F_ = v ce. (3.3.3)

© Jgn/B

In subcritical flow, where Fo<1’ the p~characteristic is

directed downstream and the n-characteristic upstream,
see figure 3.3.1. In supercritical flow both characteris-

tics are directed downstream.

The direction of characteristics clearly demonstrates the
required initial and boundary conditions for different

flow regimes. The initial conditions

A = A(x,0) and Q0 =Q(x,0)

are always needed, regardless of the flow regime. In

subcritical flow the boundary conditions



Subcritical flow Supercritical flow

Figure 3.3.1 Characteristic directions in sub- and
supercritical flow

o
]

i

A(0,t) or Q= Q(0,t)

and

<
il

it

Y(L,t) or Q= Q(L,t) or Q= £(Y)

are needed. In super critical flow the boundary

conditions
A = A(0,t) and Q = Q(0,t)

are both needed (no downstream condition required).

The requirement of boundary conditions will obviously
vary with the flow regime. In sewer routing, the regime
will often vary rapidly which will complicate the solu-
tion and usually require very small steps in both time
and space. The accuracy of the method of characteristics
is governed by the distance between the selected calcula-
tion pecints. Using adequate distances the method is very
accurate and is often used for comparisons with more
approximate numerical schemes. The method is sometimes

referred to as the "exact" solution, Sjtberg (1976).
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3.4 Dimensionless shallow water equations -

magnitude of the terms

There are several reasons both practical and theoretical,
for examining the possibility of simplifying the mathemat-
ical description given in the shallow water eguations. It
is thus of interest to analyse the relative magnitudes of
terms. One way is to make the equations dimensionless by

making the following substitutions

x—.
= A/AO

Q/QO = Q/(qOL) (L = length in flow
direction)

©
B
]

= Y/YO

= q/9,
= V/V,
= U/U
= x/L

= tVO/L

X a0
WO W W W

which apply to flow elements fed by a lateral source, see
Woolhiser (1967). Subscript o refers to a chosen suitable
stationary flow, for instance normal flow at a lateral
inflow of 9y and % denotes a dimensionless variable.
Here, g, is used for both lateral inflow (to a gutter)

and rain inflow to a surface (qo = i-B for surface flow).
The continuity equation (3.2.la) becomes
S f e = g oo (3.4.1a)

and the equation of motion (3.2.1lb) becomes

2

20" 5 (9%) Yo w a¥®
TR TR ) Y ey T
ot X A Vo X
ces (3.4.1b)
S U
L * £ o ®oO®

= —5'gA"S (1 - §—) v—‘cos¢~q -UT =0

VO o o
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If the kinematic wave number

L-S L-So-g
K = ——— or — .

YO-FO Vo

(3.4.2)

is introduced the equation (3.4.1b) may be written

% ®, 2 3
B_Q;-}_ B.._E_); ((.Q;) ) +_§_.Ax._¥_§ -
at X A FO IX
o (3.4.3)
® Sf Uo b .
“KO-A (1 - g;)— "\7‘;~COS $-gq-U" =0

The relative importance of different terms in the equa-
tion above can be shown by comparing the magnitudes of
corresponding dimensionless parameters. This requires
estimated representative values of the parameters, which
here have been calculated from the characteristic values
of rain intensities, slope and lengths of flow reaches
etc. given in chapter 2. The following discussion of the

relation between terms is based on these values.

In overland flow, the Froude number will not depart very
much from unity. The pressure force term is thus of the
same order of magnitude as the dynamic terms. Usually,
the magnitude of one dynamic term is less than 20% of the

pressure force term.

In typical overland flow situations the kinematic wave
number exceeds several hundreds. Thus the forth term

KOAx normally dominates the first three.

If the raindrops have a horizontal velocity component
they may give a momentum contribution to the flow as
described by the fifth term in equation (3.4.3). However,
each drop also create a disturbance when it penetrates
the water on the surface. It is questionable if the

complex impact of the raindrops could be described as a
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pure momentum contribution. Therefore, in surface flow,
the lateral momentum term is normally neglected despite
the fact that, in theory, it may be significant. The
impact of rain drops will be discussed further in the two

chapters which follow.

In gutter flow, the lateral term is governed by the
relation between surface slope and gutter slope. For the
representative values given in chapter 2, the lateral

term is not significant in gutter flow.

The slope term appears in typical flow cases to be the
most significant. If all other terms are neglected the
equation of motion is reduced to

X —
KO-A (1 - ) = 0 cee (3.4.4)

or
S. =S . (3.4.5)

This considerable simplification of the momentum eguation
is called the kinematic wave approximation and, together
with the continuity eqguation, forms the kinematic wave
equations. The properties and the validity of the kin-

ematic wave approximation are analysed in chapter 4.

The comparison of terms in this section is only valid if
upstream and downstream boundary conditions do not
$ignificantly influence the flow. This is generally true
in overland flow, because of the relatively small water-
depth and great slope, see Morris (1979) . The discussion
presented here is not generally applicable to flow in

conduits.

The significance of the different terms in the equation
of motion has also been analysed by Jacobsen (1980). He
obtained basically the same results including significant

shear stresses caused by wind (discussed in section 5.5).
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3.5 Celerity and attenuation of waves

The linearized dimensionless basic equations can be
solved analytically for certain simplified conditions.
An example of such a solution was presented by Ponce and
Simons (1977) and is described below. The solution is
based on a small amplitude sinusoidal wave superimposed
on a steady uniform flow of depth Yo and involves no
lateral inflow and no influence from boundaries (see

section 3.4). The dimensionless solution is given by the

relations
® _ %
¢t = ¢ (Fo, co) eee (3.5.1)
and
§ = &
(FO, 00) ees (3.5.2)

where ¢” = c/VO is the dimensionless wave velocity or
celerity and § = 1n(a2/a1) is the logarithmic decrement
(a1 and a, = amplitudes at two sections, 1 and 2, at
distance A along the flow) - a measure of the attenua-
tion of the wave. The wave number 9 is defined by

m

o, = T ... (3.5.3)

m[&
o lo

where A is the length of the sinusoidal wave. 9q charac-
terizes the wave shape. A high value corresponds to a
"steep" wave and vice versa. These solutions are shown in
figures 3.5.1 and 3.5.2.

Figure 3.5.1 shows the variation in celerity with the
Froude number and the wave number. The diagram can be
divided into three regions:

o small wave numbers o _ < 10O and Froude

numbers F_ < 2 - the celerity is independent

of both F~ and ¢
o o
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o intermediate wave numbers 100 < co < 102 -

the celerity is dependent on both Fo and 9y

o great wave numbers % > 102 - the celerity

is dependent on Fo only

0.01
102
0.04
vt L 0.1
§11° 0.2
. 0.4
= 0 L I Fo=1
s 10 7T T
- 5
1071 1 1 .10

102 100 100 10t 102 103
Wave number G,

Figure 3.5.1 The relation between the celerity cx, the
wave number 95 and the Froude number FO
(after Ponce and Simons (1977)).

From the analysis presented by Ponce and Simons it
follows that waves in the region of small wave numbers
can be described by considering only the slope term in
the equation of motion, that is, by means of the kin-
ematic wave equation. As demonstrated in section 3.4,
this was the case also for large values of the kinematic
wave number KO. From the relations given in (3.4.2) and
(3.5.3) it appears that KO is proportional to l/oO if L
in KO is replaced by A . A large KO thus corresponds to a

relatively slowly varying outflow hydrograph.

According to figure 3.5.1, the kinematic wave velocity is
c = 1.5 vy where 1.5 is the exponent of the water depth
in the Chezy friction relation which was used by Ponce
and Simons. In the next chapter the kinematic wave veloc-

ity will be derived for an arbitrary friction relation.

Waves in the region of large wave numbers may be de-

scribed taking only acceleration and pressure force terms
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wave velocity is o= 1+1/Fo or

c =V, +\gY cee  (3.5.4)
which is similar to the characteristic velocity given in
equation (3.3.1b).

equation of motion.

In figure 3.5.2 the attenuation of the primary wave
(associated with the positive characteristic, section
3.3) is given as a function of the Froude and wave

numbers (an attenuating wave has a negative logarithmic
decrement) .

Logarithmic decrement -§

1073 ] 1 | J

102 10" 10% 10" 102 103
Wave number Gy

Figure 3.5.2 The relation between the logarithmic
decrement - § = In(a,/a,), the wave
number 9, and the Froudé& number F
(After Ponce and Simons (1977)}).

The attenuation for FO < 2 is greatest in the dynamic

band 100 <oy < 102, With decreasing or increasing wave
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number, towards the kinematic or gravity bands, the

attenuation decreases.

In the extreme case the gravity and kinematic waves are
subject to no attenuation at all. For FO > 2 (see Ponce
and Simons (1977)) the waves amplify and at FO = 2 the
waves neither amplify nor attenuate. It should be noted
that the critical value of the Froude number depends on
the friction relation used, and is 2 for Chezy”s relation

and 1.5 for Manning~s.

The analysis made by Ponce and Simons is basically only
applicable to waves with small amplitudes (compared to
the uniform flow waterdepth) which are not generated by a
lateral source. As the storm water waves have great
amplitudes compared to the base flow, and as the source
in overland flow elements is usually lateral no stronger
conclusions may be drawn from the analysis. It illus-
trates, however, the general properties of flood waves.
Tt is also believed that the results from the kinematic

band, namely

o dimensionless celerity, independent of the wave
number,

o increasing attenuation with the wave number,

are also largely valid for most storm water waves.
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4, APPROXIMATION OF THE SHALLOW WATER EQUATIONS

4.1 Simplification of the equation of motion

Using the basic equations it is possible to obtain an
almost complete description of the propagation of an
arbitrary wave. From a practical numerical point of view
they are, however, difficult to handle and simplifications
have to be considered. The difficulties in application may
commonly be traced back to the n-characteristic (see
figure 3.3.1) which is directed upstream for subcritical
flow and downstream for supercritical flow. The boundary
conditions required vary with the flow regime, which has
to be checked at each time step in the calculation. It is
also difficult to ensure numerical stability in the case
of steep wave fronts.

In the last chapter, it was shown that several terms in
the momentum equation are of lesser importance in urban
runoff simulation. By neglecting one or more of these
terms new equation systems are created. These systems
will have different properties with respect to character-

istics, wave velocities, boundary conditions, etc.

In the selection of suitable approximations, systems with
one or no positive characteristic direction defined and
with only the less important terms neglected are of

greatest interest.

The approximations of the momentum equation are named
after the main physical characteristics of the associated
wave movement. Below, the terms used in the different

approximations are indicated.

2
39,3 Q yig.a.2¥ g A(S ~S.)-q-U- =
at+5§(B‘A )+g-A 5% g.A(SO Sf) g-U-cos¢g=0 ... (3.2.1b)
L—kinematic wave approximation
diffusive " "
steady dynamic " "
dynamic " "
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The steady dynamic wave approximation has only one charac-
teristic, which is directed upstream for subcritical flow
and downstream for supercritical flow. If the second term
is dropped instead of the first, again we have a system
with two characteristic directions. As the negative charac-
teristic in this case is always directed upstream this sys-

tem should be easier to handle than the complete equations.

The two acceleration terms are of the same order of
significance and usually very small compared to other
terms, as was shown in section 3.4. Furthermore, the two
terms are always of opposite sign at the important rising
flow stage. Thus cases where the dynamic equations are
significantly better than the diffusive equation should
be very rare. This leaves only two approximate models of
interest; the diffusive wave model and the kinematic wave
model. Their properties are the main subject of this

chapter.

The significance of the lateral momentum term has been
discussed in the previous chapter. It is believed that a
significant portion of the momentum of the raindrops is
lost due to the disturbances created when the raindrops
penetrate the sheet flow and hit the ground. Therefore
the effect of falling raindrops on the flow can not be
simulated only by means of the momentum term. The impact
of raindrops should rather be looked upon as a loss of
momentum which could be accounted for by means of an
increased friction factor (c.f. chapter 5). The lateral
momentum term is therefore neglécted in the following.
However, in connection with the solution of the kinematic
wave equation in the case of constant rain intensity, an
example is given where the lateral momentum term is taken

into account.

Further approximations can only be made in terms of
simplifications of the friction relation, celerity,
diffusive coefficients etc., and can always be derived

from one of the above mentioned models.
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4.2 The kinematic wave approximation

4,2.1 The kinematic wave equations

The kinematic wave is a widely used approximation of the
dynamic wave equations. The first thorough analysis of
its properties was given by Lighthill and Wittham (1955).
In this approximation only the slope term is taken into

account. The kinematic wave equations are thus written

30 , 3A _

Sy + =T q coe (4.2.1)

Sg = S, = 0 ce. (4.2.2)
If Sf is expressed in terms of Q and A

2
s, = (25 e (4.2.3)
K-A

equation (4.2.2) gives

0 =k-sl/%a" ce. (4.2.4)

which is a general expression for a friction relation
valid in a prismatic channel. K is mainly a roughness
parameter while b is governed by the selected friction
relation and channel geometry. For instance, in surface
flow, Manning”s relation gives b=5/3 and Chezy”s gives
b=3/2.

The kinematic wave equations may be transformed into a
system of ordinary differential equations in the same way

as the shallow water equations (see section 3.3)

dx _ dQ
a3t = I co. (4.2.5a)
dg _ do
I - ard (4.2.5b)

The equation 4.2.5a expresses a wave velocity or a system

of positive characteristics in the x-t plane.
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Along these characteristics the equation 4.2.5b is satis-
fied. The kinematic equations evidently only simulate
wave propagation in the downstream direction. The necess-

ary initial and boundary conditions are

Q 0(x,0) (initial condition)

Q = Q(0,t) (upstream boundary condition)

and no downstream boundary condition is needed. This
property of the kinematic wave makes it incapable of
taking backwater effects into account but simplifies its
use. The basic appearance of kinematic characteristics is

shown in figure 4.2.1.

K.

UPSTREAM BORDER
r—\ \\
DOWNSTREAM BORDER

Figure 4.2.1 Kinematic characteristics in the case of
lateral and upstream inflow

The equation (4.2.5a) defines the kinematic wave velocity

Cp- Using the friction relation, it may be written
_ 40 | o gl/2.p 5 (1)
¢y =aa = K S5 b-A oo (4.2.6)
or
=p.2
Cp = b x . (4.2.7)
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The kinematic celerity is then always greater than the

mean velocity of flow,

selection of friction relation.

for instance in surface flow by
67% and in gutterflow by 25%

should be noted that the celerity is sensitive to the

(Manning”s formula). It

An alternative way of writing the equation system is

also be shown that

dx

da _

ac - 4
It can

dQ _ da

dx dt
Equation

subject to any attenuation.

If the definition of the kinematic celerity is used, the

oo (4.2.8a)

oo (4.2.8Db)

ceo (4.2.9)

(4.2.8b) shows that the kinematic wave is not

continuity equation may be written

b4

Ll
Cx

+

=13
I
Q

oo (4.2.10)

which can be compared to the convective diffusion

equation in section 4.3,

Figure

4.2.2

Converging surface

(after Singh (1976))
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The equations above assume a plane surface. For compari=
son, the corresponding equations for a converging surface

according to figure 4.2.2 are (Singh 1977)

30 3A _ Q

5§+5—E—q+L‘X« PR (4.2011)

Sg - S, = 0 ce. (4.2.12)
4.2.2 Analytical solution of the kinematic eguations

in the case of lateral inflow only

A typical system of kinematic characteristics of a surface
or a gutter flow (in the case of only lateral inflow) is
shown in figure 4.2.3. The characteristic starting at x=0,
+=0 divides the x~-t plane into two zones. The zone Zl1 in-
cludes all points where the associated characteristics
emanate from some point x at t=0 and the zone Z2 includes
all points where the characteristics emanate from the up-
stream end at some time t=to. The time taken for a wave
to travel from the upstream end at t=0 to x=L is the

time of gogcgngrgtiog, here denoted by tc'

Every downstream flow value Q(L,t) is associated with a
specific characteristic path. By integrating equation
(4.2.8b) over this characteristic an expression for the

cross-sectional area A is obtained at the downstream end

t
A(L,t) = [ g(o)do ee. (4.2.13)
t
o
as A(0,t)=0 and t0=0, A(x,0) = 0 if t<tc. From equation

(4.2.4) and (4.2.13) an expression of downstream outflow

is obtained

t

o, t) = kst ( fq(o)do)® cel (4.2.14)
t
o]
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Figure 4.2.3 A system of kinematic characteristics
in the case of lateral inflow only

K is assumed independent of x and t and the upstream
boundary condition is Q(0,t) = 0. Equations (4.2.13) and
(4.2.6) inserted in (4.2.5a) yield after integration

t T

L = k-s./%bf [ fq(o)da]l®™! ax .. (4.2.15)
t t
O O

For a given geometry it is possible to determine the out-
flow at any time by the equations (4.2.14) and (4.2.15).
In zone Z1 the flow is directly given by equation (4.2.14)
(tO=O). In zone Z2 the time to which is specific for each
time t (see figure 4.2.3) must first be determined. This

is done by using equation (4.2.15)

If equation (4.2.15) is applied to the characteristic
emanating from x=0, t=0 we have

t T
C
L=x5%. [ [fq(o)as]® ! ax . (4.2.16)
0 0
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Analytical solutions are obtained if the lateral inflow
is given as an analytical expression which is integrable
in equation (4.2.15). Li et al. (1975b) propose an iter-
ative method of solving this equation for an arbitrary

analytical function of g based on the Taylor series ex-
pansion. The general problem of evaluating the discharge
if the lateral inflow is given as a time series must be
treated by numerical integration or a finite difference
method (see chapter 6). Analytical solutions are there-

fore not directly used in simulating of runoff.

4,2.3 Analytical solutions in some special cases

Anélytical solutions of the kinematic equations are only
obtained in special cases. The solutions are based on
specific assumptions of the inflow or the friction rela-
tion. Below, some cases are discussed in order to illus-
trate the general properties of the kinematic wave and

the limitations of the analytical solution.

Integrating equation (4.2.8b) along a characteristic for
the case of only upstream inflow_ (g=0, A(0,t) # 0) shows
that the cross-sectional area A{(x,t) is constant along
this characteristic. Regarding the relation between flow
and area (equation 4.2.4) and the definition of wave
velocity (equation 4.2.5a), both Q(x,t) and Cx will also
be constant along this characteristic. If A(0,t) at the
start point of the characteristic is denoted Ain we ob-
tain the velocity, see equation (4.2.6)

ol -
gl/2 b-1

c, = K -b-(Ain) oo (4.2.17)

k o

or, if the corresponding flow value Qin is used (see equa-
tion (4.2.4)),

FT Q) oo (4.2.18)
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The outflow at the downstream end at time t is easily ob-
tained as the upstream inflow at time (t—L/ck). The solu-
tion may, however, give unrealistic outflow hydrographs
caused by intersecting characteristics. Such a case is

discussed in section 4.2.5.

Constant lateral inflow
For a constant lateral inflow, Ty stationary flow is
obtained at t=tC and the state of flow is only of
interest in zone Z1 (figure 4.2.3). Integration of
equation (4.2.14) in this zone gives (to= 0)

1/2 b b

Q(L,t) = K-s" % qp (Ost<tc) cee (4.2.19)

The time of concentration in the case of constant lateral

inflow is then

1-b 1/b
% - °* / (4.2.20)
TR P S . (4.2,
c K_SOI/Z

(since Q(L, tc) = qK-L when t=tcL

Linear friction relation

A linear approximation of the friction relation (b=1 in
equation 4.2.4) simplifies the solution procedure consider-
ably. Both the Time-Area Method and the Unit-Hydrograph
Method are based on this approximation, Chow (1964).

The equation (4.2.15) may in this case be integrated for
an arbitrary lateral inflow, giving

L= k572 (t-t ) ce. (4.2.21)
(0] @)

All characteristics have, obviously, the same integration
time, showing that the wave velocity is constant in time
and space (straight line characteristics). It should be
noted that representative values for the factor K are

very different for different friction relations.
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Nonlinear friction in a surface flow case

Analytical solutions may also be obtained for certain
time varying lateral inflows when a friction relation
with b=2 is used (see chapter 5). An example of such an

inflow is given by

-t/t -t/t
q=d e K- e k) ce. (4.2.22)
where q, and t, are constants (see Parlange et al. (1981)).
In figure 4.2.4 the function has been plotted to show the
principal shape. It is believed to be fairly representative

for a storm event and the corresponding inflow to a gutter.

q [1077mis) 0= 21075 11Ty tT3)
50 4 qﬁmxzé?:50'w-7m/5,
L0 T at t=tg-In2
30 +
20 -
10 -
0 } } . } ; 7 t[s]
0 120 240 360 480 600 720

Figure 4.2.4 The lateral inflow

Integrating equation (4.2.14) using this lateral inflow
gives the following expression for the outflow at the

downstream end

~2t/tk —t/tk

1/2 2.1 _
-S .qO‘ tk~(-—2-.e e +

Q(L,t) =K o

(4.2.23)
—to/tk

-2t _/t
e _ o' 'k

. e )

o]

where to is first evaluated by equation (4.2.15) when
t>tC (when t<tC is to=0), see figure 4.2.3. Using the

above equations, outflow hydrographs have been generated
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from a surface of length 40 m (width 20 m) for three
different slopes. The hydrographs are shown in figure
4.2.5 together with the lateral inflow hydrograph (from
figure 4.2.4) given as the total inflow to the surface.
This hydrograph corresponds to an inflow at the upstream
end if all the lateral inflow were concentrated to this

point.

Q [10'5m3/s]

— o lotal inflow
Qutflow at downstream end
of a surface ; L=40m, B=20m

Figure 4.2.5 oOutflow hydrographs from an asphalt surface
derived by the kinematic equations

It appears that the hydrographs get increasingly attenu-
ated with decreasing slope. According to the equation
(4.2.23) an increase in roughness would have attenuated
the hydrographs in the same way. This is typical for "flow
elements exposed to lateral inflow" such as

surfaces exposed to rain
gutters " " inflow from a surface
networks " " inflow from gutters

Given a lateral inflow with a duration greater than the
time of concentration tc’ the outflow will increase until
t=tc, see equation (4.2.14). Whether or not the flow
maximum is reached at t=tc depends on the shape of the
lateral inflow hydrograph. A steep rising lateral inflow
will give an outflow maximum very close to the time of
concentration.
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The attenuation is generated by the dependence on the
outflow of both the time of concentration and the shape
and magnitude of lateral inflow. To distinguish it from
"dynamic attenuation" of waves the attenuation discussed
here will be called "lateral inflow attenuation". This
attenuation is as significant as the dynamic attenuation

in urban runoff systems.

4.2.4 The kinematic wave including the lateral

momentum term

If the lateral term in the momentum equation is taken
into account the kinematic wave eguations become
20 3

S teE=d ... (4.2.24a)

e

|

P

s - g - 9:U-cosd

£ o g-A 0 e..(4.2.24Db)

Using the method of characteristics, see section 3.3,
the characteristic eguations can be obtained. Although
they are expressible analytically, they become very
complicated. In the case of constant lateral inflow the

rising hydrograph is given by

_ . b .Db U.-cos @ \
Q(L,t) =K 9p-t VSO+ — gt eee (4.2.25)

valid for

s + U.cos ¢

>0 and S_ >0
o gt o

The corresponding time to equilibrium is

t

b J + U.cos ¢ - L
c V7o gt K~q(b_1)

.. (4.2.26)
As an example, in fiqgure 4.2.6 are plotted the rising
hydrographs for a flow case, with and without considera-
tion to lateral inflow momentum. The influence of lateral
inflow becomes more stressed for great intensities, short

lengths and small slopes, and then i = 150 1/s-ha (54 mm/h)
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LS = 5 m and SO= 0.01 have been chosen as an extreme case.
The rain hits the surface at an angle of ¥ = 135° (6 = ¥

-5 2
Q[0 2]
8 do
6 1 /
iR S,20.01 /SO=O.01
4L 4+ / Simulations ;
e Without lateral
4 / momentum term
b — —Wwith lateral
2 4+ /) momentum term
/ (¢ =135°)
L J ' Y
So=0.0033
0| L t[s]
0 20 40 60 80 100 120

Figure 4.2.6 Comparison between rising hydrographs
calculated with and without lateral
momentum

in surface flow). As we can see water has to build up be-
fore the runoff can start. It is here assumed that the
water 1is not able to pass x=0. The lateral term can be re-
placed by a correction in slope to give the same time of
concentration but, as can be seen in figure 4.2.6, the
rising hydrograph is not properly reproduced. However,

as discussed in section 4.1 the impact of raindrops on

the flow is much more complex than described by the lat-
eral momentum term and the term is neglected in the fol-

lowing analysis.

4,2.5 Kinematic shocks

The analysis in previous sections is only valid as long
as no characteristics intersect each other. The condition

for two consecutive characteristics (Cl and C2) to meet
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can be written, according to Borah and Prasad (1980), as

[(%%)tl]m < [(%—i tl]cz ce. (4.2.27)

where tl is an arbritary time, see figure 4.2.7.

1y A

Figure 4.2.7 Two characteristics emanating from the
upstream boundary

According to the equations (4.2.4) and (4.2.5a) the

celerity may be written

L ad
dx _ 1/2,b b
A LR (4.2.28)
which inserted in the inequality, gives
1 1
1 R, .
H:Q b] J <MQ b] ] eo. (4.2.29)
t, Cl t; c2

In the lateral inflow case we have (eguation 4.2.13))

£ €
[U q(o)dc]b“l] <[U q(o)do]b‘1] ce. (4.2.30)
1t
o]

t c2
o

When[to]cl=[tO]C2(characterlstlcs in zone 21 figure 4.2.3)

the right and left hand sides are identical and the
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inequality is not satisfied. If the characteristics
eminate from the upstream boundary[to]czis always greater
than[to]cl. As g is positive the inequality (4.2.30)
cannot be satisfied. Thus in the lateral inflow case, no

intersecting characteristics are obtained.

constant wave velocity along each characteristic. As soon
as one characteristic leaving the upstream boundary has a
velocity greater than the foregoing one they will inter-
sect (provided L is long enough). From the point where two
characteristics meet a new one will form with a different
celerity. A zone of intersecting characteristics will
develop, associated with the rising part of the inflow
hydrograph. In this zone what are known as kinematic
shocks or bores will form. The movement and shape of
these shocks have been analysed by several investigators,
Lighthill and Whitham (1955), Kibler and Woolhiser (1970),
and an approximate method of routing shocks has been pre-
sented by Borah and Prasad (1980).

It is possible to get a pure kinematic solution if the
characteristics are allowed to intersect. More than one
flow value may then occur at the outflow at each moment,
which, of course, is physically unrealistic. In figure
4.2.8 is given an example of the kinematic solution in a
case when kinematic shocks form. The lateral inflow from
figure 4.2.4 {(multiplied by the surface area) is used as
the upstream end inflow and routed over the surface (L =
40 m, B = 20 m, SO = 0.03). Typically, the outflow hydro-
graph has three flow values at each specific time in the

shock forming zone.

In the numerical solution of the kinematic wave equations
an artificial attenuation is obtained (see chapter 6).
This attenuation smooths out the shock giving, at least,

unique flow values at each time step.
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Figure 4.2.8 The kinematic solution in a case of
intersecting characteristics (physically
unrealistic).

4.2.6 Applicability of the kinematic wave eguations

It appears from the dimensionless dynamic equation

(3.4.3) and section 3.4 that the kinematic wave number

(3.5.4)

is an important parameter in the discussion of the appli-
cability of the kinematic wave model. Generally KO in-
creases with increasing slope, length and roughness of the
surface or gutter. If the flow is generated by a "lateral
source", KO increases with decreasing rate of lateral in-
flow and increasing length. Several investigators, for
instance Woolhiser and Liggett (1967) have discussed limit-

ing values of KO for the kinematic model.

Woolhiser and Ligget compared dimensionless rising
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hydrographs evaluated by the kinematic and dynamic equa-

tions for different values of KO and FO. They found that

the error of the outflow hydrograph using the kinematic

equations was less than 10% at KO= 10 (Chezy~s friction

relation used). The error decreased rapidly with increas-

ing K and K
o o

20 was then defined as a limiting value

below which the kinematic solution does not apply.

1.0

05

1.0

05

Figure

Q*

- Basic equations

e — Kinematic wave
equations
Fo=0.5

K=10

0 05 1.0 15 20 t¥
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D"EO.BAQ/.{ e Basic equations
\ e — Kinematic wave
equations
- 7 N\ F,=0.25
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74 ~w ~
~~_
i 1 ] ]
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4.2.9a,b Dimensionless partial equilibrium hydro-

graphs. D* is the dimensionless time at
which the lateral inflow ceases (after
Morris and Woolhiser (1980)).
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Morris and Woolhiser (1980) analysed in a similar way
partial equilibrium hydrographs from a plane, see figure
4,2.9 a,b. They concluded that the condition on KO must
be further restricted in cases of small values of FO and

proposed the general condition:

F7.K_> 5 when F_ < 0.5 ... (4.2.31a)
o o o

K, > 20 when P> 0.5 eos(4.2.31Db)
Comparing it with Ponce and Simons” analysis referred to
in section 3.5, the condition corresponds to the kinematic
band 9y < 1 in figure 3.5.1, provided the length of flow
L is replaced by the wave length ) of Ponce and Simons~

sinusoidal wave.

Using the limiting values of surface flow characteristics
given in section 2.3, the kinematic wave number KO > 38
and the Froude number FO > 0.5 are obtained. The kinematic
wave then applies to surface flow according to the condi-

tion given above.

In gutter flow the kinematic wave number may be less than
20 (FO > 0.5) and the use of the kinematic wave approach
is in some cases doubtful. For small values of Fo the
diffusive wave is a more appropriate approximation, see
section 4.3.2. In the great majority of cases the kine-

matic wave approach, however, applies also to gutter flow.

The condition (4.2.31) also applies to a sewer fed by a
lateral source only. Such a flow element is in this
report used as an alternative approximation for sewer
systems. In this case the kinematic wave number may be
less than 20 (FO > 0.5) and the kinematic wave approach

is consequently sometimes less appropriate.

The discussion of the applicability of the kinematic wave
model in section 4.3 and here is based on the case of

constant lateral inflow. It may be regarded as an extreme
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type of inflow. According to section 3.5, kinematic waves
have long wave periods and gentle slopes of rising and
receding parts. If the lateral inflow is increased suc-
cessively instead of instantaneously, more gentle slopes
of the wave will result. The kinematic approximation can
in this case be expected to be valid for smaller values

of KO than those given in condition (4.2.31).

Morris (1979) analysed the influence of the choice of
downstream boundary conditions on solutions of the shal-
low water eguations. She found no effect on the solution
for a range of Froude and kinematic wave numbers covering
most overland flow cases. This result is in accordance
with the kinematic wave solution which does not take the

downstream boundary condition into account.

It should be noted that the analysis so far is purely
theoretical and based on assumptions such as sheet flow.
However, regarding these limitations the discussions
above give a clear indication that the kinematic wave
approximation is, despite its simplicity, sufficiently
accurate for urban runoff simulation in the great major-

ity of cases.

4.3 The diffusive wave approximation

4.3.1 Basic equations - the diffusion analogy

The diffusive wave equations are obtained by neglecting
the local and convective acceleration terms in the basic
momentum equation. For prismatic cross-sections (3A/3x =

B3Y/3x) the equations may be written

30 | A _

StsE =g ee. (4.3.1)
1 3A i

FaZ +Sp -8, =0 ce. (4.3.2)

The equations form a system of linear differential
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equations which is elliptic, that is, no characteristic
can be found. Differentiating the equations (4.3.1) and
(4.3.2) with respect to x and t, respectively, and using

the friction slope

Sy = —5"—5r ceo (4.3.3)

(for example Manning”s or Chezy”s relations, see chapter

5), the kinematic celerity (section 4.2.1)

e =90 _Q 4 ... (4.3.4)

2
k1Y 39 _ .29 .
5t + k3% D 5+t Ccpr g co. (4.3.5)
IX
where
- Q
D = ZSf-B e.. (4.3.6)

The second term on the left hand side of equation (4.3.5)
represents the convective transport and the first term on
the right represents the diffusion of the wave with diffu-
sion coefficient D. The equation will here be called the

convective-diffusion eguation, Daily-Harleman (1965).

The convective-diffusion eguation illustrates the prin-
cipal ability of the diffusive wave equations to describe
an attenuating wave movement. This is not possible using
the kinematic wave equations. Comparing the convective-
diffusion equation with corresponding expression of the
kinematic equations (4.2.10) shows that these are ident-

ical if the diffusive term in equation (4.3.5) is omitted.

A solution of the diffusive wave equation requires besides
the initial and upstream boundary conditions (compare with
the kinematic equations), also a condition at the down-

stream boundary
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0(x,0) (inital condition)
Q(0,t) (upstream boundary condition)
Q(L,t) (downstream boundary condition)

o

Q
Q
Q

If the celerity Cx and diffusive coefficient D are
assumed constant with respect to independent variables,

the equation (4.3.5) can be reduced by the transformation

xc = X = ckt to
9Q 5%
3E = D.g;§ + ckq eee (4.3.7)

The equation may be further reduced (by manipulating the
boundary conditions) to the same form as the classical
heat conduction equation or Fick”s law in one dimension.
This equation has been solved analytically for numerous
different applications, mainly regarding molecular dif-
fusion, Crank (1975), and heat conduction Carslaw and
Jaeger (1959).

When the above mentioned analytical solutions are applied
to channel flow, difficulties in specifying suitable
boundary conditions arise. In addition, the analytical
solutions will be expressed in terms of integrals that
have to be solved by means of numerical integration
methods. It is therefore not possible to use analytical
solutions to discuss the properties of the diffusive wave
equations in the way it was for the kinematic wave equa-

tions.

Inserting the friction relation (4.3.3) in the "momentum"
equation (4.3.2) and solving for Q gives

1/2
= g-aPgi/2p - L 3Y
0 = Kk-a’s/ (1 5. =) ... (4.3.8)

By expanding the square root term as a power series and
differentiating with respect to x and t, it is possible
to derive the convective-~diffusion equation (valid for
flow on surfaces or in rectangular channels), see Price
(1980a) and Kousis (1982),
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._...+0..._.=-——-—-'—.-—-——- +C~q ¢ oo (4::309)

which is identical to equation (4.3.5) if Sf is assumed
egual to SO in the diffusive coefficient D. It should be
noted that throughout the derivation of equation (4.3.9)

terms containing

have consistently been dropped. These terms are in
dimensionless form, (dimensionless variables denoted by

index =),

2 2
1 .a Yx or 1 .(an)
F2K ox” F2K 0 e
[e N ® O

and are thus of the same order of magnitude as the ne-

glected dynamic terms (see equation 3.4.3), or smaller.

In chapter 6, the diffusive coefficient defined by the
equation (4.3.9) will be compared with the diffusion
caused by the numerical solution of the kinematic wave

equations.

4.3.2 Applicability of the diffusive wave eguations

The diffusive wave equation includes the pressure force
term as well as the slope term. The dimensionless analy-
sis in chapter 3.4 shows that this term will be more
significant for small values of the Froude number. When
FO increases towards unity (KO less than 20) the accelera-
tion terms become more important and the full dynamic

equation should be used.
Morris and Woolhiser (1980) derived partial equilibrium

hydrographs from a surface at low Froude numbers, figure

4.3.1. As might be expected, in this region the perform-
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ance of the diffusive wave was better than that of the
kinematic wave, compare with figure (4.2.9b). It performs
less well for the receding part than the rising part.
This might be explained by the fact that the sign of the
local acceleration term changes at the receding part and

the acceleration terms no longer counteract one another.

According to Morris and Woolhiser the diffusive wave
approximation should be significantly better than the
kinematic wave when KO Fg < 5 and FO < 0.5 (eguation
(4.2.31a)). The criterion has a simple physical inter-
pretation following directly from the definition of KO;
when the difference in level between upstream and down-
stream ends is less than 5 times the waterdepth the
diffusive wave equations should be used; otherwise the

kinematic wave equations apply.

Considering typical slopes and water depths in urban run-
off systems the condition is essentially fulfilled only
in very flat sewer nets. Runoff simulations in such cases

require a downstream boundary condition.

Q¥
1.0 | T
- = =
r;' — Basic equations
D™=0.849 ... — Diffusive wave
s L AN equation
DRos N F,=0.25
-~ . K=10
~
/ ~<_ T~-
z = T
0 I ] ‘ '
0 05 10 15 20 t

Figure 4.3.1 Dimensionless*partial equilibrium
hydrograph. D° is the dimensionless time
at which the lateral inflow ceases (after
Morris and Woolhiser (1980))

Ponce et al. (1978) developed a similar criterion for
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this case based on the analysis discussed in section 3.5
for a single conduit which is fed by an upstream source
only. According to this criterion the diffusive wave eqgua-
tions apply to the same cases -~ flat sewer systems with

great water depths.

Again it should be stressed that the discussion is theor-
etical and the conditions to some extent subjective. There-
fore a definite rule for making the choice between the two
approximations can not be given. It is, however, evident
that in network systems with significant backwater the

diffusive wave eguations have to be used.

4.4 Summary and discussion

An analysis of the magnitude and sign of the terms in the
dimensionless momentum eguation shows that there are two

simplifying approaches of interest for urban runoff model-
ling. These are the kinematic wave and the diffusive wave

equations.

simple set of differential equations and boundary condi-
tions (no downstream boundary condition). The equations
have in the lateral inflow case no general analytical
solution and must be solved by means of numerical methods.
Regarding the properties of the equations, the correspond-
ing numerical algorithm can be expected to give compara-

tively stable solutions.

From a theoretical point of view the kinematic wave
approximation is, despite its simplicity, sufficiently
accurate for urban runoff simulation in the great
majority of cases. This is explained by the rather
impressive ability of the equations to reproduce the
wave velocity in ordinary urban runoff systems - the

kinematic wave velocity.
The kinematic wave equations are not able to reproduce
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dynamic attenuation. Provided there is only an upstream
source the wave is not subject to any attenuation at all.
This is in practice not a serious drawback because in the
numerical solution an artificial attenuation is introduced
which in most cases is greater than the dynamic attenua-

tion (chapter 6).

of differential eguations which are a bit more complex and
also need a downstream boundary condition. The correspond-
ing numerical solutions can also in this case be expected

to be "stable" (compared to solutions of the basic equa-

tions).

Using the diffusive approximation it is possible to repro-
duce the main part of the "dynamic" attenuation. It is also
possible to take into account the downstream boundary con-
dition which makes analysis of sewer systems with signifi-

cant backwater possible.

The diffusive wave approximation applies to all cases
where the kinematic wave approximation is relevant and
also to special cases where backwater is significant. It
thus appears to be the most generally valid approximation
for urban runoff simulation. It has successfully been
used in the analysis of sewer systems, see SjSberg (1981),
Akan and Yen (1981) and Lyngfelt and Svensson (1983).

An important property of urban runoff is that the sources
feeding the flows are spread along the "channel" elements.
This is, of course, highly relevant for surface and gutter-
flow cases but applies in principle also to most sewer net-
work systems. In these kinds of system an attenuation of
the wave is obtained that can be related to a characteris-
tic time of concentration for the system. This "lateral
inflow attenuation" is believed to be at least as signi=-
ficant in urban runoff systems as the "dynamic" attenua-

tion. Therefore a very important property of a model used
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(1975)) . Consequently the friction term in the momentum
equation is determined in time and space by traditional

friction relations developed for stationary flow.

In this chapter, flow resistance at small water depths
(sheet flow) will be discussed. Many investigations of
this flow type have been performed and the discussion
will be based on some of the best known studies. Friction
relations relevant for surface and gutter flow suitable
for urban runoff modelling are analysed. Besides the
influence of roughness and rain intensity, the effects of

wind and rollwaves on the flow are briefly discussed.

5.2 Alternative formulations of the friction

relation

The most frequently used friction relation in standard
literature is the Darcy-Weissbach equation. For stationary
open channel flow (prismatic section) it may be written
as a relation between the flow and cross sectional area

£ 2

Q
S, =8 = 5= - = ve. (5.2.1)
£ o 4R ZgAZ

where R is the hydraulic radius and f a dimensionless
friction factor. In surface flow, R~ Y and if Qb is the

flow per unit width the relation is
0, = 372 |89 cee (5.2.2)

The relation is derived considering only friction due to
shear stresses along the bottom. Raindrop impact and wind
shear stress on the surface may, however, be incorporated

in £.

The equation covers the laminar flow, the flow in the
transition zone and the turbulent flow. In laminar flow

over smooth surfaces the friction factor is only dependent
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on Reynolds”™ number R,

24
£ =& eee (5.2.3)
e

In surface flow Re = Qb/v (v = kinematic viscosity of

flow) giving

= y3 9.
Qp = Y 395, ce. (5.2.4)

In_turbulent flow over rough surfaces_  the friction
factor depends mainly on the relative roughness and may
be represented by

£ =39

ces (5.2.5)
C2

where C is the roughness parameter of the surface. Insert-

ing in the Darcy-Weissbach relation gives

_u3/2,
0, =Y Cfsz ee. (5.2.6)

which is the well-known Chezy relation for surface flow.

Another relation is the Blasius equation

f = cee (5.2.7)
which is valid for turbulent flow.

Other relations of interest in turbulent flow are:

0, = y/3. 1 .. (5.2.8)

the Danish L-formula, Jacobsen (1980)

p = TR VS cee (5.2.9)

and
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= v2.
Qp = Y qug: ee. (5.2.10)

here called the guadratic_formula (after the exponent of

Y). n, KL and Kq are friction parameters governed by
roughness properties of the surface and the impact of the

raindrops.

Investigations of the friction properties of the flow are
usually presented in a logarithmic f—Re diagram. A
convenient way of making comparisons between suitable
friction relations should thus be to express them in

terms of f and Re (by using Re = Qb/v):

The Manning formula

So-n18 1/10
f = 8g (—5——§~) (5.2.11)
v'*R
e
the L-formula
S 2/11
f = 8g(m) PR (5.2.12)
L e
the quadratic formula
SO 1/4
£ = 8g'(-g—-§~—§) ce. (5.2.13)
K~ -v 'Re

Using the Manning, L- or quadratic formulas is equivalent
to the use of Darcy-Weissbach”s equation with a friction
factor given by the equations (5.2.11), (5.2.12) or
(5.2.13). These relations will appear in the fnRe—diaqram
as straight lines, each defined by its "slope" and level.
The "slope" is characteristic for each friction relation
and is dependent only on the exponent of Re. In figure
5.2.1 these "slopes" are compared to those of laminar
flow given by f = 24/Re and turbulent flow given by the
Blasius equation. The levels of the lines have been

chosen arbitrarily.
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The gquadratic and L-formulas appear as hybrids between
the pure laminar and turbulent relaticns and should fit
reasonably in the transition zone and surrounding parts
of the laminar and turbulent zones. Manning”s formula
shows the typical "slope" of a turbulent relation. A
relation which gives a "laminar slope" at low Reynolds”
numbers and a "turbulent slope" at high ones (illustrated

in figure 5.2.1) is

l = . £ - ’d
o K, -log Re\E - K, ce. (5.2.14)

where Kl and KZ are constants. This type of relation is,

however, inconvenient in a runoff model. If a better

AN
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Figure 5.2.1 "Slopes" of the friction factor relation
used in different friction formulas

adaption to laminar and turbulent flow is required a
combination of a laminar and turbulent relation is pre-

ferred. The Manning, Chezy, Blasius, L- and quadratic
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relations can all be represented by the more general

formulation used in previous chapter, equation (4.2.4)

_ . el/2,b
0 =K So A

where K is basically a roughness parameter (in surface
flow also including the width, and in gutterflow, the

slope, of sides).

5.3 Investigation of friction losses in surface flow

5.3.1 General

Generally an empirical friction relation can be estab-
lished by measuring corresponding flows and water depths
at different stationary flow conditions. This requireé
well controlled measurements and consequently most re-
ported investigations have been carried out "indoors".
The used surfaces are very even and the surface lengths
are quite small (5-7 m). Rain is generated in simulators
of different construction usually covering only a part of
the surface. Among the referred tests there are examples
of surfaces that are smooth, covered with sand or more
realistic textures (asphalt, concrete). However, both the
rain and the surface will be different from the real "in
situ" situation giving difficulties in generalizing the
results. On the other hand the fundamental relations
should be best studied under these well controlled in-
door conditions, where the effects of different physical

phenomena can be separated.

5.3.2 Flow over a smooth surface

The characteristics of flow over a smooth surface have
been investigated by Yoon and Wenzel (1971), Yen et al.
(1972), Shen and Li (1973), Kisisel et al. (1973), Nittim
(1977) and several others. The main objective of these
investigations has been to study the effects of raindrop

impact on flow.
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For flows not_exposed to_rain , most tests confirm the
theoretical laminar relation f = 24/Re. The transition
from laminar to turbulent flow is found at a Reynolds”
number of about 900 with a transition zone 800-1400. At
low slopes (SO<O.01) laminar flow tends to be maintained
at about 1100. For turbulent flow Nittim summarized
several investigations and presented a regression equa-

tion
—= = 2:log(r_VE) ce. (5.3.1)
The relation is plotted together with Nittim~s results

for flow on glass, in figure (5.3.1). It appears to agree

reasonably well with Blasius” solution, see Shen and Li.

o S,=.001
o So=.01
e S,=.06

77 =2log{Re VT

5=

.01

10 102 10 104
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Figure 5.3.1 Values of the friction factor f measured
for flow without rain over glass after
Nittim (1977)

The_influence of rain on the friction factor obtained in
investigations by Yoon, Li and Nittim is shown in figures
5.3.2a~d. The tests by Yoon and Li agree quite well and

Shen and Li derived from these (and tests by Kisisel) the

following regression relation for laminar flow
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e

where the rain intensity is given in [m/s]. Nittim was

not able to gquantify a similar laminar relation. The
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series shown in figure 5.3.2c shows the same trend as
given by the eqguation. The second series of measurements
by Nittim, figure 5.3.2d, however, shows the opposite
trend. The friction factor decreases with increasing
rain intensity, but is generally greater than 24/Re. A
possible explanation for this discrepancy could be the
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greater raindrop velocity in this test (figure 5.3.2d).
However, Nittim could not show that this velocity had a

statistically significant effect.

The interpretation of these contradictory effects on the
flow is beyond the subject of this study. However, it
serves to indicate that the way raindrops are produced in

the laboratory has a significant effect on the flow.

In turbulent flow, Shen and Li found that the Blasius
solution can be used if the constant f‘Ré/4 = 0,223 is
increased by 12%. Nittim™s tests agree reasonably in the
turbulent zone but with a slightly larger value for
f-Ré/4 = 0.260. It should be noted that the main part of
the study discussed above has been carried out using

slopes equal to or less than 0.01.

o Flow without rain agrees well with the laminar relation

and reasonably well with the Blasius solution in the
1/4

turbulent zone (with the value of f-Re

slightly in-

creased)

o The flow is strongly influenced by the rain-
drop impact in the "laminar" zone resulting in an

increased friction factor

o The flow is moderately influenced by the raindrop

impact in the "turbulent" zone. The Blasius” solution

4
(with the value of f-Rel/‘ increased by about 15%) may
be used.
5.3.3 Flow over "artificially" roughened surfaces

On an "artificially" roughened surface (using sand or
small spheres) the height and shape of the roughness can
be made very uniform. The influence on the flow caused by

the surface roughness is thus expected to be best observed
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on such surfaces. Investigations of interest in this area
have been accomplished by Woo and Brater (1962), Kisisel
(1973), Phelps (1975) and Nittim (1977).

covered by glass spheres with a roughness height k=1.2
mm. His tests show a clear laminar zone for Reynolds”
numbers less than 400, figure 5.3.3. In both the laminar
zones and transition zone an overall effect of increased
friction factor compared to the smooth surface flow can
be observed. There is also a tendency for the friction
factor to increase with increasing relative roughness
k/YO. If, however, only tests with a slope greater than
0.008 are considered (marked by squares in figure 5.3.3)
the pattern is changed. The laminar zone vanishes and the

transition zone moves towards lower values of Re.

Nittim investigated also flow without rain over a surface
covered by spheres (k=2.33 mm). The tests show rather
different friction relations compared to those found by

Phelps (figure 5.3.4). Generally, considerably smaller
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Figure 5.3.3 Flow without rain-effects of the relative
roughness on the friction factor £,
after Phelps (1975)
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values of f were obtained and a less marked transition
zone. Tests with large k/YO (greater than 1) are prefer-
entially found at the lower edge of the band formed by
Nittim”s testpoints. For Reynolds”™ numbers less than 600,
tests with the smallest values of k/Yo are very close to
the laminar relation (f=24/Re). Thus Nittim”s tests show
a tendency for the friction factor to increase with
decreasing relative roughness k/YO. It should be noted
that there is a difference in chosen k/YO values in the
two investigations. Phelps” test points all fall in the
interval k/YO = 0.23 - 0.55 while Nittim”™s are consider-

ably greater.

0,0 S5 = .01
e,s Sy= .06

]
O,
a B‘
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.01
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Figure 5.3.4 Friction factors at flow without rain
(sphere roughness k=2.33 mm)
after Nittim (1977)

Compared to Nittim™s results for the smooth surface con-
siderably greater friction factors can be observed in the
region Re > 500 whereas lower values were obtained at Re
< 300, figure 5.3.4.

Nittim”s sphere covered surface was also used to study
flow exposed to rain using two different intensities. At

the high intensity (i = 800 1/s-ha) a great increase of
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the friction factor compared to flow without rain was
found. However, at the lower, more realistic, intensity
(i = 180 1/s-ha) this effect is not so marked - about
20% increase at large Reynolds”™ numbers >800 and values
smaller than 24/Re for Re<100°

The results presented by Kisisel shows the same great in-
crease in f at unrealistically high rain intensities on a

surface "roughened" with sand (k = 0.072 mm).
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Figure 5.3.5 a-b The friction factor versus Reynold’s
number at i=210 1/s-ha and i=116 1l/s-ha,
after Woo and Brater (1962)

Woo and Brater investigated flow exposed to rain on a
sandcovered surface (k=~1.0 mm). Figure 5.3.5 summarizes
tests with Reynolds” numbers less than 800 and rain in-
tensities below 210 1/s-ha. At each slope (>0.01) the
friction factor reaches a maximum in the interval 80<Re<200
and decreases rapidly from this point with decreasing and
increasing Reynolds”™ numbers. The moderate intensity tests
(i = 116 1/s-ha) agree reasonably with those of Phelps”
without rain and k/YOw 0.5. The high intensity tests (i =
210 1/s-ha) give slightly greater values of f than Nittim”s
tests (i = 180 1/s-ha). The result from Woo and Brater”s
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tests fits reasonably with Phelps” and Nittim”s and
supports the earlier results of a great effect caused by
the relative roughness and a more moderate effect caused

by rain.

The following conclusions can be made from the tests of
flow on sand and sphere-roughened surfaces with a slope

greater than 0.01:

o The friction factor differs considerably from that
of a smooth surface. No laminar zone can be identified
and in the turbulent zone (Re > 1000) significantly
greater friction factors are obtained (f increased by

-a factor 2).

o For flows having a relative roughness k/Yo > 0.5 the
traditional relation - £ increasing with k/Yo -~ does

not apply.

o For flows without rain and a relative roughness

realistic for urban surfaces, f-values less than
24/Re are obtained at low Reynolds™ numbers (Re<400).

o The influence of rain on the friction factor is great
at high intensities but more moderate at realistic
intensities (about 20% increase at high Reynolds~

numbers) .

o The friction relation has characteristics resembling
a transition zone at Reynolds” numbers less than 1000
with great scatter. Thus it is not possible to quan-
tify this relation with the referred investigations

as a base.

5.3.4 Flow over asphalt and concrete surface

Flow over impermeable surfaces found in urban areas, such
as concrete or asphalt, has been investigated by Izzard
(1944), Yu and McNown (1964), Andersson et al. (1973) and

Nittim (1977). Such surfaces are characterized by having
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a roughness height and shape that varies over the surface
and the roughness elements form irregular patterns on the
surface, all in contradiction to "artificially" roughened

surfaces.

Flow without_rain on a steel brushed asphalt surface has
been investigated by Nittim. The surface represents a
road-surface that has been worn by traffic (k=~0.8 mm).
For Reynolds”™ numbers less than about 103 the obtained
friction factors are quite similar to those from Nittim™s
"sphere" surface (k=2.33 mm), though the latter shows a
greater scatter. When the Reynolds”™ number is greater
than 103 the asphalt surface obtains significantly
smaller values of f than the "sphere" surface. This
indicates that in the fully turbulent zone, where the
relative roughness is small, the traditional friction

relation ~ f increasing with k/YO - holds.

o So:.01
o S6=.03
e So=.06

tests by Yu and McNown
@

o o
o0 >
@
o wﬁ
Blasius T~
.01
10 : 102 10° 10%

Figure 5.3.6 Flow without rain-friction factor versus
Reynolds” number for an asphalt surface.
After Nittim (1977)

vyu and McNown made a number of tests with flow without
rain on concrete. The tests (represented in figure 5.3.6

as a line) have friction factors in the fully turbulent
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zone about 80% greater than those obtained from Blasius”
solution while the corresponding factor for the asphalt
surface is about 50%. No information was available on the

roughness height of the concrete.

Tests on an asphalt surface made by Izzard show greater
friction factors than those found by Yu and McNown and
Nittim but agree reasonably with Phelps” results when
Re<600.

Andersson et al. tested asphalt surfaces (Ab 8 t and
Ab 12 8) in the field by velocity flow measurements and
found friction factors also in agreement with Phelps”
results. Izzard obtained for Re>600 slightly larger

f-values than Nittim,

The effect of rain on Yu and McNown™s and Nittim™s
surfaces are shown in figures 5.3.7 a,b. Nittim™s data
are very scattered compared to those of Yu and McNown.
The greatest scatter is, however, found in the interval
Re<200 where Yu and McNown only have one test point.

Their results, in general, agree very well with Nittim™s.

Nittim”s tests with rain agree reasonably with his test
of the sphere surface exposed to rain, except at high
Reynolds”™ numbers where the greater roughness height of
spheres gives rise to a greater friction factor. The in-
fluence of rain can be recognized both in Yu and McNown~™s
and Nittim~s data. It should, though, be noted that in
figure 5.3.7b all the filled and the half filled dots rep-
resent unrealistic rain intensitites (greater than 380
1/s-ha). If these are removed, the influence of rain be-
comes mainly visible as a scatter. Yu and McNown were
also unable to quantify the effect of the rain intensity.
In their tests, rain intensities from 180 1/s-ha to 700
1/s-ha are represented. Izzard”s investigations of rain
dependence show the same general trend of increasing
friction factor with increasing rain intensity, but all

his intensities are unrealistic (see above).
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Figure 5.3.7 a,b Friction factor versus Reynolds”™ number
for a concrete and asphalt surface
after Yu and McNown (1964) and Nittim
(1977), (1 um/s = 10 1/s-ha)

The following conclusions can be drawn from the tests

considered in this section, (in general agreement with

those of "artificially" roughened surfaces):
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o No distinction can be made between a laminar znd a
R

turbulent zone. *
o At Re > 1000 values of f considerably greater than

those corresponding for a smooth surface are obtained.

o For Re>1000 a tendency for the friction factor to
increase with increased roughness height is observed
(sections 5.3.3 and 5.3.4).

o At Re < 300 values of f below the "laminar values"
24/Re are obtained.

o The influence of rain is clear at high intensities,
but at realistic intensities only a weak trend is
observed. However, the scatter becomes very great at

low Reynolds” numbers.

5.4 Rollwaves

If the slope So is sufficiently steep, small disturbances
(which are always present in a flow) will grow and after
a certain length so called rollwaves - a form of unstable
flow - will form and move downstream. The stability is
judged by the Verdenikov™s number Ve, defined by Chow
(1959)

v, =p(-52F, 7 cee (5.4.1)
where p is the exponent of the hydraulic radius in the
friction relation (denoted Cy in equation (5.1.2)).P is
the wetted perimeter and FO the Froude number. Insta-
bility is assumed to occur when Vedernikov™s number ex-
ceeds unity. For surface flow dP/dA is zero and for gutter-
flow it is approximately zero. If the Darcy-Weissbach
friction relation is used (p=0.5), then Vedernikov~™s

number can be written

vV = %~S co. (5.4.2)
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Using the Chezy formula with a Chezy coefficient relevant
for urban surfaces, the stability criterion becomes SO<
0.04 - 0.05. This coarse criterion agrees reasonably with
data obtained by Nittim for the smooth surface and the
asphalt surface. For rougher surfaces the agreement is

not so good. No rollwaves seem to occur during heavy rain.

Rollwaves have a wave length and period much shorter than
the waves that are the main subject of urban runoff simu-
lation and cannot be represented by the momentum eguation
(3.2.1b), see Yen et al. (1977). According to Nittim~s
data the most realistic way of considering rollwaves in
the analysis is by using an increased friction factor.
For a relatively smooth surface and small Reynolds”™ num-
bers an increase of the friction factor of more than 50%
may very well be obtained. At large Reynolds” numbers and
surfaces with greater roughness heights, the influence is

considerably less.

5.5 Wind forces

In the steady flow case, equation (5.1.1) applied to sur-

face flow is written

“mp ¥ Tms
= Hp = ms
SO 5gY ... (5.5.1)

Using eguation (5.2.1) the friction factor may be expressed

as a function of the shear stresses

f = (T + 1) ees (5.5.2)

where the shear stress at the surface Ths is wind gener-
ated. The wind shear stress is given by
T o=t = po-C W (5.5.3)
w ms L D ot T
where the density of air op, = 1.29 kg/mB, the resistance

coefficient CDN 2.4 (according to Engelund (1969)) and W
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the wind velocity 8 m above surface. Thus

T o~ 31073 WP ... (5.5.4)
W

is obtained. The wind shear stress obtained from equation
(5.5.4) at a wind velocity W = 6 m/s is 0.1 N/mz. This
can be compared with the the bottom shear stress which
has values in the interval 0.01 = 1.0. The wind shear
stress may evidently be of the same order as the bottom

shear stress.

If the effect of wind is included in the Darcy-Weissbach”

friction relation, we get (for surface flow)

8g-So
Q, =Y 5 «.. (5.5.5)

*2.4.10 2. (¥
£X2.4-10 (%)

Strong wind will, in addition to the effect on the water
surface friction, have an influence on the momentum of
the raindrops. Surfaces in urban catchment usually have
arbitrary flow directions. Wind velocities over the sur-
faces also have, because of houses and other obstacles,
great local variation. It would therefore not be possible
to calibrate, or to feed with proper input values an
urban runoff model that takes the effects of wind into
account. However, in studies of the validity of models
using field data, wind may be treated as a source of

error.

5.6 Summary and discussion

In the studies of the friction factor discussed in the
previous sections, several distinct trends or relations
have been specified. Examples are Shen and Li”s friction
factor - rain intensity relation for a smooth surface,
and Phelps” observations of the influence of the relative
roughness. However, even if only those tests with rain

intensities, roughness heights and slopes relevant for
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Swedish urban surfaces are taken into account, the
variation of f appears to be very complex and difficult
to interpret. The scatter in friction factor values is
large for flow exposed to rain, especially at low
Reynolds” numbers. Some characteristics may, however, be

noted;

there are no distinct laminar or turbulent zones

at small Reynolds”™ numbers friction factors below
the laminar values are obtained

o at large Reynolds”™ numbers friction factors
considerably greater than those corresponding to
Blasius~ solution are obtained

o the influence of rain on the friction factor is
small

The investigations give no base for establishing a
relation which quantifies the influence on the friction
factor, either of the relative roughness or the the rain
intensity. However, the 'simple' friction relations pre-
sented in section 5.2 will be discussed and fitted to
test data.

So_
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Figure 5.6.1 Comparison of the fitted friction-relation
with Nittim™s (1977) and Yu and McNown~s
(1963) (shaded) tests on asphalt and concrete
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In figure 5.6.1 the most relevant results from section
5.3 have been put together. They are the Nittim“s asphalt
tests and Yu and McNown”s concrete tests (shaded). All
test points with unrealistically high (i > 390 1/s-ha)
rain intensities have been removed from the plot, but
this could not be done with Yu and McNown”s data. Typical
values of the Reynolds” number for surface flow are less
than 900 while the corresponding numbers for gutter flow
are greater than 900. The test points greater than 900 in
the figure are therefore believed to be reasonably repre-

sentative for gutter flow.

Considering the scattered results a suitable level of
sophistication for a friction factor relation might be
€2

f = cl-Re ce. (5.6.1)
represententing a straight line in the friction factor
diagram. The relation is valid for the Chezy, Manning, L-
and quadratic formulas. Comparing the 'slopes' of the
different friction factor relations and the test results,
the L-formula generally seems to have the best overall
fit. However, in the important interval Re < 1000 there
are no grounds for rejecting the Manning - or quadratic-
formulas, provided suitable roughness coefficients are
used. In figure 5.6.1 the gquadratic relation (Kq = 515
and S = 0.03) and the Manning formula (n = 0.016 and SO

= 0.03) are shown.

The friction factor relations are also characterized by
an influence from the surface slope SO, see equations
(5.2.11 - 5.2.13). This dependence could not be recognized
in the series of test points. Each relation should then
be represented in the diagram by a band instead of a line.
The bands corresponding to the slope interval given in
chapter 2 (0.01-0.05) are marked in figure 5.6.1. The
quadratic friction factor relation is obviously more in-
fluenced by the surface slope. Both the relations may be
manipulated to give a friction factor relation indepen-

dent of SO. This is done by using a slope exponent of
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0.55 and 0.67 in the Manning and guadratic formulas,

respectively (not used in this report).

The typical urban surface is not as plane and regularly
shaped as the laboratory surfaces discussed in this
chapter. The flow over the surface will, therefore, in
some parts form rills which more closely resemble gutter

flow.

By comparing model simulations and corresponding flows
from field measurements more realiable friction co-
efficients should, in principle, be obtained. However,
field measurements of surface flow are difficult to
accomplish and all those known to the author contain not
only surface flow but also gutter flow and sometimes, in
addition, sewer flow. It is then, in practice, difficult
to analyse surface flow and gutter flow separately. Simu-
lations presented later in this report indicate, however,
that the Manning formula is an appropriate friction rela-
tion using n = 0.016 in surface flow and n = 0.013 in

gutter flow.

In the simulations of runoff from a small asphalt catch-
ment (430 mz), which are discussed in chapter 8 several
friction relations were tested. It was found that the
typical turbulent friction models, Chezy, Manning and
Blasius formulas (b = 1.50-1.72), performed rather well.
The 'intermediate' quadratic formula (b = 2) performed
not so well while the laminar relation (b = 3) performed

badly, even for runoff with very low Reynolds” numbers.

Falk and Niemczynowicz (1979) analysed 13 Swedish urban
surfaces and developed a friction relation. This is not
directly comparable with those discussed here but it
should be noted that the Chezy exponent (b=3/2) was used
to relate flow and water depth.

Jacobsen (1980) successfully analysed surface flow using

the L-formula (b = 1.83). He reported indications of a
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better fit in some cases using the guadratic relation.
Jacobsen uses the same basic equations as the author but

a somewhat different numerical solution method.

In an urban runoff model where the governing equations
are solved by numerical methods the selection of space
and time step has an influence on the simulated hydro-
graph, which is very similar to the effect caused by a
change in roughness coefficient. Tt is, therefore,
possible to some degree to compensate for a space step
which is too long by decreasing the friction factor,
Lyngfelt (1978). Thus, for different runoff models and
for different uses of the models different friction
coefficients may be relevant in otherwise identical

applications.

A traffic load on the surface changes the characteristics
of runoff. In a study of runoff from a motorway (traffic
intensity 500-2000 vehicles/hour) it was found that this
1oad increased the roughness coefficient by 100%, Bufill
(1984) .
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6. NUMERICAL SOLUTION METHODS
OF THE KINEMATIC WAVE EQUATIONS

6.1 General

The kinematic wave equations have analytical solutions
only in some very special cases (c.f. chapter 4.2.3). In
the general case with an arbritary rain intensity input,
numerical solution methods must always be used. In these
the derivatives are approximated by finite differences
usually established between fixed gridpoints in the x-t
plane. The finite difference sclution can be expressed
in many different ways, each one having its own possi-
bilites and properties. Important properties are sta-

bility, consistency and numerical diffusivity.

The main object of the numerical algorithm is, of course
to produce a solution as close as possible to the exact
solution of the differential eqguations. If unsuitable
algorithms and numerical parameters are used the devia-
tion from the 'exact' solution can be great. A thorough
knowledge of the properties of the numerical solution
method is, then, just as important as the knowledge of

underlying differential equations.

In this chapter numerical solution methods for the kin-
ematic wave equations will be discussed. The analysis is
mainly focused on the surface and gutter flow case (lat-
eral inflow) but is in many parts also generally valid.
The discussion is based on the weighted box scheme, which

is a very general solution method.

6.2 Finite difference schemes

The structure and use of a finite difference scheme to-
gether with boundary conditions is best discussed with
reference to the x-t plane. This plane is shown in

figure 6.2.1 with fixed grid points, upstream and down-

stream boundaries.
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Figure 6.2.1 The x-t plane with fixed gridpoints
and boundaries

Consider the problem of solving for the two unknown
variables (Q,Y) at each grid point using the kinematic
wave equations. The initial conditions at t=0 are
assumed given along the channel reach. Because the
equations have no second order derivatives it is poss-
ible to use the box-scheme where the differences are
established by only one time and space step ("one step"

scheme) .

If the difference eguations are applied to the first box-
grid points (0, 0), (0, at), (ax, 0), (4ax, At) - and Q
or Y is given as upstream boundary condition, Q0 and Y in
the first internal grid point (Ax, At) can be determined.
Let the scheme now be successively applied in a down-
stream direction and water depths and flows calculated
stepwise at the points (24x, At), (34x, At) and so on.
When the scheme is finally applied to the last box at
one time level, values of Q and Y at the downstream
boundary can be determined. The given solution method is
not able to take downstream conditions into account. The

method is therefore valid only for supercritical flow.
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In figure 6.2.1 it can be seen that the box scheme in-
cludes two points at the new time level. As the relation
between Q and Y is not linear this will result in an
implicit difference equation which must be solved by
some iterative technique. Numerical schemes containing
more than one point at the new time level are called

implicit. The box scheme is a typical implicit scheme.

An explicit scheme includes only one point at the new
time level and thus the unknown variable may be directly
solved. In figure 6.2.2, a two-step explicit scheme (con-
taining two successive space steps) is given as an ex-
ample. Two-step schemes can be used in differentiating
second order derivatives, for instance the diffusive

term in the convective diffusion equation azQ/ax2 (sec-
tion 4.3).

At

¢
€
[
v
>

Figure 6.2.2 An example of a two step explicit scheme

Stability is an important property of the numerical
scheme. With an unstable scheme a solution will be
produced where the values obtained suddenly grow in an
uncontrolled manner and often cause it to break down.
Implicit schemes are usually regarded as unconditionally
stable. Explicit schemes may become unstable for un-
suitably selected time and space steps. The so called

Courant condition is generally used as a stability
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criterion for explicit methods, Yevjevich (1975)

At 1
At 1 cee (6.2.1)
v T gy

In implicit methods, mainly for stability reasons,
greater time and space steps can be used and these seems
then to be the most effective from a numerical point of
view. The necessary iteration procedure in the non lin-
ear case reduces, however, this effectiveness and the

implicit scheme is not always advantageous.

The box scheme, is for several reasons which will become
apparent in this chapter, the most interesting for dif-

ferentiating the kinematic wave eguations. It also forms
a base for analysis of and comparisons between different

well known solution methods.

6.3 The weighted box scheme - general properties
6.3.1 Finite difference eguations
t
A4
2 & ® @
j, Ml j+1, me1)
,(1m+)/—\£1+1 me1

(j,m)°\~—/°(j+1,m)s

At

4
v
=

AX

Figure 6.3.1 Grid points in an arbitrary finite box
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In the kinematic wave equations only the continuity

eguation contains derivatives

+g = q ce. (4.2.1)

el

AR
=t

Let this equation be approximated by finite differences

using a box scheme, figure 6.3.1.

If all gridpoints are egually accounted for we get

30 _ m+1 m _oamtl o om
e (Qj+1 + Qj+1 Qj Qj)/ZAx ... (6.3.1a)
A _ m+1 m+l _ .m _ L
5 < (Aj+1 + Aj Aj+1 Aj)/ZAt ... (6.3.1b)

This differentiation defines a scheme which is centred
on the centre of the box. By the use of weighting fac-
tors in the differentiation it is possible to consider

the four gridpoints at different levels.

tm-ﬂ P
T ® e &
—i— — T At
. B-At
[
tm e @ e _i_
\_L_./
U.'A§
Ax
: : > x
Xj Xj+t

Figure 6.3.2 The relation between the centrepoint and
weighting factors after Smith (1980)

A%

m+1 m+1 m
[B(Qj+1 - Qj ) + (l"B) (Qj+1 -
... (6.3.2a)

- Q?)]/Ax
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9A _ m+l_,m _ m+l
'é"E-—[OL(Aj Aj) + (1-a) (Aj'}'l
N ... (6.3.2Db)
m
] e

This differentiation corresponds to a scheme which is
centred on a point in the box given by o and B as shown
in figure 6.3.2. The weighting factors can take values
0<a<1l.0 and 0<g<1.0.

6.3.2 Numerical diffusion - consistency

It can be shown by a Taylor series expansion that the

weighted scheme is a better approximation of the equa-

tion,
30 3A BZQ
IX
where
= -1). A% - At
Dn = (2a-1) 5 + (1 ZB)ck 5 ee. (6.3.5)

than of the continuity equation, Smith (1980). The

effect of the differentiation can thus be intepreted as
an introduction of a diffusion component in the kinematic
wave equations (compare equation (4.3.5)). The diffusion
coefficient is a function of the numerical parameters

Ax, At, o and R. Different combinations of these para-
meters together with the flow-state (represented by ck)
results in different values of the diffusion coefficient
which may be both positive and negative. A negative
coefficient will give an attenuating wave movement which
cannot be described by the basic kinematic wave equations.
A positive coefficient gives an amplifying wave movement,
usually resulting in serious numerical difficulties (see
below) .

The second order derivative in equation (6.3.4) have
factors containing both aAx and At. This is also true for

the third order derivatives (here not included in the
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equation). In the limit when Ax and At-— 0 the ordinary
continuity equation is obtained. The numerical solution
is then consistent with the underlying differential

equation for any choice of a and B.

Analysis of the diffusion coefficient and its influence
on the properties of weighted box models has been dis-
cussed by Smith (1980), Ponce and Theurer (1982) and
Kousis (1983).

6.3.3 Classification of weighted box models

Weighted box models can be classified according to the
properties of their diffusion coefficient as defined in
the previous section. In this report three classes, named

0-, B- and oB-diffusive models, will be discussed:

The a-diffusive models are obtained for a<0.5, 8=0.5 and
corresponds to a diffusivity related only to the chosen
discretization in space. Of special interest is the com-

bination @=0, B=0.5. It will here be called the diffusive

result in diffusive solutions. The scheme corresponds to
the differentiation
m+1 m

3A/ 3t = (Aj+1 - Aj+l

) /At ce. (6.3.6)
which is equivalent to the assumption of uniform water
depth in each segment Ax. The diffusive box scheme is a
frequently used solution method for the kinematic wave
equations especially in sewer routing (c.f. section
6.6).

lated to the discretization in time only and are obtained
for a=0.5, B>0.5.

In the 0B -diffusive models diffusivity is influenced by

the discretization in both time and space. The case when
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0<0.5, B>0.5 implies a positive contribution to the
diffusion by both the time and space related components.
This will decrease the influence of a single discretiza-
tion (in time or space). The case when ¢<0.5, B<0.5
implies a negative contribution to the diffusion by the
time step dependent term. Because of this term a rela-
tively greater space dependent diffusion can be accepted.
This model is then of interest in connection with the

use of large space steps (reservoir models).

A special case is the fully centred scheme given in
equation (6.3.1). This scheme corresponds to o =8 = 0.5

giving the diffusion coefficient zero, see equation

The greatest possible diffusion for given time and space
steps is obtained when ¢ = 0.0 and B = 1.0. This scheme

has been proposed by Li et al. (1975a).

In order to survey the different models and their dif-
fusive properties, they have been put together in table
6.3.1.

Table 6.3.1 Weighted box models

Model o B D

—_—= - - n

a~diffusive <.5 .5 (20-1) 0x/2

B-diffusive .5 >.5 (1—28)At-ck/2
s : <.5 >.5 20-1 1-28 ..

aB-diffusive <. 5 <5 5 CAX + 5 At Cp

Special cases

Non-diffusive .5 .5 0

"Diffusive box" 0 .5 -Ax%/2

Li et al. (1975) 0 1 ~(Ax+c, - At) /2

k
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6.3.4 'Negative diffusion' (Dn > 0)

The three classes of model given in the last section all
have a positive diffusion (Dn < 0). It is, however, poss-—
ible to choose numerical parameters that give solutions

with a negative diffusion (Dn > 0).

Theoretically, such models should produce amplifying
waves. Numerical experiments show that hydrographs simu-
lated using a negative diffusion scheme become uneven
with sudden unrealistic flow peaks (shots). These dis-
turbances do not usually make the solutions break down
like disturbances can do in explicit schemes. Despite
the fact that the box scheme is implicit and thus
'unconditionally stable', solutions obtaining shots will
be called unstable solutions. An example of such insta-
bility is shownAin figure 6.3.3 together with a hydro-

graph having a suitable attenuation.

i,Q{l/sha) — Rain intensity

2 A4 Suitable attenuated
solution (Dp<0)

+ Non - diffusive
solution (Dp = 0)

x Negative diffusion

solution (Dp>0)

50 A

il 1

8 16 o 32 tlmin) 40

Figure 6.3.3 An example of unstable solutions (with
shots) compared with one having a
suitable attenuation (L _=20 m, s _=0.035,
n=0.016) s S
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The nondiffusive scheme has according to equation (6.3.5)
no diffusion (Dn= 0) . Despite this the hydrographs simu-
lated by the model often become unstable in a similar
way to models with negative diffusion, see figure 6.3.3.
This can be explained by the neglected third order terms
in Dn (equation (6.3.4)) which give a positive contribu-
tion to Dn in many flow cases. The non-diffusive scheme
is therefore usually not used in kinematic wave routing.
Simulations by means of this model also show that Dn <0
as expressed in equation (6.3.4) cannot be taken as a

totally reliable condition for stability.

6.3.5 Positive diffusion (Dn < 0)

Models with positive diffusion (Dn < 0) will produce
attenuated hydrographs. The basic performance of such

models is exemplified by the use of the diffusive box

Q*Q/qqL)
104 L/Ax =24 12 8 &
' 4
2
1
Ky
05 | >
’;}0
<
a
\i_\(‘
c}‘&
v
4 ¥ [ Yo,
0.1 t (L t)
0 e : ! :
0 ol 05 1.0 15

Figure 6.3.4 Dimensionless rising hydrographs obtained
from the diffusive box model using various
values of Ax (after Lyngfelt (1978)).
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model in figure 6.3.4. Here dimensionless rising hydro-
graphs generated using various step lengths (correspond-=
ing to different Dn) are shown, together with the ana-
lytical kinematic solution. Evidently, rather small
space steps have to be used in order to obtain a solu-

tion similar to the analytical solution.

The numerical diffusion influences the solution in a way
which is very similar to that caused by the acceleration
and pressure force terms in the complete dynamic equa-
tion. In figure 6.3.5, dimensionless rising hydrographs
generated using the complete shallow water equations are
shown, Woolhiser (1967). The attenuation is a function

of the kinematic wave numbers and Froude numbers.

a*lQ/qsL)
Kg=100
1ot s 20 10
_ . ,
15
0.5 4 4
&
m@m E=1
\i_\(‘
o
, = v
0.1 + L %(lo,
= 1 (L t)
0 st ; : .
0 01 05 10 15

Figure 6.3.5 Dimensionless rising hydrographs
obtained by the shallow water equations
for various kinematic wave numbers and
Fo=l (after Woolhiser (1967)).

According to sections 3.4 and 4.3.2 the main part of the
'diffusion' in overland and sewer flow simulations is

generated by the pressure force term. It should thus be
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possible to estimate a suitable step length in the
diffusive box model by setting the numerical diffusion
coefficient Dn equal to the corresponding coefficient D
in the convective~diffusion equation (section 4.3.1).

This will give

0
bx = o el (6.3.7)
o'k
where Qb = flow per unit width or, using the Manning
formula
_ 3 Y
AX—“S"‘S‘ ... (6.3.8)
o

which is basically valid for surface or flow in a rec-
tangular channel. The equations show that in order to
obtain the 'true' diffusion using the diffusive box
model in overland flow, step lengths below 0.1 m should

be used.

6.3.6 Selection of numerical parameters

In overland flow where the kinematic wave number usually
exceeds 100 the optimal selection of numerical para-
meters is evidently one that gives a very small diffu-
sion, like that obtained by the complete shallow water
equations (see figure 6.3.5). For such a choice the
numerical solution will in fact be more accurate than
the underlying kinematic wave theory. In practical
modelling, the numerical diffusion can not be determined
with sufficient precision to follow the true value and
must therefore be chosen to be greater in order to en-

sure that shots are avoided.

To obtain reasonably effective calculations, the greatest
possible step length should be used. The diffusive box
model appears from this point of view to be unsuitable
and better numerical methods are found among the a-, -
and af-diffusive models (see table 6.3.1). The advantages
and drawbacks of using different numerical models have

to be analysed by means of numerical experiments which

is done in the next section.
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The selection of time step is also important and affects
the diffusion. In choosing a suitable time discretiza-
tion, both practical and numerical aspects have to be
considered. From a practical/economical point of view
the greatest possible timestep should be used. It has,
however, to be small enough to preserve an appropriate
reproduction of the shape of hydrographs within the
system. This demands varying discretization within the
system, which is not very practical. It is, furthermore,
desirable to keep the time step constant between differ-
ent tests in the same catchment and preferably also

between different model applications.

The choice of time step has, then, to be a compromise.
Referring to rain intensity/runoff measurements in
catchments of different sizes made in G&teborg and
Link&ping (see chapters 8 and 9) At = 30 s seems reason-
able for fast reacting catchments. In slower catchments
(areas greater than 2-3000 m2) a greater time step, At =
60 s, can be accepted. Greater time steps may be of
interest in special cases where very great subcatchments
are used or long time periods are to be simulated. In
the simulations referred to in this report, the time
step has been fixed at 60 s with the exception of the
smallest simulated catchments, where 30 s is used. The
analysis of the numerical parameters in the subsequent

sections are based on these two time steps.

6.4 The weighted box scheme - numerical experiments

6.4.1 Aim and scope of the experiments

The general considerations given in the last section can
not be used directly to choose suitable parameters (a,
B, Ax, At) in the weighted box scheme. Reliable solution
methods have to be based on experience from numerical
experiments. In this section a series of such experi-
ments is discussed. From this, a criterion for choices
of the weighted box parameters is presented, giving
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stable and suitably attenuated solutions.

As it would go too far to investigate all possible para-
meter combinations, the test series has been limited to
cover a certain variation in flow length, rain intensity
and shape of the hyetograph besides the four numerical
parameters. The time step has, in accordance with the
last section, been tested for 30 and 60 seconds. The
tested catchment is shown in figure 6.4.1 and consists
of a surface and a gutter. Four surface lengths were
tested in the interval 5-40 m and three surface slopes
in the interval 0.005-0.04.

V.
surface
20m
gutter
v " —> —» |
50 m J
i Lt

Figure 6.4.1 Test surface for numerical experiments.

Two cases of gutter length, Lg = 50, 100, and two cases

of gutter slope, Sg = ,005, .02, were also tested.

A standard hyetograph was used in the tests, see figure
6.4.2. It is intended to reflect one fast rising/re-
cession part and one relatively slow one. The peak inten-
sity was 100 1/s-ha (corresponding to a recurrence inter-
val of 4 months at five minutes duration). For the sur-
face length L = 20 m two alternative intensities were
tested, i = 25, 50 1/s-ha.
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Figure 6.4.2 Hyetograph used in numerical tests

6.4.2 Numerical models and experiments

a and B were chosen in the intervals 0-0.5 and 0~1.0
respectively in order to cover the three main model
cases defined in the last section; a=-, g - and aB
diffusive models. The tested models are given in table
6.4.1.

Table 6.4.1: Tested numerical models

.25 af oB
.35 oB af
.5 o ** a a a ND
.52 o.B
.55 af
.60 of
.65
.70 af
.75
.80

1.0

kox T o B oS B v B o R S I 0

X)Models with a negative contribution to the

diffusion from the time dependent term

xx)Diffusive box scheme ND = Non-diffusive scheme



The different models are marked in the table by their

prefixes o, B or aB.

For each model given in table 6.4.1 a diffusive para-
meter was chosen and varied for different flow cases.
Using small values of this parameter it was possible to
stress the models to an unstable behaviour at the first
intense hyetograph peak. Hydrographs generated by dif-
ferent values of the diffusive parameter were then com-
pared. In each flow case a 'critical' value was chosen
corresponding to the hydrograph having the smallest
diffusion but still with no tendencies to instability
{shots, see figure 6.3.3). These empirically obtained
values represent a diffusion, which from a practical
numerical point of view, is the closest possible to that
of the complete equations at large values of Ko (figure

6.3.5). Below, they are called 'optimal' values.

In the numerical experiments it was found that at very
large values of the discretization Ax/L, difficulties
arose in properly reproducing the shapes of the hydro-
graphs, this despite selection of 'optimal' diffusive
parameters. At step lengths having a Ax/L smaller than
1/4 this effect was negligible. The condition Ax/L < 1/4
was thus adopted as a general criterion besides the cri=-
terion for 'optimal' diffusion evaluated in the succeed-

ing sections.

6.4.37 The a-diffusive models (a; 0.5)

In the a-diffusive models B=0.5 which reduces the dif-

fusive term in equation (6.3.5) to
- -1). Ax
D = (20-1) 5 eo. (6.4.1)
where 0<a<0.5. The eguation shows that the space step is

an important factor in discussing the performance of

a-diffusive models. Ax was therefore chosen as diffusive
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parameter for this class of models.

In testing various values of a and Ax it was found that
provided
0 < a < 0.5 (general condition for a-diffusive

models)

Ax/L<1/4 (general condition for all weighted
box models)

(2a=1)+Ax = constant

almost identical resulting hydrographs were obtained for
any combination of a and Ax. All a-diffusive models may
thus be transferred to the diffusive box model (0;0.5)
by increasing the space step (see table 6.3.1). Dis-
cussions of the properties of the a-diffusive models
will, therefore, here be entirely based on the diffusive

box model.

i,Q{l/s'ha) i,Qll/sha)
100 £ W _‘Ax(m) + ;P'\“
4108
+1 1.6
1 x| 5 :
0|10
50 + 1
DT=30s 4 DT =60s
F——t . > " 1 >
te 4 8 te 4 8 tlmin)

Figure 6.4.3 a,b Hydrographs simulated by the diffusive
box model (LS=20 m, SS=.035, n=0.016
KO=23O).

In figure 6.4.3 an example from the test series is
shown. The hydrographs are simulated by the diffusive
box model using different values of Ax. The storm input

is the first part of the standard hyetograph (figure
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6.4.2). In figure a the time step At = 30s has been used
and in b At=60 s. The hydrographs can be compared with
the dimensionless kinematic wave solution and the dynamic
wave solution at KO=1OO given in figure 6.3.5 (tc in

figure 6.4.3 corresponds to tx=1).
From the figure some observations may be pointed out:

o For At=30 s an optimal value of Ax according to sec-
tion 6.4.2 will be about 1.5 m. The corresponding

value at At=60 s is about 4 m.

o The influence of the space step on the attenuation
‘is very marked. When Ax is increased compared to the
optimal value the attenuation grows and rapidly be-
comes too great. When Ax is decreased below the
optimal value the hydrographs obtain shots despite
the model having a positive diffusion (Dn < 0 accord-

ing to eguation (6.4.1)).

o The time step has a great influence on the attenu-
ation and therefore influences the selection of the
optimal space step. At At=60 s shots are obtained
at space steps which were considered optimal for
At=30 s.

The diffusive term (equation 6.4.1) includes neither the
time step nor the wave velocity. The influence of these
parameters on the attenuation must thus be explained by
effects of the third order Taylor terms in At. From the
expression of these terms given by Smith (1980) it is
evident that they are always giving negative contribu-
tions to the diffusion (Dn > 0). This agrees, as shown
above, with test observations. The diffusive term Dn as
given in eguation (6.4.1) can therefore not generally be

used to estimate optimal step lengths.

The wave velocity ¢, may be written for flows with only

a lateral source,
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€1 L2
Cp = k-<(g-L) ~- So co. (6.4.2)
where g=lateral inflow intensity (= i1 in surface flow),

L=flow length, So=slope in flow direction, k, cq and ¢,
are constants depending on roughness and flow section,

see section 4.2,

In the tests it was found that the optimal value of aAx
varied with the lateral inflow (rain intensity in
surface flow) and the slope in accordance with equation

(6.4.2). No variation with respect to L was observed. A
AX

R for the Courant number was

modified expression C

therefore tested
(6.4.3)

where cﬁx is the wave velocity defined by equation (6.4.2)

using L=Ax. Inserting the optimal step length and corre-

AX

sponding values of At and Ck for all test runs gave a

Courant number that was only slightly dependent on At;

co¥ = 1.64 using At = 30 s
Ax .
CR = 1,76 using At = 60 s

The relations.can be used to estimate an optimal step
length which gives a suitable attenuation of hydrographs
simulated by the diffusive box model. The optimal space

step Ax may be changed (preferably increased to a

pt
convenient value) with maintained attenuation if the

a-diffusive model is used. Based on the relation (2a-1)Ax
= constant (see previous page), the corresponding a-value

aeq can be determined by
(2a - 1) Ax
eq e

9 =1 ve. (6.4.4)
(20 .= 1)-bx

pt

pt

where a =0 (diffusive box model) and Ax is the
opt eq

changed space step to be used together with qeq'
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The general discretization condition must still be
satisfied: Ax < L/4. Transferring to alternative a-
diffusive models is of interest for two reasons; to
reduce calculation cost and to obtain a space step

which is a multiple of the actual flow length.

6.4.4 The B ~diffusive models (0.5; B)

In the g-diffusive models a=0.5, which reduces the dif-
fusive term (in eguation (6.3.5)) to
At

Dn = (1-2B)-5=-cC

5 k (6.4.5)

where 0.5<g<1.0. The equation indicates that the time
step is an important factor in simulations using g-dif-
fusive models. Since it is rather inconvenient to vary
the time step, B was selected as diffusive parameter in

this class of model.

In the tests it was shown that the performance of p-dif-
fusive models is practically independent of the choice
of step length (Ax/L<1/4 must still be satisfied). This
is in accordance with equation (6.3.5}) and indicates
that the third order terms in Ax are not significant,
unlike the third order terms in At (see a-diffusive

models above).

Table 6.4.2 Optimal B -values (Ax/L < 1/4)

At L B

30 >15 .61
30 10 .66
30 5 .71
60 >15 .72
60 10 .77
60 5 .82
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Optimal B-values obtained from the numerical experiments
were found to be functions of the time step and flow
length. In table 6.4.2 the relation between these para-

meters are shown.

In figure 6.4.4, hydrographs from o~ and B-diffusive
models using diffusive parameters according to equation
6.4.3 and table 6.4.2 are compared. The example demon-
strates how the discretization Ax/L can be reduced from
1/13 to 1/4 if the B~diffusive model is used instead of
the conventional diffusive box model. A similar reduc-
tion may also be obtained by using the a-diffusive model

if the g-value is increased according to equation (6.4.4).

i,Q(l/sha) s - diffusive model ax/L=1/4
& + a-diffusive model Ax/L=1/13
100 {a=0)
50 L
' y } | : -
8 16 t (min) 24

Figure 6.4.4 Comparison between g- and g-diffusive
models (Lsz 20 m, SS = 0.035, n= 0.016)

It is obviously easy to select the diffusive parameter
B, as it is mainly a function of a geometric parameter.
When optimal B-values are used, the p-diffusive model
shows a rather impressive ability to generate suitably
attenuated hydrographs, independent of the actual flow
case. Compared to the g-diffusive model, which has a

diffusive parameter more sensitive to changes in flow
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conditions, the B-diffusive model appears to be more
appropriate in the sense of both accuracy and practical

application.

6.4.5 The o B-diffusive models (a;R)

In the apf-diffusive models the diffusion is governed by
both the time and space dependent terms {equation 6.3.5).
There are two types of apf~diffusive model, each of them

interesting but for different reasons.

When a<0.5 and £>0.5, the diffusion gets a positive con-
tribution from both the time and space dependent terms.
Thié seems advantageous from a general point of view as
the sensitivity to changes in both the flow conditions
and the time step is less than the corresponding charac-
teristic for the a-diffusive and B~diffusive models
respectively. However, the sensitivity to changes in
time step is not very important (usually kept constant)
and the B-diffusive models appear in comparison to have
the actual advantage. The ap-diffusive model was there-
fore only tested in a preliminary way, see table 6.4.1.
The model (0.4; 0.6) performed very well. It may be
noted here that the SWMM-model in the sewer routing
algorithm uses (0.45; 0.55), Price (1980b).

When $<0.5 the diffusion will be decreased by the time
dependent term. This gives the opportunity to retain an
appropriate diffusion when large values of Ax are used.
This is of interest in the case of reservoir models
where Ax/L=1. The model (0;0.25) was found to perform
very well in tests at large values of Ax and appears,
therefore, to be an appropriate base for a reservoir

llun~

model (c.f. section 7.2.3). It becomes, however,
stable" at small values of Ax and is therefore not
suitable as solution method for the kinematic wave
equations. In figure 6.3.3 such an "unstable" solu-

tion is shown (negative diffusion solution).
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6.5 The Lax-Wendroff scheme

Consider a Taylor series expansion of the cross-
sectional area at (j, m+l)

2 2 m
AT Al +[izi st + 2B ALY, O(At){} e, (6.5.1)

J ot at2 2 3

Comparing with equation (6.3.6) we can see that the
diffusive box scheme corresponds to neglecting second-
and higher order derivatives. In this section an example
of a scheme which takes also the second order derivative

into account is discussed.

The continuity equation can be expressed (Q=a-Ab)

2B
ot

==-(—A

b
5% (a-A7) - q) e (6.5.2)

which leads to, see Rovey et al. (1977)

a%a _ -[3% {a-b-Abhl(-g—-}z(a(Ab)—q)}— %%] ce. (6.5.3)
where a= KJEO and b are constants in the friction rela-
tion, equation (4.2.4). Inserting equations (6.5.2) and
(6.5.3) in equation (6.5.1) will give an expression which
only contains second order derivatives in Ax and which
provides the basis for the so called Lax-Wendroff scheme.

In the differentiation of the equation (6.5.1) the "two
step" algorithm shown in figure (6.2.2) can be used. An
explicit scheme of second order accuracy is then obtained.
This algorithm has been tested in surface and gutter flow
by Rowey et al. (1977). Using a "two step" scheme requires
special connecting equations at the boundaries x=0 and
x=L. Such equations based on the characteristic equations

are presented by Rowey.
The scheme is explicit and the solution may become un-

stable. The Courant condition can be used as a stabili-

ty criterion according to Kibler and Woolhiser (1970).
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Applied to the kinematic wave approximation the condition

becomes

At 1

= < EI ces (6.5.4)
Using equation (4.2.5), Manning”s formula and Q=i-L we
have

0.6

At 3:n

— < oo {6.5.5)

Ax 5-(i-L)O'4~SO'3
Inserting n = 0.016 and limits of i and L according to

chapter 2, At/Ax lies in the interval 2-35. According to
this criterion At should, in surface flow, usually be
chosen below 20 seconds. There are obviously two main
drawbacks using the Lax-Wendroff scheme for surface and
gutter flow; the algorithm is more complex and small

time steps must be used to obtain stability.

6.6 Classification of routing methods

The kinematic wave eguations are the most used basic
equations in models intended for the routing of water
through sewers and channels. The numerical solution
requires only "one step schemes" which can be related to
the weighted box scheme (c.f. section 6.2). Smith (1980)
analysed several well-known methods and found that they
could all be regarded as weighted box solutions with
different values of the parameters a and B. Below,
values of a and B corresponding to different methods are

given.

Models marked by SP refer to analyses by Smith (1980) or
Price (1980b).

It should be noted that many algorithms in the table are

basically intended for, and mainly tested in sewer and

channel flows.
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Model/reference a 3 comments

Reservoir routing (SP) 0 0.5 diff.box
Muskingum-Cunge (SP) weighting 0.5
factor
Brakensieks models (SP) 0.5 0,0.5,1.0
SSARR (sp) 0 0.5 diff.box
SWMM (SP) 0.45 0.55
HYMO (SP) 0.5 0.5
RRL method (SP) 0 0.5 diff.box
Li et al. (SP) 0 1
MIT method (SP) 0 0, e<1
1 1 8>1
where
_ At n n+l, b-1
g6 = a'b AX-(Aj+l + Aj )
and
Q = a‘Ab
NIVA (Lindholm 1975)) 0 0.5 diff. box
ILLUDAS (Sjoberg (1979)) 0 0.5 diff. box
URSULA (Jacobsen (1980)) 0,0.5 0.5 mixed
6.7 Numerical solution of the diffusive wave
equation - a comparison
6.7.1 The basic diffusive wave equation

In previous sections we have seen that diffusion is
hardly avoided by using numerical solutions of the
kinematic wave. The question arises, could the basic

diffusive wave equation be used directly. However, a

differentiation of these equations includes lineariza-

tion and the resulting algorithm becomes a bit more

complex. A diffusive wave model (DAGVL-DIFF) has been
developed by Sjdberg (1981). The model is mainly in-
tended for sewer routing but is also capable of simu-

lating surface flow and gutter flow.
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DAGVL-DIFF has been applied to the test surface and
storm event which were used in the previous section. The
simulated hydrographs were found to agree well with
those obtained from the diffusive box model. Some simu-
lations at very low slopes (So = 0.001- 0.01) were also
executed and found to correspond well with the kinematic
wave simulations. An example of a simulated hydrograph

is shown in figure 6.7.1.

i,Q(l/s'hal o Diffusive wave model
4 s Kinematic wave model (B-diffusive)
100 1 e
50 T
} + } t t } } } } t b
8 16 24 32 40 tlmin)
Figure 6.7.1 Comparison between the diffusive wave

and weighted box solution (LS=2O m,
SS=O,018, n=0.016)

The close agreement between the solutions indicates that
the kinematic wave solutions have a sufficient precision
in overland flow application. This agrees with the conclu-

sions from theoretical considerations made in chapter 4.

6.7.2 The convective-diffusion equation

The convective-diffusion equation discussed in section
4.3.1 is a slightly simplified version of the diffusive
wave equation. It has one dependent variable Q and needs

a downstream boundary condition.
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If the wave velocity Cpe is assumed to vary slowly with

respect to x the diffusive term may be written

2 2
3°0 o _ 1 3%
R = ce. (6.7.1)

giving a modified convective~diffusive equation (see

section 4.3.1)

+ ¢ g oo (6.7.2)

With this manipulation the downstream boundary condition
can be rejected and the diffusive box scheme may be
used, Price (1980b). With constant values of Cx and D
the equation is, according to Price, identical to the
basic equation used in the fixed parameter Muskingum-~

Cunge method.

The equation (6.7.2) was first presented by Price
(1980a,c) who also showed a suitable solution algorithm.
However, according to Price, this algorithm is compara-
tively time consuming and the use of the equation before
the basic diffusion equation is questionable in both

overland and sewer routing.

6.8 Summary

This chapter has mainly focused on numerical solutions
of the kinematic wave equations. These equations may be
solved by a one step scheme. A very general outline of a
one step scheme is given in the weighted box scheme
which is defined by the numerical parameters a, B, At
and Ax. The weighted box scheme includes most numerical
solution methods for the kinematic wave equation and is
therefore a suitable base for classification of and

comparisons between different solution methods.
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The solution algorithm gives rise to a numerical
diffusion which is governed by the chosen numerical
parameters. The numerical diffusion affects the solution
mainly by attenuating the simulated hydrograph. Based on
the way the diffusion is generated the weighted box
models have been classified in three groups; the a-, B-
and af-diffusive models. Each class is characterized hy a
diffusive parameter which is chosen to give a suitable

diffusion.

Using an 'optimal' value of the diffusive parameter a
solution is obtained which is close to the exact solu-
tion of the kinematic wave equations. In fact it is
often even closer to the solution obtained by the
complete shallow water equations. In practical applica-
tion it is advantageous if the optimal diffusive para-
meter is easily estimated and does not have to be

changed between different storm or design events.

In order to obtain an insight into the properties of the
three classes of model, especially the variation of the
optimal diffusive term, a series of numericél experiments
was performed. It was found that the diffusive parameter
B in the B-diffusive model was significantly dependent
only on the time step and flow length. From the experi-
ments a table relating B, At and L was put together from
which the optimal B-value is directly obtained (table
6.4.2). As the time step is usually not varied in
practical applications the diffusive parameter can be
chosen once and for all for each overland flow element.
The B-diffusive model was thus considered to be the most
accurate and, in addition, the most easily used model.
It has therefore been used as overland flow model in the

simulations discussed in chapters 8 and 9.

It should be noted that the drawbacks of the a- and
aB-diffusive models which make the B-diffusive model
advantageous have not been absolutely quantified. These

models may, then, in many cases be sufficiently accurate
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though the B-~diffusive is easier to adapt and more

accurate,

The most commonly used solution method for the kinematic
wave equations is the so called diffusive box model. It
is principally an a-diffusive model and uses impracti-
cally small space steps compared to the f-diffusive
model. In the experiments it was found that these could

be increased substantially by increasing the a-value.

Independent of which model and diffusive parameter was
used, 1t was found that a minimum condition of discreti-
zation, Ax/L < 1/4 has to be satisfied in order to
preserve a proper general shape of the simulated hydro-

graph.
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7. RESERVOIR AND CASCADE MODELS

7.1 General

In the preceding chapter various numerical solution
methods based on the kinematic wave equations were
discussed. They all (except for ax/L=1) work with a
celerity that varies in both time and space. In this
chapter, simplified solution methods based on the
kinematic wave equations but with restrictions on the
wave velocity are discussed. Models of this category are
not classified as kinematic though the relationship is
evident and the solutions sometimes show good agreement

with the kinematic solutions.

A further simplification of the kinematic solution is
obtained in one of two different ways; the celerity is
assumed constant, either in time or in space. In the
first case the nonlinear reservoir model is obtained and
in the second a cascade of reservoir models. One example
of the latter is the well known Time-Area Method. Both
models appear, from a theoretical point of view, quite
coarse. The "sophisticated" solution methods given in
Chapter 6 imply sheet flow on a rectangular surface. This
is usually a very coarse approximation of the real runoff.
In the light of this fact a simplified solution compared
to the kinematic might be appropriate in practical appli-

cations.

Assuming the celerity invariant in both time and space is
the ultimate simplification of the kinematic wave solu-
tion. As a routing method this approximation is denoted
the Time of entry. It is also the assumption underlying

the Rational Method which is discussed in chapter 10.

The simplified models above represent well known and
traditional solution methods in urban hydrological ana-
lysis. During recent years these have been subject to
several studies giving new aspects of application and

selection of input data, see for instance Kidd et al.
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(1978), Falk et al. (1979), Lyngfelt (1981). In addition
the Time-Area Method is included as overland flow model

in the NIVANET and ILLUDAS models, two of our commercially
most used urban runoff models, Lindholm (1975}, Sjdberg
(1979). It is then of interest to discuss these methods
both from a more theoretical point of view which is done

in this chapter and with practical simulation as a base

(chapter 8).
7.2 Reservoir models
7.2.1 Linear-nonlinear reservoir models

The traditional reservoir model is based on the contin-
uity equation and a relation between the reservoir volume

and the outflow. The equations may be written

eee (7.2.1a)

C
LA = cl-(Q ) 2 eee (7.2.1Db)

out
where Qin and Qout are inflow and outflow respectively,
L*A is the reservoir volume and cy and c, are constants.
This model is identical to the diffusive box (a=0; B=0.5)
solution of the kinematic wave equations if Ax/L = 1 is
used. The reservoir model may be interpreted physically
as assuming uniform flow (constant velocity) along the

"reservoir length" during a time step.

The linear reservoir model (c2=l) corresponds to the
assumption of constant velocity in both time and space.
This model will be discussed together with the Time-Area
and Rational Methods.

The non-linear reservoir equations must basically be
solved by an iterative technique in the same way as the
diffusive box scheme (see section 6.2). Because of this
little is gained in simplification of the numerical model

and reducing calculation cost when the reservoir model is
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used instead of a distributed model. It is then desirable
to use a numerical scheme with an explicit form in con-
nection to the nonlinear reservoir modelling. This can
be done in two ways; by manipulation of either the fric-
tion relation or the box scheme parameters. The first
method has been proposed by Lyngfelt (1979). An example
of the second way is the so called Time-lag model which

is discussed below.

The non-linear reservoir is a very common overland flow
model in urban runoff simulations. It is, for instance
used in the SWMM~-, CTH- and MAGROR-models, see Huber
(1977), Arnell (1980), Bengtsson (1980). It can also be
used in the NIVA model, Lindholm (1975) and in the
Wallingford procedure, National Water Council (1981).

7.2.2 The Time-lag model

The Time-lag model is derived from the nonlinear reser-
voir equations by the introduction of a time lag in the
"friction" relation

C

) 2

(7.2.2)

t -

Ledg o = cI(Qout

By making this change, a very simple explicit solution of
the nonlinear reservoir equations is obtained. The model
was developed and introduced by Falk and Niemczynowicz

(1979) who use a time step and time lag of one minute.

It can be shown that the Time~lag model as solution

method is identical to the implicit algorithm a=0, g=0.25
provided Ax/L=1 and At/t=2. Because of this similarity it
should be possible to analyse the Time-lag model in terms
of stability and diffusivity in the same way as other box

scheme algorithms.

By numerical experiments it was shown that the model
could be stressed to an unstable behaviour with "shots"

at the recession part of the hydrograph (see figure
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6.3.3). This occurs, however, only on occasions when
heavy storms, steep slopes and short flow lengths are
combined. Only a few tests were performed, but those
indicated that the stability criterion Dn < 0 (see sec-
tion 6.3.2) combined with the Manning formula might be
used for the model. The stability of the model may
according to this criterion be increased by using the
time step 30 s. This will, however, also affect the

numerical attenuation.

According to chapter 6 the numerical scheme which is the
base of the Time-lag model has advantages with respect to
the attenuation for large Ax. The Time-lag model is there-
fore, in addition to its practical aspects, theoretically
well suited as a reservoir model. Falk and Niemczynowicz
have, by an extensive measuring program, established
empirical relations for the parameters in the Time-lag

model for paved surfaces < 700 m2.

7.3 Cascade of linear reservoir models

7.3.1 Basic equations

In section 4.2.3 the linear friction relation (b=1) was
discussed. It was found that using this relation is ident-
ical to assuming the kinematic wave velocity invariant in
time and space. This is also evident looking at equation
(4.2.6).

Consider the friction relation in the general form (com-

pare equation (4.2.4))

0 = a(d) eoe (7.3.1)

In the linear case the constant a appears to be the
kinematic wave velocity. Applied to surface flow a very
simple form of the solution is obtained according to

equation (4.2.14)
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o(L,t) = [ a-B-i(t)dT ees (7.3.2)
t
with the conditions Q(0,t)=0 and tOZO if t<tc and where B
is the width of the surface. The solution implies integra-
tion along the characteristic between to and t (see fig-
ure 4.2.3). If the velocity and width are assumed to be
functions of the space coordinate x only we obtain
t
Q(L,t) = [ a(x)'B(x)-i(r)dr ee. (7.3.3)
t
which implies a time invariant value of the velocity
a(x)=dx/dt to be specified at each point of the surface.
This corresponds to characteristics having a constant

shape independent of the starting point to, which in turn

means that the integration time is constant, t~to=tc.

Consequently, it is possible to define a time for the
wave movement between any point on the surface and the
downstream end, x=L. This 'relative time' is here denoted
(t-1) with T=twtc for x=0 and 1=t for x=L. An arbritary
surface element dAC, for example, at X=X, may then be
specified by its 'relative time'! (thl) as well as its
coordinate; dAC(x1)=dAC(t*T1). If the element is approxi-
mated by a rectangle with width B(x) perpendicular to the

flow direction we have
dAc(t~T) = dx- B(x) ee. (7.3.4)

Equation 7.3.3 may then be written

F

which is a continuous expression of the so called
Time~Area Method. The method is obviously analogous with

the kinematic wave approach on a surface whose width may
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vary in the flow direction and a wave velocity which is
only a function of the distance from the downstream end,

see also Newton-Painter (1974) and Lyngfelt (1981}).

In order to solve eqguation (7.3.5), the storm intensity
variation 1i(t) and the relation dAC(T)/dT, O<T<tc, must

be known. In the Time-Area Method the latter is given by
the time of concentration tc and the time-area diagram.
The time-area diagram is a dimensionless relation between
the cumulated area (contributing area) Ap/AC and the time
t/tc where A :Ac when t=tc. Usually the time-area diagram
is discretized in 10 segments, each one representing a
part of the surface and a wave velocity. Applying the
equation (7.3.5) to a catchment should then be interpreted

as using a series or cascade of linear reservoirs.

The evaluation of the two 'parameters' - time of concentra-
tion and time-area diagram determines the performance of

the model and will be discussed in section 7.3.2-7.3.3.

The Nash cascade model is a model based on a cascade of

linear reservoirs, Sing (1977).

7.3.2 The time of concentration, tc, in the

Time-~Area Method

The time of concentration was defined in section 4.2 by

L
t = [ = ax cee (7.3.7)
0

where Cx is the kinematic wave velocity. Using this

definition, a constant rain intensity i and the Manning

formula we obtain for surface flow

3/5
(n-LS)

[te], = F775 570

(7.3.8)



and for gutter flow (V-shaped)

[ } n3/4-(2 1/z+z)l/24L3/4
t = eee (7.3.9)
cly Sg/s_ ‘i‘Ls’l/4

where LS and L_ are flow lengths of the surface and the

gutter respectively and z the slope factor of side walls.

A sewer line having many inlets along the reach may be
regarded as being lateraly fed by water. It is, however,
not possible to evaluate a relation corresponding the
equations above for sewers because of the analytically
complicated relation between flow and water depth. The
relation for gutterflow (7.3.9) may, however, be used as
an approximation for the sewer line if a greater value of
z is used. A more suitable expression of the eguation for

this case is

n3/4.(2\/1/z+z)1/2.Lg

[tcjg S eyt 838

(7.3.10)

where AC is the contributing runoff area.

Equivalent or similar relations also based on the
kinematic wave concept, have been presented by several
investigators such as Morgali (1970), Singh (1975),
Lyngfelt (1981) and Akan (1984).

When the Time-Area Method is used for simulation of
runoff from a storm event with constant rain intensity,
the corresponding time of concentration is easily
evaluated by the relations given above. It should,
however, be noted that even for this simple storm event
the approach is not entirely relevant as the recession
part will have a considerably lower wave velocity. It can
be shown using the kinematic wave equations that the flow
at the time tC after cease of rainfall is 17% of the
maximum flow (provided the duration of rainfall is

greater than tc).
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Using the Time-Area Method for a storm with varying rain
intensity, a representative intensity value must be
selected before the time of concentration can be calcu-
lated. & suitable intensity value should be one giving a
properly delayed main flow peak. Such an intensity can be
expected to have values near the average intensity over a
time equal to tC during the most intense part of the
storm. For a tc evaluated in this way, the Time-Area
Method would produce inaccurate flow values from less

intense parts of the storm.

The kinematic wave concept is theoretically the most
sound basis for evaluation of the time of concentration
used in the Time-Area Method. However, the relations have
to be tested by comparative simulations between the Time-
Area Method and the kinematic wave model. Such simula-
tions (discussed in the next chapter) should also give an

idea of the general performance of the Time-Area Method.

7.3.3 The time-area diagram in the Time-Area Method

In the Time-Area Method the 'flow velocities' are assumed
to be constant in time but to vary along the flow direc-
tion. The time area diagram reflects the relative veloci-
ties. Each diagram will then represent only one specific
flow case giving a characteristic shape of the simulated

hydrographs.

Consider the two hypothetical time-area curves in the

figure 7.3.1.

The convex curve (b) will, if applied to a storm with
constant rain intensity result in a basically correct
shape of the recession of simulated runoff hydrograph.
The rising part obtains, however, an incorrect shape, see

figure 7.3.2.

A better resemblance to the rising part is obtained with

the S-~curve (a) given in figure 7.3.1. This diagram will
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Figure 7.3.1 Hypothetical time-area diagrams
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Figure 7.3.2 Principal shapes of runoff hydrographs
obtained by the Time-Area Method (curve b)
and the B-diffusive model (kinematic wave)

not, however, give a suitable shape of the recession

which is shown in figure 7.3.3.

The rising and recession can be regarded as two extreme
cases of flow state and corresponding time-area curves
have, as a consequence, extreme shapes. Simulating runoff

from a storm with continuously changing rain intensity a
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Figure 7.3.3 Principal shapes of runoff hydrographs
obtained by the time area method (curve
(a)) and the B-diffusive model (kinematic
wave)

time-~area curve which is a mean of the two extremes

appears most appropriate.

A time-area curve giving the 'best fit' for the rising
part in surface flow simulation was developed by com-

parative simulations with a numerical kinematic wave

model and the Time-Area Method. Corresponding 'best fit'

curve for the recession part may be obtained analytically

from the kinematic wave theory. In figure 7.3.4 these
curves are given together with the "mean" curve, which
has been slightly modified in order to fulfill the re-

quirement of full areal contribution at t=tc.

The 'mean' curve will obviously be very near the linear

time-area diagram (deviation < 5%). In runoff simulations

from a single surface there is evidently no theoretical

reason to use a non-linear time-area diagram.
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Figure 7.3.4 Time-area curves giving the 'best fit' of
the rising- and recession parts of the
runoff in surface flow

Time-area curves may also be developed for a catchment
with one surface feeding a gutter., In this case the time
area curve will be influenced by the relation between the
time of concentration for the surface [tc]s and that of
the gutter [tc]g' If [tc}s is great compared to [tclg or
[tc]g great compared to [tc]s’ the time-~area curve for
the rising part will be very similar to that for surface
flow. For a given catchment area AC it can be shown that
&C]has a minimum for a certain surface length. It was
found that the time-area curve for this case gave the

greatest deviation from the linear one, see figure 7.3.5.

The corresponding time-area curve for the recession part
was obtained by numerical simulations. It is shown in
figure 7.3.5 together with the 'mean' curve between the
rising~ and recession curves. This mean curve evidently
diverges more from the linear than the corresponding one
for surface flow. The 'surface~gutter' curve is believed
to apply to the ordinary 'surface-gutter' catchment while
the surface runoff curve (figure 7.3.5) applies to cases
where the relation [tc]s/[tc]g is extensively greater or

smaller than unity.
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Figure 7.3.5 Time-area curves giving the 'best fit' of
the rising- and recession parts of the
runoff from the surface-gutter catchment

at tc :ﬂﬁc}s * [tc gJ min

area curve will principally be a function of the struc-

ture of the system. In figure 7.3.6 time area curves made

Acp/Ac

o Linkoping 3
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& Floda
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B Bergsjon
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Figure 7.3.6 Time area diagrams obtained by numerical
simulation of the rising part of constant
rain intensity storms for four residential
areas, after Lyngfelt (1981)



up from five great urban catchments are shown, Lyngfelt
(1981) . The diagrams have been obtained by numerical
simulation (kinematic wave model) of the rising part of

constant rain intensity storms.

The areas have very different flow characteristics and
the curves consequently diverge a lot though the S-shape
is general. No definite conclusions of the relation be-
tween the time area curves and the characteristics of the
catchment can be made from the figure. The relevance of
the curves for the recession part has not been studied.
The recession part time-area curves can, however, be
expected to have a basic shape according to that given

in -figure 7.3.5.

7.4 Summary

In this chapter reservoir models and models based on a
cascade of linear reservoirs have been discussed. These
models have a clear relationship with the kinematic wave
concept but use a simplified representation of the wave
velicity. The non-linear reservoir model and the Time-Area
Method are the most commonly used overland flow models in

commercially available urban runoff models.

The Time-lag model is a non-linear reservoir model de-
veloped by Falk, Niemczynovicz (1979). The model has been
successfully tested on small urban paved surfaces. It has
a simple numerical algorithm and can be used for manual
calculations. As the model parameters are based on urban
runoff measurements from paved surfaces < 700 m2 the
Time~lag model has not been tested as base catchment

model in this study.

The Time-Area Method can be regarded as a model based on
a cascade of linear reservoirs. It is a traditional method
which is still much used. The method is governed by two
‘parameters', the time of concentration and the time area

diagram. One set of these parameters represents in fact
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only one specific flow case. Applying the method to a
storm with continuously varying rain intensity, the para-
meters should be chosen to give the best fit at the main
runoff peak. The method can therefore be expected to give
an unsuitable performance in other parts of the simulated

hydrograph.

The class of models discussed in this chapter will sim-
plify the calculation routines compared with the kinematic
wave approach. However, problems with parameter estima-
tions arise and the numerical kinematic wave model appears
to be more generally applicable in basecatchment modelling.
The model tests in the following chapters will thus con-
centrate on the numerical kinematic wave model. Simula-
tions by the Time-Area Method will, however, also be per-

formed and discussed.
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8. BASE CATCHMENT MODELS

8.1 General considerations

In earlier chapters the analysis was based on surface-
gutter-systems with regular geometry and constant slope.

This is usually not the case for real urban catchments.

Theoretically it may be possible to use a three dimen-
sional model and an extreme discretization in space and
thereby obtain a more accurate physical description of
the runoff, Chow et al. (1973), Constantinides et al.
(1981) . However, such a description requires a very large
amount of input data and the work spent on collecting
these data is unreasonably large compared with the

improvements in the results.

In practice it seems reasonable to limit the description
of the surface to a maximum of five or six parameters.
This means that, in reality, even for a small uniform
surface the physical description of a surface-gutter
system becomes very approximate. Despite this several
investigators have reported relatively good performance
of models based on the two dimensional kinematic wave
theory, Langford and Turner (1973), Woolhiser (1975},
Rovey et al. (1977), Lyngfelt (1978), Jacobsen (1980).

The storm water from a surface is normally collected in
collector sewers with minimum dimensions. These sewers
are often long and thus significant in the runoff system.
A separate surface connected to a street inlet is very
seldom greater than 1000 m2 and is normally less than

500 mz. However, suitable sets of input data are obtained
only when base units of surfaces (base catchments)
greater than say 5000 m2 are used. Then, in practice, the
base catchment flow model must, in one way or another,
represent both several separate surfaces with different
characteristics and upstream collector sewers. The

discretization of input data (size of base catchments)
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has been discussed by several investigators; in most
cases discussions have been based on the specific
properties of the SWMM model, see for instance Proctor
and Redfern (1977) and Zaghloul (1981). The use of an
aggregated base catchment with a simple geometry and a
time of concentration egual to that of the real catchment
is a general approach, applicable to many runoff models.
This approach will be used below and has earlier been
discussed by Jensen (1981), Lyngfelt (1981) and Marsalek
(1983).

In this chapter a number of different approaches to base
catchment modelling are investigated. The discussion is

based on six urban catchments where storm runoff and rain
intensity have been recorded. The runoff from storms has
been simulated using different models and discretizations

of the geometric input data.

The main objective of the simulations is to investigate
how the geometrical input describing the base catchment
can, and should be, simplified. The work is focused on
the numerical kinematic wave model (theB -diffusive model
as described in chapter 6) but the Time-Area Method is

also tested.

Below, the test catchments, measurements and models are

briefly described, before the simulations are presented.

8.2 General characterization of the test catchments

and measurements

The rain intensity and the runoff have been recorded in
six urban catchments for a number of storm events. The
catchments are all different and cover a range of
conceivable base catchment characteristics. The catch-
ments have been investigated with respect to geometric

parameters such as contributing area, slope and so on.
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In order to give a general impression of the catchments,
the main characteristics are summarized in table 8.2.1.

A more detailed description is given in appendix I.

The catchment ASPH 1is a part of a street feeding an

inlet. It is the only catchment with no sewer system.

The catchment PCON is a parking area and consists of the

top floor of a two storey car park and a collector sewer

along the building.

The catchment PASP 1is a parking area with a uniform,

small slope and three inlets to the collector system.

Table 8.2.1 Main characteristics of the catchments

Catchment Area Numéer Slope Number Length Slope

A (m2) ~of S . Qf of S
c inlets (m7m) joints sewers (m?m)

(m)

ASPH 430 1 .044 - - -
PCON 1700 7 .014 0 107 .036
PASP 3900 3 .008 1 110 .010
AASP 9700 8 .010 0 254 .0025
SASP 3000 10 .030 2 355 .007
coMP 3100 20 - 3 530 .022

The catchment AASP is part of an airport surface. It is
the biggest test area with large surface flow lengths.
The slope of both the surface and the sewer system is
small, and consequently the characteristic time of con-

centration is comparatively long.

pavements and a few additional surfaces (no roofs). The
surfaces are connected to a sewer system which principally

follows the streets.

The catchment COMP is built up of different typical urban



surfaces; roofs, parking areas, streets and pavements.
The surfaces are connected to a sewer system which is

longer and has more joints than the other catchments.

In table 8.2.1 the catchments have been arranged accord-
ing to the complexity of the runoff system. There is

obviously no relation between contributing area and this
complexity. Most of the surfaces are of the bitumen type
but concrete paving (PCON) and roof-felt (COMP) are also

represented.

Rain intensity and runoff have been measured with the
objective of obtaining a record of several separate storm
events for each catchment. The measurements are briefly
described together with the catchment characteristics in

appendix I.

The rainfall-runoff volumes of the separate storms were
plotted for each catchment. A linear regression line was
fitted to each data set by the method of least squares.
From the regression line the contributing runoff area was
calculated as the slope of the line, and the depression
storage as the intercept on the rainfall volume axis,
Arnell, Lyngfelt (1975), Arnell (1980).

The contributing areas were all found to be equal to or
less than the corresponding areas which had been estimated
by areal measurements in the field. In five of the areas
the difference was less than 10% (and for the two smallest
there was no difference). In the SASP catchment a differ-

ence of 18% was found.

The obtained depression storages were found to be between
0.4 and 0.5 mm in five of the catchments. This value
agrees with expected values regarding actual slope and
unevenness of the surfaces, Falk, Niemczynowicz (1979).
In the AASP catchment a much lower value, 0.25 mm, was
obtained. This may be explained by the extremely even
surface and the smooth asphalt in the catchment.
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8.3 Models and criteria for comparing runoff

hydrographs

All simulations in this report have been performed by the
runoff model CURE, Lyngfelt (1985). The model was mainly

developed in order to make it possible to compare differ-
ent numerical and geometric models. In this part of the

study the model was used as described below.

The surface depression storage loss is subtracted from
the very first part of the rain. The surface and gutter
flow is routed by the B-diffusive model (kinematic wave
approach) described in chapter 6.4.4. The flow in sewers
is routed by the traditional numerical solution of the
kinematic wave equation (diffusive box model, section
6.3.2). The capability of the model to make simulations

using the Time-Area Method is also used.

In each catchment between 3 and 8 storm events have been
used in the simulations. The obtained hydrographs have
been used for comparisons with recorded hydrographs and

between different model approaches.

The storm water is routed through the catchment without
any losses except the surface depression storage (no
infiltration, no overflows). The differences in perform-
ance between models will thus appear only as differences
in shape between the resulting hydrographs. The compari-
son between the performance of one model relative to

another must then be based on these differences.

The discrepancies between two hydrographs can be de-
scribed by several parameters, for instance, the integral
or biased integral square error, the absolute error of
peak flow values, or the time lag of peaks. Each of them
show, however, only a part of the differences and none of
the parameters or set of parameters can replace the
survey obtained by simple visual inspection, Geiger
(1984).
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The discussion of the models has been based on both
visual inspection, and a simple statistical analysis of

the hydrographs. The statistical parameters used are

the mean and the standard deviation of the ratio

between flow peaks, kp and op, respectively
the mean absolute error in peak flow values, Ep
The parameters have been used in several similar studies,

see for instance Arnell (1980).

8.4 Kinematic wave model simulation - comparison

with recorded hydrographs

8.4.1 Detailed geometrical description of the

catchments

For each of the six catchments a set of input data corre-
sponding to a very detailed geometric representation of
the runoff system was built up, the DET model. In prin-
cipal each surface, gutter and sewer within the systems
is represented - a discretization beyond what is usually
realistic in urban runoff modelling. Values of lengths,
slopes, etc, have been evaluated by field investigations.
Surface roughnesses are selected according to chapfer 5.
For the AASP catchment, which has a very smooth and even

surface (appendix I), a lower value was chosen (n=0.012).

In the PCON and SASP catchments, the basins at discharge
measuring stations were found to act significantly as
retention storages during low intensity storms. A reten-

tion storage model was then included in the DET-model.

8.4.2 Comparison between recorded and simulated runoff

The input data set with a high level of discretization
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was used together with the kinematic wave model to
simulate runoff from the six catchments. The simulated
hydrographs thus obtained were compared with the corre-

sponding recorded hydrographs.

The simulations were executed using three different
versions of the detailed input data set. In version 1, a
contributing area corresponding to field investigations
was used. In version 2, the area was obtained by regres-
sion analysis of precipitation - runoff volumes as de-
scribed in section 8.2 (fit of volumes for each catch-
ment). Both versions include depression storages obtained

from the regression analysis.

In the PCON and COMP catchments the volume fitted con-
tributing area was found to vary significantly between
storms. This causes deviations between the simulated and
the recorded runoff volumes which have no connection with
the discussion of the performance of the kinematic wave

model.

The degree of wetness at the beginning of the individual
storm is not known from the measurements. The depression
storage model used is, in addition, believed to give a
rather coarse description of the initial runoff process

for low intensity storms.

Version 3 of the input data sets was based on depression
storages, individually chosen for each storm in order to
obtain a volume fit for the first part of the hydrograph.
In addition, an individually volume fitted contributing
area for each storm was used in the PCON and COMP catch-
ments. Hydrographs simulated by this version of input
data are plotted in appendix II.1.1 (also in figures
8.4.1 and 8.4.2).

It should be stressed that the only difference between
the data sets used is in the choice of depression storage

and contributing runoff area. All data describing the
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catchment with regard to geometry, surface roughness and
joints are all according to the DET model (section
8.4.1).

A visual inspection of the simulated and recorded hydro-
graphs shows that they coincide fairly well with respect
to general shape and delay of peaks. The main impression
is, then, that the runoff process is reasonably well

described by the model. Sometimes a very good performance

is obtained, as for example, that shown in figure 8.4.1.

i,Q(l/s ha)

[ PASP - catchment |
60 + '
— Hyetograph
—a— Recorded hydrograph
1 —+— Detailed simulation
20 +
i | I} i

T i ¥ ¥

¥
20 40 t(min) 60

Figure 8.4.1 Recorded and simulated runoff from the
PASP catchment (input data version 3)

There are, however, parts of many hydrographs with great
discrepancies between simulated and recorded values, see
for example figure 8.4.2. With regard to continuity and
realistic flow velocities in the runoff system it can be
concluded that several of the discrepancies must have

causes other than the performance of the model.

A simple statistical analysis of the relation between
recorded and simulated flow peaks were performed for
comparative purposes. Trends such as, for example,
increasing deviations with increasing catchment area or
complexity were not observed. In table 8.4.1, the mean

ratio Xp' standard deviation Op and absolute error ¢
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[COMP - catchment —— Hyetograph

80 4 Recorded hydrograph
T —+— Detailed simulation

§
T
20 40 t (min)

Figure 8.4.2 Recorded and simulated runoff from the
COMP-~catchment (input data version 3)

defined in section 8.3 are given for the two sets of
input data, one using not volume fitted data and the
other using volume fitted data for each catchment. The
flow peaks shown in appendix II:1.1 were used with the
exception of those in three low intensity storms where
the performance of the retention storage model was not
acceptable (the characteristic retention storage area
varied between different storms). Five recorded flow
peaks with great deviations from the corresponding
simulated hydrographs were also excluded (as recording

errors were suspected).

Table 8.4.1 Mean ratio A, standard deviation o, and
absolute error €, for not volume fitted data
and volume fittéd data for each catchment.

Input data Number Mean Standard Abs.error
of peaks ratio dev.
A o e %
P P p
No volume fit 30 1.08 0.21 15

(Version 1)

Volume fit for
each catchment 30 1.00 0.15 11
(Version 2)
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If the five "error peaks" are included in the fitted data
set, the standard deviation and absolute error are

increased to 0.26 and 18% respectively.

From the table it can be seen that the deviation between
recorded and simulated flow peaks is reduced by the use
of volume fitted contributing areas. Typical is the
general over estimation of flow peaks (AD = 1,08) using
not volume fitted data. Although the verison 3 hydro-
graphs give a general impression of better performance
than the version 2 hydrographs, corresponding statistical

parameters are the same for the two versions.

The differences between recorded and simulated hydro-
graphs shown in appendix II.l.1 and table 8.4.1 may be
explained by

o error in measured rain intensity - runoff

values

o error in or insufficient description of the

runoff system input data

o insufficient accuracy in the model

description of the runoff process.

The two first points include sources of errors such as
bad representation of the real rain intensities over the
catchment, increased/decreased contributing area during
parts of the storm event or water leaking into or out of

the sewer system.

The errors in rain intensity and runoff values are
difficult to evaluate. A general level of the total
error in the interval f (10-20%) can, however, be assumed
for both rain intensity and runoff values. These errors
have been discussed by Arnell (1980) who used measuring
devices similar to those used in this study. He estimates
a total error of about ¥ 15% for rain intensity values and

corresponding error for runoff values of ¥ (10-15%).
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In a study of the performance of 12 different models,
Colyer (1977) found the 'best' models to have a mean
ratio A_ in the range of 0.95 to 1.05, a standard devia-
tion o of 0.15 - 0.20 and an absolute error e between
10 and 20%. The model used here obviously has a perform-

ance at a level similar to Colyer”s 'best' models.

As discussed above, there are many sources of "errors"
which are not connected with the performance of the
model. It is thus probable that a large proportion of the
deviations indicated by the table 8.4.1 and those found
by Colyer are caused by errors in measurements and in-
sufficient knowledge of the properties of the real catch-
ment. Because of this, defined judgement of the perform-
ance of models and also comparisons between models based

on recorded runoff appear difficult.

In summary, the discussion in this section illustrates
the difficulties in performing representative field
measurements and also the difficulties in judging the
performance of models. The comparisons indicate, however,
that the kinematic wave model, using detailed geometrical
input data, describes the runoff process well, provided
that proper estimates of the contributing area and the

depression storage are used.

It is believed that the influence of the choice of de-
pression storage values and depression storage model is
much less marked in the case of design storms than in the

analysis above.

8.5 Simulations using simplified geometric
input data
8.5.1 General

To use a very detailed description of the catchment in

the input data such as the DET model input is usually not
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realistic in practical applications of runoff models. The
geometric representation of a catchment has to be more
generalized to reduce the effort of generating input
data. It is characteristic of the kinematic wave model
that it can simulate the velocity variations along the
runoff system (a spatially distributed model). These
variations are partly governed by the geometry (runoff
system structure and successive cross-sections of flow) .
Simulations made with the kinematic wave model using a
simplified representation of the runoff system geometry
appear to be meaningful only when this geometry is chosen
in such a way that the real spatial velocity distribution

becomes represented in a reasonably appropriate way.

In the preceding two sections, different simplified
geometrical representations of the base catchment are
discussed. A number of geometrical models are defined
which are characterized by the number of free parameters
used such as surface flow length, slope and so on. It is
basic for all simplified models that the catchment area
and the time of concentration are maintained from the

real catchment.

There is no real basis for selecting roughness values in-
dividually for each type of impermeable surface. Another
parameter which is mostly is difficult to choose individ-
ually is the side wall slope of the gutter cross section.
These parameters are thus not regarded as free in the

geometrical models.

8.5.2 Representation of catchments with no sewer net
- the KW3, KW4G and KW6G models

The simplest possible geometrical description of a catch-
ment is given by figure 8.5.la, where the runoff is
modelled by sheet flow over a single surface without
change of flow section. The catchment is represented by
three parameters - catchment area AC, surface flow length

LS and slope SS - and the model is here denoted KW3.
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Whether the increased storage volume on the surface

corresponds to the 'loss' of volume in the system caused
by neglecting the gutter, depends on its shape and slope.
A test of a few representative surface-gutter catchments
indicated a reasonably maintained storage volume for the

equivalent surface.

8.5.3 Representation of catchments with a sewer net
- the KW6S, KW6S-S and KW4G~-I models

In normal application the base catchment includes several
single surfaces and a connecting sewer system. There
are, of course, numerous approaches to obtaining a sim-
plified geometrical representation of such a catchment.
Below, some geometrical models are described which have
been used in the simulations. They include some of the
main principles on which a simplified geometric model may
be built, for example, lateral inflow along the sewer
lines, standard values of surface-gutter system (the

KW4G~model) or a standardized network system.
A very simple geometric description of a base catchment

containing a sewer is according to the KW4 model with the

gutter section replaced by a sewer, figure 8.5.3. The

Parameters: A¢, Ls, Ss, LmsSm, Dm

g
\/ Model: KW6'S

Figure 8.5.3 Representation of the catchment by the
KW6S model
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sewer represents the main sewer line of the system and is
characterized by its length Lm' slope Sm = AH/Lm and
diameter Dm' The surface flow in the model represents the

surface~gutter and sewer branch flows in the real catchment.

If the surface flow length LS and slope Ss are regarded
as free parameters, they may be evaluated in the same way
as for the KW3 model. In this case, the delay caused by
flow in sewer branches may be added according to section
7.3.2. As the width of the surface (AC/LS) will deviate
from the main sewer line length, the geometric model
assumes the lateral inflow to the sewer to be evenly
distributed along its length. The model, here called KW6S
is governed by six free parameters,

catchment area Ac

equivalent surface length LS

equivalent surface slope SS
length of main sewer line Lm
mean slope of main sewer line Sm

diameter of main sewer line Dm

The discretization level of the geometrical model of the
catchment is increased if a number of KW6S units are

applied to the catchment, see figure 8.5.4.

Let one representative value for each of the parameters
surface length Ls’ surface slope Ss’ sewer line slope Sm
and sewer line diameter Dp be used for all units. The
number of free parameters then becomes 4 + 2 - n where n
is the number of applied units. The two parameters which
are varied between the units are the contributing area

and the sewer length.

If, in addition, the sewer slope and surface length are
considered individually for each unit, the number of free
parameters will be 2 + 4 - n. This geometrical model is
here called KW6S-S. Its level of discretization is mostly

governed by the number of KW6S units applied.
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Figure 8.5.4 Example of a model structure containing
only KW6S units, the KW6S-5 model

An alternative way of using only a few free parameters
and still having a discretized sewer net is to define
permanent sewer structures. Examples are shown in figure
8.5.5 with a fixed number of inlets and distances between
them. To each of the inlets identical KW4G models with
characteristic values are connected (contributing area is

(total area)/ (number of inlets)).

The system is defined by 10 parameters

sewer structure according to figure 8.5.5
total catchment area AC

length of the surface LS

slope of the surface SS

gutter flow slope Sg
length of main line Lm

mean slope of main sewer line Sm
length of downstream sewer Ld
diameter of sewer D

length of sewer branch Lb

and is here called the KW4G-I model.
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" The KW4G-1 model
Parameters : Ag, Lg, Sg, LgsLms SmsOyld,Lp number of side Lines

® ® ®

= 0

hi:
3

P N

Figure 8.5.5 Four alternative sewer structures. To each
of the inlets identical KW4G models are
connected.

8.5.4 Application of simplified geometric models

For each of the six catchments, sets of input data have
been built up according to the simplified geometric
models discussed above. The main characteristics of the

simplifications are;

o simplified representation of the sewer net geometry
(the KW4G-I and KW6S models)

o use of mean slopes of the sewer net (the KW4G-I and
KW6S models)

o replacement of gutter and sewer flow by surface flow
(the KW6S-S, KW6S and KW3 models)

o use of representative surface/gutter/sewer reaches
(the KW4G-~I model)

The free parameters of overland flow in the simplified
models have been adjusted to maintain the representative
time of concentration from the real base catchment. For
example, corresponding time used to evaluate LS or SS in

the KW3 model is
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[tc]eq =[ec)g + [tc]g/Z + [tc]p/Z co. (8.5.2)

where [tc]s is obtained from a representative surface,
[tc]g from corresponding gutter and [tc]p from the main
sewer line of the base catchment. The choice of [tC]g/Z
is a compromise considering the fact that the upstream
part of the surface is drained through the full length of
the gutter while the downstream part is not drained by
the gutter at all. If the main sewer line of the base
catchment is considered as being mainly laterally fed,

the same principle is applied, [tc]p/2,

The calculations are based on the tc relations given in
section 7.3. In the simulations it was found that appro-
priate values of the side wall slope are z = 0.02 (gutter
flow) and z = 0.27 (approximation of sewer flow). Rough-
ness parameters were chosen according to the DET model in
section 8.4. A mean of the maximum intensities from the
storms used in the simulations in each catchment was used
as a representative rain intensity (one value for each

catchment) .

In order to show how the different geometric simplifica-
tions affect the volumes of input data and calculations
the numbers of routing units and free parameters used are
given in tables 8.5.1 and 8.5.2 respectively. Correspond-
ing information for the Time-Area Method (TAM) has been

added for comparison.

A routing unit means any separate surface, gutter or
sewer reach to which the routing model has been applied.
The number of routing units is then a relative measure of

the calculation volumes of the geometric models.

The tables show the great difference between the detailed
and the simplified geometric models both regarding calcu-
lation volumes and volumes of input data sets. It can also
be seen that the use of the KW4G-I model is only justified
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compared to the KW6S-S model, in catchments with more

complex sewer nets.

Table 8.5.1 Number of routing units for different
test area and geometric models

DET KW6S-~S KW4G-I KW6S TAM
ASPH 3 - - - 1
PCON 13 2 - 2 1
PASP 18 4 9 2 1
AASP 37 4 6 2 1
SASP 90 8 11 2 1
COMP 36 10 11 2 1

Table 8.5.2 Number of free parameters used in different
test areas with different geometric models

Model

Catchment DET KW6S5-S KW4G-1I KW6S TAM
ASPH 6 - - - 3
PCON 52 6 - 6 3
PASP 72 18 10 6 3
AASP 148 18 10 6 3
SASP 360 36 10 6 3
COMP 144 42 10 6 3

8.5.5 Simulations by simplified geometric models

The geometric models above can all be regarded as simpli-
fied versions of the detailed model DET. Nothing is added
to the description of the runoff process and it is thus
natural to compare the performances of the simplified
models and the detailed. Comparisons with DET model hydro-
graphs instead of recorded ones also improves the making

‘of comparisons between the simplified models.
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Simulated hydrographs are shown in appendix II 1.2. In
the small street catchment (ASPH), only the overland flow
models KW4G and KW3 have been tested; in the small very
regularly shaped parking area catchment (PCON), only the
KW6Ss and KW3 models. All models used in the two catch-
ments show very good performance, generally better than

in the larger and more complex catchments.

In the four largest catchments, the KW6S-S, KW4G-I, KW6S
and KW3 models have been used. The main impression from

visual inspection is that they perform well, with hydro-
graph shapes very similar to those of the detailed model.
The simplest model KW3 and to some extent also the KW6S

model, tend to have hydrographs with deviations in shape
in some cases. Generally, all model simulations made for
the AASP and SASP catchments show not guite as good per-
formance as for other catchments. It should be noted that
storms with comparatively low intensities have been used

for these catchments.

The five highest flow peaks simulated in each of the four
largest catchments have been used to estimate the statis-

tical parameters XA _, Up and ¢€_. In table 8.5.3 the

parameters are given for each of the models used.

Table 8.5.3 Statistical parameters for the simplified
geometrical models compared with the
DET-model (five peaks in each of the four
greatest catchments)

Model b o, ey (%) N“‘;‘gz}is"f
KW6S-S  1.02 .07 5.7 20
KW4G-T  1.02 .10 8.1 20
KW6S 1.01 .09 6.9 20
KW3 0.96 .13  11.5 20

Characteristic of the models” performance is the varia-

tion in the attenuation of the hydrographs. While some
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are too little attenuated giving flow peaks which are too
high and too fast, some are too attenuated with too low,
delayed peaks. The ratio between flow peaks Xp is a good
measure of the attenuation. For all catchments together
this attenuation appears balanced according to table
8.5.3 (the KW3-model gives a mean underestimation of
peaks by about 4%). The variation of the attenuation
between the catchments and models represented by Xp is
shown in table 8.5.4.

The difference in kp is obviously smallest for the most
detailed model (KW6S-S) and greatest for the simplest

geometric model.

Table 8.5.4 Variation intervals for Ay for the
simplified geometric models (five peaks in
each of the four greatest catchments)

Model smallest greatest Difference
AP AP

KW6S=3 0.94 1.06 0.10

RKW4G~-1I 0.87 1.06 0.19

KW6S 0.90 1.11 0.21

KW3 0.82 1.12 0.30

Looking at each catchment separately, it is clear that
all models can give both too small and too great attenua-
tion. This is an indication that the estimated times of
concentration on which the selection of all input data
which influences the attenuation is based, are not repre-
sentative for all storms. A more precise evaluation of
these times would probably increase the accuracy of the
models (or decrease the differences in table 8.5.4). How-
ever, a more sophisticated way of estimating the time of
concentration is rather pointless when the basic idea is
to simplify the creation of input data for the kinematic

wave model.
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The influence of the selected times of concentration on
the attenuation was tested in one of the catchments (the
COMP~catchment). The parameters in the models were
shifted to correspond to a 30% less and a 30% greater
time of concentration compared to the basic value. In
table 8.5.5 Xp values from the test have been put to-

gether for the different models.

The effect of the parameter variations on the attenuation
depends not only on the properties of the model but also
the properties of the catchment and hyetograph. The

figures in table 8.5.5, should therefore be regarded only

as examples of a variation,

In the table it is seen that, with the exception of the
KW6S-S-model, the interval between maximum and minimum
flow values increases as the geometrical discretization

becomes coarser.

Table 8.5.5 The effects on the attenuation of varying
the parameters in the models (corresponding

to a variation in (tc)

Model A_(0.70 t ) A (1.30 t ) Difference
p c c

p
KW65-S 1.13 0.92 .21
KW4G-I 1.05 0.99 .07
KW6S 1.09 0.95 .14
RKW3 1.19 0.87 .31

The time of concentration for the sewer net is included

in the parameter variation for the KW3 model but not for
the others. These can thus be expected to be less sensi-
tive to errors in the estimation of the time of concen-

tration. As shown in the table, the KW3 model has conse-
quently the greatest difference between the peakflows

from the two sets of parameters.

A sensitivity test using parameters corresponding to

O,Stc and 1’5tc increased the difference to about 0.27 in
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mean for the KW6S-S, KW4G-I, KW6S models and to 0.5 for
the KW3 model.

i,Q l/sha) COMP - catchment KWES
80 +

Figure 8.5.6 Sensitivity of the KW6S-model corresponding
to O.7tc and 1.3tc

i,Q (/sha) COMP - catchment| KW3
—a— 1.0 " t¢
80 T —t— 0.7 te
X 1.3 : tc
40+
: : } %
20 40 t{min)

Figure 8.5.7 Sensitivity of the KW3-model corresponding
to 0.7tC and l.3tc

In figures 8.5.6 and 8.5.7 the sensitivity to a change in
parameters corresponding to O.7tC and 1.3tc are shown for
the KW6S and KW3 models (the corresponding DET simulation

is shown in appendix II:1.3).
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The standard deviation o and the absolute error e in
table 8.5.3 reflects thepability of the models to rgpro-
duce the flow peaks of the detailed model., The parameters
may thus be used for comparisons between the simplified
models. It is clear from the table that the standard
deviation and the absolute error increase as the used
geometric input data becomes more simplified. However,
the differences are not very marked and no drastic
changes in the performances are obtained by making the
simplifications., In particular the KW6S model appears to
have a good performance considering its relative simplic-

ity.
According to the study, the performance of the detailed

kinematic wave model is reasonably well maintained

- assuming lateral inflow to the main sewer line
- using the mean slope of the main sewer line

- excluding minor branches from the sewer system

8.6 Simulations by the Time=-Area Method

The performance of the Time-Area Method has been examined
in much the same way as the simplified kinematic wave
models in section 8.5.5, that is by making comparisons
with the detailed model (DET). The time of concentration
was chosen as the time from the most distant surface to
the downstream end using the relations given in section
7.3.

Several time-area curves were investigated. Attempts to
select a non-linear time-area diagram to get a "best fit"
for each simulated hydrograph were not successful, though
parts of the hydrographs (for example the rising part)
could be improved in comparison with the linear-diagram
hydrographs. This result is consistent with that of
section 7.3 where the theory of the Time-Area Method was
discussed. In figure 8.6.1, an example of the effects of

using different time-area curves is shown .

144



COMP - catchment
B
Time -Area Method
i,Q{l/sha) —4— Linear diagram A
—+— A diagram
80 4- —x— B diagram
40 1
IS TN | Bdbhes] T\
20 40 t{min)

Figure 8.6.1 Example of effects of using different
time-area curves

We can see how the shapes of the hydrographs are changed
by the time-area curve. It is also evident that the delay
and level of the peaks is influenced by the curve. A
general method for estimating the time of concentration
must then be based on one selected time-area curve. As
the best general performance was obtained using the
linear time-area diagram together with the way of esti-
mating of the time of concentration given above, this

method was used throughout the study.

In appendix II:1.4, hydrographs simulated by the Time-
Area Method are shown. A statistical analysis of corre-
sponding flow peaks was made in the same way as in sec-

tion 8.5.5 and is summarized in table 8.6.1.

According to the table the peaks are on average under-
estimated by about 7%. Regarding the standard deviation
and absolute error the methcd appears to be as good as
the kinematic wave models with an acceptable ability to
reproduce a balanced attenuation of single peaks. How-

ever, looking at both the general shape and delay of the
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hydrographs, the deviation from the DET- model is more

marked than for any of the kinematic wave models.

Table 8.6.1 Statistical parameters for the Time-Area
Method compared with the DET-model (five
peaks in each of the four greatest

catchments)
Number of
>‘p p Ep(%) peaks
.93 .10 9.2 20

The Time-Area Method was also found to be more sensitive
to variations in the general level of rain intensity.
This is indicated in the catchment which has the greatest
variations in maximum rain intensities between different
storms (29 1l/s-ha to 108 1/s-ha). In this catchment (the
PASP-catchment) the Time-Area Method has a standard
deviation about three times greater than the kinematic

wave models.

The influence of reducing and increasing the time of
concentration by 30% was also investigated as in section
8.5.5. Corresponding values for the Time-Area Method are

given in table 8.6.2.

As we can see, the effects are at the same level as for
the KW3-model. In the figure 8.6.2 an example is given of
the effects of the variations on the hydrograph shape.

Table 8.6.2 The effects of varying the time of
concentration in the Time-Area Method

A (0.70 t ) A (1.30 t ) Difference
P c P c

1.13 0.86 0.27
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Figure 8.6.2 Example of variations in hydrograph shape
caused by variations in time of concentra-
tion

8.7 Summary

The kinematic wave model has been applied to six catch-
ments, using different simplified geometric models. In
addition, the Time-Area Method has been investigated. The
geometric models have all been compared with a kinematic
wave model using a very detailed geometric description of
the catchment. This detailed approach has been compared
with recorded runoff from a number of storms. The com-
parison with recorded runoff indicated uncertainties in
the measurements and model performance of some catch-
ments. However, it was concluded that the detailed model
reflected the runoff process reasonably well. The valid-
ity of the kinematic wave model has been documented by

several investigators, for example Jacobsen (1980).

The effects of using simplified geometric descriptions of
the catchments for the kinematic wave model were investi-
gated by making comparisons with the detailed kinematic
wave model. It was found that the performance of the
kinematic wave model is still very good, even for great

simplifications of the catchment geometries such as
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- replacement of gutters by increased surface

lengths

- assuming only lateral surface inflow to the main

sewer line
- using the mean slope of the main sewer line

- excluding minor branches in the sewer system.

The simulations by the Time-Area Method showed that

reasonably accurate values of single flow peaks may be
cbtained. However, the general shape and delay of the
simulated hydrographs were not as good as those of the

kinematic wave models.

In runoff simulations from catchments built up of several
base catchments, the general performance (shape and delay
of hydrographs) of the base catchment models is as
important as the ability to reproduce flow peaks. The
kinematic wave models should then generally be preferred
as base catchment models. These models are also specially
favourable -in cases when input data can be calibrated by

runoff measurements.

Independent of the model used, the main difficulty is to
choose representative input data which give suitably
attenuated hydrographs. In this study the choice has been
based on an evaluation of representative times of concen-
tration by the relations based on kinematic wave models
given in section 7.3. As the evaluation is approximate,
the probability of an unsuitable attenuation is intro-
duced. The probability of large errors is greatest for
the simplest models (the KW3 model and the Time-Area
Method). A more precise evaluation of the time of concen-
tration would possibly increase the accuracy of the
models. This, however, requires a more sophisticated way
of estimating this time which is pointless as the basic
idea was to develop a simplified method of creating input

data for the kinematic wave model.
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The most suitable geometric simplification for the
kinematic wave model, regarding both the demand for
simplicity in inputdata and accuracy is the KW6S model.
The model is composed of a sewer with the length and mean
slope of the main sewer line in the catchment. The sewer
is laterally fed by a surface with length and slope
corresponding to an estimated time of concentration which

is representative for runoff to the main sewer line.
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9. BASE CATCHMENT MODELS APPLIED

9.1 General

In the last chapter the discussion concerned mainly three
catchment models, the KW6S and the KW4G-I models and the
Time-Area Method. These have been applied to two urban
catchments, Bergsjoén and LinkOping 2, which are consider-
ably greater than the catchments used in chapter 8. The

catchments and measurements are described in appendix I.

The Bergsji®dn catchment is a mainly steep residential area
with a flat central part. The runoff area is about 15
hectares, 5 of which contribute directly to the runoff in
the.storm water system. A characteristic time of concen-
tration for ordinary storms is about 6 minutes. The sewer

system has a tree shape with four main branches.

The Link6ping 2 catchment is a residential area with
small slopes. It is about 18 hectares in size with 5.7
hectares contributing directly to runoff. A characteris-
tic time of concentration for ordinary storms is about
12 minutes. The sewer system is built-up of two major

branches.

Three levels of subdivision into base catchments have
been used. The finest division corresponds to base catch-
ment areas of about 0.5 hectares (directly contributing

area) .

The discussion of the performance of the models are here
based on comparison between hydrographs in the same way
as in the previous chapter: The recorded flow is compared
with hydrographs simulated by a detailed kinematic wave
model {DET), and hydrographs simulated by simplified
models are also compared with those from this detailed

model.
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9.2 Kinematic wave model simulation -

comparisons with recorded hydrographs

The recorded runoff hydrographs were compared with hydro-
graphs simulated by the detailed kinematic wave model
(DET-model) . In this model, in principle every surface,
gutter and sewer within the system is represented. How-
ever, the available information of the runoff system in
Bergsjtn and Link®ping 2 was not quite as detailed as in
the six catchments in last chapter. The application of
the models to Bergsjdn and LinkOping 2 is therefore more

like a realistic case.

In appendix II:2.1, simulations of five storms from Berg-
sjén and four storms from LinkSping 2 are presented. The
contributing areas used in each catchment were obtained
from regression analysis of storm volumes recorded over
22 months (Bergsjdn) and 12 months (Link&ping 2, two
summer - autumn reasons). They were found to be 75% and
90% of the impermeable surfaces in Bergsjoén and Link&ping

2 respectively, Arnell (1980).

A visual inspection of the hydrographs shows that the
simulated and recorded hydrographs coincide reasonably
well with respect to general shape and delay of peaks.
There are, however, parts of several hydrographs with
marked deviations. There are also, for some storms, de-
viations between recorded and simulated runoff volumes.
Probable explanations for the deviations have been dis-

cussed in section 8.4.2 and are not repeated here.

A statistical analysis of the relation between recorded
and simulated flow peaks was performed for the hydro-
graphs presented. No marked differences in the statisti-
cal parameters were found between the catchments. The
result is then summarized for both catchments in table
9.2.1.

As shown in the table, the model gives on average flow

peaks which are slightly too attenuated for both catch-

151



Table 9.2.1 Mean ratio ), , standard deviation o and
absolute error ep for recorded and p
simulated flow peaks in Bergsjon and
Link&ping 2.

Number of Mean ratio Standard dev. Abs. error
eaks %
P Ap ’p €p
18 0.96 0.13 11

ments. This can be compared with the analysis of the six
"small" catchments in the last chapter where the DET
model gave peaks which were too little attenuated. The
standard deviation and absolute error are smaller com-
pared with the six catchments. Compared with Colyer~”s
conclusions previously mentioned (section 8.4.2), the

model performs well.

The same two catchments have previously been used by Ar-
nell (1980) to test a runoff model (the CTH model) of
about the same level of sophistication as the DET model.
Comparing the two models the standard deviation and abso-
lute error are smaller for the DET model than the CTH
model. This may be explained by the fact that the CTH
model does not take gutterflow into account. It should,
however, be noted that the statistical measures are
partly based on different flow peaks which may have an

influence on the deviations.

9.3 Simulations using different base catchment sizes

Three levels of subdivision into base catchments have

been investigated

- nine base catchments (L1)

- one base catchment for each main sewer branch
(four in Bergsjdn and two in Link&ping) (L2)

~ the entire catchment as one base catchment (L3)

The KW6S~S model has been applied to each catchment and

each discretization level. They will be denoted here as
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the KW6S-L1l, KW6S-L2 and KW6S-L3 models for the three
levels respectively. The first level corresponds to base
catchments of about the same size as those investigated
in the last chapter, 0.3-1 ha (contributing area) . The
second level means four base catchments in Bergsjdn and
two in Link®ping 2. The KW4G-I model was applied to the
third level (L3). The input data sets have been based on
representative times of concentration and the different
models compared with the DET model. The different steps

have been performed in the same way as in last chapter.

The simulated hydrographs are shown in appendix II:2.1.
The main impression from a visual inspection is that the
models perform well with hydrograph shapes very similar
to those of the DET-model. The best simulations are ob-
tained from the KW6S-Ll1 model, but those from the KW4G-I
and KW6S-L2 models are also very good. The simulations by
using the KW6S-L3 model are also good in the LinkOping 2
catchment, but become too little attenuated in the Berg-

sjon catchment (kp = 1.09), see also appendix II:2.3.

From the statistical analysis of the flow peaks it can be
concluded that the models generally perform better in
Bergsjdn than in the flatter LinkSping 2 area. In table
9.3.1 the statistical parameters are summarized for both

catchments.

Table 9.3.1 Statistical parameters for simulated flow
peaks in the Linkd8ping 2 and Bergsjon areas

A G e (%) Number of
Model P p o) peaks
KW6S-L1 1.01 0.05 3.2 18
KW6S-L2 0.98 0.07 5.5 18
KW6S~L3 1.04 0.13 9.9 18
KW4G-1I 0.99 0.07 4,3 18

The table shows that a balanced attenuation is obtained
for the models. The standard deviation and absolute error

have low values in general. These parameters increase
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with a decreasing level of discretization, indicating

that more discretized models perform better.

The most marked difference is between the KW6S5-L2 and
KW6S-L3 models. This deviation is most probably caused
by the approximating of the sewer system to only one
main sewer line, which in both Bergsjon and Linkdping 2
appears to be a coarse approximation. It should also be
noted that the KW4G-I model performs almost as well as
the KW6S~L1l model despite the fact that it is based on a

very standardized network system.

The influence on the attenuation of the selected repre-
sentative times of concentration on the attenuation was
investigated in Bergsjdn. The pérameters in the models
were shifted to correspond to 30% less and 30% greater
time of concentration compared to the basic chosen value.

In table 9.3.2, kp values from this test are put together.

Table 9.3.2 Ap values for different times of concentra-
tion in Bergsjdn

Model Ap (0.7 tc) kp (1.3 tc) Difference
KW6S-L1 1.05 0.96 0.09
KW6S-L2 1.11 0.94 0.17
KW6S-1.3 1.17 0.92 0.25
KWAG-I 1.08 0.96 0.12

As shown in the table the interval between the mean peak
flows for the two choices of parameter increases with
decreasing discretization of the catchment. The effect of
an improperly estimated representative time of concentra-
tion is obviously greater for more simplified catchment

descriptions.

9.4 Simulation by the Time-Area Method

The Time-Area Method used as base catchment model was

examined at the two levels of discretization L1 and L3,
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as defined in section 9.3 (9 and 1 base catchments). The
simulated hydrographs were compared with the detailed
kinematic wave model DET and the times of concentration
were evaluated in the same way as in chapter 8. Only

linear time-area diagrams were used.

In appendix II:2.4 hydrographs simulated by the Time-Area
Method are shown. These show generally a more marked de-
viation from the DET-model than those simulated by the

kinematic wave model. The hydrographs are too little at-
tenuated and delayed. Compared with the Time-Area Method
hydrographs analysed in last chapter, they show a better
performance with regard to general shape. It should be

noted that the former are, on average, too attenuated.

In table 9.4.1 the statistical analysis of flow peaks
from the two catchments are summarized. The models cor-
responding to levels L1 and L3 are denoted TALl and TAL3,

respectively.

Table 9.4.1 Statistical parameters for the Time Area
Method compared with the DET-model

Model A o € (%) Number of
p p p peaks

TAL1 1.07 0.15 10.4 18

TAL2 1.06 0.13 9.9 18

The standard deviation and absolute error are generally
greater than the corresponding values for the kinematic
wave models. There is very little difference between the
two discretization levels and the TALl model has obvious-
ly a worse performance than corresponding kinematic wave
model at this base catchment level, the KW6S-L1 model.
This is probably due to the fact that the sewer lines of
the branches are represented in the KW6S-L1 model by

routing units, which is not the case in the TALl model.
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The influence of reducing and increasing the time of con-
centration by 30% was also investigated in the Bergsjoén
area. Corresponding values for the Time-Area Method are

given in table 9.4.2.

Table 9.4.2 Variation of the time of concentration using
the Time-Area Method in Bergsjon

Model Ap (0.7 tc) Ap (1.3 tc) Difference
TALL 1.16 0.98 0.18
TAL3 1.18 0.97 0.21

The interval between mean peak flows for the two choices
of parameters are, as shown in the table, about the same
for the two base catchment levels. Compared with the kin-
ematic wave models the sensitivity at the first level

(L1l) is considerably greater. At the third level (L3) the
sensitivity is of about the same order for the two cate-
gories of model. This is most probably caused by the dif-

ference in representation of sewer lines mentioned above.

9.5 Summary

The runoff models presented in last chapter have been
applied as base catchment models in two urban catchments
with total areas of 15 and 19 hectares, respectively.
Three levels of subdivision into base catchments have
been used where the finest division corresponds to sizes

around 0.5 ha.

The general impression of the performance of the models

applied to these areas is much the same as in chapter 8.
The models based on the kinematic wave appear to perform
well, better than those based on the time-area relation-

ship at comparable discretization levels.

A simple geometric model {(one sewer laterally fed by a

rectangular surface - the KW6S model) has been applied as
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base catchment model at the three different levels of
subdivision. Using greater base catchment sizes the per-
formance is not quite as good. However, there are no
drastic changes and it is obviously possible to obtain a
very good performance using quite great base catchments,
provided the catchment characteristics (for instance the
time of concentration) are properly evaluated. It should
be stressed here that as the base catchment increases the
effects of making misjudgements in these evaluations in-
creases. It was also found that when the main sewer sys-
tem contains several long branches they must be repre-
sented in the input data system and should not be re-

placed by one main sewer line.

The Time-Area Method does not perform guite as well as
the kinematic wave model despite the fact that the same
amount of catchment data is required. Though the model
properly used has a performance which is acceptable in
many applications there is no obvious argument for its

use.

It can finally be concluded that:

- Independent of the model used and base catchment
size, the choice of input parameters in the base
catchment model (overland flow parameters) has a

significant effect on the result.

- The kinematic wave model (KW6S model) is both
possible to use and effective as base catchment

model.

- With this model relatively great simplifications of
the input data geometry can be used with a reason-
ably well maintained performance, this provided the
catchment characteristics are properly evaluated.
That may be done using relations derived from the
kinematic wave equations, assuming constant rain

intensity.
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10. EVALUATION OF STATISTICAL MAXIMUM FLOWS

10.1 General

In many cases it is of interest to make only a fast and
simple evaluation of maximum flows in a couple of key
points in the sewer system. This may be done by the so
called Rational Method. The method was formerly the only
available design tool and then much criticized for being
too approximate. It is easily applied but may, as all
strongly simplified models, give very misleading results

if it is improperly used.

The Rational Method is commonly regarded as an empirical
model. There is, however, a clear relation between the
model and the basic equations used in this report, as has
been pointed out by Newton-Painter (1974). Despite the
relationship to the Time-Area Method the Rational Method
is basically quite different from all the previous dis-
cussed models by being a statistical method for maximum

flows rather than a routing method.

In the following sections some theoretical and practical
aspects of the method will be discussed in order to dis-
cuss the relevance of the underlying model. An alterna-
tive method for evaluating design flow rates based on the

traditional Rational Method is also proposed.

10.2 Basic deterministic relations

Using the Time~Area Method corresponds, as shown in sec-
tion 7.3, to applying the kinematic wave equations with
a wave velocity that is fixed in time but not in space.
The discretization of the time area diagram defines the
space step in the equations used. Fixing the wave veloc-
ity in space as well corresponds to a straight line in
the time area diagram. This approximation requires no
spatial discretization and may be regarded as a reservoir

model (linear). The solution takes the form
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Q(t) = a-B- [ i(o) do ee. (10.2.1)

(see equation 7.3.2)).The wave velocity may be written
a=L/tc where L is the length of the surface and tc the
time for the wave movement over the surface. According

to section 4.2.2, t—t0= tC giving
Q(t) = LB [ ilo) do e (10.2.2)
c

This relation corresponds to an averaging of the inten-
sities over the time tc. For each storm event a maximum

value of the average intensity can be found

1 t
Lax = |15 - f i(o)do ee. (10.2.3)
t-t max

The maximum flow is obtained as

Qnmx = L‘B~imaX ee. (10.2.4)
The model (equation (10.2.4)) expresses the deterministic
relation underlaying the Rational Method. The relevance
of maximum flow values obtained by this model depends
mainly on

o how well the time tc is estimated

o the divergence in "real" rain intensities
from the maximum average intensity i

Hager (1985) has shown that the variation of rain inten-
sities in an interval equal to the time of concentration
has little influence on the peak flow value for a rectangu-

lar surface (effects of delay were not negligible).
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The results from this theoretical study can not be gener-
alized to an arbritary urban catchment but gives an indi-

cation of the possibilites of the basic model.

10.3 The Rational Method

The design of a network system is basically a statistical
problem. In principle, one possible way to balance pipe
size against risk is to design the system for each storm
in a long series of rainfall events (perhaps 30 years).
The return period for the different flows is calculated
and a choice between risk levels with corresponding pipe
sizes can be made. Design methods based on statistical
analyses of simulated discharges have been proposed by
Johansen (1979) and Arnell (1982).

A more practical but also more approximate approach is
based on storms generated by statistical parameters,
design storms. By using such a storm a design flow is
evaluated which is assumed to have the same return period

as the storm.

The traditionally used statistical storm is the Maximum
Average Intensity storm (MAI-storm) which is defined by
its average intensity imax and corresponding averaging

time (duration time td), compare equation (10.2.3).

Each historical storm can be described by a series of
MAI-storms with different durations. From a series of
historical storms, frequencies of MAI-storms can be
evaluated. For each duration a distribution function for
the intensities can be plotted. Examples of such func-
tions obtained from a two year series are given in figure
10.3.1 (after Arnell, Lyngfelt (1975)). The three rain
a-= 6, 9 and

12 minutes. The frequency is here given as the return

distributions correspond to the durations t

period in years (T). The distribution of maximum dis-
charges from a residential area (15 hectares) during the

same period is also shown in the figure.
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Figure 10.3.1 Distribution functions for MAI-storms and
maximum discharge (after Arnell, Lyngfelt
1975)

Assuming parallel intensity and discharge distributions
we obtain

(T, ty) (10.3.1)
where Qmax(T) and i(T, td) are flow and MAI-storm distri-
butions, T the return period, td the duration time and ¢
a constant. As we can see, all the chosen MAI-storm dis-
tributions diverge slightly from this assumption. The
storm distributions get closer to the flow distribution
with increasing return period. The same tendency can be
found in other catchments analysed in a similar way, see
Shaake et al. (1967) and Arnell et al. (1980).

If the time of concentration is used as the duration of

the MAI-storm, the corresponding intensity distribution
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will have a ‘'steeper' slope. In a study of five catch-
ments it was found that the distribution i(T,tc) was
always in better accordance with the flow distribution
than any distribution i(T,td) using constant duration.

It was also found that the constant cq (equation 10.3.1)
was close to the estimated contributing area Ac' Lyngfelt
(1981) . The relation becomes

o (10.3.2)
Opay (T) = A_-1(T, £ )

where tc is a function of i.

10.4 The time of concentration

The traditional way of presenting MAI-storm distributions
for a series of historical storms is the intensity dura-
tion frequency diagram (IDF-diagram). In Sweden IDF-

curves have been established at six locations. In figure

2.2.2 the IDF-diagram used in G&teborg is shown.

The curves are characterized by having steep gradients
for the durations of interest in urban drainage design
(5~20 minutes). Overestimating the time of concentration
by, for example, five minutes may very well result in an
underestimation of the discharge by more than 20%. The
time of concentration is thus a significant parameter and
the estimation of the parameter is of great importance in

the application of the method.

Relations for estimating of the time of concentration
based on the kinematic wave concept are given in section
7.3. In chapters 8 and 9 they were used in model analysis
and found to give appropriate values for the Time-~Area
Method using a linear time-area diagram. The expressions

for surface-gutter and sewer flow may be summarized by

25 4

o . 0. 0.
Lc—Kl/l + Kz/l ... (10.4.1)
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where K1 and K2 includes catchment parameters such as
slopes, lengths and roughnesses. The parameters may be
evaluated from equation (7.3.8) - (7.3.10).

Lyngfelt (1981) evaluated by regression analysis an em-
pirical relation which gives values of tc close to those
obtained by the relation (10.4.1). The regression is
based on catchments having contributing areas greater
than 1.6 ha.

10.5 Evaluation of the maximum flow

The IDF-curves may be expressed by the relation

i= & +c «.. (10.5.1)

where a, b and ¢ are parameters which vary with location
and return period. Using the Rational Method we are look-
ing for the rain intensity corresponding to the time of
concentration estimated by equation (10.4.1) which is a
function of the rain intensity. The intensity is obtained,
together with the time of concentration, by solving the

equation system

i(T,tC) = a/(tc+b)+c ... (10.5.2a)

0.25 4 <. (10.5.2b)

tc: Kl/(i(T, tc)) +K2/(i(T, tc))o'

This may be done by using the regression equation

a 0.25
(o) ne1 =Kl/[-—--—+c] +
(),
+ K,/ [-~§L——+c} 0.4 ... (10.5.3)
(t)
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Figure 10.6.3

The distribution function for the
discharge in point 24 in Bergsjon (see
appendix II) after Arnell (1982) with
the Rational Method points included
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Figure 10.6.4 The distribution function for the
discharge in point 73 in Bergsjdn (see

166

appendix II) after Arnell (1982) with
the Rational Method points included



The Rational Method appears surprisingly capable of esti=-
mating statistical design flows. It should, however, be
stressed that the method as it is used here requires

much the same amount of input data as the kinematic wave
models. In addition it is usually advantageous to have
the entire hydrograph and not only the design flow as a
basis in the design situation. Runoff systems with reten-
tion storages or overflows are examples where routing
methods must be used. The Rational Method is a very suit-
able method for calculating flow rates in the preliminary
design stage of a network system, in small or simple sys-
tems and also for checking the input data to more complex
models. When this method is used, the time of concentra-
tion should be evaluated by relations based on the kin-
ematic wave theory (see section 7.3). Particular care
should be taken in estimating te when this time is short

(< 10 minutes).
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LIST OF SYMBOLS

SI-units are generally used. If not the unit is specified
in the text.

cross-section of flow

dimensionless cross-section of flow A/AO
cross-section at stationary flow
contributing catchment area

part of contributing catchment area

parameter in the non-linear friction relation or
parameter in the IDF relation (section 10.5)

amplitudes at section 1 and 2 (section 3.5)
width of channel

one of the gutter flow lengths in the kW6G
geometrical model

exponent in the non-linear friction relation or
parameter in the IDF relation (section 10.5)

characteristic number 1 and 2 (section 4.2.5)
resistance coefficient

Courant number

modified Courant number (section 6.4.3)

wave velocity or parameter in the IDF-curve
relation

dimensionless celerity (c/VO)
kinematic wave velocity
diffusion coefficient

dimensionless time at which the lateral inflow
ceases (section 4.3.1)

diameter of the main sewer line
numerical diffusion coefficient
diameter of sewer

Froude number

Darcy-Weissbach friction factor
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max
l(T,tC)

JeJ+l

max (T)

(OIS O O NN o)
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acceleration due to gravity or
index for gutter flow variables

rain intensity

maximum average rain intensity (section 10.2)
maximum average rain intensity distribution
space step j and j+1

friction and shape parameter in the non-linear
friction relation

kinematic wave number

friction parameter in the L-formula

friction parameter in the quadratic formula
effective absolute roughness

length in flow direction

catchment length in the KW6G geometric model

length of branches in the KW4G-I model
(chapter 8)

length of downstream sewer in the KW4G~I model
length of gutter in flow direction
length of sewer

length of surface in flow direction
length of main sewer line

time step m and m+l

Manning”s coefficient of roughness
wetted perimeter

exponent of the hydraulic radius in the
friction relation (section 5.4) or
index for sewer flow variables

flow rate

dimensionless flow rate Q/0
maximum flow distribution

stationary flow rate



maximum flow rate obtained by the
Rational Method

surface flow per unit width

inflow and outflow rates to a reservoir
(section 7.2.1)

lateral inflow

dimensionless lateral inflow (q/qo)
stationary lateral inflow

constant lateral inflow

hydraulic radius

Reynolds”™ number

slope in flow direction

friction slope

gutter slope in flow direction
slope of sewer in flow direction

mean slope of main sewer line (Lm/AH)

surface slope in flow direction
index for surface flow variables
return period (chapter 10)

time

starting time for a characteristic at upstream
boundary (section 4.2.2)

dimensionless time (t VO/L)

time of concentration

time constant in lateral inflow

velocity of lateral inflow, cross-sectional mean
dimensionless velocity of lateral inflow U/UD
velocity of lateral inflow at stationary flow
velocity of rain

velocity in gutter, cross-sectional mean
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Up velocity in sewer, cross=-sectional mean
US velocity in surface flow, cross-sectional mean
v velocity of flow, cross=-sectional mean
v dimensionless velocity of flow V/VO

Ve Vedernikov”™s number

Vo stationary velocity of flow

W velocity of wind

X space coordinate

Y cross-~sectional water depth

Y dimensionless waterdepth Y/YO

YO stationary cross-sectional water depth
Yg water depth in gutter flow section

Yp water depth in sewer flow section

z1, 22 zones in the x-t plane (figure 4.2.3)

Z slope factor of side walls (tana = z)

a numerical parameter (weighted box scheme)

slope angle of channel

o equivalent numerical parameter (a-diffusive
d model)

B correction factor for the cross-sectional
velocity distributions or
numerical parameter (weighted box scheme)

AH elevation between two points in the sewer system
At time step

Ax space step

§ logarithmic decrement = 1n(a2/a1)

Ep mean absolute error in compared peak flow values
<] parameter in the MIT model (section 6.6)

A length of sinusoidal wave

Ap mean of the ratio between flow peaks

v kinematic viscosity of water
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density of water
density of air
inteqration variable
wave numbeXr

standard deviation of the ratio pbetween
compared flow peaks

integration variable OF
time-lag in the Time=lad model (chapter 7)

mean shear stress along the wetted perimeter
mean shear stress along the surface

sheal stress of wind

angle between main and 1ateral flow vectors

angle pbetween rain velocity vector and surface
flow velocity yector
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density of water
density of air
integration variable
wave number

standard deviation of the ratio between
compared flow peaks

integration variable or
time~lag in the Time-lag model (chapter 7)

mean shear stress along the wetted perimeter
mean shear stress along the surface

shear stress of wind

angle between main and lateral flow vectors

angle between rain velocity vector and surface
flow velocity vector

173



Bengtsson, L. (1980). MAGROR. Manual for a Storm Water

Computer Program. University of Luled. Depart-

ment of Water Resources Engineering. Report

TULEA 1980:34. Luleéd. (In Swedish).

Berg, A. (1983). Flushing of Sewers with Self-Cleansing

Problems. Vassdrags—- og Havnelaboratoriet.

Norges Hydrodynamiske Laboratorier. Report

SFT 60 A83027. ISBN 82-595-3114-3. Trondheim.

(In Norwegian).
Borah, K., Prasad, S.N. and Alonso, C.V. (1980). Kinematic

Wave Routing Incorporating Shock Fitting. Water

Recources Research, Vol. 16, No. 3, June 1980.

(1965) . Hydrodynamics of Overland Flow
Transactions of the

Brakensiek, D.L.
and Nonprismatic Channels.

ASAE, 1966.

Brakensiek, D.L. (1967). Kinematic Flood Routing. Trans-

actions of the ASAE, 1967.

Brutsaert, W. (1971). De Saint-Venant Equations Experi-
mentally Verified. Journal of Hydraulics Div-
ision, ASCE, HY9, September 1971.

Bufill, M.C. (1984). Hydrological Aspects of the Study of

Non-Point Pollution on a Motorway Catchment.

Proc. 3rd International Conference on Urban

Storm Drainage, Vol 1, G&teborg.

Carslaw, H.S. and Jaeger, J.C. (1959). Conduction of Heat

in Solids. Second Edition. Clarendon Press,

Oxford.

Chen, C.L. (1981). Generalized Manning Formula for Urban

Storm Runoff Routing. Proc. 2nd Int. Conference

on Urban Storm Drainage, Urbana, Illinois.

176



REFERENCES

Akan, A.0. and Yen, B.C. (1981). Diffusion-Wave Flood

Routing in Channel Networks. Journal of Hydrau-
lics Division, ASCE, HY6, June.

(1984) . A Physics-Based Approach to Determine

Akan, A.O.
Proc. 3rd Interna-

Inlet Concentration Times.
tional Conference on Urban Storm Drainage, Vol.l,

Gbteborg.

J. (1973). Surface Runoff. Basic

Andersson, S., Svensson,
Chalmers University

Theories and Field Studies.
of Technology, Department of Hydraulics, Master

of Science Thesis Work, 1973:5. G&teborg.

(In Swedish).

Arnell, V. and Lyngfelt, S. (1975). Rainfall-Runoff

Measurements in Bergsjdn 1973-1974. Chalmers

University of Technology, Urban Geohydrological
Research Group, No. 13, G&teborg (in Swedish).

Arnell, V. (1980). Description and Validation of the
CTH~Urban Runoff Model. Chalmers University of
Technology, Department of Hydraulics, Report

Series A:5, GOteborg.

Arnell, V., Strander, H. and Svensson, G. (1980). Storm-
Water Runoff, Quantity and Quality, at Ryd,
Linkdping 1976-1977. Chalmers University of
Technology, Urban Geohydrology Research Group,

Report No 48, GOteborg (in Swedish).

Arnell, V. (1982). Rainfall Data for the Design of Sewer
Pipe Systems. Chalmers University of Technology,

Department of Hydraulics, Report Series A:8,

GO6teborg.

175



Chow, V.T. (1959). Open Channel Hydraulics.
Mc Graw-Hill Book Co. New York.

Chow, V.T. (1964). Handbook of Applied Hydrology.
Mc Graw-Hill Book Co. New York.

Chow, V.T. and Ben-Zvi, A. (1973). Hydrodynamic
Modelling of Two-Dimensional Watershed Flow.
Journal of Hydraulics Division, ASCE, HY 11,
November 1973.

Constantinides, A.C. and Stephenson, D. (1981).
Two-Dimensional Kinematic Overland Flow
Modelling. Proc. 2nd Int. Conf. on Urban

Storm Drainage, Urbana Illinois.

Crank, J. (1975). The Mathematics of Diffusion, Sec.

Edition, Clarendon Press, Oxford, England.

Colyer, P. (1977). Performance of Storm Drainage Simula-
tion Models. Proc. Inst. Civ. Engineers, Part 2,
63, June 1977, pp 293-3009.

Daily, J.W. and Harleman, B.R. (1966). Fluid Dynamics.
Addison-Wesley Publishing Company, Inc.,

Reading, Massachusetts.

Eagleson, P.S. (1970). Dynamic Hydrology. McGraw-Hill
Book Co., New York.

Engelund, F.A. and Cristensen (1969) . The Hydraulics of
Stratified and Inhomogeneous Fluids. Polyteknisk

Forlag, Copenhagen, Denmark (In Danish)

Ericsson, M., Cedergardh, P., Svensson, P. (1978) . Percola-
tion Pond in Halmstad. Chalmers University of
Technology, Department of Hydraulics, Master of
Science Thesis Work 1976:2. Goteborg.

(In Swedish).

177



Eskenazi, E. (1984). Laboratory Study of Absorbed Runoff
Flow by Different Gully Grating Systems. Proc.
3rd International Conference on Urban Storm

Drainage, Vol. 1, Gdteborg.

Falk, J. and Niemczynowicz, J. (1979). Modelling of Run-
off from Impermeable Surfaces. Lund Institute
of Technology, Department of Water Resocurces

t
Engineering, Report No 3024, Lund.

Falk, J. and Niemczynowicz (1978} . Characteristics of the
Above-Ground Runoff in Sewered Catchments. Proc.
lst Int. Conference on Urban Drainage, University
of Southampton, Editor P.R. Helliwell, Pentech
Press, Lonadon, U.K.

Fawkes, P.E. (1972). Roughness in a Model of Overland
Flow. M.S. Thesis, Colorado State University,

Fort Collins, Colorado.

Geiger, W. (1984). Goodness and Limits in Urban Runoff
Modelling. Proc. 3rd Int. Conf. on Urban Storm

Drainage, Vol. 2, Gbteborg.

Grace, R.A. and Eagleson, P.S. (1966). The Modeling of
Overland Flow. Water Resources Research, Vol. 2,
No. 3, third quarter 1966,

Hager, W. (1985). Effects of Excess Rainfall Time Dis-
tribution on Catchment Area Hydrograph. (To be

published in Nordic Hydrology) .

Haegerstrdm, J., Melin, H., Ryberg, M. (1978) . Urban
Runoff Modelling in Two Housing Areas in Lin-
képing. Chalmers University of Technology,
Department of Hydraulics, Master of Science
Thesis Work 1976:1.

178



Henderson, F.M. (1963). Flood Waves in Prismatic
Channels. Journal of the Hydraulics Division,
ASCE, HY 4, July 1963.

Horton, R.E. and Leach, H. R., van Vliet, R. (1934).
Laminar Sheet~Flow. Transactions, American
Geophysical Union. Hydrology Reports and
Papers, 1934.

Huber, W.C. (1977). Interim Documentation. Release of
EPA SWMM. Draft Report. National Environmental
Research Center, Office of Research and Develop-
ment, U S Environmental Protection Agency,

Cincinnati, Ohio.

Izzard, C.F. (1944). The Surface-Profile of Overland
Flow. Transactions, American Geophysical Union,
Part VI, 1944,

Jacobsen, P. (1980). Urban Surface Runoff Simulation.
Technical University of Denmark, Department of

Sanitary Engineering, Rep. 80-51, Lyngby.

Jensen, M. (1981). Urban Catchment Simplification Based
on Rational Method Design and Kinematic Wave
Analysis. Technical University of Denmark.
Department of Environmental Engineering. Report
No 81-54, Lyngby.

Jensen, M. (1984). A Method for Simplified Urban Catch-
ment Description. Proc. 3rd International Confer-

ence on Urban Storm Drainage, Vol. 1, G&teborg.

Johannisson, T., Lindblad T. (1978). Calibration of Weirs
for Flow Measurements in Manholes. Chalmers Uni-
versity of Technology, Department of Hydraulics,

Master of Science Thesis Work 1977:3.

179



Johansen, L. (1979). Design Rainfalls for Sewer Systems.
Report 79-2, Department of Sanitary Engineering,
Technical University of Denmark, K&penhamn
(In Danish).

Johansson, H., Bernhardsson, P-A., (1981). Urban Runoff
Measurements in an Asphalt Catchment. Chalmers
University of Technology, Department of Hydrau-
lics, Master of Science Thesis work 1980:2.
GSteborg. (In Swedish).

Kibler, D.F. and Woolhiser, D.F. (1970). The Kinematic
Cascade as a Hydrologic Model. Colorado State
University, Hydrology Papers, No. 39, Fort
Collins, Colorado.

Kibler, D.F. and Woolhiser, D.A. (1972). Mathematical
Properties of the Kinematic Cascade. Journal

of Hydrology, No. 15.

Kidd, C.H.R. (1978). Rainfall - Runoff Process over
Urban Surfaces. Proc. of an International Work
held at IH, April 1978. Institute of Hydrology,
Wallingford, Oxon, U.K.

Kisisel, I.T. and Rao, A.O0. (1973). Turbulence in Shallow
Water Flow under Rainfall. Journal of Engineering
Mechanics Division, ASCE, EM1l, Feb. 1973.

Kousis, A.D. (1983). Unified Theory for Flood and Pollu-
tion Routing. Journal of Hydraulics Division,
ASCE, HY 12, December 1983.

Langford, K.J. and Turner, A.K. (1972). An Experimental
Study of the Application of Kinematic~Wave
Theory to Overland Flow. Journal of Hydrology,
No. 18.

180



Laws, 0.J. and Parsons, D.A. (1943). The Relation of
Raindrop-Size to Intensity. American Geophysical
Union, Transactions Part 2, Twenty-Fourth Annual
Meeting, April 23-24, 1943.

Li, R-M, Simons, D.B. and Stevens, M.A. (1975a). Nonlinear
Kinematic Wave Approximation for Water Routing.
Water Resources Research, Vol. 11, No. 2, April
1975.

Li, R-M, Simons, D.B. and Stevens, M.A. (1975b). On Over-
land Flow Water Routing. National Symposium on
Urban Hydrology and Sediment Control, University
of Kentucky, Lexington, KY, July 28-31, 1975.

Lighthill, M.J. and Whitham, G.B. (1955). On kinematic
waves: I. Flood movement in long rivers. Proc.

Royal Soc. of London, Ser. A, Vol. 229.

Ligget, J.A. and Woolhiser, D.A. (1967). Different Solu-
tions of the Shallow-Water Equation. Journal of
the Engineering Mechanics Division, EM 2, April
1967.

Ligget, J.A. (1975). Basic Equation of Unsteady Flow.
Unsteady Flow in Open Channels, Vol. I, Water

Resources Publ. Fort Collins, Colorado.

Lindholm, 0. (1975). System Analysis of Sewage Systems,
" Prosjektkomit&en for rensning av avldpsvann,
Pra 1, Oslo.

Linsley, R.K., Kohler, M.A. and Paulhus, J.L.H. (1975) .
Hydrology for engineers. McGraw-Hill Book Com-
pany, Second ed. New York (ISBN 0-07-037967-3).

Lyngfelt, S. (1975). Rainfall - Runoff Studies in Berg-
sj6n, Gbteborg. Chalmers University of Tech-
nology, Urban Geohydrological Research Group,
No 15, Gbteborg. (In Swedish).

181



Lyngfelt,

Lyngfelt,

Lyngfelt,

Lyngfelt,

Lyngfelt,

Marsalek,

Mitchell,

182

S. (1978). An Analysis of Parameters in a Kine=-
matic Wave Model of Overland Flow in Urban Areas.
Chalmers University of Technology, Department of
Hydraulics, Series B, No. 13, G&teborg.

S. (1979). On Numerical Solutions of the Kin-
ematic Wave Equations Used in Overland Flow.
Lecture at Nordic Seminar on Overland Flow,
Lund.

S. (1981). Design of Storm Sewer Systems. The
Rational Method. Chalmers University of Technol-
ogy, Urban Geohydrological Reserach Group, No 56,
Goteborg. (In Swedish).

S. and Svensson, G. (1983). Storm Water Runoff
from Large Urban Catchments. Methodology of
Simulation Tested in G&teborg. Chalmers Uni-
versity of Technology, Urban Geohydrological
Research Group, No. 68, G&teborg. {In Swedish).

S. (1985). Manual for the Urban Runoff Model
CURE. Chalmers University of Technology, Depart-
ment of Hydraulics, Report Series B:47, G&teborg.
(In Swedish).

J. (1983). SWMM Model and Level of Discretiza-
tion. Journal of Hydraulics Division, ASCE, Vol.
109, December 1983.

J.K. and Jones, Jr, B.A. (1976). Micro-Relief
Surface Depression Storage: Analysis of Models
to Describe the Depth~Storage Function. Water
Resources Bulletin. Vol. 12, No. 6, December
1976.



Morgali, J.R. (1970). Laminar and Turbulent Overland Flow
Hydrographs. Journal of the Hydraulics Division,
ASCE HY 2, February 1970.

Morris, E.M. (1979). The Effect of the Small-Slope
Approximation and Lower Boundary Conditions on
Solutions of the Saint-Venant Equations. Journal
of Hydrology, No. 40 (1979).

Morris, E.M. and Woolhiser, D.A. (1980). Unsteady One-
Dimensional Flow Over a Plane: Partial Equilib-
rium and Recession Hydrographs. Water Resources
Research, Vol. 16, No. 2, April.

National Water Council (1981). Design and Analysis of
Urban Storm Drainage. The Wallingford Procedure

- in five volumes. NWC London.

Newton, S.G. and Painter R.B. (1974). A Mathematical Exam-
ination of Urban Runoff Prediction. Proceedings
of the Institution of Civil Engineers, Vol. 57,
U.K.

Niemczynowicz,J. (1984). An Investigation of the Areal
and Dynamic Properties of Rainfall and its In-
fluence on Runoff Generating Processes. Lund
Institute of Technology, Department of Water

Resources Engineering, Report No 1005, Lund.

Nittim, R. (1977). Overland Flow on Impervious Surface.
Water Research Laboratory. University of New
South Wales. Report No 151. NSW Monly Vale
N.S.W. Australia.

Nordgvist, H., Karlsson, B. (1982). Urban Runoff from a
Great Asphalt Surface. Chalmers University of
Technology, Department of Hydraulics, Master of
Science Thesis Work 1981:3.

183



Parlange, J.Y., Rose, C.W. and Sander, G. (1981). Kin-
ematic Flow Approximation of Runoff on a Plane:
An Exact Analytical Solution. Journal of Hydro-
logy, No. 52.

Papadakis, C. and Preul, H.C. (1972). University of
Cincinnatti Urban Runoff Model. Journal of
Hydraulics Division, ASCE, Vol. 98, HY1O0,
October 1972,

Pecher, R. (1970). Die zeitliche Abhdngigkeit des
Abflussbeiwertes von der Regendauer und der
Regenintensitdt. g.w.f. - Wasser/Abwasser,
111 (1970) HS.

Pecher, R. (1969). Der Abflussbeiwert und seine Abhdngig-
keit von der Regendauer. Berichte aus dem In-
stitut flr Wasserwirthschaft und Gesundheits-
ingenieurwesen, Technische Hochschule Milinchen,

No. 2, Minchen.

Pethick, R.W. (1982). Kinematic Wave Calculations of
Peak Flow Reductions in Urban Storm Runoff.
Hydraulics Research Station, Wallingford, Oxon,
U.K.

Phelps, H.O. (1975). Shallow Laminar Flows over Rough
Granular Surfaces. Journal of the Hydraulics
Division, HY 3, March 1975.

Ponce, V.M. and Simons, D.B. (1977). Shallow Wave Propa-
gation in Open Channel Flow. Journal of Hydrau-

lics Division, ASCE, HY12, December.
Ponce, V.M. and Simons, D.B. (1978). Applicability of

Kinematic and Diffusion Models. Journal of Hy-

draulics Divisidn, ASCE, H3, March.

184



Ponce,

Price,

Price,

Price,

V.

R.

R.

R.

M. and Theurer, F.D. (1982). "Accuracy in
Diffusion Routing”. Journal of the Hydraulics

Division, ASCE, Hy 6, December.

K. (1980a). Flout - A River Catchment Flood
Model. Hydraulics Research Station, Report
IT 168, Wallingford, Oxon, U.K.

K (1980b). Numerical Solutions of the Kinema-
tic Wave Equation. Nordic Seminar on Calculation
of Unsteady Flow in Storm Sewer Networks, Octo-

ber 7-8, Chalmers University of Technology,

Go6teborg.

K. (1980c). Flow Routing for River Regulation.
"Engineering Problems in the Management of Gravel-
Bed Rivers". International Workshop, Newton, June
1980.

Proctor and Redfern Ltd and James F. McLaren Ltd (1976).

Rovey,

Shaake,

Shen,

E.

Storm Water Management Model Study, Vol. 1.
Research Program for the Abatement of the
Municipal Pollution under Provision of the
Canada-Ontario Agreement on Great Lakes Water

Quality. Research Report No. 47, Toronto.

D. and Woolhiser, D.A. (1977). A Distributed
Kinematic Model of Upland Watersheds. Colorado
State University, Hydrology Paper No 93, Fort

Collins, Colorado.

J.C., Geyer, J.C. and Knapp, J.W. (1967). Experi-

mental Examination of the Rational Method. Jour-
nal of Hydraulics Division, ASCE, HY6, November
1967.

H.W. and Li, R-M (1973). Rainfall Effect on Sheet

Flow Over Smooth Surfaces. Journal of the Hydrau-
lics Division, HY 5, May 1973.

185



Shilling,

Singh, V.

Singh, V.

Singh, V.

Sjtberg,

Sjdberg,

Sjbberg,

Smith, A.

186

W. (1984). A Quantitative Asessment of Uncer-
tainties in Stormwater Modelling. Proc. 3rd Int.
Conf. on Urban Storm Drainage, Volume 2, G&te-

borg.

P. (1976). A Distribution Converging Overland
Flow Model. 3. Application to Natural Water-
sheds. Water Resources Research, Vol. 12, No. 5,
October 1976.

P. (1975): Derivation of Surface Water Lag Time
for Converging Overland Flow. Water Resources
Bulletin, AWRS, Vol. 11, No. 3, June 1975.

P. (1977). Estimation of Parameters of a Uni-
formly Nonlinear Surface Runoff Model. Nordic
Hydrology, No. 8, 1977.

A. (1976). Calculation of Unsteady Flows in
Regulated Rivers and Storm Sewer Systems.
Chalmers University of Technology, Department
of Hydraulics, Report Series A:6, GOteborg
(In Swedish).

S. et al. (1979). Manual for ILLUDAS {(Version
S2). A Computer Program for Design and Analysis
of Storm Water Systems. Chalmers University of
Technology, Department of Hydraulics, Report
Series B, No 14, Goteborg. (In Swedish).

A, (1981). The Sewer Network Models DAGVL-A and
DAGVL~DIFF. Chalmers University of Technology,
Department of Hydraulics, Report Series B,

No 28, Go&teborg.

A. (1980). A Generalized Approach to Kinematic
Flood Routing. Journal of Hydrology, No 45.



Strémvall, L., Andersson, M. (1976). Urban Runoff
Modelling in Two Urban Catchments in G&teborg
and Oslo. Chalmers University of Technology,
Department of Hydraulics, Master of Science
Thesis Work 1975:7. Goteborg (In Swedish).

Svensson, G. and Oren, K. (1976). Planning models for
Storm Water. Chalmers University of Technology,
Urban Geohydrological Research Group, No. 41,

GO6teborg.

VAV, Swedish Water and Wastwater Works Association (1976).
Manual for Design of Sewer Systems. VAV Publ.
P28, Stockholm (in Swedish).

Woo, D-C and Brater, E.F. (1962). Spatially Varied Flow
from Controlled Rainfall. Journal of the Hydrau-

lics Division, HY 6, November 1962.

Wooding, R.A. (1965). A Hydraulic Model for the Catch-
ment~Stream Problem. I. Kinematic-wave theory.

Journal of Hydrology. No. 3, 1965.

Woolhiser, D.A. and Liggett, J.A. (1967). Unsteady, One-
Dimensional Flow over a Plan - the Rising Hydro-

graph. Water Resources Research, Vol. 3, No. 3.

Woolhiser, D.A. (1975). Simulation of Unsteady Overland
Flow in Open Channels, Vol. II, Water Resources
Publ. Fort Collins, Colorado.

Yen, B.C., Wenzel, H.G. Jr. and Yoon, Y.N. (1972).
Resistance Coefficients for Steady Spatially
Varied Flow. Journal of the Hydraulics Division,
HY 8, August 1972.

187



Yen, B.C., Chow, W.T. and Akan, A.O. (1977). Storm Water
Runoff on Urban Areas of Steep Slope. Environ-
mental Protection Agency, Municipal Environ-
mental Research Laboratory, Environmental Pro-
tection Technology Series, EPA-600/2-77-168,

Cincinnati, Ohio.

Yevjevich, V. (1975). Unsteady Flow in Open Channels.
Vol. I, Water Resources Publ., Fort Collins,

Colorado.

Yoon, Y.N. and Wenzel, H.G. Jr. (1971). Mechanics of
Sheet Flow under Simulated Rainfall. Journal
of the Hydraulics Division, HY 9, September
1971.

Yu, Y.S. and McNown, J.S. (1964). Runoff from Impervious
Surfaces. Journal of Hydraulic Research, Vol. 2,
No. 1.

Zaghloul, N. (1981). SWMM Model and Level of Discretiza-

tion. Journal of Hydraulics Division, ASCE,

HY11l, June.

188



LIST OF FIGURES

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

2.2.1

2.2.2

Page
Typical intensity variations for a
storm event 6
IDF-diagrams used in Goteborg,
after VAV (1976) 6
Water surface at constant rain-
intensity and rain velocity vectors 7
Water surface profiles when the rain
intensity is constant and the time
t < t_. (The scaling of water depths
is no¥ realistic). 8
Water profiles when i=0 and t>t
(The scaling of water depths is
not realistic) 9
A part of a street with gutter,
pavement and inlet 10
Gutter flow with lateral inflow 12

Network system of the band- and the tree
type 13

Characteristic directions in sub- and
supercritical flow 19

The relation between the celerity cx, the
wave number o _ and the Froude number FO
(after Ponce and Simons (1977)). 24

The relation between the logarithmic
decrement - 6 = 1ln(a,/a,), the wave
number ¢_ and the Frolude number F .

(After PSnce and Simons (1977)). © 25
Kinematic characteristics in the case of
lateral and upstream inflow 30

Converging surface (after Singh (1976)) 31

A system of kinematic characteristics
in the case of lateral inflow only 33

The lateral inflow 36

Outflow hydrographs from an asphalt
surface derived by the kinematic
equations 37

Comparison between rising hydrographs
calculated with and without lateral
momentum 39

189



Figure

Figure

Figure

Figure

FPigure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

190

4.2.7 Two characteristics emanating from the
upstream boundary 40

4.2.8 The kinematic solution in a case of
intersecting characteristics (physically
unrealistic). 42

4.2.9a,b Dimensionless partial equilibrium hydro-
graphs. D* is the dimensionless time at
which the lateral inflow ceases (after
Morris and Woolhiser (1980)). 43

4.3.1 Dimensionless partial equilibrium
hydrograph. D* is the dimensionless time
at which the lateral inflow ceases (after
Morris and Woolhiser (1980)) 49

5.2.1 "Slopes" of the friction factor relation
used in different friction formulas 57

5.3.1 Values of the friction factor f measured
for flow without rain over glass after
Nittim (1977) 59

5.3.2 a,b Tests on the impact of rain on flow over
a smooth surface (U,=raindrop velocity)
After Shen and Li (I973)
(1 um/s = 10 1/s-ha) 60

5.3.2 ¢,d Tests on the impact of rain on flow
over a smooth surface (U,=raindrop
velocity) after Nittim (t977).

(1 ym/s = 10 1/s-ha) 61

5.3.3 Flow without rain-effects of the relative
roughness on the friction factor £,
after Phelps (1975) 63

5.3.4 Friction factors at flow without rain
(sphere roughness k=2.33 mm)
after Nittim (1977) 64

5.3.5 a=b The friction factor versus Reynolds'
number at 1=210 1/s-ha and i=116 1/s'ha,
after Woo and Brater (1962) 65

5.3.6 PFlow without rain-~friction factor versus
Reynolds” number for an asphalt surface.
After Nittim (1977) 67

5.3.7 a,b Friction factor versus Reynolds” number
for a concrete and asphalt surface
after Yu and McNown (1964) and Nittim
(1977), (1 ym/s = 10 1/s-ha) 69

5.6.1 Comparison of the fitted friction~relation
with Nittim™s (1977) and Yu and McNown~’s
(1963) (shaded) tests on asphalt and
concrete 73



Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure
Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

The x-t plane with fixed gridpoints
and boundaries 78

An example of a two step explicit
scheme ’ 79

Grid points in an arbitrary finite box 80

The relation between the centrepoint and
weighting factors after Smith (1980) 81

An example of unstable solutions (with
shots) compared with one having a

suitable attenuation (L =20 m, s_=0.035,
n=0.016) S s 85

Dimensionless rising hydrographs obtained
from the diffusive box model using various
values of Ax (after Lyngfelt (1978)). 86

Dimensionless rising hydrographs
obtained by the shallow water equations
for various kinematic wave numbers and

Fo=l (after Woolhiser (1967)). 87
Test surface for numerical experiments. 90
Hyetograph used in numerical tests 91

a,b Hydrographs simulated by the diffusive
box model (Ls=20 m, Ss=.035, n=0.016
KO=23O). 93

Comparison between a- and B-diffusive
models (LS= 20 m, SS = 0.035, n= 0.016) 97

Comparison between the diffusive wave
and weighted box solution (LS=20 m,
SS=O.018, n=0.016) 102

Hypothetical time-area diagrams 114

Principal shapes of runoff hydrographs
obtained by the Time-Area Method

(curve b) and the B-diffusive model
(kinematic wave) 114

Principal shapes of runoff hydrographs
obtained by the time area method (curve
(a)) and the B-diffusive model (kinematic
wave) 115

Time-area curves giving the 'best fit' of
the rising- and recession parts of the
runoff in surface flow 116



Figure

Figure

Figure

Figure

Figure

Figure

FPigure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

192

7.3.5

8.6.1

8.6.2

10.3.1

10.6.1

10.6.2

Time-area curves giving the 'best fit' of
the rising- and recession parts of the
runoff from the surface-gutter catchment
at t, =Htc]s * [t J

. 117
clgJd min

Time area diagrams obtained by numerical
simulation of the rising part of constant
rain intensity storms for four resident:ial
areas, after Lyngfelt (1981) 117

Recorded and simulated runoff from the
PASP catchment (input data version 3) 127

Recorded and simulated runoff from the
COMP-catchment (input data version 3) 128

Representation of base catchments by
three and four parameters in the
kinematic wave model. 132

Representation of a base catchment by six
parameters in the kinematic wave model 133

Representation of the catchment by the
KW6S model 134

Example of a model structure containing
only KW6S units, the KW6S-S model 135

Four alternative sewer structures. To each
of the inlets identical KW4G models are
connected. 137

Sensitivity of the KW6S-model corresponding
to 0.7tC and 1.3tc 143

Sensitivity of the KW3-model corresponding
to 0.7tc and 1.3tC 143

Example of effects of using different
time-area curves 145

Example of variations in hydrograph shape
caused by variations in time of concentra-
tion 147

Distribution functions for MAI-storms and
maximum discharge (after Arnell, Lyngfelt
1975) 161

The sewer network of Bergsjon (after
Arnell (1982)) 165

The distribution function for the
discharge in point 9 in Bergsjon (see
appendix II) after Arnell (1982) with the
Rational Method points included. 165



Figure 10.6.3

Figure 10.6.4

The distribution function for the

discharge in point 24 in Bergsjdn (see
appendix II) after Arnell (1982) with the
Rational Method points included. 166

The distribution function for the

discharge in point 73 in Bergsjdn (see
appendix II) after Arnell (1982) with the
Rational Method points included. 166

193



194



LIST OF TABLES

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

6.3.1
6.4.1
6.4.2
8.2.1

8.4.1

9.3.2

9.4.1

Page
Weighted box models 84
Tested numerical models 91
Optimal B-values (Ax/L < 1/4) 96

Main characteristics of the catchments 122

Mean ratio )»_, standard deviation o_ and

absolute errBr e for not volume fiPted data

and volume fittel data for each catchment.
138

Number of routing units for different

test area and geometric models 139

Number of free parameters used in different
test areas with different geometric models
139
Statistical parameters for the simplified
geometrical models compared with the
DET-model (five peaks in each of the four
greatest catchments) 140

Variation intervals for )_ for the
simplified geometric modefs (five peaks in
each of the four greatest catchments) 141

The effects on the attenuation of varying
the parameters in the models (corresponding
to a variation in (tc) 142

Statistical parameters for the Time-Area
Method compared with the DET-model (five
peaks in each of the four greatest
catchments) l46

The effects of varying the time of
concentration in the Time-Area Method 146

Mean ratio A_, standard deviation ¢_ and
absolute errBr ¢ for recorded and

simulated flow pgaks in Bergsjon and
Link&ping 2. 152

Statistical parameters for simulated flow
peaks in the Link®6ping 2 and Bergsjdn areas
153

A values for different times of concentra-
tion in Bergsjdn 154

Statistical parameters for the Time Area
Method compared with the DET-model 155

Variation of the time of concentration using
the Time-Area Method in Bergsjdn 156

195






Department of Hydraulics
Chalmers University of Technology

Report Series A

Azl

Bergdahl, L.: Physics of ice and snow as affects
thermal pressure. 1977.

Bergdahl, L.: Thermal ice pressure in lake
ice covers. 1978.

Higgstrdm, S.: Surface Discharge of Cooling Water.
Effects of Distortion in Model Investigations.1978

Sellgren, A.: Slurry Transportation of Ores and
Industrial Minerals in a Vertical Pipe by
Centrifugal Pumps. 1978.

Arnell, V.: Description and Validation of the
CTH-Urban Runoff Model. 1980.

Sjtberg, A.: Calculation of Unsteady Flows in
Regulated Rivers and Storm Sewer Systems.
(in Swedish). 1976.

Svensson, T.: Water Exchange and Mixing in Fjords.
Mathematical Models and Field Studies in the By-
fjord. 1980.

Arnell, V.: Rainfall Data for the Design of Sewer
Pipe Systems. 1982. :

Lindahl, J. och Sjdberg, A.: Dynamic Analysis of
Mooring Cables. 1983.

Nilsdal, J-A.: Optimeringsmodellen ILSD. Berdkning
av topografins inverkan pa ett dagvattensystems
kapacitet och anldggningskostnad. 1983.

Lindahl, J.: Implicit numerisk l1&sning av rdrelse-
ekvationerna for en fdrankringskabel. 1984.

Lindahl, J.: Modellfdrsdk med en
forankringskabel, 1985.

Lyngfelt, S.: On Urban Runoff Modelling.
Application of Numerical Models based on
Kinematic Wave Theory. 1985.



Report Series B

Bergdahl, L.: Berdkning av vagkrafter. 1977.
(Ersatts med 1979:07).

Arnell, V.: Studier av amerikansk dagvattenteknik. 1977.
Sellgren, A.: Hydraulic Hoisting of Crushed Ores.

A feasibility study and pilot-plant investigation

on coarse iron ore transportation by centrifugal pumps. 1977.
Ringesten, B.: Energi ur havsstrOmmar. 1977.

Sjdberg, A. och Asp, T.: Brukar-anvisning f&r ROUTE-S.

En matematisk modell for berdkning av icke-stationédra

fldden i floder och kanaler vid strdmmande tillstand. 1977.

Annual Report 1976/77.

Bergdahl, L. and Wernersson, L.: Calculated and Expected
Thermal Ice Pressures in Five Swedish Lakes. 1977.

Gdransson, C~G and Svensson, T.: Drogue Tracking -
Measuring Principles and Data Handling.

Gbransson, C~G.: Mathematical Model of Sewage Dis-
charge into confined, stratified Basins - Especially
Fjords.

Arnell, V. och Lyngfelt, S.: Berdkning av dagvatten-
avrinning frdn urbana omraden. 1978.

Arnell, V.: Analysis of Rainfall Data for Use in Design
of Storm Sewer Systems. 1978.

SjBberg, A.: On Models to be used in Sweden for Detailed
Design and Analysis of Storm Drainage Systems. 1978.

Lyngfelt, S.: An Analysis of Parameters in a Kinematic
Wave Model of Overland Flow in Urban Areas. 1978.

Sjdberg, A. and Lundgren, J.: Manual for ILLUDAS
(Version S2). Ett datorprogram f£6r dimensionering
och analys av dagvattensystem.

Annual Report 1978/79.

Nilsdal, J-A. och Sjbberg, A.: Dimensionerande regn
vid hbga vattenstand i Go6ta &alv.

Stdllman, L-E.: Ndrkes Svartd. Hydrologisk inventering.1979.

Svensson, T.: Tracer Measurements of Mixing in the
Deep Water of a Small, Stratified Sill Fjord.

Svensson, T., Degerman, E., Jansson, B. och Westerlund,S.:
Energiutvinning ur sj6- och havssediment. En fOrstudie.
R76:1980.



B:20

B:21

Report Series B

Annual Report 1979

stdllman, L-E.: Nirkes Svartd. Inventering av
vattentillgdng och vattenanvéndning. 1980.

Higgstrdm, S. och Sjdberg, A.: Effects of
Distortion in Physical Models of Cooling Water
Discharge. 1979.

Sellgren, A.: A Model for Calculating the
Pumping Cost of Industrial Slurries. 1981.

Lindahl, J.: RSrelseekvationen f6r en kabel. 1981.

Bergdahl, L. och Olsson, G.: Konstruktioner i havet.
Vagkrafter-rdrelser. En inventering av datorprogram.

Annual Report 1980.

Nilsdal, J-A.: Teknisk-ekonomisk dimensionering av
avloppsledningar. En litteraturstudie om dator-
modeller. 1981.

Sjtberg, A.: The Sewer Network Models DAGVL-A and
DAGVL-DIFF. 1981.

Moberg, G.: Anlidggningar £6r oljeutvinning till
havs. Konstruktionstyper, dimensioneringskriterier
och positioneringssystem. 1981.

Sjdberg, A. och Bergdahl, L.: Forankringar och f&r-
ankringskrafter. 1981.

Hidggstrdm, S. och Melin, H.: Anvdndning av simulerings-
modellen MITSIM vid vattenresursplanering f8r Svartén.

Bydén, S. och Nielsen, B.: Ndrkes Svartd. Vatten-
dversikt f6r Laxd kommun. 1982.

Sjbberg, A.: On the stability of gradually varied flow
in sewers. 1982.

Bydén, S. och Nyberg, E.: Nérkes Svartd. Undersdkning
av grundvattenkvalitet i Lax& kommun. :

Sjbberg, A. och Martensson, N.: Regnenveloppmetoden.
En analys av metodens tilldmplighet f£6r dimensionering
av ett 2-3rs perkolationsmagasin.

svensson, T. och S6rman, L-0.: Viarmeupptagning med
bottenfdrlagda kylslangar i stillastéende vatten.
Laboratoriefdrsdk

Mattsson, A,: Koltransporter och kolhantering. Lagring
terminaler och hos storfdrbrukare. (Delrapport).

Strandner, H.: ILL~-DIFF. Ett datorprogram for samman-
koppling av ILLUDAS och DAGVL-DIFF, 1983,



Report Series B

Svensson,T. och S8rman,L-0.: Vidrmeupptagning med
bottenfdrlagda slangar i rinnande vatten.
Laboratoriefdrsdk.

Mattsson,A.: Koltransporter och kolhantering.
Lagring i terminaler och hos storfdrbrukare.
Kostnader. Delrapport 2.

Higgstrdm,S. och Melin,H.: N&rkes Svarta.
Simuleringsmodellen MITSIM for kvantitativ ana-

lys i vattenresursplanering. Inst.f.Vattenbyggnad,

CTH. GOteborg 1983.

BFR - R60:1984. H&rd,S.: Seminarium om miljo-
effekter vid naturvirmesystem. Dokumentation
sammanst&dlld av S.Hard, VIAK AB.

Lindahl,J.: Manual f&6r MODEX~-MODIM. Ett dator-
program f&6r simulering av dynamiska f&rlopp i
fbérankringskablar. GSteborg 1983.

Activity Report. G&teborg 1984.
Sjtberg, A: DAGVL-DIFF. Berdkning av icke-
stationdra flddesfdrlopp i helt eller delvis

fyllda avloppssystem, tunnlar och kanaler.

Bergdahl,L. och Melin, H.: WAVE FIELD. Manual
till ett program fO8r berdkning av ytvattenvagor.

Manual fOr dagvattenmodellen CURE av
Sven Lyngfelt. 1985.






VASASTADENS BOKBINDERI AB
GOTEBORG 1985



