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F R E Q U E N C Y  D O M A I N  I D E N T I F I C A T I O N  
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SE-581 83 LinkSping, Sweden. 
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Abstract: Techniques to identify parametric transfer functions from noisy frequency 
domain data are considered. A maximum-likelihood estimation method is presented 
which in parallel with the system transfer function also estimates a parametric noise 
transfer function. This leads to a consistent and efficient estimator. It is shown 
how the discrete Fourier transform can be applied to generate frequency domain 
data from sampled time domain data. For the finite data case the exact frequency 
domain expressions are derived relating the transfer function with the discret Fourier 
transformed data for both continuous and discrete time systems. 

Keywords: Identification, spectral estimation, discrete Fourier transform, 
maximum-likelihood estimation 

1. INTRODUCTION 

Building mathematical models based on measured 
input and output signals of a dynamical system 
is known as system identification. Such models 
based on empirical information are important 
if the dynamical system is unknown or is only 
partially known and when it is in-feasible to 
derive a theoretical model from first principles. 
The availability of accurate models is important 
in order to derive high performance solutions, e.g., 
for model based control design or model based 
signal processing. 

Almost all measurements originating from real 
world devices intrinsically belong to the time do- 
main, i.e. are samples of continuous time signals. 
Consequently most system identification meth- 
ods and the theory developed around them deals 
with how to determine parametric models from 
such time domain measurements (Ljung 1999, 
S6derstrSm and Stoica 1989). The very basic and 
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old technique of frequency analysis departs from 
the time domain technique. 

In frequency analysis the system is assumed to be 
excited by a (sum of) pure sinusoidal signal(s). 
When the output has settled to a (sum of) sta- 
tionary sinusoidal signal(s), the complex value of 
the transfer function at the specific excitation 
frequencies is determined by the discrete Fourier 
transform (DFT). 

So called frequency analyzers are dedicated pieces 
of equipment which performs such experiments 
and deliver the result as a non-parametric transfer 
function. In a second step a parametrized trans- 
fer function model can be fitted to the transfer 
function data using some complex curve fitting 
technique (Levy 1959, Sanathanan and Koerner 
1963, Whitfield 1986, Whitfield 1987, Pintelon 
et aL 1994). A discussion of techniques to fit 
parametric models to noisy frequency domain 
data is the scope of this paper. An early ref- 
erence for the related time series problem is 
(Whittle 1951) wherein classical inferential proce- 
dures, e.g. maximum-likelihood estimation, were 
combined with spectral theory. See also (Hannan 
1970, Robinson 1976). The book (Schoukens and 
Pintelon 1991) covers many aspects of frequency 
domain identification techniques and presents 



a method for the frequency domain errors-in- 
variables problem. 

Since the transformation of a signal from time 
to frequency domain using the discrete Fourier 
transform is nothing but a unitary transformation 
it might appear, at first sight, that nothing is 
gained. 

However, an important difference arises when col- 
ored noises are present. Specifically, for such a col- 
ored signal v(t) which have a covariance function 
C(T) = E {v(t + v)v(t)} (decaying to zero at an 
exponential rate), the vector of all time domain 
measurements have a full covariance matrix. The 
optimal estimation procedure, i.e. the maximum- 
likelihood method, requires the use the full covari- 
ance matrix since all time domain signals are sta- 
tistically dependent (Hannan and Deistler 1988). 
The unitary transformation, represented by the 
DFT, however decouples this statistical depen- 
dence. That is, in the frequency domain each 
frequency point is asymptotically (as the number 
of time domain data points tends to infinity) in- 
dependent of the others (Brillinger 1981). 

Furthermore under very mild assumptions regard- 
ing the probability distribution of the time do- 
main noise signal, the frequency domain data are 
all (asymptotically) normally distributed. Opti- 
mal estimators therefore only include a diagonal 
covariance matrix which simplifies the actual com- 
putations. 

Prefiltering with the inverse of the filter describ- 
ing the noise color will also make the time do- 
main covariance matrix diagonal. This is also 
known as pre-whitening since the resulting noise 
is white. However this requires the knowledge of 
the noise color or it needs to be jointly estimated 
together with the rest of the unknown parame- 
ters. So-called prediction error methods (~strhm 
1980, Ljung 1999, Shderstrhm and Stoica 1989) 
are based on prefiltering with a parametric de- 
pendent prefilter and are asymptotically equiv- 
alent to the method of maximum-likelihood. In 
case only non-parametric noise information is at 
hand, the design of whitening-filter is more de- 
manding. Finally it is important to recognize that 
the unitary transformation does not change any 
asymptotic properties if all frequency domain data 
points are retained. The time-domain maximum- 
likelihood methods and the frequency domain 
counterpart both have equal asymptotic proper- 
ties as pointed out by (Hannan 1970, Ljung and 
Glover 1981, Schoukens et al. 1997a) and others. 
The actual choice of one over the other must there- 
fore be based on the finite data properties of each 
estimator and also on computational complexity. 

A distinctive feature of frequency domain tech- 
niques is that the modeling of continuous time 
systems from sampled data can be done in a 
straightforward fashion if a certain class of band- 
limited excitation signals is employed (Robinson 

1976, Schoukens et al. 1994). This is a great 
advantage in contrast with the rather involved 
time domain techniques which, even in the noise 
free case, are only approximate if a finite set of 
sampled data is available. See (Young 1981, Unbe- 
hanen and Rau 1990). A continuous time system 
with a time delay is rather difficult to model in 
the time domain since it cannot be described by a 
finite system of ordinary differential equations. In 
the frequency domain however a nice finite dimen- 
sional parametric description exists which lends 
itself to identification using parametric methods. 

Frequency domain identification of nonlinear sys- 
tems of Wiener-Hammerstein type have been re- 
ported in (Vandersteen et al. 1997, Vandersteen 
and Schoukens 1999). These techniques rely on 
a convergent Volterra representation of the non- 
linear system. 

Techniques based on higher order spectra (poly- 
spectra) can be found in (Giannakis 1995, Tugnait 
1998) which by assuming particular noise and 
input distributions generate consistent estimates. 

1.1 Problem formulation 

Let us assume that we are interested in obtaining 
a model of a system that can be described by the 
following linear time-invariant form 

y(t) = Go(q)u(t) + Ho(q)e(t) (1) 

where y(t), u(t) and e(t) are the real valued 
output, input and innovation signals, respectively. 
The operators Go(q) and Ho(q) represent the 
discrete time linear transfer functions. We assume 
that H0 is a stable monic filter. For a continuous 
time representation, exchange the delay operator 
q with the differentiation operator p. The noise 
signal e(t) is assumed to be i.i.d, and zero mean 
with variance ),0 and independent of the input 
signal u(t). We will later in Section 3.5 discuss 
the closed loop case where u and e are dependent 
through a feedback controller. 

Let us postulate the following frequency domain 
system equation 

= + (2)  

where Y and U are the (weak) limits of the 
Fourier transform of y and u respectively and Eo 
is the frequency domain innovation which is a zero 
mean complex normal random variable with fre- 
quency invariant variance Ao. The complex func- 
tions Go(e i~) and Ho(e i~) are the frequency func- 
tions of the linear operators G and H respectively. 
In Section 2 we will more formally justify (2). 
For a continuous time system just exchange the 
argument e i~ for iw. 
Assume the relation (2) can be sampled at a 
sequence of arbitrary frequencies in the set f in  = 

N {Wk}k=l yielding the set of measurements Z N - 
{~,U~lk = 1, . . .  ,N} where Uk = U(wk) and 



Yk = Y(wk). The aim is to find a model of (1) 
and to do so we construct a model set by using a 
parametr ized model s t ructure  

Y(w) = Ge(eiW)U(w) + He(eiW)E(w), (3) 

where Go(z) and He(z) are respectively the ra- 
tional transfer functions of the system and noise 
which are parametr ized by a real valued vec- 
tor 0. Let D~a denote the set of valid param-  
eters. We assume He(z) is stable and inversely 
stable monic transfer function for all 8 E D ~ .  
We impose no part icular  s t ructure on how the 
parameters  enter into Go(z) or He(z) and this 
enables the use of various parametr izat ions  such 
as fraction of polynomials or state-space models. 
Hence, parametr ized gray-box models which are 
only partially unknown can also be used. 

Given the parametr ized model class and da ta  Z N, 
the est imate of the system is found by parametr ic  
optimization of some criterion function 

= arg men VN(O , Z N) (4) 

where VN is a function which provides a metric 
on how to optimally fit the model (3) to the given 
da ta  Z N. 

1.2 Outline 

The paper  is organized as follows. In the next sec- 
tion we provide the background to the frequency 
domain equation (2) for both  the discrete t ime 
case as well as the continuous t ime case, with a 
key feature being the provision of insight into how 
the noise properties carry over to the frequency 
domain by using a probabilistic setup. In Section 3 
an identification criterion VN is derived which is 
based on the technique of maximum-likelihood. 
The asymptot ic  properties of such a criterion are 
analyzed and their relation with the t ime domain 
counterpar t  is discussed. 

The  aim of the paper  is to provide a basic under- 
standing for the frequency domain identification 
problem. In order to accommodate  this we will re- 
strict ourself to consider the case when the system 
and noise models Go and H0 are finite dimensional 
and scalar. Extensions to the multivariable case 
are straightforward. 

2. FROM T I M E  T O  F R E Q U E N C Y  DOMAIN 

The exact noise free relationships between the 
discrete Fourier t ransform (DFT) of the input 
and outputs  and the frequency response function 
of the linear system will be derived under ra ther  
general excitation conditions. I t  is well known tha t  
the Fourier t ransform of the noise free output  is 
exactly the frequency response function multiplied 
by the t ransform of the input signal if the trans- 
form make use of da ta  sequences of infinite length 

(Ljung 1999). In the finite length case an ex t ra  
t e rm appears  which accounts for the history of the 
system prior to the measurement  interval. As the 
number  of da ta  tends to infinity the extra  te rm 
tends to zero at a rate  proport ional  to 2 "  In the 
following analysis we will use s tate-space models 
to describe the finite-dimensional linear systems. 
A similar derivation using transfer function mod- 
els can also be found in (Pintelon et al. 1997). 

2.1 Discrete Fourier Transform 

Assume a signal s(t) is sampled at N equidistant 
t ime instances t = kh, k = 0, 1 , . . .  , N - 1 where 
h is the sampling interval. The N-poin t  discrete 
Fourier t ransform (DFT) of the set {s(kh)}kN__~ 1 is 
then defined as 

N - 1  1 sN( ) = , (kh)e (5) 
k = 0  

where w E [-Tr, Tr] is the normalized angular 
frequency in radians per second. Hence co/h is 
the unnormalized angular  frequency. Unless h is 
explicitly included we assume h = 1 in the sequel. 
Predominately  we will focus on the N distinct 

2rrk values of SN given by the argument  ~ak ~ "-N- 
for k = 0 , 1 , . . . , N -  1. Notice tha t  e ~°* = 
e -i~'N-k and Ste(wk) = S~v(OON-k) = S~v(-wk) 
for k = 1 , . . .  , N - 1 .  Here X* denotes the complex 
conjugate of X.  

2.2 Discrete time systems 

In this section a derivation of the D F T  relation for 
a discrete t ime system is presented. The  discussion 
of the influence of noise is deferred to Section 2.5. 
A noise free discrete t ime system of finite order 
admits  a s tate-space realization 

x(t + 1) = Ax(t) + Bu(t) 
y( t )  = c x ( t )  (6) 

where x(t) is a s tate-vector  of length n, A is a n x n 
real matrix,  B and C T are vectors of size n. If the 
realization is of minimal order, n is the McMillan 
degree of the linear system (Kailath 1980). The 
transfer  function is given by 

G(z) = C ( z I -  A) - i  B (7) 

which is a fraction between two polynomials.  The 
frequency response ]unction at  frequency w is 
defined as the transfer function evaluated on the 
unit circle G(e i~). 

Consider the system described by (6) and assume 
N points of the input and output  signals are 
available, i.e. {y(t), u(t)}~v~ 1. The history of the 
input up to t ime t < 0 is unknown but  its impact  
on the future is captured by the s tate  at  t ime 
zero, x(0) = xo. Assume det(e i ~ I  - A) is non- 
zero for all k = 0, 1 , . . .  , N - 1 which is equivalent 



to requiring the frequency response function to 
be finite for all wk or equivalently no poles of the 
system to be located at e i~°~ . 

Let YN(W) and UN(w) denote the N-point  DFT 
of the output  and input signals respectively. Then 
for wk = 2__~, k = 0 , 1 . . . , N -  1 the following 
equation holds 

i ~  1 VN( k) = )UN( k) + T(e (8) 

where 
T(z )  = z C ( z I  - A ) - I ( I  - AN)(xo -- xp) 

N-1 (9) 
Xp = ( I -  AN)  -1 E A t B u ( N -  1 - t). 

t = 0  

A proof is detailed in Appendix A.1. 

The transient term T ( z ) ~ ,  which picks up the 
transient effects of the unmatched initial condi- 
tion, decays as ~ if the system is stable, i.e., 
the eigenvalues of the A matr ix have a modulus 
strictly less than one or, equivalently, all poles lie 
strictly inside the unit circle. If the input signal 
is non-periodic then Ug(wk) will stay bounded 
as N increases and hence G(ei~°k)UN(wk) will be 
the dominating term for large N.  If the input is 
periodic with period time P and N = P M ,  i.e. the 
measurements are collected over M full periods, 
then UN (w) will at most have P non-zero values 

:~k k = 0, . , P -  1. The size of the a t w =  p ,  .. 
non-zero values will grow at a rate of v/M. In this 
case we obtain 

1 

IG(e   )UN( DI 
The explicit form of T(z )  enables the possibility 
of estimating it along with the transfer function 
G(z).  This could be beneficial when the data  
record is short and when a non-periodic excitation 
signal is used. Furthermore note that  G(z)  and 
T(z )  share the same denominator polynomial and 
only the n parameters  of the numerator  polyno- 
mial need to be determined. If the input excitation 
is such that  UN(Wk) is constant for all frequencies 
it is however not possible to distinguish between 
G(z)  and T(z) .  

Note that  the relation (8) holds also for unstable 
systems. In such a case the size of transient term 
will grow exponentially as N increases and it is 
essential to include it in any open loop estimation 
scheme. 

2.3 Continuous time systems 

The output  of a finite dimensional continuous 
time system can be described as the solution to 
a system of first order differential equations 

it(t) = A~x(t) + Bcu(t)  
y(t) = Cox(t) (lO) 

where x(t)  is the size n state vector. The transfer 
function is 

Go(s) = Cc(sI  - A c ) - IB c  (11) 

and the continuous time frequency response ]unc- 
tion at frequency w is defined as the transfer 
function evaluated along the imaginary axis, i.e. 
Gc(i ). 
To successfully identify a continuous time system 
from sampled da ta  it is important  to consider how 
the input signal excites the continuous time sys- 
tem. If the input is piecewise constant between the 
sampling instances then the continuous system 
has a discrete t ime representation which exactly 
describes the output  signal at the sample points 
and hence the expressions (8) and (9) hold. The 
mapping which takes a continuous t ime system 
into a discrete one is called zero order hold (ZOH) 
sampling (/~str5m and Wit tenmark  1984). A re- 
striction is tha t  this mapping is not bijective. 
Several continuous t ime systems are represented 
by the same discrete t ime one. Furthermore the 
inverse mapping is not defined for certain discrete 
time systems (Astr5m and Wit tenmark 1984). 
The method of first identifying a discrete time 
model and then employ the inverse ZOH mapping 
might consequently fail. The correct approach is 
to parameterize a continuous t ime model and then 
via the ZOH mapping derive the discrete t ime 
model which is matched with the sampled data  
(Ljung 1999). 

A different approach which is well suited for the 
frequency domain, is to excite the continuous 
time system using a band limited input with a 
zero spectrum for all frequencies on and above 
the Nyquist frequency (~). Furthermore,  assume 
that  the input signal is such that  it admitts  
a band-limited Nh-periodic continuation outside 
the measurement interval, i.e. u(t) = u(t  + Nh )  
for all t. Fourier analysis then tells us that  all such 
signals can be described as (for N odd) 

N - 1  
2 

i 27rk t u(t)= h e r  (le) 
k=- N~  

where u(t) is real if .fk = f-*k" Clearly all such 
real valued signals are composed of a sum of si- 
nusoids with (normalized) frequencies constrained 

2~rk to belong to the finite set {wk[Wk = ~ < 
rr, k = 0, 1 , . . .  }. This type of excitation signal 
is known as multi-sine excitation (Schoukens and 
Pintelon 1991). 

Assume a continuous t ime system (10) from t = 0 
and onwards is excited by an input signal which is 
band limited and has a band limited Nh-periodic 
extension outside the measurement interval. The 
input and output  signals are sampled at N points 
with sampling interval h. No assumptions are 
made about the character of the input to the 
system prior to to tome t = 0. The input history is 
concisely represented by the initial state Xo. Also 



assume d e t ( i ~ I  - Ac) # 0 for all wk. Then the 
following equation holds. 

.wk 1 ~ ( ~ )  = G~(~-)UN(~k) + T ~ ( e ~ ) ~  (13) 
where 
G~(s) = C~(sI  - A~)-~ B~ 
T c ( z )  = z C c ( z I  - e A c h ) - l ( I  -- eA~hN)(xo  - -Xp)  

xp = (I - e A~hN)-I ea°~Bcu(Nh - r) dr 

(14) 

where e A ~ r  is the matr ix exponential associated 
with the matr ix A~ (Kailath 1980). The proof of 
(13) can be found in Appendix A.2. The relation 
(13) is quite similar to the discrete time version 
(8) with one important  exception. Here Tc(z) is 
a discrete time transfer function. However just 
as in the discrete time case To(z) is completely 
defined by the system, the input and the initial 
condition at t ime t = 0. In (Pintelon et al. 1997) 
an approximate expression was derived for the 
transient term which made use of a continuous 
time transfer function. 

2.4 Discussion 

In both domains we have left out systems which 
have a direct feed-through term, which exists if 
the input instantaneously can influence the out- 
put. Most physical systems do not have such 
properties. However the inclusion of a direct feed- 
through term is straightforward and only involves 
an additional notational effort. By comparing (8) 
with (13) we conclude that  the only differences 
between the frequency response function for dis- 
crete time systems and continuous time system is 
the argument,( i.e. e i~ or iw) and the transient 
terms. The extension to the multivariable case is 
straightforward since the derivations made use of 
a state-space representation. In the general case 
when the system is infinite dimensional and sta- 
ble, the equations (8) and (13) still hold. In this 
case the transient transfer function T(z) does not 
admit any finite representation but  the frequency 
response can be upper bounded (Ljung 1999). 

2.5 The noise 

Recall from (1) tha t  we assume the noise to be 
described as v(t) = Ho(q)e(t) where Ho(q) is a 
stable linear filter and e(t) is zero mean i.i.d, with 
variance Ao. Denote by EN(Wk) the DFT  of the 
noise signal {e(t)}~v~ 1. It is easy to establish that  
EN(Wk) is a zero mean random variable with the 
second moment properties 

{ Ao, 0Jk ~Ws (15) E{EN(wk)E~(w, )}  = 0, wk ws 

and E{EN(wk)EN(Ws)} = 0 for all wk,wk > 0 
and Wk = W, # w. If e(t) is normally distributed 

or if N ~ oc then EN (w~) has a complex normal 
distribution (Brillinger 1981) 

Ex(~k)  ~ NO(0, ~o) (16) 

for wk E { - ~ , k  = 1 . . .  , N -  1} and wk # 7r. For 
wk = 0 and wk = ~, EN(wk) is real, zero mean, 
with variance ~0 and normal distributed. 

Using equation (8) the D F T  of v(t) = Ho(q)e(t) 
is conveniently described by 

1 
VN(wk) = go(e~W* )EN(Wk) + Tgo(e i°J~ ) Vf ~ 

(:7) 

where the last frequency function THo (z) is due 
to the "unmatched" initial condition of the noise 
filter and is a linear function of the of the inno- 
vations e(t) for t < N. This implies it has zero 
mean for all frequencies. When Ho(z) is finite 
dimensional it is also possible to derive an exact 
expression for the covariance of TH. We refrain 
from doing so here and just note tha t  for our 
purposes it suffices to use the uniform bound 

CHo = mkax ]Tgo(e~)l 2 (18) 

which exists since Ho(z) is assumed strictly stable. 
Since (by definition) e(t) is a non-periodic signal 
EN (w) will remain bounded and Ho (e ~k ) EN (Wk) 
will be the dominating term in VN(W~) when N 
is large. All together we obtain for the first and 
second moments: 

E {VN(~k)} = 0, Wk (:9) 

E {VN(~k)V~(~s)} = 
~1 (~k) IH°(ei~)12~° + - - N - - '  wk = w, 

= ~2(~k) (20) 
N ' Wk # Ws 

where 1~2(wk)] <_ ]~l(wk)l _~ CH. Asymptotically, 
as the number of da ta  points tends to infinity, the 
term THo(ei~k)~ tends to zero. Then VN(Wk) 
becomes complex normal distributed with zero 
mean and variance I Ho (e i~k ) 12 £o and independent 
between frequencies. It is now clear tha t  the 
DFT of the output  signal asymptotically has the 
properties as postulated in (2). For a much more 
thorough t reatment  and relaxed assumptions we 
refer to (Brillinger 1981, Ljung 1999). 

We make no distinction between the continuous 
time case and the discrete time case regarding the 
noise signal v(t). For both cases we use a discrete 
time model to describe the noise properties for the 
sampled data. The validity of this approach can 
be argued as follows. Consider a continuous time 
noise signal described by a stochastic differential 
equation which is equidistantly sampled in time. 
The first and second order moments of the signal 
at the sampling instances can equally be described 
by a discrete time stochastic model of the same 
order as the continuous t ime stochastic model 
(~strSm 1970). 



2.6 Periodic input and averaging techniques 3. IDENTIFYING A PARAMETRIC MODEL 

The expressions derived above hold for arbi t rary 
excitation signals and we made no assumption 
about the history of the input signal prior to 
time t -- 0. If on the other hand a stable system 
is excited with an P-periodic signal which has 
been applied prior to taking the measurements, 
say at t ime t = - s  for some integer s and the 
measurement record is a multiple of the period 
length, then the initial condition Xo will approach 
x v as s increases. The size of the transfer function 
T(z) will therefore also decrease, see equations (9) 
and (14). 

If measurements are collected over M full peri- 
ods then UN(W) will at most have P non-zero 
values. However the size of the non-zero values 
will grow at a rate of V ~ .  Consequently the 
noise free counterpart  of YN(W) at the non-zero 
excitation frequencies will also grow at the same 
rate. Since the noise signal is non-periodic, VN (w) 
will remain bounded for all frequencies and the 
signal to noise ratio at the excitation frequencies 
will increase with a factor M. For a given size of 
the measurement window N = M P  the choice 
between period length P and number of periods 
M involves a fundamental tradeoff between fre- 
quency resolution and the signal to noise ratio. 

An alternative view is given by averaging the 
measurements over one period. Assume the input 
is periodic with period time P.  A natural  estimate 
of the noise free output  is then 

M - 1  1 
OM(t) = ~ E Y"( t  + kP)' O < t < P - 1  

k=O 
(211 

and periodically continued for larger t. This gives 
a noise estimate 

~(t) = y.~(t) - O(t) 

from which the noise properties can be estimated. 
Furthermore we can use the averaged period as 
data  {u(t), ~M(t )}~_O 1 in  the model building ses- 
sion. This gives both a data  size reduction as 
well as a noise level reduction. In the paper 
(Schoukens et al. 1997b) it is shown that  such a 
non-parametric noise estimate based on averaging 
over only four periods can be used instead of 
the true ones and still preserve asymptotic op- 
timality of a maximum-likelihood type estimator. 
See also Section 3.6. Finally it is worth mention- 
ing that  ~M(t) from (21) is a consistent (non- 
parametric) estimate as M -4 oo of the noise free 
periodic output  under very mild assumptions on 
the noise properties. Consequently OM (t) and u(t) 
can in a second step be used to fit a paramet- 
ric model in either domain. See (McKelvey and 
Akqay 1995, McKelvey 1996, Forssell et al. 1999). 

After providing the necessary information about  
the measurement signals we are now ready to 
use the frequency domain data  in order to find 
a model of the underlying system. Certainly the 
estimate 

YN(~k) 
VN(wk) 

which is known as the empirical transfer function 
estimate (Ljung 1999) would be one possible al- 
ternative. Its simplicity is appealing but  the vari- 
ance at each frequency is asymptotically, c.f. (20), 
IHo(eJ~k)12)~o/IU(w)}~ which does not decrease 
with an increasing N unless u(t) is periodic. To re- 
duce the variance the transforms can be smoothed 
which decreases the variance but  introduces a 
bias in the estimate. Here we will approach the 
problem by instead fitting a parametrized finite 
order transfer function (3) to the noisy frequency 
domain data. If the model set is large enough such 
that  the true system is included, the estimate will 
asymptotically be unbiased. 

3.1 Method off maximum-likelihood 

The method of maximum-likelihood is frequently 
used for many estimation problems (Kendall and 
Stuart  1967, /~str5m 1980). Most frequency do- 
main identification techniques do not explicitly 
model the noise properties with a parametric 
model. Instead consistent estimates are obtained 
by output-error  type algorithms (Tugnait 1998) 
or IV-type methods (McKelvey 1997) or by us- 
ing a non-parametric noise model which is ei- 
ther  known or estimated a-priori (Schoukens and 
Pintelon 1991, Schoukens et al. 1997b). Disre- 
garding the correct noise properties leads to an 
increased variance of the estimated system. Here 
we will present the frequency domain maximum- 
likelihood estimator which explicitly models the 
unknown noise transfer function. To simplify no- 
tation in what follows let Go,~ __a Go(ei~) and 
Go,~ ~ Ge(e ~)  and similarly for H.  Notice that  
in this section the frequencies wk in the set ~tg can 
be arbitrary and not constrained to the frequency 
grid implied by a DFT.  

Recall the postulated identification setup given by 
equation (2) which was motivated in Section 2. 
Accordingly the samples Yk of the output  Fourier 
transform have a complex normal distribution 
with mean value G0,~ Uk and variance IHo,~ 12~0. 
The probability density function for each mea- 
surement Yk is t hus :  (Brillinger 1981) 

2 Here we assume tha t  the frequencies w : 0 and w ---- 7r is 
not  par t  of our  set FtN since at these frequencies Y(w) is 
real valued and has a slightly different probabi l i ty  density 
function. Including them will however not change any 
asymptot ic  properties.  



1 (_  lYk -Go,~,Uk[ 2 (22) 

Since the measurements are independent of each 
other the joint probability density function for Z N 
is the product of the individual functions (22). 

If instead of the true (but unknown) transfer 
functions Go, H0 and variance Ao we insert the 
parametrized counterparts Go, Ho and A of our 
model and consider the measurements Z N fixed 
we obtain a parametrized likelihood function. By 
taking the negative logarithm of the parametrized 
likelihood function and removing terms which do 
not depend on the parameters (0 and A) we obtain 
(Ljung 1994, McKelvey and Ljung 1997) 

N 1 VN(O, A) = ~ ' ~  [log ([Ho,~[2A) + 
k = l  

[Yk - ao,~ Ukl 2 ] -4 iHo,~,~i2A a (23) 

which for given values of O and A can be calcu- 
lated. Minimizing VN with respect to 0 and the 
noise variance A yields the maximum-likelihood 
estimate, 

ON, ),N = arg re, in Vw(O). (24) 

To reduce the number of free parameters, the 
variance A can be eliminated from the criterion 
by analytical minimization, see (McKelvey and 
Ljung 1997). 

If the data record is short and it is expected 
that the transient terms in (8) or (13) cannot be 
neglected then Go,~Uk should be exchanged for 
Go,~Ua +To,~ ~ in order to capture the transient 
effects. Note that the n parameters in To which 
depend on the initial condition x0 - x p  cannot 
consistently be estimated since the effect of T(z) 
on Yk decays as ~ .  

In general the minimization of (23) can not be per- 
formed analytically and an iterative optimization 
strategy needs to be employed. Often Newton type 
methods (Dennis and Schnabel 1983) perform well 
for this class of problems. 

3.2 Asymptotic properties 

As the number of frequency points increases to 
infinity the ML criterion (23) converges to a limit 
function which can be described by an integral. 

Denote by f~ the interval of the real line to which 
the set of sample frequencies belongs and let ~N 
(as before) denote the set of sample frequencies. 
Let us define 

WN(cO) = [{klwk < W,Wk e flN}[ (25) 
N 

where IS[ denotes the cardinality of the set S. In 
probability theory WN (w) corresponds to a distri- 
bution function. We assume that the sequence of 

sample frequencies is such that WN (w) converges 
to a function W(w) in all points of continuity 
of W(w). By using a Stieltjes integral notation 
(Rudin 1987), an infinite sum can be written as 
an integral. In our case we have that as N --+ oo 
(see (McKelvey and Ljung 1997) for the details) 

VN(O,~) ~ ?(0,~) 
£ Iao,~ - C0,~1~(~o) + ~(~)  

+ log[Ho,~l~AdW(w), (26) 

where Ih,(w) = Iu(w)l 2 and O~(w) = IH0,~12Xo. 
Under some regularity conditions on Go and Ho 
the convergence in (26) is uniform with probabil- 
ity one. It then follows that the estimate 0N, AN 
converges to values which minimize V(0, A). 

Assume the model is sufficiently flexible such that 
there exists a non-empty set O, such that for all 
0, E O, 

fa lao,~-  ao.,wl~,,(w) dW(~) o (27) 

£ IlHo,~l 2 - [H0.,~1212 dW(w) = 0 (28) 

Then it can be shown that V(0, A) is minimized 
by all 0 E O. and A = Xo- If the model structure 
is restricted such that the limiting set O. is a 
singleton then 0N ~ 0. with probability one 
as N ~ cx~ which means that the estimator is 
consistent (in the sense of satisfying (27) and 
(28)). 
By using a fixed noise model which does not 
depend on the parameters 0 the limiting estimate 
is the minimizer of 

lu l l  2 dW(w) (29) 

If the true system Go is not part of the model class 
then an approximate model will result. In this case 
the estimated model will be the model which in 
a weighted mean square sense best approximates 
the transfer function of the system. As shown in 
(29) the weight is dependent on the spectrum of 
the excitation signal, the inverse of the assumed 
noise model and the distribution function of the 
frequency samples. Note that the true noise spec- 
trum does not influence the limiting estimate. 

If the frequency distribution function W(w) is 
differentiable in the interior of the interval f~ 
the Stieltjes integrals simplifies into fQ(.)w(w)dw 
where w(w) = ~W(w).  In this case w(w) acts as 
a standard weighting function. 

3.3 Asymptotic variance 

Consider the case when a fixed noise model H~ 
is used in the criterion (23) and assume the 
limiting set O., defined by (27) is a singleton 



0,. Furthermore assume that  G~. o and G~, o are 
Lipschitz continuous. Define 

~ ~2~(w)#2~(w)2Re {G'~,0. (GS,o.)* } 
Q = iH~la 

dW(w) 

(30) 
and 

f dW( ) (31) 
_R = iH~i 2 

and assume R > M for some ~ > 0. Then the es- 
t imate given by minimizing (23) is asymptotically 
normally distributed (McKelvey and Ljung 1997) 

~I/N(ON -- 0 , )  C: AsN(O, Po) (32) 

with covariance matr ix Po = R-1QR -1. If the 
noise model is chosen equal to the true one i.e. 

f IIH0,~l z - IH~I2]  2 dW(~) = 0 

then the size of the covariance is minimized 3 
popt and is equal to ~0 = AoR -~. The estimator 

is then asymptotically efficient. If an indepen- 
dently parametrized noise model H~ is estimated 
together with Go then the variance result (32) still 
holds and the optimal variance p~pt is obtained if 
the estimated noise model satisfies (28). 

3.4 Discussion 

It is interesting to compare the frequency domain 
ML-estimator (23) with its t ime-domain coun- 
terpar t  as described in (Ljung 1999, SSderstrSm 
and Stoica 1989). Applying Parsevals formula to 
the time-domain equation reveals tha t  the time 
domain ML estimator minimizes the function 

f ~  lYN(~k) - Go,~ Uy(wk)[ ~ dw. (33) i-H-iZV 

again becomes of no importance since, indepen- 
dently of 0 E D ~ ,  

- -  log(IH0,~ 12A) dw = log A 27r 
for any stable and inversely stable monic transfer 
function. The sum in (34) is also log A if wk = 
2~(k,1) k = 1, N.  This implies that  the 

N ~ " ' " ' 

t ime-domain ML estimator and the frequency 
domain estimator are (asymptotically) identical 
if the frequency domain estimator obtains the 
data  by D F T  and all frequencies are used (see 
also (Schoukens et al. 1997a)). If the frequency 
domain estimator uses only a subset of frequencies 
the limiting criterion function will be weighted by 
the distribution function of the frequencies and 
it is vital to use the full ML-criterion (23) to 
guarantee consistency. If a good fit is required at a 
certain frequency band the input spectrum should 
be large for these frequencies or the input and 
output  data  could be bandpass filtered prior to 
estimation. For example if the model is intended 
for control design it is desired to find a low 
complexity model with a good fit around the 
desired crossover frequency. In the time domain 
it does not quite make sense to prefilter the data  
prior to the identification if a noise model is also 
estimated since the noise model will then undo 
the effect of the prefilter (Ljung 1999). In the 
frequency domain a prefiltering effect is obtained 
by only including a subset of frequencies in l~N 
corresponding to the frequency band where a good 
fit is desired. Here an estimate of a parametric 
noise model (to improve the variance properties) 
still makes sense if it can be expected that  Go is 
flexible enough to provide an unbiased estimate 
(in the sense of (27)). It could also be expected 
that  it suffices with a less complex noise model 
since only a part  of the t rue noise transfer function 
needs to be accounted for. 

A few points are worth noticing. For a fixed known 
noise model Ho(z) = H(z) the frequency domain 
ML-estimate (23) and the time domain estimate 
(33) are essentially the same. Whenever the noise 
model is estimated, the additional term 

N 1 
log(IH0,~ ~ [zX) (34) N 

k = l  

occurs in the criterion. In fact (34) is the determi- 
nant of the transformation which change variables 
from Y to E (output to innovations). In the t ime 
domain this transformation is triangular with l 's  
along the diagonal. Hence, this transformation has 
a determinant equal to 1, so it does not affect the 
ML criterion. 

However if the frequencies wk are equidistantly 
distributed between -~- and ~r this additional term 

3 Minimized in the sense that Pa - p~pt is a positive 
semidefinite matrix for all choices of fixed noise models. 

3.5 Closed loop 

Consider the case when the system operates in 
closed loop with a linear controller K.  The input 
is then described by 

u(t) = r(t)  - K(q)y(t) 
where r(t) is an external reference signal. The 
output  signal is just  as before y(t) = Go(q)u(t) + 
Ho(q)e(t). Assume that  Uk and Yk are used in the 
criterion function (23). The dependence between 
Uk and Yk make the criterion function converge to 
a limiting function different from (26). Straight- 
forward calculations then reveal tha t  

V~,(O,A) -~ V(O,~) ~- 
f IGo,~ - Go,~J2[R(w)[ ~ + ]1 + K~Go,wl2~v(w) 

I1 + KwGo,wl2IHo,wl2A 
+loglH0, 12AdW( ). (32) 

where R(w) is the Fourier transform of r(t). First 
consider the ease when the frequencies wk are 



uniform in [-~r, Ir]. Hence the integral of the log 
term in (35) is zero. Also assume that the product 
K(q)Go(q) has no direct feed-trough term. Then 
1 + K(q)Go(q) is a monic transfer function which 
in turn implies that 

/~t [1 + KwGo,~12~v(w) 
11 + K~Go,~]2IHo,~12A dw 

is minimized when the model equals the true 
system. Hence, whenever the correct noise model 
is used consistency is preserved also for the closed 
loop case. This property is analogous to the time 
domain case, see (Ljung 1999). If frequencies are 
drawn from a non-uniform distribution a slight 
modification is needed to the criterion function. 
By subtracting the term log [1 + K ~  G0,~ 12 from 
the summand in (23) the estimator again become 
consistent. Note however that in this case we need 
to know the controller K and could thus have 
reformulated the closed loop problem to an open 
loop one, so called indirect identification. 

3.6 Some variants of the criterion 

Consider a system of the form 

y(t) = b(q) u(t) a(q) " + a(q) e(t) 

where a(q) and b(q) are polynomials. By disre- 
garding A and the log term the ML-criterion (23) 
simplifies into 

N 1 
~ la(e ~ , 0)Y~ - b(e ~ , 0)U~ 12 (36) 
k = l  

The criterion (36) is quadratic in the coefficients 
of the a and b polynomials and the minimizing 
parameters can be found by simple linear re- 
gression. Asymptotically this estimator equals the 
time domain ARX method (Ljung 1999). For con- 
tinuous time models this estimator was proposed 
in (Levy 1959). If on the other hand 

b(q) u(t) y(t)  : + e(t) 

the use of the simple criterion (36) will lead 
to bias and an undesired weighting [a(C~)[ 2. A 
remedy to this problem was given in (Sanathanan 
and Koerner 1963) where an iterative procedure 
was suggested where at iteration m a weighted 
criterion was minimized 

1 N 
ia(  - " )  (37)  

k = l  

where W~ m) = {a(m-1)(ei~)[-2 and 5(m-1)(z) is 
the estimated a polynomial from step m - 1. The 
scheme is not guaranteed to converge to the true 
system (Whitfield 1987). A multivariable version 
is described in (de Callafon et al. 1996). 

A number of subspace based methods have re- 
cently been developed for the frequency domain 

multivariable problem. A key feature is that they 
provide accurate state-space models for high or- 
der systems (McKelvey et al. 1996a, McKelvey et 
al. 1996b, Jacques et al. 1996, Liu et al. 1996, 
McKelvey 1997, Van Overschee and De Moor 
1996). An accurate method for high order systems 
based on more standard curve fitting and polyno- 
mial matrix descriptions is given in (Bayard 1994). 
These simplified procedures are well suited to pro- 
vide the optimal ML-estimator with good staring 
values for the iterative nonlinear optimization. 

If the input signal also is corrupted with noise we 
obtain a dynamical errors-in-variables problem. 
Assuming the true system is given by Go (q) = 
b(q)/a(q), the input and output power spectrums 
of the noise, denoted by ~ ( w )  and a~(w) are 
known, the maximum-likelihood estimate is given 
by minimizing (Schoukens and Pintelon 1991) 

N 

(38) 

if the input and output noise sources are un- 
correlated. For correlated noise a correction is 
subtracted from the denominator in (38). Recent 
extensions in (Schoukens et al. 1997b, Schoukens 
et al. 1999) show that the true input and output 
noise spectra can be exchanged by non-parametric 
estimates derived from four repeated experiments 
while still providing consistent estimates. 

3.7 Numerical issues for continuous time modeling 

It is well known that the parameter estimation 
problem is better conditioned for discrete time 
transfer functions than continuous time ones, 
since powers of C "j form a natural orthogonal 
basis (Bayard 1993). This property is amplified 
if the model order is high or if a large frequency 
band is used. By use of the bilinear transformation 
the continuous-time identification problem can be 
solved in the discrete domain without introduc- 
ing any approximation errors but drastically im- 
prove the numerical conditioning (McKelvey et 
al. 1996b). 

The bilinear transformation maps the complex 
values in the s domain to the z domain as 

2(z - 1) 2 + sT 
s w i t h  i n v e r s e  z 2 - 

The parameter T is a parameter which the user 
is free to specify under constraint that 2IT is not 
a pole of the continuous-time system (A1-Saggaf 
and Franklin 1988), and can be seen as a sort of 
sampling period. 

If the continuous-time transfer function is given 
by Go(s) the bilinear transformation gives the 
discrete time transfer function (2(z-1)) 

G(z) = Gc \ T ( z 7  ~ " 



Stability and minimum-phase properties are pre- 
served by the transformation. 

An important feature of the bilinear transfor- 
mation is that the frequency response is invari- 
ant if we pre-warp the frequency scale. Let the 
continuous-time transfer function be evaluated at 
iwk and let the bilinearly transformed discrete 
time transfer function be evaluated at e ~ .  Then 
it holds that (~strSm and Wittenmark 1984) 

if tan(wkd/2) = wkT/2. Assume we have samples 
Uk and Yk from a continuous time system at 
frequencies wk. Then they also are samples of 
the corresponding bilinearly transformed discrete 
time system at new frequencies wk d 

wkT 
w~ = 2atan(--~--), k = 1, . . .  ,M, (39) 

where atan denotes the inverse of tan. After esti- 
mation of a discrete time transfer function G(z), 
the sought continuous time transfer function is 
obtained through the inverse map 

4. CONCLUSIONS 

Per iod ic  i npu t  When a system is excited with 
a periodic input applied for a sufficiently long 
time prior to the actual measurement interval, 
then the effect of the initial condition is dimin- 
ished even for a finite measurement interval. 
Hence the transient effect need not be included 
in the model. Periodic excitation also make it 
possible to first estimate a non-parametric noise 
model which can be used as fixed noise model in 
the ML-criterion, see (Schoukens et al. 1997b). 

Merg ing  D a t a  If data is obtained by different 
experiments all frequency data can be merged 
into one estimation data set. By performing 
several experiments using different sampling 
rates a single wide band frequency domain data 
set can efficiently be assembled in order to 
estimate a continuous time model valid over a 
large frequency band (Schoukens et al. 1994). 

ACKNOWLEDGMENT 

I would like to thank Lennart Ljung, Johan 
Schoukens, Rik Pintelon and Petre Stoica who 
at various times have generously shared with 
me their expertise on this subject. Thanks also 
to Brett Ninness and Will Heath for providing 
valuable comments during the preparation of this 
manuscript. 

It has been demonstrated that the frequency do- 
main ML method asymptotically equals the time 
domain version in the case where the frequency 
data is obtained by DFT. An important question 
to pose then is in which cases can it be advan- 
tageous to use the frequency domain method? 
The following points can shed some light on the 
answer. 

Pa r t i a l  m o d e l i n g  Often it is enough to find 
a model which accurately describes the true 
system in a limited frequency band. A low 
order model could thus be sufficient. In the 
frequency domain this is simply accomplished 
by only including the desired frequencies in the 
set ~N. In the time domain the raw data needs 
to be prefiltered and the influence of the initial 
conditions of the filters might distort the end 
results. Also it makes no sense to estimate a 
noise model in the time domain if a prefilter 
has been applied. 

Con t inuous  t i me  sys t ems  If the experimental 
conditions are such that a band limited input 
can be used then the modeling in the frequency 
domain is straightforward as demonstrated in 
Section 2. Direct identification of continuous 
time models in the time domain requires diffi- 
cult user choices of how to approximate higher 
order derivatives from sampled data. Systems 
with time delay are also straightforward to han- 
dle by using Gc(s)e -r8 as the model structure 
where 7- is the time delay. 
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Appendix A. PROOFS 

A.1 Proof of (8)-(9) 

Consider the state-space equations (6). The state at time 
t = N is given by 

N-1 
x(N) : ANx(O) + Z A~Bu(N - 1 - k) 

k=O 

Now with the initial condition x(0) = Xp for (6) where xp is 
given by (9) then x(N) = Xp. Let ~per(t) denote the state 
evolution of (6) when x(0) = xp and let yper(t) ~- cxper(t) 
denote the corresponding output. Define the transient 
output as ytra(t) = CAt(xo - xp). It is straightforward 
to verify that the original output y(t) from the state- 
space system (6) with initial condition x(0) = x0 can be 
decomposed as y(t) = yper(t) + ytra(t). The DFT of the 
transient output is simply a finite geometric sum 

N-1 
1 YNra(wk) = ~ Z CAt(xo - x p ) e - ' ~ t  

t=0 
1 iw iw = ~ e  ~C(e ~ I - A ) - t ( I - A N ) ( x o - x p )  

where we used the property that e iwkN = 1. Denote the 
DFT of xPer(t) as x~/er(w). The DFT of xPer(t + 1) at 
w~ = ~ is given by 

N-1 
1 xP~(t + 1 ) e - ~  t = 

t----0 
N-1 

1 :e~iMk ~ ' ~ ( t  + 1)e - ~ ( ~ + ~ )  = e'"~ X~°r(~k) 
v ~  t----0 

where the last equality follows from xPer(N) • xper(0). By 
taking the DFT of both sides of the state-space equations 
governing xper(t) we have 

e ~  x ~ ( ~ k )  = AX~%o~) + BUN(~k) 

By eliminating the state x~er(wk ) we finally obtain for the 
DFT of yper(t) 

y~er(wk) : C(ei~k I -  A ) - i  BUN(Wk) 

which concludes the proof. [] 

A.2 Proof of (13)-(14) 

This proof parallels the discrete time case with some 
obvious modifications. In the proof we assume h = 1, N 
is an odd integer and define ny ~ N~___~. The proof for the 
general case is analogous. 

The evolution of the continuous time state variable is given 
by (Kailath 1980) 

f x(t) = eA~tx(O) + eAcrBcu(t -- ~-) (A.1) 
mo 

Now if we assume that x(0) in (10) is given by xp defined 
by (14), straight forward calculations yields x(N) = x(O) = 
Xp. Define xper(t) to be the state response when x(0) 
is given by xp and similarly define yper(t) = Ccscper(t). 
By introducing ytra(t) = ~ cceAct(xo -- xp) it is easy to 
verify that the measured output for t = [0, N] is given by 
y(t) = yper(t) + ytra(t) Obviously, the state T per is also an 
N-periodic signal. By explicitly using the structure of the 
input given by (12) we obtain 

n! 
= ~ (iwkl -- Ac ) - lBc f k  Xp 

k=--n! 

Straightforward calculations using the expression (A.1) 
with x(0) = xp yields 

n ]  

xPer(t)= Z ( i w k I -  Ac) - lBc f~e  i~kt 
k=-n] 

and the DFT of the state is simply 

x/~er(0)k) : (iwkI - Ac ) - t  BcUN(Wa) 

For the output we simply have  yNper(0Ok) = Ccxper(wk), 
As in the discrete time case the DFT of the transient 
output is a finite geometric sum 

ytra/w ~ 1 Z N ( k )  " ~  CceAei(xo--Xp) e - ' w k t =  
t=O 

v ~ e  ~ Ce(e ink I - e A~ )-  1 (I - e ACN )(wO - Xp) 
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