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Abstract

This thesis makes five important contributions to the development of an automo-
tive safety system: filtering algorithms, three modelling frameworks concerning
the usage of radar detections in tracking, vehicle motion, and decision-making for
intervention decisions, and finally the implementation architecture. In the filtering
context, we have developed a new sigma-point method for estimating the moments
of a transformed Gaussian random variable. These estimates are derived from an-
alytical expressions and are based on evaluations of the transforming function.
The method is applied to the moment estimation task in a Gaussian filter and the
resulting algorithm is denoted the marginalised Kalman filter (mkf).

Compared to traditional radar models, ours is specifically designed for vehicle
radars, which often yield several measurements from each object. These mea-
surements can provide useful information, such as vehicle orientation, if they are
accurately modelled. We introduce a tracking filter using such a sensor model,
and show how the complex data association problem can be facilitated by merging
similar hypotheses into groups.

The presented vehicle motion model includes the control input from the driver.
Uncertainties regarding, e.g., driver style, are formally treated with increased pre-
diction accuracy as a result. Similar to this model, the third framework also takes
the driver into consideration by allowing interventions only when the driver is be-
lieved to accept them. Our evaluations indicate an increased benefit in collision
avoidance systems — particularly in traffic situations where the future trajectory
of another road user is hard for the driver to predict.

Finally, we present a modular functional design for implementing a real-time
data fusion system. We conclude that a tracking system, using modern estimation
techniques, is well suited for sensor data fusion in an automotive environment.
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Chapter 1
Introduction

A
utomotive safety is in focus more today than ever and it is likely that
research efforts within this area will be intensified. Traffic-related injuries

cause personal tragedies and require considerable resources from society for re-
habilitation. Today, traffic-related accidents are the 10th largest cause of death,
accounting for 2.1% of all deaths. This cause is predicted to advance to 8th place
by the year 2030 [7], and taking into account the loss of health from disability, the
result appears even worse [8]. Road traffic injuries are predicted to be the third
leading contributor to the global burden of disease and injury by 2020.

One way to reduce the number of injuries is to equip vehicles with systems that
help the driver avoid accidents, or to mitigate their effects. An early example is the
anti-lock braking system (abs), whereas recent innovations include systems that
automatically apply the brakes to mitigate the effects of an imminent collision.
Systems that assess the traffic situation, in order to determine whether or not to
take action, are generally called active safety systems. A characteristic property of
these systems is that their intended domain of action is when the driving situation
becomes critical, but they should not act under other circumstances. Therefore,
the systems must continuously monitor the traffic environment and assess whether
an accident is likely to occur or not. Usage of a statistical framework in this process
is easily motivated as the assessment involves uncertainties regarding the future;
by the time it can be determined that an accident will happen for certain, it is
already unavoidable.

The research presented in this thesis has been carried out as a part of the au-
thor’s work with automotive safety at the Volvo Group together with the Chalmers
University of Technology. The goal has been to develop methods to provide an
accurate description of traffic situations, so that actions can be initiated in time to
break the course of events leading to an accident. This thesis presents an overview
of suitable methods, provides a theoretical background for understanding their
usage, and describes how to fuse sensor data from multiple sensors in real time.
An outline of the author’s research contributions is provided in Chapter 5.
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Chapter 1. Introduction

1.1 Thesis outline

This thesis has two parts. The first part introduces the general problem at hand
and describes the conceptual approach towards solving it. The intention is for
the reader to be properly prepared for the second part, where the contributions
are included. A more detailed description of the introductory chapters is provided
below, whereas the content of the appended papers and the author’s contributions
are discussed in Section 5.1.

Chapter 1: Introduction

The first chapter contains an introduction to truck-related accidents, and automo-
tive safety systems are described in terms of their purpose, behaviour, and design
challenges. The purpose is to clarify the motivations for the research presented in
this thesis.

Chapter 2: Filtering

The tracking filter in an automotive safety system is responsible for refining sensor
measurements to form an accurate description of the traffic situation, and this
chapter aims at providing an adequate, but detailed, background of the topic. The
problem formulation, in all its simplicity, is expressed in terms of the system model,
and the optimal solution to the problem formulation is expressed on a recursive
form. It is discussed under which circumstances the formal solution is applicable,
and examples are given of both exact recursive solutions and approximate recursive
methods. Finally, moment estimation using sigma-points is explained in terms of
quadrature rules, and commonly used sigma-point filters are discussed.

Chapter 3: Tracking

In order to do the filtering magic, previously discussed using a slightly more formal
tone in Chapter 2, some difficulties need to be considered. This chapter clarifies
real-world challenges such as the determination of which measurements should
be used to update the different tracked objects (data association) and how to
continuously evaluate track quality. The importance of having a good description
of time-stamps is clarified and out-of-sequence measurements are described as an
example.

Chapter 4: Modelling

The fourth chapter explains in more detail the models used in an automotive track-
ing system, e.g., in the filter. The usage of stochastic components is motivated,
and two commonly used linear process models are given as examples. Finally, the
sensor model and its desired properties are discussed in terms of use in a tracking
filter.

2



1.2 A background to truck accidents

Chapter 5: Contributions and future work

Here, we present a summary of the author’s contributions in the appended papers,
and discuss possible extensions and ideas for future research.

1.2 A background to truck accidents

The consequences of an accident involving a truck are devastating due to the large
vehicle weight. A frontal collision at high speed between a truck and a car is
often fatal for the people travelling in the car. In a similar collision with two
cars of the same size, the occupants normally survive if the collision speed of both
vehicles is less than 70 km/h and provided that the occupants are wearing seat
belts [9]. Also, a truck is a work environment used on a daily basis by professionals,
which separates truck drivers from the general road user. These factors must be
considered when planning safety systems for usage in trucks. Design for safety is a
leading principle at Volvo and one important resource in this work is the accident
research team (art), formed in the sixties. An extensive database has been built
up with information and analyses as to why accidents occur by visiting crash sites
and interviewing drivers. Typical accidents involving trucks are shown in Figures
1.1–1.2, where the accident statistics originate from the art database [10]. For a
majority of collisions in Western Europe involving a truck, where the injuries are
serious to fatal, the injured road user is travelling in a car. Truck drivers are more
exposed to road departure accidents, accounting for 35% of accidents where truck
drivers are seriously to fatally injured.

(a) The most common acci-
dent types causing severe in-
jury to a truck driver (top not
necessarily on a curved road).

(b) The most common acci-
dent types causing severe in-
jury to car occupants.

(c) The most common acci-
dent types when vulnerable
road users are severely in-
jured.

Figure 1.1: The most common accident types for accidents involving a truck in
Western Europe, leading to severe or fatal injuries. In 15-20% of these accidents
the injured road user drives a truck, in 55-65% a car. Vulnerable road users account
for 15-25% of the injuries [10].
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Figure 1.2: Rear-end collisions account for 12% of all heavy truck accidents in
western Europe. Furthermore, 20% of accidents where a truck driver is severely
injured are of this type [10].

It has been agreed within the European union that all trucks must be equipped
with lane departure warning systems and automatic braking systems. For trucks
weighing over 8 tons, these rules apply to models introduced after 2013 [11]. For
lighter trucks, down to 3.5 tons, the rules have been deferred 3 years to 2016.

1.3 In-vehicle safety systems

There are clearly good reasons for equipping vehicles with systems to protect the
driver and other road users, and several methods have been proposed for reducing
the number of injuries in the automotive environment. In-vehicle systems which try
to achieve this are often classified as passive safety systems, active safety systems,
or integrated safety systems, depending on which means of action they utilise.
These systems aim to reduce either the impact severity, the number of collisions
or the injury risk at a given severity. How these types of safety systems, and
infrastructural improvements, relate to the means to decrease injuries is illustrated
in Table 1.1 [12], although one can argue that infrastructure measures also affect
the number of accidents. In some sense, we can regard active safety systems as an
extension of improving the infrastructure, e.g., speed limits and crash-barriers —
they contribute to reducing injuries in a similar fashion.

Different types of safety systems operate on various time-scales, and require
quite different skills in design. Some require a sensing system and advanced control
strategies, and continuously adapt their behaviour in order to provide increased
safety (active), whereas some fulfil their purpose merely by being present at the
time of the collision (passive).
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1.3 In-vehicle safety systems

Passive safety

Safety-oriented designs, such as crumple zones (energy-absorbing zones), and seat-
belts, have been developed for decades and provide a high level of safety in modern
vehicles. Passive safety systems have had a major impact in reducing the injury
risk in collisions [13]. Although an airbag system makes use of sensors to detect a
collision and trigger the airbag, it is usually classified as a passive safety system.

Active safety

Active safety systems use sensors to continuously observe the traffic environment,
the equipped vehicle, or the driver, in order to avoid accidents or to mitigate their
consequences. A system can, for example, monitor the surrounding environment
to autonomously apply brakes when a collision is imminent, or inform a distracted
driver of potential threats.

Early systems include abs, which entered serial production in larger numbers
in the 80’s, and, a decade later, electronic stability control systems. Recent sys-
tems make use of sensors such as radar and cameras to continuously monitor the
traffic-situation. If a situation becomes dangerous, the system may warn the driver
or, if deemed necessary, intervene by autonomous braking or steering. Lane depar-
ture warning systems and auto-brake systems, which can provide, e.g., low-speed
collision avoidance [14], are some examples. Active safety systems are also referred
to as preventive systems.

Integrated safety

The term integrated safety is used to describe systems that use sensor information,
e.g., regarding a pending collision, to attain the most from a combination of active
and passive systems. An advanced integrated safety system could, for example,
steer and brake the vehicle such that a deformation zone is fully utilised in a
collision, whereas a very simple, yet efficient, example is the seat-belt reminder.

Reduction

Improvement Active Passive Integrated Infra- Edu-
safety safety safety structure cation

Impact severity × × × ×
Number of accidents × × ×
Injury risk × × ×

Table 1.1: There are several ways to contribute towards injury reduction. Effects
can be evaluated in terms of reducing either the number of accidents, their severity,
or the injury risk. Several in-vehicle safety systems contribute and supplement each
other. Education measures are included in the table by the author for comparison.
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Tracking system
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Threat 
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Figure 1.3: Signal processing in active safety systems. The environment and rel-
evant sources of information are monitored, e.g., using radar, map databases and
driver state sensors.

1.4 Active safety system design

The safety measures discussed in the previous section all contribute to reduce the
number of traffic-related injuries. The work presented in this thesis has focused on
how to provide an accurate description of the traffic environment, such that active
safety systems can assess the situation and make robust intervention decisions.
The purpose of this section is to provide a background on the difficulties in such
a description, and explain why it is not straightforward to make decisions.

A three-layered data fusion process model was introduced in [15] to describe
an active safety system. It represents the system using three layers; the perception
layer, the decision layer, and the action layer. The layers follow a hierarchic
structure: they are independent and restricted to one-way communication without
feedback. In this sense, the model is somewhat limiting, but nevertheless provides
a good abstraction of the components of an active safety system. A system model
is provided in Figure 1.3, which has been slightly modified to illustrate that it may
sometimes be useful for the perception layer and the decision layer to communicate
both ways.

1.4.1 Perception

A vehicle hosting active safety systems to decrease or mitigate collisions is equipped
with sensors that observe the surrounding traffic situation. Several sensors, each
with different strengths and weaknesses, are generally used jointly to increase
performance. The measurements provided by these sensors are usually associated
with errors and ambiguities. Hence, a system that relates data from different
sensors to each other and connects them to previous measurements is needed to
provide a consistent description of the environment. Such a system tracks the
observable objects and is consequently called a tracking system.

The efficiency of threat assessment and decision-making algorithms is depen-
dent on the quality of the output of the tracking system. Typically, estimates of,
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1.4 Active safety system design

e.g., the position and the velocity of objects surrounding the vehicle are calculated.
Improving the estimation accuracy is a motivation for using multiple sensors, so-
called data fusion. An effective tracking system consists of several well-tuned
interacting components, of which the filter is one. How to design such a system,
especially the filter, is the main question at hand in this thesis.

Sensing the environment

There are several types of road-users — cars, trucks, pedestrians and animals to
mention just a few. Together with lamp posts, guard rails, and other elements
of the traffic infrastructure, the traffic environment is full of objects of different
shapes and dynamic behaviour. The great variety of objects the system needs to
observe often calls for a combined use of sensors.

Common sensor technologies used in this context are radar, laser ranging, and
imaging systems operating in the visual and infrared spectra, all having different
advantages and disadvantages. Radar can provide direct measurements of range
rate and is relatively indifferent to bad weather, but may suffer from, e.g., low
angular resolution; lidar is accurate in range but does not measure range rate and
may be sensitive to rain, snow and fog. Vision systems measure angles relatively
accurately and are powerful tools for object classification, but provide poor range
measurements and are sensitive to bad weather and low light conditions. Addi-
tionally, the algorithms used by imaging systems systems can be computationally
demanding and the measurements may be difficult to model.

Other sources of information can also be regarded as sensors from a fusion
system’s point of view. Vehicle-to-vehicle and vehicle-to-infrastructure communi-
cation are emerging technologies that are not widely used today, but may play
important roles in the future as these would allow vehicles to “see behind cor-
ners”. Map databases can provide information which cannot easily be measured
with other sensors, such as merging of lanes or intersections ahead. So far, map
databases are dependent on the accuracy of off-line databases and to a large extent
lack information of particular interest to truck drivers, like road inclination and
equipage height limitations.

Data fusion and tracking

Sensors make instantaneous observations of the traffic environment and report
these to a sensor fusion system, typically a tracking system which provides a re-
fined description, or estimates, to the threat assessment algorithms. To be the
information provider to a safety application is a demanding task, taking into con-
sideration the inconvenience and potential danger of a false intervention. Apart
from employing robust estimation filters and accurate models, a tracking system
must also provide self-assessment capabilities with respect to performance. A
tracking filter incorporates different methods to achieve this. It handles events
such as erroneous measurements (false alarms), measurements that have failed to
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appear (missed detections), detection of new objects (track initialisation), sep-
aration of multiple objects, object occlusion, manoeuvering vehicles and noisy
measurements. Most tracking filters are designed using statistical methods, based
on the Bayesian philosophy, which comes natural given the inherent measurement
and prediction uncertainties in the problem at hand — using new, but unreliable,
measurements to describe a constantly changing scenario.

In order for the decision-layer to have every chance of succeeding in its as-
sessment, a tracking system must not only provide reliable estimates of the traffic
environment, but also describe how good these estimates are. Continuous assess-
ment of the tracker performance is therefore required, and rapid detection of new
objects is needed to enable quick decisions in highly dynamic situations; this can,
for example, be seen in Paper II, where it is shown that very small differences in
decision timing can have a major impact on the intervention outcome.

1.4.2 Decision layer

Using the description of the traffic situation provided by the tracking system,
threat assessment algorithms calculate how critical a situation is, e.g. the lat-
eral acceleration required to avoid driving into an object [16]. The purpose of a
decision-making algorithm is then to continuously produce a series of decisions, as
to whether an intervention of some kind is required or not. Even with a perfect
description of the current traffic situation, active safety system decision algorithms
still cannot make decisions with absolute confidence that the decision was moti-
vated, at least not as a general rule. The reason is that, for a decision to have
an effect on the outcome of a situation, it must be made such that the intended
action has time to alter the chain of events to the better. As the chain of events
is not known for certain during this time, it constitutes a source of uncertainty in-
herent in any system that predicts possible outcomes rather than measuring what
has actually happened. These uncertainties are denoted prediction uncertainties,
and together with the measurement uncertainties following the relaxation of the
assumption of a perfect description of the traffic situation, make decision-making
a challenging task. Careful consideration regarding modelling and treatment of
these uncertainties will be of most importance. Having done so, the conditional1

risk for a particular decision can be calculated, a statistic which, when properly
interpreted, forms a good basis for decision-making in automotive safety systems.
A good illustration of improper usage of such a statistic is given in [17].

1.4.3 The driver

The driver plays a natural and important part in active safety systems — Not
only is the driver one of the stake-holders to be protected by the system, but
also the judge as to whether the system behaves properly and, sometimes, the

1A threat assessment measure is conditioned not only on the measurements, but also the
modelling assumptions.
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direct cause of the dangerous situation. For this reason it is useful for decision-
making algorithms to utilise more or less sophisticated driver models to assess the
current need for assistance, as well as how that assistance should be delivered to
be regarded by the driver as a correct system behaviour. Driver-state sensors, i.e.,
sensors capable of estimating, e.g., driver drowsiness or the gaze direction of the
driver, could play an important part in decision timing and actuator usage.

Inattention

The reference to driver state sensors motivates a brief discussion on a topic which is
not treated further in this thesis: driver awareness and inattention. The reasons for
being inattentive are, at a high level, either a consequence of physical impairment
such as drowsiness or a consequence of misdirected attention2. The impact of
inattention in traffic can be intuitively understood; drivers clearly cannot react
to threats they are not aware of. However, it is not straightforward to measure
the actual impact on accidents. For one, several reasons can contribute to create
a dangerous situation, and secondly, admitting to being inattentive or drowsy is
discouraged, as it is typically punishable by law. Nevertheless, reports indicate
that fatigue may be the underlying cause for 20-40% of all single-vehicle accidents
[18], and it was shown in the well-known 100-car study [19] that inattention was
a contributing factor in 78% of the recorded crashes.

Many safety measures and safety systems aim to improve driver performance in
this sense, as a well-educated and attentive driver will reduce both impact severity
and the number of collisions, see Table 1.1.

2It wasn’t my fault officer, my followers on twitter demand constant updates!
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Chapter 2
Filtering

F
iltering, in a wide sense, is the task of processing data such that unwanted
components are removed and desired components are made clear — a filter

produces estimates of the desired component. In the context of automotive active
safety systems, these systems require knowledge of the current traffic situation in
order to make intervention decisions. However, the observations made by sensors
such as radar, cameras, and gyros, are affected by noise and cannot be trusted
without reservation. Furthermore, as measurements are not available at all times
there is a need for dynamic models. Taken together, this motivates using reliable
and accurate filters in automotive safety systems.

In this chapter, we clarify the problem at hand and express the task in terms of
recursive filtering of random processes, or recursive estimation; we use the terms
interchangeably. It is made clear why accurate approximate solutions to integrals
are important tools for designing such filters robustly, of which commonly used
filtering techniques serve as examples. Introductions to estimation in general is
given in, e.g., [20] and [21], whereas surveys of approximation techniques used for
recursive filtering can be found in [22] and [23].

The formal description of the problem, and its conceptual solution, is given in
Section 2.1. Unfortunately, the solution may be impossible or hard to calculate
analytically, and it is often necessary to resort to approximations. The prospect of
finding an analytical solution is discussed in Section 2.2, whereas common filtering
techniques involving approximations are discussed in Section 2.3.

2.1 System model

A discrete-time nonlinear system, described by the state vector, xk ∈ R
n, is as-

sumed to be a first order Markov process, evolving according to the model:

xk = f(xk−1,wk−1). (2.1)
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The time index, k ∈ {0, 1, 2, . . . }, corresponds to a continuous-time instant, tk,
and observations, yk ∈ R

m, are provided at these time instances:

yk = h(xk,vk). (2.2)

In our context, the state vector, xk, describes the traffic situation. The process
model (2.1) then explains (statistically) how the traffic situation changes over time,
and the measurement model (2.2) describes how the sensors perceive the traffic
situation. The noise terms wk and vk are random variables which account for
model uncertainties. For example, the possibility that the driver of a vehicle hits
the brake or initiates a turn is modelled by wk−1, whereas vk−1 explains why the
observations are not exact. The process model and the measurement model are
often expressed in terms of conditional probability density functions, p(xk|xk−1)
and p(yk|xk). These can be calculated from models (2.1)–(2.2) respectively, and
the descriptions are often used interchangeably.

The goal is to calculate the posterior distribution, p(xk|Yk), using all available
measurements,

Yk , {y1, . . . ,yk} , (2.3)

and we denote this the filter problem. The general solution for calculating the
posterior distribution is given in Section 2.1.1, and is presented in recursive form
in Section 2.1.2. Examples of two common estimates of the state, which can
be calculated from the posterior distribution, are presented in Section 2.1.3 and
conclude this section.

2.1.1 General solution

The posterior distribution can be used to derive estimates of the random variable
xk given the available measurements Yk, such as the posterior mean. Estimates
are often denoted x̂k|k, where the first subscript refers to the time index of the
state and the latter to the time index of the last measurement used to update the
state. Using Bayes’ theorem, we can express the posterior distribution in terms of
the likelihood function, p(Yk|xk), and the prior, p(xk):

p(xk|Yk) =
p(Yk|xk)p(xk)∫
p(Yk|xk)p(xk)dxk

. (2.4)

The likelihood function of xk is in fact the probability density function (pdf) for the
measurement distribution, although it does not necessarily integrate to one with
respect to xk. In other words, the likelihood function indicates the probability
to observe the actual measurements, given a particular state. The prior, on the
other hand, is the pdf for xk before any measurements are made, whereas the
denominator in the right-hand side of equation (2.4) scales the product such that
the posterior pdf integrates to one. Equation (2.4) is the formal Bayesian solution
to the filtering problem — full knowledge of the posterior distribution.
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2.1.2 Conceptual recursive solution

The expression for the posterior distribution (2.4) is a function of all available
measurements, Yk, which is usually not a feasible approach. For example, it
requires a filter to store an increasing amount of measurements and process all of
them whenever an estimate is needed. In practice, each observation, yk, will be
available to the filter soon after the measurement was actually made. It is therefore
convenient to formulate an algorithm to incorporate each new observation, yk, one
at the time, without having to redo all previous calculations, which were based on
Yk−1.

Assume the posterior distribution from the previous iteration is known to the
filter, i.e., assume that p(xk−1|Yk−1) is known. The so-called prediction density,
p(xk|Yk−1), can then be calculated by using the system equation (2.1). In other
words, we calculate the density for xk without using the new measurement, justi-
fying the usage of the word prediction. In this sense, the predictive distribution
constitutes a dynamic prior, and the need for this prior is made clear by rewriting
the posterior density expression (2.4) in terms of new and old measurements:

p(xk|yk,Yk−1) =
p(yk|xk)p(xk|Yk−1)∫
p(yk|xk)p(xk|Yk−1)dxk

, (2.5)

The measurement distribution p(yk|xk) is known from the measurement model
(2.2) and the predictive distribution, p(xk|Yk−1), can be calculated from the pre-
vious posterior distribution, p(xk−1|Yk−1), using the Chapman-Kolmogorov equa-
tion:

p(xk|Yk−1) =

∫
p(xk|xk−1)p(xk−1|Yk−1)dxk−1, (2.6)

where the Markov property, p(xk|xk−1,Yk−1) = p(xk|xk−1), is used. Hence, ex-
pressed in terms of the process model, the measurement model and the posterior
distribution from the previous step, equation (2.5) constitute the formal Bayesian
solution to the recursive filtering problem.

2.1.3 Estimates of the state

From a Bayesian perspective, the posterior distribution, p(xk|Yk), contains all
there is to know regarding the state, and — not in a particularly wide sense —
“all” can be a lot. It is common to derive estimates, x̂k|k, of xk from the distri-
bution, and use these estimates as filter output. An estimator is an algorithm for
calculating estimates, and the posterior distribution can be used to find estimators
corresponding to any optimality criterion. For example, a vector x̂k|k is said to be
the minimum mean squared error (mmse) estimate if it minimises the criterion:

x̂k|k = argmin
x̂k

E
[
(xk−x̂k)

T (xk−x̂k)
∣∣Yk

]
, (2.7)
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where E[] denotes the expectation of the expression inside the brackets. The mmse
estimate is widely used and is given by the conditional mean, which is shown at the
end of this section. Another useful estimate is the maximum a posteriori (map)
estimate, which is the most likely value for xk given Yk:

x̂k|k = argmax
xk

p(xk|Yk). (2.8)

It must not be forgotten that estimates are random variables and should be treated
as such1 when used. In practice, though, the difference between a formal treatment
of these uncertainties and a more simple approach may be negligible.

Derivation of the mmse estimate

The mmse estimate is given by equation (2.7), and corresponds to the conditional
mean. The minimum is found by setting the derivative to zero (see [24] for expres-
sions for derivatives of traces):

∂

∂x̂k
E
[
(xk−x̂k)

T (xk−x̂k)|Yk

]
=

∂

∂x̂k
Tr

{
E
[
(xk−x̂k)(xk−x̂k)

T |Yk

]}
(2.9)

=
∂

∂x̂k
Tr

{
E
[
(xkx

T
k +x̂kx̂

T
k −xkx̂

T
k −x̂kx

T
k |Yk

]}
(2.10)

= 0 + 2x̂k − E[xk|yk]− E[xk|Yk] = 0. (2.11)

It follows from the last row that x̂k|k = E[xk|Yk], which concludes the derivation
of the estimator. It can be written as

x̂k|k =

∫
xkp(xk|Yk)dxk. (2.12)

However, it may be hard to calculate the estimate; it not only requires the expres-
sion for p(xk|Yk), but also an expression for the integral (2.12). An important
result is that if xk,Yk are jointly Gaussian, the conditional density p(xk|Yk) is
also Gaussian and the mmse estimator is linear in the data [21].

Derivation of the lmmse estimator

The best estimator in the mmse sense, constrained to be linear in data, is denoted
the lmmse estimator. Due to the simple form of the lmmse estimator, it is very
useful, e.g., if we have failed to derive closed-form expressions for the conditional
mean. The linearity constraint corresponds to an affine transformation:

x̂k|k = AkYk + bk. (2.13)

1Contrary to popular belief, randomness does not disappear just because it is not modelled.
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The error should be orthogonal to bk, i.e., zero-mean when averaged over both the
state and the measurements. Updating the form to fulfil this criterion yields:

E[xk − x̂k|k] = x̄k −AkȲk − bk = 0 (2.14)

⇒ bk = x̄k −AkȲk. (2.15)

Inserting the above expression for bk into the affine transformation given by equa-
tion (2.13) yields the expression for the lmmse estimator:

x̂k|k = Ak(Yk − Ȳk) + x̄k, (2.16)

where x̄k denotes E[xk], and Ȳk denotes E[Yk]. The question is how to select Ak.
Using the form (2.16) for the estimator, the mmse criterion (2.7), to be minimised,
takes the form:

x̂k|k = argmin
Ak

E
[
(xk−x̄k −A(Yk − Ȳk))

T (xk−x̄k −A(Yk − Ȳk))|Yk

]
. (2.17)

Similar to the derivation of the mmse estimator, we set the derivative to zero:

∂

∂Ak
Tr

{
E
[
(xk−x̄k −Ak(Yk − Ȳk))(xk−x̄k −Ak(Yk − Ȳk))

T |Yk

]}

=
∂

∂Ak
Tr

{
E
[
(xk−x̄k)(xk−x̄k)

T +Ak(Yk − Ȳk)(Yk − Ȳk)
TAT

k |Yk

]}

+
∂

∂Ak
Tr

{
E
[
(xk−x̄k)(Yk − Ȳk)

TAT
k +Ak(Yk − Ȳk)(xk−x̄k)

T
]}

= 0

(2.18)

Let P xx = Cov(xk,xk), P Y Y = Cov(Yk,Yk), P xY = Cov(xk,Yk), and P T
xY =

Cov(Yk,xk). Replacing the expectations in (2.18) with these matrices makes it
easy to calculate the derivative:

∂

∂Ak
Tr

{
P xx +AkP Y Y A

T
k + P xY A

T
k +AkP

T
xY

}
= 2AkP Y Y + P xY + P xY .

For the right-hand side to be zero, i.e., 2AkP Y Y + P xY + P xY = 0,

⇒ Ak = P xY P
−1
Y Y (2.19)

⇒ x̂k|k = x̄k + P xY P
−1
Y Y (Yk − Ȳk), (2.20)

which concludes the derivation of the lmmse estimator; a simple update rule
requiring only the first two moments of xk and Yk, and their cross-covariance.

2.2 Exact recursive solutions

The solution (2.5) to the recursive filtering problem derived in the previous section
is in general not easy to apply. There are several difficulties: First, closed-form
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expressions for the prediction distribution and the measurement distribution must
be derived. Second, even if the distributions have closed-form expressions, it must
also be possible to evaluate the integral over their product. Finally, if the resulting
posterior, p(xk|Yk), is not on the same form as the posterior from the previous
step, p(xk−1|Yk−1), for which the closed-form expressions discussed above were
derived, all expressions must be derived once again for the new distribution.

In rare cases, the issues discussed above have known solutions. The most fa-
mous example is the Kalman filter [25], discussed in Section 2.2.1, which calculates
the posterior distribution correctly when models are linear and the noise is Gaus-
sian. Another approach is to use grid-based methods to calculate the optimal
solution when the state space is discrete with a finite number of states, as briefly
discussed in Section 2.2.2.

2.2.1 The Kalman Filter

The Kalman filter (kf) [25] is the optimal estimator in the mmse sense, when
models are linear and noise parameters are Gaussian. Under these conditions it
is an efficient estimator, meaning that the posterior covariance matrix attains the
Posterior Cramér-Rao lower bound [26].

The process model (2.1) and the measurement model (2.2) can be written

xk = Fk−1xk−1 + vk−1 (2.21)

yk = Hkxk +wk, (2.22)

where vk−1 ∼ N (0,Qk−1) and wk ∼ N (0,Rk) is zero mean white Gaussian noise.
Although the noise does not have to be zero-mean, we assume so for notational
convenience.

The Kalman filter assumes that the noise distributions and the initial distri-
bution are Gaussian, and we recall two important results for the Gaussian distri-
bution:

1. The distribution of a linearly-transformed Gaussian distributed random vari-
able is also Gaussian.

2. A Gaussian prior is self-conjugate with respect to a Gaussian likelihood func-
tion [27].

A prior distribution and a posterior distribution are said to be conjugate if they
belong to the same class of distributions. The first result means that given a
Gaussian posterior distribution, the predictive distribution and the measurement
likelihood are also Gaussian, and the second result states that, in that case, the
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updated posterior distribution is also Gaussian:

p(xk−1|Yk−1) = N (xk−1; x̂k−1|k−1,P k−1) (2.23)

⇒ p(xk|Yk−1) = N (xk; x̂k|k−1,P k|k−1) (2.24)

⇒ p(yk|Yk−1) = N (yk; ŷk|k−1,Sk|k−1) (2.25)

⇒ p(xk|Yk) = N (xk; x̂k|k,P k|k). (2.26)

Consequently, the state is always Gaussian distributed and fully described by its
conditional mean, x̂k|ℓ, and covariance matrix, P k|ℓ, (0 ≥ ℓ ≥ k). The Kalman
filter calculates these moments recursively in two steps: the prediction step and
the measurement update step.

Prediction step

The first step is to temporally align the state vector with the new measurement
and calculate the predictive distribution, p(xk|Yk−1). Recall that only the mean
and covariance are needed. Using standard notation we have:

x̂k|k−1 = Fk−1x̂k−1|k−1 (2.27)

P k|k−1 = Fk−1P k−1|k−1F
T
k−1 +Qk−1 (2.28)

The above results follow directly from (2.21) and (2.22), as E[(Ax)(Ax)T ] =
AE[xxT ]AT . The covariance normally grows when we predict future states, ex-
emplifying the Bayesian formal treatment of the infamous art of fortune telling.

Measurement update step

The predicted state, described by p(xk|Yk−1), is to be updated with the new
measurement, yk, to form the posterior distribution, p(xk|Yk). Recall from Section
2.1.3 that the mmse estimator is linear and produces the conditional mean, x̂k|k.
Consequently, the lmmse estimator and the mmse estimator coincide under the
Kalman filter assumptions. The correction of the predicted mean is given by direct
application of the lmmse estimator, given by equation (2.20):

x̂k|k = x̂k|k−1 +Kk

(
yk − ŷk|k−1

)
(2.29)

P k|k = P k|k−1 −KkSk|k−1K
T
k . (2.30)

The mean and covariance of the measurement distribution is given by

ŷk|k−1 = Hkx̂k|k−1 (2.31)

Sk|k−1 = HkP k|k−1H
T
k +Rk. (2.32)

We shall soon motivate the calculation of P k|k, but first we turn to the optimal
gain matrix, Kk, denoted the Kalman gain, given by equation (2.19):

Kk = P xy,k|k−1S
−1
k|k−1 (2.33)

= P k|k−1H
T
k S

−1
k|k−1. (2.34)
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Chapter 2. Filtering

The Kalman filter is defined by equations (2.27)–(2.34), which are recursively exe-
cuted for every new measurement, to calculate the posterior mean and covariance
matrix that fully describe the posterior distribution.

Equation (2.30), the updated covariance matrix, is the result of simplifications
following the usage of the optimal gain matrix (2.34). For any gain matrix, the
posterior covariance matrix takes the form:

P k|k = Cov
(
xk − x̂k|k−1 −Kk(yk − ŷk|k−1)

)
(2.35)

= Cov
(
xk − x̂k|k−1 −Kk(Hkxk + vk−1 −Hkx̂k|k−1)

)
(2.36)

= Cov
(
xk − x̂k|k−1 −KkHk(xk − x̂k|k−1)−Kkvk−1

)
(2.37)

= (I−KkHk)P k|k−1(I−KkHk)
T +KkRkK

T
k , (2.38)

where the last step follows from the independence assumption regarding the process
noise. The covariance update form (2.38), sometimes referred to as the Joseph
form, is valid for any gain matrix Kk, but can be reduced to the form (2.30) when
the optimal gain is used. The Joseph form is numerically more stable in presence
of, e.g., round-off errors; a product AAT is guaranteed to be positive-semidefinite
(see, e.g., Paper I, Appendix A).

The difference between the measurement and the predicted measurement, yk−
ŷk, is called the residual, or the innovation. The posterior mean is a weighted
combination of the predicted mean and the innovation, intuitively explaining how
model knowledge and evidence both contribute to the updated state. Contrary to
the prediction step, the uncertainties are expected to decrease during the update
process2 — we definitely expect to be more certain after the inclusion of evidence
into our calculations.

Finally, it should be mentioned that in the case of an unknown noise distri-
bution, the Kalman filter is still the best linear estimator, which follows from the
Bayesian Gauss-Markov Theorem [20]. Also, many filters take on the Kalman
filter name, such as the extended Kalman filter and the unscented Kalman filter.
These are in fact approximations of the one-step linear minimum mean squared
error estimator discussed in Section 2.3.1.

2.2.2 Grid based methods

If the state space can be partitioned into a grid with a finite number of states,

x
(1)
k ,x

(2)
k , . . . ,x

(n)
k , we can use the following form for the posterior distribution:

p(xk−1|Yk−1) =

n∑

i=0

w
(i)
k−1|k−1δ(xk−1 − x

(i)
k−1) (2.39)

w
(i)
k−1|k−1 , Pr{xk−1 = x

(i)
k−1|Yk−1}, (2.40)

2Here we have assumed linear models; for nonlinear models it is possible for the state covariance
matrix to grow during update. This is illustrated in Fig. 2.1, Section 2.3.1.
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2.3 Approximate recursive solutions

where δ(xk−1−x
(i)
k−1) = 1 if x

(i)
k−1 = xk−1 and zero elsewhere. The point in writing

the distribution on this form is that the prediction and update procedure corre-
sponds to re-calculating the weights in two simple steps. Firstly, the weights for the

predicted state, w
(i)
k|k−1, can be expressed in terms of the transition probabilities,

using the Chapman-Kolmogorov equation (2.6):

p(xk|Yk−1) =

n∑

i=0

w
(i)
k|k−1δ(xk − x

(i)
k ) (2.41)

w
(i)
k|k−1 =

n∑

j=1

Pr{xk = x
(i)
k |x(j)

k−1} w
(j)
k−1|k−1. (2.42)

Secondly, multiplication with the likelihood in (2.5) produces weights proportion-

ate to w
(i)
k|k, so the final expression is straightforward:

w
(i)
k|k =

p(yk|x(i)
k )w

(i)
k|k−1

∑n
i=1 p(yk|x(i)

k )w
(i)
k|k−1

(2.43)

For a grid based method, it is enough that the transition probabilities, Pr{xk =

x
(i)
k |x(j)

k−1}, and the likelihood function, p(yk|x(i)
k ), can be evaluated. Therefore,

the method enables exact filtering of very complex systems, but the price comes
in having to partition the state space with sufficient accuracy. The computational
demands increase with the number of partitions (weights), seen clearly in equation
(2.42). Nevertheless, this method provides an optimal solution to the Bayesian
state estimation problem in Eq. (2.5) and was used, e.g., to generate the posterior
distribution in Fig. 2.1.

2.3 Approximate recursive solutions

In the previous section we discussed exact solutions to the recursive estimation
problem (2.5), and the Kalman filter was introduced together with the grid-based
technique. The Kalman filter is the optimal filter if the system can be described us-
ing linear equations and additive white Gaussian noise, whereas the grid-approach
provides the exact solution if the state space is discrete. Unfortunately, from a
filtering perspective, these criteria are rarely met in real-world applications and
in this chapter we introduce some of the most commonly used approximations.
The lmmse estimator filtering framework employed by numerous algorithms, such
as the extended Kalman filter and several sigma-point methods, is introduced in
Section 2.3.1. These are of relatively low computational complexity, whereas the
sequential Monte-Carlo methods, which provide asymptotically exact solutions at
the price of high computational complexity, are described in Section 2.3.2.
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Chapter 2. Filtering

2.3.1 Gaussian filters

The family of Gaussian filters solves the recursive estimation problem under the
assumption that the concerned distributions are approximately Gaussian. A va-
riety of Gaussian filters have been proposed to cope with nonlinear models [28],
and the derivative-free filters [29], [30], [31], [32], [33] are particularly useful; with
little or no adjustment, they can be applied to a wide range of problems. These
filters use a transformed set of deterministically chosen points, often referred to
as sigma-points, to approximate means and covariances. Although the perhaps
most famous sigma-point method, the Unscented Transform (ut) [29] and [30],
does not constrain the distribution to be Gaussian, it can be explained under this
assumption. The techniques are closely related to the Gauss-Hermite quadrature
rule for numerical integration, and are generally exact for integration over certain
polynomial functions. An overview of the estimation techniques is given in Section
2.4, and an extensive analysis of the numerical integration perspective on Gaussian
filters is given in [34].

The equations used to compute the posterior mean and covariance in the Gaus-
sian filter are those of the one-step linear minimum mean square error (lmmse)
estimator, which coincide with the well known kf for linear systems. Similarly,
the resulting algorithm can be divided into a prediction step and an update step.
We begin by expressing the recursion in terms of these steps, and then turn to
strategies for calculating the required moments.

The Gaussian filter algorithm and its application

Expressed in terms of the mean and covariance of the distributions of interest, the
Gaussian filter recursion is as simple as the kf:

Prediction step: Given p(xk−1|Yk−1), calculate the first two moments of the
state distribution at the time of the next unused measurement:

x̂k|k−1 = E[xk|Yk−1]

= E[f(xk−1,wk−1)|Yk−1] (2.44)

P k|k−1 = Cov(xk|Yk−1)

= E[f(xk−1,wk−1)f(xk−1,wk−1)
T |Yk−1]− x̂k|k−1x̂

T
k|k−1 (2.45)

The predicted density is p(xk|Yk−1) ≈ N (xk; x̂k|k−1,P k|k−1).

Update step: Correct the predicted density using the measurement, yk. Assum-
ing that xk|k−1 and yk are jointly Gaussian, the lmmse estimator (2.20) gives
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2.3 Approximate recursive solutions

approximations to the posterior mean and covariance:

x̂k|k = x̂k|k−1 +Kk

(
yk − ŷk|k−1

)
(2.46)

P k|k = P k|k−1 −KkSk|k−1K
T
k (2.47)

Kk = P xy,k|k−1S
−1
k|k−1, (2.48)

where Kk is the Kalman gain. The mean, ŷk|k−1, covariance, Sk|k−1, and cross-
covariance matrix P xy,k|k−1 are defined as:

ŷk|k−1 = E[yk|Yk−1]

= E[h(xk,vk)|Yk−1] (2.49)

Sk|k−1 = Cov(yk|Yk−1)

= E[h(xk,vk)h(xk,vk)
T |Yk−1]− ŷk|k−1ŷ

T
k|k−1. (2.50)

P xy,k|k−1 = Cov(xk,yk|Yk−1)

= E[xkh(xk,vk)
T |Yk−1]− x̂k|k−1ŷ

T
k|k−1 (2.51)

The measurement density is p(yk|Yk−1) ≈ N (yk; ŷk|k−1,Sk|k−1), for which the
predicted density is a conjugate prior. The updated density is therefore p(xk|Yk) =
N (xk; x̂k|k,P k|k).

There are several filters employing this algorithm, differing only in how they cal-
culate the required moments. We shall give two examples, the extended Kalman
filter (ekf), see, e.g., [21], and the so-called cubature Kalman filter (ckf) [33]. Let
it be clear that the difficulty in calculating the above moments arise from nonlinear
models (2.1)–(2.2), for which the expectations above are not known.

The Extended Kalman Filter (ekf):
A common method for treating nonlinearities is to use a first order Taylor series
expansion to approximate the nonlinear transformation with a linear one. The
linearised relations can then be used in the standard Kalman filtering framework,
resulting in essentially the same equations. The ekf equations are:

x̂k|k−1 = fk−1(x̂k−1|k−1,0) (2.52)

P k|k−1 = F̂x
k−1P k−1|k−1F̂

xT
k−1 + F̂v

k−1Qk−1F̂
vT
k−1 (2.53)

ŷk|k−1 = hk(x̂k|k−1,0) (2.54)

Sk|k−1 = Ĥx
kP k|k−1Ĥ

xT
k + Ĥw

k RkĤ
wT
k (2.55)

x̂k|k = x̂k|k−1 +Kk(yk − ŷk|k−1) (2.56)

P k|k = P k|k−1 −KkSk|k−1K
T
k (2.57)

Kk = P k|k−1Ĥ
x
kS

−1
k|k−1. (2.58)
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where the linearised model is expressed in terms of the Jacobians F̂x
k−1, Ĥ

x
k , and

F̂v
k−1, Ĥ

w
k−1, accounting for state and noise propagation respectively:

F̂x
k−1 =

∂

∂xk−1
fT
k−1(xk−1,vk−1)

∣∣
xk−1=x̂k−1|k−1,vk−1=0

(2.59)

F̂v
k−1 =

∂

∂vk−1
fT
k−1(xk−1,vk−1)

∣∣
xk−1=x̂k−1|k−1,vk−1=0

(2.60)

Ĥx
k =

∂

∂xk
hTk (xk,wk)

∣∣
xk=x̂k|k−1,wk=0

(2.61)

Ĥw
k =

∂

∂wk
hTk (xk,wk)

∣∣
xk=x̂k|k−1,wk=0

. (2.62)

We can regard the linearization procedure as a way to approximate the models by
their varying linear ones, to which we can apply the optimal kf equations. This
is equivalent to using equations (2.52)–(2.55) to approximate the moments needed
in the general Gaussian-filter algorithm.

When the nonlinearities are relatively large, the moment estimates will be in-
accurate. The intended lmmse estimator reduces to a suboptimal linear estimator,
of whose performance we know little. The occurrence and origin of errors in the
ekf framework are exemplified and analysed in [35]. One can of course use ap-
proximations of higher order than one for increased accuracy, the drawbacks being
the effort of deriving the filter and increased computational complexity at run-
time. In [36], a derivation and evaluation of a second order filter are presented
and compared with a first order approximation.

Sigma-point filters:
The family of Sigma-point filters have two significant advantages over the ekf

approximation. They are derivative-free and do not require the tedious calcula-
tion of Jacobians, and they are generally more accurate. Even the computational
complexity is about the same, [30], [37]. The associated cost is in terms of under-
standing how they should be applied, and how to avoid the unfortunate property
of some methods not to guarantee positive-semidefinite covariance matrices. In
other words, there is little reason in using the ekf when better methods are avail-
able at no particular cost, but the joy of learning a new filter. Having this said,
the ekf is a widely applied filter found in a large number of applications — it
is clearly a very useful filter and regarded of many as more intuitive. Moreover,
certain functions are especially hard to approximate using sigma-point methods,
see Section 2.4.3, and in these cases the ekf can be a better alternative.

The family of sigma-point filters approximate integrals, such as the calculations
of mean and covariance, using a weighted sum:

∫

Rn

N (x ;µx,P x)g(x)dx ≈
κ∑

i=1

wig(x
i). (2.63)
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2.3 Approximate recursive solutions

The κ so-called sigma-points, {x1, . . . ,xκ}, and the associated weights, wi, are
chosen according to a deterministic scheme. This integral approximation strategy
yields the estimator

E[g(x)] ≈
κ∑

i=1

wig(x
i) , ȳ, (2.64)

under the assumption that x ∼ N (µx,P x). It is clear that this algorithm for
calculating expected values can be directly applied to equations (2.44)–(2.45) and
(2.49)–(2.51) in the Gaussian filter algorithm. All we have to do is to evaluate the
transforming function in the points, {x1, . . . ,xκ}. First, we show how to handle
the state vector and the noise terms jointly.

Augmenting the state vector:

Nonlinear noise terms in the transforming function need to be included in the cal-
culation of the mean and covariance. A common strategy is to augment the state
vector to also include these terms, such that the noise uncertainties are treated
jointly with the state uncertainties. For the process model (2.1), the substitution
is:

x̆w
k−1|k−1 =

[
x̂k−1|k−1

E[wk−1]

]
(2.65)

P̆
w

k−1|k−1 =

[
P k−1|k−1 0

0 Cov(wk−1)

]
. (2.66)

The corresponding models are expressed in terms of the augmented state but, for
convenience, the same notation is used:

f(x̆w
k−1|k−1) = f(xk−1|k−1,wk−1). (2.67)

The estimation task is much easier to express in terms of the augmented state
vector, and the procedure ensures formal treatment of nonlinear noise terms.

A simple sigma point filter, the Cubature Kalman filter (ckf) is presented
here as an example of a sigma-point Kalman filter. Given the posterior distribu-
tion from the previous iteration, p(xk−1|Yk−1), do:

Prediction step

1. Generate sigma points using the n-element state vector, augmented with the
process noise term, and their joint covariance matrix:

xi
k−1|k−1 =





x̆w
k−1|k−1 +

(√
n P̆

w

k−1|k−1

)

i

1 ≤ i ≤ n

x̆w
k−1|k−1 −

(√
n P̆

w

k−1|k−1

)

i−n

n < i ≤ 2n
(2.68)

where i = 1, . . . , 2n and (
√
P )i is the ith column of a matrix square root

such that
√
P
√
P

T
= P .
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2. Propagate the points through the process model and estimate the mean and
covariance of the predictive distribution:

x̂k|k−1 =
2n∑

i=1

wi f(x
i
k−1|k−1) (2.69)

P k|k−1 =
2n∑

i=1

wi f(x
i
k−1|k−1)f(x

i
k−1|k−1)

T − x̂k−1|k−1x̂
T
k−1|k−1, (2.70)

where each weight, wi =
1
2n .

Update step

3. Generate sigma points using the η-element state vector, augmented with the
measurement noise term, and their joint covariance matrix:

xi
k|k−1 =





x̆v
k|k−1 +

(√
η P̆

v

k|k−1

)

i

1 ≤ i ≤ η

x̆v
k|k−1 −

(√
η P̆

v

k|k−1

)

i−η

η < i ≤ 2η
. (2.71)

4. Propagate the points through the measurement model and estimate the
mean and covariance of the measurement distribution, as well as the cross-
covariance matrix:

ŷk|k−1 =

2η∑

i=1

wi h(x
i
k|k−1) (2.72)

Sk|k−1 =

2η∑

i=1

wi h(x
i
k|k−1)h(x

i
k|k−1)

T − ŷk|k−1ŷ
T
k|k−1 (2.73)

P xy,k|k−1 =

2η∑

i=1

wi x
i
k|k−1f(x

i
k|k−1)

T − x̂k|k−1ŷ
T
k|k−1, (2.74)

where each weight, wi =
1
2η .

5. Calculate the Kalman gain, the lmmse estimate, and the matrix-mse to
approximate the mean and covariance of the posterior distribution, p(xk|Yk),
using equations (2.49)–(2.51).

Several integration approximations on the desired form (2.63) are known from
literature, and there is a variety of filters employing them. Roughly speaking, these
filters can be divided into two categories: those employing a single approximation
technique for both first and second order moments, and those who treat these
integrals differently to reflect that a covariance matrix is positive-semidefinite.
The Unscented Kalman filter (ukf) [30] and the ckf [33] are examples of the

24
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former, whereas the first and second order divided difference filters (dd1, dd2)
[31] and the Marginalised Kalman Filter (mkf) described in Paper I belong to the
second category. There is a version of the ut, called the scaled ut [38], which
applies a different set of rules for calculating the covariance matrix, than those
used to calculate the mean. However, since the technique does not guarantee a
valid covariance matrix, the method does not qualify in the second category. At
the present time these (quite simple) estimations techniques are not detailed as
they are discussed in Section 2.4.

Performance of the Gaussian filter

The Gaussian filter makes use of the lmmse estimator to update the state, and
various Gaussian filters apply different methods to approximate the required sta-
tistical moments. These filters can generally be tuned such that results are sat-
isfactory also when the underlying assumptions are violated. The purpose of this
section is to provide the reader with a deeper understanding of these filters and
their implications.

First of all, when the concerned distributions are not jointly Gaussian it is
possible to derive better estimators than the lmmse estimator, albeit not linear.
The main reason that the state is assumed Gaussian distributed is because it
facilitates the calculation of the mean and covariance of the predicted distribution
and the measurement distribution. When this approximation is not accurate, the
estimates of the mean and covariance matrix of these distributions will contain
errors even if models are linear. In other words, we are generally feeding a sub-
optimal estimator with false information.

Second, since the filter is based on the lmmse estimator one may think that
it is linear in data. However, the previous measurements are used in a nonlinear
fashion, e.g., to calculate the optimal gain matrix. The estimator is therefore linear
only in the most recent measurement.

Third, as we will show here, the posterior covariance matrix P k|k is approxi-
mated by the matrix-mse which is sometimes a poor approximation. An illustra-
tive example of the difference between the covariance matrix and the matrix-mse
is the following system: the state, xk ∼ N (0, 1), is to be updated with the obser-
vation yk = 4, using the model,

yk = x2k + v, v ∼ N (0, σ2
v). (2.75)

The likelihood function is clearly bi-modal. Fig. 2.1 shows the posterior distri-
bution compared to the Gaussian filter approximation for three different noise
models. The mse resembles the true variance only if the variance of the noise
term, σ2

v , is large enough (recall that yk = 4 in all figures).
The calculation of P k|k is independent of the most recent observation, which

is why the Gaussian approximation is the same in the three examples in the Fig.
2.1. The posterior covariance matrix is given by

Cov(xk|Yk) = E
[
[xk − x̂k|k][xk − x̂k|k]

T
∣∣Yk

]
, (2.76)
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(a) yk = 4, σv = 1, and var(xk|yk) = 3.3.
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(b) yk = 4, σv = 2, and var(xk|yk) = 1.8.
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(c) yk = 4, σv = 4, and var(xk|yk) = 1.2.

Figure 2.1: Comparison of the posterior distribution, p(xk|yk = 4), to the Gaus-
sian approximation using the lmmse estimate as mean and its mse for vari-
ance. The measurement model is given by equation (2.75) and the true variance,
var(xk|yk = 4), depends on the noise model.

where x̂k|k is the conditional mean E[xk|Yk]. However, in the Gaussian filter
algorithm, the posterior covariance matrix is approximated as the expected error,

P k|k ≈ E
[
[xk − x̂k|k][xk − x̂k|k]

T
∣∣Yk−1

]
, (2.77)

i.e., the matrix mse. Conditioned on Yk−1, the lmmse estimate is x̂k|k = x̂k|k−1+
Kk(yk − ŷk|k−1). By evaluating the expectation (2.77) it is clear that the final
expression corresponds to the Gaussian filter covariance update (2.47):

E
[
[xk − x̂k|k][xk − x̂k|k]

T |Yk−1

]

= Cov
(
xk − x̂k|k−1 −Kk(yk − ŷk|k−1)|Yk−1

)

= P k|k−1 +KkSk|k−1K
T
k − P xy,k|k−1K

T
k −KkP yx,k|k−1

= P k|k−1 −KkSk|k−1K
T
k (2.78)

where we used the relation P xy,k|k−1 = P T
yx,k|k−1 = KkSk|k−1.

We draw three conclusions from the above discussion. First, the matrix-mse
can be a poor substitute for the posterior covariance matrix, as illustrated in
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Fig. 2.1. Second, the errors introduced in the required moment approximations
are not accounted for in the model. This leads to over-confident filters and it
can be beneficial to exaggerate the noise terms in the model to compensate for
this. Third, it is somewhat difficult to use the Gaussian filter when distributions
are multi-modal, as such distributions are not well described by the mean and
covariance.

A practical aspect of Gaussian filtering involves using numerically stable meth-
ods. Some of the operations involved in calculating the covariance matrices are
sensitive to numerical errors, which may affect the long-term stability of the filter.
For example, the subtraction in equation (2.47) is not guaranteed to produce a
positive definite covariance matrix. Many sigma point filters have so-called square-
root versions, e.g., [39], [40], and [33], designed for improved numerical stability.

2.3.2 Particle filters

The approximate filters described in the previous section provide a framework for
estimating mean and covariance of the posterior distribution, using the lmmse

estimation algorithm. However, a general rule is that when nonlinearities in the
model become more severe, the performance or the linear estimator deteriorates.
For some systems, we may have to use more exact methods and, at some point, we
would like to compare our filter to a much better filter for benchmark purposes.
This section shows how to use computationally demanding methods to provide
asymptotically exact solutions to the recursive estimation problem (2.5).

The idea is to let a set of randomly generated samples, referred to in this
context as particles, represent the whole distribution. This representation has its
roots in Monte Carlo methods for numerical integration — an integral over the
distribution can be written as a sum of the particles.

Monte Carlo integration

For a probability density, π(x), the integral approximation takes the form:

I =

∫
g(x)π(x)dx ≈ 1

N

N∑

i=1

g(x(i)) = IN (2.79)

IN
a.s−−→ I as N → ∞ (2.80)

which holds if the set {x(1),x(2), . . . ,x(N)} contains samples drawn from the ac-
tual pdf, π(x). For some distributions it is straightforward to generate samples,
either directly or by using, e.g., Markov chain Monte Carlo methods such as the
Metropolis-Hastings algorithm [41]. For other distributions, such as those typi-
cally encountered in a tracking filter, it is difficult to generate a representative set
using these methods. Fortunately, so-called importance sampling can be employed
to substitute the desired set of samples with one we can generate samples from.
It is a useful method that can be formulated in a sequential manner suitable for
use in a tracking system, yielding the particle filter.
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Importance sampling

Importance sampling uses weighted samples from one density to represent another
density, in the integral approximation (2.79). Instead of generating samples from
the unknown density, in our case p(xk|Yk), which we want to calculate, we define
a density q(xk|Yk) from which we can generate samples, a so-called importance
density. Introducing the so-called importance weights,

w̃(i) =
p(x

(i)
k |Yk)

q(x
(i)
k |Yk)

, (2.81)

we can create two sets of samples to represent the distribution, p(xk|Yk), which are
equivalent in the sense that they both calculate the integral (2.79) asymptotically
correct:

{x(i)
p }Ni=1 : x(i)

p ∼ p(xk|Yk) (2.82)

{x(i)
q }Ni=1 : x(i)

q ∼ q(xk|Yk). (2.83)

The integral approximations using these sets respectively, are identical when the
influence of the weights are taken into aspect:

IN =
1

N

N∑

i=1

g(x(i)
p ) =

1

N

N∑

i=1

w̃(i)g(x(i)
q ). (2.84)

By changing to the set (2.83), we can represent the unknown distribution,
p(xk|Yk), without having to generate samples from it. We do have to calculate
the weights (2.81) but, in fact, it is not necessary to evaluate p(xk|Yk) to do so,
it is enough to evaluate a function proportional to p(xk|Yk) and normalise the
weights:

w(i) =
w̃(i)

∑N
i=1 w̃

(i)
. (2.85)

We are free to choose any suitable importance density, which will be further dis-
cussed below, but it is however required that the support of q(xk|Yk) contains the
support of p(xk|Yk), i.e.:

q(xk|Yk) > 0 if p(xk|Yk) > 0. (2.86)

The constraint on the support can be understood from the following example: if
there exists a region, S, for which p(xk ∈ S) > 0 and q(xk ∈ S) = 0, the probability
for generating samples in the region S is zero when using q(xk). Consequently,
p(xk), which can generate samples in S, cannot possibly be represented by q(xk).
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2.3 Approximate recursive solutions

Sequential importance sampling and the particle filter algorithm

Several strategies for implementing the recursive filter described by Eq. (2.5)
in Section 2.1.2 are known from literature, see, e.g., textbooks [42], [22], and
comprehensive overviews in [43] and [44]. Most methods make use of a sequential
importance sampling (sis) based strategy. Given a set of particles from a previous

recursion, {x(1)
k−1,x

(2)
k−1, . . . ,x

(N)
k−1}, and associated weights, {w(1)

k−1, w
(2)
k−1, . . . , w

(N)
k−1},

the strategy is to, for each iteration:

1. generate new particles from the existing set such that

x
(i)
k ∼ q(xk|x(i)

k−1yk).

2. update the associated weights and approximate the posterior distribution

p(xk|Yk) ≈
N∑

i=1

w
(i)
k δ(xk − x

(i)
k ).

A filter that performs these two steps is commonly denoted a particle filter (pf),
and the complete derivation is given, e.g., in [22]. If we can choose an importance

density that only requires knowledge of x
(i)
k−1 and yk, the weights are updated as

w̃
(i)
k ∝ w

(i)
k−1

p(yk|x
(i)
k )p(x

(i)
k |x(i)

k−1)

q(x
(i)
k |x(i)

k−1,yk)
(2.87)

w
(i)
k =

w̃
(i)
k∑N

i=1 w̃
(i)
k

. (2.88)

It is straightforward to calculate estimates from these distributions. For example,
the conditional mean (and mmse estimate) is:

E[xk|Yk] =

N∑

i=1

w
(i)
k x

(i)
k . (2.89)

Other estimates can also be generated from these samples, see for example [45] for
a method on how to calculate the map estimate.

Choosing importance density

We claimed that any density with the right support can be used as an importance
density. However, the numerical approximation is exact only when N → ∞, and
any embodiment must naturally rely on a limited set of particles. The better
the importance density, the more accurate estimate is given, for a fixed number
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of particles. A capable importance density is the Gaussian approximation of the
posterior distribution given by an lmmse estimator,

q(x
(i)
k |Yk) = N (x

(i)
k ; x̂k, Pk|k) (2.90)

from which we can easily generate samples. The moments x̂k and Pk|k can be cal-
culated, e.g., using the ekf or a sigma-point filter. The resulting filter is sometimes
denoted the local linearization particle filter (llpf) [22].

A density that is tempting to use is the prior, i.e., to generate the particles
from the predicted distribution:

x
(i)
k ∼ p(xk|x

(i)
k−1). (2.91)

Obviously this makes the filtering process much easier, since p(xk|xk−1) in the
tracking framework corresponds to a dynamic motion model, from which it is
generally easy to generate samples. Furthermore, the particle weight update (2.87)
is reduced to evaluating the likelihood, as the predictive models cancel out:

w̃
(i)
k ∝ w

(i)
k−1p(yk|x

(i)
k ). (2.92)

A drawback with this method, compared to the llpf, is that the importance den-
sity is independent of the measurements. This technique is used in the bootstrap
filter [46], an algorithm that cleared the way for the numerous variants of particle
filters developed today. The main contribution in the article is a method for pre-
venting the degradation of estimates over time. This so-called degeneracy problem
means that after some time, usually only a few iterations, a few particle weights
are dominant and the rest are near zero. It can be shown [43] that the uncondi-
tional variance of the importance weights can only increase over time, hence this
problem is unavoidable. The solution presented in [46] was to resample particles
from the distribution, before degeneration becomes critical. Thus the number of
particles with negligible weights is kept low. A somewhat violent metaphor is that
particles with low weights are killed whereas the good ones are multiplied. A good
criterion to measure degeneracy is the effective mass:

Jeff
k =

1
∑N

i=1(w
(i)
k )2

. (2.93)

The efficient mass was introduced in [47] and resampling is initiated whenever
Jeff
k < JThreshold. It is important to understand that resampling decreases the

accuracy of the approximation, but lays the foundation for improved future results.
Therefore, in an iteration where the resampling criterion is met, desired moments
should be calculated before the resampling takes place.

Rao-Blackwellization

If a part of the posterior distribution can be analytically calculated, it is possible
to reduce the total number of particles, as they do not need to represent these
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2.4 Moment estimation using sigma-points

dimensions. This is known as Rao-Blackwellization, to which a good tutorial and
derivation is given in [48]. The idea is illustrated by a simple example.

Example: Assume the state vector can be partitioned into a conditionally linear
and a nonlinear part, such that

xk+1 =

[
xl
k+1

xn
k+1

]
=

[
F (xn

k )x
l
k

f(xn
k)

]
+

[
vl
k

vn
k

]
,

[
vl
k

vn
k

]
∼ N (0,Q)

and

yk = h(xn
k+1) +H(xn

k+1)x
l
k +w, w ∼ N (0,R).

This could represent, e.g., a scenario where measurements are biased. The poste-
rior distribution is:

p(xk|Yk) = p(xl
k|xn

k ,Yk)p(x
n
k |Yk).

The left density is conditionally linear, and can be calculated, e.g., using the
Kalman filter, whereas the right distribution is calculated using a Particle filter:

p(xk|Yk) =

N∑

i=1

N (xl
k; x̂

l(i)
k ,P

(i)
k |xn

k )w
(i)δ(xn

k − x
n(i)
k ). (2.94)

The resulting filter is often denoted as a marginalized particle filter, as the linear
state variables are analytically marginalized out.

2.4 Moment estimation using sigma-points

The Gaussian filter framework, discussed in Section 2.3.1, provides a solution to
the recursive estimation problem under the assumption that the concerned dis-
tributions are approximately Gaussian, but requires the calculation of several ex-
pectation integrals (2.44)–(2.45), (2.49)–(2.51). In this section, we present a brief
overview of sigma-point methods for calculating such integrals. A more thorough
examination is presented in [49], whereas [34] sheds light upon the numerical inte-
gration perspective. A new approach towards using the sigma-points to calculate
these moments is the topic of Paper I appended to this thesis, which presents the
marginalised transform (mt) and the Marginalised Kalman Filter (mkf).

In Section 2.4.1, we discuss numerical integration methods and their properties,
especially concerning integration over the Gaussian distribution. Two different
approaches for using such rules in a filtering framework are discussed in Section
2.4.2 and, last, we provide some examples in Section 2.4.3.
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2.4.1 Exact integration of polynomial functions

Consider a transformation, g : R
n → R

m and a stochastic variable x ∈ R
n with

probability density function

p(x) = N (x;µx,P x),

where g, µx and P x are all known. We wish to calculate the expected value of
the transformed variable

y = g(x), y ∈ R
m.

This first moment is given by the integral expression

E[y] =

∫

Rn

N (x ;µx,P x)g(x)dx. (2.95)

Sigma-point methods provide approximate solutions to integrals such as this one
and have attractive properties with respect to performance and simplicity. The
approximation can be written in terms of a weighted sum of the function values
in κ points, with κ associated weights:

∫
N (x ;µx,P x)g(x)dx ≈

κ∑

i=1

wig(x
i). (2.96)

A rule for selecting these points and weights is called a quadrature, or a quadra-
ture rule, and are designed to calculate the integral correctly for some particular
functions, not limited to products with probability density functions such as in
our case. A Gaussian quadrature, for example, calculates (2.96) correctly when
the product N (x ;µx,P x)g(x) is a polynomial of some order. The Gauss-Hermite
quadrature, however, is adapted to be exact for polynomials that are multiplied
with the Gaussian pdf, meaning that the integral (2.96) is correctly calculated if
g(x) is a polynomial. In the literature, an important concept used to summarise
the performance of a quadrature is the precision. The definition of the precision
of an integration rule is [34]:

‘A rule is said to have precision p if it integrates monomials up to degree p exactly,
that is, monomials Πd

i=1x
ki
i with ki ≥ 0 and

∑d
i=1 ki ≤ p, but not exactly for some

monomials of degree
∑d

i=1 ki = p+ 1’.

Gauss-Hermite quadrature

If g is a polynomial, integrals such as (2.96) are calculated exactly by the Gauss-
Hermite quadrature rule. The evaluation points xi = [xi1, . . . , x

i
n]

T , for i ∈
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2.4 Moment estimation using sigma-points

{1, 2, ..., κ} and their associated weights wi are given, e.g., in [50]. The Gauss-
Hermite quadrature of precision p = 2ζ − 1 is written:

∫
N (x ;µx,P x)g(x)dx ≈

ζ∑

ℓ=1

wℓ . . .

ζ∑

j=1

wjg([x
j
1, . . . , x

ℓ
n]

T )

=
κ∑

i=1

wig(x
i), (2.97)

where the total number of points κ = ζn relates to the precision according to
ζ = p+1

2 . Unfortunately, the quadrature suffers from the curse of dimensionality;
the number of required function evaluations using a precision 3 rule for x ∈ R

2 is
only 4, but for x ∈ R

8 the quadrature requires 256 evaluations.

The Gauss-Hermite quadrature is more thoroughly explained in [32]. The
Gauss-Hermite filter (ghf) [28] applies this quadrature to the Gaussian filter cal-
culations described in Section 2.3.1.

The unscented transform and the cubature rule

The unscented transform was introduced in the mid 90’s [29], [51] as a novel ap-
proach for moment estimation in nonlinear systems. The corresponding Gaussian
filter is denoted ukf and an introduction to the method is given in, e.g., [30].

The rule has precision 3 and makes use of κ = 2n+ 1 evaluations:

∫
N (x ;µx,P x)g(x)dx ≈

2n+1∑

i=1

wig(x
i). (2.98)

The evaluated points are denoted sigma-points, and it was shown in [52] that
the ut realises a version of the fully symmetric integration formula presented
almost three decades earlier in [53]. The version employed by the ut is exact for
integration over certain polynomial functions, weighted by the Gaussian pdf. The
sigma-points and their associated weights are selected as follows:

x0 = E[x] (2.99)

xi =





E[x] +

(√
n

(1−w0)
P x

)

i

, 1 ≤ i ≤ n

E[x]−
(√

n
(1−w0)

P x

)

i−2n/2

, n < i ≤ 2n
(2.100)

wi =
1− w0

2n
, (2.101)

where i = 1, . . . , 2n and (
√
P x)i is the ith column of a matrix square root such

that
√
P x

√
P x

T
= P x. The mean weight w0 is a free variable but it is suggested

that w0 = 1−n/3, which corresponds to a rule that integrates monomials without
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cross-terms up to order 5. More specifically, the rule has precision 3, but calculates
terms on the form xκi exactly for κ ≤ 5.

The so called cubature rule, used in the ckf presented in Section 2.3.1, can
be obtained from this scheme by setting w0 = 0, effectively removing x0 from the
set. The cubature rule, consequently, has precision 3 and requires 2n points.

Apart from numerous tracking and filtering tasks, the ut has been used for,
e.g., sensitivity analysis for a variety of systems including antenna characterisation
[54], power system analysis [55] and circuit design [56]. Contrary to the Gauss-
Hermite quadrature, both the ut and the cubature rule scale very well with the
number of dimensions, using 2n+1 and 2n points respectively. Where the Gauss-
Hermite quadrature required 256 points, for x ∈ R

8, the ut needs only 17.

The marginalised transform

A different approach towards exploiting the information in the Sigma-points was
taken in [1], and is further developed in Paper I. The proposed method aims at
being optimal on average for a larger family of polynomials than what the methods
discussed above are exact for. However, the method can be designed such that
it yields the integration rules of these methods, albeit covariance matrices are
calculated differently. Some examples are included in Section 2.4.3.

2.4.2 Application in a filtering framework

There are three different types of integrals in the Gaussian filter framework; calcu-
lation of means, covariance matrices and cross-covariance matrices. Some sigma-
point filters treat all moment integrals the same, regardless of whether the first
or the second order moment is calculated. Other filters make use of models to
incorporate the known relation between the first and second order moment of a
random variable.

In Section 2.4.1 we considered the integration over a generic function, g(x), see
(2.95). This function can represent, e.g., the process model used in the prediction
step, and the integral would then correspond to the predicted mean. The integral
for the covariance matrix of the predicted state is:

Cov(f(x)) =

∫

Rn

N (x;µx,P x)
[
f(x)− E[f(x)]

][
f(x)− E[f(x)]

]T
dx

=

∫

Rn

N (x;µx,P x)f(x)f(x)
T dx− E[f(x)]E[f(x)]T . (2.102)

Clearly, the integral can be expressed on the familiar form (2.96), with g(x) =
f(x)f(x)T . In other words, one approach is to approximate the non-central second
order moment and obtain the covariance matrix by subtracting the outer product
of the mean, approximated in the previous step. Two different strategies can be ap-
plied here: either the same rule is applied to both integrals,

∫
N (x;µx,P x)f(x)dx

and
∫
N (x;µx,P x)f(x)f(x)

T dx, or some measures are taken to distinguish the
two integrals.
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2.4 Moment estimation using sigma-points

Direct application

The Gaussian filters employing the ut (the ukf) and the Cubature rule (the
ckf) both apply the integration formula directly to the integral expressions for
the mean and the non-central second order moment. This is often a successful
approach, but if the mean is correctly calculated using a minimum number of
evaluations, the covariance matrix estimate will in general not be exact. This is
not a major drawback — we are making approximations after all — what’s worse
is that with negative weights, the covariance matrix estimate may not even be
positive-semidefinite (see proof in Paper I, Appendix A).

The risk for the latter is a common objection against using the ukf and one
of the reasons for employing the cubature rule, which has only positive weights.
On the other hand, the ukf can be tuned by moving the sigma-points, whereas
the ckf cannot be tuned at all. The scaled ut, mentioned in Section 2.3.1, does
employ different weights when calculating the covariance matrix, but not in a
fashion that matters in this aspect.

Polynomial models

Another approach is to model the transforming function and calculate the co-
variance matrix conditioned on the model. The central difference Kalman filter
(cdkf) [28], and the second order divided difference filter (dd2) [31], both use a
second order polynomial approximation of the transforming function (excluding
cross-terms). The covariance matrix is calculated using this model and is there-
fore always positive-semidefinite. The cdkf and the dd2 are essentially the same
filters [49], and the mean is calculated using the same points and weights as the
ut. Consequently, both methods have precision 3 in this aspect. In practice, a
different set of weights is applied when calculating the covariance matrix. For
example, the dd2 covariance matrix is given by:

Cov(g(x)) ≈ 1

4h2

n∑

i=1

[
g(xi)− g(xi+n)

] [
g(xi)− g(xi+n)

]T

+
h2 − 1

4h4

n∑

i=1

[
g(xi) + g(xi+n)− 2g(x0)

] [
g(xi) + g(xi+n)− 2g(x0)

]T
.

(2.103)

using h =
√

n
(1−w0)

, the sigma-points are given by equations (2.99)–(2.100).

The mt, using the Hermite-polynomial base functions, also belongs to the fam-
ily of polynomial interpolation filters. However, it differs from the above methods
in that the interpolated polynomial can be modelled as a polynomial of arbitrary
order.
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2.4.3 Application examples

The sigma-point methods discussed above are exact for certain polynomial func-
tions, but arguably many functions are not well approximated by low-order poly-
nomials (recall that the precision of the more commonly used versions is 3). Fur-
thermore, with the direct approach used by the ut and the cubature rule an
expectation is also carried out over the squared function, which consequently also
should be well approximated by a polynomial. Model-based methods, on the other
hand, magnify errors present in the initial approximation when calculating the co-
variance matrix.

The purpose of this section is to illustrate how these methods perform in esti-
mation tasks. First we study the prediction of a vehicle — an important task in
active safety systems. Then we examine transformations for which the results can
be less satisfactory and discuss the reason for this.

Predicting vehicle motion

An example relevant to automotive safety is predicting the path of a vehicle,
which is done in threat assessment algorithms and in the tracking system. In
Fig. 2.2, we illustrate a 200 ms long prediction of a vehicle moving according to
the nonlinear motion model used in Papers II and III. The prior distribution is
assumed Gaussian, but the predicted distribution is not — it is rather shaped like
a banana. We apply the ut and the linearization technique used by the ekf to
estimate the mean and covariance of the predicted distribution, and compare the
result to a reference Monte-Carlo simulation. Their respective covariance contours
are plotted under the assumption that the distributions are Gaussian. In terms
of the Kalman filter algorithm, the operation corresponds to the prediction step
(2.44)–(2.45). The estimates from the linearised predictor do not approximate the
true distribution as well as the estimate from the ut, which is very accurate. This
example indicates a significant advantage with sigma-point methods.

Challenging transformations

The estimation quality of sigma-point methods can be quite sensitive to the po-
sition of the sigma points. Fig. 2.3 illustrates the application of sigma-point
methods to sinusoidal transformations, which can be particularly difficult due to
the periodicity. A comparison of Fig. 2.3a to Fig. 2.3c, shows that a sigma-point
method that performs well for one transformation can be a bad choice for another
transformation. This is made very clear when calculating the variance for two
seemingly similar transformations of x ∼ N (0, 1):

y1 = cos (x), and y2 = cos (x+
π

4
).

The cubature estimate of var(y1) is zero, whereas for y2 the estimate is nearly
exact. In Fig. 2.3c–2.3d the interesting region resembles a polynomial to a much
higher extent, and all sigma-point methods performs well.
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2.4 Moment estimation using sigma-points

Figure 2.2: Predicting the motion of a vehicle. Results are given for a linearised
model, the standard ut using w0 = 1 − n/3, and a Monte Carlo simulation. The
car, shown on a reduced scale in the figure, is assumed to be travelling at 90 km/h
and performing a turn manoeuver. The samples from the Monte-Carlo simulation
are included as grey dots to illustrate the shape of the true distribution.

In Fig. 2.4 we illustrate how the same methods perform for the inverse tangent
function. Contrary to the sinusoids in the previous example, the function changes
rapidly only near the distribution mean, which is particularly unfortunate for a
linearised approximation. The result confirms our observation from the previous
example; when the function is not polynomial, the sigma-point positions become
more important.

The mt is included in the evaluations to illustrate that the method can present
good results for transformations which are typically difficult for other sigma-point
methods to calculate correctly. Furthermore, it provides a tool for illustrating
the underlying assumptions; the mt calculates a description of the functions that
could have performed the transformation, and 50 random polynomials from this
distribution are included in Fig. 2.3 and Fig. 2.4. Any of these functions (and
infinitely many more) have the same mean as the estimates produced by the mt,

ut and the dd2. See Paper I for more details, e.g., the meaning of the prior
mentioned in the captions for figures 2.3–2.4.

Conclusion

One of the arguments for the sigma-point approach has been that it is easier to
approximate the probability distribution than the transforming function [30], [57],
and our examples indicate that this is correct — even though the functions in
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(a) Direct application of the ut and the cubature rule. The ut is overconfident whereas the
cubature rule is fairly accurate, but with a small error in the estimate of the mean.
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(b) Estimation using the linearised function, the mt, and the dd2 estimator, including 50 ran-
dom polynomials generated from the mt posterior distribution. Contrary to the linearization,
the second order approximation is overconfident.
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(c) Direct application of the ut and the cubature rule. The ut performs much better for this
function than for the transformation illustrated in (a).
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(d) Estimation using the linearised function, the mt, and the dd2 estimator, including 50
random polynomials generated from the mt posterior distribution.

Figure 2.3: Comparison of different approaches towards moment estimation. Gaus-
sian approximations of y = g(x), where x ∼ N (0, 1), are shown along the y-axis.
The ut, dd2 and the mt use the red sigma-points (0,±

√
3) and the cubature rule

use the blue sigma-points (±1). The mt diagonal prior is [1 1
100

1
100

1
100

1
100 ].
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(a) Direct application of the ut and the cubature rule. The ut use w0 = 1 − n/3, i.e., the
three red sigma-points, whereas the cubature rule is using the two turquoise sigma-points.
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(b) Model based estimation using the linearised function, the mt, and the dd2 estimator. The
mt use the prior (1 1

100

1

100

1

100

1

100
) and both sigma-point methods use the three red sigma-

points, which for the dd2 corresponds to h =
√
3.

Figure 2.4: Comparison of different approaches towards moment estimation. Gaus-
sian approximations of y = tan−1(6x), where x ∼ N (0, 1), are shown along the
y-axis. The ut, dd2 and the mt use the red sigma-points (0,±

√
3) and the cuba-

ture rule use the blue sigma-points (±1). The mt diagonal prior is [1 1 1
10

1
10

1
10 ].

Fig. 2.3a–2.3b and Fig. 2.4 are not well approximated by a low order polynomial,
some methods approximate the mean and covariance very accurate. However, it
is important to understand that even if the transforming function is not explicitly
expressed by a sigma-point method, implicitly there exists a family of polynomials
whose integrals correspond to the sigma-point approximation. In other words,
approximating the transformation with any of these functions leads to the same
result. Therefore, it is a very relevant question to ask whether or not this family
is representative for the actual transformation.
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Chapter 3
Tracking

I
n Chapter 2 we learned how to perform filtering on a dynamic system. When
put to the task of following objects in the real world, using non-ideal sensors,

several practical issues need to be taken care of before a filter can be applied.
Examples of such tasks are data association, track management, model evaluation,
state parameterisation and timing issues. In essence, a tracking system consists
of a filter for updating the tracked objects, which are commonly denoted targets,
and a set of methods responsible for solving these additional tasks. This chapter
aims to clarify why the filter cannot be directly applied, and describes standard
methods for solving the practical issues.

The system layout of the tracking system is presented in Section 3.1 and the
challenges of target-to-measurement association are explained in Section 3.2, to-
gether with some useful association algorithms. A procedure for assessing the
quality of the produced estimates is discussed in Section 3.3. In the multi-sensor
setup often used by automotive safety systems, the tracking system performs data
fusion to reliably estimate, e.g., positions and velocities of surrounding vehicles,
which is discussed in Section 3.4. More details are available in Paper V and, e.g.,
textbooks [58] and [59].

3.1 The tracking system

The exact form of a tracking system depends on the filtering strategies and the
methods used to solve the additional tasks discussed in the introduction, but in
general most systems share a similar structure. The layout of a typical multi-
sensor tracking system is illustrated in Figure 3.1. Given a new measurement, the
posterior distribution from the previous iteration is predicted to the time for the
received measurements and the data association procedure takes place (indicated
by the dashed arrows). Then, tracks with a history of poor performance may be
removed, whereas new tracks can be initiated to explain measurements that do not
originate from known objects. Finally, tracks are updated with the new data and

41



Chapter 3. Tracking

are made available to other applications, in this case threat assessment algorithms.
The prediction and the state update tasks are carried out by a filter as described
in Chapter 2.

Prediction

Gating and data 
association

Track 
management

Update tracks

Sensor 1

Sensor N

Sensor system Fusion system
(for multi-object tracking)

Threat assessment

Application 1

Application M

Figure 3.1: A general description of the tracking system. The solid arrows show
how new data yk is used to update the state vector xk−1.

3.1.1 System model

The system model provided in Section 2.1 describes a general state vector, xk, and
measurement vector, yk. Assume that the tracking system receives observations
on an unknown number of independently moving objects. The state vector can
then be parameterised as

xk =
[
z
(1)
k z

(2)
k . . . z

(Nk)
k

]
, (3.1)

where z
(i)
k is the state of the ith track and Nk is the number of tracks believed to

be present at time tk. At every iteration, we receive Mk measurements

yk =
[
γ
(1)
k ,γ

(2)
k , . . . ,γ

(Mk)
k

]
, (3.2)

which are used to update the state. If the sensor platform is moving, as in the case
of an automotive safety application, the position of the platform is often included
in the state vector as well — it can typically be tracked with high accuracy using
onboard sensors such as gyros and speedometers.

3.1.2 Tracking procedure

The actions during a recursion of the tracking system are illustrated, at a high level,
in the following example. Given the result of the previous iteration, p(xk−1|Yk−1),
a general tracking algorithm performs the following steps:

1. Predicts the tracks to the time for the next measurement. In other words;

calculate p(z
(i)
k |Yk−1), for i = 1 . . . Nk−1.
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2. Calculates the measurement distribution for each predicted track, i.e., cal-

culate p(γ
(j)
k |Yk−1) for j = 1 . . . Nk−1.

3. Associates measurements with tracks, meaning that we decide which γ
(j)
k

should be used to update track z
(i)
k|k−1. Gating, described in Section 3.2.1, is

performed prior to association.

4. Starts track candidates for measurements not associated with existing tracks.

5. Deletes tracks, e.g., those which have not been observed for some time.

6. Updates each track which has an associated measurement to calculate the

posterior distribution p(z
(i)
k |Yk).

Note that in general, Mk 6= Nk−1 and it is not until step 5 that Nk is known. These
steps differ depending on the approaches towards the estimation task at hand. One
example of a different strategy is the cardinalized probability hypothesis density
filter [60], which does not attempt to track single objects individually; one of the
consequences is that Nk is described by a probability distribution, which arguably
is a more appropriate description.

3.2 Data association

In order to update a tracked object with new information, we must first decide
which measurements to use. This task is called data association (da) and is an im-
portant component in a tracking system [61]. When every track is associated with
a measurement, any of the common methods described in Chapter 2 can be used.
However, if a track is updated with a measurement that does not originate from
the tracked object, we will obviously introduce errors. It is therefore important
to employ a robust da strategy. It should also be considered that a target does
not necessarily give rise to a measurement, i.e., is detected, in every measurement
cycle, and we denote the probability of detection by PD.

The basic methods for measurement-to-track association presented in this sec-
tion are based on the hypothesis that each target gives rise to at most one mea-
surement, i.e., that at most one measurement should be associated to each target.
We will discuss nearest neighbour algorithms and probabilistic data association al-
gorithms, which are useful methods that illustrates the complexity of the problem.
An alternative method, which performs very well, is the computationally complex
multiple hypothesis tracking [62].

3.2.1 Gating

A simple way to reduce the complexity of the data association problem is to
introduce a so-called gate for each track. This is used to exclude measurements
that are highly unlikely to originate from the track. As shown in Chapter 2, an
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inherent part of the tracking filter is to calculate the measurement distribution
p(yk|Yk−1). The probability PG that the target measurement will be inside a
region S is given by

PG =

∫

S
p(yk|Yk−1)dyk. (3.3)

The region S constitutes our gate and we use only measurements yk ∈ S.
Applying the gate can be very easy. If p(yk|Yk−1) is Gaussian, with mean

yk|k−1 and covariance matrix Sk|k−1, the square of the statistical distance

d2(yk) = (yk − yk|k−1)
TS−1

k|k−1(yk − yk|k−1) (3.4)

is Chi-square distributed with m degrees of freedom, where m is the dimension of
the measurement space: d2(yk) ∼ χ2

m. Gating then consists of a simple test:

d2(yk) ≷ λ. (3.5)

The gate size λ is calculated from (3.3) by solving
∫ λ
0 p(τ)dτ = PG, where τ ∼ χ2

m,
with respect to λ for a desired probability PG. Gating using (3.4)–(3.5) will result
in ellipsoidal gates, as shown in Figure 3.2.

Clutter

It is possible for sensors to report measurements that do not originate from objects
that should be tracked by the system. Such false returns are called clutter and
could originate, e.g., from noise affecting the sensor detection algorithm or non-
modelled objects visible to the sensor. Radar clutter in a traffic environment may
originate from traffic signs, metal litter on the verge of the road, etc. We can
attempt to calculate the expected number of false measurements inside a gate by
modelling the clutter intensity. The gate size can then be determined based on
the desired PG, the actual PD and the risk for including clutter. In other words, if
the clutter intensity is non-zero we can determine how badly we want the correct
measurement to fall inside the gate versus the risk of clutter being inside the gate
as well.

Gating example

The data association task originating from the scenario in Figure 3.2 is made clear
in Figure 3.3, where the global gating problem (3.3a) is shown from the perspective
of track one (3.3b) and two (3.3c) respectively. Clearly, gating does not solve our
problem completely because there are still multiple measurements inside the gates
and one of the measurements appears in both. If the same measurement is used
to update multiple tracks, the tracks may coalesce after some time unless this is
taken into consideration.
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Figure 3.2: A prediction and data association scenario. The ellipsoidal gates are
centred over the predicted positions of the two vehicles and the true positions are
shown by the outlined cars, deviating from the predicted positions. The measure-
ments are indicated by (⋆), and the choice of da method will significantly affect
the result.

The scenario in Figure 3.2 is such that both vehicles deviate from the predicted
position (the tip of respective arrows); the car in the right lane brakes to let the
other car, which is also braking slightly, in to the lane. Given the true position of
the cars, we conclude that measurement four probably originates from track one
and measurement one probably originates from track two. In Sections 3.2.2–3.2.5
we discuss different methods to handle the association problem. These methods
are applied to a da task and the results are shown in Figure 3.4.

3.2.2 Nearest neighbour (nn)

One simple and straightforward method for data association is to let each track use
the best measurement. The best measurement is defined to be the one nearest to
the predicted track position, motivating the name nearest neighbour, but there are
several ways to measure distance. For example, we may choose the measurement

that maximises the likelihood p(γ
(j)
k |z(i)k ) for each track. In the case of Gaussian

measurement noise, we pick the measurement γ
(j)
k for which

d2i,j = [γ
(j)
k − γ̂

(i)
k|k−1]

TS
(i)
k|k−1

−1
[γ

(j)
k − γ̂

(i)
k|k−1] {∀ j : d2i,j < λ} (3.6)

is minimised. Alternatives include minimising the Euclidian distance or choosing
the measurement with highest signal strength, the latter also called the strongest
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(a) Global association problem (gates are in-
cluded for reasons of clarity).
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gate for track one.
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(c) Measurements inside the
gate for track two.

Figure 3.3: The global association problem (a), as seen from the local perspective
of track one (b) and track two respectively (c). The predicted track positions are
marked by •. Both tracks are competing for measurement one.

neighbour association scheme. The nn method has obvious flaws in that tracks
may share measurements; two closely separated tracks are likely to merge and in
high clutter environments tracks are likely to be associated with clutter instead
of the true measurement. Nevertheless, if the circumstances are right, the nn

method may be appropriate, motivated by its simplicity and the fact that each
track can be updated individually. Recall from Section 2.2.1 that the residual is
the difference between the measurement and the predicted measurement, yk − ŷk.

Figure 3.4a shows the measurement residuals ỹ
(1)
k and ỹ

(2)
k that would be used in,

e.g., the Kalman filter, for the tracking situation presented in Figure 3.2.

3.2.3 Global nearest neighbour (gnn)

A major improvement to the nn approach is to constrain the association such that
no tracks may share the same measurement, resulting in a global optimisation
problem. Using the Gaussian noise example (3.6), the task is to minimise

min
j

Nk−1∑

i=1

d2i,j {∀ j : d2i,j < λ}, (3.7)
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where j ∈ R
Nk−1 is the global association vector and each measurement may only

be used once. The auction algorithm, e.g., the version presented in [63], is well
suited to resolve the global assignment problem. In Figure 3.4b the resulting

gnn measurement residuals ỹ
(1)
k and ỹ

(2)
k are shown for the tracking situation

presented in Figure 3.2. This approach solves the problem of tracks sharing the
same measurements, but will still perform poorly in cluttered environments.

In order to prevent uncertain tracks from stealing measurements from good
tracks, it is common to use the generalised statistical distance

d̄2i,j = d2i,j + ln(|S(i)
k |) (3.8)

instead of d2i,j in equation (3.7), i.e., maximise the likelihood p(yk|Yk−1).
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(a) nn association. Both tracks use the
same measurement.
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k
~y
(1)
k

~y
(2)
k
~y
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(b) gnn association. Track two gets the
shared measurement.
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(c) pda association. The weighted resid-
ual for track one is almost zero.
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(1)
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(d) jpda association. Compared to the
pda, weighted residuals are less influ-
enced by the shared measurement.

Figure 3.4: A comparison of different data association methods. The measurement
residual used to update each track is drawn with a black arrow. The following
settings were used: PD = 0.9, PG = 0.975, and clutter intensity is approximated
using β = NG

VG
, where VG is the gate volume.

3.2.4 Probabilistic data association (pda)

The probabilistic data association approach was presented in [64] and acknowledges
that the sources of the measurements are unknown. It is based on a Bayesian
probability approach where each measurement is said to originate either from
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the tracked object or from clutter. The latter is often modelled as a Poisson
process whereas measurement noise is assumed to be Gaussian. If the number
of measurements that fall inside the gate is N i

G, a total of N i
G + 1 association

hypotheses can be formed for each target, including the event of a missed detection:

Hi
0 : No measurement originates from object i

Hi
j : Measurement j originates from object i

The probability for each hypothesis, pij = Pr(Hi
j), j = 0 . . . N i

G), derived in [58],
is used to form a weighted sum of all residuals

γ̃i
k =

N i
G∑

j=1

pijγ̃
(j)
k . (3.9)

The weighted measurement residual, γ̃i
k, can be used to update the ith track using

any of the Gaussian filters described in Chapter 2 (Section 2.2.1 and Section 2.3.1).
Since clutter has been included in the state update, the posterior covariance matrix
is adjusted to account for the increased uncertainty:

P i
k = pi0P

i
k|k−1 + (1− p0j)P̃

i
k|k + dP i

k, (3.10)

where P̃
i
k|k is the posterior covariance given that there are no association uncer-

tainties, P k|k−1 is the covariance of the predicted state, and

dP i
k , Kk




N i
G∑

j=1

pijγ̃
(j)
k (γ̃

(j)
k )T − γ̃i

kγ̃
i T
k


KT

k . (3.11)

A pda assignment results in the use of a measurement residual influenced by all
gated measurements, shown in Figure 3.4c using the same example as earlier.
Note that the pda, similar to the nn, makes the simplifying assumption that
other tracked objects do not generate measurements. In practice, the pda will
experience problems when the gating regions of two tracks overlap — the tracks
tend to merge since they are updated using more or less the same observations.

3.2.5 Joint probabilistic data association (jpda)

Contrary to the pda approach, if the association probabilities are calculated jointly
for all tracks and all gated observations we can consider the possibility that tracks
yield measurements that fall into the gates of nearby tracks. The jpda approach
was introduced in [65], and the effect is that the influence on each track from
measurements appearing in more than one gate, is reduced. This is illustrated in
Fig. 3.4d, which should be compared to the pda result, shown in Fig. 3.4c.

The association probabilities pij need to be recalculated to take the global
effects into account. The expressions are available, e.g., in [58]. Calculating all
hypotheses can be tough when several tracks share measurements and iterated
versions of pda have been suggested to approximate this solution, see, e.g., [59].

48



3.3 Track management

3.3 Track management

Previously, our goal has been to update the objects from the previous time instant
with new data, but the number of objects has been assumed constant. We have
also overlooked the question of track quality. We now direct our attention towards
track initialisation and track removal, first treated in [61]. Extensive research on
the topic is accounted for in [58], [59].

3.3.1 Sequential probability ratio test (sprt)

Due to the da uncertainties, it is possible for tracks to be updated with clut-
ter, which obviously is not desirable. At least, if it happens, the receiver of the
estimates should be made aware of it. Clearly it is not possible to know when
this happens, so a statistical test is used instead. Two hypotheses that can be
evaluated for each tracked object i = 1 . . .Mk are introduced:

Hi
1 : We are tracking a true object

Hi
0 : We are tracking clutter.

The sequential probability ratio test, introduced in [66], can be used to create a
test statistic, ηi, for comparing hypotheses such as these. The statistic is defined
as the quotient between the respective hypothesis probabilities and, conditioned
on the measurements Yk, we write

ηk =
Pr(Hi

1|Yk)

Pr(Hi
0|Yk)

=
p(Yk|Hi

1)Pr(Hi
1)

p(Yk|Hi
0)Pr(Hi

0)
. (3.12)

A detector can then be designed to use this statistic for decision-making. Note
also that the statistic can be recursively calculated in a tracking framework, as

ηk =
p(yk|Yk−1,Hi

1)

p(yk|Yk−1,Hi
0)
ηk−1 (3.13)

The recursive form is possible due to the Markov property of the process model,
and that the measurement model is a function of the state vector. The logarithm
of this statistic is often used in a tracking system as a quality measure of the track.

Track score

The so called track score Li(k) is defined as the logarithm of the hypotheses test
statistic ηik, and we see from Eq. (3.13) that Li(k− 1) can be recursively updated
to include new data yk by a simple addition:

Li(k) = Li(k − 1) +∆Li(k) (3.14)

∆Li(k) = log
p(yk|Yk−1,Hi

1)

p(yk|Yk−1,Hi
0)

(3.15)
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The term ∆Li(k), expressed in detail for various clutter models in [58], is related
to how well each model explains the observed data. Thus, the score Li(k) can be
used to determine the quality of the track, and as ∆Li(k) can take both positive
and negative values, the score will increase and decrease over time.

Track validation

Whenever measurements are not associated to an existing track a new object may
have appeared, but it could also be clutter. A pragmatic approach is to initiate
new candidate tracks for these measurements and use future data to determine the
measurement origin. One commonly used approach is to use the track score L(k)
as an indicator; a new track is validated if the score exceeds a design threshold,
or rejected if the score drops to low. The time spent in the so-called validation
region, waiting for any of these thresholds to be crossed, varies depending on data.

A much simpler, yet sometimes appropriate, validation scheme is to use an
m-out-of-n criterion: a track is validated when it has been associated with a mea-
surement m times during the last n association rounds.

Track removal

Naturally, just as new objects can enter the area observed by the sensors, they
may leave. It makes little sense to keep track of an object that has left the field-
of-view of the sensor, and one approach is to use the track score function also for
this purpose. A common approach for preventing old tracks with a flawless record
from becoming invincible, is to saturate L(k) at a certain value. Other heuristic
approaches include removing tracks that are too far away, tracks whose covariance
matrices are to big, or tracks that have not been associated with data for some
time, similar to the m-out-of-n criterion for track initialisation.

Model evaluation

Our estimation is based on models for dynamics and measurements, so the es-
timates are conditioned on the model choices; consider for example the Kalman
filter — the posterior covariance matrix is not dependent on data, it is determined
entirely by the models. The sprt statistic can be used to decide which model
is appropriate for a certain object after data has been observed, e.g., during the
track validation period.

3.4 Data fusion

It is often beneficial to use a multi-sensor system in order to obtain multiple
measurements from the tracked objects. Preferably, the sensors utilise different
measurement principles in order to minimise technology-specific systematic errors
and to benefit from the combination of their respective strengths. Multiple sensors
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(a) Two measurements on the position of a single car are made at two different times. The
car moves relatively far during the time between the first and the second measurement.
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(b) Two sensors provide measurements to a tracking system. The length of a rectangle
corresponds to time spent by a sensor of internal signal processing. Thus the left side of
a rectangle corresponds to the time of the actual measurement (t1, t2), whereas the right
(t3) is when the tracking system can use the measurement.

Figure 3.5: Two sensors deliver data to the tracking system, but sensor one reports
slightly older measurements than sensor two. The updated state description of the
vehicle position will be poor if the delay is not accounted for.

can improve tracking results significantly yet also impose additional requirements
on the system architecture, for example, on sample rate and time-stamping of
measurements. Paper V presents a framework and a fusion approach in which
several of the methods presented in this thesis have been included.

3.4.1 Measurement delays

Any potential benefits of a data fusion system can be ruined if we do not know,
or cannot estimate, how old the data is when it reaches the tracking system. Of
course that would be a problem in a single-sensor system as well, but if the delay
is constant at least the estimates will be consistent. In a data fusion system where
two sensors measure the same moving object at two different times, they will report
two different positions. If they are used by the tracking system without knowledge
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of the time difference, the effects will be similar to when gridlock errors1 occur in
distributed sensor systems. An example is given in Figure 3.5; two sensors collect
measurements, but at different times, and due to delays they are available to the
tracking system at the same time. If the tracking system cannot compensate for
these delays, a fused track may perform worse than if only one sensor was used.

Example: Two vehicles are driving at 90 km/h in opposite directions. A delay of
50 ms between the measurements results in an offset of 2.5 m.

When an observation is delayed such that newer measurements have been used
to perform a state update before the old measurement reaches the fusion system, it
is called an out-of-sequence measurement. The recursive scheme cannot be directly
applied to update the state using the old measurement, unless previous states and
measurements are stored such that the filter can be re-run — this would be the
optimal approach. In a multi-sensor multi-target tracking system, however, there
is a limit to how much of the history can be saved and the optimal approach can
only be used to a limited extent. Provided we are aware of the extent of the delay,
an easy but unsatisfactory approach is to disregard the old data. This, of course,
is a waste of information. A better approach is to do a “backwards prediction”,
i.e., a negative-time measurement update, such that the state can be updated at
the time of the measurement, as shown in [67], [68], for linear systems.

3.5 Tracking example

An informal tracking example is included in this thesis, in the header area on pages
19–51. It can be viewed from here by putting a thumb on the 50th page and letting
one page go at the time, until the 18th page has been reached; preferably in a pace of
approximately 5 sheets per second. This should give an optical illusion of a radar-
equipped truck approaching an intersection, while meeting a car in the oncoming
lane. Another car drives out in front of the truck from the smaller road, such that
the truck is forced to apply the brakes. The small dots are radar measurements
and the ellipses are covariance contours of the state vector of the respective cars.
Folding the title pages of Chapter 3 probably improves the experience.

1Gridlock errors occur when measurements originating from a sensor whose position is uncer-
tain, are to be combined with other measurements.
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A
model of a system is a useful tool; it enables reasoning regarding system
properties and lays down the guiding principles for how the system should

be treated. The model selection will be a critical design choice in any application.
A sound strategy is to use a model that is as simple as possible, but still describes
the behaviour that we are interested in with sufficient accuracy. Deciding what is
“simple” and “sufficient” may of course be far from obvious. Numerous textbooks
have been written on the topic, including [21], [69] to mention just a few, where
the former discusses models for estimation and the latter teaches model design in
general.

It is important to understand that model selection leads to assumptions not
only regarding what properties we choose to include in our model, equally impor-
tant is also what is not included.

Example: A sensor measures the range, r, to an object and we wish to model the
sensor output, y = f(·). A very simple model would be

y = r. (4.1)

In the example above we have stated that the sensor output depends only on
the true range and that the sensor is totally accurate. However, we implicitly state
that several other properties are also valid, e.g., there is no limit in how far the
sensor can see, the object is a point in space, the object is always detected, the
surrounding environment does not affect the measurements, etc. Most of these
assumptions are usually not correct. In this section we will explain how to design
models suitable in a tracking system, i.e., motion models and measurement models,
and formally handle the effects of simplifications.

4.1 Stochastic model description

It is common to include a stochastic model parameter to explain inaccuracies when
it is not possible to model a system with total accuracy [21], [58]. In other words,
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we recognise that a model cannot describe the system in a deterministic sense.
Instead we attempt to model the inaccuracies through an unknown parameter
whose statistical properties are known, referred to as noise.

Example: To extend the model from the previous example to explain inaccuracies
in the range measurement, let

y = r + e, (4.2)

where e is a scalar stochastic variable with known statistic properties, for
example e ∼ N (µe, σ

2
e ). The statistical properties of the resulting sensor

output are then described as,

y ∼ N (r + µe, σ
2
e). (4.3)

It is important to correctly model the statistical properties of noise parameters,
as estimators are derived based on these assumptions. To obtain mathematically
tractable models we often assume that noise enters the model as additive white
Gaussian noise (wgn), unless there is strong evidence to the contrary [20]. This
assumption is further justified by Theorem 1, which broadly speaking states that
the sum of infinitely many random variables is normally distributed1.

Theorem 1 (Central limit theorem)
Let X1,X2, . . . Xn be a sequence of independent identically distributed random

variables with finite mean µ and non-zero variance, σ. Then, as n → ∞

1√
Nσ2

n∑
i=1

(Xi − µ)
D→ N (0, 1),

meaning that the distribution function of the sum will converge to the distribution

function of N (0, 1).

Proof of this theorem is given in [70].
Even though Theorem 1 indicates that noise is likely to be approximately

wgn at some point, due to subsequent transformations, it is still possible for the
observable variable to have a non-Gaussian distribution.

4.2 Models in the tracking framework

Chapter 2 discusses the formal solution towards filtering the system described in
Section 2.1, and the filter recursion described by (2.5) contains the distributions

p(xk| xk−1) (4.4)

p(yk| xk). (4.5)

1It is in fact the distribution function that converges to that of a normal distribution.
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In a tracking system the state vector xk can be viewed as a snapshot of the tracked
entities, e.g., the position of a vehicle, at time tk. Similarly, when a measurement,
yk, is obtained by a sensor, it is a snapshot of the tracked entities at time tk,
as perceived by the sensor. In terms of the distributions (4.4)–(4.5), we conclude
that p(xk|xk−1) describes how the state vector xk changes as a function of time,
and p(yk|xk) describes how the sensor perceives the world for a given state vector
xk. The two distributions are denoted process model and measurement model, also
often referred to as the motion model and the sensor model. A commonly used
formulation is on the form (2.1)–(2.2), i.e.,

xk = fk−1(xk−1,vk−1) (4.6)

yk = hk(xk,wk), (4.7)

where it is made clear that noise, vk−1 and wk affects the motion. Developing
models is the base of estimation and therefore also the foundation of a tracking
framework. In this section we will look deeper into these models.

4.2.1 The motion model

The motion model, or process model, describes how the state vector changes over
time. In tracking, the state vector typically contains physical entities such as the
position of vehicles in the surrounding environment. A good survey on dynamic
models for manoeuvering targets is [71]. The dynamics of a system can generally
be written

ẋ(t) = g(x(t),ϑ(t)), (4.8)

where the stochastic noise process ϑ(t) is introduced to explain model inaccuracies
and events that cannot be predicted. There is a balance between accuracy and
model complexity; ẋ(t) is modelled as a function of the state and noise, so any
parameter affecting the derivative should be included in one of these terms, which
could grow to an arbitrary size. Typically, a parameter is included in the state
vector if it is required for accuracy, and can be measured or accurately predicted.

Motion model example

We shall attempt to model the motion of a vehicle moving in a Cartesian coordinate
system ξ and assume that ξ̈(t) can be modelled as a stochastic noise process ϑ(t).
This motivates the state parameterisation

x(t) = [ξx(t) ξy(t) ξ̇x(t) ξ̇y(t)]
T . (4.9)

The relation (4.8) can be written as a set of linear differential equations

ẋ(t) = Ax(t) +Bϑ(t), (4.10)
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where

A =

[
02x2 I2x2
02x2 02x2

]
, B =

[
02x2
I2x2

]
, ϑ(t) =

[
ϑx(t)
ϑy(t)

]
. (4.11)

If the process noise is white, i.e.

E[ϑ(t)] = 0 (4.12)

E[ϑ(t)ϑ(τ)T ] = Qϑδ(t− τ), (4.13)

this model is called a continuous white noise acceleration (cwna) model, com-
monly referred to as a constant velocity model.

Using the model for prediction

Let us consider the problem of estimating future values of the state vector x(t)
given the current state x(t0). The state will be affected by noise during the pre-
diction interval, so the predicted state is a stochastic process. Using Eq. (4.8), the
prediction can be written

x(t) = x(t0) +

∫ t

t0

g(x(τ),ϑ(τ))dτ. (4.14)

If we can form a linear time-invariant model such as (4.10), the solution takes the
form [21]:

x(t) = F(t, t0)x(t0) +

∫ t

t0

F(t, τ)B(τ)ϑ(τ)dτ, (4.15)

where

F(t, t0) = eA(t−t0) (4.16)

eAt =

∞∑

k=0

1

k!
(At)k. (4.17)

For time dependent systems, however, the state transition matrix F(t, t0) may not
have an explicit form.

Discretisation of a continuous motion model

We often need discrete-time models; practically all algorithms are implemented
on a computer and measurements arrive only at discrete time instants. In other
words, we wish to find an expression

x(kT + T ) = f(x(kT ), ṽ(kT )) (4.18)
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where T is the system sampling interval and k ∈ N a counter. Usually notation
is simplified by writing x(kT ) as xk. We immediately spot the resemblance with
the prediction task, so the solution is given by equations (4.14)–(4.15). Solving
the integral expression may be difficult, and simplifications and approximations
may be necessary; it is common to assume constant noise in between samples. For
the cwna model example (4.10), where the state transition matrix takes the form
eA(t−t0) we can derive the exact solution:

xk+1 = eATxk + ṽk. (4.19)

The new discrete process noise parameter ṽ(kT ) has covariance matrix Qṽ, which
relates to the intensity of the continuous noise process ϑ(t) through the integral
in (4.14):

ṽk =

∫ T

0
eA(T−τ)Bϑ(kT + τ)dτ, (4.20)

where ṽ(kT ) is a zero-mean random variable with covariance matrix [21]:

Qṽ =




1
3T

3 0 1
2T

2 0
0 1

3T
3 0 1

2T
2

1
2T

2 0 T 0
0 1

2T
2 0 T



[
Qϑ 0
0 Qϑ

]
, (4.21)

i.e., a function of the power spectral density Qϑ of the continuous time noise
process.

Direct discretisation

To develop and discretise a continuous time motion model can be time consuming
and it may be much more efficient to formulate a discrete motion model directly,
shown here with a simple example — the discrete white noise acceleration (dwna)
model. It is very similar to the cwna model shown in the examples above. Let
the state vector be

xk = [ξxk
ξyk ξ̇xk

ξ̇yk ]
T , (4.22)

and assume ξ̇xk
, ξ̇yk to be white discrete-time random walk Gaussian processes

driven by the noise vk. The dynamics are described by the difference equation

xk+1 = Fxk + Γvk, (4.23)

where

F =

[
I2x2 I2x2 · T
02x2 I2x2

]
, Γ =

[
I2x2 · 1

2T
2

I2x2 · T

]
, vk =

[
vxk

vyk

]
. (4.24)
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The unit of vk is
[
m
s2

]
and the expression for Γ originates from the relation

∫ T

0
vxk

dt = Tvxk
(4.25)

∫ T

0

∫ T

0
vxk

dt dτ =
1

2
T 2vxk

. (4.26)

The difference between this representation and the discretised cwna is the
definition of the process noise, which now is assumed to be a sequence of random
numbers. Note that the noise covariance matrix E[Γvkv

T
k Γ

T ] does not have the
same form as Qṽ in (4.21):

ΓQvΓ
T =




1
2T

2 0
0 1

2T
2

T 0
0 T



[
Qv

] [ 1
2T

2 0 T 0
0 1

2T
2 0 T

]
(4.27)

=




1
4T

4 0 1
2T

3 0
0 1

3T
4 0 1

2T
3

1
2T

3 0 T 2 0
0 1

2T
3 0 T 2



[
Qv 0
0 Qv

]
, (4.28)

where E[vkv
T
k = Qv] and (4.28) is included so we can compare the form with

(4.21). Similar to the cwna these models are also often referred to as constant
velocity models.

Modifications to the CWNA and the DWNA

The cwna and dwna models shown in the previous section can be altered into
the so-called continuous wiener process acceleration (cwpa) model and discrete
wiener process acceleration (dwpa) model by including the acceleration in the
state vector. In the cwpa case, the resulting parameterisation is

x(t) = [ξx(t) ξy(t) ξ̇x(t) ξ̇y(t) ξ̈x(t) ξ̈y(t)]
T (4.29)

[ ...
ξ x(t)...
ξ y(t)

]
=

[
ϑx(t)
ϑy(t)

]
, (4.30)

where the unit of ϑ(t) is
[
m
s3

]
. In the case of the dwpa, noise is often modelled as an

increment in acceleration, making it easier to choose the process noise covariance.
These models are commonly denoted constant acceleration models and are widely
used. Other popular models include the Singer model [72], the coordinated turn
models, and bicycle models of various complexity, e.g., described in [4] and [73].
Textbooks [21], [58] and tutorial [71] present further details. A model assumption
in these models, when applied to vehicle motion, is that driver input is modelled
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as noise. One can think of several occasions when this is not a good assumption,
especially when modelling the motion of vehicles. Generally a driver controls the
vehicle in accordance with some plan or preferences, which would be beneficial to
include in the model. Paper IV provides a framework for modelling such behaviour
for improved predictions and situation assessment. The output is believed to be
particularly useful in Paper II, where a framework for decision-making using a
driver model is presented.

4.2.2 The measurement model

The purpose of the measurement model is to describe the measurement density
p(yk|xk). It describes a snapshot of the dynamic system, seen through the eyes of
the sensor. We have concluded in Chapter 2 that it is a necessary component in
calculating the posterior distribution, and it was shown in Chapter 3 that it can
be used to determine the quality of the estimates.

Figure 4.1: A sensor reports six detections marked in the figure by stars. Three
measurements originate from the top left car, two from the bottom right car and
one does not seem to originate from a vehicle at all. A sensor model should explain,
in a statistical sense, where these measurements occur.

The sensor model has two main functions. It describes how the state space
is perceived by the sensor, but also how the surrounding environment influences
the measurements. We intuitively see how the former can enter the model as
a mathematical relation, e.g. (4.31) if measurement noise wk is additive. The
example of polar-to-Cartesian coordinate transformation,

[
x
y

]
=

[
r cosϕ
r sinϕ

]
+

[
wx

wy

]
, (4.31)

is illustrated in Section 2.4.3. Examples of other descriptions provided by the
sensor model are, for example, the operational range, sensor mounting position,
expected number of detections per object, clutter sensitivity, etc. A typical sce-
nario when tracking vehicles with a radar sensor is shown in Figure 4.1, illustrating
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five measurements distributed near the two vehicles, and one measurement in the
middle of the road. Some typical sensor model parameters and sensor model de-
pendent statistics are the following:

PD : Probability of detection (PD = 0 outside the detection
region).

1− PD : The probability that an object is not detected even
though it is within the detection range.

λc : The clutter intensity
∆d : A resolution cell, in which two or more different tar-

gets cannot be separated.
p(yk|xk, λ

c, PD=1) : The measurement distribution for a detected target.

Design of a sensor model depends heavily on the underlying sensing principle
and hardware design, a more detailed model is generally associated with a spe-
cific sensor and will not be further discussed here. Examples of common sensor
technologies are radar, laser based ranging, infrared, acoustic, and image sensors,
whose characteristics from a tracking perspective are studied e.g. in [58]. A more
detailed survey regarding radar systems modelling for tracking is given in [59] and
one example of how to track distributed targets, such as the cars in Figure 4.1,
using a more detailed radar sensor model is given in Paper III.
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Chapter 5
Contributions and future work

W
hile the previous chapters provide a background to the problems discussed
in the contributions in Part II, this chapter presents a short summary of

the contributions in the appended papers and elaborate on possible extensions and
future work.

5.1 Contributions

The author’s work has mainly focused on recursive estimation, or filtering. More
specifically, modelling radar measurements, prediction models including the driver
input, and methods for estimating the mean and covariance of random variables
have been in focus — a trio which comes in handy when designing a filtering
framework; much like the three musketeers in a sword-fight. The efforts have
resulted in a derivative-free filter for recursive estimation, and a framework for
motion modelling where the control input from the driver is included. Further,
a sensor model that explains the presence of multiple detections from a single
object has been developed and incorporated in a tracking framework. The goal
has been to describe the traffic environment such that active safety applications
can utilise the description in making intervention decisions. A probabilistic frame-
work is well suited for such a description and allows for a natural extension of
the uncertainty representation into the decision layer, see Fig. 1.3. The work has
therefore come to include some aspects of decision-making and driver modelling
too, albeit not covering actual threat assessment. Rather, the proposed framework
for decision-making is intended for usage with any set of threat assessment algo-
rithms. Additionally, when designing a complete tracking system, several complex
design choices must be analysed and practical issues that arise must be coped with.
The work in this particular field has been characterised by the desire to create a
modular development platform that is suitable for continuous development.

The work has been supported by the Swedish intelligent vehicle safety systems
(ivss) programme and the strategic vehicle research and innovation programme

61



Chapter 5. Contributions and future work

(ffi), both of which are funded by the Swedish governmental agency for innovation
systems (vinnova).

Paper I: Moment Estimation Using a Marginalized Transform

So-called sigma-point methods are often applied to the task of estimating the mean
and covariance of transformed random variables in Gaussian filtering frameworks,
due to their simplicity and documented performance. Although the transforming
function is typically known, the integral expressions for mean and covariance are
not. In this paper, we propose to use evaluations of the transforming function to
describe a family of functions which could have performed the observed evalua-
tions. The family is selected such that expressions for mean and covariance are
known; estimates of the mean and covariance are then derived by marginalising
the function from the analytical expressions. The information provided by the
evaluations is used in a Bayesian framework, and the resulting estimation algo-
rithm performs well, especially in estimating the covariance matrix. Contrary to
the unscented transform, the resulting approximation of the covariance matrix is
guaranteed to be positive-semidefinite.

The author has contributed to a majority of this work.

Paper II: A Probabilistic Framework for Decision-Making in Collision
Avoidance Systems

When designing intervention rules intended to avoid or mitigate the consequences
of an accident, our understanding of the measurement and prediction uncertain-
ties should be taken into consideration. This paper describes how the posterior
description of the traffic situation, provided by a tracking system, can be used
together with prediction models to calculate a probabilistic description of possible
threats. We propose a decision-making framework which not only formally treats
these uncertainties, but also includes a model of the driver acceptance of interven-
tions. The reason is that, when aiming at collision avoidance, it is hard to define
objective performance measurements — how does one express the condition for
when an intervention is too early? Such decisions are subjective; in some situa-
tions it might be appropriate with high margins, whereas in other situations this
is not accepted by the drivers at all. In this paper we include a driver model in
the decision-framework in order to assess whether an intervention would be con-
sidered justified or not by the driver. It is shown that this approach can lead to
earlier interventions in certain scenarios, rendering a higher safety benefit while
suppressing interventions that the driver might not have appreciated. The exam-
ple implementation uses a driver model expressed in terms of the driver conception
of the world, and a previously known threat assessment algorithm.

This paper is a refinement of the ideas initially presented in [2], where the
author and Mattias Brännström jointly explored the no man’s land between their
respective expertise (filtering and threat assessment). The author’s contribution
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has therefore mainly concerned using statistical methods to describe the output
from threat assessment algorithms, the formal treatment of the associated uncer-
tainties in the decision-making process, and the inclusion and evaluation of a driver
model therein.

Paper III: Extended object tracking using a radar resolution model

Vehicles can be so-called distributed targets, meaning that they may yield multiple
radar detections in a single scan. The result is a difficult data association problem
that requires a detailed sensor model. The benefit of such measurements is that
information such as object size and orientation can be extracted. In this paper we
show how vehicles can be tracked using radar data containing multiple detections
from each vehicle, given a reflector-based sensor model and an improved data
association scheme.

This work has been carried out in close co-operation between the four authors
of the paper, where all contributed to a similar extent. The main contributions of
the author include designing a filter capable of using the reflector model, analysis
and acquisition of radar data, and validation and design of the reference filter.

Paper IV: A new vehicle motion model for improved predictions and
situation assessment

In this paper we present a framework for designing motion models which take
the expected control input from the driver into consideration. A methodology for
formal treatment of uncertainties regarding driver preferences and driving style is
presented, which makes such models suitable for use in a tracking system. The
ideas were originally introduced in [74], and were further developed in [6].

This work has been carried out in close co-operation between the four au-
thors of the paper, where all contributed to a similar extent. The author’s work
has particularly concerned the modelling of driver-specific parameters and the
marginalisation of these parameters from the state estimate.

Paper V: A design architecture for sensor data fusion systems with
application to automotive safety

When designing a tracking system, there are many requirements to consider; not
only must the output meet the requirements of the decision layer, the system
must also be adapted for real-time implementation in a vehicle. Furthermore, the
design should facilitate continuous development of the platform, such that future
systems benefit from old and new experiences. This document describes how a
tracking system for real-time usage in a vehicle can be designed and implemented
to meet these needs, and contains descriptions and advice regarding methods and
components of a tracking system. A tracking system using this design has been
used in the evaluations of Paper III and Paper II.
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This work has been carried out in close co-operation, and both authors have
been involved in all of the design choices.

5.2 Future work

Several interesting ideas for future research were born during this research; some
are necessary in order to make use of the presented methods in a real-time system
in a vehicle, whereas other ideas intend to improve the benefit of active safety
systems as a whole. Perhaps the most interesting ideas are the following:

Extending the marginalised transform framework

The mt framework shows promising results and there are several directions in
which the method could be developed. An interesting thought is to use a different
set of base functions than the Hermite polynomials, which are used in Paper I.
This could be useful when models are not well approximated as polynomials, but
it also invites to density filtering. This is related to a filtering approach that has
appeared recently in the literature, where the aim is to calculate the probability
density functions directly, rather than using the Gaussian filter framework.

Another interesting aspect is to use an adaptive prior for the mt, such that
the description of the function evolves over time and over the state space, when
applied in the recursive filtering framework. This could improve accuracy and make
it possible to use fewer sigma points, thereby improving real-time performance.

Modelling the sigma-points as noisy observations opens up the possibility to
include previously propagated sigma-points into the estimation, without constrain-
ing the approximation to pass through these points. The approach can be useful
in situations where it is computationally expensive to evaluate the sigma-points,
such as solving an optimisation problem.

The Gaussian filter in its basic form does not use the most recent measurement
in the calculation of the covariance matrix estimate. Some methods, such as the
iterated ekf, perform the state update iteratively to improve results using the
latest measurement. To use the marginalised Kalman filter in a similar approach
would be interesting, as it may reduce the influence of a poorly placed sigma-point
on the final estimate.

Including new sensor-families in the fusion framework

The inclusion of driver-state sensors, map databases and vehicle-to-vehicle com-
munication systems into the tracking system is an intuitive step, considering the
usefulness of such information in threat assessment. However, this would require
a different state-space representation than what we have used so far, and requires
new sensor models. It is not clear if this approach is beneficial compared with
other methods for including such information. Developing a sensor model for a
driver-state sensor, for example, could be an intriguing challenge to start with.
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Validation of driver models for decision-making

The evaluation of the decision framework proposed in Paper II makes use of a
driver model developed based on assumptions regarding drivers’ conception of the
traffic situation. Although the model is supported by studies on how the human
perception works, a model designed for use in a production-ready system needs to
be adjusted and verified using actual drivers.

Extending the real-time system

The system presented in Paper V needs to be continuously developed in order to
meet the demands of future in-vehicle safety systems. New sensors require not only
models of their measurements; if the sensor can observe objects which previously
could not be detected, new target models are also required. Track management
methods and self-assessment procedures need to be developed jointly with threat
assessment algorithms in order to develop relevant confidence measures. Robust
strategies for fusion of data on different levels of refinement are required, as some
sensors deliver filtered tracks, whereas others provide less processed measurements.
Furthermore, a carefully prepared development platform facilitates the transfer of
recent advances into vehicle programmes — this is a design challenge in itself.

65



Chapter 5. Contributions and future work

66



Bibliography

[1] F. Sandblom and L. Svensson, “Marginalized sigma-point filtering,” in Proc.
14th Int. Conference on Information Fusion, Chicago, USA, July 2011, pp.
1–8.

[2] F. Sandblom and M. Brännström, “Probabilistic threat assessment and driver
modeling in collision avoidance systems,” in Intelligent Vehicles Symposium,
2011 IEEE, Baden-Baden, Germany, June 2011, pp. 914 –919.

[3] M. Ahrholdt, F. Sandblom, L. Danielsson, and C. Lundquist, “SEFS results
on sensor data fusion system development,” in ITS World Congress, Stock-
holm, Sweden, September 2009.

[4] F. Bengtsson and L. Danielsson, “Designing a real time sensor data fusion
system with application to automotive safety,” Signals and Systems, Chalmers
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Moment Estimation Using a Marginalized Transform

Fredrik Sandblom, Lennart Svensson

Abstract

We present a method for estimating mean and covariance of a transformed
Gaussian random variable. The method is based on evaluations of the trans-
forming function and resembles the unscented transform and Gauss-Hermite
integration in that respect. The information provided by the evaluations
is used in a Bayesian framework to form a posterior description of the pa-
rameters in a model of the transforming function. Estimates are then de-
rived by marginalizing these parameters from the analytical expression of the
mean and covariance. An estimation algorithm, based on the assumption
that the transforming function can be described using Hermite polynomials,
is presented and applied to the non-linear filtering problem. The resulting
marginalized transform (mt) estimator is compared to the cubature rule, the
unscented transform and the divided difference estimator. The evaluations
show that the presented method performs better than these methods, more
specifically in estimating the covariance matrix. Contrary to the unscented
transform, the resulting approximation of the covariance matrix is guaranteed
to be positive-semidefinite.

1 Introduction

Calculating the mean and covariance of stochastic variables is central to many
estimation tasks, including, e.g., sensitivity analysis, which can be applied to a
variety of systems including antenna characterization [1], power system analysis [2]
and circuit design [3]. It is also frequently an essential component in recursive state
estimation where the posterior mean and covariance often are used to characterize
the distribution [4,5]. The importance of this task, with applications ranging from
surveillance to medicine, have motivated a large part of recent research within the
area of moment estimation [5], [6], [7], [8], [9], [10].

The general Bayesian solution to the state estimation problem involves integra-
tion of probability density functions —integrals which are rarely mathematically
tractable. The family of Gaussian filters solves the recursive estimation problem
under the assumption that the concerned distributions are approximately Gaus-
sian. The equations used to compute the posterior mean and covariance under
this assumption are those of the linear minimum mean square error (lmmse ) es-
timator, which coincides with the well known Kalman filter for linear systems [4].

A variety of Gaussian filters have been proposed to cope with non-linear models
[5], and the derivative-free filters [11], [6], [7], [8], [9] are particularly useful; with
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little or no adjustment, they can be applied to a wide range of problems. These
filters use a transformed set of deterministically chosen points, often referred to
as sigma-points, to approximate the mean and covariance. Arguably, the most
well-known sigma-point method is the unscented transform (ut) [7], [11], that
has been shown [12] to realize the fully symmetric integration formula presented
in [13], which is exact for integration over certain polynomial functions. The
(second order) divided difference filter (dd2) [6] calculates the mean and covariance
matrix jointly, and both estimates are exact for a certain family of second order
polynomials. An extensive analysis of the numerical integration perspective on
Gaussian filters is given in [14].

Although easy to apply, derivative-free filters are not problem-free. The ut

covariance matrix estimate is sometimes calculated such that it is not necessarily
positive-semidefinite. This behavior was overcome with the recent introduction of
the cubature integration rule [9], a special case of the ut, whose covariance matrix
estimates are guaranteed to be non-negative definite. It performs well compared
to methods of similar complexity [9], [15], [16], but unfortunately, the robustness
comes at the expense of using a less accurate integration rule. Furthermore, similar
to the ut, the mean and covariance are computed independently, which implies
two different assumptions on the underlying mapping within the same method.

In this paper the transforming function is approximated with a linear combina-
tion of Hermite polynomials, for which closed-form expressions for the mean and
covariance are well known. The polynomial coefficients are given a hierarchical
prior, and the posterior distribution of these coefficients is computed conditioned
on the transformed sigma-points. The desired mean and covariance can then be
calculated by marginalizing the influence of the coefficients from the analytical ex-
pressions. The approximation of the function as a linear combination of Hermite
polynomials, with unknown parameters, is the only approximate step in these cal-
culations. Similar approaches have been suggested in [17] and [18], albeit using a
non-parametric Gaussian process as a model of the transformation. A Bayesian ap-
proach towards learning such a process through evaluations was presented already
in [19].

There are several reasons to derive sigma-point algorithms using Bayesian tech-
niques. First, the mean and the covariance matrix estimates are calculated jointly,
based on analytical expressions rather than a numerical approach. Hence, it is
possible to guarantee a positive-semidefinite covariance matrix. Second, the model
assumptions become clearly visible through the prior distribution, making it easier
to understand the algorithm. Third, Bayesian methods are generally well perform-
ing in the sense that they are admissible under relatively loose assumptions [20]
and that they are optimal when the performance is averaged over the prior. Fi-
nally, we know that the key to improve performance is the choice of the prior.
Although the design of a prior can be difficult, we believe the choice is better
made explicitly than implicitly. To illustrate this, we present a family of priors
that result in the cubature, ut, and dd2 estimators, for certain choices of the prior.
It is shown that the presented algorithm can provide very good estimates of the
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mean and covariance, and that the estimation error of the recursive filter is more
accurately described using the proposed method. More specifically, we appear to
provide more robust covariance estimates, when the underlying polynomials are
not completely linear.

The paper is organized as follows. Section 2 describes the estimation task at
hand and a summary of the sigma-point approach. The proposed marginalization
technique is introduced in Section 3, and is applied to Hermite polynomials in
Section 4. Closed-form expressions for mean and covariance are derived in Section
5 together with a summary of the algorithm. Analytical results and a clarification
of the relationship to other sigma-point methods are discussed in Section 6. Usage
of the technique in a Kalman filter framework is demonstrated in Section 7, and
estimation and tracking performance is evaluated in Section 8. Our conclusions are
listed in Section 9. Finally, Appendices A–C provide results regarding the positive-
definiteness of the ut covariance matrix, properties of Hermite polynomials, and
an interpretation of the sigma-point selection scheme.

2 Problem formulation

Consider a transformation g : R
n → R

m and a stochastic variable x ∈ R
n with

probability density function

x ∼ N (µx,P x),

where g, µx and P x are all known. We wish to calculate the mean and covariance
of the transformed variable y ∈ R

m:

y = g(x).

These moments are given by the integral expressions

E[y]=

∫

Rn

N (x ;µx,P x)g(x)dx (1)

Cov(y) =

∫

Rn

N (x;µx,P x)
[
g(x) − E[y]

][
g(x) − E[y]

]T
dx

=

∫

Rn

N (x;µx,P x)g(x)g(x)
T dx− E[y]E[y]T . (2)

Expressing the solutions to these integrals on a closed form is often impossible for
transformations encountered in practice. Sigma-point methods provide approx-
imate solutions to these integrals, and have demonstrated nice properties with
respect to performance and simplicity. The question at hand is therefore how to
use the sigma-points as efficiently as possible.
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2.1 Summary of the sigma-point approach to statistical moment
calculations

The family of sigma-point filters approximate integrals (1)–(2) using a weighted
sum:

∫

Rn

N (x ;µx,P x)g(x)dx ≈
2n∑

i=0

wig(x
i). (3)

The so-called sigma-points, {x0, . . . ,x2n}, and the associated weights, wi, are cho-
sen according to a deterministic scheme. For the unscented transform, they are:

x0 = E[x] (4)

xi =





E[x] +

(√
n

(1−w0)
P x

)

i

, 1 ≤ i ≤ n

E[x]−
(√

n
(1−w0)

P x

)

i−2n/2

, n < i ≤ 2n
(5)

wi =
1− w0

2n
, (6)

where i = 1, . . . , 2n and
(√

P x

)
i
is the ith column of a matrix square root such

that
√
P x

√
P x

T
= P x. When x is Gaussian, the suggested setting for the ut [7]

is to use w0 = 1 − n/3, whereas the cubature rule is obtained by setting w0 = 0,
effectively removing x0 from the set of sigma-points. This integral approximation
strategy, applied to equation (1), yields the estimator

E[g(x)] ≈
2n∑

i=0

wig(x
i) , ȳ. (7)

The covariance matrix estimate, P̂ y, is usually expressed in terms of the weighted
sum of squares, but we prefer to view it on the form (2) to make the dual use of
the integral approximation clear:

Cov(y) ≈
2n∑

i=0

wi[g(x
i)− ȳ][g(xi)− ȳ]T

=

2n∑

i=0

wig(x
i)g(xi)T −

2n∑

i=0

wig(x
i)ȳT − ȳ

2n∑

i=0

wig(x
i)T +

2n∑

i=0

wiȳȳ
T

=

2n∑

i=0

wig(x
i)g(xi)T − ȳȳT , P̂ y. (8)

If the mean (7) is correctly calculated using a minimum number of points, the
covariance matrix estimate (8) will in general not be exact. In fact, with negative
weights it may not even be positive-semidefinite; see proof in Appendix A.
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The dd2 estimator uses the same sigma-point selection scheme (5), but is pa-
rameterized using a scalar h2 = n

1−w0
. The sigma points and the weights used to

calculate the mean are identical to those of the ut. The covariance matrix approx-
imation, however, employs a different set of weights which are positive regardless
of the dimensionality.

3 Proposed idea

Even though the transforming function g is known, we model it as a stochastic
process with a prior distribution π(g). Apart from the prior, the only available
information is the evaluated points, χ =

[
x0, . . . ,x2n

]
, and the function values

at these points, z =
[
g(x0), . . . , g(x2n)

]
. Using estimation terminology: χ and

z are our measurements, the function g is a nuisance parameter with posterior
distribution p(g|z, χ) and our objective is to estimate the mean, ȳπ, and covariance,
P y,π, of y.

The mean, expressed as a function of the transformation, g, is denoted by

ȳ(g) ,
∫

N (x ;µx,P x)g(x)dx, (9)

and the corresponding covariance matrix by

Py(g) ,
∫

N (x ;µx,P x)[g(x) − ȳ(g)][g(x) − ȳ(g)]T dx. (10)

The expressions for the desired mean and covariance of y, given z and χ, are given
by marginalization over g:

ȳπ = E[y|z, χ] =
∫

ȳ(g)p(g|z, χ)dg (11)

P y,π = E
[
P y(g)

∣∣z, χ
]
=

∫
P y(g)p(g|z, χ)dg. (12)

The idea is to use a prior π(g) for which the integrals in (11) and (12) have closed-
form solutions. Although it is possible to find solutions for infinite-dimensional
integrals, it is more practical to consider a finite parameterization of g. In this
paper we focus on one such prior, presented in Section 4, where g is assumed to
belong to the family of Hermite polynomials. An interpretation of using this prior
is that the mean (11) and covariance (12) are averaged over polynomials that pass
through the points (xi, g(xi)), for all integers i ∈ [0, 2n], as illustrated in Fig. 1.

4 Using a Hermite polynomial to model the transform-
ing function

In order to motivate the use of Hermite polynomials, and to illustrate some fun-
damental properties, we study a scalar transformation. Any function g, for which
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Figure 1: An example of polynomial functions that may have performed the trans-
formation of the sigma-points. The mean and covariance of y = g(x) is calculated
by a weighted average of all such functions.

E[g(x)2] < ∞, can be expressed in terms of a series of weighted Hermite polyno-
mials [10]:

g(x) =

∞∑

k=0

1

k!
E[g(x)Hk(x)]Hk(x), (13)

for x ∼ N (0, 1). To have a tractable solution, we assume that the transforming
function can be approximated using a finite series, fully described by a weight
vector θ = [θ0, . . . , θp]

T :

g(x) ≈
p∑

k=0

θkHk(x). (14)

The kth order hermite polynomial, Hk, is given by (85) in Appendix B, which
contains a summary of useful properties of Hermite polynomials. For instance, the
usage of Hermite polynomials leads to very simple expressions for the mean, ȳ(g),
and covariance, Py(g), or as they now can be expressed, ȳ(θ) and σ2y(θ):

ȳ(θ) = θ0

σ2y(θ) =

p∑

k=1

θ2kk! .

For example, if y = x + x2 and x ∼ N (0, 1), then y = H0 + H1 + H2, (i.e.,
θ = [1 1 1]T ). Consequently, the expected value is θ0 = 1 and the variance is
θ21 + θ222! = 3.

Additionally, using Hermite polynomials facilitates comparisons with other
sigma-point methods, which typically calculate the integral (7) exactly for cer-
tain polynomials.
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4.1 Multidimensional transformation

A transformation g : Rn → R
m, performed by a linear combination of base func-

tions can be written as

g(x;θ) = θTh(x), (15)

where the base functions enter the equation through

h(x) = [H0, H1(x1), . . . ,Hp(x1), H1(x2), . . . ,Hp(x2), . . . , H1(xn), . . . ,Hp(xn)]
T .

(16)

In the following sections we assume x ∼ N (0, In×n), a simplification justified in
Section 4.4. We construct the weight matrix from the p-dimensional vectors θi,j,
each describing the transformation from xi to yj, and the scalars θj0, for i = 1 . . . n
and j = 1 . . . m:

θ =




θ10 . . . θj0 . . . θm0
θ1,1 . . . θ1,j . . . θ1,m

...
. . .

...
. . .

...

θn,1 . . . θn,j . . . θn,m


 . (17)

Consequently, θj , the jth column of θ, defines the mapping from x ∈ R
n to yj over

the base functions in h(x):

yj = (θj)Th(x). (18)

The function g is completely described by θ through equation (15), and we
turn our attention to the expressions for ȳ(θ) and P y(θ). For a given polynomial,
i.e., one realization of θ, y has the mean

ȳ(θ) = E[θTh(x)|θ]
=

[
θ10, . . . , θ

m
0

]T
, (19)

where E[h(x)] is given by equation (83). To simplify notation, we introduce the
vector

w , E[h(x)] = [1, 0, . . . , 0]T , (20)

and write the covariance matrix for y:

P y(θ) = E
[
[θTh(x)− θTw][θTh(x)− θTw]T |θ

]

= θTE
[
[h(x) −w][h(x)−w]T

]
θ

= θTCθ. (21)
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All off-diagonal elements of C , E[[h(x)−w][h(x)−w]T ] are zero, and the pn+ 1
diagonal elements are:

diag(C) = [0, 1!, 2!, . . . , p!, . . . , 1!, 2!, . . . , p!]T , (22)

see equations (83) and (84) in Appendix B. The relation between the mean (19)
and covariance (21) of y, and the parameter vector θ, is now clear. Before we
attempt to marginalize θ from these expressions, we attend to the prior.

4.2 Designing the prior distribution

Using Hermitian polynomials, designing the prior π(g) is now equivalent to de-
signing π(θ), and there is an intuitive interpretation: the number of elements in
θ determines the maximum order of the transforming polynomial. Similarly, the
variance determines which coefficients are updated with the information provided
in the propagated sigma points.

The proposed prior assumes the vectors θi,j to be independently generated
from a hierarchical model:

θi,j ∼ N (0, αjP
i,j
θ ). (23)

It is shown in Section 6.2 that the sigma-points can be selected such that the prior
on θ0 does not affect the posterior distribution, p(θ|z, χ), but for completeness let
it be assumed that all scalars θj0 are independently drawn from N (0, σ2θ0). The

covariance matrix Cov(θj) = αjP
j
θ is therefore block-diagonal, with:

P
j
θ =




σ2θ0
/
αj 0 . . . 0

0 P
1,j
θ

. . .
...

...
. . .

. . . 0

0 . . . 0 P
n,j
θ



. (24)

The hyperparameter, αj , will be discussed in Section 5.2.

4.3 Estimates of mean and covariance

Expressions (19) and (21) are derived for a given weight matrix, θ. However, since
θ is modeled as a stochastic variable, the marginalization in (11) and (12) gives
the final estimators:

ȳπ = E[θT |z, χ]w
=

{
µTθ|z , E[θT |z, χ]

}
= µTθ|zw

= E
[
[θ10, . . . , θ

m
0 ]T |z, χ

]
(25)
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P y,π = E[θTC θ|z, χ]
= µTθ|zC µθ|z + E

[
[θ − µθ|z]

TC[θ − µθ|z]|z, χ
]

= µTθ|zC µθ|z +




α1Tr
{
P 1
θ|zC

}
0

. . .

0 αmTr
{
Pm
θ|zC

}


 . (26)

Expressions for the conditional mean, µθ|z, and posterior covariance matrices, P j
θ|z

(j = 1 . . . m), given observations z, χ, are derived in Section 5.

4.4 Stochastic decoupling

The simple forms for w in (20) and C in (22) are expressed for vector arguments,
x, whose elements are uncorrelated with unit variance. Rather than expressing w
and C for any mean and covariance of x, a stochastic decoupling procedure similar
to the approach in [6] is proposed, such that w and C are constant. Instead of
studying

y = g(x), x ∼ N (µx,P x), (27)

we introduce x̃ ∼ N (0, In×n), where In×n is the n× n identity matrix, and set

y = g̃(x̃) , g(µx +
√

P x x̃), (28)

which has the same distribution as the original y in (27). Therefore, rather than
recalculating w and C, we assume the transformation is performed by g̃ in (28).
This adaptation is built in to the algorithm described in Section 5.3.

5 Calculating the posterior distribution

Our objective is now to calculate the posterior distribution p(θ|z, χ) and its first
two moments, which are needed in the expressions for the mean and covariance
of y, given by equations (25)–(26). An exact expression of the distribution is
obtained by marginalizing the hyperparameter, α, from the hierarchical model:

p(θj |z, χ) =
∫
p(θj |αj , z, χ)p(αj |z, χ)dαj . (29)

Finding a closed-form solution to (29) is usually difficult. A simple yet useful
substitute is to use a point estimate of αj . In other words, we set

p(θj |z, χ) ≈ p(θj |α̂j , z, χ). (30)

In the following section, the first two moments of p(θj |α̂j, z, χ) are calculated for
a given estimate, α̂j , which is then derived in Section 5.2.
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5.1 Mean and covariance of θ

The linear relation between observations z and parameter vector θ was established
in equation (15):

z = θTHT (χ), (31)

where the observation matrix is given by:

H(χ) =




hT (x0)
...

hT (x2n)


 . (32)

For notational convenience, we omit the reference to χ from now on. Given a
zero-mean Gaussian prior distribution on θj, with Cov(θj) = αjP

j
θ, the posterior

distribution is also Gaussian with mean and covariance [21]:

µ
j
θ|z = P

j
θH

T
[
HP

j
θH

T
]−1

zj (33)

αjP
j
θ|z =

(
I− P

j
θH

T
[
HP

j
θH

T
]−1

H

)
αjP

j
θ, (34)

where zj is the jth column in zT . The conditional mean of θ is µθ|z = [µ1
θ|z,µ

2
θ|z, . . . ,µ

m
θ|z].

Estimates ȳπ and P y,π in (25) and (26) can thus readily be calculated.
If all transformations are treated the same way a priori, i.e., if the covariance

matrices P i,j
θ in (23) do not depend on j, the elements Tr{P j

θC} are also indepen-
dent of j. Hence, the superscript j can be dropped and the expression for P y,π

can be simplified to

P y,π = µTθ|zCµθ|z +



α1 0

. . .
0 αm


Tr

{
P θ|zC

}
. (35)

To simplify notation in the remaining part of the paper, it is assumed that P θ

and P
j
θ can be used interchangeably. Furthermore, according to equation (34),

Tr{P θ|zC} does not depend on z and can therefore be calculated in advance.

5.2 The hyperparameter α

Estimates of αj, which were assumed known in the previous section, are preferably
derived from the posterior distribution conditioned on the propagated sigma-points
z:

p(αj |z) ∝ p(z|αj)p(αj). (36)

The posterior, on the other hand, relies on expressions for the likelihood p(z
∣∣αj)

and the prior p(αj).
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The likelihood function

In our setting, θj is a zero-mean Gaussian random variable, conditioned on αj , and
so is the linearly dependent observations zj . However, from the results in Appendix
C it follows that the mean is known for the cases we study and, consequently, is
independent of the hyperparameter prior. The observation vector of interest, z̃j ,

is therefore the jth column in
[
g(x0)− θ0, . . . , g(x

2n)− θ0

]T
, and the likelihood

function takes the following simple form:

p(z̃j |αj)=
1

(2π)
ρ

2 (αj)
ρ

2

√
|HP

j
θH

T |
e
− 1

2αj
z̃jT(HP

j

θ
HT)−1 z̃j

, (37)

in which ρ is the number of observations, in this case 2n+ 1.

The prior

In the absence of prior knowledge of αj, we want the prior to be noninformative
to ensure a weak influence on the posterior distribution. It is argued in [22] that

p(αj) ∝ 1/αj , (38)

is a sensibly vague prior with respect to the likelihood (37).

The posterior distribution

The expression for the posterior distribution, using the likelihood (37) and prior
(38), is:

p(z̃j |αj) p(αj) ∝
1

αj
ρ

2
+1

e
− 1

2αj
d2

, (39)

where d2 = z̃j T (HP
j
θH

T )−1z̃j . The above expression is proportional to the scaled
inverse chi-square distribution, so

αj|z ∼ inv-χ2(ν, s2), (40)

with parameters ν = ρ and s2 = d2/ρ. The mean and mode of the scaled inverse
chi-square distribution are:

E(αj) =
ν

ν − 2
s2, mode(αj) =

ν

ν + 2
s2, (41)

and can be used as point estimates of αj in the posterior covariance matrix ex-
pression (35). Note that the conditional mean (33) is unaffected by the hyperpa-
rameter. The algorithm presented in Section 5.3 employs the mode (41) as a point
estimate of αj .
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5.3 The marginalized transform (mt) estimator

We have now reached the point where the mt estimation algorithm can be summa-
rized, and somewhat simplified, in a few easy steps. There are two design decisions
that can be made independently: the order of the transforming polynomial, p, and
the sigma-point selection scheme. Using 2 ≤ p ≤ 3 for the cubature points and
2 ≤ p ≤ 5 for the ut points assures a fully known mean (further explained in
Section 6.2).

For x ∈ R
n, y = g(x) ∈ R

m, x ∼ N (µx,P x), do:

1. Select a prior covariance matrix Σ, a diagonal p × p matrix, p ≤ 5, with at
least two nonzero elements. See, e.g., the priors used in Section 8.

2. Generate sigma-points using w0 = 1− n
3 :

x0 = 0n×1

xk =





+

(√
n

(1−w0)
In×n

)

k

, 1 < k ≤ n

−
(√

n
(1−w0)

In×n

)

k−n
, n < k ≤ 2n

χ =
[
x0,x1, . . . ,x2n

]
.

(although w0 = 0 can be used if p ≤ 3, and for p = 2, any 2n+1 points can
be used).

3. Set P
i,j
θ = Σ in equation (24) to form P θ. The value for σ2θ0/αj will not

matter. Calculate w,C,H(χ) and P θ|z using equations (20), (22), (32) and
(34) respectively.

4. Propagate the sigma-points:

z =
[
g(µx +

√
P xx

0), . . . , g(µx +
√
P xx

2n)
]
.

5. Compute the mean, ȳπ, using equation (25) and (33):

µθ|z = P θH
T
[
HP θH

T
]−1

zT

ȳπ = µθ|zw

6. Estimate the modes of the hyperparameters:

α̂j =
1

(2n + 1) + 2
z̃j T

[
HP θH

T
]−1

z̃j T ,
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where z̃j T is the jth row in the observation matrix with subtracted mean,[
g(x0)− ȳπ, . . . , g(x

2n)− ȳπ
]
.

7. Calculate the covariance matrix, P y,π, using equation (35).

Steps 1− 3 can be done in advance, as well as computing P θH
T
[
HP θH

T
]−1

,[
HP θH

T
]−1

and Tr
{
P θ|zC

}
, in that way simplifying the algorithm significantly.

For example, the calculation of the mean can be identical to the ut, cubature rule
or to the dd2, for which also the covariance matrix estimator can be the same —
all depending on the design of the prior, see the discussion in Section 6.

5.4 Calculating the posterior cross-covariance matrix

It is sometimes required to know the cross-covariance between the state, x, and
the transformed state, y = g(x). In the filtering algorithm that will be presented
in Section 7.3, it is a necessity, and is in fact already known from estimating µθ|z.
The cross-covariance matrix is:

P xy(θ) =

∫

Rn

N (x ;0, In)
[
x− E[x]

][
g(x;θ)− ȳ(θ)

]T
dx

= E[x[θTh(x̃)− θTw]T ]

= E[x[h(x)−w]T ]θ

= Dθ. (42)

The sparse matrix D , E[x̃[h(x̃)−w]T ] is constant and can be written:

D =




0 [1, 0, . . . , 0] 0T . . .

0 0T
. . .

. . .
...

...
. . . [1, 0, . . . , 0]


 , (43)

which follows from the orthogonality property (82) of Hermite polynomials de-
scribed in Appendix B (recall that x = H1(x)). In other words, P xy(θ) is the
n×m matrix of all first order weights:

P xy(θ) =




θ1,1(1) . . . θ1,m(1)
θ2,1(1) . . . θ2,m(1)

...
...

θn,1(1) . . . θn,m(1)


 . (44)

The above cross-covariance matrix describes the relation to x ∼ N (0, In×n),
whereas the relation to a correlated state is established by multiplication with
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√
P x. Including the square-root matrix and carrying out the marginalization of θ

in (42) yields

P xy,π =
√

P x DE
[
θ
∣∣z, χ

]

=
√

P x Dµθ|z, (45)

which is the estimate of the cross covariance matrix.

6 Analysis and comparison

In this section, we further explain the behavior of the proposed estimator, and
clarify the relationship with other sigma-point estimators.

6.1 Posterior uncertainties in mean and covariance

First, we analyze our estimates in terms of their distributions. Conditioned on α,
the mean, ȳ(θ), is a Gaussian random variable with covariance

E
[
[ȳ(θ)− ȳπ][ȳ(θ)− ȳπ]

T |α
]
= Im×mwP θ|zw

T . (46)

The distribution of the elements in the covariance matrix, P y(θ), is less trivial;
diagonal elements are weighted sums of chi-square distributed variables, whereas
the off-diagonal elements are created from products between independent Gaus-
sian random variables. This could be looked upon as a weighted sum of Wishart
distributed matrices created from the rows, θi, of θ:

P y(θ) =

pn∑

k=0

θTk θkck+1, (47)

where ck is the kth diagonal element in C, defined in equation (22).

Equation (46) illustrates how uncertainties in θ affect ȳ(θ), and it is desirable
to design an estimator such that this variance equals zero. Inserting the expression
for P θ|z, from equation (34), into (46), we see that the covariance of ȳ(θ) is

Cov(ȳ(θ)) = w
(
I−P θH

T
[
HP θH

T
]−1

H
)
P θw

T . (48)

One of the arguments for sigma-point approaches has been that it is easier to
approximate the probability distribution than the transforming function [7], [23].
However, it is not required for θ to be fully known (P θ|z = 0) in order for the
estimate to be exact; we see from equation (48) that it is enough to project the
uncertainties in θ onto the plane orthogonal to the vector w. In Appendix C it
is shown that the selection scheme (4)–(5) attains this projection, which means
that ȳπ = ȳ(θ) with probability one. In other words, ȳ(θ) is identical for all
polynomials passing through the sigma-points.
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The result follows from using an integration rule, well-known from the lit-
erature, [12], [14], which integrates these functions correctly. However, the new
derivation provided here is conceptually different and may be more intuitive to
some readers. Furthermore, the type of uncertainty analysis performed in this pa-
per can provide an important tool for designing new sigma-point selection schemes
in the future.

6.2 Comparison with the UT and the cubature rule

Contrary to the ut and the cubature rule, the presented method suggests to calcu-
late the covariance matrix using a model of the transformation, and the estimates
are therefore conceptually different. The estimates of the mean, however, are eas-
ier to compare; the ut and the cubature rule employ known integration rules, and
the proposed method can yield these rules under certain conditions. To show the
similarities, we write the mt estimator of the mean (25) on the same form as the
ut estimator (7):

ȳπ = z
[
P θH

T
[
HP θH

T
]−1

]T
w. (49)

This is clearly a weighted sum, ȳπ = zλ, of the evaluated sigma-points, with a
column weight vector

λ =
[
HP θH

T
]−1

HP θw. (50)

The mt and ut estimators are the same when the elements of λ are identical to
the ut weights.

The definition of the precision of an integration rule is [14]:
‘A rule is said to have precision p if it integrates monomials up to degree p exactly,
that is, monomials Πdi=1x

ki
i with ki ≥ 0 and

∑d
i=1 ki ≤ p, but not exactly for some

monomials of degree
∑d

i=1 ki = p+ 1’.

For the presented method, this definition is equivalent to having no uncertainties
in ȳ(θ), when the prior includes all monomials up to degree p. It is shown in
Appendix C that the sigma-point selection scheme (4) – (5) satisfies exactly this
— the mt and ut estimators for the mean are then identical. The explicit model
assumptions in the proposed method coincide with the implicit assumptions in the
sigma-point filter, and the actual values in the prior covariance matrix, P θ, no
longer affect the result.

The integration rule used by the ut and the cubature rule have precision 3,
which can be quite limiting. A simple example serves as illustration:

y = x1x2, x ∼ N (0, I2×2). (51)

The variance of y is E[x21x
2
2] = 1, but the sigma-point methods discussed in this

paper all fail to calculate the variance correctly. However, the prior used in the
presented method explicitly excludes cross-terms in the model, so the result should

91



Paper I

come as no surprise. Moreover, the solution is straightforward: modify the model
to include also cross-terms and add sigma-points to observe them. It should be
mentioned here that the mt and the ut, with w0 = 1−n/3, would have precision 5
if it weren’t for these cross-terms, i.e., single-element monomials, xpi , are correctly
integrated up to p = 5.

Contrary to the ut, the mt can be tuned without moving the sigma-points.
The cubature rule, on the other hand, cannot be tuned at all, and the position of
the sigma-points varies in a predetermined manner with the dimensionality, n. For
instance, in a tracking system where targets are tracked using a joint state vector,
the performance of the cubature estimator depends on the number of targets, even
if the targets are well separated with independent measurements (with respect to
other targets).

6.3 Comparison with the divided difference filter

The dd2 is based on a second-order polynomial approximation of the transform-
ing function, with cross-terms excluded. The mt assumes that the underlying
distribution is Gaussian, which corresponds to setting the dd2 design parameter
h =

√
3. It is possible to design an mt-prior to correspond to this estimator. More

specifically, assuming a second order polynomial and using the ut sigma-points
yields equally many unknowns as observations. The second order polynomial is
therefore fully known, i.e. there are no posterior uncertainties in the parameter
vector θ, and the estimators are, for this particular prior, identical.

6.4 Selecting a set of sigma-points

The effects of employing a particular set of sigma points with the mt can be
evaluated in terms of the posterior uncertainties of the estimates. However, our
focus here is to evaluate the mt performance when using the 2n + 1 ut points,
and the 2n cubature points, where the main difference is that the cubature rule
does not employ a weight in the distribution mean.

It is foreseeable that there will be functions for which the integral of a poly-
nomial passing through the evaluated sigma-points, may constitute a worse ap-
proximation of the actual integral, than the integral over a lower order polynomial
passing through fewer points. For instance, in [9], it was shown that the cubature
rule performed better than the dd2 in estimating the mean of the function

g(x) =
1

(
√
1 + xTx)q

, (52)

when the integer q and the dimensionality of x was increased. Under these cir-
cumstances, the function (52) does not resemble a polynomial, and including a
sigma-point in the mean E[x] degrades performance. It cannot, however, be ar-
gued that it is generally sound to exclude that particular sigma-point — it has to
be judged depending on the function. Including the point provides information
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of the function, which obviously sometimes is helpful, especially when calculating
the covariance matrix. For example, the covariance matrix for functions symmet-
ric over the covariance contour will be zero when calculated using the cubature
rule, e.g.:

y = x2, x ∼ N (0, 1). (53)

If all propagated points have the same value this will also be the estimate of the
mean, i.e., g(xi) = ȳ for all sigma-points. The variance estimate is then:

2n∑

i=0

wi[g(x
i)− ȳ][g(xi)− ȳ]T = 0.

This would be the case also for (52), if x ∼ N (0, I). In real situations this is rarely
the case, but nevertheless illustrates an undesired behavior.

7 Application example: Recursive filtering

Robust recursive filters, e.g., for tracking a continuous process measured at discrete
time instances, are arguably very valuable. A famous solution is the Kalman
filter (kf) [4], although the kf is applicable only when models are linear. Several
filters intended for usage with non-linear models share a similar structure, differing
only in how they estimate moments, e.g., the ukf, ckf, and ekf. By applying
the marginalization technique presented in this paper in a similar fashion, the
marginalized Kalman filter is created — the mkf.

7.1 System model

A discrete-time non-linear system, described by the state vector, xk, is assumed
to evolve according to the model:

xk = f(xk−1,wk−1). (54)

Observations, yk, are provided at discrete time instances:

yk = h(xk,vk). (55)

The noise terms wk,vk are modeled as zero mean independent white Gaussian
noise. The goal is to calculate the posterior distribution p(xk|Yk), where Yk is
the collection of all available measurements, [y1, . . . ,yk]. Estimates of the state
vector are often denoted x̂k|k, where the first subscript refers to the time index of
the state and the latter to the time index of the last measurement used to update
the state.
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7.2 The one-step linear estimation algorithm

An accustomed approach for calculating the posterior distribution, used for exam-
ple by the ekf, ukf, ckf and dd2 filters, is to apply the lmmse estimator for
each new observation. The filter performs two operations:

Prediction

Given p(xk−1|Yk−1), calculate the first two moments of the state distribution at
the time of the next unused measurement:

x̂k|k−1 = E[xk|Yk−1]

= E[f(xk−1,wk−1)|Yk−1] (56)

P k|k−1 = Cov(xk|Yk−1)

= E[f(xk−1,wk−1)f(xk−1,wk−1)
T |Yk−1]− x̂k|k−1x̂

T
k|k−1 (57)

Update

Correct the prediction, x̂k|k−1, using the measurement, yk. The best update that
is linear in yk, is given by the lmmse estimator [24]:

x̂k|k = x̂k|k−1 + P xyS
−1
k|k−1

(
yk − ŷk|k−1

)
. (58)

The estimator (58) requires knowledge of the mean, ŷk|k−1, and covariance, Sk|k−1,
of the measurement distribution, as well as the cross-covariance matrix P xy:

ŷk|k−1 = E[yk|Yk−1]

= E[h(xk,vk)|Yk−1] (59)

Sk|k−1 = Cov(yk|Yk−1)

= E[h(xk,vk)h(xk,vk)
T |Yk−1]− ŷk|k−1ŷ

T
k|k−1. (60)

P xy = Cov(xk,yk|Yk−1)

= E[xkh(xk,vk)
T |Yk−1]− x̂k|k−1ŷ

T
k|k−1 (61)

The matrix mean squared error (mse) of the estimate (58) is used as an approxi-
mation of the posterior covariance matrix, P k|k. The matrix mse is:

E
[
[xk − x̂k|k][xk − x̂k|k]

T |yk
]
= P k|k−1 − P xyS

−1
k|k−1P yx, (62)

and is a reasonable approximation to a posterior covariance matrix which does not
depend on the observation yk. Expressed in terms of the so called gain matrix,
Kk = P xyS

−1
k|k−1

, the expressions for the state update are:

x̂k|k = x̂k|k−1 +Kk

(
yk − ŷk|k−1

)
(63)

P k|k = P k|k−1 −KkSk|k−1K
T
k . (64)
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To sum up, the filter approximates the first two moments of the posterior distri-
bution, p(xk|Yk), with the estimate of the mean (63) and the matrix mse (64),
concluding the recursion.

7.3 The marginalized Kalman filter (mkf)

The mkf is the recursive filter following the application of the mt to steps 1–2 in
the previous section. The state vector can be augmented to include noise terms,
described, e.g., in [7].

mkf prediction

Assume the state vector is Gaussian, i.e.,

p(xk−1|Yk−1) = N (xk−1; x̂k−1|k−1,P k−1|k−1).

Use the algorithm in Section 5.3 to calculate the mean (56) and covariance (57) of
the predictive distribution,

p(xk|Yk−1) ≈ N (xk; x̂k|k−1,P k|k−1).

mkf update

Apply the algorithm a second time to calculate the mean (59) and covariance (60)
of the measurement distribution. The cross-covariance matrix (61) is given by
equation (45). Calculate the gain matrix, Kk = P xyS

−1
k|k−1, and approximate the

posterior distribution

p(xk|Yk) ≈ N (xk; x̂k|k,P k|k),

using the lmmse estimate (63) and the matrix mse (64).

8 Simulation examples

The cubature rule is a special case of the unscented transform with the benefit that
the estimated covariance matrix is always positive-definite — a property shared
also by the proposed method. Further, the results in [9] indicate that the cubature
rule performs better than the divided difference filter. Therefore, our main goal is
to show how the presented method performs compared to the cubature transform.
Two examples are examined: the transformation from polar to Cartesian coordi-
nates, which is also commonly used to illustrate the performance of the unscented
transform, and the bearings-only tracking problem [25].

In the first evaluation we use the Kullback-Leibler (kl) discrimination1 to
measure how much a distribution q(y) differs from a reference distribution p(y)

1Usually referred to as the Kullback-Leibler divergence, although when introduced in [26], the
authors used the term “divergence” for the symmetric measure dKL(p, q) + dKL(q, p).
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[27]:

dKL(p, q) =

∫
p(y) log

p(y)

q(y)
dy. (65)

This measure was also used in [9] to evaluate the cubature rule, which further
motivates using the same approach here. The distributions p and q are approxi-
mated as Gaussians, for which dKL(p, q) can be calculated analytically. The first
two moments of the reference distribution, p, are estimated using Monte Carlo
integration:

∫
p(x)g(x)dx ≈

N∑

n=1

g(xn). (66)

Two slightly different versions, the mt5 and the mt3, of the presented method
are evaluated. The mt5 is implemented according to the algorithm in Section 5.3,
with p = 5, using the 2n + 1 ut sigma-points. However, in order to compare the
method fairly to the cubature rule, the mt3 is introduced, using p = 3 and the 2n
cubature sigma-points. This is not the same as setting w0 = 0 in the second step
of the algorithm, which in practice would exclude the point x0 in the calculation
of the mean but not in the calculation of the covariance matrix.

8.1 Polar to Cartesian transformation

In this section the mt3, using two slightly different priors, is compared to the
cubature rule. Let y = g(x) be the transformation from a polar coordinate system
defined in terms of range, r, and azimuth, ψ, to a Cartesian coordinate system:

x =

[
r
ψ

]
, y =

[
x1 cos x2
x1 sinx2

]
. (67)

By modifying the prior, the presented method can be optimized to yield excel-
lent results for a narrow family of transformations. However, this is not a fair
comparison and often not a realistic approach. Instead we use the same prior for
the 11 positions in Fig. 2, and for each position we evaluate 8 different azimuth
measurement noise variances, σ2ψ:

σ2ψ = [52, 102, 152, 202, 252, 302, 352, 402](
π

180
)2 [rad2]. (68)

The range measurement noise variance is constant throughout all evaluations,
σ2r = 0.5 [m2].

To illustrate the influence of the prior, we present results for two different
priors, both assuming a zero-mean Gaussian distribution of θ. The first one is
created using the simple assumption that the function is a 2nd order polynomial
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Figure 2: A sensor, situated in the origin, with uncertainties in range and angle
measurements observes a target at eleven positions. The “banana-shaped” con-
tours are measurement space covariance contours, transformed to the Cartesian
coordinate system.

where the higher order term is relatively small, whereas the second one has been
numerically derived to perform well in this scenario:

Σ1 =



1 0 0
0 1

100 0
0 0 0


 , Σ2 =



1 0 0
0 0.036 0
0 0 0.0007


. (69)

The cubature evaluation points are used by all three methods and, as argued in
Section 6.2, the prior variance for the mean, θ0, does not influence the estimate.

The average Kullback-Leibler discrimination is presented in Table 1 and the
mean for each position and noise variance is displayed in Fig. 3. The reference
density was calculated using 105 samples. The results show that, although all
methods perform very well in absolute numbers, the marginalized sigma-point
estimator outperforms the Cubature rule using the same points χ. It can also be
seen that Σ1 is the better description for some noise models, and for position 6,
but that Σ2 performs better on average.
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Figure 3: The left figure shows the average Kullback-Leibler discrimination for
the different azimuth noise variances, whereas the right figure shows the average
Kullback-Leibler discrimination for the positions. The dashed line illustrates the
Cubature rule, the dotted line represents the use of Σ1, and the solid line the use
of Σ2.

8.2 Bearings only tracking

The bearings only tracking problem is well-studied and arises in passive sensor
applications such as sonar tracking. Several filters have been designed for this par-
ticular task, such as the range-parameterized EKF [25], but since we are interested
in comparing sigma-point filters, those filters are not included in the comparison.
Two mkf versions, based on the mt5 and the mt3, are compared to the ckf, the
ukf and the dd2-filter.

The scenario we consider here, tracking of a non-maneuvering submarine, is
illustrated in Fig. 4. Most parameter values are taken from [25]. The state
vector contains the Cartesian position and velocity, x = [x y ẋ ẏ]T , and bearing

Table 1: Average Kullback-Leibler discrimination

Average kl-discrimination [×10−4]

Cubature rule 478

mt3, Σ1 45

mt3, Σ2 29
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observations are non-linear transformations of x, with additive Gaussian noise:

θ = tan−1
(y
x

)
+ w. (70)

The variance of the measurement noise, wk ∼ N (0, σ2w), is known to the tracking
algorithms, which are also given perfect knowledge of the prior distribution; for
each simulation, the initial position of the target is generated from the prior. The
process model is linear:

xk =




1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1


xk−1 +




T 2

2 0

0 T 2

2
T 0
0 T


vk, (71)

with process noise, vk ∼ N (0, σ2vI2×2). The state distribution is assumed Gaus-
sian, and the predicted distribution, which is consequently also Gaussian, is cor-
rectly calculated by all five filters. Hence, the methods differ only in the calculation
of the measurement distribution and the cross-covariance matrix. The parameter
values are:

σv =
√
10−5

m

s2
, σw = 1.5 ◦, T = 60 s, N = 30,

where N is the length of a trajectory. The filter is initiated using the scheme
in [25], at

x0 =




3000
4000
−0.6
−0.8


 , P 0 ≈




5922 6822 0 0
6822 8162 0 0
0 0 0.57 −0.35
0 0 −0.35 0.34


 ,

which corresponds to a target at a range of 5 km, traveling towards the sensor at
a speed of 1 m/s with uncertainties in range (σr = 1000 m), speed (σs = 0.3 m/s)
and course (σc =

π√
12

rad).

Two performance measures are averaged over 104 simulations: The mse, ξ, and
the average normalized estimation error squared (nees), ζ:

ξ =
1

N

N∑

k=1

[x̂pk − xpk]
T [x̂pk − xpk] (72)

ζ =
1

N

N∑

k=1

[x̂pk − xpk]
T
(
P̂

p

k

)−1
[x̂pk − xpk] (73)

Both are calculated for the position states, xp = [x y]T , and its covariance matrix,
P p. The results are summarized in Table 2. When the posterior covariance ma-
trix correctly describes the estimation error, the nees is equal to the number of
dimensions of the evaluated state vector.
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Figure 4: Five different filters are applied to the tracking problem where a bearings-
only sensor, situated in the origin, makes 30 observations of a moving target. In
this particular example the target process noise is near-zero.

Table 2: rmse and nees, averaged over 104 simulations

rmse,
√
ξ̄ nees, ζ̄ Number of sigma-points

mkf3 1074 1.97 2n

ckf 1083 2.46 2n

dd2 1077 2.40 2n+ 1

mkf5 1064 2.01 2n+ 1

ukf 1076 2.40 2n+ 1

In this evaluation, the ut mean weight, w0, is 1− n
3 , the dd2 parameter, h, is√

3, and the mkf3 and mkf5 are based on the mt3 and mt5, respectively2, with
priors:

Σ
MT

3 =



1 0 0
0 1

10 0
0 0 5

100


 , Σ

MT
5 =




1 0 0 0 0
0 1

10 0 0 0
0 0 5

100 0 0
0 0 0 1

1000 0
0 0 0 0 1

1000



.

From Table 2 we conclude that the choice of filters does not, on average, affect
the mse in particular and that the ckf, ukf and dd2 underestimate the size of the

2In other words, the mkf
3 and the mkf

5 estimates of the mean are calculated using the same
rules as the ckf and the ukf/dd2, respectively.
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error (recall that, nominally, ζ = 2). The mkf, however, performs very well in this
sense. This can be explained in terms of the posterior uncertainties regarding θ,
which contribute to the covariance matrix estimate through the additive diagonal
matrix in equation (35).

9 Conclusions

We have presented a derivative-free method, the marginalized transform (mt), for
estimating the mean and covariance of a transformed Gaussian-distributed random
variable, which has several beneficial properties. In summary, the method:

• performs better than well-known sigma-point methods, such as the ut, dd2,
or cubature rule, in the evaluated estimation task and the bearings-only
tracking scenario.

• is easy to apply, as the simplicity of derivative-free filters is maintained.

• has tuning-parameters that can be intuitively understood in terms of the
model of the transforming function.

In a more general sense, we present a method for designing sigma-point estimators,
based on explicit model assumptions. For example, it has been shown which
assumptions lead to the integration rules of the dd2, ut, and the cubature rule.

Sigma-point filters have previously been analyzed in terms of the precision of
the applied integral approximation. Still, as the non-linear functions encountered
in most applications are not polynomial, we argue that it is relevant to ask what
the estimates represent when they are not exact. A description of the latter is
precisely what the mt gives; the family of functions contributing to the estimates.

Appendix A: ut covariance matrix estimates

The ut covariance matrix estimate (8) is on the form

P̂ y =
2n∑

i=0

widid
T
i , with d = [g(xi)− ȳ]. (74)

Lemma 1 : The covariance matrix estimate calculated by the ut is guaranteed
to be positive-semidefinite when all weights are positive.

Proof : P̂ y is positive-semidefinite if xT P̂ yx ≥ 0, and

xT P̂ yx =
2n∑

i=0

wi(x
Tdi)

2 ≥ 0, if wi ≥ 0 ∀i (75)

Lemma 2 : When w0 /∈ [0, 1], there are functions for which P̂ y is not positive-
semidefinite.
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Proof : For example, there exists a function g : Rn → R
1, symmetric such that

a = g(xi) , i ∈ {1, . . . 2n} (76)

b = g(x0). (77)

The ut weights sum to one and ȳ is assumed zero,

w0b+ 2nwia = 0, (78)

leading to the following two relations:

wi =
1− w0

2n
, w, and a = b

−w0

1−w0
. (79)

The variance is negative if,

σ2y = w0b
2 + 2nwa2 < 0

⇔ w0b
2 + (1−w0)b

2 (−w0)
2

(1− w0)2
< 0

⇔ w0(1− w0)
2 + (1− w0)w

2
0 < 0. (80)

The left hand side on the last row is a second order polynomial with roots w0 = 0
and w0 = 1, and a maximum in w0 = 1/2. In other words:

w0 /∈ [0, 1] ⇒ σ2y < 0. (81)

Each diagonal element in the m × m covariance matrix, corresponding to g :
R
n → R

m, is calculated analogous to σ2y . The proof is therefore valid for any
dimensionality.

Appendix B: Properties of Hermite polynomials

The univariate Hermite polynomials are orthogonal under integration under the
Gaussian pdf, i.e., for x ∼ N (0, 1),

E[Hi(x)Hj(x)]=

∫
p(x)Hi(x)Hj(x)dx=

{
0 ,i 6= j

i! ,i = j
. (82)

It follows that the expected value is zero for all but the 0th polynomial:

E[Hi(x)] =

∫
p(x)Hi(x)H0(x)dx =

{
0 , i 6= j

1 , i = 0
. (83)

Further, we conclude that, for [x1, . . . , xn]
T ∼ N (0, In×n),

E[Hi(xk)Hj(xl)] =

∫
p(x)Hi(xk)Hj(xl)dx =





0 , i 6= j ∪ k 6= l

1 , i = j = 0 ∀k, l
i! , i = j ∩ k = l

, (84)
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which follows from (82), (83). A simple formula expressing the Hermite polyno-
mials in terms of a random variable ν ∼ N (0, 1) was given in [28]:

Hn(x) = E
[
(x+ ν

√
−1)n|x

]
. (85)

The first six Hermite polynomials are

H0(x) = 1, H2(x) = x2 − 1, H4(x) = x4 − 6x2 + 3

H1(x) = x, H3(x) = x3 − 3x, H5(x) = x5 − 10x3 + 15x.

Scaling the Hermite polynomials to achieve orthogonality when σx 6= 1 is achieved
by dividing the argument with the standard deviation: Hi(x/σx). Expressions for
multivariate Hermitian polynomials are described in [28], offering the possibility to
extend the framework to model also terms not represented by the univariate Her-
mite polynomials, i.e., products on the form y =

∏n
i=1 x

κi
i , for κi ∈ {0, 1, 2, . . . }.

Appendix C: The sigma-point selection scheme

The uncertainties in the estimate of the mean are described by equation (48). It
is zero if HP θH

T is invertible and there exists a vector λ such that

HT (χ)λ = w, (86)

with w = [1, 0, . . . , 0]T . As we shall see, the sigma-point selection scheme (4) -
(5) always attains the relation (86).

For x ∼ N (0, 1) the sigma-points are χ = [0,
√
3,−

√
3] and the observation

matrix for Hermite polynomials up to order 5 is:

HT (χ) = [h(0), h(
√
3), h(−

√
3)] =




1 1 1

0
√
3 −

√
3

−1 2 2
0 0 0
3 −6 −6

0 −6
√
3 6

√
3



. (87)

For λ = [λ0, λ1, . . . ]
T to solve equation (86) we see that:

1 :
∑2n

i=0 λi = 1 (from row one)
2 : λi = λj , ∀i, j 6= 0 (from row two and six)
3 : λ0 = 4λi, i > 0 (from row three and five)

(88)

When the dimensionality of x increases, no unique elements are added to HT .
When x ∼ N (0, In×n):

HT (χ) =




h(0) h(
√
3) h(−

√
3) h(0) h(0) . . .

h(0) h(0) h(0) h(
√
3) h(−

√
3)

. . .
...

...
...

. . .
. . .

. . .


 .
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The third requirement is therefore adjusted to suit the multidimensional case:
λ0 = (6 − 2n)λi. Substituting λi with wi, these are exactly the criterions (4) -
(5), with w0 = 1 − n/3. The observation matrix associated with the cubature
sigma-point selection scheme enjoys the same properties (for p ≤ 3).
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Abstract

This paper is concerned with the problem of decision-makingin systems aiming
at assisting drivers in avoiding collisions with other roadusers and objects. An im-
portant aspect of these systems is not only to assist the driver when needed, but also
not to disturb the driver with unnecessary interventions. Aprobabilistic framework
is presented for jointly evaluating the driver acceptance of an intervention and the
necessity thereof to automatically avoid a collision. The driver’s acceptance is mod-
eled by assuming that drivers make predictions of the futuretrajectory of road users
and assesses these trajectories to judge if a traffic situation is critical, or if a colli-
sion safely can be avoided with reasonable effort. The framework is evaluated on a
few different types of collision scenarios, using both simulated and authentic sensor
measurements. The results show that it enables earlier interventions, and hence in-
creased system benefit, especially in situations where it isdifficult for the driver to
predict the future trajectory of an object.

1 Introduction

Road traffic accidents are one of the world’s largest public health problems. In the EU
alone, traffic accidents cause approximately 1.8 million injuries and 43,000 fatalities each
year [1]. To reduce these numbers, vehicle manufactures aredeveloping systems that can
detect hazardous traffic situations and actively assist road users in avoiding or mitigating
accidents. Systems that assist drivers in avoiding collisions are becoming increasingly
more common and are even being introduced as standard equipment in some passenger
cars [2].

Collision avoidance (CA) systems can generally be divided into three layers, as illus-
trated in Fig. 1. Measurements from on-board sensors, such as accelerometers, cameras
and radars, are processed in the first layer and then interpreted in the second layer that
makes decisions on when and how to assist the driver. The third layer executes the deci-
sion, e.g. by automatically applying the brakes of the vehicle.

The measurements are associated with uncertainties and, consequently, as are the ve-
hicle and object state estimates that are obtained in the sensor fusion layer [3]. A threat
assessment algorithm utilizes these estimates to make predictions of road user trajecto-
ries. Based on these predictions, an assessment is performed to estimate if and how a
potential accident can be prevented [4,5]. Both the state estimates and the predictions are
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Fig. 1: Collision avoidance systems can be divided into three layers. This paper focuses on
decision-making, threat assessment and modeling of the driver’s perception of the traffic
situation.

associated with uncertainties which need to be treated properly [6]. Moreover, to obtain
a high customer acceptance it is important that the system also accounts for the prefer-
ences of driver, such that the driver is not disturbed by the system during normal driving
conditions [7,8].

The aim ofCA systems is to assist drivers in avoiding collisions with other road users
and objects, without triggering interventions that the driver may consider as unnecessary.
Clearly, in order to autonomously avoid a collision, an intervention must be triggered
while an accident is still avoidable. However, most collisions that can be avoided byCA

systemspossiblycan also be avoided by a skilled driver. This implies that there is no
way of telling whether the driver would have been able to handle the situation without the
system intervening. That is, there is no objective measure available for judging whether
an intervention was useful or whether the driver was disturbed by the system. It is only the
driver of the vehicle that can decide whether an intervention was motivated or not. Hence,
when making decisions on when the system shall take action, there is always a trade-
off between making a successful intervention and the risk ofdisturbing the driver. This
highlights the need of incorporating a driver model in theCA system, such that vehicle
safety can be further improved by enabling earlier interventions in traffic situations that
the driver judges as critical.

This paper is concerned with decision-making inCA systems in the presence of uncer-
tainties. Several probabilistic decision-making algorithms have previously been proposed,
e.g., [4, 6, 9–11]. In these approaches, the risk of a false alarm is balanced with the con-
fidence that an autonomous intervention is actually needed to avoid a collision. The term
“false alarm” is, in these cases, typically defined as an intervention performed even though
there would not have been a collision. From the driver’s point of view, however, a more
relevant definition would be an intervention performed thatthe driver regards as unneces-
sary. In the present paper, we propose to simultaneously evaluate the driver acceptance of
an intervention and the necessity thereof, as is illustrated in the decision-making layer in
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Fig. 1. Decisions on when to assist the driver are made by taking a Bayesian approach to
estimate:

1. how a collision can be avoided by an intervention, and

2. the probability that the driver of the vehicle will consider the autonomous interven-
tion as motivated.

Interventions are initiated at an earlier stage when it is estimated that the driver acceptance
for interventions is high. In this way, the benefit ofCA systems can be increased without
disturbing the driver. Moreover, to reduce the risk of the driver getting used to having
interventions, and thus may start relying too much on the system, interventions are not
initiated until a significant action is needed to avoid a collision.

As an example, a previously presented threat assessment algorithm is used as a base
to assess how a collision with a single road user can be avoided [12]. Similar to [6],
the proposed framework enables this assessment to be performed in a probabilistic way,
such that uncertainties in object state estimates and predictions are accounted for. In
order to take the driver’s preferences into account, a noveldriver model is formulated
under a few basic assumptions regarding driver behavior, although it should be noted that
the proposed framework also supports other driver models and a wide variety of threat
assessment algorithms. Specifically, the proposed driver model is built on an assumption
that some of the driver’s safety margins originate from the driver’s perceived uncertainty
in the current and future state of road users. To put it differently, the driver’s desired safety
margins are modeled in a similar way to the safety margins that CA systems or autonomous
vehicles may use in order to safely avoid accidents. Including a model of the driver’s
safety margins into aCA system enables the system to perform earlier interventionsin
situations where the future trajectories of road users are difficult for the driver to predict,
e.g., when a wild animal enters the road.

The paper is organized as follows. Section 2 provides a motivation for this work and
shows that a small change in the decision timing can have a significant impact on the
benefit ofCA systems. Section 3 outlines the problem formulation, whereas Section 4
describes the decision-making framework. Section 5 presents the modeling choices made
in the specific implementation used to evaluate the framework in this paper. Section 6
describes, based on these modeling choices, how the decision-making framework can be
realized. Results are presented in Section 7, where the realization is evaluated on a few
different types of collision scenarios, using both simulated and authentic sensor measure-
ments. It is shown that intervention timing can be improved by using a driver model, e.g.,
by taking a human centric approach to probabilistic decision-making. Conclusions are
presented in Section 8.

2 Motivation

This section describes how the present paper is related to previous research on driver
models inCA systems and shows, through an example, that system benefit isstrongly
affected by the timing of interventions.
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2.1 Related literature

Goodrich and Boer [7] propose thatCA systems should account for not only the capabil-
ities of the vehicle and the sensor system, but also the autonomy and preferences of the
driver. Benefit and cost functions are introduced to make decisions based on a trade-off
between the potential benefit of an intervention and the costof disturbing the driver with
an unnecessary intervention. Although the concept of usingcost functions is appealing at
first glance, this concept has some potential drawbacks thatare pointed out, e.g., in [4].
For example, the cost of an unnecessary intervention may be difficult to define and relate
to the benefit of avoiding a potential collision. Hence, the behaviour of theCA system
may be hard to predict and tuning of the system could become problematic.

McCall and Trivedi [13] propose that the probability that the driver intends to apply
the brakes shall be estimated and that interventions shall be inhibited if the driver intends
to brake. The intent to brake is predicted by using a camera that monitors the driver’s
pedal usage and a camera that monitors the driver’s face. Although a foot camera may be
used to predict whether the driver intends to apply the brakes, it is probably difficult to
predict whether the driver intends to steer. The driver may also be drowsy or cognitively
distracted, in which case driver intent could be difficult topredict, even if the driver has
placed a foot on the brake pedal. Moreover, in traffic situations where the driver intends
to brake to avoid a severe collision, it is reasonable to assume that the driver may consider
a brake intervention as motivated and thus not disturbing.

Rather than solving the difficult problem of estimating the drivers’s intent or the cost
of disturbing the driver, the driver model presented in thispaper aims only to estimate
whether the driver will consider an intervention as motivated, as mentioned in Section 1.
In this way, driver autonomy can be maintained by only allowing the system to act when
it is estimated that the driver has a high acceptability for interventions.

2.2 Impact

As mentioned in Section 1, one of the aims of the present paperis to formulate a decision-
making framework that can be used to improve the intervention timing of CA systems.
What additional benefit is expected if the intervention timing is improved by a fraction of
a second? This question is investigated through an example.

Assume that a vehicle equipped with aCA system is driving at an initial speedv0, and
that automatic emergency braking is initiated with a timingsuch that the speed is reduced
to vc before colliding with a stationary object. How much earlierdoes the braking have
to be initiated in order to fully avoid a collision? In allCA systems the deceleration will
eventually reach a constant valuea and a collision is avoided if

s =
v2c
2 a

(1)

extra meters extra meters are available available to bring the host vehicle to a complete
stop. The time to travel this distance, before braking is initiated, is

∆t =
s

v0
=

v2c
2 a v0

. (2)
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Consequently, by applying the brakes∆t seconds earlier, the required extra distance is
gained and the collision is avoided. The required timing change∆t as a function of the
initial velocity v0 is illustrated in Fig. 2.

For example, given the initial speedv0 = 15m/s, the reduced impact speedvc = 4m/s
(i.e., 54 km/h and 14 km/h) and that the vehicle is driven on dry asphalt (a = 10 m/s2), it
is enough to brake∆t ≈ 0.05s earlier in order to fully avoid an accident. To put this time
into perspective, we will compare this time with the total intervention timing required
for avoiding a collision. Assume that the autonomous brake system has an initial delay
td before braking is applied, and that it takes an additional time tr before full braking
capacitya is reached. Furthermore, lettTTC be the time-to-collision given that the vehicle
speed is constant and braking is not applied. Then a collision is fully avoided if braking
is initiated at

tavoid
TTC = td +

tr
2
+

v0
2 a

(3)

whereas the vehicle collides with an impact speed

vc =
√

2 a v0 ∆t (4)

if the braking is delayed∆t s. For a typicalCA systemtd ≈ 0.05 s andtr ≈ 0.5 s,
which in the example above gives that a collision is fully avoided if braking is initiated
at tavoid

TTC = 1.05 s whereas the vehicle collides atvc = 4 m/s if braking is applied at

t
mitigate
TTC = tavoid

TTC −∆t ≈ 1.00 s.

Apparently, the required difference in timing to attain avoidance rather than mitigation
can be very small. The reason for this is that the required distances to bring the host
vehicle to a complete stop from the reduced velocityvc is relatively short once a constant
decelerationa has been reached, see (1). Consequently, the time∆t it takes to travel the
short distances before braking is initiated is small and decreases with increasing initial
speedv0, see (2). If the intervention timing can be improved just by afraction of a second
there is a high impact on the benefit of the system.

3 Problem formulation

Letxh
k be a state vector representing the state, i.e., position, velocity, etc., at discrete time-

instancetk of a vehicle hosting aCA system. Similarly, letxt
k be a state vector describing

the state of all other objects of interest, e.g., other vehicles or pedestrians in the vicinity of
the host vehicle. Given, noisy observations on these statescollected up to the current time
tk, denotedY1:k, an intervention decision rule for avoiding accidents without disturbing
the driver is desired. This decision rule should take into consideration that the state vectors
themselves are are not known to theCA system, but rather only their posterior probability
density function (pdf)p(xh

k,x
t
k|Y1:k) calculated by the sensor fusion system.
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Fig. 2: The graph shows how much earlier the intervention of aCA system must be trig-
gered in order to fully avoid a collision instead of colliding at an impact velocityvc. The
three curves show the required timing improvement∆t for three different crash velocities
vc = 20, 15, and10 km/h, top to bottom. Braking∆t seconds earlier fully avoids a
collision with a stationary target by the smallest possiblemargin. The result is valid for
braking on dry asphalt and is invariant to system time delaystd and brake system ramp-up
timestr within the range of mostCA systems.

4 Probabilistic decision-making

This section describes a probabilistic decision-making framework, and aims at at answer-
ing the following questions:

1. How can the risk of disturbing the driver be modeled?

2. What decision strategy is suitable when trajectory predictions of road users are
associated with uncertainties?

A robust decision rule in aCA system must treat several sources of uncertainties.
Firstly, there is an inherent uncertainty in the statesxh

k andxt
k as they are observed us-

ing noisy and imperfect measurements. Secondly, to assess the danger in a situation, the
system needs to make predictions regarding the unknown future. Both of these uncer-
tainty sources, illustrated in Fig. 3, can be addressed by using a probabilistic approach
to decision-making. As previously described in Section 1, we propose to simultaneously
evaluate the driver acceptance of an intervention and the necessity thereof. Furthermore,
we propose to do so in a probabilistic decision framework considering two sets of hy-
potheses. The first, capturing the driver acceptance (driver hypotheses). The second,
describing the necessity for theCA system to initiate an autonomous intervention to avoid
an accident (criticality hypotheses). This latter hypothesis set is used to manage the risk
that the driver gets used to having interventions and hence may start to rely on that the
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Fig. 3: When making intervention decisions, the proposed framework treats uncertainties
both in state estimates and in obstacle trajectories over a prediction horizon, as indicated
by the light grey area in front of the car. The vehicle hostingthe CA system can be
represented by any type of automotive vehicle, e.g. a car, a motorcycle, or a truck, as
illustrated in this scenario.

system will avoid all accidents. The two hypothesis sets aredenoted
{

Hd
0 : Driver does not accept an intervention

Hd
1 : Driver accepts an intervention

(5)

{
Hc

0 : An immediateCA intervention is not needed
Hc

1 : An immediateCA intervention is needed
(6)

where theCA system only takes action if bothHd
1 is selected overHd

0 andHc
1 is selected

overHc
0. If the probability of these hypotheses can be calculated based on the information

available, Pr{Hd
i |Y1:k} and Pr{Hc

i |Y1:k}, the decision rule detailed in Appendix A can
be used to choose one hypothesis over the other, see (44). In the following sections we
derive the framework needed to make these decisions.

4.1 Threat assessment

A vital component in a collision avoidance system is the ability to detect and assess the
danger in the current traffic situation, i.e.,threat assessment. In the literature there are
many different approaches to do this and good examples can befound in, e.g., [4, 10, 12,
14–16].

We propose to assess the danger in a situation by calculatinga set ofnc objective
physical measures, denoted{α1, . . . , αnc

}, describing how difficult it is for aCA system
to avoid a collision with other objects. This could, e.g., betime-to-collision (TTC) [6] or
the needed use of available tire-to-road friction in order to avoid an accident [12]. For
the derivation of the framework we assume that there existsnc such measures, denoted
α1−nc

, which are described by the functions

αi , gc
i (x

h
k,X

t
k:k+N ) i = 1 . . . nc (7)
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whereXt
k:k+N = {xt

k,x
t
k+1, . . . ,x

t
k+N} is the future trajectory of all other objects be-

tween timek andk + N . Given an initial statext
k, we assume thatXt

k+1:k+N can be
described using a known statistical model

Xt
k+1:k+N = fc(x

t
k,w

c
k) (8)

wherewc
k is a noise process describing the uncertainty in the motion of the objects.

Using the expressions in (7), a threat is detected if

αi > αlim
i ∀ i = 1 . . . nc (9)

lim where{αlim
i }nc

i=1 are feature specific design parameters typically specifying some crit-
ical limit of the measure. The clear advantage of this approach is that the design param-
eters can be related to physical properties, such as desiredspeed reduction for a collision
mitigation system when evaluatingTTC. Additionally, different features can set differ-
ent thresholds depending on timing and intrusiveness of theintervention, e.g., a warning
feature can have a lower threshold than a autonomous brakingfeature.

Using (9), the criticality hypotheses introduced in (6) canbe defined as
{

Hc
0 :

⋃nc
i=1 αi ≤ αlim

i

Hc
1 :

⋂nc
i=1 αi > αlim

i

(10)

whereHc
1 is true if all physical measures are above there respective thresholds. To get

a robust and conservative decision rule we propose to make a separate decision on each
measure and require all to be true for there to be a critical situation. As such, the fact that
one measure assess the situation as very critical has limited effect on the total assessment
of the situation. For example, if theCA system needs to use all available friction to avoid
a collision by steering to the left, the situation is still not assessed as critical if the system
can easily avoid an accident by autonomously braking and/orsteering to the right.

4.2 Driver acceptance modeling

In order to evaluate driver acceptance of an intervention wepropose to model the proba-
bilities forHd

0 andHd
1 as defined in (5) and use the decision rule (44) to determine whether

an intervention is accepted or not. We argue that:

The driver has a high acceptance for interventions ifthe driver perceivesthat
the traffic situation indeed was critical when an intervention was initiated.

Similarly as for the general threat assessment discussed inSection 4.1, we assume that
the driver’s sense of criticality can be assessed by evaluating a set of physical measures.

The driver uses her eyes and ears to make observations regarding the current traffic sit-
uation. Based on these observations, the driver is assumed to draw conclusions regarding
the current state of the host vehicle, denotedzh

k, and all other vehicles, denotedzt
k. Addi-

tionally, the driver is assumed to make predictions of the future states of the observed ob-
jects. Lets denoteN samples of this future trajectory asZt

k:k+N = {zt
k, z

t
k+1, . . . , z

t
k+N}.
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Using these (stochastic) variables, we propose to model thedriver’s “threat assessment”
of the traffic situation usingnd physical measures, denotedβ1−nd

, which are described as

βi , gd
i (z

h
k,Z

t
k:k+N) i = 1 . . . nd. (11)

The driver is assumed to deem a situation as critical if

βi > β lim
i ∀ i = 1 . . . nd. (12)

In this case, the set{β lim
i }nd

i=1 are driver specific parameters which may be tuned with
respect to a specific intervention type, e.g., a warning or anemergency brake intervention.
These parameters are typically connected to the driver’s safety margins, e.g., an aggressive
driver may be modeled using one set of values, whereas a cautions driver is better modeled
using a different set. Using (12), the driver acceptance hypotheses defined in (5) can be
expressed mathematically as

{
Hd

0 :
⋃nd

i=1 βi ≤ β lim
i

Hd
1 :

⋂nd
i=1 βi > β lim

i .
(13)

The driver’s perception of the current and future traffic situation is typically not known
to the CA system. Instead, to be able to evaluate (11), we propose to use probabilistic
driver models to capture the driver’s uncertainty inzh

k andZt
k:k+N based on the driver’s

observations. We assume these models can be written on the form

zh
k = hh(Xh

1:k,v
h
k) (14)

zt
k = ht(Xt

1:k,v
t
k) (15)

Zt
k+1:k+N = fd(z

t
k,w

d
k) (16)

where (14) and (15) model how the driver perceives the host vehicle state and target
states, respectively, and (16) describes how the driver predicts that the states of the other
objects will evolve over time. Each model includes a noise process, denotedvh

k, vt
k and

wd
k, capturing the driver’s uncertainty in in the current traffic situation and the future

trajectories of the other objects.

4.3 Decision-making

In order for theCA system to make a decision of an autonomous intervention, we propose
to make two separate decisions, both of which need to be true.Firstly, is a significant
intervention needed to autonomously avoid a collision, see(10), and will the driver accept
the intervention, see (13). However, to be able to evaluate (10) and (13) deterministically,
the system needs to fully know the state of the host vehicle aswell as the current and future
state of all other vehicles and even the driver’s perceptionthereof. Instead, we propose to
use a probabilistic decision-framework incorporating statistical models to describe system
uncertainties.

To use the decision methodology detailed in Appendix A, we need to calculate the
probabilities of hypotheses (5) and (6) using the models that we have defined and the
observations that have been collected. We start by derivingthe expressions for deciding
whether an intervention is needed or not.
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Criticality decision

Using the decision rule (44), the event that the situation isjudged as critical according to
theith measure can be written as the boolean expression,

Dc
i ,

{
Pr{αi > αlim

i |Y1:k}
Pr{αi ≤ αlim

i |Y1:k}
> cc

i

}
, (17)

wherecc
i is a threshold for indicating how certain theCA system needs to be that there

actually is a threat according to theith measure. Note that, as an autonomous intervention
is only initiated if it is also assessed that the driver accepts an intervention, the thresholds
in (17) could be tuned such that it requires only a small probability thatαi > αlim

i without
causing undesired interventions.

The probability expressions in (17) can be calculated as

Pr{αi > αlim
i | Y1:k} =

E
{
I{gc

i (x
h
k,X

t
k:k+N) > αlim

i }|Y1:k

}
(18)

whereI{·} is an indicator which is one if the expression inside the braces is true and zero
otherwise. Note that (18) can be calculated using the motionmodel (8) and the posterior
pdf, p(xh

k,x
t
k|Y1:k), from the tracking system. The probability that theith measure is

below its limit is1− Pr{αi > αlim
i | Y1:k}, following the law of total probability.

Finally, the system decides wether the situation is critical or not by evaluating allnc

measures using (17) and forming the joint event,

Dc ,
nc⋂

i=1

Dc
i . (19)

The system deems that an imminent intervention is needed if (19) is true.

Driver acceptance decision

Similarly as when theCA system assess the criticality of a situation, we propose to model
the driver’s acceptance by evaluating thend measures defined in (11) according to (12).
Given the driver models (14) – (16), the driver’s decision that there is a threat according
to theith measure can then be modeled as

Dd
i ,

{
Pr{βi > β lim

i |Xh
1:k,X

t
1:k}

Pr{βi ≤ β lim
i |Xh

1:k,X
t
1:k}

> cd
i

}
(20)

wherecd
i is a threshold for indicating that the driver experiences the situation as critical

with respect to theith measure. The probabilities in (20) can be calculated as

Pr{βi > β lim
i |Xh

1:k,X
t
1:k} =

E
[
I
{
gd
i (z

h
k,Z

t
k:k+N) > β lim

i

}
|Xh

1:k,X
t
1:k

]
(21)
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where the expected value is found using the driver models (14) – (16).
Similarly, as for the threat assessment of theCA system, the driver assesses the situa-

tion on a whole as critical only if the situation is critical with respect to allnd measures,
that is

Dd ,
nd⋂

i=1

Dd
i . (22)

For theCA system to be able to assess the driver acceptance, i.e., evaluate (22), it
needs to marginalize the statesXh

1:k andXt
1:k from the expression using the observations,

Y1:k. Consequently, theCA system makes the decision as

D̃d ,

{
Pr{ Dd |Y1:k}
Pr{¬Dd|Y1:k}

> c̃d
}

(23)

where

Pr{ Dd |Y1:k} = E
[
I
{
Dd(X

h
1:k,X

t
1:k)

}
|Y1:k

]
(24)

and c̃d is a threshold specifying how certain theCA system needs to be that the driver
judges the situation as critical given its uncertainty inXh

1:k andXt
1:k.

Autonomous intervention decision

In order for the system to make an autonomous intervention, it must judge that the driver
accepts the intervention and that the situation is critical. As such, the decision to intervene
or not is given by

D , D̃d

⋂
Dc. (25)

In sum, this concludes the presentation of our proposed probabilistic decision-making
framework treating both state and prediction uncertainty when considering both the driver’s
acceptance of an intervention,D̃d, and the criticality of the situation from theCA system’s
perspectiveDc.

5 Modeling choices

In order to evaluate the probabilistic decision framework,we need to make assumptions
and specific choices regarding the models introduced in the previous section. In this sec-
tion, we present one such possible set of choices that we use to evaluate the framework
in this paper. These choices have been made to illustrate that the framework has appeal-
ing properties even under simple modeling assumptions, which leaves room for further
improvement on threat assessment and driver acceptance modeling. The selected state
representation is given in Section 5.1, whereas Section 5.2presents one possible choice
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Fig. 4: State representation in a Cartesian coordinate system. The radius of turnRk is
defined as positive when the road user is turning to the left.

of threat assessment measuresαi [see (7)], an object prediction modelfc [see (8)] and
criticality limits αlim

i [see (9)]. Additionally, Section 5.3 presents a model of thedriver’s
perceptionhh, ht [see (14) – (15)], her object trajectory predictionsfd [see (16)], threat
measuresβi [see (11)] and criticality limitsβ lim

i [see (12)].

5.1 State representation

We choose to have the same state representation for all objects in xt
k as well as for the

host vehicle,xh
k, here represented by a generic state vector

xk = [xk yk Ψk vk ck v̇k]
T. (26)

In (26), (xk, yk) is the road user’s position in the ground-fixed Cartesian coordinate sys-
tem,Ψk is the heading angle,vk is the object’s speed over ground,ck = 1/Rk is the
current curvature of the trajectory, whereRk is the radius of turn, anḋvk is the longi-
tudinal acceleration. The instantaneous center of motion is perpendicular to the heading
angle at a fixed distanced from the front end of an object of lengthL and widthW , as
illustrated in Fig. 4. These three measures are assumed to bedeterministic and known.

It is assumed that the system’s uncertainty in host vehicle state,xh
k is negligible, i.e.,

the state is assumed to be fully known and independent of the states of the other objects.
Furthermore, it is assumed that the information regarding the other objects coming from
the sensor fusion system is described using a Gaussian density, xt

k ∼ N (x̄t
k,P

t
k).

5.2 Threat assessment

In the framework presented in Section 4, the threat assessment algorithmgc
i is required to

be able to estimate the threat measuresαi for any host vehicle statexh
k and any obstacle

trajectoryXt
k:k+N that can be given by the path predictionfc, see (7) – (8). One such al-

gorithm is proposed in [12], where four threat measures are used to describe the criticality
of a traffic situation. These measures are denoted

α1−4 = {αbrake, αaccel, αleft, αright} (27)
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Fig. 5: The algorithm estimates how a collision with a singleobject can be avoided during
a limited prediction horizonk : k + N . Acceleration, steering left, braking and steering
right are considered as potential evasive manoeuvres.

which represent the fraction of the available tire-to-roadfriction that theCA system needs
to utilize to avoid a collision with a single object by eitherbraking, accelerating or passing
the object by turning to the left or to the right, respectively. These options are illustrated
in Fig. 5. The criticality limits, see (9), are denoted

αlim
1−4 = {αlim

brake, α
lim
accel, α

lim
left, α

lim
right}. (28)

Since even a short summary of the algorithm would cover several pages, the interested
reader is referred to [12] for a description on how to estimate the measuresα1−4.

If there are multiple objects present, the threat of each object is evaluated separately.
Only the object with the highest threat level is kept for further analysis and decision-
making for interventions. Clearly, the threat of the situation as a whole may be higher than
the highest threat of a single object, but this problem is nottreated in [12]. However, it
shall be noted that the proposed decision-making frameworkis applicable in multi-object
scenarios if a multiple object threat assessment algorithmis available. In the continuation
of this paper, as the threat assessment is performed independently for each object, we
assume that there is only one object inxt

k.
The future trajectory of the other objects may be given by anysuitable prediction

modelfc, as such, we propose to use a so-called bicycle model [17], i.e.,

xt
k+i = xt

k+i−1 +




cos(Ψt
k+i−1) v

t
k+i−1

sin(Ψt
k+i−1) v

t
k+i−1

vt
k+i−1 c

t
k+i−1

v̇t
k+i−1

ċt
k I{i ≤ Mc

ċ}
v̈t
k I{i ≤ Mc

v̈}



δt (29)

with the prediction horizoni = 1 . . . N . The time interval between any two samples is
given byδt and the curvature ratėct

k and the longitudinal jerk̈vt
k is modeled as a noise

process given by [
ċt
k

v̈t
k

]
∼ N (0,Qc). (30)

121



PAPER II

Driver model

Real
world
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fusion

Path
prediction

Driver
perception

Threat
assessment

Fig. 6: Contrary to the driver, observing the world with her eyes, the driver model observes
the world through a sensor fusion system.

For simplicity, the time intervalsMc
ċ andMc

v̈ , during which the curvature rate and the lon-
gitudinal jerk are applied, respectively, are assumed to beknown. The predicted motion
given by (29) corresponds to the common maneuver of applyinga constant steering wheel
angle rate followed by a constant steering wheel angle [18].The longitudinal motion is
given by a constant jerk followed by a constant acceleration, where decelerating objects
are predicted to eventually come to a complete stop rather than changing direction.

5.3 The driver as a collision avoidance system

We argue that most drivers are aware that they have a limited ability to perceive and predict
the motion of road users, and that this is considered when planning maneuvers. Conse-
quently, if we assume that a driver desires to avoid collisions, the driver (consciously or
subconsciously) needs to

1. observe both stationary objects and other road users,

2. make predictions of road user trajectories, and

3. plan safe maneuvers considering these predictions.

These three objectives motivate that the driver can be modeled as a collision avoidance
system, consisting of

1. a tracking system (i.e., the driver’s eyes or perception), given byhh andht, see (14)
– (15),

2. a prediction modelfd, see (16), and

3. a threat assessment algorithmgd
i , see (11).

The driver observes the real world directly in order to judgewhether a traffic situation
is critical or not. Similarly, the driver model observes theworld through a sensor fusion
system, as illustrated in Fig. 6.
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The driver’s perception

Many studies claim that looming, i.e., when an observed object becomes increasingly
larger on the perceiver’s retina, is one of the most important cues that drivers observe when
making decisions on when to brake [19, 20]. Drivers have great difficulties to perceive
small looming changes [21,22] and may hence find it hard to estimate the acceleration of
an object.

Modeling of the human perception is not an easy task, but promising attempts have
been made, e.g., by using machine vision to estimate the probability that a pedestrian
has been detected by the driver [23]. Many more studies are needed to obtain a more
complete human perception model. To limit the scope of our analysis in Section 7, we
assume that drivers only have difficulties in perceiving thelongitudinal acceleration of
other road users, whereas position, size and velocity estimates are accurate. This basic
assumption is partly supported by [24], which shows that human perception of an object’s
velocity is much more accurate than the perception of its acceleration. To conclude, the
driver’s perception, see (14)– (15), is modeled as

zh
k = hh(Xh

1:k,v
h
k) = xh

k (31)

zt
k = ht(Xt

1:k,v
t
k) = xt

k + vt
k (32)

vt
k = [0 0 0 0 0 va]

T, va ∼ N (0, σ2
a). (33)

The driver’s path prediction

The driver’s predictionfd of an object’s future trajectoryZt
k:k+N , see (16), is given by

the same prediction model the system use, see (29), withzt
k as input instead ofxt

k. For
simplicity, the prediction uncertainty is assumed to originate solely for the driver’s un-
certainty in the object’s acceleration. Hence, the processnoise iswd

k = 0 and the time
intervals in (29) are set toMd

ċ = Md
v̈ = 0.

The driver’s threat assessment

Since the driver is modeled as aCA system, the driver’s threat assessment is given by
gd
i = gc

i , i.e., the same algorithm that was used for estimating the threat measuresαi can
now be used for estimating the driver’s threat measures

β1−4 = {βbrake, βaccel, βleft, βright}. (34)

The only difference is that the input to the driver’s threat assessmentgd
i is given by the

driver’s observationszh
k and predictionsZt

k:k+N . The driver’s criticality limits (12) are
denoted

β lim
1−4 = {β lim

brake, β
lim
accel, β

lim
left , β

lim
right}. (35)

Driver acceptability for interventions

To summarize,

123



PAPER II

An intervention is justified if the driver,modeled as aCA system, judges that
the traffic situation is critical with respect to all threat measuresβ1−4 at the
timek when an intervention is triggered, see (20).

In case the driver is distracted, we assume that once an intervention is triggered, the driver
will shortly observe the threat and thus be able to judge whether the intervention was
motivated or not.

6 Implementation

In this section, the expressions needed to implement the decision-making framework pre-
sented in Section 4, using the modeling choices and assumptions introduced in Section 5,
are derived.

6.1 Probability approximations

The probabilistic decision-making framework presented inSection 4 basically consists of
evaluating probability ratios. These calculations involve solving integrals (calculating the
expectations in (18), (21) and (24)) which rarely have analytical solutions, which is also
the case for the nonlinear models used in this paper. Insteadwe resort to approximative
solutions.

To arrive at a computationally tractable solution, we propose to use a grid of determin-
istically chosen sample (grid) points with associated weights to approximate the integral
as a weighted sum of evaluation. That is, the probability of an eventE which is dependent
on a stochastic variablex is approximated as

Pr{E} = E[I{E(x)}] ≈
L∑

i=1

wiI{E(x(i))} (36)

where{x(i)}Li=1 are the deterministically chosen sample points andwi ∝ p(x(i)). As —
according to the modeling choices and assumptions we made inSection 5 — there is only
uncertainty regardingxt

k, wc
k andvt

k we only need to choose sample points to evaluate in
these dimensions. We evaluate the criticality and driver acceptance decision separately.

6.2 Criticality decision

The criticality decision is governed by event probabilities on the form of (18). To approx-
imate these using the grid method we construct an augmented statex̃t

k = [(xt
k)

T (wc
k)

T ]T

which is distributed as

x̃t
k ∼ N

([
x̄t
k

0

]
,

[
Pt

k 0
0 Qc

])
. (37)

From (37),L = 49 grid points are selected as the union of three sigma point sets generated

using the Unscented transform withκ = {0 , 1 −m, 1 − m

3
}, respectively, wherem is
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the length ofx̃t
k. The interpretation ofκ is explained e.g. in [25]. Lets denote this grid

point set as

{wx
j , x̃

t,(j)
k }Lj=1 (38)

wherewx
j ∝ p(x̃

t,(j)
k ) as defined by (37). Each grid point in (38) is then propagated

through the motion model (29) to form the transformed grid point set{wx
j ,X

t,(j)
k:k+N}Lj=1.

The sought probabilities can now be approximated as

Pr{E|Y1:k} = E[I{E(xh
t ,X

t
k:k+N)}|Y1:k]

≈
L∑

j=1

wx
i I{E(xh

t ,X
t,(j)
k:k+N )}. (39)

for the eventsE = {gc
i (x

h
k,X

t
k:k+N) > αlim

i } wherei ∈ [1, 4].

6.3 Driver acceptance decision

The evaluation of the driver acceptance is performed in two steps as described by (20)
and (23). We start by evaluating the driver’s sense of criticality as described by (20) by
finding solutions to probabilities on the form of (21).

For a givenxh
k andxt

k, these probabilities are easily approximated using the grid
method. The proposed driver model, defined in (31) - (32), stipulates that the driver
only has added uncertainty regarding the longitudinal acceleration of the other object. To
account for this added uncertainty,M = 3 grid points inva ∼ N (0, σ2

a) are chosen in
the same manner as the Unscented Transform withκ = 2

3 . Lets donate this grid point set,

{wz
l , v

(l)
a }Ml=1, (40)

wherewz
l ∝ p(v

(l)
a ). From (40), grid points representing the uncertainty in thedriver’s

perception,zt
k, are obtained by appending these grid points toxt

k according to (32) as

{wz
l , h

t(xt
k,v

t,(l)
k )}Ml=1, (41)

Propagating the points in (41) through the prediction modelin (29) yields a transformed
grid point set{wz

l ,Z
t,(l)
k:k+N}Ml=1, from which the probabilities on the form of (21) can

be approximated in the same manner as (36) and the decision in(20) and (22) can be
evaluated.

For the CA system to assess the driver’s acceptance of an intervention, the system’s
uncertainty inxt

k needs to be accounted for. Using the method explained above,the deci-
sion in (22) can be evaluated for a givenxt

k. Again, choosing a set ofL = 37 grid points
in xt

k ∼ N (x̄t
k,P

t
k) using the same procedure used to generate (38)1. The probabili-

ties on the form of (24) can now be approximated by evaluatingthe driver acceptance as
described above by inserting each grid point inxt

k into (41).

1In practice, these grid points are chosen as a sub-set of the grid points in (38) where thewc
k dimension

is excluded
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7 Results

In this section, the decision-making framework is applied to the collision scenarios illus-
trated in Fig. 7, using the grid based implementation methodin Section 6 and the param-
eter setting in Table 1. In order to find a more suitable selection of the driver’s threat
thresholdsβ lim

i , it is suggested that extensive testing both in field operational tests and on
test tracks should be conducted, but such studies are out of the scope for the present pa-
per. In addition, when estimating how difficult it is for the driver to steer or brake to avoid
a collision, it is assumed that the lateral jerk and the longitudinal jerk does not exceed
±10 m/s3 and±15 m/s3, respectively.

In the examples, it is assumed that theCA system is equipped with actuators only for
automatic braking, whereas steering or acceleration cannot be performed automatically.
This is indicated by the parameter values of the threat limits αlim

i , e.g.,αlim
accel = 0 in

Table 1. The light grey area in Figs. 8–10 indicate when it is too late for the system
to prevent a collision by braking. In the graphs, it is assumed the brake system has a
capacity of−10m/s2, a maximum deceleration rate of−20m/s3 and an initial time delay
of td = 0.05 s.

Fig. 7: Collision scenarios with a lead vehicle, a playing child, a trash can and a turning
vehicle. The arrows in the rear end collision scenario illustrate scenarios with and without
an evasive maneuver by the host vehicle (bottom).

7.1 Collision scenarios on a test track

Results for an authentic rear-end collision scenario are presented in Fig. 8. For safety
reasons, the lead vehicle is represented by a soft inflatablecar (3x1.7 m) which is attached
to a trolley driven by a wire system at 50 km/h. The state of thesoft car is estimated using
a differential GPS system, as described in [26]. Measurement noise is added to obtain
measurements representative of radar and camera-based sensor fusion system, seePt

k in
Table 1. In a first test, the driver of the host vehicle approaches the lead vehicle at 80 km/h
and performs a late evasive steering maneuver. Immediatelyprior to this maneuver it
can be seen that the probability that the driver considers the traffic situation as critical
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Table 1: Parameter setting

αlim
brake 5 m/s2 αlim

accel 0 m/s2 αlim
left 0 m/s2 αlim

right 0 m/s2

β lim
brake 7 m/s2 β lim

accel 7 m/s2 β lim
left 7 m/s2 β lim

right 7 m/s2

cc
i 9 cd

i 0.25 c̃d 9 σ2
a 4 m2/s4

δt 0.05 s N 40 Mc
ċ 20 Mc

v̈ 20
Host vehicle Lh 5 m Wh 2 m dh 3.9 m
Lead vehicle Lt 3 m Wt 1.7 m dt 2 m
Playing child Lt 0.6 m Wt 0.6 m dt 0.3 m
Trash can Lt 0.6 m Wt 0.6 m dt 0.3 m
Turning vehicle Lt 5 m Wt 2 m dt 2.5 m

Pt
k= diag

(
0.12 0.12

(
1 π
180

)2
0.12 (0.01)2 12

)

Qc = diag
(
0.0052 0.52

)

increases. However, the probability decreases as soon as the driver initiates an evasive
steering maneuver.

In a second test, the host vehicle drives straight into the lead vehicle at 80 km/h with-
out braking or steering. The results in Fig. 8 show that theCA system can prevent an
accident without disturbing the driver with unnecessary braking, given the parameter set-
ting in Table 1.

7.2 Simulated collision scenarios

Figure 9 depicts simulated scenarios where the driver is approaching either a playing
child, or a trash can, at 50 km/h. Both objects are initially positioned directly in the host
vehicle’s path and the child is standing still. The uncertainty in the state estimate is given
by the covariance matrixPt

k in Table 1. The driver is assumed to have accurate estimates
of the current position of both objects, and knows that the trash can will remain stationary.
In this example, it is assumed that the child only can run backand forth across the road,
where the driver’s prediction of child’s future speed is bounded to the interval±4 m/s.
The results clearly show that the estimated driver acceptance for interventions is higher
when approaching the child, as compared to when approachingthe trash can.

7.3 Collision scenario using real radar data

In Fig. 10, the evaluation is performed for an intersection collision scenario using a radar-
based sensor fusion system. In order to obtain realistic measurements, a real target vehicle
was used. The state estimatesxt

k,P
t
k in the scenario displayed in Fig. 10 are provided by a

tracker [27], using a further developed version of the radarsensor model presented in [3].
The state of the host vehicle was then simulated to drive at a higher speed (50 km/h)
than the actual speed, such that a collision situation was created without endangering
the drivers. The results indicate that it is realistic thatCA systems can be designed to
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Fig. 8: Rear-end collision scenario with (top) and without (bottom) an evasive steering
manoeuvre. The graphs show the probability that the driver will accept a brake interven-
tion, Pr{D̃d |Y1:k} (solid), and the probability that the situation is criticalwith respect to
theCA system, Pr{Dc |Y1:k} (dashed). The dotted line shows the lateral acceleration (in
[g]) of the host vehicle. The star marks the time (t = 2 s) when the vehicles collide if no
evasive action is taken. Att ≈ 1.8 s (top), Pr{Dc |Y1:k} rises because the host vehicle
passes close to the lead vehicle while turning to the right.
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Fig. 9: The probability that the driver will accept a brake intervention, Pr{D̃d |Y1:k}
(solid), when approaching a trash can (top) or a playing child (bottom) at 50 km/h. The
star marks the time (t = 2 s) when a collision occurs if no evasive action is taken. The
dashed line shows the probability that immediate braking isneeded, Pr{Dc |Y1:k}. When
approaching the child both Pr{D̃d |Y1:k} and Pr{Dc |Y1:k} rise above the decision thresh-
olds cc

i and c̃d (dashed, thin) while a collision is avoidable and thus, theCA system can
use automatic braking to prevent a collision without disturbing the driver.
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autonomously avoid, or at least mitigate, accidents in thiscommon type of accident sce-
nario without disturbing the driver with unnecessary braking. A differential GPS system
is used as reference to estimate when a brake intervention nolonger can be used to avoid
a collision (light grey area).
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Fig. 10: The probability that the driver accepts an intervention, Pr{D̃d |Y1:k} (solid), and
the probability that braking is needed, Pr{Dc |Y1:k} (dashed), using data collected by
a radar based sensor fusion system. The host vehicle (bottom) is approaching a turning
vehicle (top). The star marks the time (t = 2 s) when a collision occurs if no evasive action
is taken.

8 Conclusions

In this paper, we presented a probabilistic framework for decision-making inCA systems.
We introduced a driver acceptance model for system interventions and showed that the
use of this model has several appealing properties. Specifically, the driver model enables
the system to perform earlier interventions in situations where the future trajectories of
other road users are difficult for the driver to predict. Moreover, the proposed framework
formally handles both measurement and prediction uncertainties.

Appendix A: Bayesian decision-making

In this section we summarize the basic bayesian decision-making theory used in this pa-
per. More details can be found in good textbooks on the subject, e.g., [28].

Let there be two hypotheses;H0 andH1. Given some observationsy, we wish to
make a decision regarding which hypothesis is true. Letαi be the decision that hypothesis
Hi is the correct one and suppose we can express a lossλi j = L(αi|Hj) for making the
decisionαi given that the true state isHj. The riskR(αi|y) is defined as the expected
loss associated with a particular decision,

R(αi|y) =
∑

j=0,1

λi jPr{Hj|y}. (42)

The minimum risk is achieved by choosingH1 overH0 if R(α1|y) < R(α0|y), i.e. if

p(y|H1)

p(y|H0)
>

(λ1 0 − λ0 0)

(λ0 1 − λ1 1)

Pr{H0}
Pr{H1}

. (43)
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This is equivalent to evaluating the well-known likelihoodratio. It may be convenient
to evaluate the posterior probabilities rather than the likelihood, e.g in a particle filter
implementation. Applying Bayes formula to the left hand side of equation (43) gives the
equivalent rule

Pr{H1|y}
Pr{H0|y}

H1

≷
H0

λ1 0 − λ0 0

λ0 1 − λ1 1
= γ. (44)

The above relation suggests to chooseH1 over H0 if the ratio Pr{H1|y}/Pr{H0|y}
exceeds a thresholdγ.
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Abstract

This paper concerns the problem of vehicle tracking when multiple radar re-
flection centers could be resolved on each vehicle. For this extended target
tracking problem we propose a radar sensor model, capable of describing such
measurements, incorporating sensor resolution. Furthermore, we introduce
approximations to handle the inherently complex data association problem.
The evaluation in terms of describing measured data and resulting tracking
performance shows that the model effectively exploits the information in mul-
tiple vehicle detections.

1 Introduction

Advanced automotive active safety systems often use sensors, such as radar and
camera, to gather observations on the traffic environment around the vehicle.
Through a tracking framework, these observations are refined to estimates of, e.g.,
position of other vehicles, pedestrians and the road. Based on the estimates, dan-
gerous situations can be detected and decisions of appropriate actions are taken.
For example, the system may warn the driver of an impending collision or intervene
by braking or steering in order to avoid the collision or mitigate its consequences.
For the active safety system to be able to make effective decisions, it is of great im-
portance that the provided estimates meet the requirements in terms of accuracy
and detail. To achieve this with a cost efficient system, the tracking framework
needs to have an accurate description of the statistical properties of the sensor
observations [1].

Many of the active safety systems on the market today are solely or partly radar
based. Except from being robust against different weather conditions, the radar
offers accurate measurements of range and range rate to objects. Furthermore,
the radar has a long history of use in, e.g., airborne applications, and there exists
a vast amount of literature on how to design a tracking system based on radar
observations, see [2, 3] and the references therein. There are, however, important
differences between target tracking in airborne applications and vehicle tracking for
active safety systems. In airborne radar applications the aim is to track aircrafts
at distances of tens of kilometers, whereas in automotive active safety systems the
distances to the objects of interest are in the order of tens of meters. At such short
distances, the radar resolution is typically finer than the physical extent of objects.
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Where, in airborne radar applications, the targets behave as point sources [2,3], in
automotive scenarios the radar is typically capable of detecting multiple features
(reflection centers) on the same object. In the radar literature this type of target
is referred to as an extended or distributed object/target [4].

Receiving multiple detections from a vehicle offers a possibility to extract de-
tailed information about the object. For example, the spread of the individual
detections gives information regarding the physical extent of the object as well
as its orientation [1]. However, multiple measurements per object also introduce
some considerable difficulties compared to the point source case. For one, the al-
gorithms and models developed using the point source assumption are no longer
valid. Additionally, an accurate sensor model is more complex as the detections
are spread over large parts of the object and not accurately described as originat-
ing from a single point. The sensor model also needs to consider the possibility
that a target can generate multiple detections in contrast to at most one in the
point source case. The uncertainty in the number of target detections makes the
data association problem more intricate. The aim of this paper is to develop a
computationally tractable sensor model that accurately describes the radar detec-
tions from this type of object (vehicles). The ultimate purpose being to improve
the tracking of vehicles for automotive active safety systems.

Although the classical point source assumption does not hold for extended ob-
jects, little attention has been given to find a more suitable tracking formulation.
A good overview of different contributions up to 2004 can be found in [5], cover-
ing extended object tracking and the closely related problem of tracking groups
of targets. More recent suggestions include, [6, 7] where a formal Bayesian track-
ing framework is proposed for estimating the centroid of the extended targets (or
target groups). The object extension is modelled as an ellipse and it is assumed
that multiple measurements can originate from each object. The elliptical shape
of each object is described using a positive definite random matrix. By including
these matrices in the state vector, both the target centroid and object extension
are jointly estimated from data. Although the proposed approach shows promising
results which are robust against object shape, it is difficult to exploit object spe-
cific shape information using this framework, when such information is available.
Gilholm et. al. [8] propose a particle filter solution where the detections from the
extended object are modelled by a non-homogenous Poisson point process with a
known but arbitrary spatial intensity. Using this description, it is possible to in-
clude information about the shape of the objects, but due to the limited flexibility
of the Poisson distribution, it is often impossible to incorporate specific knowledge
regarding expected number of target returns. The probabilistic multi-hypothesis
tracker (PMHT) [9] relaxes the point source criterion by modeling the measure-
ment to target associations as stochastic and independent, and has been applied
to extended object tracking in, e.g., [10]. Although the PMHT does not directly
provide covariance estimates, the method is useful if the number of detections
originating from each target cannot be accurately modeled.

For the problem of tracking vehicles using radar observations, there are reasons
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to believe that both the spatial distribution and the number of detections from
a vehicle can be accurately modelled. For example, the study in [11] indicates
that radar return from vehicles mainly originate from a number of specifically
strong reflection centers (point sources), such as the headlamps and the wheel
housings, see Fig. 3. Furthermore, if reflection centers are located within a resolu-
tion cell, the echoes from these reflectors are merged into a single joint detection
(cluster detection). In [12–15], a model that captures the general behavior of a
detection from a cluster including two sources/targets is used in conjunction with
a description of the probability that the two targets are unresolved. Using this
probabilistic description, the data association hypotheses and measurement model
are expanded to also consider a merged detection from the two targets. A similar
approach is proposed in [16], using a Gaussian approximation of the two-source
cluster detection density originally derived in [17]. Although the solutions referred
to here consider the influence of merged measurements, they are limited to handle
only two sources, and the result is not easily expanded to the more general case
of merging multiple sources.

Inspired by the findings in [11], we propose a radar sensor model describing
the spatial distribution of vehicle detections as well as a probabilistic description
over the number of vehicle detections. The proposed model also considers the
effects of merging a general number of target reflections (limited resolution). As
such, we are able to both incorporate shape information and expected number of
vehicle detections, as well as describe the statistical behavior of the measurements.
More specifically, the model family describes the radar reflections from a vehicle as
originating from a set of reflection centers and, depending on the resolution of the
sensor, reflectors likely to render a merged detection are grouped. The number of
detections from each group is modelled as well as the distribution of the resulting
detections. By associating measurements to reflector groups, instead of individual
reflectors or reflector clusters, the number of association hypotheses is significantly
reduced.

Furthermore, we derive a vehicle tracking framework based on our proposed
sensor model. The framework is based on a linear minimum mean square error
(lmmse) estimator where the needed densities are estimated using the unscented
transform (ut) [18]. A generalized version of the joint probabilistic data asso-
ciation (jpda) technique [2, 19] is used to handle data association uncertainties.
The proposed model is compared to the commonly used point source model in
two aspects: model likelihood and tracking performance. The evaluation clearly
indicates that the proposed model has significant benefits in both aspects.

The paper is organized as follows. In Section 2 the tracking problem is for-
malized and the necessary notation is introduced. Section 3 presents the radar
sensor model, and in Section 4 we show how this model can be used in a tracking
framework. Finally, Section 5 presents evaluation results of our proposed sensor
model and the derived tracking framework.
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2 Problem formulation

This article studies the problem of tracking vehicles with known physical dimen-
sions, using multiple radars mounted on the host vehicle. The objective is twofold.
First, to derive a family of detailed statistical models describing the radar returns
from the vehicles. Second, to develop a vehicle tracking framework based on this
model with the ultimate aim to improve the estimates of, i.e., the position and the
velocity of the vehicles.

This section is partitioned as follows. The state parameters to be estimated
are defined in Section 2.1 together with a model of how they evolve over time. Sec-
tion 2.2 describes the necessary background properties of the radar observations,
and Section 2.3 discusses in more detail the needed properties of the radar sensor
model and the tracking framework for our specific problem.

2.1 State parametrization

All the parameters of interest are collected in the discrete time state vector zk,
where k is the discrete time index corresponding to continues time instance tk.
The state vector contains both the states of the surrounding vehicles and the host
vehicle. Each vehicle, l, is described by the sub-state vector

zlk =
[
ζ lx,k ζ

l
y,k ψ

l
k v

l
k c

l
k v̇

l
k

]T
, (1)

where (ζ lx,k, ζ
l
y,k) is the position of vehicle l expressed in a global Cartesian coordi-

nate system. As illustrated in Fig. 1, Ψl
k is the heading angle and vlk is the speed

in the heading direction of vehicle l and v̇lk is its time derivative. The variable clk
represents the curvature of the current path of the lth vehicle. The state vectors
of all vehicles are stacked to form the complete state vector

zk =

[(
zhk

)T (
z1k
)T (

z2k
)T

. . .
(
zNv

k

)T]T
, (2)

where zhk is the host vehicle state and Nv is the number of surrounding vehicles.

The state vector evolves over time as stipulated by the motion model,

zk = fk−1 (zk−1, ek−1) , (3)

where fk−1(·) is a non-linear function and ek is a noise process included to reflect
both model uncertainties and the dynamics of the vehicles. Assuming that the ve-
hicles move independently, we can consider the motion of each vehicle separately.
To describe the motion of a vehicle we use a slightly modified version of the simpli-
fied bicycle model derived in [20], where the difference lies in the use of curvature
instead of yaw-rate, ψ̇k = vkck.
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Figure 1: Coordinate system and state parametrization used in this paper.

2.2 Radar observations

For each discrete time k a radar provides Mk detections, where M t
k detections

originate from the tracked vehicles and M c
k are clutter detections. All detections

are stored in the unordered (unlabeled) measurement vector,

yk =

[(
y1
k

)T (
y2
k

)T
. . .

(
yMk

k

)T]T
. (4)

Each detection is defined as

yik =
[
rik ṙ

i
k φ

i
k

]T
, (5)

where rik is related to the range, ṙik to the range rate, and φik to the angle to the
object that gave rise to the detection relative to the sensor.

Let us define an ordered collection of the detections originating from the tracked
vehicles as ytk and a collection of those originating from clutter as yck. These vectors
are related to the measurement vector, yk, through an unknown permutation
matrix, ΠMk

p , with dimension [MkxMk],

yk =
(
ΠMk

p ⊗ I3x3
) [ yck

ytk

]
. (6)

where ⊗ is the Kronecker product and I3x3 is a three-by-three identity matrix.
The purpose of ΠMk

p is to describe mathematically that the measurement origin

(data association) is unknown. In our model, all permutation matrices ΠMk

p are
equally likely, which means that the order of the detections in yk is completely
unknown (random). The treatment of this uncertainty is an important part in the
derivation of the tracking framework and is further detailed in Section 4. However,
let us first define yck and ytk in more detail.
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Clutter detections

It is commonly assumed, see e.g. [2], that yck is described by a homogenous Poisson
process in the observation space according to

yck,i ∼ Uniform(V ), M c
k ∼ Poisson(µV ), (7)

where yck,i is the ith clutter measurement, µ is the clutter intensity and V is the
volume of the observation space. In addition, we assume that the clutter detections
are independent from each other and the target detections.

Target detections

Given zk, we assume it is possible to partition the visible reflections centers into
Ng
k well separated groups, where each group can render multiple detections. Fur-

thermore, we assume that the number of target detections for group n, M t
k,n, has

a probability mass function

Pr
{
M t
k,n

∣∣ zk
}
. (8)

that we can model. Conditioned on M t
k,n, the detections from group n can be

described using a sensor model

ytk,n = hnk
(
zk,wk,M

t
k,n

)
, (9)

where wk is a measurement noise process capturing both model uncertainties and
measurement disturbances. From (9) we can generate

ytk =

[(
ytk,1

)T (
ytk,2

)T
. . .

(
ytk,Ng

k

)T]T
, (10)

and the total number of target detections is given by

M t
k =

Ng

k∑

n=1

M t
k,n. (11)

2.3 Objectives

The main objective of this paper is to improve tracking performance by accurately
modeling the radar response from the vehicles. To accomplish this, we need to
derive an accurate model of the radar detections which is also suitable to be used
in a tracking framework. In this section we discuss the objectives of the radar
sensor model and the vehicle tracking framework separately.
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Sensor model

The aim of the sensor model is to describe the statistical behavior of the measure-
ments, given zk. The behavior of the clutter detections is readily given by (7), but
modelling the target detections (8) – (9) is more complicated. It is crucial that
these models capture the behavior of the vehicle detections from different aspect
angles and at all ranges [21]. A vehicle radar response model, i.e., expressions for
(8) – (9), that considers these aspects is derived in Section 3.

Tracking framework

Assuming that the number of vehicles is known, the objective of the tracking
filter is to recursively calculate the posterior probability density function (pdf)
p
(
zk
∣∣Yk

)
, where Yk , {y1,y2, . . . ,yk} contains all the available observations up

to and including time k. From p
(
zk
∣∣Yk

)
, it is then possible to compute estimates

and uncertainty measures of zk. The calculation of p
(
zk
∣∣Yk

)
is feasible if we have

knowledge regarding two specific models [2], namely the motion model, defined in
(3) and the sensor model, defined by (7) - (9).

To arrive at a computationally tractable solution, we restrict our tracking filter
to an lmmse estimator of zk. As such, only the first two moments of p

(
zk
∣∣Yk

)

need to be calculated, i.e.,

ẑk|k = E
{
zk
∣∣Yk

}
, P̂k|k = Cov

{
zk
∣∣Yk

}
. (12)

However, due to non-linearities in both the process and measurement model it
is difficult to find an exact solution to (12). Instead, filters which approximate
these moments are commonly used, e.g., the extended Kalman filter (ekf) [22]
or the unscented Kalman filter (ukf) [18]. The latter is derived for the proposed
sensor model in Section 4, treating the uncertainty in measurement origin (data
association) modelled by the unknown permutation matrix ΠMk

p .

3 Radar sensor model

Our proposed sensor model is based on the findings presented in [11], where the
radar response from vehicles is modeled as originating from reflection centers (fea-
tures) on the vehicles more likely to reflect the incident radar wave. Due to limita-
tions in radar signal bandwidth, pulse duration and antenna aperture size, radar
sensors are not capable of resolving reflection centers that are too closely spaced.
As such, not all of these reflectors are always resolvable and the response from
some might merge to form a joint detection. In [11], a mapping is proposed for
how to transform the vehicle states to a set of reflector positions in observation
space. Additionally, a scheme is described for how to form clusters of those re-
flection centers that are unresolvable and how to model detections from these
clusters. As this model was developed for simulation purposes, rather than for
use in a tracking system, it neglects important probabilistic descriptions needed in
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the tracking context. For example, the model requires the received signal strength
of each individual reflection center to be known. Moreover, conditioned on the
signal strength and zk, both which reflectors are clustered and the positions of
the resulting clusters are deterministic. In the tracking context, it is not realistic
that the signal strength is known a-priori and consequently, we do not know which
reflectors are clustered or the position of the resulting detections from the vehicle.

In this section, we derive a radar sensor model using a stochastic description
of the received signal amplitude from each reflector center, arriving at a model
more suitable in a tracking framework. The derivation is conducted in four steps
which are shown in Fig. 2 and summarized as follows. First, based on the model
in [11], the positions of the reflection centers of the vehicles in zk are mapped to the
observation space. Second, we form all possible clusters of reflection centers which
may generate merged detections. Due to uncertainty regarding which reflectors are
resolved and which are not, the resulting probability density of reflector cluster
could be highly multi-modal. Third, to alleviate this multi-modality, we group
reflectors which may belong to the same cluster, and approximate the cluster
density by marginalizing over all cluster possibilities. The result is a description of
reflector groups capable of generating multiple measurements. Finally, depending
on the probability of detecting the possible clusters in each group, we find an
expression for (8). Assuming that the measurement noise is additive and Gaussian,
we now write (9) on the form

ytk,n = Gn
(
zk,M

t
k,n

)
+wk, wk ∼ N

(
0,W

M t

k,n

k

)
(13)

where

W
M t

k,n

k = IM t

k,n
xM t

k,n
⊗Wk. (14)

The function Gn(·) maps zk to the target measurement vector for group n, given
knowledge regarding the number of measurements generated by the group, M t

k,n.
Note that although we condition on zk and the number of detections from the
group, Gn(zk,M t

k,n) is still stochastic due to uncertainty in which reflectors that
are clustered (we call this clustering uncertainty).

The following sections present the derivation of the distribution of Gn(zk,M t
k,n)

and M t
k,n using the steps described above. To simplify notation, the time depen-

dence is omitted and all stochastic variables are conditioned on zk, even though it
is not explicitly stated.

3.1 Reflection center model

According to the model in [11], the studied radar only receives reflections from a
discrete set of points on a vehicle, so called reflection centers. The different reflec-
tion centers are divided into two categories: point reflectors and plane reflectors.
Fig. 3 displays the configuration of point reflectors suggested in [11], where the
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Reflection 
center model

Cluster model

Group m odel
M easurem ent 

m odel

Group m odel
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m odel

...
z r

{ccc1 }L
cc
1

cc=1

{cccn }
Lcc
n

cc=1

g1

gn

y1

yn

Figure 2: Schematic view of the measurement generation process in our proposed
radar sensor model. The notation used in the figure is introduced in subsequent
sections.

reflectors are placed in the vehicle wheel houses and corners. Associated with each
reflector is a visibility region, indicated by cones in Fig. 3; a reflector can only
render a reflection if the sensor is within this region. The plane reflectors are mod-
elled as circle sectors typically describing the sides of the vehicle. Furthermore, it
is assumed that the radar only can receive a reflection from these plane reflector
if there is a point on the surface which normal points directly towards the sensor.
The reflecting point on a surface therefore depends on the position of the sensor,
and may change over time as the vehicle moves relative to the sensor platform.

Figure 3: Vehicle reflection centers with associated visibility regions.

Given the vehicles’ positions and physical dimensions, each reflector i has a
deterministic position in observation space, denoted ri = [ri, ṙi, φi]

T and expected
signal power σi, expressed as

[
(ri)

T σi
]T

= Ri(z), (15)

where the mapping R is defined in Appendix A. Although the physical dimensions
of the observed objects are assumed known in this paper, in a sensor data fusion
system, information regarding object extent could be provided by, e.g., a vision
sensor and/or vehicle-to-vehicle communication.

In addition to the position of the reflector in observation space, it is also im-
portant to model the signal amplitude, Ai, of the received reflection. This is an
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important model feature as the probability of detecting a reflector depends on the
strength of the received echo, and the position of a merged detection depends on
the relative amplitude of the included echoes. The amplitude model used in [11] is
a deterministic function of the radar antenna pattern as well as the position and
visibility of the reflectors. We instead propose to use a Swerling I model [23] for
the amplitude of the reflected signal, where the reflection amplitudes are modeled
as fluctuating according to the Rayleigh distribution,

Ai ∼ Rayleigh(σi). (16)

As is shown in the coming section, using a stochastic amplitude model instead
of a deterministic enables us to describe uncertainty regarding number of vehicle
detections as well as their positions.

3.2 Cluster model

In Section 3.1 we presented a model for the vehicle response from a radar with

infinite resolution through the mapping z
R−→ r. However, a sensor with limited

resolution cannot resolve too closely spaced reflectors. To model this behavior, a
resolution cell is used

∆d = [∆r ∆ṙ ∆φ]
T (17)

and two radar responses which are not separated more than∆d, in all three dimen-
sions, yield a merged detection. Unfortunately, the situation is more complicated
for multiple reflectors, as unresolved clusters can be formed in several ways.

Cluster formation

In [11], the following algorithm is used to map reflectors into clusters, an operation

here denotes as r
C−→ ccc:

i) Find the reflector with the strongest amplitude, Ai.

ii) Form a cluster by identifying the reflectors which are within the resolution
cell (centered at ri).

iii) Repeat i) and ii) with the remaining reflectors, until no reflectors are left.

The clustering algorithm above, can be used to divide the set of all visible reflectors
into clusters and we refer to a description of all resulting clusters as a cluster
constellation. However, it is important to note that since the amplitudes of the
reflections are stochastic (in contrast to [11]), several different cluster constellations
may be possible, even for a given z. For notation, we construct a list of all
possible constellations, and introduce the variable cc as a pointer to the cluster
constellations in that list. The total number of constellations in the list is denoted
N cc (and consequently cc ∈ {1, 2, . . . , N cc}), and the number of reflector clusters
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r1 r1 r1

r1

r2 r2 r2

r2

r3 r3 r3

r3

cc = 1 cc = 2 cc = 3

Figure 4: Example of a vehicle with three reflectors (top) and three different cluster
constellations (bottom). The dashed line corresponds to a reflector cluster.

in constellation cc is Lcc. Fig. 4 illustrates these concepts by showing three possible
cluster constellations in a simple example. Here, N cc = 3 with L1 = 1, L2 = 2 and
L3 = 2 as the first constellation clusters all reflectors and the other two contains
two clusters each.

Cluster i in constellation cc, containing J reflectors1 with indices i1, . . . , iJ ,
can at most generate one detection which in that case can be modelled as ycci =
ccci + wcc

i where wcc
i ∼ N (0,W). The signal component, ccci , is modelled as a

weighted sum [11] of reflector components:

ccci =
J∑

l=1

wilril , (18)

where

wil =
Ail∑J
l=1Ail

. (19)

Although this is a rather simplified model of the underlying physical phenomenon
of merged measurements (such as target glint) [4,24], it serves the purposes for our
radar sensor model. Since the amplitudes are stochastic, so are the weights (19)
and the signal component of the cluster (18). As for the reflector detections, the
received amplitude of a cluster is also Rayleigh distributed but with the parameter

σcci =

√√√√
J∑

l=1

σ2il . (20)

Cluster density

For a cluster, the distribution of its position is defined by (16), (18) - (19), which is
difficult to evaluate. As the aim is to use the proposed sensor model in a Kalman

1The notation for the number of reflectors will change as we can get more specific. In this
section we use J to indicate the number of reflectors in a generic cluster.
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filter framework, it is convenient to approximate p
(
ccci
∣∣ z
)
as a Gaussian density

with the same first two moments as the underlying distribution.
Let overscore denote the expected value of stochastic variables, such that, e.g.,

Āi = E {Ai}. Further, let ∆ril = ril − c̄cci , ∆wil = wil − w̄il and set Si =
∑J

l=1Ail .
The first moment of ccci , as given by (18), is

c̄cci =

J∑

l=1

w̄ilril (21)

and after some manipulations an expression for the covariance can be found as

Ccc
i =

J∑

s, t=1

∆ris (∆rit)
T E {∆wis∆wit} . (22)

The position of each reflector, ril , is given by transformation (15), but we also need
to express w̄il and Cov {wis , wit}. As the moments of a Rayleigh distribution are
well known, approximations of these quantities are readily found through Taylor
expansion,

wil =
Ail
Si

≈ Āil
S̄i

+
Ail
S̄i

− SiĀil
S̄2
i

. (23)

More details on the derivation of the mean and covariance of ccci as well as the
approximations used are found in Appendix B.

To summarize, we propose a stochastic mapping of reflectors into cluster con-

stellations, r
C(·)−−→ {ccc}Ncc

cc=1, where N
cc is deterministic but both cc and ccc =

[ccc1 , . . . , c
cc
Lcc ] are stochastic. The density of each cluster in each constellation, ccci ,

is approximated as a Gaussian density,

p
(
ccci
∣∣ cc, z

)
= N (ccci ; c̄

cc
i ,C

cc
i ) , (24)

where c̄cci and Ccc
i are given by (21) and (22), respectively.

3.3 Group model

In multi-target scenarios, the total number of possible clusters,
∑Ncc

cc=1L
cc, can be

significant. Hence, it could be difficult to find a computationally feasible solution
for associating measurements to individual clusters. To mitigate this difficulty,
we suggest to form reflector groups containing reflectors that are likely to get
clustered, and describe the measurement distribution by marginalizing over the
cluster constellations. Let a group be a set of reflectors, formed such that for
every reflector i in the group, all other reflectors belonging to one or more clusters
with reflector i are also included. As a consequence, each reflector i in the group
is positioned within ∆d to at least one other reflector in the group. The number
of groups, Ng, is then the total number of such partitions of the reflectors. Fig. 5
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g1

g2

Figure 5: The formation of two reflector groups (solid lines).

displays a scenario where two groups, i.e., Ng = 2, are formed; one containing only
one reflection center in the rear wheel and the other composed of three reflection
centers in the front. A suboptimal, but simplified, solution to the association
problem is obtained by associating the detections to the reflector groups. By
ignoring which specific cluster in a group that gave rise to a detection, the number
of hypotheses are reduced substantially.

Each group is viewed as an entity which can generate multiple and independent
detections. The number of detections from group n is denoted by M t

n, and the

signal components (the positions) as g̃n =
[
(gn,1)

T , . . . ,
(
gn,M t

n

)T ]T
. Using this

notation, (13) can be written as

ytn = g̃n +w, (25)

As only reflectors within each group can form clusters with each other, we can
consider the cluster constellations for each group independently. For group n we
can generate N cc

n cluster constellations, and we let cc in this case indicate one
specific constellation in this group and Lccn denote the number of clusters in this
cluster constellation. A new list of cluster constellations is generated for each
group and cc is used to index one of the constellations. Further, let cccn,l denote

the signal component of the lth cluster in constellation cc for group n, and P ccn (l)
denote the detection probability of this cluster - a probability easily computed from
the Rayleigh assumption in (16) and (20). If we assume that all possible cluster
constellations are equally likely, we can describe the pdf of g̃n by approximating
its components gn,i as independent and identically distributed with the density2

p (gn,i) =
1

N cc
n

Ncc
n∑

cc=1

Lcc
n∑

l=1

qccn,lpcccn,l
(gn,i), (26)

where the weights qccn,l are defined as

qccn,l =
P ccn (l)

∑Lcc
n

m=1 P
cc
n (m)

. (27)

2In (26), the notation pccc
n,l

(gn,i) should be interpreted as the pdf of cccn,l evaluated at gn,i.
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To further simplify the implementation of a tracking algorithm based on this model
we make a Gaussian approximation, p (gn,i) ≈ N (gn,i; ḡn,i,Cn). Using the
approximation in (24), the expected value, ḡn = E {gn,i} is given by

ḡn =
1

N cc
n

Ncc
n∑

cc=1

Lcc
n∑

l=1

qccn,lc̄
cc
n,l (28)

and the second moment, Cn = E
{
(gn,i − ḡn)(gn,i − ḡn)

T
}
by

Cn =

Ncc
n∑

cc=1

Lcc
n∑

l=1

qccn,l
N cc
n

(
Ccc
n,l +

(
ḡn − c̄ccn,l

) (
ḡn − c̄ccn,l

)T)
, (29)

where c̄ccn,l and Ccc
n,l is given by (21) and (22), respectively.

Additionally, to complete the description of the groups, we need to calculate
the probability mass functionM t

n, the number of detections originating from group
n. By again assuming that all cluster constellations are equally likely, we have

Pr
{
M t
n

}
=

1

N cc
n

Ncc
n∑

cc=1

Pr
{
M t
n

∣∣ cc
}
, (30)

where Pr
{
M t
n

∣∣ cc
}
is easily calculated from P ccn (l).

In summary; we group closely spaced reflectors and use the cluster description
to calculate the expected signal component each group, its covariance matrix and
the probability mass function for M t

n, the number of detections from group n.

3.4 Target measurement model

In Sections 3.1, 3.2 and 3.3 we describe three mappings,R(·), C(·) and G(·), relating
the position of the vehicles to the measurement distribution. The procedure can
be depicted as

z
R(·)−−→ r

C(·)−−→ {ccc}Ncc

cc=1

G(·)−−→ gn,M
t
n,

where the first two mappings are deterministic whereas the last two are stochastic
due to uncertainty in the resolution capabilities of the sensor. The transformation

z
R(·)−−→ r describes the signal components of strong (vehicle related) radar reflectors

in observation space. By modelling the resolution capability of the sensor, C(·),
we form a set of cluster constellations, {ccc}Ncc

cc=1. To reduce the complexity of the
data association problem, we form groups of reflectors that belong to the same
cluster constellations, G(·). The groups are described by their spatial density,
p (gn) ≈ N (gn; ḡn,Cn), and the probability mass function Pr

{
M t
n

}
, describing

the number of target detections from each group. The result is a description
of target measurements originating from groups of reflectors, where each group
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n generates M t
n independent and identically distributed measurements. The ith

detection from group n,

ytn,i ∼ N (ḡn,Cn +W), (31)

is an independent of all other detections (conditioned on z). The complete tar-
get measurement vector yt can be generated by drawing the number of target
detections from the group, M t

n, according to (30), for each group n = 1 . . . Ng.
Subsequently, construct ytn by generating M t

n independent realizations of ytn,i con-
forming to (31). The complete target measurement vector is formed by concate-
nating all group measurements as defined in (10). This concludes the derivation
of our sensor model.

4 Tracking framework

In this section we present a tracking framework for recursively calculating the
posterior density, p

(
zk
∣∣Yk

)
, using the proposed sensor model derived in Section 3.

To handle uncertainty in the number of target and clutter detections as well as the
random permutation matrix, ΠMk

p , in the calculation of p
(
zk
∣∣Yk

)
, it is convenient

to introduce a data association hypothesis vector, λ. The purpose of this vector
is to associate detection number j in yk to a certain group, n. Consequently,
λ(j) = n, if measurement j originates from group n and, λ(j) = 0, if it is to be
regarded as clutter. Using this description, the sensor model can be written as

p
(
yjk
∣∣λ, zk

)
=

{
N
(
yjk; ḡλ(j),Cλ(j) +Wk

)
if λ(j) 6= 0

(
1
V

)
if λ(j) = 0.

(32)

This formulation makes it possible to associate measurements to group n according
to the support of Pr

{
M t
n

∣∣ z
}
. That is, each group can generate multiple detections,

each carrying information regarding the state of the vehicle. This distinguishes
our sensor model from the classical point source model.

By considering all possible data association hypothesis, the posterior density
can be formed as

p
(
zk
∣∣Yk

)
=
∑

λ

p
(
zk
∣∣λ,Yk

)
Pr
{
λ
∣∣Yk

}
, (33)

where p
(
zk
∣∣λ,Yk

)
is the posterior density without data association uncertainty

and Pr
{
λ
∣∣Yk

}
is the probability of that association. Due to, e.g., non-linearities

in (15) and the dimensionality of the data association problem, it is difficult to
find an exact solution to (33). Instead, we resort to an approximate solution.

In the literature it is possible to find several possible approaches, such as par-
ticle filters [25], Multiple Hypothesis Tracking (mht) filters [26] or the Probabilistic
Multiple Hypothesis Tracker (pmht) [9] to handle or simplify these types of prob-
lems. To make the implementation suitable for real-time applications with limited
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capacity to batch measurements, we propose a Kalman-like filter framework [27]
employing a generalized version of the Joint Probabilistic Data Association (jpda)
algorithm [19]. The generalization of the jpda algorithm for this problem consists
in allowing multiple measurements to originate from the same group, in contrast
to at most one in the original jpda formulation. The conditional posterior density,
p
(
zk
∣∣λ,Yk

)
, can be calculated for each λ, and we approximate this distribution

by a Gaussian density with mean ẑλk|k and covariance Pλ

k|k. Estimates of ẑλk|k and

Pλ

k|k are found using the ut [18] through

ẑλk|k = ẑk|k−1 +Pλ

zy

(
Pλ

yy

)−1 (
yλ

k − ŷλ

k|k−1

)
(34)

Pλ

k|k = Pk|k−1 −Pλ

zy

(
Pλ

yy

)−1 (
Pλ

zy

)T
, (35)

where ẑk|k−1 and Pk|k−1 are estimates of the mean and covariance of zk
∣∣Yk−1,

respectively. The covariance, Pλ
yy, is the innovation covariance under the data

association hypothesis λ and, Pλ
zy is the corresponding cross covariance between

the state and the measurements. In accordance with the jpda idea, the result-
ing Gaussian mixture (33) is also approximated as a single Gaussian where the
contribution from the individual densities are weighted by their hypothesis prob-
ability, Pr

{
λ
∣∣Yk

}
. Given a Gaussian prior density, p

(
zk−1

∣∣Yk−1

)
, the proposed

approach is briefly outlined below.

1. State prediction: Estimate ẑk|k−1 and Pk|k−1 by propagating zk−1

∣∣Yk−1

through the motion model (3) using the unscented transform.

2. Measurement prediction: Transform zk
∣∣Yk−1 to the observation space, using

the series of mappings derived in Section 3 and the unscented transform to
retain an approximation of the predicted group measurement

ŷtk,n = ĝn = E
{
gn
∣∣Yk−1

}
, (36)

as well as the predicted group covariances

Pn
gg = Cov

{
gn,i,gn,i

∣∣Yk−1

}
, (37)

Pnm
gg = Cov

{
gn,i,gm,j

∣∣Yk−1

}
, (38)

where i 6= j if n = m. The innovation covariance, Pλ
yy, is given by (37) – (38)

and the measurement noise covariance, Wk.

3. Data association: Use ĝn and Pn
yy = Pn

gg+Wk to perform measurement gat-
ing. Then generate the set of all possible measurement to group association
hypotheses and calculate their probabilities Pr

{
λ
∣∣Yk

}
.

4. Measurement update: For all λ, form the needed entities in (34) - (35) and
approximate p

(
zk
∣∣λ,Yk

)
. Finally, p

(
zk
∣∣Yk

)
, is found by marginalizing the

data association hypotheses, see (33).

A detailed description of the different steps is given in the following sections.
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4.1 State prediction

The state prediction is performed by calculating a Gaussian approximation of the
predicted density

p
(
zk
∣∣Yk−1

)
=

∫
p
(
zk
∣∣ zk−1

)
p
(
zk−1

∣∣Yk−1

)
dzk−1. (39)

This approximation is found by propagating p
(
zk−1

∣∣Yk−1

)
through (3) using the

unscented transform [18] as

p
(
zk
∣∣Yk−1

)
≈ N

(
zk; ẑk|k−1,Pk|k−1

)
. (40)

Assuming the vehicles move independently, the unscented transform can be per-
formed for each vehicle separately.

4.2 Measurement prediction

In Section 3 we derived a radar sensor model conditioned on the state through
a series of mappings. To form the expressions (34) - (35) we need estimates of
the first and the second-order moments (36), (37) and (38). Again we use the
unscented transform to find approximations of these moments. However, for our
proposed group measurement model, the approximation is not as straightforward
as for the motion model. As such, it requires some additional discussion.

Using the unscented transform described in [18], we choose 2nz+1 deterministic
sigma points with associated weights, where nz is the dimensionality of zk. The
sigma points and their weights are chosen such that they capture the first two
moments of (40) exactly. Let us denote the set of sigma points with associated
weights as,

{
Zik, u

i
k

}2nz+1

i=1
. (41)

Although not required, we choose the weights such that uik > 0, ∀ i = 1 . . . 2nz+1.
This is used to avoid risks associated with using the unscented transform in high
dimensions, such as the risk of estimating non-positive definite covariance matrices
and a mean situated far away from each propagated sigma point.

By propagating each sigma point through the mapping (15), we receive the
sigma point sets

{
Ri
k, u

i
k

}2nz+1

i=1
,
{
Σi
k, u

i
k

}2nz+1

i=1
(42)

whereRi
k describe the reflector positions of the i

th sigma point in observation space
and Σi

k their expected signal power. From (42) we can form estimates of the first
two moments of rk

∣∣Yk−1 according to

r̂k|k−1 ≈
∑

i

uikR
i
k (43)

Prr ≈
∑

i

uik
(
Ri
k − r̂k|k−1

) (
Ri
k − r̂k|k−1

)T
(44)
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where r̂k|k−1 is the estimate of the reflector position. The covariance matrix, Prr,
has the following structure

Prr =




P11
rr P12

rr . . . P1nr

rr

P21
rr P22

rr . . . P2nr

rr
...

...
. . .

...
Pnr1

rr . . . . . . Pnrnr

rr


 , (45)

where nr is the total number of reflectors on the vehicles in zk. From Σk, the
estimated expected signal power is similarly attained as

σ̂k|k−1 ≈
∑

i

uikΣ
i
k, (46)

which is used in (30) to account for reflector visibility under state uncertainty,
primarily in target heading. In practice, we only need to consider those reflectors
which are visible, i.e., for which σ̂ik|k−1 > 0.

From (43), we determine which reflectors belong to the same group. As only
reflectors within each group are able to form clusters with each other, we consider
the cluster constellations for each group independently. Following the algorithm
in Section 3.3, we form all possible cluster constellations for each group. Using the
mapping (26) we can calculate two of the sought moments, (36) and (37), as

ĝn =
1

N cc
n

Ncc
n∑

cc=1

Lcc
n∑

l=1

qccn,lĉ
cc
n,l (47)

Pn
gg =

Ncc
n∑

cc=1

Lcc
n∑

l=1

qccn,l
N cc
n

(
Pcc,n

clcl
+
(
ĝn − ĉccn,l

) (
ĝn − ĉccn,l

)T)
. (48)

Note that the weights, qccn,l, are dependent on the estimated expected amplitudes,

σ̂k|k−1, through P
cc
n . Values for ĉccn,l and Pcc,n

clcl are found using the same approxi-
mations as in the derivation of (21) - (22), detailed in Appendix B, and assuming
independence between wi and rk,i,

ĉccn,l = E
{
cccn,l
∣∣ cc,Yk−1

}
≈

Jcc

n,l∑

i=1

w̄li r̂
li
k|k−1 (49)

Pcc,n
clcl

= Cov
{
cccn,l
∣∣ cc,Yk−1

}
≈

Jcc

n,l∑

i,j=1

(
P
lilj
rr +

(
r̂lik|k−1 − ĉccn,l

)(
r̂
lj
k|k−1 − ĉccn,l

)T)

× E
{
wliwlj

}
, (50)

where, l1, . . . , lJcc

n,l
are the indexes to the reflectors in the cluster under considera-

tion. Using (47), (48) we can form the Gaussian approximation of the ith predicted
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measurement from group n as

p
(
ytk,n,i

∣∣Yk−1

)
≈ N (ytk,n,i; ĝn,P

n
gg +Wk). (51)

The additional sought covariance, Pnm
gg , assesses the covariance between two de-

tections from the same group or alternatively two detections from different groups.
For the filter to be able to perform the state update for all groups jointly, it is im-
portant to accurately assess these correlations. Conditioned on zk, it is assumed
that these detections are uncorrelated. Hence, the correlation only comes from
uncertainty in zk and we can approximate the group cross covariance as,

Pnm
gg =

Jcc
n∑

i

Jcc
m∑

j

w̄ni
w̄nj

P
nimj

rr , (52)

where {ni}J
cc
n

i=1 and {mi}J
cc
m

i=1 are the indices of all the reflectors in each group,
respectively. The weights, w̄ni

and w̄ni
, are calculated using the assumption that

all reflectors in each group are clustered as, for example,

w̄ni
= E

{
Ani∑Jcc
n

j Anj

}
. (53)

The cross covariance between detections from the same group is simply found when
n = m.

4.3 Data association

In difference to standard jpda, the generalized version of the jpda algorithm pro-
posed here considers the possibility that a single track can generate multiple mea-
surements. To avoid unlikely data association hypotheses, we employ an ellipsoidal
gate [2] centered at the group mean using (51). From the gated measurements and
knowledge regarding the maximum number of detections generated by group n
(max M t

k,n), it is possible to construct the set of all local hypotheses, i.e., the set of
all feasible associations between yk and group n. By combining local hypotheses
from all groups in an admissible fashion (such that each detection in yk is associ-
ated to precisely one group, or classified as clutter) we obtain a global hypothesis,
described by the vector λ. The hypothesis probability can be expressed as

Pr
{
λ
∣∣Yk

}
∝ p

(
yk
∣∣λ,Yk−1

)
Pr
{
λ
∣∣Yk−1

}
. (54)

The likelihood of the data association hypothesis is found through the Gaussian
approximation (51) and the clutter model (7) as

p
(
yk
∣∣λ,Yk−1

)
= N

(
yλ

k , ŷ
λ

k|k−1,P
λ

yy

)( 1

V

)Mc

k

. (55)
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where

ŷλ

k|k−1 =
[(
ĝλ(j1)

)T
,
(
ĝλ(j2)

)T
, . . . ,

(
ĝλ(jm)

)T ]T
(56)

yλ

k =

[(
y
λ(j1)
k

)T
,
(
y
λ(j2)
k

)T
, . . . ,

(
y
λ(jm)
k

)T]T
(57)

for {j1, . . . , jm} = {j : λ(j) 6= 0}, and similarly Pλ
yy is constructed as

Pλ

yy =




P
λ(j1)
gg +Wk . . . P

λ(j1)λ(jm)
gg

...
. . .

...

P
λ(jm)λ(j1)
gg . . . P

λ(jm)
gg +Wk


 . (58)

The expected signal component of the group n, ĝn, used in (56) is found in (47).
Expressions for the covariance components in (58) are found in (48) for the group
covariance, Pn

gg, and in (52) for the cross covariances between group n and m,
Pnm

gg .

The data association vector, λ, provides perfect knowledge regarding the num-
ber of clutter detections, M c

k , and the number of detections from group n, M t
k,n.

Hence, the prior probability for the association vector in (54) can be partitioned
as

Pr
{
λ
∣∣Yk−1

}
= Pr

{
λ,Mt

k,M
c
k

∣∣Yk−1

}

= Pr
{
λ
∣∣Mt

k,M
c
k

}
Pr {M c

k}Pr
{
Mt

k

∣∣Yk−1

}
, (59)

whereMt
k =

[
M t
k,1 . . . M t

k,Ng

k

]T
and Ng

k is number of groups. AsM c
k is assumed

to be Poisson distributed, we have

Pr {M c
k} = (µV )M

c

kexp(−µV )/M c
k !. (60)

Furthermore, Pr
{
λ
∣∣Mt

k,M
c
k

}
is found using combinatorics,

Pr
{
λ
∣∣Mt

k,M
c
k

}
=

Mg

k∏

n=1

(
Mk −

∑n−1
m=1M

t
k,m

M t
k,n

)−1

. (61)

Finally, the probability of the total number of target detections,

Pr
{
Mt

k

∣∣Yk−1

}
=

Ng

k∏

n=1

Pr
{
M t
k,n

∣∣Yk−1

}
(62)

where Pr
{
M t
k,n

∣∣Yk−1

}
is approximated using estimated expected signal ampli-

tude, σ̂k|k−1 in (30).
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4.4 Measurement update

To perform the measurement update defined by (34) - (35), we first need to con-
struct the included entities. The predicted mean and covariance are already given
in Section 4.1 and ŷλ

k|k−1 and Pλ
yy are given by (56) and (58), respectively. How-

ever, the cross covariance Pλ
zy needs to be estimated.

Using the sigma point sets in (41) and (42), Pzr = Cov
{
zk, rk

∣∣Yk−1

}
can be

estimated as

Pzr ≈
∑

i

uik
(
Zik − ẑk|k−1

) (
Ri
k − r̂k|k−1

)T
. (63)

From (63), Pλ
zy is calculated in three steps. First, approximating the relation

between reflectors and clusters as in (21) we find

Pcc,n
zcl

=

N∑

i

w̄liP
li
zr, (64)

where li lists all reflectors in cluster l in cluster constellation cc. Using (64) and
(28), it is easy to find

Pn
zg =

1

N cc
n

Ncc
n∑

cc=1

Lcc
n∑

l=1

qccn,lP
cc,n
zcl

, (65)

from which we can finally construct the sought cross covariance, Pλ
zy, as

Pλ

zy =
[
P

λ(j1)
zg , . . . ,P

λ(jm)
zg

]
, (66)

for {j1, . . . , jm} = {j : λ(j) 6= 0}.
The posterior mean and covariance estimates under data association hypothe-

sis, λ, are found through inserting (56), (66) and (58) into (34)-(35). The posterior
density (33) is a weighted sum of the posterior densities for all λ weighted by (54).
The mean and covariance of a Gaussian mixture model are readily calculated
though moment matching, see e.g. [2]. This concludes the derivation of the filter
framework for estimating the position of vehicles using possible unresolved radar
detections.

5 Evaluation

In this section we compare the proposed extended target model, denoted M1,
with that of a point source model (basic model), M2, similar to those presently
used in the automotive industry. The evaluation is performed in two steps, First,
we compare the ability the models to explain radar observations. Second, we
compare the estimation error, eik =

∥∥E
{
zik|Yk,Mn

}
− zik

∥∥
2
, of the tracking
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s2

s3

s1
t = 6.2 s

t = 5 s

t = 0 s

Figure 6: Host vehicle equipped with three radar sensors, one mechanically scanned
77 Ghz long range radar, denoted s1, and two medium range 24 GHz radars looking
to the right and left, denoted s2 and s3, respectively. In the evaluated tracking
scenario the host vehicle is traveling at constant speed at a straight path. The
target vehicle drives at a crossing path stopping in front of the host vehicle before
making a left turn.

system derived in Section 4 with one based on M2. The evaluation is limited to

single target vehicle scenarios, i.e. zk =
[(
zhk
)T
,
(
z1k
)T ]T

.

For both evaluations, radar observations are collected from three sensors, one
long-range radar at 77 GHz (denoted s1) and two medium-range radars at 24 GHz
(denoted s2 and s3), mounted on the host vehicle as illustrated in Fig. 6. Sen-
sor s1 has an update rate of 10 Hz, a field of view of 16o and a detection range
of approx. 150 m, whereas s2 and s3 cover a 150o field of view up to approx.
70 m using 13 independent receive beams, each delivering detections every 40ms.
The resolution cell for the two types of sensors are, ∆s1

d = [2m, .5m/s, 3.5o] and
∆
s2,3
d = [2m, 6m/s, ∞], respectively, where ∆

s2,3
d is used to describe the resolu-

tion in each of the receive beams of s2 and s3. The corresponding measurement
noise covariance for a point target is specified as Ws1

k = diag
([
.4, 2, 1π

180

])2
and

W
s2,3
k = diag

([
.4, .5, 1.2π

180

])2
. Target vehicle reference position, zik, and host ve-

hicle position measurements are acquired using accurate dgps measurements. We
proceed by introducing the point source model, then explain the two comparisons
and their results respectively.

5.1 Point source model

To evaluate the tracking performance gained in terms of estimation error by con-
sidering the vehicles as extended objects, we compare our tracking system with
one based on a point source model. To make the comparison as fair as possible, we
use the same state parametrization and both models exploit knowledge regarding
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the physical dimension of the observed vehicle. Given z1k the model compensates
for offset errors by positioning the expected target measurement, ŷ1

M2
, on the

intersection between the line of sight between the radar sensor and
(
ζ1x,k, ζ

1
x,k

)

and the vehicle frame. Using this model we design a probabilistic data associa-
tion filter (pdaf) [28], where only one measurement may originate from the target
and the presence of multiple measurements are modelled as clutter described by a
homogeneous Poisson process.

5.2 Sensor model comparison

The ability to explain a set of given observations can be compared by evaluating
the log-likelihood ratio

ℓ(yk, zk) = log

(
p
(
yk
∣∣ zk,M1

)

p
(
yk
∣∣ zk,M2

)
)

(67)

where the model specific likelihood functions can be partitioned as

p
(
yk
∣∣ zk,Mi

)
=

∑

λk∈ Lk

p
(
yk
∣∣λk, zk,Mi

)
P
{
λk
∣∣ zk,Mi

}
. (68)

In the following sections, we present expressions for p
(
yk
∣∣λk, zk,Mi

)
and P{λk

∣∣ zk,
Mi} for the different models as well as the evaluation of (67) for radar measure-
ments from two types of radar sensors.

Likelihood function

The likelihood ratio test is commonly used to compare hypotheses, in this case
which model is more likely to have produced the radar measurements. The test
is reasonable if the number of tuning parameters are the same for the compared
models. For our proposed sensor model, M1, (68) is given by (55) and (59), with
the minor difference that we do not have to integrate over zk. The corresponding
densities for M2 are obtained similarly as

p
(
yk
∣∣λk, zk,M2

)
=

{
N (yjk; ŷ

1
M2

,Wk)(
1
V )

Mc

k : M t
k = 1

( 1
V )

Mc

k : M t
k = 0

Pr
{
λk
∣∣ zk,M2

}
=





PD

Mk

e−µV (µV )M
c
k

Mc

k
! : M t

k = 1

(1− PD)
e−µV (µV )M

c
k

Mc

k
! : M t

k = 0.

The probability of detection is modelled in the same way for both models and the
clutter intensity, µ, is estimated from data using nonparametric pda [29]. Note
that the same parameters are used for tuning both models, i.e., the measurement
noise covariance and the probability of detection. All other parameters are taken
directly from the sensor specification.
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Results

The log-likelihood ratio (67) is evaluated using radar measurements from two sen-
sors of different types, s1 and s2. The data is collected while the host vehicle
drives straight towards the target vehicle at an angle of 18o (offset from the side
of the vehicle) starting at a distance of 40m. A scatter plot of the collected data
is illustrated in Fig. 7a.

Figures 7b and 7c display (67) evaluated for measurements delivered by sensor
s1 and s2, respectively. Both figures show a clear advantage in favour of our
proposed model. This is especially clear for sensor s1 which has higher resolution
than sensor s2 and where we often receive multiple detections neatly concentrated
to the front and rear wheel housings, see Fig. 7a. For sensor s2, the detections
are spread along the side of the target vehicle (some even positioned outside the
vehicle frame). This behavior is also modelled in M1 but the advantage is not as
dominant as in the case of sensor s1.

(a) Scatter plot of the evaluated target measurements from the s1 (red) and s2
(blue) radars.
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(c) Log-likelihood ratio s2

Figure 7: Log-likelihood ratio comparison between our model, M1, and the simpler
point source model, M2.
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5.3 Tracking filter comparison

The tracking filters based on M1 and M2 are evaluated using data from s1, s2
and s3 in the scenario depicted in Fig. 6. This particular scenario is chosen, both
because it is a relevant scenario for active safety systems addressing intersection
accidents [30] and because it is challenging for a radar based tracking system.

In the evaluation, both filters are initiated in the reference state, z10, provided
by the dgps system with initial covariance P0 = diag([1, 1, 3π

180 , .5, .001, 1.5])
2

and use the same process noise parameters, σ2v̈ = 9 and σ2ċ = 1
70 . The filter

implementation for our proposed model is given in Section 4 and for the point
source model we employ a standard ukf.

The result of the comparison is shown in Fig. 8 in terms of absolute longitudinal
and lateral positioning error, ex and ey, in the reference vehicle coordinate frame
as well as absolute velocity error, ev , and heading angle error, eψ, in the global
coordinate frame. The result indicates a clear advantage for M1 in terms of
accurate and stable positioning of the target vehicle, as well as velocity and heading
estimates. Worth noting is the later part of the scenario, t ∈ [7, 10]s, where
the two vehicles are close and many of the features on the reference vehicle are
resolved. In this part of the scenario the target vehicle starts to turn, something
that confuses the simpler point source model while our model still manages to
position the vehicle well. Additionally, the jump in the heading estimation error
at t ≈ 9.8s is explained by the filters only receiving measurements from the rear
part of the vehicle for some updates. As measurements again appear from the front
of the vehicle, it is clear that our proposed model is able to take more advantage
of the new information to deduce the heading of the vehicle more accurately than
the point source model.

6 Conclusion

In this paper we have proposed an accurate and tractable radar sensor model
capable of describing both multiple detections from a vehicle and their relation to
the limited sensor resolution. Furthermore, we have developed a framework for
tracking vehicles based on this model. The evaluation of the sensor model shows
that our model is clearly better than the reference model at describing the vehicle
radar detections from the two evaluated sensors. Additionally, the evaluation of
the tracking performance indicates substantial benefits using our model compared
to the reference model.

The reference model is notably simpler than the proposed one, and clearly
penalized in the evaluation when multiple features are resolved. However, it is
presently used in many systems and our comparison show that a widely used
family of tracking frameworks can be adapted to incorporate the new measurement
model, with improved performance as a result.

By formally including sensor resolution in the model, it can be used for a wide
range of sensors and targets by changing appropriate parameters according to the
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Figure 8: Comparison of the absolute estimation error from our tracking framework
(solid blue) and the point source model (dashed red) for longitudinal and lateral
positioning error in the reference vehicle coordinate frame, ex and ey, as well as
absolute velocity error, ev, and heading angle error, eψ, in the global coordinate
frame.

sensor specification. This feature is of most importance to the automotive industry
as it allows for sensors to be more easily replaced or updated.

Appendix A: Reflector mapping

The reflector mapping is divided into two parts; first the reflector is positioned in
the observation space, second, the the expected signal amplitude is modelled.

Appendix A.1: Reflector position

Assuming that point reflector with index i is positioned at xi = (xi, yi) in a local
coordinate system with the origin in the center of target vehicle j. The global
position of the reflector is then given by

[
ζj,ix
ζj,iy

]
=

[
ζjxk
ζjyk

]
+R(ψjk)

[
xi
yi

]
(69)

where R(·) is a 2x2 rotational matrix. Similarly, assuming that sensor, s, is
mounted on the host vehicle at xs = (xs, ys) and with an angle of ψs, the global
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position of the sensor is defined as

[
ζsx
ζsy

]
=

[
ζhxk
ζhyk

]
+R(ψhk )

[
xs
ys

]
(70)

Additionally, we define the relative angle between reflector i and sensor s according
to

αi,s = arctan

(
ζj,iy − ζsy

ζj,ix − ζsx

)
(71)

Using these relations, the mapping zk
Ri(·)−−−→ ri is defined as

ri =
√

(ζj,ix − ζsx)
2 + (ζj,iy − ζsy)

2 (72)

ṙi =
(
vjk cos(ψ

l
k − αi,s) + vj⊥ cos

(π
2
+ arg(xi)− αi,s

))

−
(
vhk cos(ψ

h
k − αi,s) + vh⊥ cos

(π
2
+ arg(xs)− αi,s

))
(73)

φi = αi,s − ψhk − ψs (74)

where vj⊥ = vjkc
j
k‖xi‖ and vh⊥ = vhk c

h
k‖xs‖ are the velocity component due to

rotation of the target and host vehicle, respectively.

Appendix A.2: Signal amplitude

The signal power of the sensor is characterized by two functions, the reciprocal
antenna gain pattern, Aa(φ), and the signal attenuation, Ar(r). Associated with
each reflector is a visibility function, νiσ(αi,s, ψ

j
k) dependent on the relative angle

between the observing sensor and the reflector and the heading of the target vehi-
cle. Using these models, the expected return amplitude of reflector i is calculated
as,

σi = Aa(φi)Ar(ri)ν
i
σ(αi,s, ψ

j
k). (75)

Appendix B: Gaussian cluster density approximation

In this section we derive the gaussian approximation of the cluster density in (21)
and (22). Let a cluster i consist of N reflectors positioned at r1, r2, . . . , rN in
measurement space. According to (18) the signal component of the cluster is
given by

ci =

N∑

n=1

wn rn,
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where in this case the reflector positions, rn, are known whereas the weights, wn,
are stochastic. The weights are expressed in terms of the received signal amplitudes
of each reflector, An,

wn =
An∑N

m=1Am
.

where

An ∼ Rayleigh(σn).

To find a Gaussian approximation of cluster density we need to find the first two
moments of ci.

Appendix B.1: Mean approximation

The mean of ci is

c̄i = E {ci} =
N∑

n=1

w̄nrn. (76)

where w̄n = E {wn} is not trivial to express. However, monte-Carlo simulations
indicate that the approximation

w̄n ≈ Ān∑N
m=1 Ām

(77)

where

Ān = E {An} = σn

√
π

2
, (78)

yields a reasonable approximation of (76).

Appendix B.2: Covariance approximation

The remaining difficulty is to approximate the covariance matrix of ci,

Ci = E
{
(ci − c̄i) (ci − c̄i)

T
}

(79)

The first aim is to find a representation which more robust to approximations. For
notation, set ∆rn = rn− c̄i and ∆wn = wn− w̄n. In the following, we will use the
relations

N∑

n=1

wn = 1, (80)
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which follows from the definition of wn, and

N∑

n=1

w̄n∆rn = 0, (81)

which is clear due to E {r− r̄} = 0. These relations and notations yield

Ci = E





(
N∑

n=1

wn(rn − r̄)

)(
N∑

n=1

wn(rn − r̄)

)T


= E





(
N∑

n=1

wn∆rn

)(
N∑

n=1

wn∆rn

)T


= E





(
N∑

n=1

∆wn∆rn

)(
N∑

n=1

∆wn∆rn

)T


=

N∑

n=1

N∑

m=1

∆rn∆rTmE {∆wn∆wm} . (82)

Recall that the matrices ∆rn∆rTm are known for all indices n and m. Hence, we
will now strive to find approximations for the scalar factors

Cov {wn, wm} = E {∆wn∆wm} . (83)

To this end, we use the Taylor approximation

wn =
An
Si

≈ Ān
S̄i

+
An − Ān

S̄i
− (Si − S̄i)Ān

S̄2
i

=
Ān
S̄i

+
An
S̄i

− SiĀn
S̄2
i

(84)

where Si =
∑N

m=1Am and

Ān = E {An} (85)

S̄i = E

{
N∑

m=1

Am

}
. (86)

Thus, we get

Cov {wn, wm} ≈ E

{(
An
S̄i

− SiĀn
S̄2
i

)(
Am
S̄i

− SiĀm
S̄2
i

)}

=
E {AnAm}

S̄2
i

− E {AnSi} Ām
S̄3
i

− E {AmSi} Ān
S̄3
i

+
E
{
S2
i

}
ĀnĀm

S̄4
i

. (87)
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To evaluate (87), we essentially only need the relations

E {An} = σn
√
π/2 (88)

Ā2
n = E

{
A2
n

}
= 2σ2n (89)

E {AnAm} =

{
E
{
A2
n

}
if n = m

E {An}E {Am} otherwise.
(90)
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Abstract

Reliable and accurate vehicle motion models are of vital importance for
automotive active safety systems, for a number of reasons. First of all, these
models are necessary in tracking algorithms which provide the safety system
with information. Second, the motion model is often used by the safety ap-
plication to make long term predictions of the future traffic situation. These
predictions are then part of the basic data used by the system to determine if,
when and how to intervene. In this paper we suggest a framework for design-
ing accurate vehicle motion models. The resulting models differ from conven-
tional ones in that the expected control input from the driver is included. By
also providing a methodology for a formal treatment of the uncertainties, a
model structure well suited, e.g., in a tracking algorithm is obtained. To uti-
lize the framework in an application will require careful design and validation
of sub-models for calculating expected driver control input. We illustrate the
potential of the framework, by examining the performance for a specific model
example using real measurements. The properties are compared to those of
a constant acceleration model. Evaluations indicate that the proposed model
yields better predictions and that it has an ability to estimate the prediction
uncertainties.

1 Introduction

A current trend in today’s automotive industry is to equip vehicles with more
and more active safety systems. These have the objective of aiding the driver
in different accident prone situations, such as unintentional lane departures or
dangers caused by distracted drivers. Based on sensor data, active safety systems
try to assess the situation and detect dangerous scenarios. Some examples of active
safety systems, which are currently available on the market are given in [1]. To
improve these systems in the future, detailed vehicle motion models will be most
valuable. The reasons for this are at least threefold:

1. The motion model is an integral part of the tracking system which provides
the safety system with information regarding the surrounding environment.
More precise motion models would improve the tracking system’s ability to
handle complex traffic scenarios.
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2. An active safety system needs to decide when and how to intervene. In
theory, an accurate motion model enables the safety applications to make
better long term predictions, and thereby allow decisions to be made earlier
and with greater confidence, [2].

3. Careful modelling of specific situations of interest, e.g., related to different
driver maneuvers, can help the safety application to classify and understand
the traffic situation.

The motion models predominantly used in tracking systems are derived from
the fundamental laws of dynamics and assume that the input is approximately
white Gaussian noise. Such models have been employed extensively in numerous
applications, and often with satisfactory results, [3], [4], [5]. However, there are
reasons to believe that traditional models can be improved to better meet the de-
mands of future safety systems. For instance, more accurate long term predictions
would be most useful for a decision making algorithm.

A main weakness in traditional models is that they do not capture the influence
the driver has on the vehicle motion. Under normal conditions, it is reasonable
to believe that the vehicle is completely controlled by the driver. Attempts to
model driver behaviour have appeared previously in the literature. In [6], a driver
behaviour model is used to design an adaptive cruise controller and in [7], similar
ideas have been used for threat assessment. Other examples of driver behavior
models have been developed for micro traffic simulators [8], and in the ongoing EU-
projects ISI-PADAS [9] and ITERATE [10]. A closely related problem exists in the
field of robotics where algorithms are designed to find a collision free path through
a partly unknown environment, see, e.g., the textbook [11] and the references
therein. We believe that neither of these models fulfill the requirements from a
future active safety system. For instance, the models in [6], [11] are not suitable
from a tracking perspective as they do not provide a stochastic description of the
vehicle motion. Similarly, the idea in [7] is not well suited for decision making
as it does not capture the variations in driving styles and driving preferences
among different drivers. Finally, since the models for micro process simulators
are designed for simulation purposes they lack a description of uncertainties in
predictions as well as the ability to adapt model parameters to observed data.
These properties are essential for filtering and decision making purposes and make
these models inappropriate alternatives in their current form. The same arguments
also hold for the models so far presented in the ISI-PADAS and ITERATE projects.

In this paper, we continue to develop the model framework introduced in [12],
[13]. The idea is that the driver controls the vehicle by making a trade off between
different objectives such as the desire to travel fast and to travel comfortably. To
describe the expected driver control signal, we use a cost function which reflects the
driver objectives. By minimizing this cost function the most likely control signal
can be calculated. Compared to [12], [13], the model framework is here extended
to cover a more generic model structure. More importantly, it is also adapted
to handle uncertainties in the cost function parameters. This allows us to design
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models which not only contain knowledge regarding typical driver behaviour, but
which are also able to capture variations among different drivers and to adapt as
the driver behavior changes.

The main contribution of this paper is the model structure described in Sec-
tion 3. This structure suggests a method for including the expected driver input
in a model structure, and provides guidelines on how to construct cost functions.
In contrast to other commonly used methods, our approach has the advantage
that model parameters have a clear interpretation. Having said that, a significant
amount of work still remains before this approach can be used by an application.
First of all, the cost function needs to be adjusted and validated for the intended
application. Secondly, an efficient implementation for minimizing the cost func-
tion has to be developed. To illustrate the performance of the suggested model
structure, we present one cost function and evaluate it using real measurements.
In the studied examples, the proposed model explains the data better and provides
better predictions, compared to a constant acceleration (CA) model.

The paper is organized as follows. Section 2 presents the notation and some
of the most commonly used motion models in tracking applications. In Section 3,
a general description of the proposed modelling framework is provided. A specific
design of the cost function is described in Section 4 and later evaluated on measured
data in Section 5. Finally, Section 6 contains the conclusions.

2 Background

The vehicle motion model describes the evolution of a time-discrete vector xk ∈
Rnx , referred to as the state vector of the model. For vectors and matrices (in-
dicated by boldface) we use the sub-index k as notation for a discrete time in-
stant with a continuous counterpart in tk, whereas the notation x(k) is used for
scalars. The continuous time interval between two samples is constant and denoted
Ts = tk − tk−1. We consider a state vector partitioned as

xk = [(xh
k)

T (ztk)
T rTk ]

T , (1)

where xh
k is the state vector for the host vehicle, ztk is the state vector for the nearest

target vehicle in front of the host vehicle and the vector rk contains parameters
describing the road. Our main interest in this article is to derive a model for
the vector xh

k . For ztk and rk we use standard models which are described in this
section. The model we propose for the host vehicle can also be used for one or
several target vehicles, but for simplicity we apply it only on the host vehicle.

We restrict the scope to Markovian models on the form

xk = fk−1(xk−1, ek−1), (2)

where fk−1(·) is a possibly time-varying and nonlinear function of xk−1 and a
stochastic noise vector ek−1 ∈ Rne . The noise process accounts for model uncer-
tainties, and is traditionally modelled as an independent and identically distributed
(i.i.d.) process with zero mean.
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An important subgroup of the general model structure (2) is the family of
linear motion models defined by the matrices Ak−1 ∈ Rnx×nx and Bk−1 ∈ Rnx×ne

such as

xk = Ak−1xk−1 +Bk−1ek−1. (3)

These motion models are popular in tracking applications because they enable
simple and efficient algorithms such as the Kalman filter [14], for estimating and
predicting the states.

A frequently used linear motion model, is the CA model. In this model the
state vector ztk is parameterized as

ztk = [ηtx(k) η
t
y(k) η̇

t
x(k) η̇

t
y(k) η̈

t
x(k) η̈

t
y(k)]

T , (4)

where (ηtx(k), η
t
y(k)) is the center position of the vehicle and (η̇tx(k), η̇

t
y(k)) and

(η̈tx(k), η̈
t
y(k)) are the first and second order time derivatives of ηtx(k) and ηty(k).

In the version of the CA model employed here, the noise process ek determines the
jerk between sample instances. The acceleration, velocity and position increments
are thus given by ekTs, ekT

2
s /2 and ekT

3
s /6, respectively. The system matrices

then take the form

A =




1 0 Ts 0 T 2
s

2 0

0 1 0 Ts 0 T 2
s

2
0 0 1 0 Ts 0
0 0 0 1 0 Ts

0 0 0 0 1 0
0 0 0 0 0 1




, B =




T 3
s

6 0

0 T 3
s

6
T 2
s

2 0

0 T 2
s

2
Ts 0
0 Ts




, (5)

where the noise process is modelled as ek ∼ N (0,Ce), where Ce = diag[σ2...
η x

σ2...
η y

].

In essence, the CA model is a kinematic particle model [15], where the object
motion is decoupled in the different dimensions. Other examples, where the ob-
ject’s motion in the different dimensions are instead coupled, are the coordinated
turn (CT) models [3], [4]. More detailed vehicle motion models, which for instance
take wheel slip and wheel angle into account, have been derived for applications
such as vehicle stability and traction control. The textbook [16] provides more
information on dynamic vehicle models, and describes the single track model or
bicycle model which has been used for vehicle tracking, at least in a simplified
form, see, e.g., the study [17].

In this paper, we use a curved road coordinate system such that the position of
the host vehicle (ηhx , η

h
y ) and target vehicle (ηtx, η

t
y) are given relative to the road.

This coordinate system, previously used, e.g., in [18], is defined in Fig. 1. The
same figure also contains a Cartesian coordinate system (ξx, ξy), which will be
needed later in Section 4. To find a relation between these coordinate systems, a
model of the road curvature is required. Here we follow suggestions from e.g. [19]
and use a clothoid model. The road curvature is then described by a local linear
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ξx

ξy
ηx

ηy

Figure 1: This figure illustrates the global Cartesian coordinate system (ξx, ξy),
and the curved road coordinate system (ηx, ηy).

approximation about the host vehicle, i.e.,

c(ηhx +∆ηx) = c0 +∆ηxc1. (6)

The parameter c0 is the local curvature at the center of the road and c1 the
curvature change rate as a function of distance ∆ηx from the host vehicle. We
include the clothoid parameters c0(k), c1(k) and the lane width Lw(k) in the road
state vector

rk = [Lw(k) c0(k) c1(k)]
T . (7)

The evolution of rk is modelled as

rk =




1 0 0
0 1 Tsη̇x(k − 1)
0 0 1


 rk−1 + vr

k−1, (8)

where vr
k−1 ∼ N (0,Qr).

3 Motion model framework

In this section, we describe how the motion model is extended to incorporate the
effect of the driver. We base the modelling idea on a set of postulates which are
highlighted in the text. The equations for calculating the driver input are also
presented and important model properties are discussed.

3.1 Model structure

We will here motivate and present the structure and some key components in the
proposed model.
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Postulate 1. The driver controls the motion of the vehicle by steering and
adjusting the acceleration.

As the classical motion models fail to acknowledge the influence of the driver, there
is, at least theoretically, room for substantial improvements if we can model the
driver actions. Naturally, the vehicle obeys the laws of physics and the models in
Section 2 are still appropriate even though the input is no longer white noise. In
a general parameterization we suggest a model

xh
k = fk−1(x

h
k−1,uk−1(xk−1),vk−1), (9)

where uk−1(xk−1) is the driver input signal and vk−1 is a white noise process.
Modelling the driver input uk−1(xk−1) is a key component here and the topic of
Sections 3.2 and 4.

The complete state vector for the host vehicle is given by xh
k , but the kinematic

state of the host vehicle is described by the vector zhk which is a subvector of xh
k .

The propagation of this kinematic state vector is described by the model

zhk = fhk−1(z
h
k−1,uk−1(xk−1) + vz

k−1). (10)

Here we use a modified CA model

zhk = Azhk−1 +B(uk−1(xk−1) + vz
k−1), (11)

where

uk−1(xk−1) =

[ ...
η h
x(k)...

η h
y(k)

]
(12)

and vz
k−1 ∼ N (0,Qz). There are other model structures, like the bicycle model,

which often describe vehicle motion more accurately than the chosen CA-model.
However, as we shall see, the CA-model leads to a relatively simple implementation.

There is reason to believe that the variations in behavior between different
drivers can be large. We therefore allow the function uk−1(xk−1) to be parameter-
ized by a vector θk−1, which is intended to capture variations in driver preferences
and driving styles. For an example of what parameters θk−1 may contain see
Section 4.

The evolution of θk is described by the model

θk = gk−1(θk−1,v
θ
k−1), (13)

i.e., it is assumed to be independent of all other elements in xh
k−1. We use

gk−1(θk−1,v
θ
k−1) = γθk−1 + (1− γ)µ+ vθ

k−1, (14)

where vθ
k−1 ∼ N (0,Qθ) while γ ∈ [0, 1), µ and Qθ are design parameters. The

proposed process model is such that when an element in θk−1 is not observable,
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its posterior distribution approaches a prior distribution representing the set of all
drivers. To illustrate the convergence of the first two moments we study

E[θk+l] = γlE[θk] + µ(1− γl) (15)

Cov[θk+l] = γ2lCov[θk] +
1− γ2l

1− γ2
Qθ. (16)

Thus, γ determines convergence speed, whereas µ and Qθ/(1 − γ2) are the limit
values of the first two moments as the prediction length l → ∞.

The task of modelling driver behaviour in terms of uk−1(xk−1) and vk−1 is
an extensive and difficult problem. To simplify the problem we assume that it is
divided into subproblems for which the uncertainties are smaller and vk−1 has a
unimodal distribution.

Postulate 2. In normal traffic, the actions of a driver can be divided into
a set of different categories.

Each category typically corresponds to a driver intention such as: changing lanes,
following the lane or turning left, but it could also capture other aspects of the
situation such as if the driver is distracted or not. Given the intention of the
driver, it is easier to capture the driver behavior. We use a scalar parameter m(k)
to indicate the driver action which is currently active.

The complete state vector for the host vehicle is now given by

xh
k = [(zhk)

T θT
k m(k)]T . (17)

Note that the function uk−1(xk−1) depends on both θk and m(k) and the impli-
cations of this are further discussed in Section 3.3.

3.2 Calculating the driver input uk(xk)

In the suggested framework, the driver operates the vehicle such that three main
objectives, or driving rules, are fulfilled.

Postulate 3. The driver strives to control the car in a safe and comfortable
manner, and at a preferred velocity.

The safety preference corresponds to the driver’s desire to control the vehicle such
that it stays in the preferred lane and at a safe distance to other vehicles and
objects. Distance is here both a spatial and temporal measure. Simultaneously,
the driver asks for a comfortable journey and is reluctant to be put under large
accelerating forces and jerks. The third objective captures the driver’s desire to
maintain a preferred velocity.

Based on this assumption, we can represent the driver preferences mathemat-
ically using a cost function

cost(uk−1,xk−1). (18)
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Suggestions for cost functions that penalize trajectories which are in conflict with
the above preferences are given in Section 4. As we will see, the cost function is
implicitly dependent on the vector θk−1.

An important driver ability is to make decisions based on both the present and
upcoming situation.

Postulate 4. The driver plans ahead and tries to find the optimal route,
such that the driver preferences are considered for the near - and not only
the immediate - future.

We wish to incorporate this property in our model, such that the expected driver
input at time k − 1 enables a desirable journey also for the near future. The
cost function is therefore evaluated for a trajectory of driver input signals and
corresponding state vectors. By selecting the trajectory with the lowest cost,
we can produce a prediction of the vehicle motion, that incorporates knowledge
regarding the road, other objects, speed limits, etc.

In a sense, we are hereby approximating the driver by an optimal controller
[20], where the optimality criterion is defined by the cost function. The optimal
driver input is obtained as uk−1(xk−1) ,

argmin
uk−1

min
{uk, . . . ,uk+N−2}

k+N−2∑

n=k−1

cost(un,xn), (19)

where the future state vectors xn, n > k − 1, are calculated using the model (9).
The driver input, uk−1, is usually a nonlinear function of the state xk−1 which turns
the modified CA model in (11) into a nonlinear motion model. Here we assume
that the driver completely controls the car such that there are no uncertainties in
the motion model; we set vn = 0 for n = k − 1, . . . , k +N − 3.

To solve (19), we take an approach which is very common in optimal control and
which is advocated, e.g., in Betts [21]. Instead of parameterizing the problem in the
free variables uk−1, . . . ,uk+N−2, we solve for the optimal sequence of state vectors
zk, . . . , zk+N−2. The motion model (11) (with vz

n−1 = 0 for n = k, . . . , k +N − 2)
now enters as linear constraints on the state sequence. As a consequence, the opti-
mization problem becomes more high dimensional, but with much nicer properties.
In this alternative form, the optimization can be solved conveniently using a built
in routine in TOMLAB (http://tomopt.com/tomlab/) called SNOPT. SNOPT
solves the optimization problem using a efficient sequential quadratic program-
ming method [22]. Note, however, that depending on the choice of cost function,
the optimization problem (19) may be of different complexity. The properties of
the optimization problem hence needs to be considered when designing the cost
functions. For the cost functions presented in Section 4, which are designed so
that their first and second derivatives both exist and are continuous, and for the
test scenario described in Section 5, SNOPT computes the optimal trajectory in
less than 50 ms on a conventional computer.
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3.3 Model features

The idea of approximating the driver as an optimal controller according to an ob-
jective function has been discussed previously, e.g., in [6]. An important difference
in the new motion model is the inclusion of the parameters θk and m(k). In this
section, we discuss the vital role these parameters have for situation assessment
and to produce reliable predictions.

Driver preferences, θk

The purpose of the parameter θk is to capture the individual driving style, and
allow the driver preferences to vary over time. Naturally, additional parameters
add complexity to the problem, but the benefits obtained by introducing the vector
θk are arguably more significant.

First of all, as time goes by the system gains information regarding θk by
tracking the vehicle trajectory zh1 , z

h
2 , . . . , z

h
k . Due to improved knowledge about

θk, predictions become more accurate and biases are reduced. The objective is, of
course, to attain this performance for (virtually) all driving styles.

Second, by describing the uncertainties in θk we can obtain a parameterized
and improved description of the uncertainties in zhk . While the cost function frame-
work provides an estimate of the expected control signal, the random vector θk

affects also the variance of uk−1(xk−1). This is a key advantage of the model
framework, which owes to the fact that the uncertainties in θk can be propagated
to zhk according to (10). In situations where the optimal trajectory is essentially
independent of θk, i.e., when most drivers would act the same, the predictions are
more reliable. On the other hand, in other circumstances the optimal trajectory
may be highly dependent on the driving style, which would lead to a lower con-
fidence in the predictions as θk is not fully known. As we shall see in Section
5, the variations in prediction uncertainties coincide fairly well with the observed
prediction errors.

Driver intention, m(k)

It may seem like a drawback to include the hypotheses parameter, m(k), into the
state vector, as it leads to several difficulties. First, to provide a complete de-
scription of the model in (9) one must design a process model for m(k), given by
the probability function P (m(k)

∣∣xk−1). A second complication is that a prede-
termined list of possible hypotheses is also needed; of course, depending on the
position of the vehicles, not all of these hypotheses may be likely. Nonetheless, for
many applications, it is also potentially the greatest advantage with the framework
since it enables straightforward and formal derivations of the posterior distribu-
tion of m(k), as demonstrated in [13]. In particular, once the intention specific
motion models have been developed, information regarding m(k) is extracted sim-
ply by examining the past trajectories of the vehicles. Thereby, one may obtain a
powerful tool to draw conclusions regarding m(k) and thus, the traffic situation.
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However, it is beyond the scope of this article to fully develop and illustrate cost
functions for multiple intentions. Thus, even though we would like to point out the
potential gains with including m(k) it is not properly investigated here. The state
vector used in the remainder of this article is therefore reduced to xh

k = [(zhk)
TθT

k ]
T .

4 Designing cost functions

The cost functions should be designed to capture the typical behavior of the driver.
We have partly based our choices on behavior studies used to design roads [23] and
common practise for driving taught at driving schools. As was argued in Postulate
2, the actions of the driver can be separated into different categories. Each of
these will typically require different cost functions. In this paper we focus on the
hypothesis that the driver intends to follow the right lane of the road. Designing
cost functions to describe the normal driver behavior is different compared to most
previous contributions which have been focused on predicting dangerous situations
[24], [25], [6].

We divide the cost function into four different components related to the lon-
gitudinal velocity, clo(un,xn), the lateral positioning of the vehicle, cla(un,xn),
the comfort of the trajectory, cc(un,xn), and the interaction with other vehicles,
c1in(un,xn) and c2in(un,xn). Among these, cla(un,xn), c

1
in(un,xn) and c2in(un,xn)

cover the safety aspect discussed in Postulate 3. Similarly, cc(un,xn) ensures that
the trajectory is comfortable and clo(un,xn) that the preferred speed of the driver
is maintained. A weighted sum of the different components constitutes the total
cost

cost(un,xn) = αloclo(un,xn) + αlacla(un,xn) + αccc(un,xn) + αincin(un,xn)
(20)

where the parameters αlo, αla, αc and αin decide how the driver gives priority to
the different costs.

As mentioned in previous sections, driving preferences, and thus driving style,
are characterized by the vector θk. In our implementation, θk determines αlo and
αin, but also the parameters η̇hx-ref(k) and t̄h(k) related, respectively, to clo(un,xn)
and cin(un,xn) defined below. We will return to the parameterization of θk and
its process model in Section 5.2. The remaining weight parameters are assumed
constant and are given the values αla = αc = 1.

4.1 Longitudinal cost function, clo(·, ·)
The longitudinal cost function reflects the driver’s desire to maintain a specific
speed, given by the parameter η̇hx-ref. To punish trajectories for which the speed of
the host vehicle deviates from the reference speed, we use

clo(un,xn) = (η̇hx(n)− η̇hx-ref(n))
2. (21)
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Figure 2: Lateral cost function for following the right lane. The figure specifies
the mathematical expressions for the different road regions.

If this cost function is omitted, the optimal driver tends to slow down as that leads
to a safe and comfortable journey. Like the other parameters in θk, η̇

h
x-ref(k) is

partially unknown initially. However, η̇hx-ref(k) is special since it sometimes varies
significantly over time, e.g., when the vehicle exits or enters a highway.

4.2 Lateral cost function, cla(·, ·)
The objective with the lateral cost function is to associate large costs to trajectories
outside the driver’s preferred lane; a cost related to the desire to drive safely. Fig.
2 defines how cla(un,xn) depends on the lateral position ηy. The background in
Figure 2 consists of a road, portrayed with thick grey lines divided into different
cost segments. In the expressions, CW is the width of the car and LM is a margin
to the lane edge, whereas k1 and k2 are design parameters used to tune the cost
function. We use k1 = 1000 and k2 = 3.

4.3 Comfort cost function, cc(·, ·)
The comfort cost corresponds to the driver’s desire to steer the vehicle in a smooth
and comfortable manner. Smooth trajectories are accomplished by increasing the
cost for large accelerations and jerks. However, the acceleration perceived by the
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driver is not equal to the acceleration of the vehicle expressed in curved road
coordinates. Instead, the global Cartesian coordinate system (ξx, ξy) is used. It
is easy to construct a nonlinear mapping T : R2 → R

2 from road coordinates to
Cartesian coordinates, i.e., T is such that T (ηx, ηy) = [ξx ξy]

T . Using the mapping

T it is also possible to compute (ξ̈hx(n), ξ̈
h
y (n)) and (

...
ξ
h
x(n),

...
ξ
h
y(n)) from zhn, rn and

(
...
η h
x(n),

...
η h
y(n)).

To simplify the expressions we introduce the notation ξ̈h(n) =
√

ξ̈hx(n)
2 + ξ̈hy (n)

2

and
...
ξ
h
(n) =

√...
ξ
h
x(n)

2 +
...
ξ
h
y(n)

2. The cost function is divided into two parts:

cc(
...
η x(n),

...
η h
y(n), z

h
n, rn) = ca(ξ̈(n)) + cj(

...
ξ (n)), (22)

where ca(·) is related to the acceleration, and cj(·) is related to the jerk.

Empirical studies indicate that people are fairly insensitive to jerks and ac-
celerations up to a certain level, above which the motions feel more unpleasant
(possibly with the exception of accelerating forces). We use functions ca(·) and
cj(·) of the form

c(x) =





x2

g2
when x < g,(

5
6 +

x2

6g2

)6
otherwise.

(23)

As a consequence, we get cost functions which increase more rapidly for x > g and
which have continuous derivatives. Based on information from [23] we set g = 2
for ca(·) and g = 1.5 for cj(·).

4.4 Cost functions for vehicle interaction, cin(·, ·)
An important aspect in the proposed motion model is that it not only incorporates
the interaction between the vehicle and the road, e.g., in cla(un,xn), but also the
interaction with other vehicles. Here we define a cost function which seeks to
penalize trajectories where vehicles are too close. We limit our design in this
article to situations when there is one more vehicle close to the host vehicle. The
vehicle interaction cost contains two parts

cin(un,xn) = c1in(un,xn) + c2in(un,xn), (24)

which concern the temporal and spatial distances to the other vehicle, respectively.

To measure the temporal distance we introduce the time headway

th(k) =
ηtx(k)− ηhx(k)

η̇hx(k)
, (25)

which reflects the time it takes for the host vehicle to reach the current position
of the target vehicle. A typical driver is reluctant to allow the time headway to
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become too small, whereas it matters less if th is, say 4 seconds or 10 seconds. The
cost function

c1int(un,xn) =

{
(t̄h−th(k))

2

th(k)
if 0 < th(k) ≤ t̄h

0 otherwise,
(26)

is selected to enable our model to capture this behavior, and t̄h is included in the
state vector θk.

The spatial distance is here defined as the distance between the longitudinal
positions of the two vehicles

d(k) = ηtx(k) − ηhx(k). (27)

In this case, we design the cost function for a scenario where the target vehicle is
initially positioned ahead of the host vehicle, on a single lane road. A reasonable
cost function for the spatial distance should be large when d(k) is small (and even
larger when d(k) is negative). We use the cost function

c2int(un,xn) =





0 if d ≤ d

(d−d)
2

(d−d)
2 if d ≤ d ≤ d

(
5
6 +

(d−d)
2

6(d−d)
2

)6

if d ≤ d.

(28)

Note the resemblance to (23), if we set x = d − d and g = d − d. The parameter
values used in our evaluations are d = 5 and d = 2.

5 Evaluation results

To evaluate our model we study how well it explains (predicts) two different
driving sequences. The sequences are real traffic situations, collected using the
same driver on straight, busy, two-lane roads at two different places in a city. The
host vehicle is positioned in the middle of the road and is traveling behind a target
vehicle, see Fig. 3. The two vehicles are closely spaced, such that the host vehicle
has to slow down when the target vehicle slows down, see Fig. 4 and 5.

The host vehicle is equipped with a 77 GHz radar sensor, which measures the
range and range rate to the target vehicle. Based on these and internal mea-
surements on the host vehicle speed and acceleration, we estimate the trajectories
Zh
L =

[
zh1 , . . . , z

h
L

]
and Zt

L =
[
zt1, . . . , z

t
L

]
using a Kalman smoother. As benchmark

we use a CA model also for the host vehicle. For notation, we introduce

M1 : constant acceleration model

M2 : proposed motion model,

to indicate the choice of model.
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zhk ztk
ηx

ηy

Figure 3: Test scenario: Host vehicle, described by a state vector zhk , travels on a
straight road behind a second vehicle, described by ztk.

5.1 Evaluation criteria

We will mainly study two different properties of the model, where the first concerns
the prediction capability and the variations in prediction uncertainties. More
specifically, we will compare the mean and the variance of the density1 p(zhk

∣∣Zh
k−1,

Zt
k−1,Mi) , for i = 1 and 2, to the observed trajectories.

The second property is the model likelihood

p(Zh
L,Z

t
L

∣∣Mi) = p(Zh
L

∣∣Zt
L,Mi)p(Z

t
L

∣∣Mi), (29)

which is a standard criterion in model testing, see [2]. As we are mainly in-
terested in the ratio between the two likelihoods, our evaluations below study
p(Zh

L

∣∣Zt
L,Mi), since p(Zt

L

∣∣Mi) does not depend on Mi.

5.2 Filtering θk

In this section we describe how θk is treated in the evaluation.

Motivation

We notice that both criteria involve the computation of densities of the host state
vector, either p(zhk

∣∣Zh
k−1,Z

t
k−1,Mi) or p(Zh

L

∣∣Zt
L,Mi). For the CA model, these

densities are completely determined by the process noise covariance matrix Ce =
diag[σ2...

η x
σ2...

η y
]. In the evaluations, we select σ2...

η x
and σ2...

η y
in order to maximize

p(Zh
L

∣∣Zt
L,M1).

For the proposed motion model, these densities are, in principal, evaluated in
the same way. We will describe the evaluation steps for the density p(Zh

L

∣∣Zt
L,M2)

first. Later, at the end of Section 5.2, we explain how the algorithm can be
adapted to instead compute p(zhk

∣∣Zh
k−1,Z

t
k−1,M2). To simplify the calculations,

we decompose the likelihood as

p(Zh
L

∣∣Zt
L,M2) =

L∏

k=1

p(zhk
∣∣Zh

k−1,Z
t
L,M2), (30)

1In this section, all densities are conditioned on the initial states, zh0 and z
t
0, even though these

variables are omitted for brevity.
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Figure 4: An illustration of the positions, velocities and accelerations of the two
vehicles, in the first sequence, as functions of time.

and our primary goal is therefore to find p(zhk
∣∣Zh

k−1,Z
t
L,M2). Note that this

expression is not conditioned on θk. By marginalizing the dependence on θk, the
variance of θk will influence the uncertainties in the predictions of zhk .

To evaluate

p(zhk
∣∣Zh

k−1,Z
t
L,M2) =

∫
p(zhk

∣∣θk−1,Z
h
k−1,Z

t
L,M2)p(θk−1

∣∣Zh
k−1,Z

t
L,M2) dθk−1,

(31)

we approximate p(θk−1

∣∣Zh
k−1,Z

t
L,M2) as a Gaussian density and then apply the

Unscented Transform [26] to obtain a Gaussian approximation of (31). In Section
5.2 we describe how to obtain p(θk−1

∣∣Zh
k−1,Z

t
L,M2) using the Unscented Kalman

Filter (UKF), but first we describe θk and its model in more detail.

Parameterization of θk

The time evolution of θk was described already in (13) and (14). We have pre-
viously mentioned that θk defines αlo, αin, η̇

h
x-ref(k) and t̄h(k), and we now wish
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Figure 5: The positions, velocities and accelerations of the two vehicles, in the
second sequence.

to specify how. For some of the parameters, it appears equally likely that they
should increase by, say 30%, or to decrease by the same amount. For the process
model in (13) and (14) to agree with this, we use the parameterization

θk =




log αlo(k)
α̃lo

log αin(k)
α̃in

log t̄h(k)

t̃h
η̇hx-ref(k)



, (32)

where α̃lo = 1, α̃in = 70 and t̃h = 2. The other model parameters are µ =
[0 0 0 6]T , γ = 0.95Ts and Qθ = diag[1 1 1 0.08]/80.

The filter recursion

Here we present a recursive algorithm to compute p(θk

∣∣Zh
k ,Z

t
L,M2) from

p(θk−1

∣∣Zh
k−1,Z

t
L,M2). We use the Unscented Kalman Filter (UKF), which is a
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Kalman-like technique to approximate the updated density2 p(θk−1

∣∣Zh
k,Z

t
L,M2)

and the predicted density p(θk

∣∣Zh
k ,Z

t
L,M2).

In the update step, we adjust the prior density with the information obtained
from the likelihood function3

p(zhk
∣∣θk−1, z

h
k−1,Z

t
L) ∝ N

(
B†

[
zhk −Azhk−1

]
;uk−1(θk−1, z

h
k−1,Z

t
L),Qz

)
. (33)

In (33), we have used the singularity of p(zhk
∣∣θk−1, z

h
k−1,Z

t
L) (there are only uncer-

tainties in some dimensions) in order to reduce the dimension, by multiplying with
the Moore-Penrose pseudoinverse, B†. To employ the UKF, it is more convenient
to express (33) as

B†
[
zhk −Azhk−1

]
= uk−1(θk−1, z

h
k−1,Z

t
L) + vz

k, (34)

whereB† [zhk −Azhk−1

]
is regarded as the measurement equation. The update step

of the standard UKF algorithm can now be applied based on (34), see [26], [27].
We employ the UKF parametrization defined in [27] with [α β κ] = [1.05 2 0].

In the prediction step, we assume that we have a Gaussian prior density,

p(θk−1

∣∣Zh
k ,Z

t
L,M2) ≈ N (θk−1; θ̂k−1|k,Pk−1|k). (35)

Since the process model for θk, described in (14), is linear and Gaussian, the
predicted density is also Gaussian

p(θk

∣∣Zh
k ,Z

t
L,M2) ≈ N (θk; θ̂k|k,Pk|k), (36)

where θ̂k|k = γθ̂k−1|k + (1− γ)µ and Pk|k = γ2Pk−1|k +Qz.

From an implementation perspective, the UKF is very convenient to use but has
the disadvantage that it requires us to evaluate uk−1(θk−1, z

h
k−1,Z

t
L) several times

(once for each sigma point; since θk−1 contains 4 elements we have 2 × 4 + 1 = 9
sigma points).

We have here written the densities conditional on Zt
L. The calculations when we

instead condition on Zt
k are analogous, but with a slight difference in the update

step. As we have seen, the function uk−1 takes Zt
L as input in order to know

how to compensate for the vehicle interaction, cin(·, ·). When ztk, z
t
k+1, . . . , z

t
L are

unknown, we predict these based on ztk−1. The approach taken here is to use the

predicted mean of the CA model, ẑtk−1+l = Alztk−1. (Note that t stands for target
whereas A is raised to the power of l).

2As z
h

k is related more directly to θk−1 than to θk, the suggested order (first update,
then predict) is more straightforward; normally one would instead first predict, compute
p(θk

∣

∣Z
h

k−1,Z
t

L,M2), and then do the update, calculate p(θk

∣

∣Z
h

k ,Z
t

L,M2).
3In previous sections, uk−1(·) only took xk−1 as input. However, when Z

t

L is known we use it
as an additional input. To understand how this influences the computations, see the discussion
at the end of this subsection, Section 5.2.
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5.3 Results

As mentioned above, we observe two cars driving on a straight road in a city.
We evaluate the criteria in Section 5.1 on two different sequences, see Fig. 4
and 5. Both sequences are interesting since there is interaction between the two
vehicles; the host vehicle is forced to slow down when the target vehicle slows down.
Measurement data is obtained with the frequency 20 Hz. However, to speed up
the optimization algorithm we assume Ts = 0.3 and a prediction horizon N = 10
(see (19)) during our calculation of uk−1(·).

Prediction accuracy

We now wish to evaluate how well the predicted density p(zhk
∣∣Zh

k−1,Z
t
k−1,M2)

corresponds to the observed trajectories. The motion model in (11), is driven only
by the jerk values between the sample instances. We will therefore compare the
predicted jerk values (obtained from uk−1(·)) with the values computed from the
measurements. For the CA model we use the values σ2

η̈x
= 0.95 and σ2

η̈x
= 1.08

for the first and second sequences, respectively, since these values maximize the
likelihood, see Section 5.2.

Fig. 6 shows the jerk predictions obtained from our model

E{...η h
x(k)

∣∣Zh
k−1,Z

t
k−1,M2},

which is denoted here as modified CA, together with the observed jerk values.
Note that the jerk predictions provided by the CA model are zero at all times. As
we can see, the jerk predictions are fairly accurate most of the time. In the first
sequence, the predictions are less accurate at around t = 6 when the host vehicle
temporarily accelerates even though the target vehicle slows down. Similarly,
for the second sequence the model incorrectly predicts an increased deceleration
at t ≈ 14. However, overall the predictions from the modified CA model are
substantially better than those from the standard CA model.

For the predicted density to be accurate, it is also important that it has a
reasonable variance. Let us denote the error between the predicted jerk and the
observed jerk by ∆

...
η h
x(k). Ideally, we would like the variance of the predicted

density,

Var{...η h
x(k)

∣∣Zh
k−1,Z

t
k−1,M2},

to be identical to (∆
...
η h
x(k))

2 on the average. As discussed previously, we hope
that the model also has an ability to know when the predictions are reliable and
when they are more uncertain, see Section 3.3.

The variance of the predictions (the uncertainties in the predictions) and the
prediction errors are given in Fig. 7 and 8 for the respective data sequences. On the
average, the variance is 0.65 and 0.83 in the first and second sequence, respectively,
whereas the correspond errors, (∆

...
η h
x(k))

2, are 0.45 and 0.36. The model is thus
overestimating the uncertainties, but at least the order of magnitude is correct.
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Figure 6: Predicted and true jerk for the two trajectories.

At several occasions, like at around t = 6 and t = 8 in the first sequence and
at t ≈ 13 in the second sequence, larger prediction variances coincide with larger
errors. Since an increased prediction variance can only be caused by uncertainties
in θk, this is a good sign in favor of the filter described in Section 5.2. Though
the evaluation is limited, this is still a promising indication.

Model likelihood

We stated above that we wish to compute p(Zh
L,Z

t
L

∣∣Mi) for M1 and M2, as a
measure on how well the models explain the data. However, by studying

log p(Zh
k

∣∣Zt
L,Mi) =

k∑

j=1

log p(zhj
∣∣Zh

j−1,Z
t
L,Mi), (37)

for k = 1, . . . , L we also get information about how well the models explain different
parts of the sequences (the logarithm is merely included to enable us to illustrate
functions of different magnitudes in the same figure). In addition, we also include
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Figure 7: Prediction uncertainties and prediction errors for the first sequence.

the function

k∑

j=1

log p(zhj
∣∣Zh

j−1,Z
t
j ,M2), (38)

which is made up of the predictive densities discussed in Section 5.3. In the
figures, we refer to log p(Zh

k

∣∣Zt
L,M1) as CA, log p(Z

h
k

∣∣Zt
L,M2) as Conditional CA

and
∑k

j=1 log p(z
h
j

∣∣Zh
j−1,Z

t
j ,M2) as Modified CA.

The three log-likelihood functions are shown in Fig. 9 and 10 for the first and
second sequences, respectively. Generally speaking, Modified CA and Conditional
CA are similar and significantly larger (better) than CA. Compared to the pro-
posed model, here represented by Modified CA and Conditional CA, CA explains
the data very poorly when the acceleration changes notably; its likelihood func-
tion decreases quickly at those times whereas both Modified CA and Conditional
CA are much smoother. The only clear exception is the Conditional CA which
decreases substantially around t = 6 in the first sequence. The reason for this is
that the model expects the driver to break harder when there is instead a slight
acceleration; the same phenomenon was discussed previously related to Fig. 6. To

188



A new vehicle motion model for improved predictions and situation assessment

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

t

t

(∆
...
η
h
x(k))

2

Var(
...
η
h
x(k)

∣∣Zh
k−1,Z

t
k−1,M2)

Figure 8: Prediction uncertainties and prediction errors for the second sequence.

put the numbers in Fig. 9 and Fig. 10 into perspective, Jeffreys [28] states that
a log-likelihood difference greater than 2 should be viewed as decisive evidence as
to what model is true.

6 Conclusion and future work

We have presented a general framework for modelling vehicle motion. By includ-
ing the influence of the driver into the model, an improved prediction ability is
obtained. Moreover, with a formalized treatment of uncertainties in the underly-
ing model parameters, the description of the prediction uncertainties is improved.
Specific attention was here given to adapting the model to when the driver follows
the right lane of the road. Accurate data from real driving situations was collected
to study the model properties. For the evaluated test scenarios, we have shown
that a model developed using our framework describes reference data considerably
better than the commonly used CA model.

There are several possibilities to further develop the motion model. First
of all, more driver intentions should be added to capture interesting scenarios
such as lane changes, overtakings and distracted drivers. For these scenarios, the
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Figure 9: The log-likelihood functions for the first data sequence.
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Figure 10: The log-likelihood functions for the second data sequence.
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main challenge is to design suitable cost functions which accurately represent the
driver behavior and still result in a manageable optimization problem. Further, a
more extensive validation is needed using more test scenarios and several different
drivers. The validation data should be used to investigate the model’s capability
to adapt to different driving styles, and also be used to fine tune the cost functions
presented in this paper. Finally, it would be interesting to explore the usefulness of
the prediction capability of the model in a decision making algorithm. For instance
in a collision avoidance application or for run off road detection.
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A DESIGN ARCHITECTURE FOR SENSOR DATA FUSION SYSTEMS WITH 
APPLICATION TO AUTOMOTIVE SAFETY  

 
Fredrik Bengtsson, Lars Danielsson 

 
In this paper we present a modular sensor data fusion functional architecture, tailored for 
development of automotive active safety systems. The purpose of the fusion system is to 
provide active safety applications with accurate knowledge regarding the environment 
surrounding the vehicle. Our proposed functional architecture is designed in such way that 
the fusion system is easy to maintain, upgrade and re-use. These aspects are assessed by 
the use of a reference implementation which is evaluated in terms of tracking performance 
and scalability. Furthermore, the reference implementation demonstrates that a system can 
be implemented using rapid prototyping tools, from which we can automatically generate 
c-code. 

INTRODUCTION 

In order for automotive active safety applications to make decisions about when to warn or 
intervene in dangerous traffic situations, reliable information about the traffic environment 
surrounding the vehicle is needed. Measurements on the environment are typically 
supplied by sensors mounted on the vehicle, for example radar sensors and vision systems. 
In order to meet the challenging requirements posed by safety critical applications, it is 
increasingly common to use information from several on-vehicle sensors in a data fusion 
framework. The task of fusing sensor data is performed by a tracking system or perception 
layer (1). 

Tracking systems have been researched extensively and there is a significant amount of 
results available regarding system design, e.g. (2, 3). In this paper we have regarded the 
task of system design from an automotive safety system research perspective, which in 
some aspects differ from many other tracking applications; sensors or hardware are subject 
to change and multiple applications pose different requirements. At the same time, 
hardware and software should to a high degree be shared components. The result is a 
functional architecture that allows for robust, versatile implementations using known 
tracking strategies. 

The proposed architecture is used in a reference implementation to evaluate the design 
principles. Algorithms are implemented using Mathworks Embedded MATLAB, from 
which it is possible to generate c-code and demonstrate the system in real-time on 
prototype PC hardware. The work is supported by Swedish Intelligent Vehicle Safety 
Systems (IVSS) program and is a part of the Sensor Fusion for Safety (SEFS) project. 

PROBLEM FORMULATION 

The main objective for this paper is to describe a functional architecture that can be used 
when designing a fusion system, all the way from a research platform to the vehicle 
production system. In this section we discuss aspects that need to be considered in order to 
solve this task. 
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Fusion Architecture 

Active safety system research is aided by a perception layer where sensors can be 
exchanged and different tasks can be developed and evaluated separately. It is also 
desirable to have an architecture that allows code to be re-used through different 
development steps, i.e. it should be straightforward to go from the research system to an 
in-vehicle system. Embodiments intended for in-vehicle programs need to be developed in 
parallel with safety applications, while as long as possible keeping the door open for 
introducing new sensors or achievements regarding fusion methods. For these reasons, an 
architecture suitable for both research and embedded implementations, as illustrated in 
Figure 1, would be very useful. 

 
Figure 1: Fusion system components are used in multiple applications, ranging from sensor evaluation and 
research to embedded implementations in a vehicle program. A common architecture makes it possible for 
every application to make use of recent developments. 
 
Therefore we aim to present a modular architecture that facilitates fusion system 
development jointly with sensor evaluation and in-vehicle studies. 

Practical considerations 

In the most natural multi-sensor tracking scenario all sensors are synchronized and the 
complete state vector is updated using all available information simultaneously. However, 
in practice sensor data is delayed due to internal signal processing algorithms or limited 
communication bandwidth and will arrive to the fusion in an asynchronous manner. If this 
is not considered, performance will suffer, e.g. as shown in Figure 2.  

t
t1 t2 ¿1¿2tk¡1 tk  

Figure 2: During tk¡1tk¡1 to tktk a truck moves from left to right in the figure. Sensor one reports the position at 
time t1t1 and sensor two reports the position at t2t2. However, the detections are delayed until ¿1¿1 and ¿2¿2 
respectively. In this figure ¿1 > ¿2¿1 > ¿2, which implies that the vehicle moved forward in the time interval 
(tk¡1; ¿2](tk¡1; ¿2] and then backwards during (¿2; ¿1](¿2; ¿1]. 
 
The arrival order of measurements is generally unknown in advance, and in a system with 
delays it may happen that we receive a so called out-of-sequence measurement. As shown 
in Figure 3, it is possible for a measurement to arrive after the state vector has been 
updated with information from a newer measurement, i.e. out-of-sequence, in practice a 
problem which requires special treatment. 
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Figure 3: Sensor data measured at t(i;j)kt
(i;j)
k , arrive to the fusion at time tktk, where ii define the sensor and jj is a 

measurement counter for that sensor. The fusion system receives data at times (t0; t1; : : : ; tk; : : : )(t0; t1; : : : ; tk; : : : ) and 
must handle asynchronous measurements, some of which take longer time to reach the fusion system than 
others. One reason for such behaviour is that certain sensors transmit accumulated measurements in a burst, 
i.e. a list of measurements. Note that t(i;j)kt

(i;j)
k  may be smaller than tk¡1tk¡1. 

Filter technique and data association 

Algorithms typically make use of a Kalman filter (KF) framework, while sensor specific 
methods are used in pre-processing steps such as data association and track initialization. 
It is important that the architecture supports filtering techniques such as Extended Kalman 
filter, Unscented Kalman filter, multiple model frameworks and, to some extent, Monte 
Carlo methods. At the same time, sensor specific adaptations must be allowed. 

Modularity 

There is often an architectural conflict between a modular and re-usable system and the 
optimal signal processing algorithm, fully exploiting all the information in signals and 
models. To achieve the flexibility described above, processing should be performed in a 
certain order with limited information exchange between adjacent functional blocks. In 
other words it needs to be modular, which may lead to suboptimal processing.  

TRACKING SYSTEM 

The task of a tracking system is to, at a time tt, describe the measured environment as good 
as possible given all available data, including uncertainties. Here we introduce the 
discrete-time state vector xkxk to contain everything we want to know at time tk = kTs(k)tk = kTs(k), 
where Ts(k)Ts(k) is the system sample time and k 2 Nk 2 N a counter. Similarly, we introduce ykyk to 
be the vector of measurements on the surroundings received in the time period (tk¡1 ; tk](tk¡1 ; tk]. 
For a system with NN  sensors we form 

 yk = [(y1
k)

T (y2
k)

T : : : (yN
k )T ]Tyk = [(y1

k)
T (y2

k)
T : : : (yN

k )T ]T  (1) 
 
The task can now be formulated as to calculate the posterior density p(xk

¯̄
y1; : : :yk)p(xk

¯̄
y1; : : :yk). In 

order to do this, two statistical models are needed, a process model and a measurement 
model. Textbooks which thoroughly explain estimation and modelling are e.g. (4, 5).  

In an automotive context, a tracking system is responsible for refining the information 
supplied by onboard sensors to supply safety applications with information about the 
surrounding traffic situation. In Figure 4 this relation is depicted together with components 
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that are necessary in order to calculate p(xk

¯̄
y1; : : :yk)p(xk

¯̄
y1; : : :yk). This includes gating and data 

association, track management, measurement update and state prediction. More 
information about these different components can be found in e.g. (3, 6, 7). 

 

Figure 4: Schematic view of a tracking system and its components, in the context of typical automotive 
comfort or safety applications.  
 
In a multi-sensor system, as in Figure 4, depending on the update rate of the tracking 
system, the measurement vector from each sensor, yi

kyi
k, may be composed of several 

measurements of different age. In this case yi
kyi
k has the following structure  

 yi
k = [(°

(i;1)
k )T ¿

(i;1)
k (°

(i;2)
k )T ¿

(i;2)
k : : : (°

(i;Mi(k))
k )T ¿

(i;M i(k))
k ]Tyi

k = [(°
(i;1)
k )T ¿

(i;1)
k (°

(i;2)
k )T ¿

(i;2)
k : : : (°

(i;Mi(k))
k )T ¿

(i;M i(k))
k ]T  (2) 

 
where M i(k)M i(k) are all measurement lists from sensor ii received in the time period (tk¡1; tk](tk¡1; tk], 
with corresponding time stamps ¿ (i;0:M i(k))

k¿
(i;0:M i(k))
k . That is to say, °(i;j)

k°
(i;j)
k  contains all measurements 

received at time ¿ (i;j)
k 2 [¿ i;j¡1

k ; tk]¿
(i;j)
k 2 [¿ i;j¡1

k ; tk]. Note that ¿ i;0
k¿
i;0
k  is defined as the time sensor ii last 

delivered data prior to tk¡1tk¡1 and that M i(k) ¸ 0M i(k) ¸ 0, i.e. sensor ii can deliver zero or multiple 
measurements during an update cycle of the fusion system. If the sensor delays are known, 
the time for the actual measurement t(i;j)kt

(i;j)
k , can be derived from ¿ (i;j)

k¿
(i;j)
k . Thus it is possible for 

t
(i;j)
kt
(i;j)
k  to be smaller than tktk. Figure 3 shows how measurements from three different sensors 

fall in different measurement vector slots, for example f°(2;1)
k ;°

(2;2)
k ;°

(2;3)
k ; °

(3;1)
k g 2 ykf°(2;1)

k ;°
(2;2)
k ;°

(2;3)
k ; °

(3;1)
k g 2 yk. 

FUSION ARCHITECTURE 

A central requirement on the perception layer is a high degree of modularity, so that 
algorithm components can be continuously developed and sensors may be exchanged or 
added to the system. Further, it must be suitable for automotive safety systems regarding 
e.g. in- and output data, computational load and terms of robustness, etc. It is a challenge 
to design a system with these properties, but the work is aided by an appropriate high level 
functional design.  

Architecture outline 

Our goal is to treat perception layer functional tasks in a fashion that facilitate usage 
according to Figure 1. One important aspect is how to control the flow of information; the 
magnitude of data transfer easily grows during development. We suggest a one-way data 
flow where usage of internal variables is minimized and transferred variables are well 
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specified and available to modules in a predictable fashion. A well organised data flow 
that has grown during development can be slimmed at a later stage, depending on which 
methods are actually used. Functional tasks are grouped into modules, chosen to facilitate 
separate development and are shown in Figure 5, supporting a variety of state update 
methods to be used for each sensor individually. Models should be restricted to the class 
of models with the Markov property. However, usage of statistical linearization methods 
allow models to be readily exchanged – only the transformation function need to be 
defined – which further supports modularity. 

Functional modules 

A functional architecture supporting an asynchronous fusion scheme, as discussed in the 
problem formulation, is shown in Figure 5. The general idea is to have a common 
prediction and delay compensation block, run at each internal iteration in the fusion 
scheme, and to divide the subsequent processing modules by sensor data origin. A 
dedicated sensor processing module is used for each sensor, e.g. if internal sensor data is 
to be processed the filter internal sensors module is activated. After all data in a cycle has 
been processed, additional track handling strategies may be applied on a global level. It is 
recommended to treat all parameters needed in the fusion system as input and output 
signals, to avoid internal “global parameters”. 

The architecture is readily extended with new blocks, e.g. including data from an e-
horizon system or implementing an estimator to be used for complex posterior 
distributions. Adaptations such as performing e.g. track-to-track fusion, can be assigned to 
existing modules. 

...

Data association

Track handling

Measurement update

 Measurement 
prediction

FILTER 
EXTERNAL 
SENSORS

Measurement update

FILTER 
INTERNAL 
SENSORS

Measurement update

FILTER LANE 
TRACKER

Predict Tracked objects

Predict Road

Compensate delayed 
measurements

Predict Ego vehicle

PREDICTION
MODULE

GLOBAL 
TRACK 
HANDLING

Track handling

Measurement 
source

Measurement 
aggregation and sorting

Sensor 1 Sensor 2 Sensor N

 
Figure 5: Fusion algorithm functional architecture. The large block is called once for each received 
measurement, executing necessary prediction and filter modules in the correct order.  
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Measurement aggregation and sorting  

The information from each sensor arriving to the fusion system is stored until the 
beginning of the next system cycle, allowing e.g. platform specific conversions. The 
aggregated measurements are sent to the fusion system in a sorted manner; the 
measurement that occurred first is sent first, etc. Naturally, any knowledge regarding 
expected measurement delays should be incorporated in the sorting. 

Prediction module 

The prediction of the state is made in four basic components, predict ego vehicle, predict 
tracked objects, predict road and compensate delayed measurements. These components 
make sure that the measurements and state vector are aligned in time for the upcoming 
filter blocks. Typically this module is used to predict xk¡1xk¡1 to the time of the earliest 
measurement t·1 2 (tk¡1; tk]t·1 2 (tk¡1; tk] and subsequently with the next measurement at t·2 2 [t·1; tk]t·2 2 [t·1; tk]. 
The compensate delayed measurements block is called in the event of an out-of-sequence-
measurement, and several strategies can be used to process such data. If models allow, a 
so called retrodiction step can be incorporated in the update procedure, explained e.g. in 
(8). An optimal retrodiction increases system complexity as it requires us to store previous 
states, a problem which can be avoided using sub-optimal alternatives. Nevertheless, 
blocks in the corresponding filter external sensor module must support retrodicted state 
updates which in itself add complexity. A procedure that does not affect following 
modules is to disregard measurements deemed to old, and to adapt the measurement 
distribution accordingly for measurements actually used. 

Filter internal sensors 

The ego vehicle is often modelled in more detail than observed vehicles and 
measurements not available from other vehicles are typically obtained at a high rate. For 
these reasons it is suitable to perform the filtering of measurements from internal sensors 
in a separate module. 

Filter lane tracker  

Lane tracker measurements are often pre-processed and should if possible be treated using 
knowledge regarding internal filtering models. Nevertheless, this does not prevent rkrk from 
being updated with data from external sensors in another module. 

Filter external sensors 

Each sensor observing the environment outside the ego vehicle has a corresponding filter 
module. Sensors may observe the world quite differently and it is here detailed sensor 
models are used to perform measurement prediction, data association and state updates. 
Track management such as track initialization or calculating track score can be carried 
out, and in multiple model frameworks, model probabilities are updated. Note that the 
module input generally is an object list, which is required for efficient data association. 
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Global track management 

Track deletion, validation and merging of tracks can be done on a global level to 
complement the limited set of track management tasks done locally for each sensor. 
Strategies for object classification, for example during track validation, can be 
implemented here. 

IMPLEMENTATION 

We have implemented a simple, but fully autonomous, tracking system to be evaluated 
before proceeding to develop components further. It is based on the proposed architecture 
and runs on a platform that can be used in real-time in vehicle demonstrators (9). Detailed 
information regarding this particular implementation can be found in (6, 7). 

Parameterization 

For a total of ncnc tracked cars, the state vector xkxk is partitioned as 

 xk = [(zego
k )T (z1

k)
T (z2

k)
T : : : (znc

k )T rT
k ]Txk = [(zego

k )T (z1
k)

T (z2
k)

T : : : (znc
k )T rT

k ]T  (3) 
 
where zi

kz
i
k is the state vector for vehicle ii and rkrk describes the road.  The choice of states in 

zi
kz
i
k is directly affected by the choice of vehicle motion model. Similarly, the 

parameterization of rkrk is coupled with the choice of road process model.  

Sensor setup 

The evaluation sensor setup is limited to one radar, a lane tracker camera and internal 
sensors measuring ego vehicle states. 

Radar 

Delphi's ACC3.5, 77GHz Automotive Radar, with a detection range of approximately 150 
meters and an opening angle of 16±16± is mounted in the front of the vehicle. Up to 20 
unfiltered detections, each consisting of range (rr [m][m]), range rate ( _r_r [m

s
][m

s
]) and azimuth ('' 

[rad][rad]), grouped in an object list are reported every measurement cycle (100 ms). The j thj th 
object list1 is written 

 °(1;j) = [r1 '1 _r1 r2 '2 _r2 : : : r20 '20 _r20]
T°(1;j) = [r1 '1 _r1 r2 '2 _r2 : : : r20 '20 _r20]
T , (4) 

 
letting index one denote the radar sensor. 

Vision system 

A camera based lane tracking system provides measurements on the vehicle heading 
relative the road ªrelªrel [rad][rad], the distances to the left and right lane markings Ro®Ro® and Lo®Lo® 
[m][m] respectively, and the road curvature c0c0 [m¡1][m¡1]. The j thj th measurement in a fusion cycle is 

                                                 
1 for the j thj th object list in the k thk th iteration, but kk is left out at this point for clarity reasons 
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  °(2;j) = [ªrel Roff Loff c0]
T°(2;j) = [ªrel Roff Loff c0]
T , (5) 

 
if the vision sensor is indexed as sensor number two. 

Internal sensors 

Several internal sensors are available in modern vehicles. In this system the vehicle speed 
vv [m

s
][m

s
], acceleration aa [m

s2 ][m
s2 ] and yaw-rate _ª_ª [ rad

s
][ rad

s
] are used for ego vehicle tracking. 

Consequently, 

 °(3;j) = [v a _ª]T :°(3;j) = [v a _ª]T : (6) 

Filtering 

A statistical linearization algorithm (10) is used to estimate effects of nonlinear 
transformations, resulting in the so called Unscented Kalman filter (UKF). Effects of 
linear transformations are calculated analytically. The global nearest neighbour data 
association method is implemented using the auction algorithm (11) and unlikely 
associations are ruled out using ellipsoidal gates. Unassociated measurements yield new 
tracks, confirmed when associated with measurements n-times out of m possible. Track 
deletion occurs using a similar scheme, or when uncertainties are larger than a threshold. 
Measurement delays are estimated and assumed known and, when using a single radar, 
there are no problems with out-of-sequence-measurements.  

Vehicle motion model 

The same parameterization and dynamic model is used for other vehicles as well as for the 
ego vehicle. We include the global position (»x; »y)(»x; »y), heading ªª, velocity vv, yaw-rate _ª_ª and 
acceleration aa in the vehicle state vector: 

 zk = [»x »y Ã v _Ã a ]Tzk = [»x »y Ã v _Ã a ]T . (7) 
 
The motion model is derived from the continuous-time model 

 _z(t) = [v(t)cos(Ã(t)) v(t)sin(Ã(t)) _Ã(t) a(t) 0 0]T + [0 0 0 0 v ÄÃ(t) v _a(t)]
T_z(t) = [v(t)cos(Ã(t)) v(t)sin(Ã(t)) _Ã(t) a(t) 0 0]T + [0 0 0 0 v ÄÃ(t) v _a(t)]
T . (8) 

 
v ÄÃ(t)v ÄÃ(t) and v _a(t)v _a(t) describe modelling errors and are continuous time Gaussian stochastic 
processes. Both are zero mean and white, with intensity q ÄÃq ÄÃ and q _aq _a, respectively. A fixed 
step-length discrete model is used, a derivation of which is presented in (12). 

Road process model 

We follow suggestions from e.g. (13) and use a clothoid model to make a local 
approximation of the road curvature around the ego vehicle. The curvature c0c0 changes as a 
linear function, so at distance ´́ ahead of the ego vehicle, the curvature is written 

 c0(´) = c0(0) + ´ c1c0(´) = c0(0) + ´ c1, (9) 
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The road state vector contains ego vehicle heading angle relative the road, distances to 
the lane markings and the curvature parameters (c0c0, c1c1). Apart from c0c0 described in (9), all 
states are modelled as constants influenced by zero mean white Gaussian noise (WGN). 

Measurement models 

The radar sensor model is kept fairly simple, which is sufficient for this evaluation. It is 
assumed that the vehicle can be modelled as a point target, i.e. at most one measurement 
may originate from each vehicle. The measurement equation for one radar detection 
(i = 1i = 1), is 

 °1;j
k =

24 r
_r
'

35 + w1;j
k ;°1;j

k =

24 r
_r
'

35 + w1;j
k ; (10) 

where, omitting the time dependency (kk) and assuming the detection originates from 
vehicle ll, 

 

r =
q

(»l
x ¡ »ego

x ¡ ²x)2 + (»l
y ¡ »ego

y ¡ ²y)2

_r = vl cos(¡(Ãl ¡ Ãego) + ')¡ vego cos(')

' = tan¡1(
»l
y

»l
x

)¡ Ãego ¡ ²Ã

r =
q

(»l
x ¡ »ego

x ¡ ²x)2 + (»l
y ¡ »ego

y ¡ ²y)2

_r = vl cos(¡(Ãl ¡ Ãego) + ')¡ vego cos(')

' = tan¡1(
»l
y

»l
x

)¡ Ãego ¡ ²Ã . (11) 

(²x; ²y; ²Ã)(²x; ²y; ²Ã) represent the sensor mounting position and orientation in the local ego vehicle 
coordinate system. The ego vehicle motion is considered a deterministic control signal and 
measurement noise, w1;j

kw1;j
k ,  is WGN with known covariance.  

Measurement models for the ego vehicle sensors and the vision system are linear. The 
vision system sensor model (i = 2i = 2), using the identity matrix II, becomes 

 °2;j
k =

£
I4x4 0

¤
rk + w2;j

k°2;j
k =

£
I4x4 0

¤
rk + w2;j

k , (12) 
 
and the sensor model for internal sensors (i = 3i = 3) is written 

 °3;j
k =

£
03x3 I3x3

¤
zego
k + w3;j

k°3;j
k =

£
03x3 I3x3

¤
zego
k + w3;j

k . (13) 

EVALUATION 

It is hard to assess and quantify architecture performance. In this section we aim to 
demonstrate that the purposed fusion architecture is capable of producing a functional and 
processing efficient perception layer, using rapid prototyping tools. This is accomplished 
by evaluating the estimation accuracy of the reference implementation and by making 
predictions of the computational load when additional sensors are included.  

Performance comparison and evaluation 

We compare the estimates from the reference implementation with that of a sensor 
specific tracker used in active safety systems already on the market, relative ground truth 
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data. The aim is to show that our modular system is capable of performing on par with or 
better then a dedicated sensor tracker based on the same data, and that estimates are 
sensible relative ground truth data.  

The comparison is limited to two scenarios. Scenario 1 involves the lead vehicle making a 
hard braking manoeuvre whereas in scenario 2, the host vehicle is accelerating towards the 
target vehicle. Sensor data from the described sensor setup is collected together with 
highly accurate differential global positioning system (DGPS) measurements of the 
position of both the host and the tracked vehicle. Using these DGPS position 
measurements we estimate the quantities needed to evaluate the tracking performance. 
Note that only the position is measured directly and that other states are calculated using 
the motion model derived from (8) and a UKF filter. Hence, the estimates of the other 
states can mainly serve as an indication of the magnitude of the true errors. The 
parameters in the implementation have been tuned to cover common scenarios, and the 
same setup is used for scenario 1 and scenario 2. 
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Figure 6: Evaluation of estimation accuracy for scenario 1 (left) and scenario 2 (right) using DGPS position 
measurements as reference. In the figures are the Euclidean error shown for all the states in the state vector 
for the target vehicle using the reference implementation (black) as well as for the sensor specific tracker 
(red), for applicable states. 
 
Results, shown in Figure 6, indicate that a tracking system implemented using the 
proposed architecture is capable of delivering sensible estimates and that performance is 
comparable with that of a dedicated sensor tracker. 

Processing time evaluation 

The second aspect of our fusion architecture to be evaluated is it's scalability in terms of 
processing time for the multi-sensor system. As shown in Figure 5, adding a sensor does 
not affect the content of other modules. Hence, we can imitate a multi-sensor system by 
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independently duplicating both the prediction for the tracks and the filtering module for 
the external object sensor, i.e. simulating additional radar sensors. This way it is possible 
to simulate a larger number of simultaneous tracks, and multiple sensors.  

In Table 1 the mean and maximum processing time for a system with 1 – 5 simulated 
external object sensors is shown. Simulated sensors deliver data simultaneously, which in 
corresponds to a “worst case” scenario. The processing times are measured running the 
algorithm in MATLAB on a laptop PC (Intel Pentium M 1,66 GHz). Initial tests indicate 
faster processing when running algorithms on a dedicated development hardware, i.e. xPC 
or dSPACE autobox (14, 15). 

 

Table 1: Mean and maximum processing time for a system based on data from 1 - 5 sensors. 
 

Processing time [s] DF1 DF2 DF3 DF4 DF5 

Mean 0,0049 0,008 0,0110 0,0141 0,0171 

Maximum 0,0123 0,0191
(+55%) 

0,0284
(+48%) 

0,0367
(+29%) 

0,0462 
(+20%) 

 
The measured processing times indicate that this implementation can run at least in 20 Hz 
incorporating data from 5 sensor similar to the forward looking radar. 

CONCLUSIONS 

We have proposed a fusion functional architecture that is modular in nature and support 
code and component re-use through different incarnations of the system. The architecture 
supports rapid prototyping tools, from which code suitable for production projects can be 
automatically generated. Sensor specific filter components with well defined input and 
output signals allow a high degree of adaptation while maintaining the general filtering 
framework. Several filtering techniques, such as the KF, UKF and EKF, are supported and 
can be used jointly in a single system. A reference implementation of the system based on 
standard methods run in real-time and performs on par with, or better than, a sensor 
specific tracker when using the same input data. We conclude that the proposed fusion 
architecture facilitates technology transfer and enables us to research and develop high-
performing multi-sensor tracking systems for automotive safety systems in a structured, 
non-limiting, fashion. 
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