Vendor independent control database for virtual preparation and formal verification

This document has been downloaded from Chalmers Publication Library (CPL). It is the author’s
version of a work that was accepted for publication in:

International Conference on Information and Automation, ICIA 2011; Shenzhen; 6 June
2011 through 8 June 2011

Citation for the published paper:

Falkman, P. ; Goransson Hedvall, J. ; Holmblad, A. (2011) "Vendor independent control
database for virtual preparation and formal verification". International Conference on
Information and Automation, ICIA 2011; Shenzhen; 6 June 2011 through 8 June 2011 pp.
851-857.

http://dx.doi.org/10.1109/ICINFA.2011.5949114

Downloaded from: http://publications.lib.chalmers.se/publication/145981

Notice: Changes introduced as a result of publishing processes such as copy-editing and
formatting may not be reflected in this document. For a definitive version of this work, please refer
to the published source. Please note that access to the published version might require a
subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.

The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://dx.doi.org/10.1109/ICINFA.2011.5949114
http://publications.lib.chalmers.se/publication/145981

Vendor independent Control Database for Virtual
Preparation and Formal Verification

Petter Falkman, Jonathan Hedvall, Anders Holmblad, Bengt Lennartson

Control and Automation Laboratory Department of Signals and Systems
Chalmers University of Technology S-412 96 Goteborg, Sweden
petter.fal kman@hal ners. se

Abstract— It is very advantageous to use virtual techniques for
testing and developing new hardware and software systems within
a manufacturing system. It is, however, of greatest importance
that the virtual model can be trusted so that the results of
the development and tests can be directly transferred to a real
system without any manual last minute changes. In order to
trust the result, formal verification techniques can be applied
and by doing that guaranteeing a correct system behavior. Today,
there is a gap between how systems are modeled in simulation
softwares and formal verification softwares and it is therefore
hard to perform formal verification. In order to limit the risk
of introducing errors it is also important that the specifications
created in the simulation softwares are not manually converted
into formal languages. The present paper presents a method for
sharing information between the different virtual development
tools and formal verification tools. A database, storing necessary
control information for verification and controller synthesis, is
presented.

Keywords: Information exchange, Virtual production, Pro-
duction preparation, Formal verification, Discrete event sys-
tems.

I. INTRODUCTION

The rivalry on the consumer market is turning more intense
than ever. Many companies compete by applying advanced
technology and good competence. Manufacturers are con-
stantly looking for ways to save seconds in the production
preparation process. The ramp up time is often long, and it
can take time before a factory is producing at its maximum
capacity. Within the production planning area more and more
development and testing is performed using different virtual
tools and the trend is to continue to increase the amount of
tasks that are included in the virtual development and testing.
The main reasons is that it is cost effective since no real
machine or manufactory system is needed. It is also safe
since there are no real components that can be damaged.
Novel concepts can be tested prior to manufacturing. The
aim is to be able to develop and test an entire manufactur-
ing station including all machines, robots and components
including control software before it is built. This is to decrease
ramp-up time when all the equipment has been delivered and
installed and decrease cycle-time. New simulation tools such
as Siemens Process Simulate [1] and Dassault systems Delmia
Automation [2] aims at providing such a system. However,
todays simulation tools can only show the presence of errors,

not the absence. In order to prove that the production plant
does not contain any errors, normal simulation is not enough.

In [16] it is described how it is possible to perform formal
verification of a sequence of operations in a manufacturing
cell, once you have acquired the required information. It is
also said that this required information should be reused from
various stages of the development of the production cell.
Reusing the information that is already there is shortening
the lead times of the verification process by avoiding double
work.

In the present paper a software tool called Supremica [4],
[5], [6], [7], that implements the supervisory control theory [8]
and is based on discrete event systems [9], will be used for the
verification and controller synthesis of discrete event behavior
of the manufacturing systems. Supremica uses advanced algo-
rithms in order to be able to handle large industry applications.
Supremica can detect problems in programs that may not be
visible by simulation. Supremica can in this way eliminate
costly program lockdowns on the production floor long before
the programs leave the development stage by analyzing all
possible states a system can be in. A modern manufacturing
system normally involve millions of states.

In [16] a method is proposed to standardize the informa-
tion exchange between the different softwares. In [11], it is
shown how control information can be extracted from Process
Simulate in a vendor independent format, which is of great
importance. The extracted control information can then be
optimized and manipulated by different software tools such
as the verification tool Supremica [7], [10], [6] before the
PLC-code and the station logic is generated.

Il. FRAMEWORK

The main purpose of the suggested method in [16] is to
reuse control information from different development tools by
sharing a standardized representation of the control informa-
tion through a database and to use this control information for
verification and controller synthesis. The information needed
to describe the control information can be sorted into seven
categories:

« Relations of Operations, ROP

« Execution of Operations, EOP

o Cycle Start Condition, CSC

« Interlocks, IL

« Coordinated Operations, COP

o Mechanical Components and Functions, MCF
« Function Blocks, FB

An XML schema, see Section Ill, has been developed for
every category. XML files are then used for communication
between the different software tools.

A. Relations of Operations, ROP

The ROP holds the information of when an operation can
be executed. The different ways of executing the operations
can be described by a set of relations. There are four different
relation types in a ROP: sequential, alternative, parallel and
arbitrary order. Sequential relation order is a straight forward
sequence that the operations are executed in. The operations
are executed exactly the same way every time. An alternative
relation is a choice of many operations that can be executed.
The way the operations are executed differs from time to
time depending on the states of the components in the cell.
A parallel relation defines two or more operations executing
simultaneously. The arbitrary relation order is similar to the
alternative relation order but the choice of operation to execute
is, as the name implies, arbitrary. The ROP can be graphically
represented, sees Figure 1, in a software tool called Sequence

of Charts (SOC) [12].
ciffcs
=3

Two different sequences of operations.

Op1

Fig. 1.

B. Execution of Operations, EOP

The execution of operations holds information of how
an operation is to be executed. On the lowest abstraction
level in a cell there are actuators and sensors which can
be aggregated into components. The components, in turn,
can consist of actuators, sensors and variables. To execute
an operation in a safe way, information about booked or
free zones in the cell must be available. There must also be
information available about what states other machines in the
cell are in, see Figure 2. This information is described by a
matrix that is be divided into three parts: Internal components
(consisting of actuators, sensors and variables), zones, and
external components. The initial state of an EOP consists of
values that must be fulfilled in order to start the first action.
Every row in the matrix describes an action and every action
should be executed sequentially [16].

C. Interlocks, IL

Interlocks have two main purposes. The first is to clearly
describe all allowed behavior of the system. The second is,
when the system is in manual mode, to survey that no harm

internal components ext. comp. |initial state check
alarm alarm
Y18 Y16 Y14 SG3 SG6 zones type delay
Initial State home locked |close on on - 1 0f
Action 1 home unlocked [close on on b(2,4,6,8,10)
Action 2 work pos |unlocked |close on on -
Action 3 work pos |locked close on on u(6,8)

Fig. 2.
position.

An EOP for the basic operation 43; move Fixture 152 to work

can be done to humans or to the cell. This information is
described by a matrix, see Figure 3. Every row in the matrix
is referred to as a term. Every term describes the different
states that must be fulfilled before any change can be done in
the cell.

JActuator/ operationid 152v18
JAction/operation comment | Go to home position
JResource FIX15
Intemal component states

position | fixation | clamp partsensors

Y18 Y16 via sG3 sG6

*_ luniocked] + off off - -

unlocked| closed | on on - - 63,98 - - 580

Collision zones Operations ext.comp.st.

resource
X nel Product

before | after hotstartedo

Term 1
[Term 2

Term 3
[Term 4

unlocked] closed on on - - 64,99 - - V70
unlocked] open * * - -

Fig. 3. An IL for the actuator 152Y18; go to home position.

D. Mechanical Components and Functions, MCF

MCEF is a list of mechanical components in a cell, used for
program generation. The list point out which Function Blocks
(FB) that should be instantiated in the PLC-program [16].

E. Coordinated Operations, COP

The set of Coordinated Operations is a result of the ver-
ification process. It has the same structure as the ROP. The
operations are executed in a sequence which will eliminate
the risk of collisions between machines and possible deadlock
states of the cell. To allow different execution orders between
the resources in a cell that can handle different product types,
the COP is divided into one COP for every resource and
product type. The COP is defined so that every operation
in the execution sequence has a set of preconditions. Before
an operation can be executed, all its preconditions must be
fulfilled [16].

I11. XML AND SQL

XML is an abbreviation for Extensible Markup Language
[13]. XML is spread worldwide and is used as a standard data
storage format in many web applications and local applica-
tions. The language was born in 1998 when The World Wide
Web Consortium (W3C) realized that they were in need of a
data storage markup language independent of any platform.
Markup language means that data is marked up by tags, see
Figure 4. Contrary to Hyper Text Markup Language (HTML),
XML is not limited to a predefined set of tags. It is a very
flexible language and one of its major advantages is that it is
simple to read both for humans and computer programs.

="Actuator"™ ="FIX151Y17">

Fixture positioning</De
tate>home</Itate>

<State>vork pos</State>

=NFIX151Y17V">

tion>Nonostable pnewmatic valve </Description>

="Actuator"” ="FIX151Y17C1">

iption>Cylinder</Description>

<State>home</State>

tate>work pos</State>

="Sensor" ="FIX151Y17SG1">

tion>Fixture in home position</De

Fig. 4. An example of XML data describing the Physical Resources of a
production cell. The data is inserted between two tags with the same name
and each element can have an attribute attached to its first tag.

A. XML schemas

XML schemas are used to define rules for XML files. If
there were no definition of the structure of the XML file, it
would be very hard to find the relevant data. The XML schema
is almost built up the same way as the XML file, but has a
different extension (.XSD) that defines it as a schema. The
schema sets the rules of the XML file by defining the order
of elements and attributes and restricting element values. To
make it possible for all users to validate their XML files from
any location, the schemas should be stored on a public web
server [13].

B. SQL Server 2005

SQL Server 2005 is a Database Management System
(DBMS) for relational databases [14]. In SQL Server Manage-
ment Studio, the design of the database is done by creating
a set of tables, relations, indexes, restrictions etc. Database
triggers can be set to execute on a specific user action, such
as before or after a row is deleted from a table. In the
Management Studio, different queries can be executed on a
database which is very helpful in the design, implementation
and testing of a new database.

1V. DATABASE

The database solution was designed in Microsoft SQL
Server 2005. The communication with the database can be
made with a Java developed user interface and the different
restrictions that apply to both the database and the user
interface are derived from a set of XML schemas. Schemas for
different the different parts, i.e. PR, VR, ROP, IL, and EOP,
of the framework is described in [15], [16]. The parsing and
generation of the XML data structures is the major part of the
predefined code in the database.

A. Sructure

The database contains tables, stored procedures, functions,
triggers, restrictions, indexes, keys, user identities, error logs
etc. All data to be stored in the database is inserted as elements

into the different tables by invoking the stored procedures
and functions from a SQL query. This can be done either
locally in SQL Server or from a client using an SQL Server
driver, for example, Visual Studio. Since it is not reasonable
to expect all clients to use Visual Studio and in order to avoid
dependability of any other software, a graphical user interface
designed in Java using Swing and the Microsoft Java Database
Connectivity (JDBC) driver.

B. Database tables

The tables of the database consist of a predefined set of
columns, each using a specific type (e.g. integer, varchar, xml),
and an unlimited number of rows. The tables can be divided
into seven categories:

o Projects

« Physical resources
« Virtual resources
« ROP

« EOP

o IL

o Other

1) The Projects category: The Projects table is the only
table in the database without a foreign key, that is, the only
table not referencing another table. Instead, the Projects table
is referenced directly or indirectly by all other tables. If a row
in the Projects table is deleted, so are all rows referencing this
row in other tables, with one exception - the PLC_FBs table.
In this table, the foreign key value will instead be set to null.
The PLC_FBs table is not currently in use, but is likely to hold
information about the function blocks of different actuators in
the future. The Projects table contains columns for the project
identity value, the project name, the project description and
the number of missing references in the project.

PR type Table(s)

Factory* Physical_resources

Area* PR_areas

Cell* PR_cells

Machine PR_machines, _def Machines, _type Machine, _type_Control_system

Equipment PR_equipment, _def Equipment, type Equipment
- with states PR_states

Element PR_elements, _def Elements

VR type Table(s)

Cell* Virtual_resources

Zone _def Zones

Variable _def Variables
- with values _def Values

Fig. 6. Resource types and their corresponding tables.

2) Physical and Mirtual Resources category: The next two
categories are Physical resources (PR) and Virtual resources
(VR). They hold information about all the physical resources,
variables and zones used in a production cell. At present,
only one cell per project is possible, but the structure of the
information allows us to define the physical path to this cell,
i.e. the area and the factory surrounding it. This facilitates
future changes of the information structure to allow multiple
cells in each area and multiple areas in each factory. The PR

Physical resources

Physical resources
Virtual resources - >‘ Cells

Virtual resources

(Machine)
definitions
Equipment
definitions

Equipment

Machines

(e (=]

Element
definitions

States] [Elements]

& B
" Relations of operations N Physical resources
.- \
£ \\
£ A =
/ ROP I A—>1 Machines
/ T

/ R

/ Order \
|

\ Relations

\
\
aa Execution of operations
Attributes Activities Preconditions

Fig. 7. The relations between the tables containing the Relations of Operations.

o Execution of operations E
/ R
Physical resources - B
/ >
/ \
" / N
M Operations Actions \
/

/]\

/
/

[\
| — —— External \
| Zones Zone states component |

values |

——————— (|

\\ [Actuators] L Actuator values] |
\ S /f

\
r— [r—
| Variables Variable values

Fig. 8. The relations between the tables containing the execution of the operations.

and VR in a cell can be defined as any of the following types tables in the database are shown in Figure 5.

with corresponding database table(s), see Figure 6.
The Physical _resources table and the Virtual _resources table
each contain a project reference. The relations between the

3) The ROP category: The ROP information is stored in
6 tables; ROPs, ROP_relations, ROP_order, ROP _activities,
ROP_predecessors, ROP _attributes. The ROPs table is the main

table. It contains the ROP name, the ROP type, a comment,
the machine name and a Project reference. The type indicates
if the information has been validated with Supremica or
not and can be set to either ROP or COP. The relations
between the tables are shown in Figure 7. The ROP tables are
referencing two tables outside its category; the Machines table
and the Operations table. The referencing tables: Activities and
Precondition are not connected to these tables immediately,
instead they store the machine name and the operation name
locally and tries to link the tables by matching the names.
Since the names must be unique within each project, a unique
match can be found and used as a reference. The Order table
stores information about the sequential order of the activities
and sub relations within each relation.

4) The EOP category: The EOP information, or operation
information, is stored in 13 tables: Operations, OP_actions,
OP_actuators, OP_sensors, = OP_variables, = OP_zones,
OP_ext_components, OP_actuator_values, OP_sensor_values,
OP_variable_values, OP_zone_ states, OP_ext_comp_values,
type EOP. The Operations table is the main table and it
contains the operation name, the operation type, the duration
of the operation, a comment, the machine name, the alarm
type of the operation, and a project reference. The operation
type can be set to any of the values (i.e. restrictions) in
the _type EOP table. The types are currently restricted to
“alternative” or “basic”. The relations between the tables are
shown in Figure 8.

5) The IL category: The IL information is
stored in 17 tables: ILs, IL_terms, IL_actuators,
IL_sensors, IL_variables, IL_ext_.components, IL_zones,

IL _operations, IL_actuator_values, IL_sensor_values,
IL_variable values, IL_ext.comp_values, IL _before_zones,
IL_after_zones, IL_not_ong_operations, IL_not_st_operations,
IL_products_in_terms. The ILs table is the main table and it
contains the IL name, either an operation name or an actuator
name, a comment, and a project reference. The relations of
the tables are shown in Figure 9.

C. Inserting data into database

To process the data that should be stored in the database,
stored procedures are used. The stored procedures are exe-
cutable scripts that can handle data in different ways. For
instance, a stored procedure can be used to handle the data
stored in an XML file. The procedures that are used for parsing
XML data into the database are:

e InsertPRXML

e InsertVRXML

o InsertROPXML
o InsertEOPXML
o InsertiLXML

« InsertProjectXML

The procedure InsertPRXML is described in more detail in
Section IV-C.1. The rest of the insert procedures work in a
similar way and is not described in detail in the present paper.

1) The InsertPRXML procedure: The physical recourses
XML file describes all mechanical components in the cell. To
extract this information from the XML file, it must be scanned
through level by level. Every level in the XML hierarchy has
specific information that will be stored in specific database
tables with certain relations.

The XML data holds information about the cell and includes
information about the factory and the area that the cell is
located in as well as the machines the cell consist of and
their equipment and configuration. Each machine can be built
up with a number of equipments consisting of sensors and
actuators. The actuator can also be built up with other sub
actuators and sub sensors. Theoretically, an infinite humber
of levels can be set up with equipments and sub equipments
in this way. The levels are explained in Figure 10. Too solve
this infinity problem when extracting the information from an
XML file, a recursive method was implemented.

Table - dbo.PR_machines Tabie - dbo.PR_equipment

Table - dbo.PR_equipment
Equipment_ID Equipment_def ID Pare

» =

téryrett

Fig. 10. The relations between equipment, sub equipment and machines in
the database.

The basic idea of the stored procedure is to split up the XML
data into smaller XML variables and process each of these
variables separately. A variable can, for instance, represent
a machine and every machine is processed one at a time.
When all information has been extracted at the machine level,
all equipment is parsed into XML variables. The variables
are sent to the stored procedure EquipmentParser. To pre-
serve the relations between the equipment and the machines
a machinelD and the parent equipmentID are also sent to
the EquipmentParser procedure. The procedure extracts all
information from the equipment, and if the equipment consists
of sub equipment, it parses all sub equipments into XML
variables and calls itself again. This procedure is repeated until
all sub equipment has been parsed. Figure 11 shows how this
is done.

D. Extracting data

There are four ways to build XML from a relational
database in Transact-SQL; the RAW, the AUTO, the EX-
PLICIT and the PATH mode. The RAW mode is probably
the fastest and most intuitive way of building XML. The

Execution of operations

Operations

Physical resources

Equipment

Fig. 9.

ExtractROPXML
ROP
Machine>-
Comment
Relation RelationlList
Algebraic Relation
Compressed

Unextended

Fig. 12.
is the only recursive function.

InsertPRXML
Stored information
* Factory

EquipmentParser
Stored information
« Equipment level 2

*Area

= Cell

* Machine

« Equipment level 1

+ Equipment level n

Fig. 11. The stored procedures that manage the physical resources data and
parses the XML into different tables in the database.

EXPLICIT mode is the most flexible mode but is very complex
to use. The PATH mode is a later development from Microsoft
and it was first implemented in SQL Server 2005. This method
has the EXPLICIT modes flexibility, like the possibilities of
mixing elements and attributes, but requires much less code to
write. To build an XML file, the database functions are used
since they can return large XML variables. The functions are
programmed in the PATH mode and some of the functions
for extracting data can appear rather complex. The reason for
choosing the PATH mode is that it allows much flexibility with

Interlocks

The relations between the tables containing the interlocks information.

Activitylist

ation -
iption
endition PredecessorList

Predecessor

The ExtractROPXML function and its four sub functions; RelationList, ActivityList, PredecessorList and AttributeList. The RelationList function

less code compared to any of the other types.

The function ExtractROPXML is described in more detail
in Section IV-D.1. The rest of the insert procedures work in a
similar way and is not described in detail in the present paper.

1) The ExtractROPXML function: The ExtractROPXML
function is the most complex function in the database. The
purpose of the function is to extract a ROP from the database
as XML data. It consists of four sub functions, see Figure 12.
When creating the ROP XML it is very important to retain
the structure and especially, the order of the relations and the
activities. The order is set up in the RelationList function.
The ROP can have an unlimited number of relation levels. To
handle this, the RelationList function is made recursive and
it will generate a new relation branch each time it is called.
To generate an instance of the Activity element and its child
elements, the ActivityList function is used. ActivityList calls
two other sub functions that generate the instances Predeces-
sors and Properties and their sub elements. The structure of
the ExtractROPXML is explained in Figure 10.

E. The Client User Interface

From the user interface, data can be exported and imported
to/from the database over a network connection using the
TCP/IP protocol. In detail, a predefined SQL query with
variable parameters is sent from the interface application,
invoking a specific stored procedure or function. When, for
example, exporting a ROP from the database the following
events will occur. A query will be sent from the interface
application requesting the execution of the function Extrac-
tROPXML(@projectlD, @ROPNamelD). The parameters of
the function are always set in the interface before the query
can be sent. The function looks up the single row matching the
parameter values in the "ROPs” table in the database. Next,
an XML file is generated by the ExtractROPXML function
in a predefined structure, fetching information from all tables
referencing the ROPs table. The XML file is returned by the
database function and received by the interface application
as a String object. Figure 13 shows the main window of the
interface before a connection is made with the database

Database Connection Interface - X
Session Options
Pioject Projects
No projects -

Create/ use

Delete in DB Refresh

ROP - Relations of Operations (ROP name 1D)

Impaort from DB Select a project -
Export to DB

Delete in DB

Refresh

Messages clear

Mo connecfion

Fig. 13. The client user interface, used to communicate with the database.

V. CONCLUSION

The present paper has presented a control database that
can be used in a general and flexible way by simulation
tools, formal verification tools, as well as for automatic
control program generation. A vendor independent method for

exchanging information between development tools as well as
storing in the database using XML-schemas has been applied.

The paper has described how the proposed method can
enable reuse of information, decrease manufacturing system
preparation time as well as decrease ramp-up time of new
systems or the introduction of a new part in an existing system.

It has been shown how control information is structured
and how information can be exported and imported from the
database. It has also been described how information can
be exchanged between development software tools such as
Process Simulate and Supremica.

An interface between the user and the database has been
presented in order to have easy access to the database.

It has been shown how this is exported and imported into the
database using pre-defined sets of import and export structures
in order to simplify the use of the database information. The
use of pre-defined structures will ease the workload of the
database in cases where many users are connected at the same
time. It also simplifies the users handling of the information.

REFERENCES

[1] Siemens, Webpage, http://www.plm.automation.siemens.com/en_us/ prod-
ucts/tecnomatix/, Date of access: 2009-04-02.

[2] Dassault Systemes, Webpage, http://www.3ds.com/products/delmia/ wel-
come/, Date of access: 2009-04-02.

[3] J. Richardsson, "Automated Verification and Generation of Flexible
Automation Control, Control and Automation Laboratory, Chalmers Uni-
versity of Technology, 2007, PhD thesis, Goteborg, Sweden, Technical
report nr 2643, ISBN/ISSN: 91-72919624.

[4] Chalmers University of Technology, Automation reserarch group, Web-
page, http://www.supremica.org, Date of access: 2009-04-02.

[5] K. Akesson, Methods and tools in supervisory control theory, Control
and Automation Laboratory, Chalmers University of Technology, 2002,
PhD thesis, Goteborg, Sweden, Technical report nr 431.

[6] K. Akesson and M. Fabian and H. Flordal and R. Malik, Supremica
- An Integrated Environment for Verification, Synthesis and Simulation
of Discrete Event Systems, Pros. of 8th Workshop on Discrete Event
Systems (WODES’06), 2006, Ann Arhor, MI, USA, pages 384-385.

[7] K. Akesson and M. Fabian and H. Flordal and A. Vahidi, Supremica - A
Tool for Verification and Synthesis of Discrete Event Supervisors, 11th
Mediterranean Conference on Control and Automation, 2003, Rhodos,
Greece, June.

[8] W.M. Wonham and P. Ramadge, 1987, On the Supremal Controllable
Sublanguage of a Given Language, SIAM Journal on Control and
Optimization, volume = 25, number = 3, pages = 637-659.

[9] C.G. Cassandras and S. Lafortune, Introduction to Discrete Event Sys-
tems, Kluwer Academic Publishers, 1999.

[10] K. Akesson and H. Flordal and M. Fabian, Exploiting Modularity for
Synthesis and Verification of Supervisors, Proc. of the IFAC World
Congress on Automatic Control, 2002, Barcelona, Spain, July.

[11] P. Falkman and F. Westman and C. Modig, Verification of Operation
Sequences in Process Simulate by Connecting a Formal Verification Tool,
Proc. in the 7th IEEE International Conference on Control and Automa-
tion (ICCA09), 2009, 9-11 December, Christchurch, New Zealand.

[12] M. Johansson and M. Kjellgren, Automatic Generation of Control
Functions for Manufacturing Automation Systems, Control and Automa-
tion Laboratory, Chalmers University of Technology, 2007, MSc thesis,
Goteborg, Sweden, Technical report nr 2643, ISSN 99-2747920-4; nr
EX074/2007.

[13] G. Powell, Beginning XML Databases, Indiana: Wiley Publishing, 2007,
Indianapolis.

[14] A. Watt, Microsoft SQL Server 2005 Programming For Dummies,
Indiana: Wiley Publishing, 2007, isbn 9780471774228.

[15] O. Ljungkrantz and K. kesson and J. Richardsson and K. Andersson,
Implementing a Control System Framework for Automatic Generation
of Manufacturing Cell Controllers, Proc. of the 2007 IEEE International
Conference on Robotics and Automation, 2007, pages 674-679, 10-14
April.

[16] J. Richardsson, Automated Verification and Generation of Flexible
Automation Control, Control and Automation Laboratory, Chalmers Uni-
versity of Technology, 2007, PhD thesis, G6teborg, Sweden, Technical
report nr 2643, ISBN/ISSN: 91-72919624.

