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Abstract

Volvo Aero has invested in a complex production cell containing a set of multi-
purpose machines. The problem of finding optimal schedules for this multitask cell
is a complex combinatorial optimization problem which is recognized as a flexible
job shop problem.

This thesis proposes an approach to find such schedules using mathematical op-
timization. The mathematical models developed so far are presented together with
a study of their interrelations, both from a computational and from a modelling per-
spective. One result of the study is that one of these models, a time-indexed model
with nail variables, outperforms all the others presented. To our knowledge, this
model is the first for the flexible job shop problem using this type of variables.

In order to reduce the number of variables in the time-indexed models, a heuris-
tic has been developed which finds an upper bound on the optimal value of the
makespan.

Computational results are presented for several variants of the time-indexed mod-
el and the engineer’s model, the latter belonging to a family of models widely used
in job shop scheduling. The objective employed for the computations is the mini-
mization of a weighted sum of the total tardiness and the sum of job completion
times.

A comparison is made between optimal schedules emanating from the time-
indexed model and schedules resulting from the use of three well-known dispatch-
ing rules, using the data from 21 real production scenarios. The tardiness and the
sum of job completion times are on average 6–22% larger in the schedules result-
ing from the use of the dispatching rules compared to those obtained in the optimal
schedules. The first appended paper provides the results from a similar comparison
for a number of scenarios, constructed by using data emanating from the multitask
cell.

The computational complexity of the problem of scheduling the multitask cell is
also investigated. The second appended paper contains a proof of a complexity result
for a related scheduling problem, namely flow-shop scheduling with deteriorating
jobs.
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1 Introduction

1.1 Background

Volvo Aero has invested in a complex production cell containing a set of multi-
purpose machines, with the aim to decrease product costs, shorten lead times, and
increase the quality level and delivery precision. The planning and control of this so-
called multitask cell result in a complex combinatorial optimization problem, which
needs to be solved in a reasonable amount of time. The control system of the multi-
task cell contains a built-in scheduling algorithm, which is based on a simple priority
function. In the master’s thesis [28], it was shown that this algorithm is not suffi-
ciently efficient, as it is not adapted to the production of complex structures such
as the aircraft engine components, which is the case at Volvo Aero. Therefore, the
built-in scheduling algorithm is not in use and the production of components in the
multitask cell is manually planned at present. This inferiority of the existing decision
support leads to unnecessarily long lead times and an inefficient use of the resources.

1.2 Aims and objectives

The overall aim of the research project is to contribute to the goal of enabling the con-
struction of optimal, or near-optimal, schedules for multi-purpose production cells,
similar to the Volvo Aero multitask cell. An algorithm which is fast and appropriate
then needs to be developed for the problem of scheduling the multitask cell, since
the conditions are unceasingly changing with new jobs continuously arriving at the
queue.

This thesis focuses primarily on finding a mathematical optimization model that
can be used for solving the problem of scheduling the processes in the multitask cell
in a reasonable computation time. This goal is achieved by

• the development of a number of mixed integer linear programming (MILP)
models for the scheduling problem at hand;

• the study of these models’ interrelations, from both a computational and a
modelling perspective;

• a discussion on appropriate objective functions and their impact on the logistic
performance of the production cell.

1.3 Limitations

This thesis is limited to the study of the scheduling of the machine resources in the
multitask cell. The number of staff in operation in the multitask cell is assumed to be
sufficient for performing the manual work associated with all the operations sched-
uled, and their scheduling is therefore not included in the MILP models. Other areas
not taken into account in this thesis are the maintenance planning of the multitask
cell, and the availability of machining tools. All of these areas are subjects for future
research.
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1.4 Outline

In this thesis, we present all the MILP models of the scheduling problem that have
been developed so far, together with computational results. Section 2.1 gives an
overview of the planning situation at Volvo Aero, where the supply chain, the prod-
ucts, and the multitask cell are described.

In Section 3, a literature overview of possible approaches to problems similar
to the problem of scheduling the multitask cell is given. First, the perspective of
operations research is presented; both exact approaches—as mathematical optimiza-
tion—and approximate approaches—as the use of metaheuristics—are described. The
section ends with a description of the perspective of logistics. This is then followed
by Section 4, dealing with the complexity of scheduling problems. First, a motivation
for the proof presented in [53] (Paper II) is given. The problem studied in Paper II is
a so-called flow shop scheduling problem with deteriorating jobs.

The main section in this thesis is Section 5, where the MILP models for the prob-
lem of scheduling the multitask cell are presented. A discussion regarding differ-
ent objective functions is included. This section ends with a description of a greedy
heuristic, developed with the aim of obtaining good feasible schedules. The heuris-
tic also provides parameter values for use in the MILP models to ensure reduced
computation times.

Computational results are presented in Section 6. It is clear that a time-indexed
model with so-called nail variables outperforms all the other models developed so
far. To our knowledge, this model is the first model for the flexible job shop problem
which uses this type of variables. Since the time-indexed model performs best, it is
used in most of the computational tests performed. The consequences of the length of
the discretization interval for the time-indexed model is investigated, and the model
is compared with the so-called engineer’s model, being of a common type used for the
formulation of similar scheduling problems. A comparison between optimal sched-
ules emanating from the time-indexed model and the schedules resulting from the
use of three well-known dispatching rules is also given. The impact of the choice of
a parameter for the engineer’s model on the computation times is presented as the
last test in this section. All data used for the tests described in Section 6 consist of
real production scenarios from the multitask cell at Volvo Aero.

In Sections 7 and 8, conclusions and proposed areas for future research are found,
and Section 9 contains a summary of the appended papers.

2 The planning situation at Volvo Aero

2.1 The company Volvo Aero

Volvo Aero is a small and distinguished member of the Volvo Group, since the com-
pany manufactures mainly aero engine and aerospace components, i.e., not the final
products as most of the members of the Volvo Group. An overview of the supply
chain for the civil aero engine components manufactured by Volvo Aero is illustrated
in Figure 1. Volvo Aero’s main production sites are situated in Trollhättan, Sweden,



2.2 The products 3

in Kongsberg, Norway, and in Newington, Connecticut, USA. Since the main pro-
duction is in the aero engine industry, the quality requirements are high. Therefore,
the processing machines in the production are often very large and expensive, while
the product volumes are small.

Figure 1: An overview of the supply chain for the civil aero engine components pro-
duced by Volvo Aero.

The planning and control of the supply chain is affected by the fact that the pro-
duction of aero engine components are subject to flight safety regulations issued by
flight safety authorities. As an example, all suppliers have to be approved by the au-
thorities, and Volvo Aero has to keep track of which mine the raw material for each
final product comes from. The operations performed by Volvo Aero also has to be
approved for each processing machine.

2.2 The products

The products currently processed in the multitask cell are mainly combustor struc-
tures, such as diffuser cases and compressor rear frames; see Figure 2. The diffuser
cases and the compressor rear frames are integrated cast structures in a nickel-based
material. The manufacturing process is a complex combination of turning, milling,
and drilling operations, which are mixed with NDT-procedures (Non Destructive
Testing), and in some cases welding and heat treatment of the products.

2.3 The multitask cell

The multitask cell contains ten processing resources along with a central tool stor-
age and an input/output conveyor; see Figure 3. The production cell is supposed to
carry out a large variety of jobs, since five of the cell’s resources are multi-purpose
machines that are able to process three different types of operations (turning, milling,
and drilling).

The multitask cell was built with the aim of achieving a high degree of machine
utilization, reducing product lead times and being flexible with regard to both the
product mix and the type of processing. Presently, the multitask cell is executing
about 30 different operations on eight different products. Each part typically visits
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Figure 2: The compressor rear frame is one part processed in the multitask cell.

Figure 3: An overview of the multitask cell.

the multitask cell multiple times on its way to completion; see Figure 4. One such
visit to the multitask cell is called a job in this thesis.

The parts that are ready to be processed in the multitask cell are those that are
checked-in at the input conveyor but not yet put into a fixture at a set-up station.
After the check-in, the parts are transported by a stocker crane to special storage
locations inside the multitask cell. There are also storage areas inside the cell for parts
that are already mounted into fixtures. Each part to be processed in the multitask
cell follows a specific routing through the set of resources, which consists of three to
five so-called route operations, starting and ending by the mounting and removing of
fixtures at one of the three set-up stations; see Figure 5. The second route operation
in this routing is always the processing in one of the multitask machines. Some parts
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Figure 4: A typical path through the factory for a part on its way to completion, with
multiple visits in the multitask cell (MTC). The striped boxes represent operations
performed outside the multitask cell and the numbers indicate the order in which
the routes are to be taken.

need manual and/or robot deburring. See Table 1 in Section 5.1.2 for a list of all
possible paths through the multitask cell.

Figure 5: A part mounted into a fixture at a set-up station in the multitask cell.

2.4 The production planning of the multitask cell

The current production planning of the multitask cell is described in [55] (Paper I). In
the planning system at Volvo Aero—the so-called ERP system (Enterprise Resource
Planning)—two reports are commonly used which propose the job priorities. One
report is based on the Earliest Due Date (EDD) priority rule and the other is based
on the First In First Out (FIFO) priority rule. The prerequisites for the logistics of the
multitask cell has been studied in the master’s thesis [41], in which the current de-
tail planning is described. Currently, the planning is manually performed by a detail
planner, with the help of the EDD-list and other priorities based on the current logis-
tic situation. The decision on which job to schedule on which machine is currently
made by the manager of the multitask cell together with the detail planner. As each
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job is only allowed to be processed in a subset of the multitask machines, this is not
a simple task: Even though the processing machines are of the same kind, they are
not identical, and some of the machines have been altered in order to be able to pro-
cess some large parts. Also, some machines yield a result which are better repetitive
for certain jobs having requirements on extremely small tolerances on e.g. rotundity
and thickness, due to flight safety issues. These are two of the reasons why some
jobs can only be processed in some machines. Another reason is that some products
consist of a different material than the rest, and the price paid by scrap dealers is
much lower for mixed metal chips (the metal scrap from the turning process) than
for sorted materials. This reason differs from the others, since it can be eliminated
by either scheduling a cleaning operation in a machine between any two operations
comprising parts of different materials, or selling the metal chips at the lower price.
As a consequence of the low product volumes and the expensive machines, which
are difficult to move, most of the parts take different routes in the factory, such as
the one illustrated in Figure 4. Getting an overview of the planning situation with
regard to incoming jobs is therefore difficult for a manual planner.

The problem described—to schedule the operations in the multitask cell—can be
classified as a flexible job shop problem in the operations research nomenclature. In the
following section, this problem is described in more general terms.

3 Job shop scheduling: A subject orientation

The job shop scheduling problem is one of three classic shop scheduling problems, the
other two being the flow shop and the open shop scheduling problems; see [8]. The job
shop problem is defined as that to find the optimal sequences of a given set of jobs
on a given set of machines. Each job consists of a number of operations, which must
be processed in a given order. The constraints indicating that one operation must
precede another are called precedence constraints. Associated with each operation is a
job, a machine, and a processing time. The flexible job shop problem is an extension
of the job shop problem, in the sense that each operation may be scheduled in more
than oneof the machines; see [3].

3.1 The perspective of operations research

Operations research is an interdisciplinary science that focuses on the efficient use
of technology in order to arrive at optimal, or near-optimal, solutions to complex
decision-making problems; see e.g. [50].

3.1.1 Mathematical optimization

The first integer programming formulations of job-shop problems were formulated in
the late 50’s by Manne ([33]), Wagner ([58]), and Bowman ([7]). These formulations
are all different, since they model the dimension of time in three different ways,
which in turn reflect their respective definitions of the binary decision variables.



3.1 The perspective of operations research 7

In [33], Manne studied the problem of sequencing jobs with precedence con-
straints on a single machine. Here, the jobs’ starting times are represented by in-
teger variables (which may be respresented by continuous variables, but here they
are considered integral since Manne applied integer rather than mixed integer pro-
gramming). The decision variables are defined as yjq equals 1, if job j precedes job
q, and 0 otherwise. There are many examples in the operations research literature of
models from the so-called Manne family, i.e., models that use this type of variables.
Some recent formulations of models for the flexible job shop problem within the
Manne family are found in [40, 14, 44] and [63]. The only model presented in the sec-
tion of job shop scheduling in the Wiley Encyclopedia of Operations Research and
Management Science 2011 ([42]) is a Manne family model. In Section 5.2, a model in
the Manne family is formulated for the problem of scheduling the multitask cell.

Wagner ([58]) also considers the classical job shop problem, although calling it the
machine-scheduling problem. Since here solely the ordering of the jobs on each machine
is considered, the time dimension is implicitly treated. In this model, each decision
variable equals 1 if the corresponding job is scheduled in a specific resource at a
specific order-position, and 0 otherwise. In [46], the authors have compared models
of the Manne family with models of the so-called Wagner family for the regular
permutation flow shop problem to minimize the makespan, i.e., to minimize the time
at which all jobs are completed. The flow shop problem is a special case of the job
shop problem, as each job is required to follow exactly the same processing sequence
across all machines. In the permutation flow shop, the processing order of the jobs
is the same in all of the resources. Since, in the models of the Wagner family, the
decision variables are related to the ordering of jobs, these models seem to be well
adapted for the permutation flow shop problem, according to the computational
results presented in [46].

A third way of modelling time is considered by Bowman, in [7], who denotes the
classical job shop problem by the schedule-sequencing problem. The planning period
is divided into an integer number of time periods with equal length. The decision
variables used in this article equal 1 if the corresponding job is processed by a specific
resource during a specific time period, and 0 otherwise. A formulation of scheduling
problems to minimize total earliness/tardiness on parallel machines using this type
of variables is found in [29]. In Section 5.4.5 we formulate a model for the scheduling
of the multitask cell using this type of variables, which we call plateau variables.

Another time-indexed formulation using decision variables which equal 1 if the
corresponding job starts in a specific discrete time period, and 0 otherwise (called nail
variables in this thesis), is found in [45], and more generally in [60] for production
planning and scheduling problems. The formulations using variables for each dis-
crete time period lead to very large models in terms of numbers of both constraints
and variables, but formulations using nail variables typically yield better so-called
lower bounds (see Section 4.3) than other MILP formulations of scheduling problems;
see [56]. A time-indexed model using nail variables is formulated in Section 5.4.4 for
the problem of scheduling the operations in the multitask cell. This is, to our knowl-
edge, the first model published for this kind of a flexible job shop, and it outperforms
substantially all the other models developed and tested within the project regarding
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the computation time required to solve the problems and also regarding which sizes
of instances they are able to solve within reasonable computation time.

The objective that is the most studied for scheduling problems is the minimiza-
tion of makespan; see [27]. Other common objectives are related to the jobs’ earli-
ness/tardiness and completion times, and/or inventory holding costs associated
with the jobs. A model with a time-indexed formulation, in which the time-indexed
variables are integral and not binary, as in the time-indexed models mentioned above,
is presented in [19]. The objective function in [19] is to minimize the costs associated
with in-process inventory, earliness/tardiness and costs associated with orders not
fully completed at the end of the scheduling horizon. See Section 5.1.5 for a discus-
sion on different objective functions and their suitability for the planning of opera-
tions in the multitask cell.

3.1.2 Metaheuristics

Integer linear programming models formulated for scheduling problems in the pe-
riod of 1959–1990 are correct, but the computers were then able to solve only very
small instances, and it was not possible to employ an exact mathematical optimiza-
tion on instances of sizes relevant for real applications. Therefore, a lot of research
was concentrated on obtaining an approximate solution of job shop problems by the
application of heuristic methods; see [27] for an historical overview. According to
[27], the development of so-called metaheuristics for job shop scheduling started with
the development of the so-called shifting bottleneck heuristic by Adams et al. in 1988
([1]). Since then, many metaheuristics have been proposed for finding schedules for
job shops, among these are simulated annealing, tabu search, genetic algorithms, and ant
colony optimization; see, e.g., [14, 62, 36] and [21] for some recently proposed hybrid
approximation algorithms which are based on the metaheuristics mentioned above.
A genetic algorithm for the job shop problem with the tardiness objective is found
in [35]. The shifting bottleneck heuristic is still popular; see [37] for a variant for
the flexible job shop, and [10] which combines the shifting bottleneck heuristic with
a MILP model. Other recent work on the flexible job shop problem are [12, 59, 23]
and [16], of which [59] also considers preventive maintenance activities.

The major disadvantage with metaheuristics is that there is often no other stop-
ping criteria than a maximum allowed number of iterations, or limited computation
time. Hence, no quality measure of the solution is provided as for the case of ap-
plying mathematical optimization. Therefore, the quality of the solutions obtained
become unknown. Another weakness of the approximation algorithms is that often
there are several parameters that have to be carefully selected in order for the algo-
rithms to produce good solutions ([27]). Comparisons between different heuristics
often become invalid since they are usually performed from an unbalanced perspec-
tive: Typically, the approaches taken are presented with a very well calibrated set
of parameter values, while other approaches included in the study for comparisons,
are employed using a standard parameter setting. Hence, a fair comparison is often
not achieved.

Arostegui et al. ([2]) have made an attempt to make a fair comparison between
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tabu search, simulated annealing, and genetic algorithms for three variants of the
facility location problem (FLP). FLP is a complex combinatorial optimization prob-
lem, which is as hard to solve as the job shop problem, according to the authors. In
this article, tabu search seems to be the best algorithm, with good performance for
all three variants, while both simulated annealing and genetic algorithms sometimes
get stuck in worse local minima, and hence perform badly for some variants.

Other approaches to find good solutions to the job shop problem is to combine
simulation models with meta-heuristics; see, e.g., [49], which is especially interest-
ing since the case study in that article is the Volvo Aero multitask cell considered in
this thesis. A more general description of this method is found in [48]. Yet another
approach is the use of constraint programming; see, e.g., [6]. In [4], a hybrid algorithm
which combines a tabu search algorithm with constraint programming is proposed
for the job shop problem and represents, according to the authors, the first occasion
in which a constraint programming algorithm obtains a performance that is compet-
itive with the best so-called local search algorithms (e.g., tabu search is a local search
algorithm).

3.2 The perspective of logistics

According to ([11]) the discipline of logistics is the management of the flow of goods
and services between the point of origin and the point of consumption in order to
meet the requirements of customers. The term production logistics is used to describe
logistic processes in-house a factory [57]. The purpose of production logistics is to
ensure that each machine and workstation is being fed with the right product of the
correct quantity and quality at the right time. This corresponds approximately to the
goal of the job shop problem, and although quality is seldom explicitly dealt within
the scheduling community of operations research, the two disciplines have a lot in
common.

Scientific articles related to production planning written in the view of produc-
tion logistics typically do not have an as quantitative perspective as those written in
the view of operations research. For example, Stoop and Wiers ([47]) list a number of
causes for automated scheduling techniques not functioning in practice. Such causes
can be disturbances, machine breakdowns, rush orders, or the unavailability of raw
materials. Another cause can be personnel overruling the scheduling tools, believing
that they can outperform the technique. It is hard to prove to personnel responsible
for operations planning the advantages of an automated scheduling technique, since
the quality of a schedule is usually very hard to assess.

In [22], Herrmann describes production scheduling from a logistics point of view,
and with a hierarchical view of the organizational, decision-making, and problem-
solving perspectives of production scheduling. In this view, the problem of finding
optimal schedules equals production scheduling from the problem-solving perspec-
tive. In the decision-making perspective, the schedulers also perform tasks such as
crisis identification, and make decisions in order to avoid possible future trouble.
The broadest perspective is the organizational perspective, which takes the whole
organization around the production into account. The author points out that pro-
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duction scheduling is not just an optimization problem, but a complex system of
information flow, decision-making, and problem-solving.

Although job shop scheduling is complex, feasible schedules are found every day
all around the world for all the various real applications that need to be scheduled.
The most common means for constructing a schedule is to make use of one of many
dispatching rules, proposed by, e.g. [5] and [24]. A dispatching rule (also called priority
rule) is classified as a static rule if the priority value once calculated remains the same
throughout the planning horizon; it is called a dynamic rule if the priority value cal-
culated at a certain point in time differs from that calculated at a later time. The most
common static rules are the so-called shortest–processing–time (SPT), earliest–due–date
(EDD) and first–in–first–out (FIFO); a description of these and other dispatching rules
can be found in e.g. [25].

In this work, the schedules generated by static dispatching rules applied to data
from real instances from the multitask cell have been compared with the resulting
schedules emanating from the mathematical optimization models presented in Sec-
tions 5.3 and 5.4.4, for the same set of instances. The results from these comparisons
are reported in Section 6, in [55] (Paper I in this thesis), and in [52].

The priority lists resulting from the use of dispatching rules can be generated by
commercial planning softwares, henceforth called ERP (Enterprise Resource Plan-
ning) systems. Other commercial planning softwares include the more sofisticated
APS (Advanced Planning and Scheduling) systems, which are often integrated with
the ERP systems; see e.g. [25, pp. 147–149]. APS systems are, however, usually de-
signed to cover all the different classes of scheduling problems—e.g. job shop, flow
shop, open shop, assembly line, and continuous flow (e.g. process industry) schedul-
ing problems—and, therefore, they typically offer only a small number of generic
scheduling algorithms. The disadvantage of the commercial planning softwares is
that a built-in generic scheduling algorithm probably most often results in worse
schedules than does a tailored scheduling algorithm for a certain problem class, such
as, e.g., flexible job shop ([31]).

4 On the complexity of scheduling problems

Scheduling problems such as flow shop, job shop, and open shop problems have
been known to be NP-complete since the mid seventies ([18]). An NP-complete or
NP-hard problem is such that no algorithm exists that in polynomial time is able
to solve all possible instances of the problem ([17]). Hence, the solution time risks
to increase exponentially with the number of jobs. The difference between the no-
tions NP-hard and NP-complete is that NP-hard problems are at least as hard as NP-
complete problems; see [17, p. 109]. In [18], the flow shop problem with the objective
of minimizing makespan was proven to be NP-complete for instances with three or
more machines. It was also shown that the flow shop problem with the objective of
minimizing the mean flow time, i.e., the sum of the jobs’ completion times, and the
job shop problem with the makespan criterion, are NP-complete for instances with
two or more machines.
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4.1 On the complexity of flow shop problems with deteriorating
jobs

In [53] (Paper II in this thesis), we present a proof of NP-hardness for flow shop
problems for which the processing time of each job is equal to a deterioration rate
times the job’s starting time. It is a note on an article written by Mosheiov in 2002
([38]), in which the proof regarding the complexity of a flow shop problem with
deteriorating jobs is incorrect. We provide a correct proof of the statement that this
problem is NP-hard for instances with three or more machines, when the objective
is to minimize the makespan.

During the work with this note, it came to our notice that a correct proof, for
an even stronger result, was published already in 1996 in a Russian journal; see
Kononov [30]. This proof, originally given in Russian, is summarized in [53] (Pa-
per II). However, we noted, while tracing the citation history of the two proofs
by Mosheiov and Kononov, respectively, that the incorrect proof by Mosheiov was
by far the one most often cited. Hence, we considered a correction of the proof by
Mosheiov being necessary and quite timely.

4.2 On the complexity of flexible job shop problems

We consider here a subproblem of the flexible job shop problem studied in this the-
sis, namely scheduling only the five processing machines in the multitask cell. We
further assume that all parts to be scheduled are available from the start, i.e., all re-
lease dates are set to zero for all jobs, and that there are no precedence constraints
between the jobs. Moreover, we consider the objective of minimizing the weighted
sum of completion times.

Using the α|β|γ-notation introduced in [20], this problem can then be described
as F MPM5|stages = 1|

∑
wiCi. The first field, α, specifies the machine environment,

where F, J, and O denote flow shop, job shop and open shop, respectively. These
notations can be combined with, e.g. P and MPM, which denote identical parallell
machines, and multi-purpose machines, respectively, and a number k, representing
the number of machines. The subproblem considered above has only one stage, that
is, each job consists of one operation. Therefore, the first element of α can be set to
any of F, J, and O. We have chosen α = ”F MPM5” for convenience.

The β-field is used to describe the job characteristics. There can be at most six
elements in this field, for example prec, ri, or di for precedence constraints, release
dates and due dates, respectively, to name a few elements relevant to the problems
studied in this thesis. In the subproblem considered here, these job characteristics
are not relevant due to the assumptions made above. We therefore set β equal to
stages= 1.

The last field in this notation is the γ-field which is used to describe the opti-
mality criterion. The most common objective functions are the minimization of the
makespan (γ = Cmax), total completion times (γ =

∑
Ci) and weighted completion

times (γ =
∑
wiCi). Note that the indices on the

∑
-symbol are skipped in this nota-

tion. Other notations of interest are Ei and Ti which denote earliness and tardiness,
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respectively. For further explanation of the α|β|γ-notation; see e.g. [8].
The considered subproblem (F MPM5|stages = 1|

∑
wiCi) of the flexible job shop

problem is a generalization of the problem P5||
∑
wiCi, i.e., the problem of schedul-

ing five parallell machines with the weighted completion times criterion; see [9].
Since the problem Pk||

∑
wiCi has been shown to be NP-hard for k ≥ 2 ([17]), it

follows that the subproblem considered (F MPM5|stages = 1|
∑
wiCi) is NP-hard

(k = 5). Since this subproblem is a special case of the problem studied in this thesis,
we can conclude that the problem of scheduling the multitask cell is NP-hard.

4.3 Weak and strong formulations

Since we are dealing with NP-hard problems the computation times may become
very long, as mentioned in the beginning of this section, and hence the choices of
both the solution algorithm and the problem formulation are of great importance.
In this thesis we have chosen to use a state-of-the-art optimization software, and let
this software make the choice of solution algorithm. Instead, we made an effort to
develop good mixed integer linear programming (MILP) models for the problem of
scheduling the multitask cell. The MILP models are formulated with both integer (or
binary) and continuous variables, and with all the relations between the variables in
the objective and constraints being linear ([39]). For linear programs (LP), in which
all variables are continuous, an optimal solution, if it exists, is found at an extreme
point of the feasible region (the polyhedron defined by the linear relations between
the continuous variables). This is, however, not the case for MILP models, since the
extreme points may contain fractional variable values. A lower bound on the value
of the optimal MILP solution is found when solving the so-called LP relaxation of the
problem, i.e. when relaxing all integer and/or binary constraints on the variables.
The constraints formulated to describe the feasible region of a MILP model are called
strong, if the objective value of the corresponding LP relaxation is close to that of
the optimal solution; it is called weak, if the constraints in the LP relaxation yield a
solution whose objective value is far from that of the corresponding optimal solution.
An example is given in 2D in Figure 6.

In the example in Figure 6, the feasible set of the MILP model is illustrated by
small filled circles. Both variables are subject to non-negativity constraints, and there
are two sets of the remaining constraints corresponding to a weak and a strong for-
mulation, respectively, of the MILP model. The constraints in the weak formulation
are illustrated with solid lines, and those in the strong formulation by dashed lines.
The constraint marked with (1) in the figure is valid for both formulations. The arrow
indicates the direction of decreasing objective function values. The optimal solution
of the MILP model equals that of the LP relaxation of the strong formulation, i.e.,
the intersection of the two dashed lines. The LP relaxation of the weak formulation
yields an optimal solution with fractional variable values, i.e., the intersection of the
lines marked (1) and (2) in Figure 6.

With the help of so-called strong valid inequalities, it is possible to cut off frac-
tional solutions from the feasible region. The gap between the optimal value and
the optimal value of the corresponding continuous relaxation (considering the min-
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Figure 6: Weak and strong formulations of the same feasible set of a MILP model.
The optimal solution to the MILP model equals that of the LP relaxation of the strong
formulation, the constraints of which are indicated by the dashed lines. The LP re-
laxation of the weaker formulation, whose constraints are indicated by solid lines,
yields a solution with fractional variable values.

imization of the objective function) is then reduced. Hence, it is of great importance
to try to find strong valid inequalities for the problem studied ([61]).

5 Mathematical modelling of the scheduling for the
multitask cell

In this section we formulate the four complete MILP models of the problem to con-
struct an optimal schedule for the processing of parts in the multitask cell, as de-
scribed in Section 2.3.

5.1 Definitions required for the MILP models

Most of the parameters and sets defined in Sections 5.1.2 and 5.1.3 are used in all the
MILP models for the scheduling of the multitask cell which are described in Sections
5.2–5.4. In Section 5.1.4 a way of calculating realistic release dates and interoperation
times from the data given in the ERP system is described and in Section 5.1.5 some



14 5 MATHEMATICAL MODELLING

different objective functions are discussed.

5.1.1 Assumptions made for the mathematical formulations

All the processing tools for the multitask cell are assumed to be available and trans-
ported to the appropriate resource on time for each route operation. The number
of available fixtures is not a limiting factor at present in the multitask cell and it is
therefore assumed to be unlimited. For some of the operations, namely, mounting
into fixtures, manual deburring, and removing parts from the fixtures, personnel are
required during the entire operation, while most of the processing operations re-
quire manual work only during a fraction of the operation processing time. There
are also other tasks regarding, for example, the machining tools, that the personnel
are expected to perform simultaneously with their work with the route operations
in the multitask cell. As mentioned in Section 1.3, the availability of personnel for
the manual work of the cell is here considered to be sufficient, but in practice this
will not always be the case, especially not if the work load of the cell is considerably
increased in comparison with the current situation; therefore, we plan to include
manpower planning in the future research. The availability of storage before and be-
tween the resources is assumed to be unlimited. The assumptions made above are,
however, not always true; how they best can be included in the mathematical models
is an area for future studies.

5.1.2 Indices and definitions of sets

In order to acquire the appropriate parameter data for the MILP models, the jobs
that are to be processed in the multitask cell must be studied and categorized. They
can be divided into three categories, since each order (part) passes through three
different phases before its processing in the multitask cell. These are

1. planned orders not yet released, i.e. orders that exist in the planning system
only;

2. released orders, or so-called production orders, i.e. physical parts being pro-
cessed outside the cell on their way to the multitask cell; and

3. jobs checked-in into the multitask cell, i.e. parts inside the multitask cell wait-
ing to be processed.

The whole set of jobs to be processed during the planning period considered,
i.e. the queue of jobs, is denoted by J . Some of these jobs are to be processed on the
same physical part; hence, there are two categories of jobs in phases 2 and 3. The first
category is characterized by the part being inside or on its way to the multitask cell
for the processing of the corresponding job. The second category is characterized
by the part being inside or on its way to the multitask cell for the processing of a
preceding job in the routing, before making another round through the factory and,
finally, reaching the multitask cell for the processing of the job in question.
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As an example of the second category, consider a job q ∈ J being the job to be
processed at a part’s third visit to the multitask cell, as illustrated in Figure 4, while
the physical part, on which job q is going to be performed, is on its way to visit the
multitask cell for the second time, for processing of job j ∈ J . Another example, as
for the jobs q and l illustrated in Figure 7, occurs when no operations are required
outside the multitask cell before the processing of the next job. The pairs of all jobs
adjacent in the routing form the product setQ ⊂ J ×J . For the part, whose routing
is illustrated in Figure 7, the pairs (j, q) and (q, l) belongs to the set Q.

Figure 7: Routing of a part in the factory with jobs j, q, and l to be processed in the
multitask cell. The set of pairs {(j, q), (q, l)} ⊆ Q.

Each job j consists of nj operations i, i.e., i ∈ Nj = {1, . . . , nj}, to be processed
inside the multitask cell. The route operations that can be performed inside the cell
are listed in Table 1, together with the four possible variants of the ordering of the
route operations belonging to the set Nj for a job j. Note that the route operations
i = 1, 2 are of the same kind for all the jobs.

Description of operation Job type
(i) (ii) (iii) (iv)

mounting into fixture 1 1 1 1
turning/milling/drilling 2 2 2 2
manual deburring 3 3
automatic deburring 4 3
removing from fixture 5 4 4 3

Table 1: Each job, j, consists of an ordered set of route operations that are performed
inside the multitask cell. There are four variants, here denoted (i),. . . ,(iv), of these
sets, which are mathematically denoted by Nj , j ∈ J .

The route operations are performed in the ten processing resources in the multi-
task cell. The first (i = 1) and the last (i = nj) route operations are always performed
in one of the three set-up/tear-down stations. The set of k resources is denoted byK,
and the set of multitask machines is denoted by K̃ ⊂ K. All the resources considered
for scheduling in the thesis are listed in Table 2.

5.1.3 Definition of parameters and time variables

Linked with each route operation i of job j, henceforth denoted operation (i, j), and
each resource k, is a parameter λijk, which equals 1 if operation (i, j) is allowed to



16 5 MATHEMATICAL MODELLING

k Description Route operation
M/DM 1–3 three set-up/tear-down stations mounting into & removing

from fixture
M/C 1–5 five multitask machines (K̃) turning/milling/drilling
Man Gr one manual deburring station manual deburring

DBR one automatic deburring machine automatic deburring

Table 2: The resources of the multitask cell and the corresponding route operations.

be processed on resource k, and equals 0 otherwise. Since most jobs are only allowed
to be processed in a subset of the multitask machines, λ2jk may equal 0 for some
k ∈ K̃. All data related to time are given in hours relative to a starting time t0 for the
schedule to be calculated. Since the resources are often occupied by the processing of
a route operation for another job at time t0, the parameter ak is introduced, denoting
the time when the resource k will be available for processing a new operation. In
Table 3 all parameters describing the input data are listed.

Notation Definition
λijk 1, if operation (i, j) can be processed on resource k,

0, otherwise.
ak the time when resource k will be available the first time.
dj the due date of job j, i.e., the point in time when the last operation nj

of job j is planned to be completed.
rj the release date for job j.
pij the processing time in hours for operation i of job j.
w the transportation time for a product between any resources inside

the multitask cell.
vjq the interoperation time between the jobs j and q, where (j, q) ∈ Q.
M a sufficiently large positive number that must be greater than the

planning horizon.

Table 3: Definition of parameters for indices i ∈ Nj , j ∈ J , and k ∈ K, if not other-
wise specified.

How the parameters rj and vjq are calculated from the available data for the
multitask cell is explained in detail in Section 5.1.4. The parameter M , which is used
to represent the logical precedence constraints by linear inequalities, has to be suffi-
ciently large, but not too large, which would cause numerical rounding errors. There-
fore, the value of M must be chosen with great care. Therefore, we have developed
a heuristic, for computing a ”good” value of this parameter, using the same logic as
Algorithm 1 presented in Section 5.4.7.

As the continuous time variables appear in the discussion about different objec-
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tive functions in Section 5.1.5, they are defined below in Table 4. The completion
time and tardiness variables are also common for all the models, while the binary
decision variables differ between the different models, and are hence defined next to
their respective models.

Notation Definition
tij the starting time of operation (i, j)

sj the completion time of job j (sj = tnj ,j + pnj ,j)
hj the tardiness of job j (hj = max{0; sj − dj})

Table 4: Definition of the continuous time variables.

5.1.4 Realistic release dates and interoperation times

The means to calculate a realistic value of the release date for a specific job depend
on which of the phases 1–3, described in Section 5.1.2, that the job belongs to. If a job
j belongs to phase 3, i.e., the part is ready to be processed at time t0 and is checked-in
into the multitask cell, then rj is set to 0. Release dates for jobs in the phases 1 and 2,
i.e., planned orders and released jobs being processed elsewhere on their way to the
multitask cell, are somewhat more complicated to determine. In order to calculate
these, we need to introduce some new parameters that are used in this section only;
they are collected in Table 5 but also explained in the text.

Parameter Description Source
%j the planned latest release date for job j ERP
ϑj the standard queue time for job j including transport time ERP
µact the actual operation, i.e., the part’s location at time t0 ERP
µmj−1 the operation preceding job j ERP
ν0
j the standard lead time from start of µact to arrival at MTC Calc
ρµ the processing time for operation µ ERP
ςµ the set-up time for operation µ ERP
ϑµ the standard queue time for operation µ ERP

Table 5: Description of the parameters used in Section 5.1.4 and their sources. ERP
denotes the planning system and Calc means that the parameter value is calculated
by equation (2).

In the planning system of the multitask cell, there is a planned latest release date
for each job, which is denoted by %j . This means that the job j in the multitask cell
is planned to be started at the latest at time %j . Another parameter in the planning
system is the so-called standard queue time, here denoted by ϑj , which is the planned
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time between the completion of the preceding operation performed outside the mul-
titask cell and the latest release date %j , including the time for the transport to the
multitask cell. The desired release date, rj , that should be included in the optimization
model, should, however, be a realistic estimation of the point in time when the part
arrives to the multitask cell. Therefore, a fraction of the standard queue time must be
subtracted from %j . A measure that is often used at Volvo Aero is the transport time
constituting about 20% of the standard queue time; hence we choose to compute rj
as

rj = max{%j − 0.8ϑj − t0; ν0
j }, (1)

where ν0
j is the standard lead time from the preceding operation on the part to be

processed outside the multitask cell at time t0 till it arrives at the multitask cell.
Let µact denote this actual operation and µ1, . . . , µmf

denote the operations in the
routing for the completion of the part to a final product; see Figure 8. Using this no-
tation, job j equals operation µmj

, and hence µmj−1 denotes the operation preceding
job j. Note that the word job is only used to denote the operations to be scheduled
in the multitask cell. The operations listed in Table 1 (which are performed inside
the multitask cell) are called route operations, in order to distinguish them from the
operations µl, l = 1, . . . , f . Using this notation, ν0

j is given by the equality

ν0
j =

µmj−1∑
µ=µact+1

(ρµ + ςµ + ϑµ) + 0.2ϑj , (2)

where ρµ, ςµ, and ϑµ denote the process, set-up, and queue time, respectively, of
operation µ, which is processed elsewhere, i.e., not in the multitask cell.

Figure 8: The interoperation time, vjq , between jobs j and q is shown together with
ν0j for the case of a planned order for job j.

The parameter vjq is utilized to prevent the jobs j and q being scheduled too
close in time, for the case when both jobs are to be performed on the same physical
part; the parameter vjq is defined in Table 3. It is the planned lead time between
the completion time of job j and the starting time of job q of the tranportation and
processing times for operations performed outside the multitask cell; see Figure 8.
The definition of vjq is given by the equality

vjq =

µmq−1∑
µ=µmj+1

(ρµ + ςµ + ϑµ) + 0.2ϑq,
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where ρµ, ςµ, and ϑµ denote respectively the process, set-up and queue times of op-
eration µ, which is processed elsewhere (cf. (2)). As mentioned before, 0.2ϑq is the
estimated transport time to the multitask cell from the operation preceding job q for
this physical part.

5.1.5 Objectives for the scheduling of the multitask cell

The classic scheduling objective is to minimize the makespan, i.e., to minimize the
completion time of the latest job in the schedule; see e.g. [27]. This is, however, not a
suitable objective for instances where not all jobs are available from the start, but are
expected to arrive at given release dates, as is the case for the multitask cell. Another
weakness of the makespan objective is that it does not take the tardiness hj into
account. Another objective often used is to minimize the total tardiness, i.e., the sum of
the tardiness of all jobs. This is a suitable objective for instances with tardy jobs, but
not for instances with jobs that may be completed before their respective due dates.
One way to consider also these jobs in the objective is the addition of an objective
term expressing total earliness (see [63]), which results in a suitable objective for a
just-in-time environment with a reliable and stable process.

According to the managers of the multitask cell, the most important objectives
are to maximize the utilization of the multitask cell and to minimize the tardiness
of the jobs. Even though it is, in fact, not desirable to finish jobs too early (because
of the possibility to choke the system with large total lead times as a consequence)
we have chosen to add an objective term with a weight A times the total completion
time to the term of a weight B times the total tardiness. We have chosen this com-
promise with the two weights A and B, with 0 ≤ A ≤ B, since the minimization of
the sum of the completion times (or mean flowtime as it is called in some references,
e.g. [18]) is a secondary objective, while the main objective is to minimize the total
tardiness. With this objective function, the utilization is maximised through the min-
imization of the sum of the completion times, while tardy jobs are prioritized. The
benefit of scheduling jobs early is the possibility to cope with the everyday reality in
the multitask cell which is filled with unexpected events such as operators getting
ill, non-conformance parts leaving the queue of parts to be scheduled, and machine
break-downs, only to name a few.

Since each job occupies a fixture throughout the whole sequence 1, . . . , nj of op-
erations, the negative objective term−εt1j , ε being a small positive number, is added
in order to reduce the time when each fixture is occupied. Hence, the objective is to
minimize the function during which∑

j∈J
(Asj − εt1j +Bhj) . (3)

It is important that ε� min{A,B}, since the second term in the sum strives to sched-
ule the jobs as late as possible. The discussion on the advantages and disadvantages
of this objective function is continued in Section 5.4.6, where an alternative objective
function, minimizing the work load variance, is also presented.
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5.2 The full engineer’s model

In this section we present a mixed integer optimization model for the full problem,
i.e., for the whole multitask cell including all ten resources. This model belongs to
the Manne family (see Section 3.1.1), and is called the full engineer’s model, since it is
a quite intuitive model for the whole multitask cell.

5.2.1 Definition of variables

The time variables used in this model are the continuous variables defined in Sec-
tion 5.1.3 for starting, completion, and tardiness of a job. There are two sets of binary
decision variables in this model, namely zijk, which determines to which resource a
certain operation is allocated, and yijpqk, denoting the precedence relations between
the operations. They are defined as

zijk =

{
1, if operation (i, j) is allocated to resource k,
0, otherwise,

yijpqk =

{
1, if op (i, j) is processed before op (p, q) on resource k,
0, otherwise,

for i, p ∈ Nj , j, q ∈ J , such that (i, j) 6= (p, q), and k ∈ K, and where ”op (i, j)”
denotes route operation i of job j.

5.2.2 The engineer’s mathematical optimization model

Given the parameters and sets defined in Section 5.1.2 and the objective function (3)
given in Section 5.1.5, the problem to schedule the multitask cell is formulated as
that to

minimize
∑
j∈J

(Asj − εt1j +Bhj) (4a)

subject to
∑
k∈K

zijk = 1, i ∈ Nj , j ∈ J , (4b)

zijk ≤ λijk, i ∈ Nj , j ∈ J , k ∈ K, (4c)
yijpqk + ypqijk ≤ zijk, i ∈ Nj , p ∈ Nq, j, q ∈ J , (4d)

(i, j) 6= (p, q), k ∈ K,
yijpqk + ypqijk + 1 ≥ zijk + zpqk, i ∈ Nj , p ∈ Nq, j, q ∈ J , (4e)

(i, j) 6= (p, q), k ∈ K,
tij + pij −M(1− yijpqk) ≤ tpq, i ∈ Nj , p ∈ Nq, j, q ∈ J , (4f)

(i, j) 6= (p, q), k ∈ K,
tij + pij + w ≤ ti+1,j , i ∈ Nj \ {nj}, j ∈ J , (4g)

t1j ≥ rj , j ∈ J , (4h)
tij ≥ akzijk, j ∈ J , k ∈ K, (4i)
t1q ≥ sj + vjq, (j, q) ∈ Q, (4j)

sj − tnjj = pnjj , j ∈ J , (4k)
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hj ≥ sj − dj , j ∈ J , (4l)
hj ≥ 0, j ∈ J , (4m)
tij ≥ 0, i ∈ Nj , j ∈ J , (4n)
zijk ∈ {0, 1}, i ∈ Nj , j ∈ J , k ∈ K, (4o)

yijpqk ∈ {0, 1}, i ∈ Nj , p ∈ Nq, j, q ∈ J , (4p)
(i, j) 6= (p, q), k ∈ K.

The constraints (4b) ensure that every operation is processed exactly once, and the
constraints (4c) make sure that each operation is scheduled on a resource allowed for
this specific operation. The constraints (4d) and (4e) induce an unambiguous order-
ing of the operations that are to be processed in the same resource. The constraints
(4d) make sure that yijpqk and ypqijk do not both equal 1; i.e., if operation (i, j) pre-
cedes operation (p, q), operation (p, q) cannot precede operation (i, j). If operations
(i, j) and (p, q) are to be performed on the same machine, then the constraints (4e)
regulate that one of yijpqk and ypqijk must possess the value 1.

Furthermore, the constraints (4f) make sure that the starting time of operation
(p, q) is scheduled after the completion of the previous operation in the same re-
source. The parameter M is a big number, whose purpose is to relax the constraints
whenever yijpqk is valued zero, i.e., when the operations are not scheduled for pro-
cessing in the same resource. See Section 6.2.4 for an analysis on the impact of dif-
ferent values of M on the computation time. Generally, in scheduling problems the
constraints tpq + ppq −Myijpqk ≤ tij , being symmetric to the constraints (4f), are
required, as e.g., in [40], but these become redundant here since yijpqk and ypqijk are
regulated by the inequalities (4d) and (4e). The effect of an alternative formulation
of these constraints for the engineer’s model for the five multitask machines is dis-
cussed in Section 5.3.1.

The constraints (4g) ensure that the operations within the same job j are sched-
uled in the correct order and that each operation is not scheduled until the previous
operation has been completed and the corresponding part transported to the current
resource in the set Nj . The constraints (4h) regulate the starting time of the first op-
eration of every job, so that no job is scheduled prior to its release date. Moreover,
the constraints (4i) make sure that no operation is scheduled in any resource before
the resource is available for the first time. Any pair of two jobs, (j, q), say, belonging
to the set Qmust be separated at least by the planned interoperation time vjq ; this is
indicated by the constraints (4j). The completion time and the tardiness of each job j
are defined by the constraints (4k)–(4m). Note that the nonnegativity constraints (4n)
for the starting times are redundant due to equations (4g)–(4i) whenever the release
date rj is nonnegative.

5.2.3 Preliminary computations using the full engineer’s model

Tests performed on real data instances with this model on a 4 Gb quad-core Intel
Xeon 3.2 GHz system using AMPL-CPLEX12 [15, 26] as optimization software, were
able to solve very small instances with 10 jobs to optimality within 3 minutes, but for
instances of 15 jobs, the computation times were as high as three months; see [52].
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5.3 The machining/feasibility problem decomposition

Since the computation times for the so-called full engineer’s model (4) were too long
for practical utilization, the corresponding full scheduling problem was decomposed
into two subproblems. The first subproblem, henceforth called the machining problem,
is to find an optimal sequence of operations for each of the five processing machines,
i.e., the resources defined by the set K̃. The reason for this choice of decomposition
is that the work load on these resources is much higher than that on the other re-
sources; an optimal schedule based on real data is illustrated in Figure 9. The second
subproblem, henceforth called the feasibility problem, is to generate a feasible sched-
ule for all ten resources, with an optimal sequence for each of the five processing
machines as input data.

Figure 9: An example on a schedule based on real data. The work load on the pro-
cessing machines (MC1–5) is much higher than that on the other resources. The ma-
chining problem is to find an optimal schedule for the five processing machines. The
route of job 3 is indicated by dotted lines.

5.3.1 The engineer’s model of the machining problem

The model first developed for the machining problem was based on the same logic as
the full engineer’s model; it is presented in [55] (Paper I in this thesis). The machining
problem is to find an optimal schedule for the five processing machines, which define
the set K̃. From Table 1 follows that only the operations (2, j), j ∈ J are included in
this problem. Therefore, the operation indices (corresponding to the set Nj , typically
denoted by i or p) can be dropped from the variables and parameters in this model.
The release date rmj for job j in the machining problem is thus composed by the actual
release date rj , the processing time p1j of the first operation (mounting the part into
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a fixture), and the internal transportation time w, i.e.,

rmj = rj + p1j + w, j ∈ J . (5)

Accordingly, the resulting completion times are adjusted by the time required for the
processing of the post-machining operations and the corresponding internal trans-
ports as

ppmj =

nj∑
i=3

(pij + w), j ∈ J ,

so that it reflects the completion of the whole job, including all the operations in-
cluded. The parameters ak, dj , and M are unchanged and are thus as defined in
Table 3, and the remaining parameters are redefined according to

λjk := λ2jk, j ∈ J , k ∈ K̃, (6a)
pj := p2j , j ∈ J , (6b)
vmjq := vjq + p1q + w, (j, q) ∈ Q. (6c)

The variables of the engineer’s model are also redefined so that they represent the
second operation of the jobs, except for the completion time sj and the tardiness hj
of job j, which are kept related to the end of the last operation of the job. Hence, the
variables are defined as

zjk =

{
1, if op (2, j) is allocated to resource k,
0, otherwise,

j ∈ J , k ∈ K̃,

yjqk =

{
1, if op (2, j) is processed before op (2, q) on resource k,
0, otherwise,

j, q ∈ J , k ∈ K̃,

tj = the starting time of op (2, j), j ∈ J ,
sj = tj + p2j + ppmj , i.e., the completion time of job j, j ∈ J ,
hj = max{0; sj − dj}, i.e., the tardiness of job j, j ∈ J ,

where op (2, j) denotes the machining operation of job j. Since the machining prob-
lem deals with scheduling only the second operation, the second term in the ob-
jective function (3) are not applicable here. The engineer’s model of the machining
problem is thus to

minimize
∑
j∈J

(Asj +Bhj), (7a)

subject to
∑
k∈K̃

zjk = 1, j ∈ J , (7b)

zjk ≤ λjk, j ∈ J , k ∈ K̃, (7c)

yjqk + yqjk ≤ zjk, j, q ∈ J , j 6= q, k ∈ K̃, (7d)

yjqk + yqjk + 1 ≥ zjk + zqk, j, q ∈ J , j 6= q, k ∈ K̃, (7e)
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tj + pj − tq ≤M(1− yjqk), j, q ∈ J , j 6= q, k ∈ K̃, (7f)
tj ≥ rmj , j ∈ J , (7g)
tj ≥ akzjk, j ∈ J , (7h)
tq ≥ sj + vmjq, (j, q) ∈ Q, (7i)

sj − tj = pj + ppmj , j ∈ J , (7j)

hj ≥ sj − dj , j ∈ J , (7k)
hj ≥ 0, j ∈ J , (7l)
tj ≥ 0, j ∈ J , (7m)
zjk ∈ {0, 1}, j ∈ J , k ∈ K̃, (7n)
yjqk ∈ {0, 1}, j, q ∈ J , j 6= q, k ∈ K̃. (7o)

Zhu and Heady [63] propose a mixed integer programming model for a simi-
lar multi-machine problem. It employs the variables ȳjq, which are only defined for
j < q and equals 1 if job j precedes job q, and 0 otherwise (Yij in their notation). In-
stead of using the constraints (7d)–(7f), they propose the following constraints (the
constraints (5a) and (5b) in [63]), rewritten in our notation:

tj + pj −M(3− ȳjq − zjk − zqk) ≤ tq, j 6=q, j=1, . . . , N, q=j+1, . . . ,N, k∈K̃, (8a)
tq + pq −M(2 + ȳjq − zjk − zqk) ≤ tj , j 6=q, j=0, . . . , N, q=j+1, . . . ,N, k∈K̃, (8b)

whereN denotes the total number of jobs. Here j = 0 denotes a fictitious job which is
introduced to simplify the definition of the constraints. This job is always present and
always performed first with zero processing time, and hence t0 = 0, z0k = 1, k ∈ K,
and ȳ0j = 1, j = 1, . . . , N .

Preliminary tests indicate that the CPU time needed to solve the engineer’s model
(7) is significantly lower than that needed to solve the model utilizing the constraints
(8a)–(8b). A difference that seems to be crucial is that the variables ȳjq are not defined
for j ≥ q. Defined in this way, the constraints (7d) and (7e) do not make any sense,
but as pointed out in Section 5.2.2, these constraints make the constraint that would
be symmetric to (4f) redundant, which seems to be significantly beneficial with re-
gard to CPU times.

The effect of the value of the parameter M on the computation times are investi-
gated, and the computational results presented, in Section 6.

5.3.2 The feasibility problem

The goal of the feasibility problem is to produce good feasible schedules for the re-
maining resources of the multitask cell, i.e., the three set-up and the two deburring
stations. Since the three set-up stations are identical, long computation times may
arise due to the corresponding symmetries in the mathematical model. Therefore, the
objective function of the full engineer’s model, i.e., the function (4a), is here extended
with a weighted sum of the variables zijk. The weights ωk are small in comparison
with the weights A and B in the objective, and of different magnitudes for the three
set-up stations in order to break the symmetry. For alternative ways of tackling these
problem; see [34] and [32].
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The job sequence in each of the processing machines, that is, the sequence for
the operations (2, j), j ∈ J , are fixed to the corresponding optimal values ymjqk and
zmjk, of the variables in the machining problem; this is expressed by the constraints
(9o) and (9p). However, none of the time variables are fixed to their optimal values
in the solution of the machining problem, since the feasibility problem may then
become infeasible if, e.g., two deburring operations collide in the solution to the
feasibility problem, which would delay the completion times and possibly also the
starting times of succeeding jobs for the same part in the processing machines. This
is illustrated in Figure 9, where job 3 is delayed about one hour (compared to the
optimal solution of the corresponding machining problem), since jobs 3 and 5 would
collide in the resource for robot deburring if the completion times of the jobs were
fixed to their optimal values from the machining problem. The only model for the
feasibility problem that is presented in this thesis is equivalent to the full engineer’s
model except for the objective function and the constraints (9o) and (9p) described
above. We call it the feasibility model and it is formulated as that to

minimize
∑
j∈J

(
Asj − εt1j +Bhj +

∑
i∈Nj

∑
k∈K

ωkzijk

)
, (9a)

subject to
∑
k∈K

zijk = 1, i ∈ Nj , j ∈ J , (9b)

zijk ≤ λijk, i ∈ Nj , j ∈ J , k ∈ K, (9c)
yijpqk + ypqijk ≤ zijk, i ∈ Nj , p ∈ Nq, j, q ∈ J , (9d)

(i, j) 6= (p, q), k ∈ K,
yijpqk + ypqijk + 1 ≥ zijk + zpqk, i ∈ Nj , p ∈ Nq, j, q ∈ J , (9e)

(i, j) 6= (p, q), k ∈ K,
tij + pij −M(1− yijpqk) ≤ tpq, i ∈ Nj , p ∈ Nq, j, q ∈ J , (9f)

(i, j) 6= (p, q), k ∈ K,
tij + pij + w ≤ ti+1,j , i ∈ Nj \ {nj}, j ∈ J , (9g)

t1j ≥ rj , j ∈ J , (9h)
tij ≥ akzijk, j ∈ J , k ∈ K, (9i)
t1q ≥ sj + vjq, (j, q) ∈ Q, (9j)

sj − tnjj = pnjj , j ∈ J , (9k)
hj ≥ sj − dj , j ∈ J , (9l)
hj ≥ 0, j ∈ J , (9m)
tij ≥ 0, i ∈ Nj , j ∈ J , (9n)

y2j2qk = ymjqk, j, q ∈ J , k ∈ K̃, (9o)
z2jk = zmjk, j ∈ J , k ∈ K̃, (9p)
zijk ∈ {0, 1}, i ∈ Nj , j ∈ J , k ∈ K, (9q)

yijpqk ∈ {0, 1}, i ∈ Nj , p ∈ Nq, j, q ∈ J , (9r)
(i, j) 6= (p, q), k ∈ K.

Tests performed on the same software and hardware as mentioned in 5.2.3, were
also carried out with the engineer’s machining and feasibility models, solved in se-
quence. The computation times decreased substantially compared to the computa-
tion time for the full engineer’s model; see Figure 10.
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Figure 10: The mean computation time (in CPU-seconds) plotted for a small test with
real data instances as a function of the number of jobs included in the instances. The
engineer’s machining and feasibility models to be solved in sequence are called the
Divided engineer’s model.

5.4 Time-indexed formulations

Although the computation times decreased substantially due to the decomposition,
they were not short enough to be applicable for a real implementation in the mul-
titask cell. Therefore, we have developed two additional models for the machin-
ing problem, employing time-indexed decision variables, for solving the machining
problem; they are presented in Sections 5.4.4 and 5.4.5. The results gained from one
of these models are very promising; see Section 6.2.2 for a comparison with the en-
gineer’s model w.r.t. CPU times. The reason for the choice of developing alternative
models for the machining problem is that the computation time needed to solve the
feasibility problem is substantially shorter than that needed to solve the machining
problem.

5.4.1 Time intervals

The planning horizon of the schedule is divided into T + 1 intervals, each of length
` hours; see Figure 11. The index u ∈ T = {0, 1, . . . , T} denotes the interval starting
at time `u and ending at time `(u+ 1).

Figure 11: The planning horizon is divided into T + 1 intervals of length ` hours.
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The value of the parameter T has to be large enough such that the planning hori-
zon of (T + 1)` hours contains an optimal schedule, but as small as possible, since
the computation times become shorter for smaller values of T . The reason for this is
explained in Section 5.4.7, where a heuristic for determining a suitable value of T is
presented.

5.4.2 Definition of variables

In Sections 5.4.4 and 5.4.5 two time-indexed formulations of the machining problem
are presented. They use two kinds of time-indexed decision variables, called nail and
plateau variables, respectively. The nail variables are defined as

xjku =


1, if the processing of op (2, j) starts at resource k

at the beginning of time interval u,
0, otherwise,

j ∈ J , k ∈ K̃, u ∈ T ,

and the plateau variables are defined as

wjku =


1, if op (2, j) is processed at resource k

during time interval u,
0, otherwise.

j ∈ J , k ∈ K̃, u ∈ T ,

The plateau variables are of the same kind as those used by Bowman in [7]; see the
discussion in Section 3.1.1. In the model using plateau variables, also the binary vari-
ables zjk from the engineer’s model, defined in Section 5.3.1, are required. Figure 12
illustrates the relations between the nail and plateau variables for the jobs j and q.As
before, we denote, in both models, by sj the completion time of job j, and by hj the
tardiness of job j.

Figure 12: Relations between the plateau and nail variables for the two jobs j and q,
which are both processed in resource k. The processing times are given by pj = 5`h
and pq = 4`h, respectively. Operation (2, j) starts at time interval u = 6 and operation
(2, q) starts at time interval u = 19.



28 5 MATHEMATICAL MODELLING

5.4.3 New values for all time parameters

All parameters related to time used in the time-indexed models have to be expressed
as multiples of time periods. In order to maintain the feasibility of every solution
to the resulting model, this means that the values of pj , ak, and rmj must be scaled
and rounded up, while the due dates, dj , have to be scaled and truncated. New
parameters are thus defined according to

p̃j :=
⌈pj
`

⌉
, r̃mj :=

⌈
rmj
`

⌉
, and d̃j :=

⌊
dj
`

⌋
, j ∈ J ,

ãk :=
⌈ak
`

⌉
, k ∈ K̃.

Regarding jobs to be performed on the same physical part, say (j, q) ∈ Q, the param-
eter vmjq is redefined to represent the planned lead time between the start of operation
(2, j) and the start of operation (2, q) according to

ṽpmjq :=

⌈
1

`
(pj + ppmj + vmjq)

⌉
, (j, q) ∈ Q.

The parameter ppmj is analogously redefined to include the processing time of the
machining operation, before it is scaled and rounded up, as

p̃pmj :=

⌈
1

`
(pj + ppmj )

⌉
, j ∈ J .

5.4.4 A time-indexed model with nail variables

The time-indexed model with so-called nail variables presented in this section has
been developed using findings presented in [60]. We also present an alternative for-
mulation of the constraints (11e).

The model is to

minimize
∑
j∈J

(Asj +Bhj), (11a)

subject to
∑
k∈K̃

∑
u∈T

xjku = 1, j ∈ J , (11b)

∑
u∈T

xjku≤λjk, j ∈ J , k∈K̃, (11c)

∑
j∈J

u∑
ν=(u−p̃j+1)+

xjkν≤ 1, k ∈ K̃, u = 0, . . . , T, (11d)

∑
k∈K̃

 u∑
µ=0

xjkµ −
u+ṽpmjq∑
ν=0

xqkν

≥ 0, (j, q) ∈ Q, u = 0, . . . , T − ṽpmjq , (11e)
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xjku = 0, (j, q) ∈ Q, k ∈ K̃, u = T − ṽpmjq , . . . , T, (11f)∑
k∈K̃

∑
u∈T

uxjku + p̃pmj = sj , j ∈ J , (11g)

sj − hj ≤ d̃j , j ∈ J , (11h)

hj ≥ 0, j ∈ J , (11i)

xjku = 0, j ∈ J , k ∈ K̃, u = 0, . . . ,max{r̃mj ; ãk}, (11j)

xjku ∈ {0,1}, j ∈ J , k ∈ K̃, u ∈ T , (11k)

where (u)+ := max{0;u} denotes the projection of u ∈ Z onto Z+. The model with
nail variables is equivalent to the engineer’s model (7) in Section 5.3.1 for the case
when all data in the latter are given in entire time intervals, i.e., expressed in multi-
ples of `.

The variables zjk, tj , and yjqk of the engineer’s model are related to the time-
indexed model’s nail variables xjku as follows:

zjk =
∑
u∈T

xjku, j ∈ J , k ∈ K̃, (12a)

tj =
∑
k∈K̃

∑
u∈T

uxjku, j ∈ J , (12b)

yjqk =

1, if 0 <
∑
u∈T

uxjku <
∑
u∈T

uxqku,

0, otherwise,
j, q ∈ J , j 6= q, k ∈ K̃. (12c)

Conversely, the time-indexed model’s variables can be expressed in terms of the
variables of the engineer’s model (provided that all data are given in multiples of
the length ` of the time intervals)

xjku =

{
zjk, u = tj ,

0, u ∈ T \ {tj},
j ∈ J , k ∈ K̃. (13)

The constraints (11b) ensure that every operation (2, j) is processed exactly once,
and the constraints (11c) make sure that each machining operation is scheduled in
an allowed resource. These constraints are, through the equivalences (12) and (13),
equivalent to the constraints (7b) and (7c) of the engineer’s model, respectively. The
constraints (11d), which regulate that only one operation at a time is scheduled in
resource k, correspond to the constraints (7d)–(7f).

The constraints (11e)–(11f) ensure that operation (2, j) is scheduled to start at
least the planned lead time of ṽpmjq time steps before the start of operation (2, q), for all
indices j, q ∈ J such that (j, q) ∈ Q. These constraints correspond to the constraints
(7i) of the engineer’s model. We have also developed the following set of constraints
which equivalently describe these precedence relations:

∑
k∈K̃

 T∑
µ=u

xjkµ +

u+ṽpmjq−1∑
ν=0

xqkν

≤ 1, (j, q) ∈ Q, u = 0, . . . , T − ṽpmjq + 1. (14)
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Preliminary computational tests indicate that the constraints (14) are as strong as the
constraints (11e). A closer study of the differences between these constraints is an
interesting subject for further research.

The constraints (11g)–(11i) define the completion times, sj and the tardiness, hj ,
as do the constraints (7j)–(7l). The constraints (11j) make sure that operation (2, j) is
not scheduled before its release date or before the resource k chosen by the model is
available, and correspond to the constraints (7g) and (7h) of the engineer’s model.

5.4.5 A time-indexed model with plateau variables

Compared with using the nail variables or those in the engineer’s model (7), one
advantage gained by using the plateau variables wjku, as defined in Section 5.4.2,
is that it is easy to employ the objective function described in Section 5.4.6, i.e., to
minimize the work load variance. The model with the plateau variables is, however,
a weaker formulation than the model (11), since the plateau variables are aggregates
of nail variables; see the equations (16) below and the discussion that follows. (For
an illustrative example of weak and strong formulations related to variable aggre-
gations, see [61, Section 13.4.1].) Moreover, preliminary tests show that the time-
indexed model with plateau variables requires longer computation times for solving
our test instances of the scheduling problem, than the model (11).

The model is to

minimize
∑
j∈J

(Asj +Bhj), (15a)

subject to
∑
k∈K̃

zjk = 1, j ∈ J , (15b)

zjk ≤λjk, j ∈ J , k ∈ K̃, (15c)

wjku + wqku≤ 1, j, q ∈ J , j 6= q, k ∈ K̃, u ∈ T , (15d)

wjku≤ zjk, j ∈ J , k ∈ K̃, u ∈ T , (15e)∑
k∈K̃

∑
u∈T

wjku = p̃j , j ∈ J , (15f)

∑
k∈K̃

(
p̃jwjku− p̃jwjk,u+1 +

T∑
ν=u+2

wjkν

)
≤ p̃j , j ∈ J , u = 0, . . . , T − 2, (15g)

∑
k∈K̃

(
wjku + wjk,u+1 +

T∑
ν=u+ṽpmjq

wqkν

)
≤ p̃q+1, (j, q) ∈ Q, u = 0, . . . , T−ṽpmjq , (15h)

∑
k∈K̃

r̃j∑
u=0

wjku = 0, j ∈ J , (15i)

∑
j∈J

ãk∑
u=0

wjku = 0, k ∈ K̃, (15j)
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u
∑
k∈K̃

(wjk,u−1 − wjku)≤ sj , j ∈ J , u = 1, . . . , T, (15k)

hj ≥ sj− d̃j , j ∈ J , (15l)
hj ≥ 0, j ∈ J , (15m)
sj ≥ 0, j ∈ J , (15n)

wjku ∈ {0, 1}, j ∈ J , k ∈ K̃, u ∈ T , (15o)
zjk ∈ {0, 1}, j ∈ J , k ∈ K̃. (15p)

The plateau variables wjku are related to the time-indexed model’s nail variables
xjku as follows:

wjku =

u∑
ν=(u−pj+1)+

xjkν , j ∈ J , k ∈ K̃, u ∈ T . (16)

The variables wjku are hence positive linear combinations of the nail variables. The
allocation variables, zjk, are given by (12a) in the previous section.

Conversely, the nail variables can be expressed in terms of the plateau variables
as

xjku =

{
max{0, wjku − wj,k,u−1}, u = 1, . . . , T,

wjku, u = 0,
j ∈ J , k ∈ K̃. (17)

Like the constraints (11b) and (11c), the constraints (15b) and (15c) ensure that ev-
ery machining operation is processed exactly once, and that each operation is sched-
uled on an allowed resource. The constraints (15d) make sure that no two operations
(2, j) and (2, q) are simultaneously scheduled in the same resource, as do the con-
straints (11d) in the time-indexed model with nail variables. The constraints (15e)
relate the plateau variables wjku to the allocation variables zjk, so that wjku = 0 for
all resources k but the one chosen for the job j, i.e., the resource for which zjk = 1.
The constraints (15f)–(15g) ensure that there are exactly p̃j 1-valued plateau vari-
ables and that these appear consecutively along the time axis. The constraints (15h),
which correspond to the constraints (11e), separate the machining operations of the
jobs j and q, where (j, q) ∈ Q, by the planned interoperation time ṽpmjq . Analogously
to the constraints (11j), the constraints (15i) and (15j) ensure, respectively, that no
machining operation is scheduled before its release date or in a resource that is not
available.

The value of (wjk,u−1 − wjku) in the constraints (15k) equals −1 when u is the
starting time of operation (2, j); it equals 1 when u is the operation’s completion
time. Therefore, the completion time sj cannot be defined by using an equality in
contrast to the models (7) and (11). Denote by t̄j and s̄j the values of the starting and
completion times, respectively, of a job j in an optimal solution. Using the optimal
values of the plateau variables, the left hand side of (15k) then equals −t̄j and s̄j for
u = t̄j and s̄j , respectively; it equals 0 for u ∈ T \ {t̄j , s̄j}. Hence, the largest value of
any left hand side of (15k) will always be equal to the completion time of job j. Since
the minimization of the sum of the completion times is part of the objective function
(15a), the variables sj will attain their respective correct values.
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5.4.6 Minimizing work load variance

There are many views of what defines a good schedule, and one has to analyze the
current logistic environment in order to determine what suits best the current situa-
tion. The objective functions presented in the preceding formulations of the schedul-
ing problem focus on scheduling the jobs as soon as they are available and on mini-
mizing the total tardiness. This way the lead times within the cell are minimized. But
since the processing in the multitask cell is a part of the whole production process,
the total lead time of the parts processed in the cell will probably not decrease much
if some parts are produced too early, due to the objective of minimizing total com-
pletion times and total tardiness in the multitask cell. Another disadvantage of this
objective function is that it produces schedules in which short jobs are typically pro-
cessed before longer jobs. This is in fact the property of the well known dispatching
rule shortest-processing-time (SPT) (of the theory of production logistics) mentioned
in Section 3.2. However, if parts of the same type arrive in clusters to the next opera-
tion (e.g. the operation µmj+1 being the operation to be performed directly after job
j in Figure 8), there is a risk for long queues before this operation which may result
in longer total lead times for the product.

One alternative to the objective of minimizing the sum of completion times and
total tardiness is to produce a schedule in which the instant work load being as close
to a target work load as possible, while the objective term of weighted total tardi-
ness is retained. Hence, the objective will be to minimize the weighted sum of the
sum of the absolute differences between the actual work load and the target work
load in each time step of the main planning period and the total tardiness. With the
plateau variable wjku, whose value equals 1 if resource k is occupied by job j during
time interval u, a linear approximation of the work load in the multitask cell can be
formulated. The time-indexed model with nail variables can also be used with this
objective, replacing wjku below by the expression given in (16).

The work load per time unit during time interval u of length ` is given by the
expression `−1

∑
j∈J

∑
k∈K̃ wjku. Letting the target work load per time unit for the

planning period be denoted by btargetu , the objective function can be expressed as
that to

minimize A
T plan∑
u=0

∣∣∣∣∣∣1`
∑
j∈J

∑
k∈K̃

wjku − btargetu

∣∣∣∣∣∣+B
∑
j∈J

hj , (18)

where T plan ≤ T is the end of the main planning period; the value of T plan is less
than the value of T , since the planning horizon T must allow all jobs to be scheduled,
and hence there needs to be a period with declining work load towards the end of
the total planning period; see Figure 13.

In the example schedule in Figure 14, the length of the planning horizon is T = 70
and a suitable choice for the length of the main planning period is T plan = 40, since
there is a decline in the work load after this point in time.

In order to retain a linear objective function, we introduce the two continuous
non-negative variables b−u and b+u ; their sum is defined to equal the absolute differ-
ence between the instant work load and the target work load in time interval u. The
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Figure 13: The main planning period includes the time steps 0 through T plan, after
which the work load (typically) is declining.

Figure 14: An example of an optimal schedule based on real data for the five process-
ing machines. A suitable choice for the length of the planning period for this case is
T plan = 40.

variables b−u and b+u are constrained by the inequalities

−1

`

∑
j∈J

∑
k∈K̃

wjku + btargetu ≤ b−u , u = 0, . . . , T plan, (19a)

1

`

∑
j∈J

∑
k∈K̃

wjku − btargetu ≤ b+u , u = 0, . . . , T plan, (19b)

b−u ≥ 0, u = 0, . . . , T plan, (19c)
b+u ≥ 0, u = 0, . . . , T plan. (19d)

The objective function can then be formulated as to

minimize A

T plan∑
u=0

(b−u + b+u ) +B
∑
j∈J

hj . (20)

The scheduling of the multitask cell while minimizing the work load variance is
then given by the objective (20) subject to the constraints (15b)–(15p) and (19a)–(19d).

Energy consumption, or energy costs related to machine runtimes, can be mini-
mized in the same way as the work load, since the work load can be viewed as the
accumulated runtime of the machines in the cell. This objective has not been much
studied, and Fang et al. [13, 2011] claim to be the first to consider shop scheduling
with energy- and environment-related constraints. It may, however, increase in im-
portance under the pressure of global climate change and rising energy costs.
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5.4.7 A heuristic for determining the time horizon

The number of decision variables, xjku and wjku, respectively, of the time-indexed
models (nail and plateau) risks being very large, since it depends on the length ` of
the time intervals, as well as the time horizon, T . This is also mentioned in [60]. In
addition, the number of constraints in, e.g., (11d) and (11e), depends on the value
of T . Therefore, it is important to find a value of T small enough not to cause, for
example, memory shortage or too long computation times, due to the resulting large
number of variables and constraints, but large enough such that the time interval
[0, . . . , T ] contains an optimal schedule for the problem instance. In order to find an
appropriate value of T , we have constructed a greedy heuristic which also finds a
feasible schedule; see Algorithm 1.

We let τk denote the time from which the resource k is available, rheurj the release
date for job j, and waiting_list a list of jobs not scheduled instantly in the heuristic.
Further, we denote by T a time horizon that is large enough that the time interval
[0,T`] can contain the heuristic schedule; for example, T = |J |pmax

j . The starting
time for each job j is denoted by tj , as in the engineer’s model (7).

Algorithm 1 is initialized by a sorting of the jobs according to increasing values
of the release dates, i.e., defining jmax = |J |, such that rj ≤ rj+1, j ∈ J \ jmax.
After the initialization, in which xjku, τk, rheurj , and tj are assigned initial values, the
algorithm loops over all jobs j ∈ J . For each job, j, the first available resource k̃
allowed is chosen and job j is scheduled in this resource either directly when the
resource is available, or at the job’s release date, i.e., at max{τk, rheurj }. Then there
is a check whether the job just scheduled equals q, where q fulfills (̂, q) ∈ Q for
some ̂ ∈ J . If this is the case and if q 6= jmax, and if the required time vpm̂q has not
passed since the starting time of the preceding job in the pair, t̂, it is ”descheduled”.
The job q that has just been descheduled is also included in the waiting_list and the
release date, rheurq , is assigned the realistic value t̂ + vpm̂q , since the time vpm̂q must
elapse from the starting time of job ̂ until job q may be scheduled. After this step,
the heuristic calls the recursive function Algorithm 2 which updates the release dates
of all the succeeding jobs for the corresponding physical part, i.e., the release dates
for qi, i = 1, . . . ,m, where q0 = q and (qi−1, qi) ∈ Q, i = 1, . . . ,m.

After updating all appropriate release dates, Algorithm 1 searches through all
jobs in the waiting list; a job is scheduled if its release date is earlier or at the time
when the chosen resource, k̄, is available. This is the first available allowed resource
for the job, and the time when it is available is denoted by τk̄. If the last job, jmax, in
the loop over all jobs in the set J is scheduled, all the remaining jobs in the waiting
list are scheduled at the first available allowed resource at their respective release
dates. At the exit of the loop, all jobs have been scheduled in a feasible way, and the
completion time of the latest job in the schedule is the sought value of the makespan.

Since the heuristic only considers the completion times and not the tardiness,
which is actually the most important part of the objective function (11a), T is as-
signed the value of the makespan found by Algorithm 1 plus 2pmax

j , where pmax
j =

maxj∈J pj . For most cases (indeed all the real-world cases that we have tested) an
optimal schedule is contained in the set {0, . . . , T} of time steps. It may be possible to
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Algorithm 1 Heuristic algorithm

xjku ← 0, τk ← ak, r
heur
j ← rj , tj ← T, j ∈ J , k ∈ K̃, u ∈ {0, ...,T; }

for j ∈ J do
find k̃ ∈ argmink∈K̃ { τk | λjk = 1 }; # earliest available allowed resource
tj ← max{τk̃; rheurj }; xjk̃tj ← 1; τk̃ ← tj + pj ; # job j is scheduled
for (̂, q) ∈ Q do

if (j 6= jmax and j = q) then
if (q /∈ waiting_list and tq < t̂ + vpm̂q ) then
τk̃ ← tq; xq,k̃,tq ← 0; tq ← T; # job q is ”descheduled” and...
waiting_list← waiting_list

⋃
{q}; # ...put in the waiting_list

rheurq ← t̂ + vpm̂q ; # rheurj updated
Update_release_dates(q); # rheurq̄ for succeeding jobs updated

else if q ∈ waiting_list then
if tq < t̂ + vpm̂q then
τk̃ ← tq; xqk̃tq ← 0; tq ← T;

else
waiting_list← waiting_list \ {q}; # no need for rescheduling

end if
end if

else if q ∈ waiting_list then
find k̄ ∈ argmink∈K̃ { τk | λqk = 1 }; # try to schedule the second entry q...
if rheurq ≤ τk̄ then
tq ← τk̄; xq,k̄,tq ← 1; τk̄ ← tq + pq; # ...of any pair ∈ waiting_list
waiting_list← waiting_list \ {q};

end if
else if j = jmax then
tq ← rheurq ; xq,k̄,tq ← 1; τk̄ ← tq + pq; # schedule remaining jobs
waiting_list← waiting_list \ {q};

end if
end for

end for
T ← maxk∈K̃{τk}+ 2pmax

j # T is the makespan found plus 2pmax
j .

Algorithm 2 Update_release_dates(q)
for (̄, q̄) ∈ Q do

if ̄ = q then
rheurq̄ ← rheur̄ + vpm̄q̄ ;
waiting_list← waiting_list

⋃
{q̄};

Update_release_dates(q̄);
end if

end for
return
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construct an instance for which this is not the case, but since we are dealing with real
case data, the risk of receiving such an instance in the multitask cell is very small.
We have decided to take this risk, since the existence of feasible solutions within the
time interval [0, . . . , (T + 1)`] is guaranteed.

To give an example of an instance for which the makespan of the schedule that
minimizes the sum of the total completion time and the total tardiness equals that of
the makespan found by the Algorithm 1 plus pmax

j , we have constructed an instance
with two resources, M/C1–2 (see Figure 15) where all jobs are available from the
start (rj = 0).

Figure 15: The upper schedule is found by Algorithm 1 and has a makespan of
C1
max = 12. The lower schedule is an optimal schedule with respect to the objective

(11a), with makespan C2
max = 18.

This is a very special constructed case, since it requires that the first of the longer jobs
is indexed j = 1 and the index for the second is j ∈ {2, . . . , 5}, say j = 5; see Table 6
for the output data of the two schedules. It also requires that the longer jobs (having
pj = 6, j ∈ {1, 5}) have no tardiness in neither of the two schedules and that they
are only allowed to be scheduled in the resource M/C2 (dj = 20, λj,M/C1 = 0, and
λj,M/C2 = 1, j ∈ {1, 5}). All of the shorter jobs (having pj = 2, j ∈ {2, 3, 4, 6, 7, 8})
have to be tardy and they must also be allowed to be scheduled on both resources
(dj = 0 and λjk = 1 for k ∈ {M/C1, M/C2} and j ∈ {2, 3, 4, 6, 7, 8}).

6 Computational tests and results

The aim of the computational tests described in this section is to explore which model
performs the best, both regarding computation times and the solution quality. Even
though all models presented in this thesis have been subject to computational tests,
the results presented in this section emanate from three of the models, namely the
engineer’s model (7), the feasibility model (9), and the time-indexed model with
nail variables (11). The full engineer’s model required computation times that were
too long for practical purposes, and was therefore used to a very small extent. The
time-indexed model with plateau variables (15), performed slightly better than the
engineer’s model in the tests. The time-indexed model with nail variables, however,
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Schedule found by Algorithm 1 Optimal schedule
j k sj hj sj + hj k sj hj sj + hj
1 M/C2 6 0 6 M/C2 12 0 12
2 M/C1 2 2 4 M/C1 2 2 4
3 M/C1 4 4 8 M/C1 4 4 8
4 M/C1 6 6 12 M/C1 6 6 12
5 M/C2 12 0 12 M/C2 18 0 18
6 M/C1 8 8 16 M/C2 2 2 4
7 M/C1 10 10 20 M/C2 4 4 8
8 M/C1 12 12 24 M/C2 6 6 12∑8
j=1 60 42 102 54 24 78

Table 6: Data describing the schedules illustrated in Figure 15.

outperformed the model (15) (with plateau variables), therefore, the latter model was
not further investigated.

The computational results are given for the models (7) and (11) for real data in-
stances collected from the ERP system at Volvo Aero in the year of 2010. The compu-
tations regarding the comparisons with the dispatching rules in Section 6.2.3 were
carried out on a 4Gb quad-core Intel Xeon 3.2 GHz system using AMPL-CPLEX12 as
optimization software. All other computations have been carried out using AMPL-
CPLEX12 on a computer with two 2.66GHz Intel Xeon 5650, each having six cores
(24 threads); its total memory was 48Gbyte RAM.

6.1 Test data

All data used in all tests described in this section originate from real production in-
stances in the multitask cell. One of the problems encountered due to the choice of
using real data is that planned orders that have not yet been started according to
the plan may be present in the system. Then, the release dates of all planned orders
related to the same product that are currently delayed (calculated by the formula (1)
given in Section 5.1.4) will have the same value, namely that of ν0

j , i.e., the planned
lead time—illustrated in Figure 8—from the release of the order into the production
until its arrival to the multitask cell. It is, however, not plausible that all planned
orders that are currently delayed, will be released at time t0; hence, these orders—if
they exist—have to be (manually) assigned plausible release dates before the calcu-
lation of an optimal schedule is made in an implementation. Such plausible release
dates have not been set for the instances used for obtaining the results given in this
section, and hence some jobs of the same kind may share release dates.
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6.2 Validation and tests

As mentioned in Section 5.1.5 it is important that the value of the weight ε in the
objective function (9a) chosen for the feasibility problem is much smaller than those
of A and B. We have chosen the values A = B = 1 and ε = 0.001 in all the compu-
tations presented in this section. The choice of having A = B = 1 was made since
the two goals, short completion times and low tardiness, are not contradictory. How-
ever, when studying some test results, we discovered some cases where jobs with no
tardiness, but short processing times, were scheduled in clusters before longer tardy
jobs. This indicates that the choice of A = B was unfortunate; finding appropriate
values of these weights is an area of future study.

The influence of the size of the discretization interval ` for the time-indexed
model (11) with nail variables on the solution quality and the computation times
is described in Sections 6.2.1 and 6.2.2, respectively. In these sections, results from
the engineer’s model are also given. In Section 6.2.3, the results from the application
of the model (11) are compared with schedules resulting from the use of dispatching
rules, and in Section 6.2.4, the influence on computation times of the choice of the
value for the parameter M for the engineer’s model is discussed. A summary of the
results is given in Section 7.

6.2.1 Estimated error due to the choice of ` for the time-indexed models

The starting and completion times obtained from the optimal solutions to the time-
indexed model (11) with nail variables, are given in terms of multiples of the length
` of the time discretization interval. Therefore, the optimal objective value of (11)
differs from that of the engineer’s model (7). Thus the completion times sj are re-
calculated using the original (i.e., non-discrete) data, while retaining the ordering of
the operations on each of the processing machines received from the solution to the
model (11). For the example illustrated in Figure 16, the discrete release date of job
4 is 18h, while the real release date is 17.5h, which is the reason for the idle period
between jobs 2 and 4 in the schedule. The value of the solution obtained after this
post-processing can then be compared with the optimal value from the engineer’s
model (7). This post-processing of data required at most 0.04s of computation time
for each of the six scenarios constructed from the data set described below, compris-
ing 70 jobs.

Figure 16: The output of the discrete time machining model is post-processed using
the original non-discrete data.
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Results from the engineer’s model and the time-indexed model with different
values of ` have been compared for six real scenarios collected from the multitask cell
during the autumn of 2010. For each scenario, the jobs were initially sorted according
to increasing values of the release dates, rj . Different test instances were then created
by selecting the first 5m jobs in the queue of jobs, where m ∈ {1, . . . , 14}, such that
the smallest and largest instances comprise 5 and 70 jobs, respectively.

A limit of 7200s was set for the computation time (clocktime), since 2h is in the
upper limit of what could be accepted in practice. Fortunately, only a few of the
larger instances required such long computation times, at least in the tests performed
with the time-indexed model with nail variables. The limit of 7200s was, however,
reached when using the engineer’s model; the calculations were then disrupted for
some scenarios with 20 jobs, and no optimal solutions were obtained for any scenario
with |J | ≥ 25. The time-indexed model performed, however, better and we obtained
optimal solutions for all instances with |J | ≤ 60 and ` ≥ 1h before the time limit was
reached; see Section 6.2.2 for details on these computations.

In Table 7, the mean values of the relative differences between the optimal values
from different models are listed. Since optimal values were only obtained for all sce-
narios with |J | ≤ 15 when using the engineer’s model, it was solely compared to the
result from the time-indexed model with ` = 0.25h; results are missing for |J | ≥ 20.
The optimal values obtained using the engineer’s model were identical with those
obtained using model (11) for all instances with 10 and 15 jobs. All the other optimal
solutions found by the time-indexed model with ` > 0.25h were compared to those
found by this model with ` = 0.25h.

Diff to (7) Diff to (11) Diff to (11) Diff to (11)
# jobs ` = 0.25h ` = 0.5h ` = 1h ` = 2h

10 0.000 0.000 0.000 0.031
15 0.000 0.005 0.010 0.083
20 – 0.001 0.018 0.061
25 – 0.015 0.028
30 – 0.015 0.034 0.112
35 – 0.019 0.022
40 – 0.022 0.027 0.172
45 – 0.022 0.025
50 – 0.028 0.035 0.335

Mean 0.000 0.014 0.022 0.132

Table 7: Mean differences between the optimal values from different models. The
time-indexed model (11) with ` = 0.25h is compared with the engineer’s model (7),
while the time-indexed model with ` > 0.25h is compared with the same model
with ` = 0.25h. The differences are given in percent with regard to the optimal value
from the model compared. The notation – means that the corresponding results are
missing.
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The results listed in Table 7 are illustrated in Figure 17. The error seems to increase
with the number of jobs for the model (11) with ` = 2h, while the result for the other
models with ` ∈ {0.25h, 0.5h, 1h} stay close to eachother. The mean relative error
is less than 0.04% for all of the instances computed. This is remarkable since the
smallest processing time for any of the operations in the multipurpose machines is
0.6h (the largest is 22.4h). Note that all the relative differences from the respective
optimal values are very small in terms of percentage, but since the total tardiness is
large for some scenarios, the model with ` = 2h differs significantly from the others
in terms of absolute differences (measured in hours).

Figure 17: The mean differences between relative values of the optimal solutions
found using the model (10) with ` ∈ {0.25h, 0.5h, 1h, 2h} the models.

6.2.2 Comparison of computation times for the different models

The multitask cell comprises about 30 storage places for parts checked-in but not yet
mounted into a fixture, which means that there can be at most 30 jobs with release
date rj = 0, and which all must be taken into account when searching for an optimal
schedule for the coming shift. Some additional parts are expected to arrive at the
multitask cell during this shift and they also need to be taken into account. We esti-
mate the number of parts arriving at the cell during the coming shift to be at most 15,
and hence it is realistic to create detailed schedules for the coming shift for instances
with |J | ≤ 45.

In Figure 18 mean CPU times are plotted for each model tested as a function of
the size of the instance. The mean values are calculated over all six real data scenarios
and only the cases for which the optimal values were found for all of the six scenarios
are plotted in the figure.

As already mentioned in Section 6.2.1, the time limit of 7200s for the compu-
tations was reached—and the calculations interrupted—when using the engineer’s
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Figure 18: Mean CPU times plotted for the engineer’s model (7) (eng) and the time-
indexed model (11) with nail variables for different values ` of the discretization
interval. The instances computed are represented by the markers in the graph. The
mean values are calculated over six real data instances.

model (7) for solving some scenarios with 20 jobs. The time-indexed model (11) with
nail variables performed better; see Figure 18. We verify, for all of the instances but
two, the anticipated relation that the computation times grow with a decreasing
value of `. The model (11) with ` = 0.5h had trouble finding an optimal solution
for one scenario with |J | ≥ 45. Hence, one should choose the value of ` as large as
possible in order to possess short computation times, but also as small as possible
in order to get solutions of good quality. From Section 6.2.1 we know that the differ-
ences in optimal values between the model (11) with ` = 1h and ` = 0.25h were very
small for the test set. Hence ` = 1h seems to be a good choice for the value of this
parameter.

The model (11) with ` = 1h required on average 40 CPU-seconds to find an op-
timal solution for scenarios with 45 jobs, which we have estimated to be the largest
size of a realistic instance for computing an optimal schedule for the coming shift.
This model succeeded in finding an optimal schedule for two out of the six scenar-
ios with |J | = 70, one within only 18.5 CPU-seconds, and the other within 16832.3
CPU-seconds (20 minutes of clocktime). The other instances were disrupted after
7200 seconds (clocktime), where the maximum relative mipgap (the maximum rel-
ative difference between the objective function found and the optimal value) was
0.055%.

Although the model (11) with ` = 2h was shown to yield a bigger error than did
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the other models tested in Section 6.2.1, it may be used as a tool for computing sched-
ules for a rough long-term planning, since it is able to compute quite big instances
within a reasonable amount of time.

6.2.3 Comparison with dispatching rules

In [55] (Paper I in this thesis) and [52] the results from comparisons between the
schedules found by the time-indexed model (11) with ` = 1h and the feasibility
model (9) with the two dispatching rules EDD (earliest–due–date) and FIFO (first–
in–first–out) are presented. The comparisons are made for a mix of real and con-
structed scenarios in order to simulate different logistic situations.

In this section the results from a similar comparison using data from 21 real pro-
duction instances with |J | = 20 collected during the period April–August 2010 are
presented. These results were not available at the time when the articles [55] and [52]
were written and are therefore presented here. The distribution over the weekdays
and hours when the samples of data have been extracted from the ERP system is
illustrated in Figure 19.

Figure 19: Distribution in time of the collection of the 21 real production instances
over weekdays and hours. Two data points collide at each of the hours 9 and 11
within the Monday samples.

The data collected contain information about which parts are checked-in at the
multitask cell, which parts are on their way to the cell, and which are the planned
orders at the time of sampling. The system release and due dates are also extracted,
together with information about the current operation of the parts on their way to
the cell. The schedules produced by the dispatching rules EDD, FIFO, and shortest–
processing–time (SPT) were compared to the optimal schedules found by the ma-
chining model (11) solved in sequence with the feasibility model (9).
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The role of the feasibility model (9) is here not only to create feasible schedules,
but also to post-process the discretized data in a similar manner as described in Sec-
tion 6.2.1, where a comparison of the outcomes of the different models for the ma-
chining problem is performed. The dispatching rules were used to produce sched-
ules for the machining resources. The resulting sequences of jobs for each resource
were used as input to the feasibility model (9) in order to create feasible schedules
for the whole multitask cell.

As the gain of using an exact mathematical optimization model is expected to be
the most profitable at times of high work load, it is interesting to distinguish these
instances. The scenarios were unfortunately collected during a time with quite low
production volumes. Nethertheless, during the collection period the number of jobs
checked-in, let us denote it by J , i.e., the number of jobs j possessing rj = 0, varied
from three to more than 20 jobs (see Figure 20 and Section 5.1.4 for the definition of
rj).

Figure 20: The number of jobs, J , checked-in, i.e., jobs with rj = 0, versus the col-
lection dates. The differences between |J | = 20 and J consist of the jobs with the
earliest release dates emanating from parts on their way to the multitask cell and
planned orders.

The multitask cell does not necessarily possess a heavy work load at times with
a lot of parts checked-in that are ready to be processed at time t0. However, this is
often the case. Therefore, we have divided the scenarios into two groups, one with
J ≤ 10 and the other with J > 10 comprising 10 and 11 scenarios, respectively.

The result from the comparison is illustrated in Figure 21. The sums of the com-
pletion times and tardiness for all 20 jobs in the schedules resulting from using the
dispatching rules as input data to the feasibility model (9) has been compared to
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those found by the same model (9) using the optimal results from the model (11)
with ` = 1h as input data.

Figure 21: The mean differences between the sums of the completion times and tar-
diness in schedules constructed by the dispatching rules EDD, FIFO, and SPT, re-
spectively, and those found when solving model (11) with ` = 1h to optimality in
sequence with the feasibility model (9). The mean values are calculated over all 21
scenarios, and for the scenarios with J ≤ 10 and J > 10, respectively. The differences
are measured in percentage of the optimal values found by the model (9).

As expected, the gain of using mathematical optimization is greater for the in-
stances with J > 10. The use of the FIFO dispatching rule, which is quite common in
practice, results, on average, in at least 22% higher tardiness and completion times
compared to corresponding values for the the optimal schedules found by mathe-
matical optimization at times of high work loads. We remark that the SPT rule—
which does not take the due dates into account when giving priorities to the jobs—
and the EDD rule yield both completion times and tardiness that are on average 6%
and 10% higher, respectively, than the corresponding mean values from the optimal
schedules.

6.2.4 The value of the parameter M for the engineer’s model

The parameter M defined in Section 5.1.3 has to be assigned a value that is greater
than the planning horizon, so that the schedule sought is contained within this time
frame. Hence it is a large number, which may cause numerical problems in the so-
lution process. Initially, we thought that we would have shorter computation times
if we chose a value of M as small as possible, than if we just picked a very large
number. Then we came across the article by Stafford et al. [46] which claimed the
opposite, which is the reason for the tests described in this section. According to test
results presented in [46] on some models of the Manne family for the permutation
flow shop problem, the computation times decrease with an increasing value of M
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(or P in their notation). They employed, however, as the smaller value,M = |J |pmax
j ,

which is a very large over-estimate of the planning horizon, since all 20 jobs then are
assumed to have a processing time of pmax

j . This formula for computing the planning
horizon is also mentioned for a time-indexed model by Wolsey in [60].

We have performed a test with four real data instances, I ∈ I, with 15 jobs each.
The value of M was varied between 500 and 100,000 (see Table 8), and we denote
each problem instance by (I,M).Mheur is the value ofM found by a heuristic, which
has been constructed using the same logic as Algorithm 1 (described in Section 5.4.7),
but with some adjustments in order to make it compatible with the engineer’s model.
The values of Mheur for the instances in the test range between 75 and 103.

M δ
Mheur 10−5

500 10−6

1000 10−6

10000 10−7

20000 10−8

30000 10−8

40000 10−8

50000 10−8

60000 10−8

70000 10−8

80000 10−8

90000 10−8

100000 10−9

Table 8: The values of M forming the set M, and the integrality tolerance, δ, cho-
sen for each instance (I,M). The values of Mheur for the instances in the test range
between 75 and 103.

Since calculations with big numbers may cause rounding problems during the
CPLEX computation, we have also varied a CPLEX parameter, called integrality tol-
erance in the CPLEX manual [26]. The default value of the integrality tolerance is
10−5, which is too low for large values of M . The value of the integrality tolerance,
δ > 0, was chosen such that Mδ ≤ 0.001, since the input data is given with two
decimals; see Table 8.

When the integrality tolerance is set to the default value, the CPLEX solver re-
ports ”a non-integer solution” (the result reported from the solver is an infeasible
solution) for some instances with large values of M . This behaviour was also re-
ported by the authors of [43]; as occuring during the solution of a flow shop model.

From the limited test that we have performed, it is not possible to draw any gen-
eral conclusions on which value of M that should be used. However, it seems like
the engineer’s model always performs well when the chosen value of M = Mheur;
see Figure 22, where the normalized CPU times required for solving the instances to
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optimality are plotted for different values of M . The normalization with respect to
the mean computation time for each instance is defined by the formula

Figure 22: CPU times normalised with the mean CPU time for each instance (I,M)
(I ∈ {#1, . . . ,#4}) plotted for different values of M ∈M. Note that the values of M
on the horizontal axis are not equidistant.

τIM =
|M|τIM∑
M∈M τIM

, I ∈ I, M ∈M,

where τIM denotes the CPU-time required for the solution of the instances (I,M),
M is the set of values of M listed in Table 8, and I is the set of instances.

Note that for the case when M = 500, the computation times are long. This value
of M is quite close to the value of |J |pmax

j , which is in the range [210, 330] for all
instances. Another reason for letting the heuristic find a value of M , (i.e., assigning
an as low value as possible to M ) is that the coefficient matrix corresponding to
the linear constraints is better conditioned for lower values of M . Moreover, if the
value of one of the variables yjqk in the engineer’s model (7) is slightly less than
1—due to the integrality tolerance—the term M(1 − yjqk) in the right hand side of
the constraints (7f) will attain a small positive value which may falsely indicate that
an infeasible solution to the instance is feasible. Furthermore, with lower values of
M , there is no need to reset the integrality tolerance for the CPLEX solver, (i.e., the
default value can be used). Hence, for the results presented in this thesis emanating
from the engineer’s model (7), we have chosen to letM attain the value found by the
heuristic.
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7 Conclusions

The problem of scheduling the multitask cell is proven to be NP-hard in Section 4.
Therefore, in the search for the most efficient way to solve the problem to optimality,
the choices of variable representation and optimization model is of great importance.

In this thesis several mathematical optimization models for solving the problem
of scheduling the multitask cell are developed and presented: three models within
the Manne family (4), (7), and (9), one time-discrete model with so-called nail vari-
ables (11), and one time–discrete model with so-called plateau variables [(15)]. We
have shown that model (11) outperforms the others by far with respect to computa-
tion times and the sizes of instances that they are able to solve using standard opti-
mization software. To our knowledge, this is the first model presented for the flexible
job shop problem which employs the type of variables that are here called nail vari-
ables. As mentioned in Section 3.1.1, most of the models for the job shop problem
presented in scientific literature within operations research are members within the
Manne family (see [33]), and hence many researchers have developed similar models
(see, e.g. [40, 14, 44] and [63]), not being aware of the potential of using nail variables.

A heuristic employed to determine the planning horizon, T , for the time-indexed
models has been developed and is presented in Section 5.4.7. The use of this heuristic
shortens the computation times substantially for all time-indexed models, compared
to the use of larger values of T , which are not specific for each instance.

Another parameter closely related to computation time is the length ` of the dis-
cretization interval. We have estimated both the error due to the choice of the value
of ` and the impact of ` on the computation time, using data emanating from real
production instances. For the current production in the multitask cell, we conclude,
in Section 6.2.2, that ` = 1h is a suitable choice. The model (11) with ` = 1h required
on average 40 CPU-seconds to find an optimal solution for scenarios with 45 jobs,
which we estimate to be the largest size of a realistic instance for scheduling a com-
ing shift. The relative error of the objective value will then be acceptable, with an
average below 0.04%.

Another contribution of this thesis is the investigation of the effect on computa-
tion time of the choice of the value of the model parameter M (within a model of
the Manne family), which has to be large enough such that one can fit an optimal
schedule within the time interval [0,M ] for a specific instance. Our test results, pre-
sented in Section 6.2.4, show that ifM is chosen by a heuristic similar to Algorithm 1,
then the computation times will be low in comparison with the use of larger or much
larger values of M . This is contradictory to the results presented in [46] by Stafford
et al. They chose, however, a much larger value than ours as the smallest value in
their test set, and, as it seems, did not consider the integrality tolerance employed
by the software solver used. This tolerance needs to be reset for large values of M in
order to guarantee that a feasible solution is obtained.
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8 Future research

Currently, in order to find a feasible schedule for the complete multitask cell—irres-
pective of which of the models developed for the machining problem that is used—
we need to employ the feasibility model (9). This model, which belongs to the Manne
family, requires long computation times for instances with many jobs—too long to be
acceptable in real applications. Since the time-indexed model (11) with nail variables
performs very well, a subject for future research is to develop a time-indexed model
either for the full problem, (that is, the problem of scheduling all resources in the
multitask cell) or for the feasibility problem.

Another area for future research is to include the scheduling of fixtures, person-
nel, and tools, in a mathematical optimization model for the problem of scheduling
the multitask cell; these resources are currently assumed to be unlimited, which is
not the case in the real application.

When performing all of the computations reported in this thesis, we assume that
the data are reliable. We calculate, for example, the estimated arrivals of jobs to the
cell, and then, sometimes, assign these value to the corresponding release dates. Of
course, we can not be certain that a part is going to be available at these release
dates, but fortunately the uncertainty decreases the closer the part is to the multitask
cell at time t0. This is good since we intend to produce a new schedule daily or
at the beginning of every shift. An area for future research is to construct a robust
optimization model, which is less sensitive to data uncertainty. Other ideas are to
find ways of measuring the unability to follow a certain schedule caused by data
uncertainty, or to produce alternative schedules on short notice for the case of, e.g.,
machine break-downs.

As mentioned in Section 6.2, finding appropriate values of the weights of the
components of the objective functions used in the computational testing is an area of
future research. Instead of employing weighted objective functions, multiobjective
optimization theory can be applied to this problem, which is another area to explore
within future research.

We have observed during the computational testing that the time-indexed model
with nail variables (11) yields good lower bounds. The work on finding an even
stronger formulation of the problem of scheduling the multitask cell, and eventually
so-called facets (the strongest formulation possible), is an ongoing master’s thesis
work at the department of Mathematical Sciences by a student from the University
of Gothenburg. A study of the differences between the constraints (11e) and the alter-
native constraints (14) is an interesting subject for this ongoing work and for future
research.
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9 Summary of appended papers

Below follows a summary of the papers appended to this thesis. In addition to these
two papers, I am the main contributor of [52], [54], and [51].

9.1 Paper I — Optimization of schedules for a multitask produc-
tion cell

In this paper, we compare production plans resulting from utilizing an earlier ver-
sion of the time-indexed model with nail variables with schedules formed by the
first–in–first–out (FIFO) and earliest–due–date (EDD) priority rules, which are sim-
ilar to the methods used in the current manual planning of the multitask cell. The
problem of scheduling the multitask cell is presented and the engineer’s model (7) is
presented. The current production planning prerequisites have been studied in order
to choose an appropriate objective function.

Six test scenarios have been used for the comparison. Three scenarios were cre-
ated based on real production data from one day in March 2010. One scenario was
left as it was, one was altered from the original scenario to include a larger propor-
tion of short jobs, and the third was altered from the original scenario to include a
larger proportion of long jobs. In these scenarios, all jobs are delayed at time t0 = 0.
Three other scenarios were created analogously, however based on a constructed sce-
nario of a high volume case. It is a realistic case of a future product mix, created by
the group planner working at the time in the multitask cell together with the master
planner responsible for most of the products processed in the cell. In the three latter
scenarios, approximately half of the jobs are already delayed at time t0 = 0. Each sce-
nario consists of 20 jobs, which all are assumed to be checked-in into the multitask
cell, i.e., ready to be processed, at time t0 = 0.

In a discussion towards the end of the paper, there is a small example compris-
ing three jobs showing the complexity of the combinatorial scheduling problem at
hand. We explain with this example how a priority rule will yield a schedule risk-
ing both tardiness for the job with the least priority and lost capacity in one of the
two machines in the example. The optimization model will, however, yield a better
schedule, which will make the multitask cell better prepared for the jobs yet to ar-
rive. This is due to the fact that a priority rule only considers one job at a time, while
the optimization model takes all jobs into account simultaneously.

Paper I is identical to [55] in the reference list.

9.2 Paper II — A note on the complexity of flow-shop scheduling
with deteriorating jobs

This paper is a note on an article named Complexity analysis of job-shop scheduling
with deteriorating jobs by G. Mosheiov [38], which claims to provide a complete anal-
ysis of the complexity of flow-shop, open-shop and job-shop problems. A propor-
tional deterioration rate is assumed, that is, the job processing times are increasing
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linear functions of the jobs’ starting times. The objective is the minimization of the
makespan. Mosheiov introduces a polynomial-time algorithm for the two-machine
flow-shop and open-shop problems and presents NP-hardness results for flow-shops
and open-shops with three or more machines and for job-shops with two or more
machines. The proof of NP-hardness for the flow-shop case is however not correct.
Paper II provides a correct proof.

Paper II is identical to [53] in the reference list.
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