
Chalmers Publication Library

Probabilistic Threat Assessment and Driver Modeling in Collision Avoidance
Systems

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

IEEE Intelligent Vehicles Symposium, 5-9 June, 2011, Baden-Baden, Germany (ISSN: 1931-

0587)

Citation for the published paper:
Sandblom, F. ; Brännström, M. (2011) "Probabilistic Threat Assessment and Driver
Modeling in Collision Avoidance Systems". IEEE Intelligent Vehicles Symposium, 5-9 June,
2011, Baden-Baden, Germany pp. 914-919.

http://dx.doi.org/10.1109/IVS.2011.5940554

Downloaded from: http://publications.lib.chalmers.se/publication/144748

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://dx.doi.org/10.1109/IVS.2011.5940554
http://publications.lib.chalmers.se/publication/144748


Probabilistic Threat Assessment and Driver
Modeling in Collision Avoidance Systems

Fredrik Sandblom and Mattias Brännström

Abstract— This paper presents a probabilistic framework for
decision-making in collision avoidance systems, targeting all
types of collision scenarios with all types of single road users
and objects. Decisions on when and how to assist the driver
are made by taking a Bayesian approach to estimate how a
collision can be avoided by an autonomous brake intervention,
and the probability that the driver will consider the intervention
as motivated. The driver model makes it possible to initiate
earlier braking when it is estimated that the driver acceptance
for interventions is high. The framework and the proposed
driver model are evaluated in several scenarios, using authentic
tracker data and a differential GPS. It is shown that the driver
model can increase the benefit of collision avoidance systems —
particularly in traffic situations where the future trajectory of
another road user is hard for the driver to predict, e.g. when
a playing child enters the roadway.

Index Terms— automotive safety, collision avoidance, threat
assessment, driver modeling, autonomous braking

I. INTRODUCTION

Road traffic accidents are one of the world’s largest public
health problems. In the EU alone, traffic accidents cause
approximately 1.8 million injuries and 43.000 fatalities each
year [1]. To reduce these numbers, vehicle manufactures are
developing systems that can detect hazardous traffic situa-
tions and actively assist road users in avoiding or mitigating
accidents. Systems that assist drivers in avoiding collisions
are becoming increasingly more common and are even being
introduced as standard equipment in some passenger cars [2].

Collision avoidance (CA) systems can generally be divided
into three layers, as illustrated in Fig. 1. Measurements from
in-vehicle sensors, such as accelerometers, gyros, cameras
and radars, are processed in the first layer and then inter-
preted in the second layer that makes decisions on when and
how to assist the driver. The third layer executes the decision,
e.g. by automatically applying the brakes of the vehicle.

Fig. 1. Collision avoidance systems can be divided into three layers. This
paper focuses on decision-making using a driver model.

The measurements are associated with uncertainties and,
consequently, as are the vehicle and object state estimates
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that are obtained in the sensor fusion layer [3]. A threat
assessment algorithm utilizes these estimates to make predic-
tions of road user trajectories. Based on these predictions, an
assessment is performed to judge how hazardous the traffic
situation is and decisions are made. The objective is to assist
the driver in avoiding collisions, without triggering warnings
or interventions that the driver may consider as unnecessary.
Both the state estimates and the predictions are associated
with uncertainties, which will affect the decisions and thus
need to be treated properly.

In this paper, we discuss how measurement and prediction
uncertainties can be managed in a CA system by using
a Bayesian approach to decision-making. In Section II,
the need for driver modeling in CA systems is discussed
and a novel driver model is formulated under a few basic
assumptions regarding driver behaviour. Section III outlines
the problem formulation. Section IV gives an introduction
to Bayesian risk and hypothesis testing, and a probabilistic
decision-making framework, including the driver model, is
proposed. In Section V the driver model and decision strategy
is further defined and the evaluation framework is presented.
In Section VI, we evaluate the framework on a few different
types of collision scenarios, using both simulated and authen-
tic sensor measurements. Finally, conclusions are presented
in Section VII.

II. DRIVER MODELING

In order to assist drivers in avoiding collisions, interven-
tions or warnings must be triggered while a collision is
avoidable. In practice, this means that accidents that are
autonomously avoided by a CA system possibly also could
have been avoided by the driver. Thus, it is only the driver of
the vehicle that can decide if an intervention was motivated.
This highlights the need of incorporating a driver model
in the CA system, such that vehicle safety can be further
improved without triggering interventions that the driver
could consider as disturbing.

A. Related literature

Goodrich and Boer [4] propose that CA systems should
account for not only the capabilities of the vehicle and the
sensor system, but also the autonomy and preferences of the
driver. Benefit and cost functions are introduced to make
decisions based on a tradeoff between the potential benefit
of an intervention and the cost for disturbing the driver with
an unnecessary intervention. Although the concept of using
cost functions is appealing at a first glance, this concept has
some potential drawbacks that are pointed out, e.g., in [5].



For example, the cost of an unnecessary intervention may
be difficult to define and relate to the benefit of avoiding a
potential collision. Hence, the behaviour of the CA system
may be hard to predict and tuning of the system could
become problematic.

McCall and Trivedi [6] propose that the probability that
the driver intends to apply the brakes shall be estimated and
that interventions shall be inhibited if the driver intends to
brake. The intent to brake is predicted by using a camera that
monitors the driver’s pedal usage and a camera that monitor
the driver’s face. Although a foot camera may be used to
predict if the driver intend to apply the brakes, it is probably
difficult to predict if the driver intends to steer. The driver
may also be drowsy or cognitively distracted, in which case
the driver intent could be difficult to predict, even if the
driver has placed the foot on the brake pedal. Moreover, in
traffic situations where the driver intends to brake to avoid
a severe collision, it is reasonable to assume that the driver
may consider a brake intervention as motivated and thus not
disturbing.

Rather than estimating the drivers’s intent or the cost
for disturbing the driver, we propose that the CA system
shall estimate if the driver will consider an intervention as
motivated. In this way, driver autonomy can be maintained by
only allowing the system to act when it is estimated that the
driver has a high acceptability for warnings or interventions.

B. The driver as a collision avoidance system

The purpose of the driver model is to obtain a measure
that indicates if the driver judges that the situation is critical.
Some basic assumptions on driver behavior are discussed and
a driver model based on these assumptions is formulated.
This model is not intended for explaining other aspects of
driver behavior, nor for predicting the driver’s intentions.

If we assume that all drivers desire to avoid collisions, the
drivers (consciously or subconsciously) need to

1) observe both stationary objects and other road users,
2) make predictions of road user trajectories, and
3) plan driving manoeuvres considering these predictions.

These three objectives motivate that the driver can be mod-
eled as a collision avoidance system, consisting of

1) a sensor based tracking system, combined with
2) a prediction model for other road users, and
3) a path planning algorithm.

C. Driver-preferred safety margins

It is reasonable to assume that all drivers plan manoeuvres
with some (minimum) safety margins to assure that collisions
are avoided. We argue that these (physical) safety margins
can be modeled by assuming that the driver is subconsciously
aware that the driver’s perception is limited [7] and that the
driver’s predictions of road user trajectories are somewhat
uncertain, especially for some types of road users, such as
• wild animals,
• playing children, and
• vehicles that are skidding out of control.

Consequently, drivers are expected to plan manoeuvres with
safety margins that increase with observation and prediction
uncertainties. We argue that drivers also have safety margins
in terms of vehicle dynamics and that these margins can be
expressed as thresholds for ”severe manoeuvres”.

D. Estimating driver acceptability for interventions

We assume that drivers consider interventions as justified
if they are triggered when the driver judges that the physical
safety margins cannot be maintained; not even by using
a severe evasive manoeuvre. That is, an intervention is
motivated if triggered after the driver has passed a subjective
”point-of-no-return” and judges that the traffic situation is
critical. Under these assumptions, we conclude that:

An intervention is justified if the driver (modeled
as a CA system) judges that the traffic situation is
critical when the intervention is triggered.

In case the driver is distracted, we assume that once an
intervention is triggered, the driver will shortly observe
the threat and judge if the intervention was justified. The
objective for the driver model subsystem (see Fig. 1) is
to estimate the probability that the driver will consider an
intervention as justified. Or equivalently, the probability that
driver, modeled as a CA system with uncertain object state
estimates and predictions, judges that the situation is critical.

III. PROBLEM FORMULATION

Let x be a state vector that represents the state (i.e. posi-
tion, size, velocity etc.) of a vehicle hosting the CA system,
and of a single obstacle, e.g. another vehicle or a pedestrian.
Using the posterior state distribution p(x|y), given sensor
data, y, an intervention decision rule for avoiding accidents
is desired. When making decisions in CA systems, there is
always a trade-off between a high probability of a successful
intervention that avoids or mitigates a collision, and the risk
of annoying the driver. The latter risk can be assumed to
vary and should thus be assessed in real-time, which raises
two questions: Firstly, how can the risk be modeled and,
secondly, what decision strategy is suitable when both the
state estimate and trajectory predictions of road users are
associated with uncertainties? Section IV aims to answer
both questions by designing a driver model and a threat
assessment algorithm that estimates if and how a collision
can be avoided by autonomous braking, such that well proven
decision rules can be employed and jointly evaluated, as
shown in Fig. 1.

The driver is modeled as a CA system using measurements
z, i.e., what the driver can see. The goal of the driver is thus,
in terms of a CA system, to calculate p(x|z) and make a
control decision based on this distribution.

IV. PROBABILISTIC DECISION-MAKING

A robust decision rule must treat several sources of
uncertainties. Firstly, the estimates of the state x originates
from a tracking system with uncertainties. Secondly, the
near future contains many possible outcomes, i.e., the pre-
diction uncertainties are often of vital importance. Finally,



the different accident scenarios and type of obstacles which
a general collision avoidance system should handle are
countless. Fig. 2 illustrates a scenario with many possible
outcomes. Addressing these uncertainties motivate the need
for a probabilistic approach to decision-making.
Fig. 2. Uncertainties in the tracking system estimate xt at time t, and
prediction uncertainties during the time interval T , affect the estimate of the
predicted state xt+T . The vehicle hosting the CA system can be represented
by any type of automotive vehicle, e.g. a car, a motorcycle, or a truck as
illustrated in this scenario.

Several probabilistic decision-making algorithms have pre-
viously been proposed, e.g. [5], [8], [9], [10], [11]. The risk
of a false alarm is typically balanced with the confidence
of the necessity of a particular action. Rather than making
this trade-off, we propose to use a driver model to describe
when the drawbacks with an intervention arguably are neg-
ligible from the drivers perspective. The need for immediate
braking can then be evaluated separately using the same
robust approach as in [10]. Two indicator functions and their
corresponding hypotheses forms the basis of the strategy:

H0 : IH(x) = 0 : Driver does not accept intervention
H1 : IH(x) = 1 : Driver accepts intervention (1)

H0 : IH (x) = 0 : Immediate braking is not needed
H1 : IH (x) = 1 : Immediate braking is needed (2)

If the hypothesis probabilities can be calculated, the decision
rule shown in Appendix I can be used to choose one hypoth-
esis over another. Details can be found in most textbooks e.g.
[12]. Two decision rules are needed, the driver acceptance
decision and the decision for initiating autonomous braking.
However, to calculate the former we will need to model also
the driver decision, thereby introducing a third decision-rule.

A. The driver acceptance decision

For a given traffic situation, the indicator function

IH(x|Hi) = i, i ∈ {0,1} (3)

determines if the driver accepts an intervention. The actual
state x is unknown to the system but the distribution p(x|y)
can be used to calculate the hypothesis probability

Pr{H1|y}=
∫

IH(x)p(x|y)dx = E[IH(x)|y]. (4)

Thus, by marginalizing the tracking system uncertainties,
decision rule (20) can be used to determine if an intervention
is accepted or not. It remains however to define IH(x), the
function which tell us if the driver will accept an intervention.
We assume an intervention is acceptable if the driver would
have acted (if aware of the situation) e.g., when deciding
upon H1.

B. Intervention decision for driver-initiated braking

The driver is modeled as a sensor aware of its shortcom-
ings in the context of driving, and the drivers sense of safety
is modeled as choice between hypotheses H0 and H1. Let O ,
e.g., represent an object, e.g., another vehicle or a pedestrian
and w̃ be the driver’s error when predicting its motion. The

driver model marginalizes these errors in order to calculate
the hypothesis probability,

Pr{H1|z,O}=
∫∫

IH (x, w̃,O)p(x, w̃|z,O)dxdw̃

= E[IH (x)|z,O], (5)

where p(x, w̃|z,O) describes the driver uncertainties when
observing and predicting the future trajectory of the object
O . The driver’s sense of safety decision can thus be modeled:

Pr{H1|z,O}
Pr{H0|z,O}

IH (x)=1
≷

IH (x)=0
c1(O), (6)

where c1(O) is a threshold for selecting H1 over H0, i.e.,
the driver decides that the situation is critical.

In summary: According to the argumentation in Section
II-D, an intervention is accepted if the driver judges that
a situation is critical. This decision, IH(x), is modeled by
equation (6). However, as x is not fully known by the sensor
fusion system, nor is IH(x). Instead, the probability that
the driver accepts an intervention is calculated [see (4)].
Consequently, it can be determined if an intervention should
be allowed by testing

Pr{H1|y}
Pr{H0|y}

H1
≷
H0

c2(O), (7)

where c2(O) is a threshold for selecting H1 over H0.

C. Intervention decision for autonomous braking

In the previous section it was shown how the driver decides
for an intervention. Naturally, since the driver is modeled as a
CA system, the process of determining whether a CA system
should intervene is analogous. For notational convenience we
assume that the indicator function IH (x) could be applied
to both the the driver model and the autonomous system.

Assume that there is a threat assessment function g(·) that
estimates if immediate braking is needed in order to avoid a
collision, such that

IH (x) =
{

1, g(x)≥ some threshold
0, else. (8)

The probabilities for the corresponding hypotheses [see (2)]
are now readily calculated the same way as in the driver
model [see (5)]:

Pr{H1|y}= E[IH (x)|y,O], (9)

and the intervention decision rule becomes

Pr{H1|y}
Pr{H0|y}

H1
≷
H0

c3(O), (10)

where c3(O) is a threshold for selecting H1 over H0.



V. DESIGN CHOICES AND IMPLEMENTATION

In the previous section, two decision rules were designed
to answer the following questions:

1) Does the driver accept an intervention?
2) Is there a need for an intervention?

Only if the answer to both these questions are ’yes’ should
the system take action. Many threat assessment algorithms
known from literature could be used in this setting and
benefit from a reduced false alarm rate, but the driver model
allows for an advantageous design change: under hypothesis
H1, an intervention may be initiated at an earlier stage to
increase the benefit of the intervention without disturbing
the driver. This can be readily achieved by significantly
lowering the loss [see (18)] for making a decision to in-
tervene [see (10)] when the driver is believed to accept an
intervention. As shown in Appendix II, this can significantly
increase the capability to completely avoid an accident.

A. Driver model
In Section II, it is argued that the driver can be modeled

as a CA system. Hence, we can use an algorithm previously
proposed in [13] for assessing how the driver can either steer,
brake or accelerate to avoid a collision with an arbitrary
obstacle. The lateral or longitudinal acceleration required to
avoid an accident by executing a manoeuvre M is

areq
driver = g(x, w̃,O,M), (11)

where g(·) is the algorithm from [13]. Recall from Section
IV-A that the indicator function IH defines when a situation
is critical to the driver, i.e., the driver will act. Our conser-
vative model states that a situation is critical if the required
acceleration needed to avoid crash areq

driver, with respect to
manoeuvre M, is greater than a threshold amax

driver(M), i.e.,

IDriver
H (x, w̃,O)=

{
1, g(x, w̃,O,M)≥ amax

driver(M), ∀M
0, else .

(12)

The situation as a whole is critical if the situation is crit-
ical with respect to all manoeuvres M. A sufficiently high
threshold amax

driver corresponds to a conservative driver model.
That is, most drivers would agree that a situation is indeed
critical when the model says so. The thresholds used to
evaluate the decision-making strategy are listed in Section
V-D. The relation between driver measurements and the state
is assumed linear with additive Gaussian noise:

z = x+v, v∼N (0,Pv). (13)

B. Threat assessment
Given that the driver accepts an intervention, autonomous

braking will be triggered by the system when the required
deceleration areq

system to avoid a collision crosses a threshold,
preferably below the maximum capacity of the brake system
to leave some margin for avoidance. The indicator function
corresponding to the intervention hypotheses H0,H1 is

ISystem
H (x,w,O)=

{
1, g(x,w,O, ’Brake’)≥ amax

system(O)
0, else

,

(14)

where w is the CA system’s prediction noise with respect to
object O . The hypothesis probabilities [see (9)] can now be
calculated and the intervention decision rule [see (10)] can
be applied.

C. Implementation

The hypothesis tests preceding an intervention can be
performed after calculating the integrals (4), (5) and (9).
Finding analytical solutions to these integrals is rarely pos-
sible, which motivates the usage of approximative methods.
A straightforward approach is to generate samples x(i) from
p(x) and use Monte Carlo integration to approximate Pr{H}:

Pr{H}=
∫

IH(x)p(x)dx≈ 1
N

N

∑
i=1

IH(x(i)) = Pr{H}N , (15)

where Pr{H}N
a.s−→ Pr{H} as N → ∞, see e.g. [15]. These

methods yield high performance but are computationally
costly; as a reference for evaluating more cost-efficient
methods, we use N = 1000 for a state vector of length 8,
including prediction uncertainties.

Less demanding numerical integration methods such as the
family of sigma point techniques evaluated in [16], or the
recent cubature integration rule [17], are unfortunately not
well suited for integrating over binary functions. However,
our studies show that they perform well in approximating the
first two moments of p(areq|y), for our choice of g(·). Hy-
pothesis probabilities are thus readily calculated analytically
under a Gaussian assumption on this distribution.

A third approach, which is the method used in this paper,
is to use a grid of deterministically chosen sample points with
associated weights to approximate the integral as a weighted
sum of evaluations,

Pr{H} ≈
L

∑
i=1

wiIH(x(i)). (16)

Grid methods are only exact for discrete state spaces. How-
ever, in Section VI a grid of size L = 49, using weights
wi ∝ p(x(i)|y), perform very well. The evaluation points
are selected to be the union of the sigma points generated
from an Unscented transform with κ = 0 , 1− nx, 1− nx

3
respectively. nx is the length of the state vector and the
interpretation of κ is explained e.g. in [18].

We suggest using an evasive braking manoeuvre from
the high-valued tail of p(areq

system|y). This will initially yield
distinct braking, but soon the distribution will reflect the
effects of the action, and the predictive control strategy may
be updated to decrease the brake force towards the end of
the manoeuvre.

D. Parameters

The acceleration required to avoid a collision using
four different types of manoeuvres, {Brake,Accelerate,
Turn left,Turn right} is calculated. Drivers are assumed to
consider accelerations greater than amax

driver as severe ma-
noeuvres, as shown by the selected thresholds in Table I.
The thresholds have been selected ad hoc and are used in



Section VI to illustrate some interesting properties of the
proposed decision-making framework. It is suggested that
extensive testing both in field operational tests and on test
tracks should be conducted to find a more suitable selection
of thresholds, but such studies are out of scope for this paper.
To further limit the scope of our analysis, we assume drivers
only have difficulties in estimating the acceleration of other
road users, whereas position, size and velocity estimates are
highly accurate. Thus, all elements of Pṽ are set to zero
except for the acceleration variance, which is set to 4 [m2/s4].

TABLE I
THRESHOLDS USED IN SECTION VI

p(x|y) = N (x̄,Px) z ∼N (x̄,Pv)

amax
system(O) 8 [m/s2] amax

driver(O,M) 7 [m/s2] ∀M
H system

1 : areq
system ≥ amax

system H driver
1 : areq

driver ≥ amax
driver

H1 : Pr{H driver
1 }

Pr{H driver
0 }

> c1 c1(O) 0.25

In collision scenarios conducted with real vehicles, the
state estimates x̄, Px̂ are provided by a tracker [14], using a
further developed version of the radar sensor model presented
in [3]. For simulated scenarios the estimates are set to the
true position and an average covariance matrix. To predict
vehicle trajectories we use a standard bicycle model [19] with
jerk uncertainties affecting the curvature, c0, and longitudinal
acceleration, a, expressed in terms of vehicle limitations,

w = w̃ = [ȧ ċ0]
T , cov(w) = cov(w̃) =

[
1 0
0 0.0002

]
. (17)

VI. RESULTS

The driver model and the proposed decision-making
framework is applied to the collision scenarios illustrated
in Fig. 3, using the grid based implementation described in
Section V-C.

Fig. 3. Collision scenarios with a lead vehicle, a playing child, a thrash
can and a turning vehicle. The arrows in the rear end collision scenario
illustrates scenarios with and without an evasive steering manoeuvre.

Results for an authentic rear-end collision scenario is
presented in Fig. 4. For safety reasons, the lead vehicle
is represented by a soft inflatable car (3x1.7m) which is
attached to a trolley driven by a wire system at 50 km/h.
The state of the soft car is estimated by using a differential
GPS system. Measurement noise is then added to obtain
measurements representative of a radar-based sensor system.
In a first test, the driver of the host vehicle approaches the
lead vehicle at 80 km/h and performs a late evasive steering
manoeuvre. Immediately prior to this manoeuvre it can be
seen that the probability that the driver considers the traffic
situation as critical increases significantly, but it decreases as
soon as the driver initiates an evasive steering manoeuvre.
In a second test, the host vehicle drives straight into the lead
vehicle at 80 km/h without braking or steering. The results
in Fig. 4 show that the CA system can prevent an accident
without disturbing the driver with unnecessary braking.

Fig. 4. Rear-end collision scenario with (top) and without (bottom) an
evasive steering manoeuvre. The graphs show the probability that the driver
will accept a brake intervention, Pr{H1|y} (solid), and the probability that
braking is needed, Pr{H1|y} (dashed). The dotted line shows the lateral
acceleration (in [g]) of the host vehicle. The star marks the time (t = 2 s)
when the vehicles collide if no evasive action is taken. At t ≈ 1.75 s (top),
Pr{H1|y} rises because the host vehicle passes close to the lead vehicle.

Fig. 5 depicts simulated scenarios where the driver is
approaching either a playing child, or a thrash can, at
50 km/h. The driver is assumed to have similar estimates
of the position of both objects, and knows that the trash can
is stationary. However, since it is difficult for the driver to
predict the child’s future trajectory, the system detects that
the driver has a higher acceptance for earlier autonomous
braking than when approaching the thrash can.

Fig. 5. The probability that the driver will accept a brake intervention,
Pr{H1|y} (solid), when approaching a thrash can (top) or a playing child
(bottom) at 50 km/h. The star marks the time (t = 2 s) when a collision
occurs if no evasive action is taken. The dashed line shows the probability
that immediate braking is needed, Pr{H1|y}. When approaching the child,
Pr{H1|y} rises earlier than Pr{H1|y} and thus, the CA system can use
autonomous braking to prevent a collision without disturbing the driver.

In Fig. 6, an evaluation is performed in an intersection
collision scenario using a radar-based sensor fusion system.
In order to obtain realistic measurements, a real target vehicle
was used. The state of the host vehicle was then simulated
to drive at a higher speed (50 km/h) than the actual speed,
such that a collision situation was created without putting the
drivers at risk. The results indicate that it is realistic that CA
systems can be designed to autonomously avoid, or at least
mitigate, this common type of collision without disturbing
the driver with unnecessary braking.

Fig. 6. The probability that the driver accepts an intervention, Pr{H1|y}
(solid), and the probability that braking is needed, Pr{H1|y} (dashed), using
data collected by a radar based sensor fusion system. The host vehicle
(bottom) is approaching a turning vehicle (top). The star marks the time
(t = 2 s) when a collision occurs if no evasive action is taken.

VII. CONCLUSIONS

In this paper, we presented a framework for decision-
making in human centric collision avoidance (CA) systems.
We introduced a driver model, resembling a CA system
with uncertain input data, and showed that the use of this
model has several appealing properties. Specifically, the
driver model enables the safety system to perform earlier in-
terventions in situations where the future trajectories of other
road users are difficult for the driver to predict. Moreover,
the proposed framework formally handles both measurement
and prediction uncertainties, as well as the driver’s subjective
safety margins.

APPENDIX I
BAYESIAN DECISION-MAKING

Let there be two hypotheses; h0 and h1. Given some
observations y, we wish to make a decision regarding which
hypothesis is true. Let αi be the decision that hypothesis
hi is the correct one and suppose we can express a loss



λi j = L(αi|h j) for making the decision αi given that the true
state is h j. The risk R(αi|y) is defined as the expected loss
associated with a particular decision,

R(αi|y) = ∑
j=0,1

λi jPr{h j|y}. (18)

The minimum risk is achieved by choosing h1 over h0 if
R(α1|y)< R(α0|y), i.e. if

p(y|h1)

p(y|h0)
>

(λ1 0−λ0 0)

(λ0 1−λ1 1)

Pr{h0}
Pr{h1}

. (19)

This is equivalent to evaluating the well-known likelihood
ratio. It may be convenient to evaluate the posterior prob-
abilities rather than the likelihood, e.g in a particle filter
implementation. Applying Bayes formula to the left hand
side of equation (19) gives the equivalent rule

Pr{h1|y}
Pr{h0|y}

h1
≷
h0

λ1 0−λ0 0

λ0 1−λ1 1
= c. (20)

The above relation suggests to choose h1 over h0 if the ratio
Pr{h1|y}/Pr{h0|y} exceeds a threshold c.

APPENDIX II
MITIGATION TO AVOIDANCE

Assume that a vehicle is driving at an initial speed, v0,
and that emergency braking is initiated such that the speed is
reduced to vc before colliding with a stationary object. How
much earlier, ∆t, should the braking be initiated to avoid the
collision? The deceleration will eventually reach a constant
value, a, and the collision is avoided if s = v2

c
2 a extra meters

are available. The time to travel this distance, before braking
is initiated, is

∆t =
s
v0

=
v2

c

2 a v0
. (21)

Consequently, by applying the brakes ∆t seconds earlier, the
required extra distance is gained and the collision is avoided.

For v0 = 15 [m/s] and vc = 5 [m/s] (i.e., 54 and 18 km/h)
on dry asphalt (a = 10 [m/s2]), it is enough to brake 83 [ms]
earlier in order to fully avoid an accident. See Fig. 7 for
more examples. Apparently, the required difference in timing
to attain avoidance rather than mitigation can be very small.
Fig. 7. The three curves show ∆t for three crash velocities, vc = 20, 15,
and 10 [km/h], top to bottom. Braking ∆t seconds earlier fully avoids the
collision with the smallest possible margin. The result is valid for braking
on dry asphalt and is invariant to the brake system ramp-up time.
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