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Abstract

Nowadays wireless sensor network (WSN) has been emerged in many applications such as
environmental monitoring, traffic controlling, and animal tracking. The task of sensors in
a WSN is to collect data and information, and send them for further processing. However,
this information would not be useful without any knowledge about the locations of sensors.
Consequently, localization is one of the most important issues in WSNs. Since localization
is a broad subject and each of its aspects requires studies and researches, in the thesis we
concentrate on two particular situations in sensor localization.

In the first part, we study the bearing-only target localization problem when the
observer positions are subject to error. In this problem, the angle-of-arrival of the trans-
mitted signal between a target and an observer are used to estimate the target position.
In this work, we assume that not only the bearing measurements are corrupted by noises
but also the exact position of observer is not available to the estimator. The maximum
likelihood (ML), the least squares (LS), total least squares algorithms and a new method
of localization based on weighted total least squares (WTLS) approach are developed for
this problem. The corresponding Cramér-Rao lower bound (CRLB) is also derived. Sim-
ulation results show that the new method, i.e., WTLS, outperforms other algorithms and
can attain the CRLB for sufficiently large signal-to-noise-ratios (SNRs).

In the second part, received signal strength (RSS) based single source localization when
there is not a prior knowledge about the transmit power of the source is investigated. Be-
cause the RSS model is a function of transmit power, anchors should have the transmit
power of the source to find the location of the source. Because of nonconvex behavior of
the ML cost function, it requires intensive computations to achieve its global minimum.
Therefore, we propose a novel semidefinite programming (SDP) approach by approxi-
mating ML problem to a convex optimization problem which can be solved efficiently.
Simulation results show that although the ML estimator outperforms other algorithms,
our proposed SDP has a remarkable performance very close to ML estimator. By lin-
earizing the RSS model, we also derive a partly novel LS and WTLS algorithms for this
problem. Simulations illustrate that WTLS improves the performance of LS considerably.

Keywords: Wireless sensor network (WSN), localization, received signal strength (RSS),
bearing-only, semidefinite programming (SDP), weighted total least squares (WTLS),
Cramér-Rao lower bound (CRLB), total least squares (TLS)
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Chapter 1

Introduction

Wireless sensor network (WSN) has a wide varieties of applications such as controlling,
tracking, and monitoring. A WSN consists of a group of nodes (or sensors) distributed
in a area to work cooperatively and collect information such as temperature, pressure,
distance, and volume. Different characteristics such as size, cost, sensitivity, memory,
speed, and energy consumption are involved in designing a WSN. Each node usually
communicate wirelessly with neighbor nodes and a central processor to transmit data.
Data and information from sensors would be useless if their locations are not known.
Therefore, the central processor needs to know the location of each sensor to make its
information valuable. Localization in WSNs means determining the location of sensors in
a WSN by using noisy measurements. Equipping each sensor with a Global Positioning
System (GPS) device would be a possible solution. However, using GPS devices has many
drawbacks which leads us to use localization in sensor networks. For instance, it would
be highly expensive to equip all sensors in a network with GPS devices or sensors are
too small to have a GPS. In addition, some sensors cannot be fixed at a place and their
positions might change, for instance, in underwater networks. Another major problem
with a GPS device is that it does not work properly in indoor networks. Consequently
localization of some sensors in a WSN is inevitable.

Here some examples of WSN application are mentioned. Assume that the there are
some sensors located in a jungle to find the location of accidental fire. Locating the sources
that make alarm help us to find the position of the fire. Another example would be the
tracking of animals in a herd to study their behaviors and mutual actions [1]. Sensors are
usually used to detect the movement of lands and predict possible earthquakes. Sensor
may be used underwater [1], e.g., to measure the pressure of different areas of the ocean.

In general, there are some sensors in a network that their locations are available (anchor
sensors). They may be equipped with a GPS device or have been placed and fixed at a
known position. The anchors try to find the location of sensors whose locations are
not known (source sensors) with inaccurate and noisy measurements. Different types of
measurements are employed in localization such as received-strength-signal (RSS), time-
of-arrival (TOA), and angle-of-arrival (AOA) [2].

In this work, we concentrate only on single source localization, meaning that there
is only one sensor with an unknown position should be localized. In some cases, it is
required to find the location of many sources. As a result the localization algorithms
are divided in two groups; noncooperative localization and cooperative localization. In
noncooperative localization, as mentioned earlier, anchors tries to find the location of
sources. On the other hand, in cooperative localization, not only anchors but also sources
themselves are involved in localization. This means that sources also are connected to
each other and exchange information. By using cooperative localization, we can improve

1
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localization performance considerably in comparison with noncooperative localization [2].

1.1 Measurement Models

In this section, we describe different types of measurements generally used for the sensor
localization. Let xs = [xs, ys]

T ∈ R
2 be the coordinates of the source to be determined

and C = {1, . . . ,M} be the set of indices of the anchors connected to the source, and
xi = [xi, yi]

T ∈ R
2, i ∈ C be the known location of anchor nodes. Here, we describe

the measurement models for single source localization and 2D coordinates, however, the
extension for multi-source and cooperative localization, and also 3D coordinate is often
straightforward.

1.1.1 Received-Strength-Signal

The average measured power transmitted by a source at the anchors is defined as RSS
measurement. The RSS measurements include information from the distances between
the anchors and the source [2]. The major sources of error in RSS are shadowing and
multipath signal caused by objects and obstructions between the source and anchors.

The average received power (in dB) at ith anchor, Pi, under the log-distance pathloss
and log-normal shadowing, is modeled as [3]

Pi = P0 − 10β log10
di
d0

+ ni, i ∈ C, (1.1)

where P0 is the reference power at reference distance d0 (which depends on transmit
power), β is the path loss exponent, di = ‖xs − xi‖2 is the true distance between source
and the ith anchor, and ni are the log-normal shadowing term modeled as zero-mean
Gaussian random variables with variance σ2

dB . The standard deviation of shadowing is
reported in dB unit and is topically between 4 and 12 dB [2]. Moreover, σdB is related
to the environment where a network placed and is constant with range [2]. During RSS
measurement, the calibration between the source and anchors is inevitable [2].

1.1.2 Time-of-Arrival

The TOA measurement is considered as the time of signal transmission between a source
and anchors Ti. The measured TOA also includes a propagation-induced time delay. The
TOA measured at the ith anchor is modeled as [2],

Ti =
di
c
+ wi + τi, i ∈ C, (1.2)

where c is the propagation speed of the signal depending on the environment (e.g., in
vacuum electro-magnetic propagation speed is c ≈ 3x108 m/s), wi is the measurement
noise modeled as zero-mean Gaussian random variable with variance σ2

T,i which is related
to range, and τi is the time delay error. Time delays mainly result from the hardware
and software in the receiver and transmitter which add to the measured time. The major
sources of TOA measurements errors are multipath and addictive noise [2]. Depicting
a numerical example, the UWB measurements reported by a Motorola factory showed
that the standard deviation of TOA systems is around 0.3 ns and the time delay error is
around 1.9 ns [2]. To diminish the effect of time delay error, a source and anchors should
work synchronously [2].
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1.1.3 Angle-of-Arrival

The angle between a source and an anchor is measured as the AOA measurement. The
hardware for measuring AOA is relatively more complex than other methods. In the
presence of the measurement noise, the AOA measurements modeled as [2]

αi = tan−1 ys − yi
xs − xi

+ vi, i ∈ C, (1.3)

where tan−1{·} is four-quadrant inverse tangent, and vi is the measurement noise modeled
as zero-mean Gaussian random variable with variance σ2

α. In an acoustic-based AOA
measurements, the results shows that the standard deviation is between 2 and 6 degrees,
depending on range [2].

1.1.4 Other Measurement Types

There are many other types of measurement used for localization considered in the liter-
ature. For instance, to eliminate the effect of time delay error in TOA measurement, one
can use time-difference-of-arrival (TDOA) [4] in which the differences of arrival times of
pairs of sources are measured at anchors[1, 5]. The combinations of two or three mentioned
methods such as RSS/TOA are also studied in the literature [6].

1.2 Problem Statement

As mentioned earlier, we will focus on two specific situations in the sensor localization. In
this section, two problems are introduced and defined. In the next section, the previous
research and studies in the literature are mentioned.

In the first part, we investigate the bearing-only localization with observer position
errors. In bearing-only localization, the observer tries to find the location of a observer
by measuring the angle between the target and the observer. The measurement model for
this problem is similar to the AOA measurement given in the previous section. In classic
bearing-only localization, it is assumed that the location of an observer is known (e.g.,
by equipping the observer with a GPS device), however, in this work, we assume that
the exact location of observer is not available and only approximate or noisy values are
known to the estimator (e.g., the GPS device in the observer does not work properly).

In the second part of this thesis, we turn to another method of measurement in local-
ization. We study single sensor RSS localization when the transmit power of the source
is not available. Since the RSS model is a function of the transmit power of the source,
anchors are not able to find the location of the source without having any information
about transmit power. As a result the source has to report its transmit power to the
anchors [2]. However, this requires an additional cost and space. Here, two methods to
deal with unknown transmit power are introduced.

1.3 Literature Survey

Most of the studies done on bearing-only localization in the literature assume that the
exact position of the observer is available [7, 8, 9, 10]. The maximum likelihood (ML),
the least squares (LS), and the weighted least squares (WLS) were derived and compared
in [8]. The Cramer-Rao lower bound (CRLB) of bearing-only localization when the exact
position of the observer is known was also investigated in [8]. The WLS first introduced by
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Stansfield [7], therefore, WLS solution of the bearing-only localization is called Stansfield
estimator. There are some related studies on the bearing-only localization when the
position of the observer is subject to error [11, 12]. The novel total least squares (TLS)
was first introduced for this problem [11]. Another extension to TLS called constrained
total least squares (CTLS) was also mentioned in [11]. In [12], the combination of doppler
and bearing localization in the presence of observer position error was studied and ML
estimator and CRLB were computed.

We can find many studies in the literature about RSS localization and most of them
assume that the transmit power of the source is available to the estimator [3, 13, 14].
Patwari et al. [3] derived the CRLB and ML estimator for RSS localization and they
showed that the ML estimator derived for RSS localization is biased. The LS, WLS,
and constrained least squares estimators of RSS localization were derived in [5]. The
ML estimator is optimal, meaning it attains the CRLB accuracy, when the data record
is sufficiently large [1, 3], however, since the ML cost function is severely non-linear and
nonconvex, it has not any closed-form solution and finding its global minimum requires
difficult computations. One way to make the computation easier is to linearize the corre-
sponding model and apply linear estimators, such as LS, which has a closed-form solution.
However, the performance of LS is not as good as the ML estimator [5]. But, it can be
improved by using either a correction method [15] or a constrained method [5]. Another
way is to approximate the cost function of ML to a convex problem and solve it by convex
optimization algorithms such as semidefinite programming (SDP) [16]. The advantage of
SDP approaches over the nonconvex ML estimator is that SDP has no local minima and
can be solved efficiently. The SDP relaxation for general case of localization in WSN was
investigated [17]. The SDP approach for the RSS localization in for both cooperative and
noncooperative was studied in [18]. There are only few studies about RSS localization
with unknown transmit power [19, 20].

1.4 Thesis Outline

The introduction of the thesis has been given in Chapter 1. The bearing-only localization
is investigated in Chapter 2. In this part, first the model and assumptions are defined
and then the corresponding CRLB of the proposed model is derived. The ML estimator
is derived in two cases; when the observer position error is neglected and when it is
considered. It is shown that the two mentioned ML estimators lead to the same estimation
for target localization under certain circumstances. Different linear estimators, i.e., LS,
TLS, and WLS, are also studied. We introduce a novel method called weighed total least
squares (WTLS). By using this method, we can enhance the performance of TLS and
LS considerably [21, 22]. It is shown that the cost function of WTLS is nonlinear and
there is no closed-form solution for it, consequently, it should be solved using iterative
optimization methods [21].

In Chapter 3, the RSS localization is studied. In this work, we deal with the unknown
transmit power with two methods. In the first method, the unknown transmit power is
eliminated from the RSS model. This can be done by using computing RSS difference
between two anchors [2]. The second method is that we consider the transmit power of the
source as a nuisance parameters and estimate it along with source location [2, 23]. There
is also another method to deal with this problem in which we estimate the location of the
source only by comparing RSS measurements without using any model [24]. However,
we have not included this method in our work. First, we define the system model and
assumption. Although the RSS localization is generally biased [3], the CRLB of the model
is derived and used as a benchmark for evaluating the proposed algorithms. We introduce
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a new SDP approach to solve the RSS localization with unknown transmit power. Since
the transmit power of the source is not available, previously studied SDP approaches
[18, 25] are not applicable here. The proposed SDP approach is applied to two mentioned
methods. Linear estimators having closed-form solutions are also obtained. LS is also
derived for two methods; eliminating and estimating source transmit power. To improve
the performance of LS, we derived the corresponding WTLS algorithm [21, 22, 26]. Finally,
the conclusion and possible future works are given in Chapter 4.



Chapter 2

Bearing-only Target Localization

2.1 Introduction

In bearing-only localization problem, a moving observer is used to find the location of
a fixed target or to track a moving target. In this work, we concentrate on fixed target
localization. Bearing measurements are obtained from different points along the trajectory
line of the moving observer. The location of target is estimated from the intersection point
of bearing lines among different positions of an observer and target [10].The bearing-only
is frequently applied in military application such as locating a ground target by an aircraft
[7].

The bearing measurements can be acquired by several observers at distinct locations.
In this case, therefore, the problem can be interpreted as the locating a sensor in wireless
sensor network using AOA measurements [2]. Hence, the target and the observer in
previous problem turn into source sensor and several anchors (sensor nodes with known
positions) in distinct positions respectively and consequently the angle of transmitted
signal from the source in anchor nodes are measured. Since the formulation for both
problems are the same, we mention all procedures for the bearing-only localization, then
it can be extended to AOA sensor localization easily.

Various works have been done on the bearing-only localization [5, 7, 10]. In [10], the
performance of ML estimator, LS estimator, and WLS estimator, also called the Stansfield
algorithm, were examined. The Stansfield and ML estimators for different observer trajec-
tories were also indicated in [8] where the performances of the estimators are enhanced by
finding the optimal observer trajectories. Moreover, total least squares estimator (TLS)
and an iterative two-stage approach involving TLS and Kalman filtering were surveyed in
[27]. The bearing-only localization was converted geometrically to another problem and
solved by optimization techniques [28].

Most of the works done in the literature are based on the assumption that the exact
position of the observer is available. However, this assumption is not realistic in practice.
For instance, wind can change the direction of aircraft from what it is supposed to be
or unpredictable errors appears in aircraft’s GPS (Global Positioning System). Recently,
some works have been carried out into bearing-only localization problem with uncertain-
ties about observer position [11, 29]. In [11], TLS and ML estimators were developed for
this kind of problem. The doppler-bearing tracking problem in the presence of observer
position error in the case of one and two observers was also investigated in [12].

In the this work, we assume that the exact position of the observer is not available. ML
estimator is investigated in two cases; when the estimator does not know about existence
of the observer position errors and also when it does. To find the ML solution, it is required
to solve a nonlinear problem which is computationally intensive. In addition, having a

6
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Target

Observer

Actual 

Value

Nominal

Value

Obserever Trajectory

α1

αi

xo
i

xi

xo
s

Figure 2.1: The bearing-only localization model. The star denotes the target, the solid
circle shows the actual position of observer which are unknown to estimator, and the
hollow circle shows the nominal position of observer available to estimator. The observer
moves along the observer trajectory and collects bearing measurements.

good initial guess is required to guarantee that the algorithm converges to the global
minimum of the ML cost function. Therefore, we also focus on some linear algorithms.
First, LS, WLS, and TLS, an extension to LS, are applied for the problem. Then, we
apply the novel technique based on weighted TLS (WTLS) estimator for our problem
in order to improve the performance of TLS. The CRLB of bearing-only localization
with uncertainties in observer position is obtained and comparison among the proposed
algorithms and CRLB is made.

The rest of the chapter is organized as follows. In Section 2.2, the model of bearing-
only localization and the corresponding CRLB are described. In Section 2.4, we derive
different algorithms formulation for bearing-only localization. In Section 2.5, computer
simulations are presented to evaluate the performance of the proposed algorithms.

2.2 Localization Model

In this work, we consider 2D network. Fig. 2.1 demonstrates the bearing-only localization
model. Let xo

s = [xo
s, y

o
s ]

T ∈ R
2 be the coordinate of the target to be estimated. The

observer collects bearing measurements at M distinct points xo
i = [xo

i , y
o
i ]

T ∈ R
2, i =

1, 2, . . . ,M . In the absence of the measurement noise, the relation between the true
bearing angle (in radians) and the true location of the target is

αo
i = tan−1 y

o
s − yoi

xo
s − xo

i

. (2.1)

where tan−1{·} is four-quadrant inverse tangent. Let α be the bearing measurement
vector consisting of the true bearing corrupted by additive noise,

α = [α1, α2, . . . , αM ]T = αo + n, (2.2)

where n is the bearing measurement error vector modeled as zero mean Gaussian random
vector with covariance matrix Ψα. In the current model, we assume that the exact
position of the observer is not available. Let xi = [xi, yi]

T be the nominal value of the
observer position at the ith point and x = [xT

1 ,x
T
2 , . . . ,x

T
M ]T be the vector of nominal

observer positions available to the estimator, then,

x = xo + v, (2.3)
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where v is observer position error vector assumed to be zero mean Gaussian random
vector with covariance matrix of Ψx. Note that Ψx = blkdiag[Ψx1

,Ψx2
, . . . ,ΨxM

], where
blkdiag {·} denotes the block diagonal matrix, and Ψxi

is covariance matrix of noise over
ith position of observer. We assume that the bearing measurement and observer position
errors, i.e., n and v, are statistically independent. This assumption has been previously
considered for similar cases in [11, 12], but might not be valid for all bearing measurement
systems.

2.3 Performance Bound and Optimal Estimator

The CRLB expresses a lower bound on the variance of any unbiased estimators which is
usually applied for the performances comparison of different unbiased estimators [23]. To
compute CRLB, we consider the same approach used in [12] in which they have derived
the CRLB for a similar problem. Let θ = [θT

1 , θ
T
2 ]

T = [xo
s
T ,xoT ]T be the unknown

parameter vector to be estimated. Note that since the true position of the observer is
not known for the estimator, it should also be estimated. Let β = [αT ,xT ]T be the data
vector consisting of bearing measurements and nominal positions of the observer. The
bearing measurements and nominal positions are statistically independent, therefore, the
probability density function (PDF) of the data vector is the product of their individual
PDFs,

f(β; θ) = f(α; θ)f(x; θ). (2.4)

The CRLB of the unknown parameters is computed by the inverse of the Fisher informa-
tion matrix [23],

CRLB(θk) = [I−1(θ)]kk, k = 1, 2, . . . , 2 + 2M, (2.5)

where I(θ) is the Fisher information matrix and its elements are given as,

I(θ) = −E

[

∂2 ln f(β; θ)

∂θ∂θT

]

. (2.6)

The Fisher matrix can be partitioned as,

I(θ) =

[

X Y

YT Z

]

, (2.7)

where,

X = ATΨ−1
α
A, (2.8a)

Y = ATΨ−1
α
B, (2.8b)

Z = BTΨ−1
α
B+Ψ−1

x , (2.8c)

where A = ∂αo/∂xo

s
and B = ∂αo/∂xo. Taking the inverse of partitioned matrix (2.7),

we have [30],

CRLB(xo
s) = X−1 +X−1YCRLB(xo)YTX−1, (2.9a)

CRLB(xo) = (Z−YTX−1Y)−1 = Ψx, (2.9b)

Let aT
i and bT

i be the ith row of matrix A and matrix B respectively,

aT
i =

[

−
yos−yoi

di

xo
s−xo

i

di

]

, (2.10a)
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bT
i = −

[

0T
(2i−2)×1 aT

i 0T
(2M−2i)×1

]

, (2.10b)

where di = ‖xo
s − xo

i ‖2 is the Euclidian distance between target and observer at the ith
point. It can be seen from (2.9b) that the CRLB of the observer position is equal to the
covariance matrix of the observer position error. Moreover, (2.9a) shows that the CRLB
of the target location depends on the covariance matrix of the observer position error Ψx.
By setting Ψx = 0 (i.e., the exact position of the observer is known), the CRLB of the
target location reduces to CRLB(xo

s) = X−1 which is the same as the CRLB derived in
[10] when the exact position of the observer is available to the estimator.

2.3.1 Maximum Likelihood

ML estimator is obtained by maximizing the likelihood function of unknown parameters
[23]. For some cases, the ML estimator is asymptotically (for large data records) unbi-
ased and efficient meaning that it can achieve CRLB accuracy [23]. The ML estimator
for bearing-only localization problem with observer position error can be defined in two
cases. In the first case, uncertainties about observer position are present but the ML
estimator ignores the noise on the observer position (or does not know about it) and tries
to maximize only the likelihood function of bearing measurement α. In the second case,
the ML estimator takes also observer position errors into account and tries to maximize
the joint PDF of the bearing measurement and the observer position. Here, we will show
that the ML derived for two mentioned cases yield the same estimate for target position
in our particular problem under certain circumstances.

First, it is assumed that the exact positions of the observer are available to the ML
estimator . Since the bearing measurement has a Gaussian PDF, ML problem turns into
the following nonlinear minimization problem [23],

θ̂1,ML = argmin
θ1

(α− g1(θ1))
TC1(α− g1(θ1)), (2.11)

where C1 = Ψ−1
α
, g1(θ1) = [g1,1(θ1), g1,2(θ1), . . . , g1,M(θ1)]

T , and

g1,i(θ1) = tan−1(ys − yi)/(xs − xi). (2.12)

Above minimization can be approximated by the Gauss-Newton (GN) method [23],

θk+1
1 = θk

1 +
(

HT
1,k C1H1,k

)−1
HT

1,k C1(α− g1(θ
k
1)), (2.13)

where H1,k = ∂g1(θ1)/∂θ1|θ1=θ
k
1

. Note that H1,k is equal to A when xo
s = θk

1 and xo = x.
Now assume that the ML estimator tries to estimate the observer position as well as
the target location using the joint PDF of bearing measurement and observer position.
Consequently, the ML estimate is

θ̂ML = argmin
θ

(β − g(θ))TC (β − g(θ)), (2.14)

where C = blkdiag[C1,C2] = blkdiag[Ψ−1
α
,Ψ−1

x ], and g(θ) = [g1(θ)
T , θ2]

T . Similar to
(2.11), the minimization of (2.14) can be approximated using GN method [23], therefore,

θk+1 = θk +
(

HT
k CHk

)−1
HT

k C (β − g(θk)), (2.15)

where Hk = ∂g(θ)/∂θ|
θ=θ

k . Partitioning the second term of right hand side of (2.15) for
θ1 and θ2 yields

[

X̂−1
k HT

1,kC1(α− g1(θ
k)) + X̂−1

k C2(x− θk
2)

U−1
k C2(x− θk

2)

]

, (2.16)
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where Uk = Ẑk − ŶT
k X̂

−1
k Ŷk, and X̂k, Ŷk, and Ẑk are equal to X, Y, and Z respectively

by setting xo
s = θk

1 and xo = θk
2. Based on our computer simulations, for any initialization

of θ2 sufficiently close to x, θk
2 converges to x after some iterations, therefore, the term

x− θk
2 in (2.16) vanishes and the final solution of (2.15) for θ2 would be identical to the

nominal position of observer. In addition, hereafter, the updating terms for θ1 in (2.16)
would be the same as given in (2.13) and eventually after convergence, (2.15) reaches
to the same estimate for the target location as (2.13). It should be mentioned that the
minimization of (2.11) and (2.14) using MATLAB routine fminsearch (a derivative-free
method) also yields the same estimate for target location. In conclusion, according to our
simulations, we think that both ML estimators ignoring and considering observer position
uncertainties achieve the same result for target location. Furthermore, by applying the
joint PDF, we are unable to find a better estimate for the observer position than the
nominal value.

2.4 Localization Algorithms

In this section, we develop different algorithms for solving the bearing-only localization
problem defined in Section II. We start with ML algorithm then we continue with intro-
ducing the linear algorithms, i.e., LS, and TLS.

2.4.1 Least Squares

ML estimator cost function is non-linear and finding its global minimum needs convoluted
computations. The solution of the ML can be approximately calculated using iterative
optimization techniques such as GN method mentioned in the previous section [23]. Iter-
ative algorithms like GN requires a good initialization to make certain that the algorithm
converges to the global minimum of the cost function. Otherwise, the algorithms would
find either a saddle point or local minimum and stops iteration which leads to a high esti-
mation error. One way to deal with this problem is that the localization model is linearize
by introducing some assumptions. The linearizing of bearing-only localization model of
(2.1) is based on assumption that the bearing measurement errors are sufficiently small
[10]. Consider (2.1), it can be written as

tan(αo
i ) =

sin(αo
i )

cos(αo
i )

=
yos − yoi
xo
s − xo

i

. (2.17)

By cross multiplying

xo
s sin(α

o
i )− yos cos(α

o
i ) = xo

i sin(α
o
i )− yoi cos(α

o
i ). (2.18)

In the presence of noise, (2.18) can be expressed in matrix form

Gθ1 = h, (2.19)

where θ1 defined earlier is location of target and

G =







sinα1 − cosα1
...

...
sinαM − cosαM






,h =







x1 sinα1 − y1 cosα1
...

xM sinαM − yM cosαM






. (2.20)

The least squares solution of (2.19) is (if G is full rank) [23],

θ̂1,LS = (GTG)−1GTh. (2.21)

Unlike the ML estimator, the LS estimator has a closed-form solution and does not need
iterative computations.
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2.4.2 Weighted Least Squares

The disturbance due to bearing measurement and observer position noises are unequally
sized. Therefore, the performance of LS algorithm can be enhanced by defining a weighting
matrix to minimization problem. Like ML estimator, we also derive weighted least squares
expressions in two case; ignoring and considering observer position error.

In the former case, the estimator neglects the noise in observer position. In the
presence of bearing measurement noise, substituting (2.3) in (2.18), we have,

xo
s sin(αi − ni)− yos cos(αi − ni) = xi sin(αi − ni)− yi cos(αi − ni). (2.22)

Expanding trigonometry elements, and using the approximations sin(ni) ≈ ni and cos(ni) ≈
1 which are valid if the bearing measurement noises are sufficiently small, equation (2.22)
turns into,

xo
s sin(αi)− yos cos(αi) = xi sin(αi)− yi cos(αi) + ε1,i, (2.23)

where ε1,i is residual error in (2.22),

ε1,i = ni

[

(xo
s − xi) sin(αi)− (yos − yi) cos(αi)

]

= nidi, (2.24)

Expressing (2.23) into matrix form,

Gθ1 = h+ ε1. (2.25)

The weighted least squares solution of (2.25) is [23],

θ̂1,WLS1 = (GTW1G)−1GTW1h, (2.26)

where W1 is the weighting matrix which is equal to the inverse of the covariance matrix
of residual error (2.24),

W1 = E[ε1ε
T
1 ]

−1 = (B1ΨαB
T
1 )

−1, (2.27)

where B1 = diag(d1, d2, . . . , dM). This algorithm was previously introduced as Stansfield
estimator in [10]. The above algorithm was also indicated in [11] where the authors
concluded that if the distance information di are not available, WLS algorithm cannot be
applied. It should be noted that the weighting matrix W depends on the true position of
the target xo

s which is not available for estimator. Therefore, the WLS estimator can be
approximated in two steps. In the first step, we use identity matrix for WLS algorithm,
i.e., W = IM×M . Indeed, WLS estimator changes to LS estimator defined in (2.21). For
next step, we use estimated target location for computing the weighing matrix (2.34) for
WLS algorithm.

In the second case, we also take the observer position error into account. Replacing
true values with noisy ones in (2.18), we obtain,

xo
s sin(αi − ni)− yos cos(αi − ni) = (xi − vx,i) sin(αi − ni)− (yi − vy,i) cos(αi − ni). (2.28)

By expanding trigonometry elements and rearranging, the equation (2.28) becomes,

xo
s sin(αi)− yos cos(αi) = xi sin(αi)− yi cos(αi) + ε2,i, (2.29)

where ε2,i is residual error in (2.28),

ε2,i = nidi + vx,i(ni cos(αi) + sin(αi)) + vy,i(ni sin(αi)− cos(αi)). (2.30)
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Simplifying,
ε2,i = nidi + niġ

T
i vi + gT

i vi, (2.31)

where ġi = [ 0 1
1 0 ] gi, and vi = [vx,i, vx,i]

T the noise vector of the ith position of the observer.
Expressing (2.29) into matrix form,

Gθ1 = h+ ε2. (2.32)

The weighted least squares solution of (2.32) is,

θ̂1,WLS2 = (GTW2G)−1GTW2h, (2.33)

where W2 is the weighting matrix which is equal to the inverse of the covariance matrix
of residual error (2.30),

W2 = E[ε2ε
T
2 ]

−1 = (B1ΨαB
T
1 +ΨαD2ΨxD

T
2 +D1ΨxD

T
1 )

−1, (2.34)

where D1 = blkdiag[gT
1 , g

T
2 , . . . , g

T
M ], D2 = blkdiag[ġT

1 , ġ
T
2 , . . . , ġ

T
M ]. Like previous case,

the weighting matrix W2 requires the position of the target. Therefore, it can be solved
with two-step method as it is mentioned before. Note that if we assume that the true
position of the observer is known (i.e., Ψx = 0), (2.34) reduces to the expression given in
[10] for the weighting matrix of WLS when the exact position of the observer is available
to the estimator (the so-called Stansfield estimator).

There are some interesting points should to be noted. In both (2.32) and (2.25), since
the weighting matrix is a function of the target location, the exact value of the weighting
matrix is not known to the estimator and it should be approximated by available data. As
mentioned before, the elements of weighting matrix can be approximately calculated by
the estimated target location obtained in (2.19). Similar to this technique was previously
considered in the literatures and they have been shown that the performance does not
diminish remarkably [29]. We have also compare the WLS algorithm with the exact
weighting matrix and the WLS estimator which uses the approximate weighting matrix
obtained by the mentioned approach. Our computer simulations show that the there is
no significant deviation between them.

The most important point is behind the philosophy of the LS [23, 31]. In classic
LS problem, an overdetermined set of linear equations Gx = h are available. It is also
assumed that the data matrix G to be free of noise and exactly known and all errors are
confined in the vector h. Moreover, the weighting matrix in WLS problem is defined as
the inverse of covariance matrix of error in vector h. But, in two proposed algorithms
mentioned above and also algorithms given in [10, 11, 29], the data matrix G is also
subject to errors. Consequently, both LS and WLS do not respect disturbances in data
matrix G. One way regularly used in the studies [10, 29] is that the errors in data matrix
G are moved from left-hand side of equations to the right-hand side and combined with
errors in vector h. Although by using this method the performance might be improved,
it might be not sufficient. Hence, introducing an algorithm considering errors in both
data matrix G and observation vector h separately is necessary. In the next section, we
introduce TLS algorithm which tries to find the target position considering errors in both
sides of linear equations.

2.4.3 Total Least Squares

The TLS is an extension to the classic least squares [21]. Consider (2.19), the disturbance
of bearing measurement as well as observer position error affect both matrix G and vector
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h. The LS algorithm only respects disturbance in vector h, while the TLS takes errors in
both vector h and matrix G into account [21, 31]. The TLS solution of (2.19) is [21],

θ̂1,TLS = (GTG− σ2
s I)−1GTh, (2.35)

where σs is the smallest singular value of matrix [G h]. It has been stated that the
TLS algorithm has better performance than LS algorithm if we have errors in both data
matrix and observation vector [21]. The TLS was developed for bearing localization in
[11] where simulation results were used to compare the TLS and LS algorithms and it has
been showed that TLS has better performance than LS. In simulation section, we will see
this conclusion is not true for every situation.

2.4.4 Weighted Total Least Squares

In TLS algorithm, we presume that the errors in both matrix G and vector h are indepen-
dent and identically distributed (IID). This assumption is not valid in the bearing-only
localization problem. Hence, we introduce WTLS estimator which considers correlated
noises with different statistical properties for the matrix G and vector h. The classifica-
tion of the WTLS was mentioned in [21] based on the structure of the weighting matrix.
In contrast to the classic TLS, the WTLS has no closed-form solution. Currently WTLS
is formulated as an optimization problem and solved by iterative algorithms. In this sec-
tion, for the first time we apply WTLS algorithm for bearing-only localization model. In
the WTLS algorithm, we not only have to compute the covariance matrix of the residual
error in the vector h, but also we require the covariance matrix of residual error in the
matrix G, and the covariance between residual errors in h and G. Consider the ith row
of (2.19), substituting true parameters with noisy ones and extracting residual errors, we
have

εg,i = [ni cos(α
o
i ), ni sin(α

o
i )]

T = niġi, (2.36)

which is residual error of the ith row of matrix G. The covariance matrix of (2.36) would
be

Ψg,i = E[εg,iε
T
g,i] = ġiΨα,iġ

T
i , (2.37)

where Ψα,i = [Ψα]ii. The residual error of the ith element of vector h is

εh,i = niġ
T
i xi + niġ

T
i vi + gT

i vi. (2.38)

The covariance matrix of (2.38) becomes

Ψh,i = E[ε2h,i] = xT
i ġiΨα,iġ

T
i xi +Ψα,iġ

T
i Ψx,iġi + gT

i Ψx,igi, (2.39)

where Ψx,i = Ψxi
. Moreover, it is required to derive the covariance matrix between

residual errors in h and G,

Ψgh,i = E[εg,iεh,i] = ġiΨα,iġ
T
i xi. (2.40)

It should be noted that in the above derivations we have used the approximations applied
in (2.31). Now, we will define the WTLS solution based on the algorithm developed in
[26]. First, we rewrite (2.19) as

FΘ = 0, (2.41)

where Θ = [θT
1 ,−1]T , and F = [G,h]. Let Ψf ,i be the covariance matrix of the ith row

of F, then

Ψf ,i =

[

Ψg,i Ψgh,i

ΨT
gh,i Ψh,i

]

. (2.42)
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Figure 2.2: The configuration of the target and observer. The distance between the
observer and target in the second scenario is much longer than the first scenario.

Therefore, the WTLS problem is defined as [26],

θ̂1,WTLS = argmin
θ1,∆fi

M
∑

i=1

‖Ψ
−1/2
f ,i ∆fi‖

2
2 (2.43a)

subject to (F+∆F)Θ = 0, (2.43b)

where ∆F is a correction matrix trying to compensate errors in matrix F, ∆fi is ith row
of matrix ∆F, and ‖ · ‖2 denotes 2-norm. We have assumed that residual errors in each
row of F are statistically independent. This type of WTLS problem is classified as row-
wise WTLS [21]. The problem in (2.43) is an optimization problem. The full details of
minimization procedure is given in [26]. After some computations, (2.43) turns into the
following minimization problem

θ̂1,WTLS = argmin
θ1

f(θ1) = argmin
θ1

M
∑

i=1

r2i (θ1)

qi(θ1)
, (2.44)

where,
[r1(θ1), r2(θ1), . . . , rM(θ1)]

T = Gθ1 − h, (2.45)

qi(θ1) = ΘTΨf ,iΘ. (2.46)

Indeed, f(θ1) is the cost function of WTLS should be minimized. To find the minimum of
the cost function, the derivative of f(θ1) is equated to zero, i.e., f ′(θ1) = ∂f(θ1)/∂θ1 = 0,
where

f ′(θ1) = 2
M
∑

i=1

[

gi
ri(θ1)

qi(θ1)
− (Ψg,iθ1 −Ψgh,i)

r2i (θ1)

q2i (θ1)

]

. (2.47)

(2.47) has probably several roots but the root corresponding to the global minimum of
(2.44) is the WTLS estimation of target location. In [26] an iterative linear approximation
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Figure 2.3: The MSE performance of the proposed algorithms versus standard deviation
of the bearing measurement noise (the first scenario).

algorithm has been suggested for solving (2.47) which seems to be inappropriate in some
conditions. Effective numerical methods for finding the roots of (2.47) can be found in
[32]. In our computer simulations, we have employed MATLAB routine fsolve with
default settings, which uses Dogleg algorithm. Like the ML estimator, WTLS also has
convergence problem due to the nonlinearity behavior of the cost function [26]. Although it
has been shown that for large sample size and sufficiently close initialization, the algorithm
converges certainly to the global minimum of the cost function [26], it is still possible that
the algorithm either converges to a local minimum or diverges.

2.5 Simulation Results

In this section, computer simulations are conducted to evaluate the performance of the
proposed algorithms. Two scenarios for the simulations were considered. Fig. 2.2 depicts
the configuration of the target and observer in both scenarios. In the first scenario which
is the same as the configuration in [11], the target is located at [55, 35]T , the observer
trajectory is y = −0.2x+14 for 5 < x < 45, and observer obtainsM bearing measurements
in equal distant points. In the second scenario, the target location remains as the first
scenario and the observer trajectory is y = 3x + 30 for 5 < x < 45. The bearing
measurements and the nominal observer position are generated by adding zero mean
Gaussian random variables with covariance matrix Ψα = σ2

αIM×M and Ψx = σ2
xI2M×2M ,

respectively to true values. The values of σ2
α and σ2

x are indicated in each figure. The mean
square error (MSE) of each algorithm is computed by averaging of 10,000 independent
realizations as follows

MSE =
1

10000

10000
∑

i=1

‖x̂i
s − xo

s‖
2
2, (2.48)
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Figure 2.4: The MSE performance of the proposed algorithms versus standard deviation
of the bearing measurement noise (the second scenario).

where x̂i
s is the estimated source location at ith noise realization. The plotted CRLB is

computed as trace[CRLB(xo
s)] in (2.9a).

Fig. 2.3 shows the MSE of the proposed algorithms versus the standard deviation of
bearing measurement noise when the number of observations is M = 20 and the standard
deviation of the observer position noise is σx = 0.1 m. The ML estimator is calculated
using GN method [9]. We have used the true position of target as the initialization of
ML and WTLS to increase the probability that the algorithms converge to the global
minimum. It can be seen that the WLS algorithm performs better than LS. The TLS has
remarkably better performance than LS and WLS since it respects disturbances in the
data matrix. Furthermore, WTLS, and ML have very close performance and can attain
the CRLB accuracy for bearing noise standard deviation under 5◦.

The MSE of proposed algorithms as a function of the standard deviation of bearing
measurement noise for the second scenario is shown in Fig. 2.4. The number of observa-
tions and observer position noise remain as Fig. 2.3. The WTLS and ML show a similar
performance and achieve the CRLB for bearing noise standard deviation under 5◦. The
LS has higher MSE than WLS. In this case, the TLS has not better MSE than the LS.
The reason is that, for TLS it is assumed that the errors in matrix G and vector h are
independent and equally sized, however, (2.36) and (2.38) show that the errors in G and
h depend on the observer position and since the distance between the first and the last
observation in the second scenario is almost three times more than the first scenario,
the errors in G and h of the latter will be unequally sized more severely than the for-
mer. Consequently, the assumption in TLS is not valid anymore and its performance will
degrade.

In Fig. 2.5, we compare the MSE of the proposed algorithms in the first scenario versus
standard deviation of observer position noise. The number of observations is M = 20 and
the standard deviation of the bearing noise is σα = 2◦. The MSE of all algorithms get
worse as the noise on observer position increases. The order of LS, WLS, and TLS is the
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Figure 2.5: The MSE performance of the proposed algorithms versus standard deviation
of the observer position noise (the first scenario).
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Figure 2.6: The MSE performance of the proposed algorithms versus the number of
observations (the first scenario).

same as Fig. 2.3. The ML and WTLS have the optimum performance for lower noise (less
than 0.2 m). However, the MSE of ML intensifies as the noise on the observer position
increases, which is consistent with the results in [11], while the WTLS performance stays
close to the CRLB. Although the ML estimator is expected to be asymptotically efficient,
efficiency is not guaranteed for a finite number of observations [23]. Therefore, we expect
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the ML gets back to an efficient estimator for sufficiently large data records as indicated
in Fig. 2.6.

Fig. 2.6 depicts the MSE of proposed algorithms for different number of observations
in the first scenario when the standard deviation of bearing measurement and observer
position noises are 4◦ and 1 m respectively. It can be seen that when the number of
observations increases, the MSE of all algorithms diminishes. However, the MSE decline
for LS and WLS is very slow and almost flat for the large number of observations (i.e.,
greater than 160) because they do not consider the disturbances in the data matrix G

in (2.19). On the other hand, the WTLS obtains the CRLB performance by increasing
the number of observations presenting asymptotically efficient behavior. The MSE of the
ML is also interesting. It has inferior performance compared to TLS for the number of
observations less than 20, but it surpasses TLS for greater number of observations. We
can conclude that it might be optimal for large data records.



Chapter 3

Received Signal Strength-Based

Sensor Localization

3.1 Introduction

As mentioned in previous sections, there are many types of measurement used for local-
ization in a WSN. Among them, the RSS measurement is always an interesting method
because of its low complexity and costs of devices [2].

Anchor sensor is equipped with a receivers received signal strength indicator (RSSI)
circuit to measure the power transmitted by sources. The RSS measurements contain
information from distance between anchors and the source. There are many localization
techniques based on RSS measurements in the literature. The ML estimator and the
CRLB were derived in [3]. In addition, RSS linear estimators such as LS and constrained
least squares (CLS) were studied in [5]. The RSS localization with unknown path loss was
investigated in [33] where the corresponding CRLB and ML estimator were introduced.

To compute ML solution, it is required to minimize a nonconvex cost function which is
computationally intensive. The ML cost function should be solved by iterative optimiza-
tion algorithms that requires a very good initialization to make sure that the algorithm
converges to the global minimum [23]. Convergence problems of the ML estimator can
be addressed by using semidefinite programming (SDP) techniques, in which the ML cost
function is approximated with a convex function [18, 19, 25, 34, 35]. In [34, 35], the general
localization problem in WSN was solved. Their SDP algorithm is applicable if we have
noisy distances between anchors and sensor which can be easily obtained from time-of-
arrival measurements. However, in the case of RSS localization, we first have to estimate
the distances from RSS measurements [2] and then apply their algorithm. Another SDP
approach was introduced in [18] where the authors introduced an SDP technique which
can be directly applied on RSS measurements and it is not required to find the distances.

RSS-based localization requires a calibration between the source and anchors [2].
Since, in the RSS model, the measurement is a function of transmit power, finding the
location of the source is not feasible as far as its transmit power is not available at an-
chors. Consequently, the source must transfer its transmit power to the anchors during
RSS measurements which needs additional hardware in both source and anchors [2].

In this work, we assume that the anchors are not aware of the source transmit power.
Dealing to this problem, in general, we introduce two methods. In the first method, we
estimate the unknown transmit power along with source location (we call this method
URSS). In the second method, the dependency of the unknown transmit power in RSS
model is eliminated from all measurements by using RSS difference between two anchors
and a suitable estimator is applied in consequence, hereafter we call this method DRSS.

19
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For both methods, we propose a novel SDP approach to transform the ML or the nonlinear
least-squares (NLS) cost function to a convex one by using approximations and relaxation
techniques. Our proposed SDP approach is different from those studied in [18, 25] since
there is no information about transmit power. Certainly, for the proposed problem, it is
also not possible to use the algorithms derived in [34, 35] because we cannot extract any
knowledge about distances from RSS measurement when there is a total lack of infor-
mation about source transmit power [2]. We further linearize the proposed measurement
model and apply the least squares (LS) solution to our linear model. We also derive the
novel weighted total least squares estimator to enhance the performance of LS [22, 26].
Although RSS localization is generally biased [3], we employ the corresponding CRLB as
a benchmark to compare the performance of proposed algorithms.

The rest of chapter is organized as follows. In Section II, we describe the proposed RSS
localization model. In Section III, the CRLB as a performance bound and ML estiamtor
as an optimal estimator are derived. The proposed localization algorithms are derived
in Section IV. The performances of proposed algorithm are evaluated through computer
simulations in Section V.

3.2 System Model

Through this chapter, we have used the following notations. ‖ · ‖2 denotes `2 norm,
diag {·} denotes the diagonal matrix. IM and 0M denote M by M identity and zero
matrices respectively. For arbitrary symmetric matrices A and B, we write A � B if
A−B � 0 that means A−B is positive semidefinite.

Let xs = [xs, ys]
T ∈ R

2 be the coordinates of the source to be determined. Denote
by C = {1, . . . ,M} the set of indices of the anchors connected to the source and by
xi = [xi, yi]

T ∈ R
2, i ∈ C the known location of anchor nodes. Under the log-distance

path loss and log-normal shadowing model, the average received power (in dB) at ith
anchor, Pi, is modeled as [3]

Pi = P0 − 10β log10
di
d0

+ ni, i ∈ C, (3.1)

where P0 is the reference power at reference distance d0 (which depends on transmit
power), β is the path loss exponent, di = ‖xs − xi‖2 is the true distance between source
and ith anchor, and ni for i ∈ C are the log-normal shadowing term modeled as iid zero-
mean Gaussian random variables with variance σ2

dB. Without loss of generality, we can
assume that d0 = 1m. We also assume that other calibration parameters such as antenna
gain are included in P0.

3.3 Performance Bound and Optimal Estimator

As mentioned before, the CRLB defines a lower bound for the variance (or MSE) of any
unbiased estimators which is usually applied for the performances comparison of different
unbiased estimators [23]. To compute the CRLB, let θ = [xT

s , P0]
T be the unknown

parameter vector to be estimated. We have to compute the Fisher information matrix
of measurements model to compute the corresponding CRLB. The Fisher information
matrix of model (3.1) is [23]

Im,n =

[

∂g(θ)

∂θm

]T

C−1

[

∂g(θ)

∂θn

]

, m, n = 1, 2, 3, (3.2)
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where C = σ2
dBIM , g(θ) = [g1(θ), g2(θ), . . . , gM(θ)]T , gi(θ) = P0 − 10β log10 di, and

∂g(θ)

∂θi
=

[

∂g1
∂θi

∂g2
∂θi

· · · ∂gM
∂θi

]T

, (3.3)

where

∂gi
∂θ1

=
∂gi
∂xs

=
10β

ln 10

xi − xs

d2i
, (3.4a)

∂gi
∂θ2

=
∂gi
∂ys

=
10β

ln 10

yi − ys
d2i

, (3.4b)

∂gi
∂θ3

=
∂gi
∂P0

= 1. (3.4c)

The CRLB of unknown parameters are the diagonal elements of the inverse of Fisher
information matrix (3.2) as [23]

CRLB(θk) = [I−1]kk, k = 1, 2, 3 (3.5)

3.3.1 Maximum Likelihood

Let θ = [xT
s , P0]

T be the unknown parameter vector to be estimated, the ML estimator
based on the measurements in (3.1) is computed by following nonconvex optimization
problem [23]

θ̂ML = argmin
θ

∑

i∈C

(Pi − P0 + 10β log10 di)
2 . (3.6)

We can express (3.6) alternatively as

θ̂ML = argmin
θ

∑

i∈C

log210
hiλi

α
, (3.7)

where hi , d2i , λi , 10Pi/5β, and α , 10P0/5β. The solution of (3.7) is not closed-form,
but can be approximated, for instance, by the Gauss-Newton (GN) method [23]as [23]

θk+1 = θk +
(

HT
k Hk

)−1
HT

k (p− g(θk)), (3.8)

where Hk = ∂g(θ)/∂θ|
θ=θ

k , and p = [P1, P2, . . . , PM ]T is observation vector. The draw-
back of GN method is that it requires a good initialization to make sure that the algorithm
converges to the global minimum.

3.4 Localization Algorithms

3.4.1 Semidefinite Programming

The cost function of ML is severely nonlinear and nonconvex and finding its global mini-
mum is computationally intensive. By using SDP relaxation, we convert the ML problem
to a convex optimization problem. The advantage of SDP problem over ML is that it
can be solved with efficient computational methods that certainly converge to its global
minimum [36]. As we mentioned earlier, we have two methods to deal with our problem.

Let us start with the first method. Consider (3.1), by rearranging and diving both
side by 5β, it can be reformulated as

log10 d
2
iλi =

P0

5β
+

ni

5β
, i ∈ C. (3.9)
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Taking power of 10 from both side yields

d2iλi = α10ni/5β, i ∈ C. (3.10)

For sufficiently small noise, the the right hand side of (3.10) can be approximated using
the first-order Taylor series expansion as

d2iλi = α

(

1 +
ln 10

5β
ni

)

, i ∈ C. (3.11)

This can be rewritten as
hiλi = α + n′

i, i ∈ C, (3.12)

where n′
i is a zero-mean Gaussian random variable with variance (ln10)2α2σ2

dB/25β
2. Now,

corresponding ML estimator of (3.12) is

x̂s = argmin
xs,α

∑

i∈C

(hiλi − α)2 . (3.13)

To progress, we have to use another approximation. The ML estimator of (3.13) tries to
minimize the `2 norm of the residual error. For sufficiently small residual error we can
approximate (3.13) by using `1 norm rather than `2 norm [36]

x̂s = argmin
xs,α

∑

i∈C

|hiλi − α| . (3.14)

Indeed, we approximately turn the original ML cost function of (3.7) to another cost
function (3.14). The cost function (3.14) is still nonlinear and noncovex. In the next step,
we define an auxiliary variable y as

hi = d2i = ‖xs − xi‖
2
2 = y − 2xT

i xs + xT
i xi, i ∈ C (3.15)

where y = xT
s xs. The minimization problem (3.14) can be relaxed to an SDP optimization

problem as [36]

min
xs,α,ti,hi,y

∑

i∈C

ti (3.16a)

s. t. − ti < hiλi − α < ti, (3.16b)

hi = y − 2xT
i xs + xT

i xi, (3.16c)

y ≥ xT
s xs. (3.16d)

Solution of (3.16) can be found effectively with optimal algorithms such as interior point
method [36]. Moreover, convergence to the global minimum is guaranteed in SDP opti-
mization problems [36].

Note, in (3.16), we have used the inequality constraint (3.16d) instead of the equality
to relax our problem to a convex problem [36]. The inequality (3.16d) can be written as
a linear matrix inequality (LMI) using the Schur complement [36]

[

y xT
s

xs I2

]

� 03. (3.17)

Here, we continue with describing the SDP optimization for the second method. We
select an anchor as a reference (with index r ∈ C) and calculate DRSS measurements.
Hence (3.1) is expressed as

Pr,i = Pr − Pi = 10β log10
di
dr

+mi , i ∈ C, i 6= r, (3.18)
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where Pr is the received power at the reference anchor, dr is distance between the reference
anchor and the source, and mi = nr − ni is a zero-mean Gaussian random variable with
variance 2σ2

dB. Since the noise of reference anchor appears in all DRSS measurements,
they are correlated, which makes it difficult to relax the ML problem into an SDP problem.
For this reason, we proceed with the LS estimator instead. The LS solution of (3.18) is
[23]

x̂s = argmin
xs

∑

i∈C,i 6=r

(

Pr,i − 10β log10
di
dr

)2

. (3.19)

Using the procedure mentioned for previous case, we can approximate solution of (3.19)
with the following optimization problem,

x̂s = argmin
xs

∑

i∈C,i 6=r

∣

∣d2iϑi − d2r
∣

∣ . (3.20)

where ϑi = 10Pr,i/5β . The minimization problem (3.20) can be relaxed to an SDP opti-
mization problem as [36]

min
xs,ti,hi,hr,y

∑

i∈C,i 6=r

ti (3.21a)

s. t. − ti < hiϑi − hr < ti, (3.21b)

hi = y − 2xT
i xs + xT

i xi, (3.21c)

hr = y − 2xT
r xs + xT

r xr, (3.21d)

y ≥ xT
s xs. (3.21e)

Now, we have to pick up one of anchors as a reference. Note that the effect of log-normal
shadowing is multiplicative to the distance in (3.1) [3], hence, long measured distances
have higher error than short ones [3]. Consequently we select the nearest anchor to the
source (the anchor with the highest RSS) as a reference anchor to prevent raising more
errors in equations.

In summary, to apply the SDP solution for our localization problem, we have approxi-
mated the original cost function of ML (or NLS) to another cost function and then relaxed
it to a convex problem. In the first step, we have substituted the function

∑

|λihi−α| for
the function

∑

log210(λihi/α). Fig. 3.1a depicts two mentioned functions versus unknown
parameters h and α (λ is a known parameter). To compare the cost functions of (3.7)
and (3.14), we have used one realization. Five anchors are randomly placed in a square
of 20 × 20 meters and a source located at [10, 10]T . The standard deviation of the log-
normal shadowing is 3 dB. Fig. 3.1b shows the cost function of the ML estimator given
in (3.7) versus x and y coordinates when we have fixed the value of P0 at the true value.
It can be seen that the ML cost function has a global minimum at [10.5, 11.5]T (the step
of mesh grid is 0.5) and some local minima and saddle points (e.g., a local minimum at
[2.5, 17.5]T ). The cost function of (3.14) is shown in Fig. 3.1c which is much smoother
than (3.7) and has a global minimum at [10, 11.5]T . Fig. 3.1c still requires to be relaxed
to a convex shape. In the next step, by using SDP relaxation of (3.16d), we transform
function (3.14) to a convex function (3.16). Solution of (3.14) and (3.16) for source loca-
tion will coincide, if the minimum of (3.16) occurs for y = xT

s xs or if rank 1 condition for
y is satisfied.

3.4.2 Least Squares

In this section, we describe linear estimators for our localization model (3.1). Similar to
the previous cases, we have two methods to deal with the unknown transmit power.
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Figure 3.1: (a) depiction of functions |λh−α| and log210(λh/α) versus unknown variables
h and α (for simplicity, λ = 1). (b) cost function of (3.7), (c) cost function of (3.14)
versus x and y coordinates, the minimum of the cost functions is indicated with white
color.
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Consider (3.1), in the absence of noise, we can reformulate it as

d2i = ζiα, i ∈ C, (3.22)

where ζi , 10−Pi/5β. Let θ1 = [xT
s ,x

T
s xs, α]

T be the unknown vector to be estimated, and
ki = xT

i xi. Expanding and rearranging (3.22), we can express (3.22) in matrix form as

Aθ1 = b, (3.23)

where

A =







2xT
1 −1 ζ1
...

...
...

2xT
M −1 ζM






,b =







k1
...

kM






. (3.24)

The LS solution of (3.23) is [23]

θ̂1,LS1 = (ATA)−1ATb. (3.25)

Now, we derive the LS estimator for the second method. Consider (3.18), we pick up
an anchor as a reference and calculate the DRSS from the other anchors. In the absence
of noise, (3.18) would be expressed as

d2iϑi = d2r , i ∈ C, i 6= r, (3.26)

Let θ2 = [xT
s ,x

T
s xs]

T be the unknown vector to be estimated, then (3.26) can be expressed
in matrix form as

Pθ2 = q, (3.27)

where

P =







...
...

(2ϑixi − 2xr)
T (1− ϑi)

...
...






,q =







...
ϑiki − kr

...






, i ∈ C, i 6= r. (3.28)

The LS solution of (3.27) is [23]

θ̂2,LS2 = (PTP)−1PTq. (3.29)

The reference anchor is selected as mentioned before for SDP-DRSS algorithm.

3.4.3 Weighed Total Least Squares

When we have measurement noise in the formulation of LS estimators, the disturbances
appear in both data matrix and observation vector. For instance, in (3.27), the value of
ϑi is subject to measurement error which emerges in both data matrix P and observation
vector q, therefore, both of them corrupted by noises. LS only respects disturbances in
the observation vector [23]. The more general case of LS is total least squares (TLS) which
can tolerate disturbances in both data matrix and observation vector [21]. TLS assumes
that noises in the data matrix and observation vector are equally size and independent and
identically distributed. However, this assumption is not valid in our expressions (3.23)
and (3.27). The new approach, called weighted total least squares (WTLS) allows us to
have unequally sized noises in both data matrix and observation vector [21]. The full



3.4. LOCALIZATION ALGORITHMS 26

details about finding the solution of a WTLS problem is given in [22, 26]. Briefly, the
WTLS solution of (3.23) is obtained by the following optimization problem [26]

θ̂1,WTLS1 = argmin
θ1

∑

i∈C

r2i
ui
, (3.30a)

s.t. ri = aT
i θ1 − bi, (3.30b)

ui = θT
1W11,iθ1 − 2θT

1W12,i +W22,i, (3.30c)

where ai and bi are ith row of A and ith element of b respectively, and covariance matrices
are

W11,i = E[aT
i ai] = Var(ζ̂i) diag[0, 0, 0, 1], (3.31a)

W12,i = E[biai] = [0, 0, 0]T , (3.31b)

W22,i = E[b2i ] = 0, i ∈ C. (3.31c)

Consider (3.23), the noise only appears in ζi. Let ζ̂i be the value of ζi corrupted by the
noise given (3.1), then we have ζ̂i = ζi10

ni/5β . Since ni is Gaussian random variable, ζ̂i
has log-normal distribution with variance,

Var(ζ̂i) = ζ̂2i

(

e2σ
2

ζ + eσ
2

ζ

)

, σζ =
σdB ln 10

5β
, i ∈ C. (3.32)

The cost function of WTLS (3.30) is nonlinear and has not any closed-form solution [26].
Solution of (3.30) can be obtained approximately by iterative algorithms [26].

The corresponding WTLS solution of (3.27) can be derived in a similar manner. The
noisy parameter in (3.27) would be ϑi. Denote ϑ̂i by the value of ϑi corrupted by noise
in (3.18) which has log-normal distribution with parameters

µϑ,i = lnϑi, σϑ,i =
2 ln 10

5β
σdB , (3.33)

and therefore the variance of ϑ̂i

Var(ϑ̂i) = e2µϑ,i

(

e2σ
2

ϑ,i + eσ
2

ϑ,i

)

, i ∈ S. (3.34)

The WTLS solution of (3.27) is given by

θ̂2,WTLS2 = argmin
θ2

∑

i∈S

r2i
ui
, (3.35a)

where

ri = pT
i θ2 − qi, i ∈ S, (3.35b)

ui = θT
2V11,iθ2 − 2θT

2V12,i +V22,i, i ∈ S, (3.35c)

and covariance matrices are

V11,i = E[pT
i pi] = Var(ϑ̂i) ziz

T
i , i ∈ S, (3.36a)

V21,i = E[qipi] = Var(ϑ̂i) kizi, i ∈ S, (3.36b)

V22,i = E[q2i ] = Var(ϑ̂i) k
2
i , i ∈ S, (3.36c)

where zi =
[

2xT
i −1

]T
.
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Figure 3.2: The proposed network configuration. The red squares indicate the location of
anchors and blue crosses show the location of sensor in each setup.

3.5 Simulation Results

In this section, we compare the performance of proposed algorithms through computer
simulations. Fig. 3.2 shows the configuration of the proposed network. Twenty anchors
are placed on the sides of a square of 20m × 20m in equal distances and a source is
distributed in a square area of 19m × 19m. 361 networks is generated and in each
network 100 noise realizations are done. The root mean square error (RMSE) of the
proposed algorithms and CRLB are computed by averaging over all experiments. The
cost function of ML and WTLSs are minimized by MATLAB routine fminsearch, with
default setting, which uses Nelder-Mead Simplex method. The proposed SDP problems
is solved by CVX toolbox [37] as the interference and SeDuMi as the solver [38].

The RMSE of the proposed algorithm versus the standard deviation of the log-normal
shadowing is depicted in Fig. 3.3. The ML and WTLS algorithms are initialized with the
true values to increase the probability of convergence to the global minimum. Fig. 3.3
shows that the performance of the LS algorithms are very poor since they do not respect
errors appearing in the data matrix. As we expected, the WTLS estimators perform
substantially better than LSs because they respect unequally sized disturbances in both
the data matrix and observation vector. However, RMSE of WTLS-URSS is slightly
lower than WTLS-DRSS. The reason is that in the derivation of WTLS, we assume that
disturbances in each row of data matrix and observation vector are independent (row-
wise WTLS [21]), but this assumption is not valid for WTLS-DRSS algorithm since the
measurement noise of reference anchor appears in all rows and consequently the rows of
data matrix and observation vector are correlated. Furthermore, Fig. 3.3 demonstrate
that the ML has a superior performance to other algorithms and only slightly worse than
CRLB at low SNR. SDP-URSS performs very well, having a negligible gap with ML.
SDP-DRSS performance is moderately worse than SDP-URSS because our SDP-DRSS
does not consider the noise correlation due to the reference anchor. Fig. 3.4 depicts
the cumulative density function (CDF) of the location error ‖x̂s − xs‖2 of the proposed
algorithms when the log-normal shadowing standard deviation is fixed at 3 dB. The order
of the proposed algorithms is the same as in Fig. 3.3.

Showing the advantage of SDP approach over other methods, we have considered
the previous configuration expect that the ML and WTLSs algorithms were randomly
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Figure 3.3: The RMSE of the proposed algorithms.

initialized. Fig. 3.5 shows the CDF of proposed algorithms when the configuration is the
same as Fig. 3.4 except ML and WTLSs algorithms are randomly initialized. It can be
easily seen the performances of ML and WTLSs decrease by using random initialization
because they either diverge or converge to a local minimum about 10 percent of times.
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Figure 3.4: The CDF of the proposed algorithms, σdB = 3 dB. Iterative algorithms are
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Chapter 4

Conclusions and Future work

4.1 Conclusions

The aspect of localization in WSN was investigated in this thesis. Since the merit of
sensors information depends on their location, localization is one of the most important
subject in WSNs. Through this thesis, two specific situations in localization were studied.
The bearing-only target localization when the observer position is subject to error was
surveyed in the first part. Classic bearing-only localization assumes that the exact loca-
tion of the observer is available, however, in this work it is assumed that the estimator
does not know the exact location of observer and only the noise values are accessible.
The CRLB of the proposed localization model was derived. The ML, linear LS, WLS,
and TLS estimators were developed for this problem and additionally a novel method of
positioning based on the weighted total least squares (WTLS) was introduced. It was
shown that under some circumstances if the ML estimator does not know about observer
position errors, it achieves the same estimate for the target location as the ML estimator
knowing about observer position error. Computer simulations were conducted to assess
the performance of the proposed algorithms. Simulation results demonstrated that the
proposed WTLS method outperforms other methods and obtains the CRLB accuracy
asymptotically.

The single source RSS-based localization with unknown transmit power was studied
in the second part of the thesis. The transmit power of the source is required in RSS
localization to find the location of the source. Dealing with this problem, we introduced
two methods. Eliminating the transmit power from RSS measurement by considering
differences between pairs of RRS measurements is the first method. The second method
is that the transmit power of source is considered as a nuisance parameter and estimated
along with source location. The corresponding CRLB was derived for this problem. A
novel SDP approach was derived and a partly novel WTLS algorithm was introduced.
The simulation results illustrated that the proposed SDP has a significant accuracy very
close to the CRLB. Moreover, the proposed WTLS outperforms classic LS algorithms.

4.2 Future Work

In both two studied subjects, the single sensor (or target) localization was investigated.
For the first part, we work to extend the algorithms for multi-target localization and also
tracking of a target. Using recursive TLS and WTLS would also be another possible
future work. Extension to multi-sensor localization and also cooperative localization in
RSS with unknown transmit power is the second task we are currently working on.
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