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Abstract 

 

Hypothesis: The velocity response at the contralateral cochlea from bone conducted (BC) 

stimulation depends on the stimulation position. 

Background: BC sound transmission in the human skull is complex and differs from air 

conducted sound. BC sound stimulates both cochleae with different amplitudes and time 

delays influencing hearing perception in a way that is not completely understood. One 

important parameter is the stimulation position on the human skull. 

Method: By applying BC stimulation at 8 positions on both sides of seven human cadaver 

skulls the contralateral velocity response of the cochlear promontory was investigated in the 

frequency range 0.1 to 10 kHz. Using previous data from ipsilateral stimulation the 

transcranial transmission (TT) and effects of bilateral stimulation to one cochlea was 

calculated. 

Results: The contralateral transmission from the 8 positions showed small differences but the 

TT showed a generally increased cochlear separation when the stimulation position 

approached the cochlea. The effect of simultaneous bilateral stimulation was calculated 

showing a low frequency negative effect for correlated signals while uncorrelated signals 

gave 3 dB gain. At higher frequencies there was less interaction of the combined stimulation 

due to the greater inter-cochlear separation. Also, the greatest time difference between 

ipsilateral transmission and contralateral transmission was at positions close to the cochlea.  

Conclusion: The stimulation position only slightly affects the amplitude and phase of the 

contralateral cochlear velocity response. However, due to the great influence from the 

ipsilateral transmission, a position close to the cochlea would be beneficial for patients with 

bilateral BC hearing aids.



Introduction 

 

Studies focusing on patients with symmetrical bilateral conductive hearing loss have shown 

improved aided pure tone thresholds, sound localization, and speech reception thresholds in 

both quiet and noise when fitted
 
 bilaterally with Baha® (Cochlear Bone Anchored Solutions 

AB, Mölnlycke, Sweden) compared to monaural fitting (1,2). Such studies indicate that this 

patient group uses binaural cues but to a lesser extent compared with air conduction hearing 

(3). The reason for this reduced binaural effect may originate in bone conducted (BC) sound 

that crosses over to the contralateral cochlea leading to a reduced stimulation difference 

between the two sides and less information to extract at the brainstem level.  

 

Patients with single sided deafness (SSD) can be rehabilitated by a contralateral routing of 

signal (CROS) hearing aid (HA) (4) or by a Baha® on the deaf side. Both audiometric results 

and quality of life measures indicate benefit with the Baha® compared to CROS and the 

unaided situation (5-8) but, for an unknown reason, a substantial part of patients that test the 

Baha® on a head band do not proceed with surgery (9). It has been suggested that different 

individual transcranial transmission (TT) could explain this discrepancy (3).  

 

A few studies on human cadavers have shown that BC sound transmission improves when the 

stimulation position approaches the cochlea (10-12) and especially if it is situated within the 

mastoid surface area that projects towards the petrous part of the temporal bone (MAPP) (10). 

This conclusion has led to an ongoing project of developing a bone conduction implant (BCI) 

in order to avoid the Baha® percutaneous solution and in this way get a BC HA with equal or 

better amplification and less risk of skin problems (13,14).  



The aims of this study are to (i) describe BC sound transmission in terms of the velocity 

response at the contralateral cochlear promontory related to the stimulation force at eight 

separate stimulation positions and (ii) with data from a previous study on ipsilateral BC 

transmission (10) calculate the TT and investigate effects of bilateral stimulation to one 

cochlea. 



Materials and method 

 

This study was approved by the Regional Ethics Committee, Göteborg. The same cadavers 

and measurement setup was used in a previous study where a detailed description of the 

cadavers, calibrations, measurement setup, and test procedures can be found (10). In what 

follows, an overview of the measurements is presented. 

 

The cadavers 

Both sides of each skull of seven embalmed cadavers (2 males and 5 females, ages between 

60 and 80 years) were used; neither macroscopic nor microscopic inspection showed any 

signs of previous ear disease. Eight stimulation positions were established on each side of the 

skull using 4 mm titanium fixtures (Cochlear Bone Anchored Solutions AB, Mölnlycke, 

Sweden). Position 1 was placed at the standard Baha® position 55 mm posterior and 30 mm 

superior to the ear canal opening. With a 10 mm spacing positions 2-6 were placed in a 

straight row between the Baha® position and the ear canal opening. Position 7 was placed in 

the root of the zygomatic process 5 mm superiorly and anteriorly to the ear canal opening and 

position 8 was placed close to or in contact with the otic capsule which was available after 

finishing the measurement procedures on the other positions, followed by a mastoidectomy 

(see Figures 1 and 2). 

 

The fixture stability was measured with Resonance Frequency Analysis (RFA) (Osstell™ 

transducer and Osstell™ instrument, Integration Diagnostics AB, Göteborg) where the 

fixtures are given an Implant Stability Quotient (ISQ) (1-100) according to the resonance 

frequency of the RFA transducer attached to each fixture. High ISQ values indicates stable 



fixtures (15). The mechanical point impedance gives information about the mechanical 

properties at a specific position on the skull (11,12,16) but can also be used to verify the 

fixture stability. A loose implant causes a significant decrease in impedance. 

 

Figure 1 Illustration of the fixtures (circle with cross) on the right side of the skull. Above 

the row of fixtures the corresponding position number 1 to 7 is marked within a 

rectangle, and below the row of fixtures the distance in mm from the ear canal 

opening is shown with a ruler. 



 

Figure 2 Illustration of the approximate location of position 8 in the opened mastoid. 

 

Cochlear vibration 

The velocity of the cochlear promontory as a response to a force stimulation from a transducer 

attached to one of the fixture positions on the cadaver skull was measured by a laser Doppler 

vibrometer (LDV) (HLV-1000, Polytech, Waldbronn, Germany). The tympanic membrane, 

malleus, and incus were removed to enable the laser beam to reach the cochlear promontory; 

small glass spheres were positioned on the promontory to enhance the reflection of the laser 

beam. The stimulation signal was provided by the measurement system, the Brüel & Kjær 

Pulse 9.0 (Brüel & Kjær Sound & Vibration Measurment A/S, Nærum, Denmark), that used a 

stepped sine procedure to measure the cochlear promontory vibration with a frequency 

resolution of 24 frequencies per octave in the 0.1 to 10 kHz range. The output from the 



vibration transducer was first calibrated on the skull simulator TU-1000 (17) for the provided 

stimulation force. 

 



Results 

I. RFA and Impedance measurements 

Average and standard deviation of the ISQ value (81.2 ±2.8) indicated rigid attachment of the 

fixtures in all positions (18). The mechanical point impedance results were similar to 

measurements on human skulls in vivo (16) also indicating that the cadaver skulls had 

mechanical properties similar to live human skulls. For details regarding RFA results, see 

(10). 

 

II. Transcranial transmission efficiency 

 

In Figure 3 the contralateral cochlear responses from all skulls are shown in mm/s as 

measured by the LDV when the stimulation was 1 Newton at position 1. At low frequencies, 

between 100 Hz and 500 Hz, the magnitude of the velocity decreases with frequency at an 

approximately constant rate. This is a manifestation of the low-frequency mass-like behaviour 

of the skull. In the individual traces a first anti-resonance appears in the 0.9 to 1.1 kHz 

frequency region. Although there are numerous anti-resonances in the individual traces, they 

rarely appear at the same frequencies for all test ears and the median data (thick line) show a 

smooth response.  

When comparing the median contralateral velocity response at the cochlea with stimulation at 

the different positions 1-8 (shown in Figure 4) the results are similar when stimulating at 

positions 1-5, generally lower when stimulation is at positions 6 and 7, and overall higher 

with stimulation at position 8. These results are even more obvious in Figure 5 where the 

median contralateral responses from stimulation at positions 2 to 8 are related to stimulation 

at position 1, i.e. the difference in sensitivity of the contralateral response when moving the 



stimulation from position 1 to another position. At frequencies below 0.2 kHz noise affects 

the LDV signal and the results should be interpreted with care. However, there is a clear 

difference between positions 6 and 7 compared with the other positions at frequencies up to 

0.8 kHz.  

 

Figure 3 The magnitude of the velocity at the contralateral cochlea as measured by the 

LDV when the stimulation force is 1 Newton at position 1. The thin lines show 

the individual results from both sides of 7 subjects (14 ears). The thick line 

shows the median of the individual results. 

 



 

Figure 4 The magnitude of the velocity in mm/s at the contralateral cochlea as measured by 

the LDV when the stimulation force is 1 Newton. The results are presented for all 

eight stimulation positions where each line represents the median from 14 

measurements (7 subjects x 2 sides). Stimulation at position 1: thick solid line; 

position 2: thin dashed line; position 3: thin dotted line; position 4: thin dashed-

dotted line; position 5: thin solid line; position 6: thick dashed line; position 7: 

thick dotted line; position 8: thick dashed-dotted line. 

 

The TT (Figure 6) for all positions shows similar results at low frequencies (below 0.3 kHz) 

which can be explained by rigid body motion of the skull at these frequencies. At frequencies 

above 0.3 kHz the TT from the different positions becomes spread, especially from 0.6 to 0.8 

kHz where the contralateral transmission dominates the response for stimulation far from the 

cochlea (positions 1-5), with the opposite for positions close to the cochlea (positions 6-8). 

This pattern is explained by the anti-resonances in the ipsilateral transmission (positions 1-5) 

and the improved vibration transmission for ipsilateral positions close to the cochlea 



(positions 6-8). At higher frequencies and for positions close to the cochlea the TT generally 

decreases but for positions far from the cochlea (positions 1 to 3) it stays on average within 0 

to -5 dB.  

 

Figure 5 The relative transmission measured as the velocity of the contralateral cochlea 

with stimulation at positions 2 to 8 relative to that with stimulation at position 1. 

The line properties given in the plot are the same as in figure 2 except position 1 

that is non-existent.  

 



 

Figure 6 The transcranial transmission for stimulation at each position calculated as the 

relation between contralateral and ipsilateral transmission. Each line is the 

median of 14 ears (7 subjects x 2 sides). The same line properties as in figure 2 

are used. 

 

III. Bilateral stimulation calculations 

 

Stationary and non-stationary signals 

We will here discuss two interpretations of bilateral stimulation, (i) the stimuli at the two 

sides are stationary and equal (in amplitude and time) and (ii) the stimuli at the two sides is 

independent of each other or have a non-stationary behaviour. In the first interpretation, two 

equal and stationary signals, the result at one cochlea is the complex sum of amplitude and 

phase of the ipsilateral and contralateral transfer functions. This is displayed in Figure 7 as the 

increase of bilateral stimulation compared with ipsilateral stimulation only. Since both 



amplitude and phase are included in the calculation, the result is either a constructive addition 

(signals in phase, level above 0 dB in Figure 7) or a destructive addition (signals is of 

opposite phase, level below 0 dB in Figure 7) which, in an extreme case, leads to a total 

cancellation. 

 

Figure 7 The effect of bilateral stimulation from each position at one cochlea presented as 

the relation between bilateral stimulation and unilateral stimulation. The 

bilateral stimulation of the cochlea is calculated as the complex sum of the 

ipsilateral and contralateral transmissions (includes both phase and amplitude). 

The same line properties as in figure 2 are used. 

 

 

For all positions, a bilateral stimulation results in lower cochlear stimulation at low 

frequencies (Figure 7) since the vibrational force is applied with opposite direction and the 

difference in amplitude (see figure 6) and phase is small for ipsilateral and contralateral 



stimulation. At higher frequencies, differences in both the amplitude and phase of the 

ipsilateral and contralateral transfer functions result in an addition that is interchangeably 

positive or negative, and for all positions the influence from bilateral stimulation compared to 

unilateral stimulation becomes less due to the worse amplitude transmission from the 

contralateral side. The great improvement in the frequency range 0.3 to 1.0 kHz (range 

depending on position) is primarily due to the anti-resonance in the ipsilateral pathway that is 

not equally present in the contralateral pathway.  

 

In the second interpretation the influence from bilateral stimulation is the same as the sum of 

the sound energy transmitted from the two sides
1
 (see Figure 8). With this type of calculation, 

the phase is irrelevant and the addition always results in a sum that is equal or greater than the 

sound from the ipsilateral transmission alone. According to this computation, if both sides 

contribute equally, the increase becomes 3 dB (doubling of the sound energy) which is the 

case for all positions at low frequencies. As in Figure 7 there is an increase for most 

stimulation positions in the frequency range 0.3 to 1.0 kHz, again due to the ipsilateral anti-

resonance. At frequencies above 1 kHz, the results for the positions outside the MAPP 

(positions 1-3) show in general 2 to 3 dB increase with bilateral transmission while positions 

closer to the cochlea result in less addition due to the relatively lower contribution from the 

contralateral stimulation. It should be remembered that this analysis is only for one cochlea; 

no binaural effects can be seen.  

                                                 
1
 This is calculated as the sum of the power for each measured frequency component. 

 



 

Figure 8 The effect of bilateral stimulation from each position at one cochlea presented as 

the relation between bilateral stimulation and unilateral stimulation. The 

bilateral stimulation of the cochlea is calculated as the sum of the power of the 

ipsilateral and contralateral transmissions (only includes amplitude). The same 

line properties as in figure 2 are used. 

 

 

Time delay 

Intuitively, since there is a distance difference between the ipsilateral and contralateral 

stimulation points and the cochlea, one may expect differences in the time delay between 

ipsilateral and contralateral stimulation. Time delays can be estimated from the phase of the 

transfer function according to  


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


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D         



where τD is the group delay in seconds, Φ is the phase in radians and ω is the angular 

frequency. One prerequisite for the above calculation is that the phase function is smooth, i.e. 

it cannot be used to estimate time delays in frequency regions containing sharp resonances or 

anti-resonances or in frequency areas where the mode of wave transmission changes (11). 

Figure 9 illustrates the time delay difference between ipsilateral and contralateral stimulation 

for all eight positions calculated from the median of the phase function from each position in 

the 1 to 10 kHz frequency range. At frequencies 1 to 5 kHz, the greatest time difference is 

close to 0.5 ms for positions outside the MAPP and 1.0 ms for positions on the MAPP. Above 

this frequency the difference is limited comparing different positions and becomes 0.3-0.4 ms.      

 

Figure 9 Estimation of the differences in time delay between contralateral and ipsilateral 

transmission. The same line properties as in figure 2 are used. 

 

 



Discussion 

 

Cochlear vibration as measure of BC sound 

 

According to results both from the current study and from an earlier study on ipsilateral BC 

stimulation (10) the optimal position for a BC hearing aid would be as close to the cochlea as 

possible for unilateral and bilateral conductive hearing loss and, among the positions used 

here, at position 1 for SSD. We used the promontory velocity response from vibrational 

stimulation on the skull of human embalmed cadavers as a measure of BC cochlear 

stimulation. The relevance of this method can be argued since the correlation to hearing 

perception is currently unknown. Other factors that may contribute to the basilar membrane 

motion besides the vibration of the cochlea itself are not included. However, cochlear 

vibration relates to the inertia of the cochlear fluids as well as cochlear compression response 

leading to a basilar membrane motion; these stimulation modes are regarded as the most 

important contributors to BC sound (19).  

 

When measuring the cochlear velocity response with stimulation at positions 1 to 7, 14 

titanium fixtures were positioned in the cranial bone (7 at each side).A fixture gives higher 

stiffness than the original bone while the masses of both are in the same order. One may argue 

that this alteration of the local stiffness at points in the mastoid region would change the 

vibration transmission from the skull surface to the cochlea. However, according to Stenfelt 

and Goode (11) the speed of sound in the skull bone ranges between 250 to 400 m/s which 

means that the sound wavelength is approximately 10 times the size of the fixtures at the 

highest frequencies tested. We therefore believe that the fixtures at the skull surface only 



minimally affected the measurements. The mastoidectomy performed for placing position 8 

would greatly affect vibration transmission from the skull surface to the cochlea, but the 

opening of the mastoid was done after all measurements, both ipsilaterally and contralaterally, 

were finished. 

One shortcoming of the current setup is that the LDV only measures the cochlear motion in 

one direction (the direction in-line with the ear canal) but the cochlea moves in all three space 

dimensions (11,12); it is not known if there is a major direction influencing the perception. 

However, it was shown that the cochlear movement in the x-direction is either dominating or 

similar to the other directions (11,12). Further, this vibration direction is within 5 dB from the 

sum of all directions and shows good agreement with the typical sensitivity difference 

between forehead and mastoid BC stimulation (ISO 389-3 (1994)) (3,11). According to 

Reinfeldt (20) the vibration of the cochlea in cadavers can be related to the relative BC 

hearing threshold change when stimulation is at different positions; at least for frequencies 

between 1 and 10 kHz. We therefore feel that the cochlear velocity is a good first 

approximation of sound stimulation of the cochlea by BC. 

 

Transcranial transmission 

In Figure 3 it is clear that the individual responses contain sharp anti-resonances and 

resonances. The resonances are well damped and do not affect perception of BC sound to a 

larger extent. The anti-resonances are of great magnitude but of a narrow bandwidth. Since 

they normally do not appear in all space dimensions at the same frequency (11) they have 

probably minor influence on speech perception by BC. However, for narrow band stimulation, 

such as pure tones for audiogram testing, they can affect the perception and may be the cause 

of the irregular BC transcranial thresholds seen. 



In Figures 4 and 5 the average relative difference between stimulation at the different 

positions can be seen. One explanation for the deviations at positions 6 and 7 is that the angle 

of the stimulation force deviates from the skulls centre of gravity resulting in different 

rotational motion of the skull causing a lower response at the contralateral cochlea as 

measured by the LDV (11,16). A similar pattern was seen for the ipsilateral responses (10). 

The difference cannot be explained by the fact that these positions are on the MAPP because 

the skull moves as a rigid body up to 300 Hz and the response from stimulation at positions 6 

and 7 should not differ from position 1 in this frequency range. Moreover, results from 

stimulation at position 5 is similar to position 1 up to 950 Hz despite that it is also fully on the 

MAPP. The higher response level at frequencies between 200-350 Hz for stimulation at 

position 8 may indicate that the petrous part of the temporal bone medially have a motion 

separated from the rest of the skull. However, it may also be a result of a more favourable 

angle of the stimulation relative to the measured response by the LDV. 

 

In Figure 6 the TT is illustrated as the ratio between transcranial and ipsilateral transmission 

for the same positions (positions 1 to 8) displayed in dB. Although slightly different 

stimulation positions were used, the TTs found in this study are in line with the results 

reported by Stenfelt and Goode (11) using vibration measurements in human cadaver heads. 

In a study assessing the TT using psychoacoustic measures (hearing thresholds), Nolan and 

Lyon (21) reported the TT (approximately position 3-4 in this study) to show close to -10 dB 

in the frequency range 0.25 to 4 kHz with large individual variability; this differs from our 

results.  

 

 



Bilateral stimulation 

Two approaches for describing bilateral BC stimulation was used, (i) simultaneous and fully 

correlated stationary stimuli and (ii) uncorrelated and/or non-stationary stimuli. Speech, 

which can be regarded as a non-stationary signal would fall into the latter group. Examples of 

the first group are several types of test-signals for hearing evaluation (e.g. pure tone 

thresholds). 

The 5 to 10 dB increase seen in the 0.5 to 0.9 kHz range is a result, once again, of the anti-

resonance in the ipsilateral transmission. Since the anti-resonance probably has a small effect 

of the perceived BC signal we propose that the summation effects seen in Figures 7 and 8 in 

this frequency region do not reflect the perception of BC sound from bilateral stimulation. 

The perceived effect of adding a contralateral stimulation would probably show a smooth 

transition from the levels seen at the lowest frequencies in Figure 7 and 8 to the mid-

frequency levels seen at around 1 kHz. Once again, this reasoning is limited to the effect of 

one cochlea. 

 

Several studies investigating the benefit of using bilateral fitting of Baha® have used the 

binaural masking level difference (BMLD) test to assess the binaural effect from two aids 

(1,2). Although release of masking is most probably possible through BC stimulation, the 

BMLD test was designed for testing via air conduction transmission and the results found 

using BC stimulation may be a result of the addition of stationary signals rather than the true 

binaural effects. Since the BMLD test uses stationary signals at low frequencies, where the 

bilateral summation of stationary BC signals can result in large changes, we propose the 

BMLD test to be inappropriate to test binaural effects when BC stimulation is used, at least as 

it has been used in the above mentioned studies. 



Time delay 

Normally it is safe to assume that the further the distance is between the stimulation and 

response positions, the greater the travel time. The human skull has a complex structure with 

an anatomy and material composition that produces vibration transmission modes that depend 

on the stimulation position (11). Consequently, it is difficult to predict the difference in travel 

time for different stimulation positions. In this study we have used the phase function of the 

BC transmission to estimate time delays. There is a general trend of greater time delay the 

farther the stimulation positions are separated (see Figure 9). Although binaural hearing by 

BC is not studied per se, a time difference between the cochleae enable binaural information 

and would suggest that binaural cues can be obtained to some degree using BC stimulation. 

Figure 9 illustrates that time delay is larger in the mid-frequency range for positions on the 

MAPP and position 8 up to 3 kHz, above this frequency the time delay is shorter and similar 

for all positions. This is in accordance with time delays presented by Stenfelt and Goode (11).  

 

Implications for bone conduction hearing aids 

 

The greatest limitation for obtaining binaural cues are due to BC sound transmission crossing 

over to the contralateral side (Figure 6) decreasing the sound separation between the two 

cochleae. This leads to decreased ability to extract bilateral time and amplitude information in 

the brainstem (1). With this in mind a position as close to the cochlea as possible would 

provide the best signal separation (as amplitude and time difference) between the cochleae.  

 

If using the BC hearing aid as a CROS-device in SSD the maximum of contralateral BC 

sound transmission is beneficial. Position 8 provides the best contralateral transmission but 



not in the high frequency range where the head shadow effect is greatest. Among the positions 

investigated, position 1, where the Baha® is currently normally attached, provides the best 

overall transmission at high frequencies.  

 

An implantable BC hearing aid, here termed BCI, is under development and evaluation 

(13,14) and the planned position for this device is approximately at position 6. From the 

ipsilateral data in Eeg-Olofsson (10) combined with the results in this study a BCI in position 

6 would improve sound transmission ipsilaterally and for bilateral application give a reduced 

cross over transmission, hence provide for better binaural hearing. However, this position 

would not be optimal for the SSD indication; an alternative is to place the implanted 

transducer on the side of the normal ear and transmit the microphone signal wirelessly from 

the poor ear.  



Conclusion 

The BC sound transmission from the contralateral side to the cochlea was estimated by 

measurement of the cochlear promontory vibration using an LDV. Generally, there were only 

small contralateral transmission differences between the eight stimulation positions. However, 

the transcranial transmission showed large high-frequency differences where the greatest 

signal separation was achieved for the stimulation positions closest to the cochlea. When 

adding contralateral and ipsilateral stimulations, there was a low-frequency reduction when 

the signals were fully correlated while a 3 dB increase was seen with uncorrelated signals. At 

higher frequencies, adding the contralateral to the ipsilateral stimulation gave small effects 

due to the reduced transcranial transmission at these frequencies. Delay estimates from the 

phase functions of the ipsilateral and contralateral transmissions indicated a time separation 

for ipsilateral and contralateral stimulation, at least at frequencies above 1 kHz. According to 

the data, the best result with bilateral application of BC hearing aids is a position close to the 

cochlea (e.g. at position 6 as proposed with BCIs). However, using BC hearing aids for 

patients with SSD, a position away from the cochlea is slightly beneficial (current standard 

Baha® position). 
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