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ABSTRACT

We propose a novel visual tracking scheme that exploits both

the geometrical structure of Grassmann manifold and piece-

wise geodesics under a Bayesian framework. Two particle fil-

ters are alternatingly employed on the manifold. One is used

for online updating the appearance subspace on the manifold

using sliding-window observations, and the other is for track-

ing moving objects on the manifold based on the dynamic

shape and appearance models. Main contributions of the pa-

per include: (a) proposing an online manifold learning strat-

egy by a particle filter, where a mixture of dynamic models

is used for both the changes of manifold bases in the tan-

gent plane and the piecewise geodesics on the manifold, (b)

proposing a manifold object tracker by incorporating object

shape in the tangent plane and the manifold prediction error

of object appearance jointly in a particle filter framework. Ex-

periments performed on videos containing significant object

pose changes show very robust tracking results. The pro-

posed scheme also shows better performance as comparing

with three existing trackers in terms of tracking drift and the

tightness and accuracy of tracked boxes.

Index Terms— visual tracking, manifold tracking, mani-

fold learning, Grassmann manifold, piecewise geodesics, par-

ticle filter, state space modeling

1. INTRODUCTION
Tracking visual objects on curved surfaces or manifolds has

drawn increasing interests recently. [1, 2] shows that sub-

spaces actually reside on a curved surface or differentiable

manifold, and online learning of subspace can be better char-

acterized by considering the temporal consistency of time-

varying subspaces and the geometrical structure of the man-

ifold. [1] uses conjugate gradient and Newton’s method for

subspace tracking on the Grassmann and Stiefel manifolds

and applied to orthogonal procrustes. [2] proposes piecewise

geodesics on the complex Grassmann manifold using projec-

tion matrices for subspace tracking with simulations to syn-

thetic signals from an array of sensors. [7] utilizes particle

filters (PFs) on the Riemannian manifold to estimate the tar-

get position and time-varying noise covariance with simula-

tions on trajectories of 2D point targets. [3] proposes visual

tracking by applying a Kalman filter to the velocity of ba-

sis matrix in the tangent plane of Grassmann manifold. The

method can track objects with moderate pose changes how-

ever significant pose changes remain a challenging issue. [4]

proposes covariance tracking on the symmetric manifold. An

exhaustive search which is computationally expensive is used

to find the best match and strategy for model update is pro-

posed. Some good results are reported. Other variants of

covariance tracking are proposed, for example, [5] employs

a Log-Euclidean metric on a symmetric manifold for covari-

ance tracking of visual objects. [8] proposed nonlinear mean

shift on Riemannian manifolds for image segmentation and

nonlinear filtering. Other recent work on manifold face track-

ing are reported, e.g. using an offline manifold training strat-

egy from face datasets containing different poses [9], and on-

line learning using local linearity of the appearance manifold

using particle filters with a coarse-to-fine factorized sampling

[10]. Despite these promising work, challenges remain in

tracking visual objects that contain significant pose changes.

Computational time is also an issue of concern in terms of

manifold visual tracking.

Motivated by these issues, we propose a novel scheme for

robust visual object tracking on the Grassmann manifold. The

main contributions of the proposed tracking scheme include:

(a) propose an online manifold learning strategy by a particle

filter, where a mixture of dynamic models is used for both the

changes of manifold bases in the tangent plane and the piece-

wise geodesics on the manifold. (b) propose a manifold object

tracker by incorporating object shape in the tangent plane and

the manifold prediction error of object appearance jointly in

a particle filter framework.

2. PROBLEM FORMULATION: THE BIG PICTURE

Fig. 1. Block diagram of proposed scheme. The notations It(x, y), ŝt, Ît

denote the image frame, bounding box parameters, and tracked object image

at time t, respectively.
The proposed scheme consists of two major parts: (a) vi-



sual tracking on the Grassmann manifold, (b) updating the

manifold basis matrix in a fixed time interval. The essence

for visual tracking in (a) (top block in Fig.1) is to apply a

dynamic object shape model in the tangent plane of the mani-

fold, as well as an object appearance model for the prediction

error on the manifold. A particle filter is utilized where the

affine shape parameters are defined as the state vector while

the appearance are embedded as the likelihood, given a pre-

vious manifold basis matrix Ut−1. The basic idea for updat-

ing the manifold basis matrix Ut at t in (b) (bottom block in

Fig.1) is to define a state space model containing two mix-

tures: the velocity of manifold basis matrix lies in the tan-

gent plane whose dynamic is described by a constant velocity

model, the basis matrix is on the manifold whose dynamic is

modeled by piecewise geodesics on the manifold. To real-

ize the above mixture model, another particle filter is utilized.

It is known that the pose changes of a 3D object in 2D im-

age plane cannot be well described by a single vector space,

rather, the trajectory of pose changes is more suitable to be

described as points on a smoothed curved surface or a differ-

entiable manifold. The main motivations and novelties lie on

online updating the basis matrix on the manifold by using not

only the previous manifold basis matrix, but also the velocity

indicating the change of basis matrices, in addition to using

manifold-based tracking rather than linear vector space-based

tracking. This would lead to more robust tracking.

3. MANIFOLDS AND PARTICLE FILTERS: REVIEW
This section briefly reviews the Grassmann manifold, two

mapping functions and particle filters (PFs) that are used in

the proposed tracking scheme.

3.1. Grassmann Manifold
A Grassmann manifold gn,k is the collection of all k-

dimensional subspaces in the n-dimensional Rn. gn,k can be

viewed as the quotient space SO(n)/(SO(k)× SO(n− k)),
where SO(n) is the Special Orthogonal Group whose ele-

ments are n × n matrices. The Grassmann manifold gn,k

can be considered as a smoothing curved surface. Each point

on gn,k can be uniquely represented by the projection matrix

U(UT U)−1UT , where U is an orthonormal basis of size

n × k. Alternatively, one may use U ∈ Rn×k contained in

the set {UH : H ∈ SO(k)} as the equivalent, since the orbit

of U spans the same subspaces [12]. The main advantage

of using U = {UH : H ∈ SO(k)} is the computational

efficiency compared to projection matrices.

Two important mapping functions [8] performed between the

manifolds to the tangent planes are briefly summarized below.

Exponential map ( Tx → gn,k): Given x, the starting point

(t=0), on the manifold and the corresponding tangent Δ in

the tangent space Tx, the exponential function in (1) maps

the tangent vector along the geodesic to yield the end point

y = x(1) on the manifold,

expx(Δ) = xv cos(s)vT + u sin(s)vT (1)

where, usvT is the compact SVD of Δ and the sin and cos
act element-by-element along the diagonal s.

Logarithmic map ( gn,k → Tx): Given two points x, y on

the manifold, it find the velocity vector Δ in the tangent space

on the point x as follows:

Δ = logx(y) = u sin−1(s)vT (2)

where usdT = y − xxTy and vcdT = xTy is the gener-

alized SVD with cTc + sTs = I and the sin−1 acts element-

by-element along the diagonal of s. The two mapping func-

tions satisfy xT logx(y) = 0 and expx(logx(y)) = y.

Distance: The distance between x and y on the manifold is

defined by the principal angle between the two subspaces [1]:

D(x,y) = ‖θ‖ (3)
where θ = [θ1 · · · θk]T is the principal angles between the

subspaces associated with the manifold points x and y. De-

tailed information can be found in [1].

3.2. Particle Filters (PFs)
PFs tracking, as a recursive Bayesian estimation, is formu-

lated through estimating the posterior probability of state vec-

tor using the rule of propagation of state density over time,

p(st|z0:t) ∝ p(zt|st)
∫

p(st|st−1)p(st−1|z0:t−1)dst−1 (4)

where st is the state vector at time t, z0:t is the observa-

tions (image pixels with the bounding box) up to t. Using

a weighted sum of randomly generated samples or particles

drawn from a proposal distribution q, the posterior pdf esti-

mate can be approximated as:

p(st|z0:t) ≈
∑

i

ωi
tδ(st − si

t) (5)

where si
t is the ith particle, wi

t is the weight,
∑

i ωi
t = 1,

i = 1, · · · , Np is the total number of particles.

4. OBJECT TRACKING BASED ON PARTICLE
FILTERS AND GRASSMANN MANIFOLD

The basic idea for tracking is to apply a dynamic object shape

model in the tangent plane of the manifold by using particle

filters, an object appearance model by the prediction error on

the manifold, and by embedding this as the likelihood in the

PFs. This model is different from [6] in terms of utilizing the

manifold and the inference of its tangent plane.

Object shape model in the tangent plane: Let the state vec-

tor st = [y1
t y2

t βt γt αt φt]T be defined as vector with six

parameters (2D box center, scale, rotation, aspect ratio, and

skew) of affine transformed object bounding box, and assum-

ing the object shape in the state space is modeled by the Brow-

nian motion, then the dynamic shape between the two states

is Gaussian distributed, that is:

st = st−1 + v, st : p(st|st−1) ∼ N(0,Q) (6)

where Q = diag(σ2
y1

, σ2
y2

, σ2
β , σ2

γ , σ2
α, σ2

φ) whose diagonal

elements correspond to the variances of individual shape pa-

rameters. These parameter values dictate the kind of motion

of interest in a tracker and are determined empirically. Pre-

dicted particles sj
t are generated according to (6).

Object appearance model on the Grassmann manifold:



For each candidate bounding box specified by the particle sj
t ,

the corresponding image Ij
t is extracted. The likelihood is

modeled as the Gaussian distributed dynamic prediction error

on the manifold bases by,

p(dIj
t
|sj

t ) = exp(−‖dItj − Ut−1UT
t−1dIj

t
‖2/σ2) (7)

where dIj
t

= (Ij
t − Ît−1) is a column scanned vector de-

fined as the difference between the candidate image region Ij
t

and the reference image region Ît−1 at time (t − 1), Ut−1

is the bases for the manifold at (t − 1), and σ2 is the vari-

ance (empirically determined). Noting that this likelihood is

proportional to the prediction error dynamics on the mani-

fold bases. The PF weight is then assigned as the likelihood,

w1j
t = p(dIj

t
|sj

t ), with SIS resampling [11]. Finally, the ML

(maximum likelihood) estimate of object bounding box is:

ŝt = sj∗
t where: j∗ = argmaxj(w1j

t ) (8)

5. UPDATING MANIFOLD BASES USING DYNAMIC
MODELS IN TANGENT PLANES AND MANIFOLDS

The basic idea for updating the manifold bases Ut at t is to

define a state space model containing a mixture of 2 separate

ones: the velocity of manifold bases lies in the tangent plane

whose dynamic is model by a constant velocity model, the

basis matrix is on the manifold whose dynamic is modeled

by piecewise geodesics on the manifold. To realize the above

model, a second PF is utilized for estimating the posterior pdf.

Let the state vector be defined as s2t = [Ut,Δt]T , Ut be the

basis matrix on the Grassmann manifold gn,k, Δt be the cor-

responding velocity for (Ut−1,Ut) where Ut is on the end

point of the geodesic starting from Ut−1, and the observation

Yt at t be defined as a sliding window (size L) of tracked ob-

ject images Yt = [̂It−L+1 · · · Ît] (where Ît is tracked image

area (see Section 4)). The following mixture model is applied

to the state vector s2t = [Ut,Δt]T :

Constant velocity: Δt = Δt−1 + V2

Piecewise geodesic: Ut = gn,k(Ut−1,Δt)
(9)

where V2 is zero-mean white noise with a Gaussian distribu-

tion N (0, σ2
v2

). Noting that the first model is defined in the

tangent plane, and the 2nd on the Grassmann manifold. For

the first state variable, predicted particles Δi
t are generated on

the manifold point at (t-1) according to the 1st equation in (9)

with σ2
v2

(σ2
v2

= .01 in our tests). For the 2nd state variable,

particles Ui
t are obtained by mapping Δi

t to the manifold, us-

ing Ut−1 and (2) under the piecewise-geodesic model. The

particle weight w2i
t is assigned as the likelihood:

w2i
t = p(UYt

|Ui
t) = exp(−(Di

t/σl)2) (10)

where Di
t is the distance between the principal angles of UYt

(i.e. bases for the new observation UYt) and Ui
t (i.e. pre-

dicted bases from particles), as defined in (3). The MMSE

estimate of the basis matrix Ut is obtained by first computing

Δi
UYt

using logUYt
(Ui

t) in (2), then estimating the sample

mean Δ̂t and finally the new basis matrix Ut as follows:

Δ̂t =
N2∑
i=1

w2i
tΔ

i
UYt

/N2, Ut = expUYt
(Δ̂t) (11)

It is worth mentioning that one may decide to update the basis

matrix in each m sample interval rather than the unit time

interval as described above. The advantage is the reduced

computation, however, the error for the piecewise geodesic

model increases. Table 1 summarizes the pseudo algorithm.

Table 1. Pseudo algorithm for the proposed tracking scheme

Initialization:: choose an object region (for frame t=1), Track first L

frames by template matching and compute UYt ; Generate sj
t ,

j = 1 · · ·N1, and s2i
t, i = 1 · · ·N2 using prior information.

for frame t = L, L + 1, · · · , do:

(particle filter-1 for object tracking)

for particle j = 1, · · · , N1 do:

1. Predict particles sj
t using (6);

2. Update particle weights w1j
t by using (7);

end{j}
3. Compute the posterior state vector ŝt using (8) and resampling;

(particle filter-2 for updating manifold basis matrix)

6. Form a new observation Yt and compute UYt ;

for particle i = 1, · · · , N2 in PF2 do:

7. Predict particles [Ui
t, Δ

i
t] by using (9);

8. Update particle weights w2i
t by using (10);

end{i}
9. Compute Δ̂t and Ut using (11) and resampling;

end {t}

6. EXPERIMENTAL RESULTS
Setup: Seven videos with significant object pose changes are

selected for the tests. For all these tests, object regions are

normalized to 32 × 32 pixels. N1 = 600, σ2 = 0.25 are set

for PF1. N2 = 400, σ2
v2

= 0.01 are set for PF2. Slid-

ing window size is set to L = 5, σ2
l = 0.1 are used in

(10). Q in (6) is set empirically, [1, 1, .05, .05, .005, .001]
for ”chia” video, = [5, 5, .01, .02, .002, .001] for ”david”, and

[9,5,.05,.05,.005,.001] for ”dudek”, ”danny” and ”MeerCar”.

Results and comparisons: Figs. 2, 3 4 show some tracking

results in 5 videos (key frames) by the proposed scheme.

Further, the proposed scheme is compared with 3 trackers:

tracker-a: linear subspace tracking without online learning,

tracker-b: covariance tracking in [4], and tracker-c: mani-

fold face tracking [10]. The results from these trackers are

included in the same figures for comparisons. Observing

the resulting images, the proposed scheme has shown robust

tracking for videos containing large pose changing objects

with varying changing speed, also better tracking perfor-

mance with more accurate boxes in terms of tightness and

orientation as compared the 3 existing methods.

7. CONCLUSIONS
Tests on the proposed tracking scheme, consisting of visual

tracking on the manifold and online manifold basis updating,

has shown very robust tracking performance for objects con-

taining moderate to large pose changes. The online updating

of basis matrices of manifold by exploiting both the position

and velocity is shown to be effective. The online tracking

by integrating dynamic appearance and shape on the mani-

fold and its tangent plane in single particle filter is efficient.

Comparisons with three existing methods have provided fur-

ther support to the robustness of the proposed scheme, and



Fig. 2. Tracking results from video frames in ”chia”, ”danny”, and ”david”. Red box: from the proposed scheme, Blue box: from tracker-a.

Fig. 3. Tracking results for video frames in ”dudek”. Row-1: from the proposed scheme, Row 2: tracker-b (columns 1-3) and tracker-C (columns 4-6).

Fig. 4. Tracking results for video frames ”MeerCar”. Top row: from the proposed scheme, Bottom row: from tracker-b.

relatively high speed (approx. 1 frame/sec in our Matlab pro-

gram).
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