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DNA copy number aberrations (CNAs) are a hallmark of cancer genomes. However, little is known
about how such changes affect global gene expression. We develop a modeling framework, EPoC
(Endogenous Perturbation analysis of Cancer), to (1) detect disease-driving CNAs and their effect
on target mRNA expression, and to (2) stratify cancer patients into long- and short-term survivors.
Our method constructs causal network models of gene expression by combining genome-wide
DNA- and RNA-level data. Prognostic scores are obtained from a singular value decomposition of the
networks. By applying EPoC to glioblastoma data from The Cancer Genome Atlas consortium, we
demonstrate that the resulting network models contain known disease-relevant hub genes, reveal
interesting candidate hubs, and uncover predictors of patient survival. Targeted validations in four
glioblastoma cell lines support selected predictions, and implicate the p53-interacting protein
Necdin in suppressing glioblastoma cell growth. We conclude that large-scale network modeling
of the effects of CNAs on gene expression may provide insights into the biology of human cancer.
Free software in MATLAB and R is provided.
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Introduction

Gains and losses of chromosomal material that alter DNA copy
number are a hallmark of cancer genomes. At the level of
a single locus, the effects of a copy number aberration (CNA)
are well known: on average, increased copy number (gene
amplification) leads to increased gene expression, decreased
copy number (gene deletion) leads to decreased gene
expression (Pollack et al, 2002; Lee et al, 2008; Nilsson et al,
2008). However, CNAs also affect the expression of genes
located outside the amplified/deleted region itself via indirect
mechanisms. For example, deletion of a transcriptional
repressor may increase the expression of its targets, amplifica-
tion of a kinase may drive a signaling cascade, and so on. Our
knowledge of how CNAs affect gene expression at a genome-
wide level is limited.

Global network modeling of expression and copy number
changes can elucidate such causal connections, and prove
helpful in the study of several key problems in cancer biology.

Specifically, such models may (1) identify functionally
important genes whose perturbations have a significant and
dispersed impact on transcription; (2) facilitate the discovery
of possible therapeutic targets by matching model-identified
key regulators or their targets to pharmacological databases;
and (3) assist in the identification of distinct CNA and mRNA
features that are predictive of patient prognosis or therapeutic
response.

Current methods for transcriptional network modeling
seemingly fall into three main categories. One common
approach is to derive models from mRNA profiles only, using,
e.g., gene–gene (partial) correlations, Bayesian networks,
ordinary differential equations or mutual information
(Friedman et al, 2000; Schäfer and Strimmer, 2005; Margolin
et al, 2006; Bansal et al, 2007; Opgen-Rhein and Strimmer,
2007). A second common technique is to construct models of
mRNA expression from targeted perturbation experiments, as
controlled perturbations strongly facilitate causal inference
(Yeung et al, 2002; Tegner et al, 2003; di Bernardo et al, 2005;
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Bansal et al, 2007; Bonneau et al, 2007; Lehár et al, 2007;
Nelander et al, 2008; Lauria et al, 2009). A third alternative is
to use the naturally occurring genetic variation in a separating
population to study the relationship between genotype and
expression phenotype (Jansen, 2003; Lee et al, 2006, 2009;
Rockman, 2008; Suthram et al, 2008; Zhu et al, 2008; see also
Discussion). Here, we focus on the role of acquired genetic
variations in tumors, specifically CNAs, and ask how these
can be used to derive transcriptional networks. CNAs are
prevalent in several human cancers, and tend to appear in a
patient-specific and multifactorial manner in the tumors,
which resembles an optimal experimental design to derive
causality (Fisher, 1926).

We present a global model of CNA-driven transcription
in the brain tumor glioblastoma. The model is derived using
EPoC (Endogenous Perturbation analysis of Cancer), a
computational method that constructs network models of
mRNA expression, viewing CNAs as informative system
perturbations introduced endogenously during the evolution
of the tumor, and the corresponding mRNA profiles as the
steady-state response to that perturbation. We apply EPoC to
glioblastoma data from The Cancer Genome Atlas (TCGA)
consortium. Previous analyses of glioblastoma have revealed
altered pathways and disease subtypes (Pollack et al, 2002;
Freije et al, 2004; Phillips et al, 2006; Tso et al, 2006; Lee et al,
2008; TCGA-Consortium, 2008; Dahlback et al, 2009; Verhaak
et al, 2010; Cerami et al, 2010) and networks of correlating
transcripts (Carro et al, 2010) (ARACNE). Key examples
of CNA/mRNA analyses for other tumors include clustering
and modular network modeling, leading to the discovery
of regulators such as MITF, RAB27A and TBC1D16 in
malignant melanoma (Garraway et al, 2005; Akavia et al,
2010), and linkage analysis to reveal the association of cMYC
amplification to wound healing signatures in breast cancer
(Adler et al, 2006). Network analysis of 654 selected breast
cancer transcripts and 384 genomic regions has identified a
candidate regulatory region on chromosome 17 (Peng et al,
2008). Canonical correlation analysis (CCA) has also been
put forth as an alternative non-network approach to inte-
grating DNA/mRNA data (Waaijenborg et al, 2008; Witten
et al, 2009).

We use EPoC to construct a gene-level model, which
encompasses 10 672 genes, causally connecting CNAs to
expression changes in glioblastoma. First, we establish that
the parameters of the EPoC network model can be robustly
estimated from paired genome-wide DNA- and RNA-level
data from a set of tumors, using a combination of lasso
regression and bootstrap. Second, we show that a novel
score, based on a sparse singular value decomposition of
the derived CNA–mRNA network model, identifies prognostic
biomarkers capable of clinical stratification into short-term
and long-term survivors. Third, EPoC identifies key mecha-
nisms (disease-driving CNAs), which we assess by chemo-
informatic analyses and comparisons to known biological
pathways, revealing the likely existence of short regulatory
paths between EPoC hubs and targets, as well as 15 candidate
drug targets. We confirm a candidate hub, the p53-interacting
protein Necdin, NDN, in U87MG, U373MG, U343MG and
T98 glioma-derived cell lines by experimentally testing a
small transcriptional network around NDN, receptor tyrosine

kinases EGF receptor (EGFR) and platelet-derived growth
factor receptor alpha (PDGFRA). Finally, we demonstrate
rapid and consistent performance of EPoC in comparison
with mRNA-only methods, standard expression quantitative
locus (eQTL) methods and two recent multivariate methods
for genotype–mRNA coupling (Peng et al, 2008; Lee et al,
2009).

Results

Modeling copy number-dependent transcription
in tumors

Transcriptional and CNA-driven networks
To connect mRNA levels with DNA copy number in
glioblastoma tumors, we adapt a common model for mRNA
transcription regulation and turnover. This model formulation,
related to the so-called S-system (Savageau, 1969, 1976;
Crampin et al, 2004), takes the form of sets of differential
equations:

dyi

dt
¼ uiai

Yn
j¼1

y
wij
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where n is the number of genes, dyi/dt and yi, i¼1,2,y, n
denote the change rate and average mRNA concentrations in
a tumor respectively, and uiX0, i¼1,2,y, n the average
number of gene copies corresponding to a particular transcript
(Figure 1B). Equation (1) states that the change rate of
transcript yi is the difference between its synthesis rate and its
decay rate. The synthesis rate is determined by the number of
copies of the gene’s DNA, ui, the regulatory effects of other
genes, wij and a gene-specific synthesis constant, ai. Similarly,
the decay rate is determined by the regulatory effects of other
genes, vij and a gene-specific decay constant, bi. Obviously, the
assumption of proportionality on ui is a simplification and
unlikely to hold for all genes in the genome (e.g., gene copies
may generate transcripts at different rates due to epigenetic
differences). Nevertheless, recent data indicate that it is a
reasonable approximation for a large proportion of genes in
the genome (Nilsson et al, 2008).

The procedure used to estimate the model parameters in
Equation (1) is described in detail in Materials and methods.
In short, assuming steady-state conditions, the log-transformed
and zero-centered mRNA and CNA profiles of glioblastoma can
be summarized by two mutually complementing linear
systems. The first of these represents the transcriptional
network (A):

ADY þ DU þ R ¼ 0; ð2Þ

where DY and DU are stack matrices of log-transformed and
zero-centered mRNA and CNA profiles of glioblastoma,
respectively, and R (defined by the a’s and b’s of the original
model, Materials and methods) is a matrix that captures the
effects on transcription of non-CNA perturbations in individual
tumors (e.g., SNPs, sequence mutations or environmental
effects). The transcriptional network A¼{aij} relates to the
original model by aij¼wij�vij, meaning its elements aij
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Figure 1 Overview of the EPoC modeling framework. (A) Using genome-wide, paired mRNA- and DNA-level data as input, EPoC generates a quantitative
causal network model of the global effects of copy number aberrations on mRNA expression. The resulting model is subsequently used to predict disease-driving
genes and prognostic indicators. (B) EPoC is based on systems of differential equations that take into account that the transcription of a gene is determined both
by its own DNA copy number (straight arrows) and the product of other genes (bent arrows). (C) Our method generates two mutually complementary networks
denoted as A and G. The A network captures transcript–transcript interactions (left), whereas the G network contains the direct and indirect effects of CNA pertur-
bations on transcription (middle). The singular value decomposition of G can be used to identify the CNAs whose perturbations are maximally amplified by the
network (i.e., they have a strong overall transcriptional effect; yellow nodes), and the mRNA transcripts whose expression are most altered by these perturbations
(green nodes; right panel).
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represents the net influence from transcript j to transcript i;
aij40 indicates activation of transcription i by transcript
j, aijo0 inhibition, and the magnitude aij the strength of the
interaction.

The second representation is termed the CNA-driven
network (G):

DY ¼ GDU þ G: ð3Þ

G¼{gij} consists of CNA–mRNA couplings: gij40 indicates
CNA-driven transcriptional activation (i.e., transcription of
gene i is increased because the copy number of gene j has been
altered), gijo0 CNA-driven transcriptional inhibition, and the
magnitude of gij the strength of the interaction. This network is
related to the first as G¼�A�1 and the topologies of the two
networks are thus related (Figure 1C). However, while A
reflects direct transcriptional interaction, corrected for the
impact of a transcript’s own CNA, G models how the effects of
CNA perturbations propagate through the system to produce
their steady-state responses and should contain key disease-
driving CNAs as hubs, as well as their downstream targets
(Figure 1C).

To identify the transcriptional interactions (non-zero ele-
ments in A) and the CNA–mRNA couplings (non-zero
elements in G), we need to solve the large linear equation
systems ((2) and (3)). We use a gene-level lasso regression
approach paired with cross-validation and bootstrap to
robustly identify these network parameters (Materials and
methods).

Survival scores derived from network decompositions
We next describe how survival scores can be derived from
the EPoC model, based on a particular interpretation of the
CNA-driven network as a signal amplifier. From a systems
perspective, it is natural to view the copy number profile as
the input to the system G, whereas the gene expression
profile is the corresponding output. One common way to
summarize a system’s input–output behavior is to compute
the main axes of signal gain, defined as the singular value
decomposition G¼CLDT (Golub and Loan, 1996; Skogestad
and Postlethwaite, 2005; Nordling and Jacobsen, 2009)
(Materials and methods). When applied to the CNA-driven
network G, this decomposition should reveal CNA pertur-
bations that are strongly amplified by the system (in the
leading columns of D), as well as the transcripts which
are most affected by CNA perturbations (in the leading
columns of C) (Figure 1C). We use sparse SVD (Zou
et al, 2006), which ensures that only a small subset of
perturbations and transcripts are present in the leading
columns (Materials and methods). Once estimates of C and
D have been obtained, EPoC computes the level of signal
amplification in each tumor by the scalar projection scores
Zy¼CTDY and Zu¼DTDU (Materials and methods). Concisely
put, these scores summarize the total burden of molecular
changes consistent with the CNA-driven network, and should
therefore correlate with clinical survival. Below, we confirm
this conjecture for the patients in the TCGA glioblastoma
cohort.

Global CNA-driven networks of glioblastoma

EPoC finds 512 robust associations between CNAs
and mRNAs in glioblastoma
We proceed to estimate EPoC networks for human glioblasto-
ma. We use CNA- and mRNA-level data (10 672 matched genes,
186 patients) provided by the TCGA consortium (TCGA-
Consortium, 2008). Before estimating the network, EPoC
applies a filter to select possible CNA regulators in the data
(defined as genes that are recurrently amplified or deleted
across the patients; Materials and methods). In total, we keep
2640 genes as possible CNA regulators, whereas we keep all
10 672 genes as possible targets and/or transcriptional
regulators. On the basis of these data, network modeling
proceeds as follows. First, EPoC determines a suitable model
size, i.e., the number of interactions in the network. For this,
we have developed a customized procedure utilizing random
data splits (Figure 2A). In brief, the tumors (i.e., the 186 glioma
cases) are split into two random groups. We estimate a
network for each group, and compare the two networks using
Kendall’s W (akin to rank correlation of detected network
interactions, Materials and methods). This procedure is
repeated for different network sizes, and we select the network
size that optimizes W. The optimal network size for the TCGA
glioblastoma data is estimated to 200–500 interactions
(Figure 2A). We then construct a robust final network of the
optimal network size using bootstrap: On each of 1000
bootstrap data sets (resampling from the 186 tumors; Fried-
man et al, 2000), we generate a network of size around 400 (as
obtained in Figure 2A). We retain interactions that appear in at
least 20% of the 1000 bootstrap networks, a cutoff set well
above appearance frequencies expected by chance (Figure 2B).
This results in a final CNA-driven network with 512 interac-
tions, of which 263 are stimulatory and 249 are inhibitory
(Figure 3A).

CNA hubs that best explain mRNA variability in
glioblastoma
The identified CNA-driven network G contains a number of
copy number-altered genes that control multiple down-
stream genes (Figure 3A, Table I). Among these highly
connected hub genes, we find well-known oncogenes and
tumor supressors that are frequently deleted or amplified
in glioblastoma, including EGFR, PDGFRA, CDKN2A and
CDKN2B (Figure 3A), confirming a clear association between
these alterations and transcriptional variability of glioblastoma.
In addition, EPoC identifies a number of interesting hub genes
that have not previously been associated with glioblastoma,
e.g., MTAP and SEC61G. MTAP is located close to CDKN2A/B
on chromosome 9, and SEC61G is located close to EGFR on
chromosome 7, but both MTAP and SEC61G have unique and
robustly identified targets in our network model. This may
suggest that they are not mere innocent bystanders (passenger
mutations), but may have tumorigenic effects of their own.
Recent work has shown that amplification of SEC61G leads
to a more than 10-fold transcriptional induction of this
gene (Bralten et al, 2010); deletion of MTAP is believed
to confer sensitivity to purine synthesis inhibitors such as
SDX-102 (Kindler et al, 2009). Additional hubs include
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interferon alpha 1 (IFNA1), myeloid/lymphoid or mixed-
lineage leukemia translocated to 10 (MLLT10, a well-known
leukemia gene), glutamate decarboxylase 2 (GAD2), a
postulated glutamate receptor GPR158 and Necdin (NDN,
pursued below). As expected, the model does not contain hubs
to represent copy number neutral glioma oncogenes/tumor
suppressors altered by missense, nonsense or frameshift
mutations (TP53, ERBB2, NF1, RBI, PIK3R1, PIK3CA; Parsons
et al, 2008; TCGA-Consortium, 2008). To account for the effects
of additional types of mutations, we would require a model
for the non-CNA perturbation term, R, in Equation (2), which
is reserved for future work.

Besides nominating disease drivers, the derived network
itself contains additional useful information. For instance,
we detect robust CNA–mRNA links between the hubs EGFR,
PDGFRA, and CHIC2 and target genes that are markers
of early neural development, such as the glioblastoma
stem cell marker CD133 (PROM1) and the transcription
factors SOX10, SOX11, NR2E1(TLX) and NKX2.2 (Figure 3B)
(Shi et al, 2008; Haslinger et al, 2009; Piccirillo et al,
2009). For instance, neural stem cell renewal is under
epistatic control of both SOX10 and NR2E1(TLX) (Shi et al,
2008), and our model may suggest that PDGFRA and EGFR
may act as complementary drivers of these two regulators
(Discussion). Comparing the CNA-driven network with the
two compound-target databases Drugbank and Ingenuity,
we nominate a set of compounds with known activities that

could, in principle, counteract endogenous perturbations in
our model (Figure 3C).

Phenotypic and transcriptional consequences of hub
gene perturbation in glioblastoma cell lines
To assess the biological relevance of a hub gene in the G
network that has not been previously associated with
glioblastoma, we have chosen to perform directed validation
experiments on NDN. This gene has five downstream targets in
the G network and shares a common target, fibroblast growth
factor 9 (FGF9; also known as glia-activating factor), with
PDGFRA which is frequently amplified in glioblastoma
(Figure 3B). NDN is maternally imprinted, located on
chromosome 15, and encodes a p53-interacting protein that
belongs to the melanoma antigen family (Taniura et al, 1998).
In the TCGA data, NDN is deleted in 29/186 patients. We
introduce perturbations of NDN by overexpressing the gene in
four glioblastoma cell lines (T98G, U-87MG, U-343MG and
U-373MG), leading to decreased cell cycling time in all cell
lines, except T98G (Figure 4A–C). Using the U-343MG cell line,
we measure the expression of a set of downstream targets of
NDN and PDGFRA by qPCR to assess the transcriptional
response of NDN overexpression and inhibition/stimulation
of PDGFRA, respectively. The results confirm a set of EPoC
predictions, including induction of CPNE8 by NDN, induction
of KCNH8 by PDGF-AA protein dimers (i.e., a PDGFRA agonist)

Figure 2 Derivation of robust and optimally sized network models for glioblastoma. (A) To select the network size, we use a customized validation technique in which
networks generated in random data splits are compared using a rank correlation metric (one minus Kendall’s W). Upper panel: Using this approach, we find glioblastoma
networks with 200–500 interactions to be the structurally most consistent. The preferred network size is indicated by an asterisk (*) (details in Materials and methods).
Lower panel: To assess the ability of a model to predict mRNA levels from CNAs, we estimate the normalized sum-of-squares prediction error by 10-fold cross-validation.
This cross-validation identifies optimal networks of about 10 000 interactions. (B) We infer a robust CNA-driven network of size 512 from 186 paired gene expression and
gene copy number profiles provided by The Cancer Genome Atlas (TCGA) consortium. For each of 1000 pseudo-bootstrap data sets, we generate a network of size
around 400 (as obtained in Figure 2A). The final network retains interactions that appear in at least a fraction f of the bootstrap networks (frequency distribution shown as
red curve). As a negative control, we permute the patients in the CNA data set (but not in the mRNA data) and repeat the estimation procedure, producing low
frequencies for all individual interactions (dashed black curve and *). On the basis of these results, we here use f¼20% (black line) as a frequency cutoff to generate our
network model (Figure 3), which is well above frequencies expected by chance.
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and suppression of KCNH8 by Imatinib (a selective inhibitor
of PDGFRA and other tyrosine kinases). Further, when
NDN is overexpressed, FGF9 does not respond to PDGFRA
perturbation. This is not only consistent with the predic-
tion that NDN and PDGFRA regulate the transcription
of FGF9 in opposite directions, but may also suggest a
more complicated mechanism that is not captured by our
model because NDN perturbation by itself did not suppress
FGF9 levels (Figure 4E). For the other two of the tested

transcripts, GALNT13 and ALK, which are both expressed
at very low levels in U-343MG cells, we did not detect
any significant changes. Further, we perturbed the activity
of the EGFR by activating it using one of its ligands
(EGF) and inhibiting it with a selective EGFR inhibitor
(Gefitinib). As readout, we measured the transcriptional
effect on SOCS2 (a modulator of STAT signaling), NR2E1
(also known as TLX, a transcription factor believed to be
important for neural stem cell renewal), yielding results

Figure 3 CNA-driven network of glioblastoma. (A) Overall structure of the resulting glioblastoma network, defined as the set of interactions detected in at least 20% of
the bootstrap networks (Figure 2B). Red arrows represent stimulatory interactions, blue arrows indicate inhibitory interactions. (B) Close-up of a network region
containing early neural differentiation markers, including glioblastoma stem cell marker CD133/PROM1, under the control of hub genes CHIC2 and PDGFRA. The
main hubs of the full network are listed in Table I. Note hub gene NDN, further analyzed in Figure 4. (C) Close-up of a network region containing genes that are
targets of pharmaceutical compounds (as determined by searching the Ingenuity and Drugbank databases). Examples of compounds involved in links include
simvastatin, SDX-102 (selectively active in MTAP-deficient tumors), PD173074 (a FGFR3 inhibitor), and cyclooxygenase 1 (COX1) inhibitors (PTGS1 encodes the
COX1 protein).
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compatible with a coupling between hub perturbation and
transcriptional response (Figure 4F).

Taken together, these observations support that the esti-
mated CNA-driven network is mechanistically informative,
and that CNA–mRNA links identified by EPoC broadly agree
with data from relevant validation experiments. Our approach
operates at the gene level and our data also support that
individual hub genes can be identified in practice (e.g., NDN).
Very large aberrations, however, cannot be fully resolved
by the current modeling strategy (e.g., EPoC identifies a small
set of candidate hubs in a 7 Mb region on the short arm
of chromosome 10, which is often lost in its entirety in
glioblastoma; see Discussion, Table I).

CNA-driven networks contain prognostic
information

A crucial test for any disease network model is to ask if it
produces clinically relevant predictions. While it is well
established that CNA and mRNA patterns may predict survival
and response to therapy using a range of supervised or
unsupervised techniques (Broëtet al, 2009; Zhang et al, 2009;
Verhaak et al, 2010), less work has been done in deriving
prognostic scores from actual network models. We thus
proceed to test the patient prognostic value of the CNA-driven
network G, using the derived survival scores Zy and Zu

(above).

As predicted, we find that these scores achieve a signi-
ficant degree of prognostic separation (Figure 5A). In
contrast, when we examine the prognostic properties of the
transcriptional network, A, we find no evident survival
stratification when separating patients along the leading
components of the SVD of A. We also demonstrate that
a standard singular value decomposition (SVD) calculated
from mRNA profiles or CNA profiles fails to detect survival
differences in the data. We further calculate survival curves
for the first six components of both mRNA and CNA data
in the G, A and data SVD cases, revealing that survival
differences are only seen in the first SVD component of G
(Table II).

To visualize the contribution of individual genes to the
survival scores, we color-code the CNA-driven network G
(Figure 5B). As an example, from the leading singular vectors
of G, we note that CNAs in EGFR and PDGFRA are highly
amplified by the network system model (yellow nodes) and
identify the leading mRNA responders to these perturbations
(green nodes), which include, e.g., growth factor PDGFA,
glutamate receptor GRIK1, the transcription factor SOX11, and
the STAT pathway modulator SOCS2.

We thus conclude that the estimated CNA-driven EPoC
model correlates with a clinically relevant phenotype. This
is in general support of model validity, and suggests that
integrative models may help to identify clinically useful
glioblastoma biomarkers.

Table I Hubs in the CNA-driven glioblastoma network model–based on 10 672 genes and 186 patients

Symbol Amp Del Targets Chrom Pos Description

EGFR 146 2 134 7 55054218 Epidermal growth factor receptor (erythroblastic leukemia viral (v-erb-b)
oncogene homolog, avian)

CDKN2B 6 108 46 9 21992905 Cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4)
CDKN2A 6 108 27 9 21957751 Cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4)
MTAP 6 101 22 9 21792634 Methylthioadenosine phosphorylase
SEC61G 134 2 21 7 54787434 Sec61-gamma subunit
PDGFRA 33 5 19 4 54790203 Platelet-derived growth factor receptor, alpha polypeptide
IFNA1 6 101 14 9 21430439 Interferon-alpha 1
COMMD3 8 130 10 10 22645304 COMM domain containing 3
CHIC2 35 5 9 4 54570714 Cysteine-rich hydrophobic domain 2
GAD2 8 130 9 10 26545599 Glutamate decarboxylase 2 (pancreatic islets and brain, 65 kDa)
IFNA14 6 98 8 9 21191233 Interferon-alpha 14
C10orf97 9 126 6 10 15860180 Chromosome 10 open reading frame 97
MLLT10 9 129 5 10 21863579 Myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila);

translocated to 10
PPYR1 12 130 5 10 46503539 Pancreatic polypeptide receptor 1
WIPI2 129 5 5 7 5220425 WD repeat domain, phosphoinositide interacting 2
NDN 1 29 5 15 21481654 Necdin homolog (mouse)
ADARB2 9 123 4 10 1218072 Adenosine deaminase, RNA-specific, B2 (RED2 homolog rat)
ELAVL2 7 91 4 9 23680104 ELAV (embryonic lethal, abnormal vision, Drosophila)-like 2 (Hu antigen B)
GNA12 128 5 4 7 2734268 Guanine nucleotide binding protein (G protein) alpha-12
ARMC4 8 132 3 10 28141104 Armadillo-repeat containing 4
IFNA21 6 96 3 9 21155635 Interferon alpha-21
LANCL2 120 2 3 7 55400634 LanC lantibiotic synthetase component C-like 2 (bacterial)
MAD1L1 129 5 3 7 1821953 MAD1 mitotic arrest deficient-like 1 (yeast)
MGAM 133 7 3 7 141342147 Maltase-glucoamylase (alpha-glucosidase)
MOBKL2B 10 71 3 9 27315207 MOB1, Mps One Binder kinase activator-like 2B (yeast)
ACTR3B 136 1 2 7 152087783 ARP3 actin-related protein 3 homolog B (yeast)
C1GALT1 130 5 2 7 7240413 Core 1 synthase, glycoprotein-N-acetylgalactosamine 3-beta-galactosyltransferase 1
CAMK1D 8 126 2 10 12431588 Calcium/calmodulin-dependent protein kinase ID
CENTA1 129 6 2 7 904065 Centaurin-alpha 1
FBXL18 130 5 2 7 5481953 F-box and leucine-rich repeat protein 18
FTSJ2 128 5 2 7 2240453 FtsJ homolog 2 (E. coli)
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Technical comparison with mRNA-based and
eQTL-type methods

We compare the performance of EPoC to a set of alternative
network construction methods. We include a set of mRNA-
only methods based on information theory (ARACNE), partial
correlations (GeneNet) and sparse estimation of the inverse
covariance (precision) matrix (glasso). We also consider
methods based on combinations of genotype and expression

data. These include (i) a univariate SNP-eQTL (Stranger et al,
2007a, b), here using CNAs in place of SNPs; (ii) a recent
network method termed remMap (Peng et al, 2008); and (iii)
the SNP-eQTL module network solver LirNet (Lee et al, 2009),
here using CNAs genotypes in place of SNPs. remMap and
LirNet, similar to EPoC, use variants of lasso for model fitting
and are thus preferred points of comparison. remMap was
recently proposed to relate genomic-region variations to select
genes in breast cancer, and LirNet was of late advantageously

Figure 4 Experimental perturbations of a network region controlled by NDN and PDGFRA. (A–D) NDN overexpression slows the growth of glioblastoma cell lines.
(A) Interactions in the network around EGFR, NDN and PDGFRA. (B) Perturbation of NDN by stable overexpression in two separate U343-derived cell lines, denoted
as NDNþ (moderate overexpression) and NDNþ þ (high overexpression). (C) Growth curves collected during 6 days showed that NDN overexpression
inhibits growth of U343 cells. Error bars indicate 95% confidence intervals. (D) Single-time point (7 days) measurement of cell number in NDN-overexpressing cells. Error
bars indicate s.e.m. (E) Perturbation of PDGFRA by PDGF-AA protein (ligand) and imatinib (STI-571; Gleevect; inhibits PDGFRA and certain other tyrosine kinases),
respectively, produces opposite responses in target genes KCNH8 and FGF9, which were identified as downstream targets of PDGFRA in the model. NDN
overexpression induces CPNE8 target genes and modulates FGF9 response to PDGFRA. Error bars indicate 95% confidence intervals of mRNA expression
log2-relative to untreated controls. (F) Perturbation of EGFR by its ligand EGF and gefitinib (ZD-1839 Iressat; inhibits EGFR) produces opposite responses in the
predicted EGFR target genes SOCS2 and NR2E1.
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compared with a set of eQTL-type methods, including
Geronemo (Lee et al, 2006) and Bayesian networks with eQTL
priors (Zhu et al, 2008). Details of the comparison are given in
Materials and methods.

Model consistency between independent glioblastoma
data sets
We identify the subset of 146 patients (out of the 186 patients
analyzed above), for which two independent CNA and mRNA
data sets have been produced at different institutes in the
TCGA consortium. These technically independent data sets
provide an ideal setting for an unbiased comparison of the
methods. We thus apply each method to the two data sets, and
use Kendall’s W to investigate the consistency between the two
solutions (Materials and methods). This analysis shows
stronger performance by EPoC CNA-driven networks G over
all other methods for all but the largest network sizes
(Figure 6A), i.e., EPoC G network solutions from two
technically independent data sets largely agree both in terms
of detection and estimated strength of network interactions.

Apart from glasso, methods that incorporate combined
genomic/transcriptional data perform better than mRNA-
based networks (ARACNE and GeneNet). We also derive
transcriptional EPoC A networks (solving Equation (2);

Materials and methods). EPoC A corrects transcripts for their
own CNAs prior to network construction and performs quite
well, but clearly worse than EPoC G. This is best explained by
the stronger correlations among mRNAs compared with CNAs
(predictor variables in EPoC A and EPoC G, respectively), as it
is well known that regression modeling with highly correlated
predictors is subject to instability (Breiman, 1996; Skogestad
and Postlethwaite, 2005; Nordling and Jacobsen, 2009; and
references therein). While CNAs may exhibit strong correla-
tion within a genomic region, CNA correlation between
genomic regions is globally much lower than between mRNAs
(data not shown). As expected, EPoC G, remMap and LirNet
perform better than standard eQTL, which likely reflects the
benefit of a multivariate modeling approach, using regulariza-
tion (L1 in EPoC G, and L1þ L2 in remMap and LirNet) over a
univariate approach (eQTL).

Pathway overlap and prediction error
We proceed to determine the overlap between the derived
networks and two protein–protein interaction (PPI) and two
pathway databases. Results from this analysis demonstrate a
similar ranking of methods as in the robustness tests above
(Figure 6B, Materials and methods). That is, EPoC G captures
the most known direct and short-path interactions. In absolute

Figure 5 Derivation of prognostic scores from the network model. (A) Kaplan–Meier curves to assess prognostic scores extracted from the CNA-driven network.
Prognostic scores are computed by a sparse singular value decomposition of the CNA-driven network G (Materials and methods). Patients are divided into two groups
by projecting their CNA profiles and mRNA profiles onto the main left and right axis of the singular vectors of G, respectively. This separates patients with favorable and
poor prognosis (upper panels). By contrast, the corresponding analysis of the transcriptional network A (middle panels) does not produce any significant separation
of patients in terms of survival, nor does a standard singular value decomposition (SVD) of the mRNA profiles or CNA profiles (lower panels). The panels show the
results obtained by projection onto the first SVD components. The results obtained when projecting onto additional components are given in Table II. (B) The sparse
singular value decomposition of the CNA-driven network G identifies genes with strong scores for signal amplification, i.e., genes whose perturbations are highly
amplified by the network system (here illustrated as yellow nodes, e.g., PDGFRA), as well as mRNA transcripts that are most affected by these perturbations
(green nodes, e.g., GRIK1; Figure 1C).
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numbers, 65 interactions in the CNA-driven network corre-
spond to known short-range interactions (shortest path
between the genes is one or two steps in at least one of the
databases). Among the other methods, EPoC A and glasso also
exhibit a good overlap with known pathways.

We emphasize robustness in the above analysis, but
EPoC can also be used to generate network models for
mRNA prediction from CNA data (Materials and methods).
We assess the prediction accuracy by computing cross-
validation errors for EPoC G, remMap and LirNet, which
all produce natural prediction models. We conclude that

EPoC G results in the smallest prediction errors on the
glioblastoma data set (Supplementary Figure 2).

Qualitative differences and speed
Additional comparisons (Supplementary information) show
that the genotype-driven networks and mRNA-based networks
capture complementary genomic process information in terms
of structure and gene content: the EPoC CNA-driven network
has a more hub-oriented structure, with several development-
associated genes as responders, whereas the transcriptional

Figure 6 Method comparisons: network consistency and pathway interactions. (A) We compare network models derived from two full replicate glioblastoma
data sets (146 identical tumors; same patients and samples) but processed at different centers with slightly different technological setups (Affymetrix and Agilent
technologies, run at MSKCC, Harvard Medical School and Broad Institute, Materials and methods). This test measures each method’s reliability, i.e., its robustness
to noise and technological factors. EPoC estimation of the CNA-driven network G is the best-performing method on the TCGA data (1�W lower, arrow s). Glasso is
second best, followed by sparse estimation of the transcriptional network A (EPoC A), and remMap. LirNet, eQTL, GeneNet and ARACNE all exhibit less
robust performance compared with EPoC G. (B) We map interactions found by EPoC and other methods to molecular links in the pathway repositories
HPRD, Reactome, Intact and NCI-nature. Each interaction is characterized by the number of steps minimally needed to ‘walk’ between the network gene and its
target (i.e., the shortest path). We argue that a well-estimated network should be comprised of identified interactions that either match known interactions in the
databases or are enriched for shorter paths. The figure depicts the enrichment (relative proportion of interactions that correspond to a shortest path length of 1 or 2
interactions in a pooled network based on the four different pathway databases). EPoC G interactions are clearly enriched for short or direct paths in the databases,
followed by glasso and EPoC A.

Table II Survival differences

Network and data type Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6

(A) log-rank test P-values of survival difference between patient with a positive versus negative loading on SVD components 1–6
EPoC G, CNA *0.0014 0.1129 0.0216 0.1157 0.0853 0.0147
EPoC G, RNA *0.0004 0.1560 0.0759 0.0818 0.0516 0.0412
EPoC A, CNA 0.3109 0.1468 0.1100 0.0393 0.2817 0.1069
EPoC A, RNA 0.2198 0.3526 0.0479 0.2402 0.1570 0.3621
SVD, CNA 0.0505 0.1266 0.0261 0.0042 0.4677 0.4251
SVD, RNA 0.0869 0.0963 0.2822 0.1198 0.0225 0.4091

Subtype Classical Proneural Neural Mesenchymal

(B) log-rank test P-values of survival difference between patients in different molecular subclasses, as defined in (Verhaak et al, 2010)
Classical —

Proneural 0.4517 —

Neural 0.6744 0.5598 —

Mesenchymal 0.3600 0.7371 0.5220 —
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network captures inflammatory and cell cycle processes
(Supplementary Figure 1). The distinction between CNA-
driven and transcriptional networks is well illustrated by a
hierarchical clustering summary, structurally comparing
networks produced by all the above methods using Kendall’s
W. We see a clear structural separation between mRNA-based
and genome-type-driven networks (Supplementary Figure 1).
As a practical consideration, we also demonstrate that the
scalability and algorithmic speed of EPoC is highly competitive
(Supplementary information).

From these comparisons, we conclude that EPoC exhibits
excellent performance in terms of model reproducibility,
validity and algorithmic speed (see Materials and methods
and Supplementary information). EPoC is primarily of interest
for derivation of large networks at the single gene level and thus
complements methods that use different levels of description,
such as grouping CNAs into whole regions, integrating CNA and
mRNA events over PPI networks, or by condensing transcripts
into modules or linear superpositions (below). In Materials
and methods and Supplementary information, we discuss the
relative performance of the methods in more detail, including
plausible explanations for performance differences.

Discussion

We have demonstrated that combined network modeling of
CNAs and mRNA expression levels in tumors generates
mechanistically and prognostically informative results. The
network-based survival scores introduced here serve to
identify molecular features useful for predicting the outcome
of individual patients, adding to our understanding of survival
differences in the TCGA cohort (Verhaak et al, 2010). Extensive
computational and experimental assessments confirm EPoC as
an efficient and robust methodology to interpret CNA–mRNA
profiles of glioblastoma. Applying our method to other tumors
is facilitated by an efficient solver in R and MATLAB packages
(Materials and methods).

Possible limitations

CNAs often span multiple genes in large chromosomal regions
(sometimes a whole chromosome or chromosome arm),
introducing copy number correlations between genes in the
affected region. This may lead to erroneously identified CNA–
mRNA couplings in network construction. EPoC tries to
address this in two ways: first, each transcript’s mRNA signal
is corrected by its own CNA value (Materials and methods),
which largely de-correlates the transcript’s signal with
neighboring CNAs, thus reducing the risk of including false
couplings in such regions; second, the bootstrap procedure
will work against CNA–mRNA associations that cannot be
resolved at the single gene level. Empirically, this seems
to work well in glioblastoma, as known oncogenes and tumor
suppressors are recovered as single gene hubs by the
algorithm. However, we also note cases where EPoC does
not resolve a single regulator (e.g., Chromosome 10, see
Results section). While our tests show good support for
pursuing a gene-level approach for glioblastoma, optimally
modeling larger genomic regions is an interesting future

research problem; possible approaches to explore are cluster-
ing of CNA profiles into regions (Peng et al, 2008), adapting
statistical techniques from linkage analysis (Jiang and Zeng,
1995) or using annotation features as regulatory priors (Lee
et al, 2009).

Our analysis focuses on the full set of glioblastoma patients
in the TCGA compendium. We also considered subtype-
specific models, using the recent classification of the TCGA
glioblastoma cohort into Classical, Mesenchymal, Proneural
and Neural subtypes (Verhaak et al, 2010), but found that
the number of patients within each subtype is too small to
produce a robust network model (as indicated by the boot-
strap procedure, data not shown). We reserve work on specific
cancer subtypes for when more patients become available, and
suggest a rule of thumb that EPoC be applied to 100 patients or
more. Future data sets may also involve finer anatomical
sampling, helping to model distinct sub-populations of cells in
glioblastoma tumors.

Other approaches

In this article we have explored and compared several methods
for the analysis of CNA and mRNA data. We briefly discuss
some additional methods here.

CCA is a traditional multivariate technique, and has recently
been extended and applied to integrate CNA and mRNA data
(Waaijenborg et al, 2008; Witten et al, 2009). CCA links
modules of CNA to modules of mRNA, i.e., identifies a
sequence of linear combinations of subsets of CNAs maximally
correlated with linear combinations of subsets of mRNA.
Thus, CCA does not provide a gene-level network model, but
opts to summarize CNA–mRNA interactions at a module level.
CCA treats CNA and mRNA data symmetrically. Therefore,
CCA components (module–module links) do not generally
agree with the survival score decomposition of the CNA-driven
network G, except under very unrealistic assumptions
(Materials and methods and Supplementary information).
An investigation to further compare module-level and gene-
level methods, and alternative decomposition techniques is
reserved for future work.

A second alternative approach to integrate CNA and mRNA
data would be to adapt the electrical circuit-inspired model,
eQED (Suthram et al, 2008; Kim et al, 2010), which links
genetic perturbations to transcriptional responses over a
predefined network from molecular interaction databases.
Clearly, the key distinction between this approach and EPoC
is the use of PPI and other data as a scaffold on which to
construct the model. In work by Zhu et al (2004, 2007, 2008),
it is suggested to use SNP-eQTL priors to guide the construc-
tion of mRNA-based transcriptional networks (for a perfor-
mance test against a lasso-based method, see Lee et al, 2009).

Future directions

For biological follow-up work, there are several predicted
couplings between CNA hubs and stem cell markers that may
be interesting to investigate further (Figure 3B). For instance,
autocrine signaling loops are known to suppress differen-
tiation in glioblastoma (Erlandsson et al, 2006; Dai et al, 2001);
it is therefore interesting that our model connects the PDGFRA
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and EGFR hubs to at least seven known growth factors
(including PDGFA, PDGFD, FGF9) and five known feedback
regulators of cell signaling (including SPRY1, SPRY2 and
SOCS2). Exploring such links by targeted experiments may
lead to new insight regarding signaling networks in glioblas-
toma. In addition, the compound predictions (Figure 3C) can
be explored in several ways, for instance, by assessing the level
of synergism between these compounds and standard glio-
blastoma therapies such as Temozolomide.

Future methodological work should be aimed at incorporat-
ing other data types, including miRNA expression, DNA
methylation and sequence mutations, to model the nonspecific
perturbation term,G in Equation (3), currently treated as noise
in the network model estimation procedure. Both modeling
and model testing might benefit from additional molecular
network reference data. For instance, TF-target links could also
be included as a prior for network construction or to guide
method development. Extending biological-mechanistic
models to encompass all levels of the regulatory process will
require careful consideration and important choices of model
representations. Of particular interest will also be to further
develop prognostic scoring methods by linking network
decomposition techniques to more advanced survival model-
ing, which may be an interesting extension to methods that
relate principal components in tumor molecular profiles to
relative hazard (Nguyen and Rocke, 2002a, b).

Ambitious efforts are currently being undertaken to acquire
comprehensive genome-scale data sets for several cancer types,
including the Cancer Genome Atlas, and the International
Cancer Genome Consortium. The recent data deluge presents
a challenging opportunity to develop mechanistically and
clinically relevant models of the data. EPoC is one step in this
direction, and helps to set the stage for the continued modeling
efforts in the context of human cancer genome programs.

Materials and methods

Glioblastoma data preparation

We obtained DNA and mRNA molecular profiles from the Cancer
Genome Atlas (TCGA) data repository (http://tcga.org and TCGA-
Consortium, 2008). We use level 3 data (discrete copy number
estimates and mRNA levels for known protein-coding genes)
generated using Agilent 244 k DNA and Agilent 44 k mRNA, and
Affymetrix U133 mRNA arrays. For model construction, mRNA and
Affymetrix mRNA signals are averaged for more stable signal (Verhaak
et al, 2010). Sex chromosomes are removed from the analysis.

Prior to analysis with EPoC or other network estimation methods,
we standardize the amplitude of the mRNA levels, i.e., center each
gene around its mean expression level and divide by its standard
deviation. All methods have also been compared on unstandardized data,
but standardization substantially improves the consistency of models
between replicate data sets, as well as facilitates the search for an optimal
regularization parameter in the sparse regression modeling, as, after
standardization, a single parameter value can be used for all transcripts.

Network parameter estimation

After centering and standardization, and assuming steady state,
Equation (1) is rewritten as

Dui þ
X

j

ðwij � vij|fflfflfflffl{zfflfflfflffl}
¼aij

ÞDyj þ ðlogai � log ~aiÞ � ðlogbi � log ~biÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ri

¼ 0; ð4Þ

(where ãi and b̃i refer to mean gene-specific constants across all
tumors). Collected for all transcripts i, the above translates to the linear
equation systems in Equation (2) ADYþDUþR¼0. Equation (2) can
be transformed into Equation (3), where we have DY¼GDUþG,
G¼�A�1 and G¼�A�1R. DY is the n�T matrix of mRNA expression
levels for the n transcripts across the T tumors, similarly for the CNAs
DU, and G is the n�n CNA-driven network matrix. Below, we outline
how to solve for parameters of interest in Equation (3), although this is
easily recast to estimate parameters in Equation (2) instead.

Prior to solving for parameters of interests, EPoC uses, by default, an
optional filter to distinguish candidate (CNAs) from inherited (germ
line) copy number variations (CNVs). For each gene, we calculate the
number of patients with amplification of the gene (N1), and the
number of patients with deletion of the gene (N2). Given a total
number of changes of N1þN2, we evaluate P as the binomial
cumulative probability function for N1 successes in N1þN2 attempts
at 0.5 probability. Candidate hubs are selected as genes, for which Pod
(bias toward deletion) or P41�d (bias toward amplification). For our
analysis, we set d¼10�8, thus including 25% of the genes as possible
regulators. The key difference when the filter is not applied is that the
CNV gene GSTT1 is selected as a hub; this gene has both gains and
losses, indicating no selection by the tumor, and was also seen in
ovarian cancer data from TCGA (data not shown), and is located
within a known CNV. We expect that the recurrent CNA detection
programs RAE or GISTIC could also be used in this step with good
results (Beroukhim et al, 2007; Taylor et al, 2008).

For each gene i we first estimate the direct effect of the gene’s own
CNA by the positive truncated least-squares estimate: d¼max(0,DUi

T

DYi), where DYi is the T� 1 vector transpose of the i-th row of DY, and
similarly for DUi. From the CNA filter operation above, we obtain the
set of H candidate hubs and denote the corresponding CNA values by
DUH, where DUH is a H�T matrix. We then solve the n L1 regularized
regression problems (one for each gene), treating G terms as noise in
the estimation:

min
Gi

jjðDYi � dDUiÞ � DUT
HniGijj2F þ l

X
j2Hni
jGi½j�j; ð5Þ

where DUH\i¼DUH[\i,\i], i.e., the DUH matrix excluding gene i, and Gi

denotes the H� 1 vector transpose of the i-th row in G with elements
corresponding to the hub set H, but excluding gene i, and l is the
regularization parameter that controls the degree of sparsity (number
of non-zeroes) in G. Gi[j] denotes the j-th element in vector Gi. We solve
Equation (5) using the cyclic coordinate descent algorithm (Fu, 1998;
Friedman et al, 2007). Following Friedman et al (2007), we speed up
the computation using the fact that l4DUH\i||DYi�dDUi||N implies
that Gi¼0 (Osborne et al, 2000), meaning that we need not search for a
model for transcripts that meet this criterion as the optimal model will
be empty. As a global upper limit for l, we define lmax¼maxiDUH\i

||DYi�dDUi||N, for which all elements of G will be zero. The EPoC
algorithm is summarized below (Box 1). Note, the same algorithm can
be used to estimate the transcriptional network A by simply replacing
DUH\i with the mRNA data DY\i.

Optimizing the size of the network

The size of the estimated network is controlled by the lasso penalty
parameter l. To determine an appropriate value for l between 0 (fully
connected model) and lmax (smallest, non-empty model) we consider
two different validation criteria.

We first compare network consistency using Kendall’s W (Kendall
and Smith, 1939), commonly used to assess agreement among rank-
order lists and lately applied for network inference (Vacher et al, 2008;
Milns et al, 2010). Here, we rank the network edges (presence and
magnitude of an interaction) from different network estimates. If the
rank lists agree completely, W is 1, and if the rank orders exhibit a
random overlap, W is 0. Kendall’s W is analogous to rank correlation
but, as it can compare several rank lists instead of only two, we chose
to use this measure instead of Spearman’s rank correlation for future
scalability. Here, we randomly split the data set into two non-
overlapping groups, independently estimating a network for each
group, and there are thus two rank lists to compare. For more robust
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inference, the above validation procedure is repeated 1000 times. The
final choice of l, or network size, is based on the mean value of
Kendall’s W across the 1000 random splits (Figure 2A, upper panel).

We also assess the prediction power of our method. When mRNA
prediction is the goal, we need to optimize network size with this in
mind. We thus compute the prediction errors for each mRNA transcript
using cross-validation. Leaving out one 10th fraction of the data, we
estimate the gain matrix: bG(k). For the left-out portion of the data, we
can now predict the mRNA transcript by cDY(k)¼bG(k)DU(k) and compare
with the true observed mRNA expression levels DY(k). Note, DY(k),
DU(k) refer to the left-out data, whereas the estimate bG(k) refers to the
estimate based on all data, except the left-out portion. The cross-
validation prediction error is defined as

1

10

X10

k¼1

jjDYðkÞ � bGðkÞDUðkÞjj2F :

The validation procedure is repeated 1000 times. The final choice of l
is based on the mean prediction error across 10-fold random splits of
the data (Figure 2A, lower panel). We note that networks optimized for
prediction are larger than networks optimized for robustness.

For robust inference, we produce a final network model by repeating
the estimation and validation procedures several times using so-called
pseudo-bootstrap (Friedman et al, 2000). We generate bootstrap
samples as follows: for each bootstrap simulation b¼1,y ,B, we create

pseudo-bootstrap mRNA data as DYb¼(1�c)DYþ cDY* (here B¼1000
bootstrap simulations). DY* is a n�T data matrix, where each column
(tumor sample vector across genes) has been randomly sampled from
the columns in DY. That is, in DYb each column represents a weighted
combination of one tumor sample vector with another sample.
The constant c is small, here set to 0.01. The pseudo-boostrap
CNA data, DUb, is obtained in exactly the same way. We then estimate
the boostrap network Gb by applying EPoC to the data set (DUb, DYb).
We collect frequency information for each interaction as f{i,j}¼P

b¼1
B 1(Gb{i,j}a0)/B, i.e., f{i,j} is the proportion of bootstrap samples

for which the interaction i’j is present in the network. Large values of
f{i,j} suggest that the interaction is real, whereas small values suggest
it is detected just by chance (numerical instabilities in the estimation
procedure). We compute a cutoff for f using permutations of the data
(Figure 2B) and pick a frequency threshold of 20%, which is well
above interaction frequencies expected by chance. We visualize the
obtained networks using Cytoscape (Shannon et al, 2003).

Network-based survival score

The singular value decomposition of G is G¼CLDT (where CCT¼I,
DDT¼I and L is diagonal). The right singular vectors (columns) in D
represent the leading directions of CNA perturbations that are
amplified by the system G. The left singular vectors (columns) in C
represent for which mRNA transcripts these perturbation signals result
in the largest effects. To aid in interpretation and identify a small set of
potential prognostic biomarkers, we here construct the SVD of G using
a sparse PCA method (Zou et al, 2006). This is based on a regression
formulation of PCA, and employs a combined L1 and L2 penalty
(a.k.a elastic net) to identify the non-zero loadings of the principal
components. The sparse SVD component D is obtained through a
sparse PCA of GGT, and the sparse component C is obtained through a
sparse PCA of GTG. The level of sparsity is chosen such that (i) we
obtain a reasonable set of biomarkers for possible therapeutic follow-
up, and (ii) the solution is stable across neighboring values of the
sparsity penalty.

The mRNA profiles of individual patients are projected onto the
singular vector space by Zy¼CTDY (rows of Zy will be components,
columns will be patients); and CNA profiles are projected by Zu¼DTDU
(rows of Zu will be components, columns will be patients). For the
different components of Zy and Zu we thus compare patients z40 and
zo0 in terms of clinical survival (from date of surgery to date of
death); survival difference P-values are obtained by the log-rank test.

One could consider constructing alternative biomarker modules to
the above using sparse canonical correlation (CCA; Waaijenborg et al,
2008; Witten et al, 2009). In the Supplementary information, we
discuss this alternative in more detail, but note here that sparse SVD of
G can disagree substantially from CCA. The SVD of G focuses on CNA
as the input or driver of mRNA changes, whereas CCA treats CNA and
mRNA symmetrically. In our toy example, SVD of G correctly identifies
CNA biomarkers and mRNA responders (Figure 1C). In contrast, CCA
is susceptive to, and reflective of, the structure of the noise term of
Equation (3). This is a major concern in our glioblastoma data set,
where we know that the noise structure is non-negligible, capturing all
the mRNA–mRNA dependencies that are non-CNA related.

Method comparisons

A detailed description of the methods is found in the Supplementary
information.

Structural consistency tests
We first construct two replicate versions of the TCGA data set, A and B.
A comprised array-CGH and Agilent array measurements from
MSKCC; B comprised Agilent array-CGH profiles and Affymetrix
U133A mRNA profiles generated at Harvard and Broad Institute, with
both A and B consisting of 146 individually matched samples. For 100
iterations, we select a mixture of the 250 genes with the highest mRNA
variance in one of the data sets, plus an additional random 250 genes
from the 10 672 genes studied. This way, we get a set of genes that can

Box 1 EPoC flowchart

1. Data preparation
Center the mRNA and CNA data, constructing the two n�T data
matrices DY and DU.
Reduce the CNAs to candidate hubs using the germline binomial
filter described above. Collect the candidate CNA hubs in the
H�T data matrix DUH.

2. Estimate the direct effect of each transcript’s own CNA
For each gene i,
estimate the direct effect of the gene’s own CNA by
d¼max(0,DUi

TDYi), where DYi is the T� 1 vector transpose
of the i-th row of DY, and similarly for DUi .

3. Estimate elements of G using lasso
For genes i¼1,y ,n, solve the lasso problem

min
Gi

jjðDYi � dDUiÞ � DUT
HniGijj2F þ l

X
j2Hni
jGi½j�j;

where Gi denotes the vector transpose of i-th row in the gain matrix
G with elements corresponding to the hub set H, but excluding
gene i.

4. Optimal network size
Randomly split the data into two groups. Apply steps 2 and 3 for
different values of l to each group, and use Kendall’s W to
compute network agreement. Select the optimal l that maximizes
W (average W over 1000 random splits) and record the
corresponding network size S. (Alternatively, here optimize for
mRNA prediction.)

5. Final network
Generate B¼1000 pseudo-bootstrap data sets. For selected l in
step 4—find the corresponding l0 that generates networks of size S
on the bootstrap data set (applying steps 2 and 3 above). The
bootstrap networks are denoted Gb, b¼1,y ,B. Collect
interaction frequencies f{i,j}¼

P
b¼1
B 1(Gb{i,j}a0)/B. The final

network consists of interactions with f{i,j}4f* (here with f*¼0.2).
EPoC has been implemented in both R and MATLAB (with C) and
the software is available for download at http://sysbio.med.gu.se/
epoc.html
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be analyzed also by the slowest methods (remMap, glasso, ARACNE),
and which introduces a bias in favor of the methods that uses mRNA
data only. We subsequently run each method for each of a series of
parameter values corresponding to stringency, resulting in a series of
networks of different sizes. The parameters tuned are glasso r,
ARACNE dpi, GeneNet significance threshold, EPoC l, remMap L1
penalty, LirNet L1 penalty and eQTL P-value cutoff. remMap has an
additional L2 parameter, which is tuned for optimal performance (W).
Similarly, LirNet is optimized to perform well by (i) using the same set
of initial clusters/modules in the A and B data; (ii) by optimizing the
number of modules and the L2 penalty. For all methods, we compute
network agreement between data sets A and B using Kendall’s W
(Figure 6A).

Pathway comparisons
We download Reactome, IntAct and HPRD from Pathwaycommon-
s.org, and map identifiers to the 10 672 genes in our data set. We
subsequently calculate the undirected shortest path Rij for all gene
pairs (i,j) in these databases using Johnson’s algorithm (Johnson,
1977). For a given network G, we then calculate the enrichment
(relative proportion) as:

PðRij ¼ kji and j are connected in GÞ
PðRij ¼ kji and j are connected in a permutation of GpermutedÞ

;

calculated across non-diagonal elements (iaj) and where Gpermuted is
generated by random permutation of the non-diagonal G elements
(1000 simulations; Figure 6B). For Figure 6B, k¼2 is used.

Prediction of mRNA levels
We calculate the 10-fold cross-validation error for the remMap, LirNet
and EPoC methods on random sets of 500 genes (above) (due to speed
constraint of remMap). Each method is tuned to perform well by
adjusting L1 and (when applicable) L2, and module number.

Experimental methods

Cell culture and perturbation of NDN, PDGFRA and
EGFR
Human U-343MG glioblastoma cells were cultured in Dulbeccos
modified Eagles medium (DMEM; Lonza) supplemented with heat-
inactivated 10% fetal bovine serum, 100 units/ml penicillin and
0.1 mg/ml streptomycin. Cells were kept in a 371C humidified
incubator containing 5% CO2. For transfection, 1.5�105 cells were
seeded in a six-well plate, and the FuGENE 6 transfection Reagent
(Roche) was used. The cells were transfected by the FLAGC-NecF
plasmid containing Flag-tagged NDN and the neomycin selection
cassette. For generating stable transfectants, 500mg/ml neomycin
was used, whereas for continuous growth 250mg/ml was added.
Two different cell lines (NDNþ and NDNþþ ) were generated
that expressed NDN at different levels. Negative control lines were
generated by the same protocol, but with an insert-free plasmid. In
addition to this experiment, three other cell lines, Human U-87MG,
T98G and U-373MG (Cell Lines Service, Germany), were transfected
with the same plasmid. U-343MG was re-transfected and previous
results were confirmed. Conditions and procedures were similar,
except for the transfection procedure, where cells were seeded in six
replicates in six-well plates (0.7 to 4.3�105 cells/well) and transfected
with OPTI-MEM, lipofectamine and PLUSreagent (Invitrogen Corp.).
To perturb the PDGFRA node, PDGF-AA was added at 30 ng/ml. To
inhibit cytoplasmic tyrosine kinases, we used STI-571 (Gleevec) at
1mM. Cells of 50–70% of confluence were grown in a six-well plate and
in serum-free DMEM medium for 1 day before PDGF-AA and STI-571
treatments. The duration of PDGF-AA and STI-571 treatment was 14 h.
To perturb the EGFR node in U-87MG, U-343MG, U-373MG, T98G and
A172, EGFR inhibitor Gefitinib (Selleck Chemicals) and EGFR ligand
EGF (supplied by Peprotech) was added at 5mM and 50 ng/ml,
respectively. For the Gefitinib-treated cells, controls were treated with
equal concentration of DMSO. Cells were seeded in triplicates at 5�105

cells/well in a six-well plate 24 h before addition of Gefitinib and EGF.
Cells were treated for 6 h at 371C.

Comparison of growth rates
For U-343MG, cell growth of NDN-expressing and cells transfected
with insert-free control plasmid was measured using the MTT
colorimetric assay. Initially, 1500 cells were seeded in 96-well plates,
with 11 replicates for each time point and treatment. At the respective
time point, cells were incubated with 20 ml of 5 mg/ml�1 MTT (3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) dissolved in
PBS. After 6 h at 371C, media were removed and formazan crystals
were dissolved in DMSO, and absorbance was measured at 570 nm. For
U-87MG, 75 000 cells/well were seeded in six-well plates and counted
after 24 days. For U-373MG and T98G, 200 000 cells/well were seeded
in six-well plates and counted after 7 days. Cell number was measured
using a Chemometec cell counter.

Statistical model to test growth rate differences
We assume an exponential model for the growth of glioblastoma cells
in culture, h(t)¼h02

kt, in which where t¼time (days), h p number of
cells and h0 is the value of h at t¼0. Following log transformation, this
is expressed by the linear equation log2(h(t))¼log2(h0)þ kt, which
is in good agreement with experimental data (not shown). The
constant k is estimated by linear least squares, with confidence
interval k±sk � t0.975,n�2, where sk is the empirical standard deviation
of k. The time tD, it takes to double the number of cells, is given by the
inverse of k, i.e., tD¼1/k, which has confidence interval

tD ¼ 24� 1

k� sk � t0:975;n�2
hours ð6Þ

In our experiment, we tested the hypothesis that cells that over-
express Necdin (NDN) grow slower than cells that have been
transfected with a negative control plasmid (CTRL). Thus, our null
hypothesis H0 is that kNDN¼kCTRL and our alternative hypothesis H1 is
that kNDNokCTRL. To compare the doubling rates kNDN and kCTRL,
we calculate a T statistic:

T ¼ kCTRL � kNDNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
CTRL þ s2

NDN

q � t2n�4 ð7Þ

Detection of Necdin expression
For U-343MG, cells of 50–70% confluence were solubilized with lysis
buffer (150 mM NaCl, 5 mM Tris, pH 8, 0.5% deoxycholate, 10%
glycerol, 1% NP-40, 1 mM PMSF, 1 mM DTT, 1 mM aprotonin).
Samples were boiled for 10 min and protein content was measured
using Bio-Rad protein-assay Dye Reagent. Samples of 10mg total
protein were analyzed on a 10% SDS–PAGE. After electrophoresis,
the proteins were transferred onto a nitrocellulose membrane
(Amersham) with a semi-dry transfer equipment (Bio-Rad). The
membrane was processed for immunoblotting using an anti-FLAG
primary antibody (1:2000, Sigma-Aldrich) at 41C over night and a
secondary anti-mouse antibody (1:10 000, GE Healthcare) for 1 h. To
detect signal, the membrane was developed using the ECL Advance
System (GE Healthcare) according to the manufacturer’s protocol and
scanned using LAS-1000 Plus (Fujilm).

qPCR analysis
Cells cultured in a six-well plate were harvested and RNA isolated
using the TRIzol reagent (Invitrogen) and Ethanol precipitation. We
synthesized cDNA by annealing oligo-dT primers and elongating with
M-MuLV reverse transcriptase (Fermentas) according to the manufac-
turer’s protocol. To avoid DNA contamination, the TURBO DNA-free
kit (Ambion, Applied Biosystems) was used. We measured levels
of transcripts and estimated Ct values for GAPDH, NDN, CPNE8, FGF9
and KCHN8 (primer sequences in Supplementary information) using
the StepOne Real-Time PCR system (Applied Biosystems). Primer
sequences were selected using the software Primer Express 3.0
(Applied Biosystems). For qPCR analysis of SOCS2 and NR2E1, cells
cultured in a six-well plate were harvested and cellular total RNA was
extracted using the RNeasy Plus Mini Kit (Qiagen), according to the
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manufacturer’s protocol. cDNAs were synthesized from total RNA
(1mg) using random primers according to the protocol (High Capacity
cDNA Reverse Transcription kit, Applied Biosystems). The expression
levels of human SOCS2 and NR2E1 mRNA was evaluated using
quantitative real-time PCR (TaqMan Gene Expression Assays, Applied
Biosystems). Each reaction was run according to manufacturer’s
protocol (Applied Biosystems). TaqMan Gene Expression Assays used
were Hs99999903 m1 for human ACTB; Hs00919620 m1 for human
SOCS2; and Hs01128417 m1 for human NR2E1/TLX. The reaction was
run using an ABI PRISM 7900 HT Sequence Detection System (Applied
Biosystems). Data were collected and recorded by ABI PRISM 7900
SDS Software (Applied Biosystems). Samples were run in duplicates.

Statistical analysis of qPCR experiments
Quantity levels (on an arbitrary scale, using four-point standard
curves) were estimated using Applied Biosystems software. Statistical
testing was conducted to test the following null hypothesis (using a
four-sample, unequal variance t-test): log(quant. of test gene in treated
cells)–log(quant. of ctrl gene in treated cells)¼log(quant. of test gene
in normal cells)–log(quant. of ctrl gene in normal cells). The validity of
using a t-test was confirmed by assessing the distribution of residuals
(difference between log(quantity) and the mean of log(quantity)).
Residuals were compared with a normal distribution by the
Kolmogorov–Smirnov test, showing no evidence (P-value¼0.1793).
We used both ACTB and GAPDH as housekeeping controls.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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Deloukas P, Dermitzakis ET (2007b) Population genomics of
human gene expression. Nat Genet 39: 1217–1224

Suthram S, Beyer A, Karp RM, Eldar Y, Ideker T (2008) eQED: an
efficient method for interpreting eQTL associations using protein
networks. Mol Syst Biol 4: 162

Taniura H, Taniguchi N, Hara M, Yoshikawa K (1998) Necdin, a
postmitotic neuron-specific growth suppressor, interacts with
viral transforming proteins and cellular transcription factor E2F1.
J Biol Chem 273: 720–728

Taylor BS, Barretina J, Socci ND, Decarolis P, Ladanyi M, Meyerson M,
Singer S, Sander C (2008) Functional copy-number alterations in
cancer. PLoS ONE 3: e3179

TCGA-Consortium (2008) Comprehensive genomic characterization
defines human glioblastoma genes and core pathways. Nature 455:
1061–1068

Tegner J, Yeung MKS, Hasty J, Collins JJ (2003) Reverse engineering
gene networks: integrating genetic perturbations with dynamical
modeling. Proc Natl Acad Sci USA 100: 5944–5949

Tso CL, Freije WA, Day A, Chen Z, Merriman B, Perlina A, Lee Y, Dia
EQ, Yoshimoto K, Mischel PS, Liau LM, Cloughesy TF, Nelson SF
(2006) Distinct transcription profiles of primary and secondary
glioblastoma subgroups. Cancer Res 66: 159–167

Vacher C, Piou D, Desprez-Loustau ML (2008) Architecture of an
antagonistic tree/fungus network: the asymmetric influence of
past evolutionary history. PLoS ONE 3: e1740

Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD,
Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M,
O0Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S,
Jakkula L, Feiler HS et al (2010) Integrated genomic analysis
identifies clinically relevant Subtypes of glioblastoma characterized

Network modeling of glioblastoma
R Jörnsten et al

16 Molecular Systems Biology 2011 & 2011 EMBO and Macmillan Publishers Limited



by Abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell
17: 98–110

Waaijenborg S, de Witt Hamer PCV, Zwinderman AH (2008)
Quantifying the association between gene expressions and DNA-
markers by penalized canonical correlation analysis. Stat Appl
Genet Mol Biol 7, Article3

Witten DM, Tibshirani R, Hastie T (2009) A penalized matrix
decomposition, with applications to sparse principal compo-
nents and canonical correlation analysis. Biostatistics 10:
515–534

Yeung MKS, Tegnér J, Collins JJ (2002) Reverse engineering gene
networks using singular value decomposition and robust
regression. Proc Natl Acad Sci USA 99: 6163–6168

Zhang Y, Martens JWM, Yu JX, Jiang J, Sieuwerts AM, Smid M,
Klijn JGM, Wang Y, Foekens JA (2009) Copy number alterations
that predict metastatic capability of human breast cancer. Cancer
Res 69: 3795–3801

Zhu J, Lum PY, Lamb J, GuhaThakurta D, Edwards SW, Thieringer R,
Berger JP, Wu MS, Thompson J, Sachs AB, Schadt EE (2004)
An integrative genomics approach to the reconstruction of gene

networks in segregating populations. Cytogenet Genome Res 105:
363–374

Zhu J, Wiener MC, Zhang C, Fridman A, Minch E, Lum PY, Sachs JR,
Schadt EE (2007) Increasing the power to detect causal associations
by combining genotypic and expression data in segregating
populations. PLoS Comput Biol 3: e69

Zhu J, Zhang B, Smith EN, Drees B, Brem RB, Kruglyak L, Bumgarner
RE, Schadt EE (2008) Integrating large-scale functional genomic
data to dissect the complexity of yeast regulatory networks.
Nat Genet 40: 854–861

Zou H, Hastie T, Tibshirani R (2006) Sparse principal component
analysis. J Computat Graphical Statist 2: 262–286

Molecular Systems Biology is an open-access journal
published by European Molecular Biology Organiza-

tion and Nature Publishing Group. This work is licensed under a
Creative Commons Attribution-Noncommercial-Share Alike 3.0
Unported License.

Network modeling of glioblastoma
R Jörnsten et al

& 2011 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2011 17


	Network modeling of the transcriptional effects of copy number aberrations in glioblastoma
	Introduction
	Results
	Modeling copy number-dependent transcription in tumors
	Transcriptional and CNA-driven networks


	Figure 1 Overview of the EPoC modeling framework.
	Outline placeholder
	Survival scores derived from network decompositions

	Global CNA-driven networks of glioblastoma
	EPoC finds 512 robust associations between CNAs and mRNAs in glioblastoma
	CNA hubs that best explain mRNA variability in glioblastoma
	Phenotypic and transcriptional consequences of hub gene perturbation in glioblastoma cell lines


	Figure 2 Derivation of robust and optimally sized network models for glioblastoma.
	Figure 3 CNA-driven network of glioblastoma.
	CNA-driven networks contain prognostic information

	Table I Hubs in the CNA-driven glioblastoma network model-based on 10thinsp672 genes and 186 patients
	Technical comparison with mRNA-based and eQTL-type methods

	Figure 4 Experimental perturbations of a network region controlled by NDN and PDGFRA.
	Outline placeholder
	Model consistency between independent glioblastoma data sets
	Pathway overlap and prediction error


	Figure 5 Derivation of prognostic scores from the network model.
	Outline placeholder
	Qualitative differences and speed


	Figure 6 Method comparisons: network consistency and pathway interactions.
	Table II Survival differences
	Discussion
	Possible limitations
	Other approaches
	Future directions

	Materials and methods
	Glioblastoma data preparation
	Network parameter estimation
	Optimizing the size of the network
	Network-based survival score
	Method comparisons
	Structural consistency tests


	Box 1 EPoC flowchart
	Outline placeholder
	Pathway comparisons
	Prediction of mRNA levels

	Experimental methods
	Cell culture and perturbation of NDN, PDGFRA and EGFR
	Comparison of growth rates
	Statistical model to test growth rate differences
	Detection of Necdin expression
	qPCR analysis
	Statistical analysis of qPCR experiments

	Supplementary information

	Conflict of Interest
	References




