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Four-wave interaction model between ITG mode and zonal flow was derived using fluid equations.

In this model, the zonal flow is excited non-linearly by ITG turbulence via Reynolds stress.

Numerical simulations show that the system allows for a small range above the ITG threshold

where the zonal flow can stabilize an unstable ITG mode, effectively increasing gi threshold, an

effect which has been called the Dimits shift. However, the shift is smaller than in known cases

such that in the Cyclone base. VC 2011 American Institute of Physics. [doi:10.1063/1.3586796]

I. INTRODUCTION

Radial flow shear in zonal flows in tokamak devices is

known to be able to suppress turbulence and form transport

barriers improving energy confinement.1,2 Zonal flows arise

via a self-organization phenomenon driven by low-frequency

drift-type modes, in which energy is transferred to longer

wavelengths by modulational instability or turbulent inverse

cascade.3

This paper models the non-linear excitation and interac-

tion of zonal flows with ITG turbulence modes using a four-

wave interaction model based on the normal mode

approach.4 One mode is used to represent the zonal mode,

and three other the ITG mode and its sidebands. This is dif-

ferent from the system chosen in the paper by Mattor and

Parker5 where the two ITG modes form a couple with the

same magnitude of kx and ky only differing by opposite radial

wave direction with the zonal mode having twice the value

for kx. Sources6–8 discuss different three-wave models with

bifurcations, predicting Dimits shift. The different mode

structure in the presented paper is used to represent the non-

linear drive of damped zonal flow from an envelope modu-

lated on the unstable ITG mode.

The zonal mode is modeled using vorticity equation in

which the mode is driven by the Reynolds stress from the

ITG modes as in Refs. 9 and 10. The ITG modes are mod-

eled using two-fluid model with nonlinear coupling to the

zonal flow mode. Following sections derive equations for

the corresponding modes, while the second half of the

paper deals with interactions of the modes in a simplified

analytical way with pump-waves and using numerical

simulations.

II. MODEL

A. Zonal flow equation

Assuming slab geometry and writing ion velocity as a

sum of ExB, polarization, and diamagnetic drift velocities,

the equation for zonal flow development is derived from the

ion equation of motion by taking its curl. Taking into consid-

eration slab magnetic field geometry, assuming that kk and ky

are zero for the linear zonal flow eigenmode and neglecting

curl of polarization drift velocity over the curl of ExB drift

velocity and assuming that pressure gradient is collinear with

density gradient, one gets vorticity type equation,

d

dt
r2
?/þ

1

qini
r2
?pi

� �
¼ mr2

? r2
?/þ

1

qini
r2
?pi

� �
; (1)

where d/dt is the total derivative; /, ni, and pi are the electro-

static potential, ion density, and ion pressure respectively;

and m is the kinematic viscosity. Ion species considered in

this paper is singly charged hydrogen type, so in the follow-

ing, e is used for simplicity instead of qi. At this point, the

diamagnetic contribution (terms with the Laplacian of the

ion pressure) is neglected; the role of the diamagnetic effects

is investigated, e.g., in Ref. 11; the viscous contribution is

included to provide damping of the zonal flow but not writ-

ten in intermediate steps.

1. Interacting modes

The interacting modes were chosen, one representing

the zonal flow has index 1, and has only x wave-number

component. Wave with index 2 is an unstable ITG mode,

and indexes 3 and 4 represent ITG upper and lower sideband

modes, which can be either unstable in the regime far away

from ITG stability threshold, or be stabilized due to some

unspecified mechanism close to the ITG threshold.

k1 ¼ qx; 0; 0ð Þ; k2 ¼ k2x; k2y; kk
� �

;
k3 ¼ k2x þ qx; k2y; kk

� �
; k4 ¼ k2x � qx; k2y; kk

� �
:

(2)

Assuming slow time variation for zonal flow potential, / can

be written as

/1ðx; tÞ ¼ <e a/1ðtÞeiqxx
� �

: (3)

For ITG modes (j¼ 2, 3, and 4), the potential is assumed to

be

/jðx; tÞ ¼ <e a/j tð Þeikj�x�ixrj t
� �

: (4)

Imaginary part of eigenfrequency (growth or damping) is

included in the time dependent amplitude.

Using weakly non-linear assumption in Eq. (1) without

diamagnetic effects gives the potential amplitude of the

1070-664X/2011/18(5)/052302/7/$30.00 VC 2011 American Institute of Physics18, 052302-1

PHYSICS OF PLASMAS 18, 052302 (2011)

http://dx.doi.org/10.1063/1.3586796
http://dx.doi.org/10.1063/1.3586796


zonal flow; using wave-numbers from Eq. (2), neglecting

damping for the time being, a coupling equation is

d

dt
a/1 tð Þ ¼ k2y

2B
2k2x þ qxð Þa/3 tð Þa�/2 tð Þ

h
þ 2k2x � qxð Þa/2 tð Þa�/4 tð Þ

i
: (5)

B. ITG mode

Three slab ITG modes are considered, and all are mod-

eled using fluid equations. Ion continuity equation considers

advection only by the ExB drift and thanks to slab geometry,

the only non-zero velocity divergence comes from the polar-

ization drift and parallel velocity,

@dni

@t
þ vE � r n0 þ dnið Þ þ n0r � vpi þ n0rkvk ¼ 0: (6)

Using Boltzmann electron relation for the linear part of the

equation (zonal flow mode does not obey Boltzmann rela-

tion, so density is kept in the nonlinear interaction term),

considering only linear part of polarization drift, one gets

e

Te

@/
@t
þ e

Te

@/
@y

v�e � q2
s

e

Te

@

@t
r2/þ csrk

vk
cs

¼ �vE � r
dni

n0

;

(7)

where cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
is the ion acoustic speed and qs is the

ion Larmor radius calculated from cs. The parallel equation

of motion with ExB advection is

n0mi

@vk
@t
þ vE � rvk

� �
þrk n0dTi þ Tidnið Þ þ en0rk/ ¼ 0:

(8)

Using Boltzmann electron relation and defining temperature

ratio s ¼ Te=Ti, the following is obtained:

@vk
@t
þ c2

s

s
rk

dTi

Ti

þ 1þ sð Þ e/
Te

	 

¼ �vE � rvk: (9)

Diffusive heat is neglected in the ion energy equation, and as

in the continuity equation because of the slab geometry

assumption, the only non-zero velocity divergence comes

from the polarization drift and parallel velocity

@dTi

@t
þ vE � r Ti þ dTið Þ þ C� 1ð ÞTi r � vpi þrkvk

� �
¼ 0;

(10)

where C is the adiabatic ratio (5/3 is used in this paper),

1

Ti

@dTi

@t
þ gi

e

Te

@/
@y

v�e � C� 1ð Þq2
s

e

Te

@

@t
r2/

þ cs C� 1ð Þrk
vk
cs

¼ � 1

Ti

vE � rdTi; (11)

where gi ¼ Ln=LTi
.

To study non-linear coupling, normal mode method4 is

used. The normal modes for ITG modes (j¼ 2, 3, and 4) are

ajðx; tÞ ¼
xLj

kkcs

�
kkcs C� 1ð Þ

sxLj

	 

e/j

Te

þ
vk
cs

þ
kkcs

sxLj

dTij

Ti

: (12)

These normal modes are subject to the nonlinear evolution

equation, where the right hand side consists of matched non-

linear combination corresponding to the mode j on the left

hand side,

<e
@

@t
aj xtð Þ þ ixLjaj xtð Þ

	 

¼ � xLj

kkcs

�
kkcs C� 1ð Þ

sxLj

	 


� vE � r
e/
Te

� �
Lj

� vE � r
vk
cs

� �
Lj

�
kkcs

sxLj

1

Ti

vE � rdTi

� �
Lj

:

(13)

Separating the wave behavior from time evolution in the nor-

mal modes, we can write them as

aj x; tð Þ ¼ ~ajðtÞe�ixrjtþikj�x; (14)

where the imaginary part of the linear eigenfrequency xLj is

included in the time varying amplitude. Assuming linear

relationship between variables for each ITG eigenmode, we

can write

vkj
cs

¼ C1j

e/j

Te

and
dTij

Ti

¼ C2j

e/j

Te

; (15)

where one gets the values of constants from the linearized

eigenvalue problem solution of Eqs. (7), (9), and (11).

Since the normal modes are just linear combinations of

variables, the normal modes can be written as

aj x; tð Þ ¼ C0j

e/j

Te

; (16)

where the values of constants C0j can be calculated from Eq.

(12) using Eq. (15).

C. Coupled four-wave system

Defining dimensionless time-only varying amplitudes

for all modes as

g1 tð Þ ¼ e

Te

a/1ðtÞ;

gj tð Þ ¼ 1

C0j
~ajðtÞ;

(17)

and rewriting zonal flow evolution (5) and nonlinearly

matching (13) using relations (14) through (17), coupled

three wave system is obtained
d

dt
g1 tð Þ ¼ Cþzg3 tð Þg�2 tð Þ þ C�zg2 tð Þg�4 tð Þ;

d

dt
g2 tð Þ ¼ c2g2 tð Þ � Cþig3 tð Þg�1 tð Þ þ C�ig4 tð Þg1 tð Þ;

d

dt
g3 tð Þ ¼ �d3g3 tð Þ þ Cþsg2 tð Þg1 tð Þ;

d

dt
g4 tð Þ ¼ �d4g4 tð Þ � C�sg2 tð Þg�1 tð Þ;

(18)

where the coupling coefficients Cþz – C�s are defined as
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Cþz � 8vBk2y 2k2x þ qxð Þ;C�z � 8vBk2y 2k2x � qxð Þ;

Cþi �
8vB

C02

xL2

kkcs

�
kkcs C� 1ð Þ

sxL2

þ C13 þ
kkcs

sxL2

C23

	 

k2yqx;

C�i �
8vB

C02

xL2

kkcs

�
kkcs C� 1ð Þ

sxL2

þ C14 þ
kkcs

sxL2

C24

	 

k2yqx;

Cþs �
8vB

C03

xL3

kkcs

�
kkcs C� 1ð Þ

sxL3

þ C12 þ
kkcs

sxL3

C22

	 

k2yqx;

C�s �
8vB

C04

xL4

kkcs

�
kkcs C� 1ð Þ

sxL4

þ C12 þ
kkcs

sxL4

C22

	 

k2yqx;

(19)

where vB is the Bohm diffusion coefficient defined as Te/

16eB. The second mode is an unstable ITG mode with linear

growth-rate c2; whereas the sideband modes are written as

being stable, with damping coefficients d3 and d4; however,

they will become unstable away from the marginal instability

regime. Viscous damping for the zonal flow mode (1) can be

reintroduced by including damping term �d1g1ðtÞ on the

right hand side of the first equation of (18) where d1 can be

written as 1
2
mq2

x .

For the given ITG model and considered wave modes,

the last four coupling coefficients from Cþi to C�s simplify

to

Cþi ¼ C�i ¼ Cþs ¼ C�s ¼ 8vBk2yqx: (20)

It should be noted that this simplification takes place in part

because of inclusion of all three vE � r convective nonlinear-

ities in the ITG model. From the three nonlinearities in this

model, the parallel velocity convection term is the one neces-

sary to get this four-wave model with damped sideband

modes to exhibit zonal mode growth and ITG suppression.

The other two nonlinearities alone give opposite sign to these

two coupling coefficients, causing damping of the zonal

mode by the growing ITG mode.

The sign of the product of k2y and qx is unimportant

because it appears in all coupling coefficients and does not

change the behavior of the differential equation system. The

sign of all coupling coefficients can without a loss of gener-

ality be assumed positive.

III. SYSTEM BEHAVIOR

The four wave system described by Eq. (18) is non-lin-

ear. However, by fixing one of the amplitudes, it becomes

linear and easy to solve using traditional linear methods. By

fixing different variables, one gets models which might have

some physical significance; e.g., by fixing zonal flow ampli-

tude, one can model a system with forced zonal flow by a

biasing probe. In the last section, the full non-linear system

is studied.

A. Unstable ITG as a pump

One way is to consider the unstable ITG mode 2 as a

pump wave of constant value, so we get a linear system

d

dt
g1 tð Þ ¼ �d1g1 tð Þ þ Cþzg

�
2g3 tð Þ þ C�zg2g�4 tð Þ;

d

dt
g3 tð Þ ¼ �d3g3 tð Þ þ Cþsg2g1 tð Þ;

d

dt
g�4 tð Þ ¼ �d4g�4 tð Þ � C�sg

�
2g1 tð Þ;

(21)

where g2 is now a constant. Assuming that the damping coef-

ficients on the sidebands are the same and using equality

(20), we get that this system is unstable when the amplitude

of g2 is greater than a threshold,

g2j j >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d1d3

Cþs Cþz � C�zð Þ

s
: (22)

Basically, this means that the zonal flow mode will not grow

but will be damped until the ITG pump has reached certain

threshold amplitude. Having fixed the pump wave amplitude

to a value above the threshold and since the matrix coeffi-

cients are not diagonal, the modes 1, 2, and 3 will eventually

grow exponentially to unlimited values because this reduced

system is linear. For small amplitudes, the unstable ITG

mode will actually also grow, so this approximation has cer-

tain drawbacks. Another thing to note is that the threshold

does not directly depend on the k2x for the chosen ITG

model, as it gets cancelled in the denominator of the radical.

It might however enter through the value of the damping

coefficient for the sidebands.

This result depends on the assumption that the ITG side-

bands are damped which can be assumed only very close to

the marginal stability. Away from this regime, the sidebands

will be nearly as unstable as the ITG mode itself, so the

damping coefficients �d3 and �d4 would get replaced by

approximately the growth-rate þc2, and the system becomes

unconditionally unstable, i.e., the zonal mode will start to

grow for any parameters after initial perturbation from the

equilibrium, provided that the pump amplitude is non-zero.

B. Fixed zonal flow amplitude

This is an interesting subcase which has a physical sig-

nificance. It is possible to induce sheared poloidal flow by a

biasing probe. Studies of influence of biasing probe on turbu-

lence have been made on both tokamaks and stellarators,

see, e.g., Refs. 12–14. The system (18) then reduces to a lin-

ear system

d

dt
g2 tð Þ ¼ c2g2 tð Þ � Cþig

�
1g3 tð Þ þ C�ig1g4 tð Þ;

d

dt
g3 tð Þ ¼ �d3g3 tð Þ þ Cþsg1g2 tð Þ;

d

dt
g4 tð Þ ¼ �d4g4 tð Þ � C�sg

�
1g2 tð Þ:

(23)

We assume that the damping coefficients on the sidebands

are the same and using equality (20), we get that if c2 is

greater than d3 then this system is always unstable. The

remaining possibility with higher damping on the third and

fourth modes than growth on the second presents two critical

points. One is a stability threshold, when
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g1j j >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2d3

2CþiCþs

s
; (24)

the system is stable and damped. The second interesting

point is a critical point for oscillations of ITG mode and its

sidebands,

g1j j >
c2 þ d3

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2CþiCþs

p : (25)

These oscillations would be damped for the above mentioned

assumption (c2 is smaller than d3). Above this threshold

oscillations would happen even if the assumption of d3 being

greater than c2 was not true; however, they would grow.

Again the values of the thresholds (24) and (25) do not

depend directly on k2x for the chosen ITG model, expect for

their possible dependence through c2 and d3.

Again, this result depends on the assumption that the ITG

side bands are damped which can be assumed only very close

to the marginal stability. Away from this regime, replacing the

sideband damping coefficients �d3 and �d4 by approximately

the growth-rate þc2, the system becomes always unstable, i.e.,

the ITG and the sideband modes start to grow for any parame-

ters after initial perturbation from the equilibrium.

C. Four mode nonlinear system

This system has an obvious trivial stationary point

(0,0,0,0), but it also has another set of stationary points and a

limit cycle. Considering the Jacobian matrix at the origin, it

is evident that this stationary point is hyperbolic, saddle

type, therefore, locally unstable regardless if one considers

damping on the sideband modes or not. The ITG mode 2

would grow for a while, whereas the zonal mode would

decay in a small neighborhood of the origin. The other sta-

tionary point is actually a set of points

g1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2d3

2CþiCþs

s
eih1 ;

g2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d1d3

Cþs Cþz � C�zð Þ

s
eih2 ;

g3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d1c2

2Cþi Cþz � C�zð Þ

s
eih3 ;

g4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d1c2

2Cþi Cþz � C�zð Þ

s
eih4 ;

(26)

where the phases fulfill

h3 ¼ h1 þ h2 þ 2pn1;

h4 ¼ h2 � h1 þ ð2n2 þ 1Þp;
(27)

where n’s are integers. Similar relations can be derived for

the case with unstable sidebands. These phase relationships

allow for all-real-value stationary points. For the detailed

analysis of the eigenvalues of the Jacobian matrix for this

stationary set, one can easily find necessary conditions the

growth rate of the ITG mode must fulfill in order to stabilize

the phase relationship development, but it turns out that this

is not sufficient for the whole system, and for non-zero val-

ues of the growth and damping coefficients there is always

an unstable eigenvalue, though it would result in a slowly

growing and oscillating mode. So conclusion about this set

of stationary points is that they allow only unstable equili-

bria; this holds for both the cases with damped and with

unstable sidebands.

Even though this non-linear system does not have any

true stationary point, it actually allows for a stable limit cycle

with oscillations between the ITG mode and its sidebands and

offset oscillations of the zonal mode. Since it was already

assumed that the mode 2 was linearly unstable, and as will be

shown later, up to some value of c2, it is possible to have a

stable bound solution, one can explain the Dimits shift15 with

this non-linear set. However, the simulated values of the shift

are much smaller than expected. The limit cycle solutions are

only possible in the cases with damped sidebands, which

might be the case near the linear instability threshold.

Inclusion of frequency mismatch between sidebands and

ITG due to FLR effects introduces phase drift into the sys-

tem. The phase drift decreases nonlinear bifurcation thresh-

olds, but for relevant physical parameters, the qualitative

behavior remains the same.

D. Reduction to three mode system

If one considers the side bands of the ITG mode as an

amplitude modulation envelope of the mode, a constraint

between the two side bands can be imposed onto the system.

The constraint is that the sideband functions g3 and g4 (not

the wave-functions themselves) are complex conjugate of

each other. If one assumes the same damping/growth-rate

coefficient on both sidebands, the system is then reduced

into a three mode one. There is however a difference

between this reduced system and a three wave system con-

sidering only one of the side bands – in this reduced system,

the dependence of the coupling coefficients on the k2x is can-

celled. It might at a first glance look like that one can make

Cþz or C�z zero according to Eq. (19) by setting qx to 6k2x

and thus suppressing coupling of the zonal flow to one of the

sidebands as was done in Refs. 7 and 8; however, this sup-

pressed sideband is still present and develops through the

three wave interaction between the zonal flow and the ITG

and has a direct effect on the ITG mode.

Unfortunately, this cancellation of k2x does not allow

one to find an optimal qx for a given most unstable ITG

mode in this boundless slab model. For such study, one

would have to resort to a bounded inhomogeneous model

which is not in the scope of this article.

Having reduced the system to three mode system, all

known facts about bifurcations of the three wave interaction

problem can be applied. Namely, assuming damped side-

bands near the ITG instability threshold, the system has an

attractive limit cycle (Fig. 1) for intermediate values of c2.

(In the simulations, the time dimension was normalized to

Xi ky;maxqs

� �2
=2 where ky,max corresponds to the most unstable

ITG mode, which was also used as the value for k2y and k2x.)
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This limit cycle is a fixed periodic trajectory dependent only

on parameters, and not on initial conditions, providing they

are in the attractive region. For values higher than a certain

threshold, the system becomes unstable. There appears to be

no non-linear saturation above this threshold – probably the

model with just three modes is not sufficient to model such

saturation above this threshold. For smaller values of c2, the

limit cycle undergoes period doubling bifurcation and the

behavior becomes rather complex as gamma approaches zero.

In Fig. 2, the time evolution of the zonal flow amplitude

is shown for the corresponding cases in Fig. 1. The zonal

flow amplitudes for cases (b) and (c) approach steady oscilla-

tions offset away from zero, not crossing it. For case (a), the

zonal flow oscillation is more complex, reaching zero values.

For case (d), the oscillations and the offset grow steadily.

All the graphs in Figs. 1 and 2 display the real parts of

the complex variables for the four wave system reduced to

the three wave one. Starting with real initial values and hav-

ing no frequency mismatch, the phase development is sup-

pressed, and the values remain real. The phase development

is also suppressed if initial conditions satisfy the conditions

for stationary phase (27). Having the initial conditions for

the four-wave fulfill the conditions for phase (27) and ampli-

tude relationship between sidebands, the four wave system

evolves exactly the same as the reduced three wave one, as

was the basis of the reduction, but it turns out that neither the

initial phases nor the initial relationship between sideband

amplitudes matter qualitatively and quantitatively as far as

the thresholds are concerned. However, the inclusion of the

phase drift due to frequency mismatch will decrease the non-

linear thresholds and ultimately change the nonlinear behav-

ior qualitatively.

Comparing the three mode model derived from the four-

wave interaction model with a simple three-wave model

with only one sideband, one notices only different coupling

coefficients. In the simple three-wave model, the zonal flow

coupling coefficient depends on the value of the ITGs kx,

making it possible to totally suppress or change the sign, dra-

matically changing coupling behavior. This is not present in

the four-wave model, where the dependence on the ITGs kx

is cancelled, giving no behavior change; if one of the side-

band’s contribution in the zonal flow equation would be can-

celled or changed its sign, the other would compensate it.

Interestingly enough, the threshold mentioned in Fig. 2 does

not change noticeably, assuming no pathological combina-

tion of qx and k2x for the chosen sideband that is used.

Also to note is that the modes, in this paper most impor-

tantly the zonal mode, oscillate in all shown cases, never

FIG. 1. (Color online) ITG amplitude g3

vs. g2 for (a) small c2 ¼ 0:00033 with

complicated behavior, (b) intermediate

c2 ¼ 0:00077 with simple limit cycle,

(c) at the limit of stability of the system

at c2 ¼ 0:00114, (d) at c2 ¼ 0:0014 the

system is unbounded; there is no limit

cycle at all. The simulations start with

zero zonal flow amplitude.
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reaching a constant value. The reason for this in this model

is the lack of any stable stationary point. The Refs. 16 and 17

give numerical results linking the zonal mode oscillations to

q value and turbulence wave-length. Reference 7 discusses

stability of a fixed point of a system which is similar to the

one presented here. It should be noted that they deal with a

fixed point of a one dimensional map, which in reality corre-

sponds to an attractive limit cycle, so the result is qualita-

tively equivalent; however, they chose to vary the damping

coefficient of the zonal mode, whereas in this paper, the

main varied parameter is the ITG growth rate giving differ-

ent viewpoint.

So far in this section, damping on the sidebands was

assumed. This has allowed complex behavior with limit

cycle possibilities. However, when instability is assumed for

both the ITG and the sidebands, this is no longer possible.

Assuming that the growth-rate of the sidebands is of the

same order as of the ITG, the system is always unstable. The

zonal flow will always oscillate, but the oscillations would

be damped if the ITG growth-rate is smaller than the zonal

flow damping coefficient. This behavior is not affected by

the frequency mismatch apart from phase drift and beats.

The next section also assumes damped sidebands in the

full four-wave model including possible frequency mis-

match. It deals with cases below the non-linear threshold

which was represented by (c) in Figs. 1 and 2.

E. Dimits regime in the four-wave model

The Fig. 3 shows saturated root-mean-square (RMS)

value of the potential of the ITG mode in the regime between

linear and non-linear thresholds. The ITG activity is not com-

pletely suppressed in this regime, but it is saturated by the

four-wave interaction with the zonal flow to low amplitudes

in a form of bounded limit cycles or bounded chaotic trajecto-

ries at lower values of linear ITG growth-rate as was shown

above. In Fig. 3, one can see that the saturated amplitudes rap-

idly increase just before a non-linear stability threshold is

reached when increasing gi. This non-linear threshold then

represents the Dimits shift of the linear one. Above this non-

linear threshold, the ITG mode becomes unbounded again and

other mechanism is required for saturation.

The frequency mismatch of the coupling tends to lower

the thresholds for the period doubling bifurcations which lead

to the chaotic trajectories at low values of the ITG growth-

rate. The chaotic behavior tends to increase the RMS of the

ITG potential, resulting in the lower RMS amplitudes for the

cases with frequency mismatch in Fig. 3 at low values of c.

FIG. 2. (Color online) Zonal flow g1

evolution for (a) small c2¼ 0.00033

with complicated behavior, (b) interme-

diate c2 ¼ 0.00077 with limit cycle, (c)

at the non-linear limit of stability of the

system at c2¼ 0.00114, (d) at c2

¼ 0.0014 the system is unbounded.

FIG. 3. (Color online) Saturated root-mean-square value of the normalized

potential of the ITG mode for the four-wave system in the regime between

the linear and non-linear thresholds. Circles represent points with zero fre-

quency mismatch; squares represent points with mismatch of 0.1 xr, and

diamonds represent points with mismatch of 0.5 xr, where xr is the real part

of the ITG mode frequency.
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IV. CONCLUSIONS

The presented simple four-wave model allows for zonal

mode growth through Reynolds stress, requiring a parameter

dependent threshold level of ITG turbulence in the case with

damped sidebands close to the ITG stability threshold. Nu-

merical simulations also show that the system allows for a

small range above the ITG threshold where zonal flow can

stabilize an unstable ITG mode, effectively increasing gi

threshold, an effect which has been called the Dimits shift.

However, the shift is smaller than in known cases such as in

the Cyclone base; this is most likely due to the fact that slab

ITG modes were used to model the drive mechanism but

also because of uncertainty of the damping used for the zonal

flows and the sideband modes near the ITG threshold. In this

model in the Dimits regime, the ITG activity is not com-

pletely suppressed, but is rather saturated to low amplitudes

in a form of bounded limit cycles, and the saturated ampli-

tudes rapidly increase just before a non-linear stability

threshold is reached, when increasing gi. This non-linear

threshold then represents the Dimits shift of the linear one.

Above this non-linear threshold, the ITG mode becomes

unbounded again and another mechanism is required for sat-

uration. The four-wave model is qualitatively similar to the

three-wave model assuming fixed relation between the two

sidebands; however, the coupling coefficients differ in mag-

nitude, for example, the dependence of the coefficients on

the value of the ITGs kx is cancelled in the four-wave model.
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