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Evolutionary Phenomena in Simple Dynamics

We present a model of a population of individuals playing a variation of
the iterated Prisoner’s Dilemma in which noise may cause the players to
make mistakes. Each individual acts according to a finite memory strategy
encoded in its genome. All play against all, and those who perform well
get more offspring in the next generation. Mutations enable the system to
explore the strategy space, and selection favors the evolution of coopera-
tive and unexploitable strategies. Several kinds of evolutionary phenomena,
like periods of stasis, punctuated equilibria, large extinctions, coevolution
of mutualism, and evolutionary stable strategies, are encountered in the
simulations of this model.

INTRODUCTION

In the construction of simple models of abstract evolutionary systems, game theory
provides a large number of concepts and examples of games that can be used to
model the interaction between individuals in a population. Originally, game theory
was developed by von Neumann and Morgenstern for the application to economic
theory,! but it has now spread to other disciplines as well. The work of Maynard-
Smith and Price!®!¢ has lead to an increasing use of game theory in evolutionary
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ecology. In the social sciences game theoretical ‘methods have been accepted for
a long time. A renewed interest in the Prisoner’s Dilemma followed the work of
Axelrod and Hamilton,"* who performed a detailed analysis of the iterated version
of that game, and this has lead to several game theoretic models based on the
iterated Prisoner’s Dilemma. In large computer networks the presence of interacting
agents may lead to computational ecosystems,'® which can be analyzed from a
game-theoretical point of view.

For a population with a fixed number of species, natural selection drives the sys-
tem towards a fixed point, limit cycle, or strange attractor, assuming an unchanged
environment. This process can be modelled by population dynamics, where one
usually uses the number of individuals for the different species as variables, so that
the dimensionality of the system equals the number of species. Population dynamics
models the reproduction, survival, and death of individuals. If the behavior of the
individuals (or species) depends on a genetic description inherited by the offspring,
the introduction of mutations in the replication process may totally change the
dynamic behavior of the system. One way to characterize such a dynamical system
is to interpret mutations leading to new species as creations of new variables and
extinction of species as the disappearance of present variables. But in both cases
these events are due to the (stochastic) dynamic system itself. If there is no limit
on the length of the genetic description and the number of phenotypic characters
this is coded into, the system may be considered a potentially infinite-dimensional
dynamical system. Evolution can then be viewed as a transient phenomenon in
a potentially infinite-dimensional dynamical system.®?® If the transients continue
for ever, we have open-ended evolution. Of course, we may still get the same be-
havior as in the mutation-free population dynamics. Therefore, one of the main
problems in the construction of evolutionary models is how to model the interac-
tions between species (and/or environment) so that the transients are infinite or at
least long enough for evolutionary phenomena to appear. In this construction one
is faced with the dilemma that one wants to achieve both high complexity, which
is necessary for evolution to occur, and simplicity, which makes simulation possible
for evolutionary time scales. Note that the dynamics used to model the behavior
in prebiotic or chemical evolution is usually a form of population dynamics. Such
systems have been analyzed by, e.g., Farmer et al.,? Schuster,?! and Eigen et al.”
in models for evolution of macromolecules.

" We have constructed a model of a population of individuals playing the iterated
Prisoner’s Dilemma. The game is modified so that noise may disturb the actions
performed by the piayers, which makes the problem of the optimal strategy more
complicated. This increases the potential for having long transients showing evo-
lutionary behavior. We construct a suitable coding for all deterministic strategies
with finite memory, and let such a code serve as the genome for an individual play-
ing the corresponding strategy. By adding mutations to the population dynamics
we get a potentially infinite-dimensional dynamical system in which evolution is
possible. The “artificial” selection in the model is determined by the result in the
game—those individuals who get high scores also have higher fitness.
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. The idea of using the iterated Prisoner’s Dilemma in evoluti i i

1s not new, see, e.g., the studies by Axelrod? and Miller,!” azfiu:()\z?gt;lgi{as;iz:
kinds ?f evolutionary models can be found in Langton.* The novel approach in this
study is _the combination of noisy games, simple population dynamics analyticall
solvable interactions, and the possibility of increase in genome length, a’nd it appear}s]

that thls leads to a Ilchn SS 1N 1 y at ha,s not beel] ObSeI Ved m
€. eVOlut onar behavlor th

THE PRISONER’S DILEMMA

The Pnson‘er s Dilemma is a two-person non-zerosum game, which has been used in
both experimental and theoretical investigations of cooperative behavior. The game
is base'd on the following situation. Two persons have been caught and are': sus gcted
of having committed a crime together. There is not enough evidence to seﬁtence
them, gnless at least one of them confesses. So, if both stay quiet (cooperate, C)
they will be released. If one confesses (defects, D) but the other does noI; the ,one
whg confesses will be released and rewarded, while the other one will get,a severe
pun'ls;m;:r%t. Finally, if both confess, they will be imprisoned but for a shorter
eriod. i i i i

ﬁnowmg j }11se a:ts;;?secjl etili:itofl}:ley make their choice of action simultaneously without

'ThIS problem is formalized by assigning numerical values for each pair of
choices. An exan}plelof such a payoff matrix for the players is shown in Table 1

.If the game is viewed as a single event, each player finds defection to be t‘he
optlma'l .behav1or, regardless of the opponents action. However, if there is a high
Rrobablllty that the two players will meet again in the same type,of game, the uegs-
tion of the most optimal choice of action is more delicate. This kind ot: “ite;lated

TABLE 1 _The payoff matrix we use in the Prisoner's
Dilemma is the same as the one used by Axelrod.!

The pair (s1, s3) denotes the scores to players 1 and
2, respectively

Player 2
Cooperate Defect
Cooperate 3,3
Player 1 &9 ©.9)
Defect (5, 0) 1L,
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Prisoner’s Dilemma” has been extensively studied by Axelrod.! From the results of
a computer tournament, he found that a simple strategy called Tit-for-Tat (TFT)
showed the best performance in the iterated game. Tit-for-Tat starts with cooper-
ation and then repeats the opponents last action. Thus, two TFT players meeting
each other in a series of games, share the highest possible total payoff and each gets
an average score of 3.

In our model we shall let noise interfere with the actions of the players. With
probability p the performed action is opposite to the intended one. (We shall assume
that the average length T of the game is much longer than the average time between
noise-modified actions, T' 3> 1/(2p).) For two players using the TFT strategy the
result is that they will alternate between three modes of behavior. First they will
play the ordinary TFT actions {(C, C), but when an error occurs they will shift to
alternating (C, D) and (D, C). The third possibility of behavior is sequences of (D,
D). The average probability for the three modes are 1/4, 1/2, and 1/4, respectively,
giving an average payoff of 9/4. None of the strategies in Axelrod’s tournament
was able to deal with noise and resist exploitation, and TFT turned out to be the
best one in that set of strategies.! A simple strategy that is more stable to noise
is Tit-for-Two-Tats, which defects only if the opponent defects twice in a row, but
this strategy is vulnerable to exploiting strategies, and in an evolutionary context it
should perform worse. Another way to decrease the sensitivity to noise is to allow for
the strategies to choose among different actions according to a certain probability
(mixed strategies). This approach has been analyzed by Molander,'® who found
that a strategy which mixes TFT with ALLC (always cooperate) can reach an
average score very close to 3. In our model we shall assume that the strategies are
deterministic (pure strategies), and in the simulations we shall see that there are
deterministic, noise-robust, unexploitable strategies that reach an average score of

almost 3.

FINITE MEMORY AND INFINITE GAMES
GENETIC CODING OF STRATEGIES

In the model we allow for deterministic finite memory strategies. This means that
a finite history determines the next intended action, although the performed action
can be changed by the noise. An m-length history consists of a series of previous
actions starting with the opponent’s last action ag, the individual’s own last action
a1, the opponent’s next to last action as, etc. By introducing a binary coding for
the actions, 0 for defection and 1 for cooperation, we can label an m-length history
by a binary number
hm = (am—1,..-,01,00)2 .

Since a deterministic strategy of memory m associates an action to each m-
length history, it can be specified by a binary sequence
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S = [Ao,A]_, .. ';An—-l] -

.Thls sequence then serves as the genetic code for the strategy that chooses
action Ay when history k turns up. The length n of the genome equals 2™
In. the population dynamics we shall allow for three kinds of mutation.S' oint
mutatlo.ns, gene duplications, and split mutations. The point mutation cha:nlg)es a
symbol in the genome, e.g., [01] — [00], the gene duplication attaches a copy of the
genome to itself, e.g., [01] — [0101], and the split mutation randomly removes the
first or second half of the genome, e.g., [1001] — [01]. Note that gene duplication
does pot c}}ange the phenotype. The memory capacity is increased by one but the
additional information is not used in the choice of action. For point mutations we
h§ve used thfe rate 2 x 10~° per symbol and genome, and the other mutations occur
with probability 105 per genome. Regarding a position in the genome as a locus
ﬁnd ;1 symbol as an alliele rather than a base pair, the point mutation rate we use
lijisng seycs)z;ir:'s‘?fl' magnitude that has been estimated for mutation rates at loci in
For strategies of memory one, the histories are labeled 0 and 1, corresponding to
the opponent defecting and cooperating, respectively. The four mémory 1 strategies
are [0.0], [01], [10], and [11]. The strategy [00] always defects (ALLD), [01] cooperftes
ogly if history 1 turns up (i.e., the opponent cooperated), and We’ recognize it as
'[ll’llt]—folr—Tat, [10] does thl opposite and we denote it Anti-Tit-for-Tat (ATFT), and
always cooperates (ALLC). W. i i
g ays co t;})} ° Simul(ationg) We use equal fractions of these strategies as the

SOLVING THE GAME

If the length of the game is infinite, the stationary distribution over finite histories
can be solved analytically. This solution is unique if noise disturbing the actions
is prf:sent'. Although the game is infinite, the strategies can only take into account
a finite history when choosing an action, which means that the infinite game is a
Ma}‘kov process. The average payoff for two players meeting in this game can be
derived from the probabilities Poo, Po1; P10, and piy for all possible pairs of action
(11), (10), (01), and (00). These can be found if we solve the equation

H=MH, (1)

Sv}iere HT = (ho, hl,'. --yhn_1) is the vector of probabilities for different histories
o1...,n— 1, and M is a transfer matrix. The elements of M are determined by the
st.ra_tegles.mvolved in the game including the possibility of making mistakes. The
mlnlfnal size n of the matrix is given by the memory sizes of the involved straf;e les
and is 2™ if the largest memory is m {or 2™*! if m is odd and both players hgave

the same memory size). Then one i
_ . gets p;; by summing the a i
In H, and the average payoff is ? ¢ Ppropriate components

. 8 = 3p11 + 5po1 + poo , (2)
according to the payoff matrix in Table 1.
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POPULATION DYNAMICS

We shall consider a system consisting of a populat.io}? of' N gdzld%atsl (;Etzr:z;
i i i Prisoner’s Dilemma with noise. Each mdi ‘
ing according to the iterated ile oeh divicua sete
i i ded in its genome. We think of a pop
according to a certain strategy enco g ¢ . ; e
1 1 i ting with each other, to get a p
sharing the same niche, fighting or coopera ; 2 part of
i 1 duction. In each generation all 1
the available resources for survival and repro ( :
viduals play the infinitely iterated Prisoner’s Dllemm? ailgamst aill;‘and ;I}:; :}izzz
indivi 1 the population,
; for individual 7 is compared to the average score of th .
:bove average will get more offspring in the next generation. Ip the reproduction,
i i f new strategies.
tations may occur leading to the appearance of : :
™ Z\1ZVe modely this situation as follows. First, we identify the fhﬁ'erent genﬁtypes
present in the population, and let them meet ifl the game described abo;fef. e;al 51];.;
be the score for the strategy of genotype ¢ playing against t}.le strategﬁf of 7, ar'xS et
z; be the fraction of the population occupied by genotype i. Then, the score s;

an individual with genotype ¢ is
$i= Y 9iiTi ()
J
s= 9 siTi. (4)
i

The fitness w; of an individual is defined as the difference between its own score

and the average score,

and the average score is

w; =85 —5. (5)

From one generation ¢ to the next ¢ + 1, we assume that (@ue to the resugc. of 2(};6
interactions, the fraction z;of the population for genotype ¢ changes according

z;(t + 1) — 2:(t) = dwy z;(t), (6)

where d is a growth constant. This equation can also be written in the following

form "
5;%; 7
z(t+1) - as(t) = dss i) [ 1= (7

j
. . T )
which is a logistic equation for a population of competing species. Th.e carry
ing capacity is normalized to 1, and the competition coefficients for species ¢ are
s;/s;(j = 1,2,...). Note that this growth equation conserves the total population

i/si(i=1,2,...).

size. If z; falls below 1/N for a certain genotype j, we set z; = 0 and tha? sp:iac;ei
has died out. When this happens, the fractions z; have to be renormalized fo
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the population size to be constant. When mutations are present there is an addi-
tional stochastic term m; in the growth equation. If the mutation rates are small
(Pp + pa + ps < 1/N), the additional term is well approximated by

m; = %Z(Qij - Qi) ®)

where Q;; is a stochastic variable taking the value 1 if a gene j mutates to the gene
7, and 0 otherwise. The probability for Q;; tobe 11is

P(Qij =1) = Nzjg;;, 9)

where ¢;; is the probability that genotype j mutates to %, obtained from the muta-
tion rates and the genotypes 7 and j. (This mutation may be composed of one gene
duplication and several point mutations, although this is less frequent.) Due to the
term m;, new genotypes may appear in the time evolution, and we get a model
with a potentially infinite state space.

SIMULATION RESULTS AND DISCUSSION

The system described above consists of a population of N individuals interact-
ing according to the iterated Prisoner’s Dilemma with a probability p for mistake
(noise). Individuals who get high scores get more offspring in the next generation
than those who get low scores. In this reproduction we allow for mutations to occur
and new strategies to enter the game.

We model the dynamics of this system by Egs. (6)—(9), and the parameters that
enter are the growth rate d, the mutation rates Pp,Pa, and p;, the population size
N, and the error probability p. In the simulation example the parameter values are
N =1000,p = 0.01,p, =2 x 1075, pg = p, = 105, and d = 0.1, and we have also
restricted the length of the genetic code to be at most 32, i.e., at most strategies
of memory 5. For the first generation we have chosen equal fractions of the four
strategies with memory one, i.e., 2oy = z¢; = 20 =13 = 1/4.

Almost all simulations have in common that during the evolution the system
passes a number of long-lived metastable states (periods of stasis) that appear in a
certain order. These periods are usually interrupted by fast transitions to unstable
dynamic behavior or to new periods of stasis. Below we shall discuss the evolution-
ary phenomena observed in a typical simulation of the model. In the four most com-
mon periods of stasis we find examples of coexistence between species, exploitation,
spontaneously emerging mutualism (symbiosis), and unexploitable cooperation.
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THE EVOLUTION OF STRATEGIES OF MEMORY 1.

In Figure 1 the development of the population for the first 600 generations is shovgn.
During the first 150 generations, the dynamics drives th.e system of the 4 strategies
towards a population mainly consisting of TFT strategies. The All-D strategy [00]
exploits the kind All-C strategy [11] and the ATFT strategy [1(?], and consequently
[00] increases its fraction of the population. When the strategies [11] a.nd [10] are
extinct, the average score for All-D is close to 1 and the more cooperative Tit-for-
Tat strategy takes over the population. . o
However, Tit-for-Tat only reaches an average score of 9/4 since noise interferes
with the interaction. Then, through a point mutation [01] — [11], the All-C strategy
enters the scene again. The mutant gets an average score of almost 3, and thus the
fraction of [11] rapidly increases. Next, it is favorable for a rm‘ltant [11] — [10] to
survive, since ATFT exploits ALLC and plays fairly well against TFT. Actually,
ATFT gets the same score s = 9/4 as TFT when playing again.st ATFT or TFT.
When the population of ATFT has grown large enough, mutatlon§ from [01] and
[10] to {00] will survive, and the fraction of ALLD increases again. .The‘ system
oscillates, driven by the relatively fast population dynamics in combination with
the point mutations. .
In Figure 2 the time scale is compressed by a factor ot.' 50, z_md the .evolutlon
of the first 30000 generations is shown. The picture we get is a history with stable
periods interrupted by fast transitions or unstable dynamics. The average score for
the same simulation is drawn in Figure 3, which shows that there is no general
tendency towards higher scores, although the simulation seems to t?nd .in a s.table
high score state. In the same figure the number of species per generation is depicted,

=600

FIGURE 1 The evolution of a population of strategies starting with equal fractions
of the memory one strategies [00], [01], [10], and [11] is shown for t.he first §OO
generations. The fractions of different strategies are shown as functions of time
(generation).
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showing that the dimensionality of the system can increase and decrease in the
evolution.

After some thousands generations the oscillations observed in Figure 1 are
damped out, and the system stabilizes with a mixture of TFT [01] and ATFT [10].
If only the four simplest strategies are taken into account, this situation is easily
analyzed. Assume that the population is divided into two fractions, one consisting
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FIGURE 2 The simulation of Figure 1 is continued for 30000 generations, showing
that four periods of stasis appear in the evolution. The oscillations observed in Figure
1 are damped and the system reaches a period of stasis with coexistence between
[01] (TFT) and [10] (ATFT). This stasis is punctuated by a number of memory 2
strategies, and after a period of unstable behavior the system slowly stabilizes when
the strategy [1001] increases in the population. This strategy cooperates if both
players performed the same action last time. For two individuals using this strategy,
an accidental defection by one of the players leads to both players defecting the

next time, but in the round after that they return to cooperative behavior, Thus, the
strategy [1001] is cooperative and stable against mistakes, but it can be exploited by
uncooperative strategies. Actually, one of its mutants [0001] exploits the kindness of
[1001], which resuits in a slow increase of [0001] in the population. This leads to a
long-lived stasis dominated by the uncooperative behavior of [0001]. A slowly growing
group of memory 3 strategies is then formed by mutations, and the presence of these
species causes the fractions of the strategies [0001] and [1001] to oscillate. Two of the
memory 3 strategies, M;=[10010001] and M>=[00011001], manage to take over the
population, leading to a new period of stasis. Neither M, nor M, can handle mistakes
when playing against individuals of their own kind, but if M, meets M, they are able
to return to cooperative behavior after an accidental defection. This polymorphism

is an example of mutualism which spontaneously emerges in this model. The stasis

is destabilized by a group of mutants, and we get a fast transition to a population of
memory 4 strategies which are both cooperative and unexploitable.
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1 T

FIGURE 3 The average score s (continuous line) and the number of genotypes n
(broken line) are shown for the simulation of Figure 2. When the exploiting memory

2 strategy dominates the scene, the average score drops close to 1. The last stasis,
populated by the evolutionary stable memory 4 strategies, reaches a score of 2.91,
close to the score of 3 achieved by the best strategies in a noise-free environment.
Before the transitions and in the periods of unstable behavior, it appears that there

are more mutants that survive and the number of genotypes increases, suggesting that
most of the evolution takes place in these intervals.

of TFT and one of ATFT, and denote the fraction of the first by z. Then, for a
large population, if z < 7/16 a mutant [00] will start to replicate, and if z > 3/4
any mutation to [11] will survive and replicate. But, if 7/16 < z < 3/4 there is a
meta-stable state consisting of a mixture of TFT and ATFT. This state is long-
lived because none of the one-step mutations [00], [11], [0101], and [1010] are able to
disturb the system. Actually, a detailed analysis shows that the only strategy with
memory 2 that can invade this population alone and survive is the strategy [1100]
which alternates between C and D, regardless of the opponent’s action. However,
this is not the usual way the stasis collapses, since one gene duplication and two
point mutations are needed to get [1100] from [01] or [10]. Usually, a number of
strategies, all having small fractions of the population, have a combined effect and
cause the destabilization.

THE EVOLUTION OF STRATEGIES OF MEMORY 2.

The first stasis is usually followed by a period of unstable behavior, as is examplified
in Figure 2. When the system stabilizes the strategy A=[1001] manages to dominate
the population for some time. This strategy chooses C when the last pair of actions
(the own and the opponent’s) was CC or DD, which means that two individuals,
both playing this strategy, get scores close to 3 when playing against each other.
A typical history including a misaction D looks as follows (CC, CD, DD, CC, CC,
...), showing that the strategy is not sensitive to the noise. On the other hand
the strategy can be exploited by one of its mutants, B=[0001]. When the strategy
A plays against B, there are two modes of behavior, examplified by the following

Evolutionary Phenomena in Simple Dynamics 305

typ.es gf histories: (CC, CC, CC, ...) and (DD, CD, DD, CD, ...) where the second
action in each pair is due to B. The second mode appears with frequency 0.80 and its
average payoff is 3 for B and only 1/2 for A. Although the strategies A and B have
totally different behavior (cooperative and uncooperative, respectively), the scores
jchey receive are very close. This leads to a slow increase of B, while A decreases
in t.he population, see Figure 2. Even a small group of mutants can then influence
their scores so that the dominant strategy scores less than the rival species, which
explains the oscillatory pattern that follows. ,

THE EVOLUTION OF STRATEGIES OF MEMORY 3.

Durin_g .the time period dominated by the memory 2 strategies, a group of mutants
contam_mg memory 3 strategies is slowly growing. In Figure 2 we see two new
strategies M; = [10010001] and M3 = [00011001] spread in the population. A new
sta51§ is reached between M) and My, and we shall analyze their behavior in more
fietall. The histories below exemplify how these strategies act when a single noise-
induced D-action occurs.

MM, Mo:M, My:M, Mo:M;
C C C C C CcC C
D D D D D D D D
C D D C c C D D
D D D D C C D C
C D C D C C D D
C D D C C C c C

. Individuals playing against the same strategy type are not able to handle the
noise, but when the strategies M; and M, play against each other they manage to
return to a cooperative mode after a series of intermediate actions. The strategies
respond to a disturbance D with a certain pattern of actions which fits to the
opponents actions. This leads to a payoff close to 3 when they meet, but the payoff
when M; meets M; is Sy = 2.17, and this is even worse for Ms, sa.0 = 1.95
because M, also has a mode consisting of a series of defect actions. Obvhi.ously thi;
strategy mix is an example of mutualism. The success of one of them is depende;ﬁ: on
f:he success of the other one, and in Figure 2 we see that they spread simultaneously
in the population.
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THE EVOLUTION OF STRATEGIES OF MEMORY 4.

During the stasis of the two symbiotic strategies a group of mu?ants is fo.rrned and
their fraction of the population is slowly increasing. The stasis ends with a fast
transition to a new meta-stable state, consisting of two leading strategies and a
growing group of mutants. All of these strategies have memory 4., i.e., they take
into account the actions performed by both players the previous 2‘t1me‘steps. ’I.‘}}ere
are several genotypes that can take the role of the leading one in this tra'nsmon,
because there is a class of genotypes coding into phenotypes or strategies that
have practically the same behavior. All of them are coopergtive, and if one player
accidently defects both players defect twice before returr}lng to th.e cooper.atlve
mode again. This assures that the strategy cannot be exploited by evil strategies at
the same time as the mistakes only marginally decrease the average payqﬁ:. In the
schematic genome E = [1xx10xxx0xxxx001] the most frequently used P.osmons are
shown and each x corresponds to a history occurring with a probability of orfler
p? or less. There are 512 strategies fitting this mask, which explains the formation
of a large genetic variety in this population, although some 'of these may h'fwe
imperfections that can be exploited by other strategies. A typical game involving
an accidental defect action D is shown below.

acavoaaw
"caogoas

In Figure 2 [1001000100010001] has taken the lead, but there'are others pres§nt
in the growing group of quasi-species. The fact that the fraction of the leadfng
genotype decreases can be explained by the small difference between the leading
strategy and many of the strategies among the mutants. It should als9 bg n.oted that
since the length of the genome doubles each time the memory capacity is increased
by 1, the probability for point mutations also doubles. .

An important stability criterion for a strategy in a population dynamics rr%odgl
is given by the concept of an evolutionary stable sirategy.’® Assume that.all indi-
viduals in a large population play a certain strategy S. The strategy S is evolu-
tionary stable if any sufficiently small invading group of strategies dies out. It has
been shown that, in the iterated Prisoner’s Dilemma without noise, the Tit-for-Tat
strategy is not evolutionary stable, because there are other strat'egies playing on
equal terms with TFT at the same time as they perform better against other strate-
gies. It has been shown by Boyd and Loberbaum® that there is no pure strategy
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that is evolutionary stable in the iterated Prisoner’s Dilemma. A generalization of
their result shows that this also holds for any finite population mixture of pure
strategies.10

For the iterated Prisoner’s Dilemma used in our model the presence of noise
implies that every strategy can be regarded as a mixture of two opposite pure
strategies, which allows for evolutionary stable strategies to exist.> Actually, the
leading strategy in Figure 2 is evolutionary stable. A strategy that is simpler to
analyze is Ey = [1001000000000001], which defects whenever the behavior deviates
from the pattern in the game example above. This implies that no strategy can
exploit it, and no strategy can invade a population of these by trying to be more
cooperative, because any such attempt would be favorable to Ey and it would reduce
the payoff for the intruder. (Note that Eo actually exploits the kind strategy [11].)
However, even if the one-step mutants play slightly worse than the master species
the mutation rate may be large enough for a net increase of these mutants, which
leads to a growing group of quasi-species. In the simulations of our model we find
that a large group of quasi-species is formed.

PATHWAYS FOR OPEN-ENDED EVOLUTION?

The scenario described above, passing periods of stasis dominated by strategies of
increasing memory and then getting stuck in the evolutionary stable stasis, occurs
with a probability of about 0.9. There are, however, evolutionary pathways that
avoid the evolutionary stable memory 4 strategies. In Figure 4 an example of such
a simulation is shown, and instead of getting to the stasis of the symbiotic species
(see Figure 4(a)), the system takes a new way in state space and in Figure 4(b) we
find the population dominated by memory 4 strategies not present in the ordinary
simulations. The bottom diagram of Figure 4(b) shows that the number of genotypes
(most of these are also of different phenotype) may increase to more than 200. In
the figure it is seen that the system undergoes a collapse in which most of the
genotypes disappears in a few hundred generations. Similar extinctions occur also
in Figure 4(c), but they do not involve that many genotypes. In all these events
the average score drops fast, suggesting that the extinctions are due to a mutant
that exploits the present strategies but is unable to establish a cooperative behavior
with its own species.
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FIGURE 4 In (a) through (c) the evolution of a system avoiding the stable memory

4 stasis is shown for more than 80 000 generations. The bottom graphs show the
average score and the number of genotypes (cf. Figure 3). (a) In this simulation the
system never reaches the symbiotic stasis but finds another way in state space leading
= = 1 60000 to new strategies dominating the population. (b) Several new memory 4 strategies
£=30000 appear and dominate the population. The system reaches a dimensionality of more
than 200, and after that a collapse occurs in which most of the genotypes disappears.
At the same time, the average score drops, indicating that this large extinction is
caused by a parasite mutant exploiting the present species. (c) Some new large

extinctions occur, and a few of them are accompanied by a decrease in the average
score.

FIGURE 4 See caption next page.
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CONCLUSIONS

The presence of mutations in the population dynamics leads to intrinsical changes of
the dimensionality of the system. The dynamic behavior observed is highly compli-
cated with extremely long transients. One important characteristic of the model is
that the game-theoretic problem used is complicated enough for complex strategies
to evolve, at the same time as we can solve the game analytically, letting us simulate
the population dynamics over evolutionary time scales. If one instead uses the iter-
ated Prisoner’s Dilemma without noise the potentiality for evolutionary transients
is essentially lost. Another important aspect is that we use an effective way to code
the strategies in genomes, and that the genome is easily modified by mutations.
Having these aspects in mind it should be possible to model other situations as
well, for example evolutionary models with more realistic assumptions, including,
e.g., spatial dependence and sexual reproduction.

From the game-theoretical point of view we have found that when the iterated
Prisoner’s Dilemma is modified by noise, there is an unexploitable strategy that
is cooperative. The evolutionary simulation, which actually is a kind of genetic
algorithm!2 for finding good strategies for the noisy iterated Prisoner’s Dilemma,
indicates that the minimal memory for this kind of strategy is 4, i.e., the strategy
should take into account the action of both players the previous 2 time steps.
By answering a single defection by defecting twice the strategy is prevented from
exploitation by intruders.

We have found periods of stasis punctuated by rapid transitions to new sta-
sis or to periods of unstable dynamics. These rapid transitions are reminiscent of
punctuated equilibria,® and it appears that the destabilization usually is due to a
slowly growing group of mutants reaching a critical level. The coevolution of mu-
tualism emerges spontaneously, and it serves as an example of a higher level of
cooperation than the actions on the single round level provide. The appearance
of an evolutionary stable strategy is interesting from the game-theoretic point of
view, but in the construction of models possessing open-ended evolution one tries
to eliminate such stabilizing phenomena. Therefore, from the evolutionary point of
view, one should pay more attention to the less probable evolutionary pathways
that avoid this evolutionary stable stasis. In particular, the large extinctions that
appear in these simulations should be studied in more detail, since these collapses
are triggered by the dynamical system itself and do not need external catastrophes
for their explaination. The analysis of these results is in progress and shall be re-
ported elsewhere. The major result of this model is that it establishes the fact that
several evolutionary phenomena, like those described above, can emerge from very
simple dynamics.
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