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Evolutionary Dynamics in Game-Theoretic
Models

A number of evolutionary models based on the iterated Prisoner’s Dilemma
with noise are discussed. Different aspects of the evolutionary behavior are
illustrated: (i) by varying the trickiness of the game (iterated game, mis-
takes, misunderstandings, choice of payoff matrix), (ii) by introducing spa-
tial dimensions, and (iii) by modifying the strategy space and the represen-
tation of strategies. One of the variations involves the finitely iterated game
that has a unique Nash equilibrium of only defecting strategies, and it is
illustrated that when a spatial dimension is added, evolution usually avoids
this state. The finite automaton representatlon of strategies is also revis-
ited, and one model shows an evolution of a very robust error-correcting
strategy for the Prisoner’s Dilemma game.
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INTRODUCTION

The term “evolutionary dynamics” often refers to systems that exhibit a time evolu-
tion in which the character of the dynamics may change due to internal mechanisms.
Such models are, of course, interesting for studying systems in which variation and
selection are important components. A growing interest in these models does not
only come from evolutionary biology, but also from other scientific disciplines. For
example, in economic theory, technological evolution as well as evolution of behavior
in markets may call for models with evolutionary mechanisms.

In this chapter, we focus on dynamical systems described by equations of motion
that may change in time according to certain rules, which can be interpreted as
mutation operations. In models of this type, the variables typically correspond to
the number or the mass of certain components (individuals/organisms), or in more
mechanistic (or spatial) models the position of certain components.

In the models that we discuss here, the equations of motion for the different
variables (individuals) are usually coupled, which means that we have coevolution-
ary systems. The success or failure for a certain type of individual (species) depends
on which other individuals are present. In this case, there is not a fixed fitness land-
scape in which the evolutionary dynamics climbs toward increasing elevation, but a
position that at one time is a peak may turn into a valley. This ever changing char-
acter of the world determining the evolutionary path allows for complex dynamic
phenomena.

Coevolutionary dynamics differ, in this sense, from the common use of the
genetic algorithm,!® in which a fixed goal is used in the fitness function and where
there is no interaction between individuals. In the genetic algorithm, the focus is on
the final result—what is the best or a good solution? In models of coevolutionary
systems, one is usually interested in the transient phenomenon of evolution, which
in the case of open-ended evolution never reaches an attractor. There are variations,
though, where interactions between individuals have been suggested as a way to
improve on the genetic algorithm, see, e.g., Hillis.’® For a recent review article on
genetic algorithms in an evolutionary context, see Mitchell and Forrest.33

We make a distinction between evolutionary systems and adaptive systems.
The equations of motion in an evolutionary system reflect the basic mechanisms of
biological evolution, i.e., inheritance, mutation, and selection. In an adaptive sys-
tem, other mechanisms are allowed as well, e.g., modifications of strategies based on
individual forecasts on the future state of the system. But, increasing the possibil-
ities for individuslistic rational behavior does not necessarily improve the outcome
for the species to which the individual belongs in the long run. An example of this
difference is illustrated and discussed for one of the evolutionary lattice models.

In the next section, we briefly discuss some evolutionary models in the liter-
ature. The main part of this chapter is devoted to a discussion of a number of
evolutionary models based on the iterated Prisoner’s Dilemma game as the interac-
tion between individuals, see, e.g., Axelrod.>* Different aspects will be illustrated:

339

Evolutionary Dynamics in Game-Theoretic Models

(i) by varying the trickiness of the game (iterated game, mistakes, misunderstand-
ings, choice of payoff matrix), (i) by introducing spatial dimensions, and (iii) by
modifying the strategy space and the representation of strategies.

The results in this chapter concerning the finite memory strategies have, to a
large extent, been reported before; for the mean-field model, see Lindgren,?® and
for the lattice model, see Lindgren and Nordahl;%” see also the review article by
Lindgren and Nordahl.?® The model based on the finitely iterated game as well as
the models using finite automata strategies are new. A detailed analysis of these
models will be reported elsewhere.

MODELS OF EVOLUTION

Evolutionary models can be characterized both by the level at which the mecha-
nisms are working and the dimensionality of the system. Usually these character-
istics are coupled to some extent, so that low-dimensional models usually reflect
mechanisms on a higher system level. An example of that regime is an evolutionary
model in which the variables are positions of phenotypic characters in phenotype
space, and the dynamics is determined by an ordinary differential equation that
uses the distance to fitness maximum.® At the other end of the scale, there are
models based on “microscopic” components that interact and organize, e.g., in the
form of catalytic networks. The work by Eigen,!! Shuster,*® Fontana,'* and many
others®13:14:21 Jies in this region. Some of these models have similarities to spin-glass
models in statistical mechanics, see, e.g., the models for evolution of RNA.143:47
Other examples can be found in, e.g., Weisbuch,?! and one of the most well-known
models is the NK-model by Kauffman; for a review, see Kauffman.?? Such spin-
glass-like models could also be interpreted as models of interacting individuals or
species.

A special class of models is based on instructions floating in a virtual com-
puter memory. Such instructions may eventually organize in a structure that can
be interpreted as an organism. Then, the interactions between organisms will not
be fixed by the model, but will be a result of the evolution. This is the approach
taken by, for example, Rasmussen and coworkers?! and Ray.*? Models of this type
are obviously high dimensional.

There are many examples of other models, some of them mentioned in Figure 1.
The models that will be described in more detail in this paper have been constructed
based on mechanisms at the level of individual organisms and their interactions.
There is a large number of models of this kind, many of them using various game-
theoretic approaches for the interaction between individuals.426:27:30,32,38,46
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FIGURE 1 Evolutionary models characterized by level and dimensionality. The
numbers in the figure refer to various modéls: (1) Stenseth and Maynard-Smith?3;
(2) Kauffman?2; (3) Anderson! and Stein and Anderson®”; (4) Matsuo,3° Axelrod,*
Miller,32 Lindgren,26 Nowak and Sigmund,3® Stanley et al.,“® and Lindgren and
Nordahi2”; (5) Holland!8/1® and Langton24; (6) Rasmussen et al.! and Ray*?; (7)
Eigen,!! Schuster,%® Fontana,'s Kautfman,?! Farmer et al.,* Eigen et al.,'* and
Bagley et al.5; (8) Boerlijst and Hogeweg™3; see also Eigen and Schuster.!2

As a basis for the models presented in the following sections, we use the three
necessary mechanisms usually associated with biological evolution:

u inheritance of genetic information
m variation (mutations)
m the feedback effect of natural (or artificial) selection

Furthermore, to get a potential for evolution, the population needs to be pro-
vided with a difficult “task” to solve, i.e., complex interactions with environment
" (including other organisms). :

GAME-THEORETIC MODELS AND DYNAMICS

In the choice of interaction model, one has to find a problem that cannot be “solved”
too easily in the chosen genetic representation. A solution-here means that there is
a strategy that is evolutionarily stable (or a set of strategies that together form a
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fixed point in the evolutionary dynamics). An evolutionarily stable strategy (ESS)
cannot be invaded by any other strategy that initially is present at an arbitrarily
small amount.3! o

The Prisoner’s Dilemma game, described below, is a suitable model for the
interaction between individuals in an evolving population. There are many varia- .
tions of the game that offer nontrivial problems for the individuals, and still this
interaction can be solved analytically given the genetic code for the strategies.

In the Prisoner’s Dilemma (PD) game, two players simultaneously choose to
cooperate (C) or to defect (D), without knowing the opponent’s choice. If they
both cooperate they share the highest total payoff and get R points each, but there
is a temptation to defect because defection scores T > R against a cooperating
opponent, who in that case gets the lowest score S. If both defect they share the
lowest total payoff and get P points each. f T > R > P >Sand 2R > T+ S,
there is a dilemma, since, in an isolated game, rational players choose to defect and
then share the lowest total payoff (see Table 1). Cooperative behavior is possible in
the iterated game when the same players meet in a series of rounds. In that case, it
has been shown that tit-for-tat (TFT), a strategy that mimics the opponent’s last
action (and starts with C), is capable of establishing cooperation.?

Many dynamical systems and evolutionary models have been constructed with
the PD game as a model for the interaction between individuals. Axelrod* applied
a genetic algorithm (GA) to the iterated Prisoner’s Dilemma and used a bit-string
representation of finite memory strategies. In another GA study, Miller®? let the
bit strings represent finite automata playing the iterated PD game. Miller also in-
troduced noise in the game, but did not find the evolution of the error-correcting
strategies like we have seen in the models described below. Stanley et al.1® also
used finite automata to study strategies that could choose their opponents. For
recent work along these lines, see Tesfatsion. A third type of strategy representa-
tion, suggested by Ikegami,?® uses a tree structure with varying depth. Strategies
could also choose actions with certain probabilities. This has been analyzed by
Molander,3* and population dynamics as well as evolutionary dynamics has been
studied for these strategies.37%8 '

TABLE 1 The payoff matrix of the Prisoner’s Dilemma game,
showing the scores given to player 1 and 2, respectively.

player 2 cooperates  player 2 defects

player 1 cooperates (R,R) (8,T)
player 1 defects (T,S) (P,P)
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In all models described in this chapter, we have used variations of the Prisoner’s
Dilemms that can be solved analytically. This reduces the computational power
required and allows for long simulations (in terms of generations) of the models.

DYNAMICS BASED ON THE ITERATED PRISONER’S DILEMMA WITH
MISTAKES

The iterated game is easily modified to a more complicated one by introducing
noise. In this way the game is made more “tricky,” and very simple cooperative
strategies, like TF'T, are not very successful. Noise could either disturb the actions
so that the performed action is opposite to the intended one (trembling hand), or
the information telling a player about the opponent’s action is disturbed (noisy
channels).’ In any case, the complication is sufficient to give rise to interesting
evolutionary behavior.

In the first interaction model, there is no noise, but a dilemma is introduced
by iterating the game a fixed (known) number of rounds. In that case, the final
round is an ordinary Prisoner’s Dilemma, and then the next to last round will get
a similar status, and so on.

In the second and third models, noise is introduced in the form of mistakes,
i.e., the action performed differs from the intended one (given by the strategy),
with a certain probability. On the other hand, the problem with the dilemma of
the final round is removed, and the game is made infinitely iterated. In the second
model, the individuals are equipped with finite memory strategies, while in the third
model the more powerful representation of finite automata is used. In all cases the
average score per round is calculated, for the finitely iterated game and for the
infinitely iterated game, respectively, and used in the dynamics to determine the
next generation of the population.

We shall demonstrate various evolutionary phenomena, for all three models by
studying the behavior in two completely different “worlds,” the mean-field model
(all interact with sll, i.e., no spatial dimensions), and the cellular automaton (CA)
model (local interaction on a lattice with synchronous updating).

In the mean-field model, the dynamics is based on the simple equations,

z) = Tk + dzk Zskix;—Zs;jazizj) , k=1,...,N, (1)
% ij

where z. is the fraction of the population occupied by strategy k, and s;; is the
score for strategy ¢ against j. The prime on the left-hand side denotes the next time
step, i.e., we are assuming discrete time. Since the double sum (¥s;;ziz;) equals
the average score in the population, the total population size is conserved. The
number of different strategies N may change due to mutations, which are randomly
generated after each step of the population dynamics equations (1). We have used
continuous variables z;, with a cut-off value corresponding to a single individual,
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below which the strategy is considered extinct and removed from the population.
The equations reflect a change of abundancy for a species that is proportional to its
own score minus the average score in the population. Each time step is viewed as
one generation and, in addition to the equations, mutations are added. This means
that generations are nonoverlapping and that reproduction is asexual.

In the CA model, it is assumed that each individual interacts with its four near-
est neighbors on a square lattice. The average score for each individual (or lattice
site) is calculated, and this determines which individuals will be allowed to repro-
duce. In each neighborhood (consisting of a cell with its four nearest neighbors), the
individual with the highest score reproduces in the middle cell, see Figure 2. (Ties
are broken by adding a small random number to each player’s score.) The offspring
inherits the parent’s strategy, possibly altered by mutations to be described below
in detail for the different models.

Depending on the choice of payoff matrix, the evolutionary paths may look very
different. In the CA model, since the dynamics is determined only by score differ-
ences, thére are only two independent parameters in the payoff matrix.2? Therefore,
we have chosen to study the parameter region given by R=1,5=0,1<T <2,
and 0 < P < 1. In the mean-field model, the value of the score difference is also
important, since the dynamics depends on how fast a score difference changes the
composition of the population. Therefore, as a third parameter, we can use the
growth constant d in Eqgs. (1), while we keep R and S fixed and vary T and P as
in the CA model. In the mean-field simulations we have assumed d = 0.1. (This
results in a growth that is slow enough to view Eqgs. (1) as rough approximations
to a set of ordinary differential equations, even though this is not the intention.) In
all models where noise is present, we have used an error probability of e = 0.01.

(2) (b

FIGURE 2 (a) In the cellular automaton (CA) model, each individual plays the iterated
Prisoner's Dilemma with each of its four nearest neighbors. Simultaneously, for each
neighborhood, the player with the highest average score per round reproduces in the
“gray” cell. (b) Since the score of the nearest neighbors depends on the strategies
present in the next nearest cells, we get a CA with interaction radius 2.
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FINITE NUMBER OF ROUNDS

If the iterated game is finite and the number of rounds is known, the dilemma of
the single-round PD game remains. Assume that we have two players cooperat-
ing, for example, by using the tit-for-tat strategy. When the two players enter the
final round of their iterated game, they face the single-round dilemma and profit-
maximizing behavior calls for the defect action. But, if we know that our opponent
is using a rational strategy, the next to last round will be a dilemma of the same
type, and we should defect in that round too. Then the third round from the end
will be under consideration, and so on. This implies that the only Nash equilibrium
is given by both players defecting all rounds. This does not mean, though, that de-
fecting all the time is the best strategy. Which strategy is the best depends on which
other strategies are present in the population. If the population is dominated by,
for example, strategies that play TFT for all rounds except the last two when they
defect, it is, of course, a bad strategy to start with defection from the beginning.
Instead, if one would know the opponent’s strategy, one should start with TFT,
i.e., cooperate, but switch to always defect (ALLD) the round before the opponent
is to defect.

The situation faced by a player entering a population playing the finitely iter-
ated game is an ill-defined one, in the sense discussed by Arthur,2 where one cannot
say which strategy is the best. Like in most real situations, the success or failure of
a certain behavior depends on what other individuals or strategies are present.

There are various ways to construct an evolutionary model of the PD game
iterated n rounds. Here, we pick a simple example and look at a strategy set con-
taining strategies playing TFT for k rounds and playing ALLD for the remaining
n — k rounds. We denote these strategies Fi, with k = 0,...,n. The score s, for
a strategy F; against Fy, is then given by

jR+T+(n—j—1)P, ifj<k;
sjk =< jR+(n-j)P, fj=k; )
ER+S+(m—k-1)P, ifj>k.

The population dynamics for a fully connected population (mean-field model) can
then be described by Egs. (1), with mutations at a rate of 1075, so that a strategy
F, is replaced by a randomly chosen F;. In Figure 3, the evolutionary path, starting
with the strategy F,, or TFT, shows that cooperative behavior is exploited and that
the evolution ends in the ALLD state.l

[4This result also follows from & theorem, saying that an iteratively strictly dominated strategy
is eliminated in any aggregate monotonic selection dynamics. A recent generalization of this re-
sult shows that this also holds for a larger class of selection dynamics termed convex-monotone
dynamics.1? In this example, Fy, is strictly dominated by Fn-1, and Fj is iteratively strictly
dominated by Fi_3, for0 < k < n.
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FIGURE 3 The interaction is given by the PD game iterated n = 7 rounds. Initially,
the population (1000 individuals) consists only of the strategy F7, or TFT, but due to
the dilemma of the fixed number of rounds, the evolution leads to strategies defecting
earlier in the iterated game. The final state is then a fixed point, in which all play Fp, or
ALLD.

Cooperation cannot be maintained since there will always appear exploiting
strategies that grows at the expense of the more cooperative ones. It is well known
that the introduction of spatial dimensions may increase the possibility for cooper-
ative behavior.”:8:27:37,35 .

In the CA model, the individuals are put on a 128 x 128 square lattice with
periodic boundary conditions. Contrary to. what we saw in the mean-field case,
cooperation is maintained for a large part of parameter space defining the PD
game. This is made possible either by the presence of spatiotemporal patterns, like
waves of strategies sweeping over the system, see Figure 4b and 4c, or by formation
of stable islands of more cooperative strategies in a background of slightly exploiting
strategies, see Figure 4a and 4d. ’ ’

FINITE MEMORY STRATEGIES -

In the infinitely iterated Prisoner’s Dilemma with mistakes, a simple type of strategy
to consider is the deterministic finite memory strategy. This type of strategy may
take into account the actions that have occurred in the game a finite number of
rounds backward, and deterministically choose a certain action.
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A strategy can then be viewed as a look-up table, in which each entry corre-
sponds to each of the possible finite-length histories that can be memorized by the
strategy, see Figure 5. The symbols in the output column of the table denote the
action to be performed, but there is a small chance (due to noise) that the action
is altered.

The game between two finite memory strategies can be described as a stationary
stochastic process, and the average score can, therefore, be calculated from a simple
system of linear equations. The number of equations necessary equals 2%, where b
is the size of the history needed to determine the next pair of actions. For example,
for two memory-1 strategies (as well as memory 2), both actions in the previous
round are required and, therefore, the number of equations is 4.

We use three types of mutations. The point mutation alters the symbol in the
genome. The gene duplication attaches a copy of the genome to itself. In this way the
memory capacity increases, but it should be noted that this mutation is neutral—
the strategy is not changed, but a point mutation is required to make use of the
increased capacity. The split mutation randomly removes the first or second half of
the genome.

player 1 : player 2

history for
player 1

input output
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0
0

ol olo-.

o

00

0 0/
01
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10 9

0

11| !

1
00| ! \

0% 0 genetic code (genome) for player 1 =

1] 0 [00011001]

1
11 | 1

FIGURE 5 The genetic coding of finite memory strategies uses the look-up table. The
length of the genome (size of the table) then carries the information on the memory
capacity of the strategy, since the table doubles in size when memory increases by 1.
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In the simulations, the initial population consists of equal parts of the four pos-
sible memory-1 strategies: [00] is ALLD (always defects), [01] is TFT, [10] is ATFT
(ie., anti-tit-for-tat), and [11] is ALLC (always cooperates). Due to mutations,
more complex strategies may emerge, and this offers the possibility for evolution of
strategies that correct for accidental mistakes.

MEAN-FIELD MODEL

In the mean-field model all interact with all, and the dynamics is given by Eqs (1).
The number of individuals is 1000, the point mutation rate is 2-10~° and the other
mutation rates are 1075, ' '

In Figures 6 and 7, the evolutionary path is shown for two different choices of
payoff matrices. The first one, T = 1.6 and P = 0.3, shows that the system finds
a very stable state dominated by the strategy 1001. In the second simulation, at
T = 1.7 and P = 0.4, this strategy does not succeed, but the evolution continues
to strategies with longer memory. It turns out that the final state in Figure 7,
consists of a large group of strategies having the same mechanism for correcting for
mistakes in the iterated PD game. In both cases, the final population is cooperative
and cannot be exploited by defecting strategies, For a more detailed discussion on
simulations of the finite memory mean-field model, see Lindgren.26

Both the strategy 1001 and the final strategies in Figure 7 belong to a class
of strategies that can deal with mistakes. These strategies are based on retaliation
and synchronization. An accidental defection is followed by a certain number of

t=0 25000

FIGURE 6 The evolution of finite memory strategies in the mean-field model is shown
for 25,000 generations, with the parameter values T' = 1.6, P = 0.3. There is a
metastable coexistence between 01 (TFT) and 10 (ATFT) before strategies of memory
2 take over. The dominating 1001 strategy is actually evolutionarily stable for these
parameter values.
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FIGURE 7 The evolution of finite memory strategies in the mean-field model is shown
for 26,000 generations, with the parameter values T = 1.7, P = 0.4. Again, the
coexistence between 01 (TFT) and 10 (ATFT) is present, but 1001 does not appear.
For these parameter values, longer memories seem to be required to get cooperative
and stable (or metastable) strategies. The simulation ends with a strategy that has an
unexploitable error-correcting mechanism. The coexistence between the two memory-3
strategies 10010001 and 00011001 is an example of mutualism.?

rounds of mutual defection. The rounds of defection both punish possible exploiting )
strategies and synchronize the strategies before cooperative behavior is established
again. The strategies can be described by the simple mechanism:

After a defection by eéither of the players, defect until there have been n
consecutive rounds of mutual defection, and then start cooperating again.

We shall denote such a strategy by S,. The first, Si, often referred to as
Simpleton®® (or Pavlov3®), is a strategy that cooperates if both players chose the
same -action in the previous round, and this one is identical to 1001 in our nota-
tion. This strategy exhibits the following pattern in case of an accidental defec-
tionD: (...,CC,CC,DC,DD,CC,CC,...). For the standard parameters used by
Axelrod,3 i.e., R=3,5 =0, T = 5, and P = 1, a population of Simpletons can
be invaded, since ALLD (always defects) can exploit it—a single round of mutual
defections is not enough to punish an exploiting strategy. The second strategy in
this class is Sp, which answers a defection (by either of the players) by defecting
twice in a row, and after that returns to cooperation. This behavior leads to the
pattern (...,CC,CC,DC,DD, DD, CC, CC,...), which is the mechanism we find in
the population of strategies that dominate at the end of the simulation in Figure 7.

A population of S, cannot be invaded by a strategy that tries to get back to
cooperation faster than does S,—the invader will only be exploited if that is tried.
The only chance for a single invader (or mutant) to succeed is by exploiting the
cooperative behavior. Thus, an invader will fail if the number n of defections after
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its exploiting defection is large enough to compensate for the temptation score T,
ie., T +nP < (n+ 1)R, if terms of order e are neglected. This means that, in the

limit of e — 0, n must be chosen so that
T-R

. 3
In other words, since T > R > P, there is always an error probability e and an

integer k, for which the strategy Si cannot be invaded. Note that e > 0 is needed,
since it has been shown®1%:29 that the presence of mistakes are necessary to allow

for evolutionary stability. With our choice of R = 1, the stability requirement for
the strategy Sk, in the limit e — 0, can be written

n>

1 T
P<l+=-=. (4)
n n

These lines are drawn in Figure 8. The two examples discussed above (Figures 6 and
7) are on separate sides of the first line. Parameter choices toward the bottom left
hand corner appear to make the situation easier for cooperative strategies, since the
temptation to defect is relatively small. In the upper right-hand corner, however,
the score difference between cooperating and defecting is smaller,” and a strategy
that punishes defectors may need a longer memory to be able to avoid exploitation.

P 1
S
83
s
05+ 2
S, +
+
0 :

1 15 2 T

FIGURE 8 The parameter region,1 < T < 2and0 < P < 1, is divided
into subregions in which the smallest evolutionarily stable strategy of the S,, type is
shown, according to the inequality requirement Eq. (4). The two parameter values
corresnondina to the simulations of Figures 6 and 7 are shown as crosses.
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THE CA MODEL

The introduction of spatial dimensiom, so that individuals only interact with those
in their neighborhood, may affect the dynamics of the system in various ways. It
has been demonstrated, for example, in the study by Boerlijst and Hogeweg,”®
that parasitic species may be rejected by spiral waves consisting of several species.
Other forms of cooperative behavior are also possible, for example regions of coop-
erative strategies surrounded by exploiting cheaters. The possibility of spatiotem-
poral structures may allow for global stability where the mean-free model would
be unstable. The presence of these various forms of spatiotemoral phenomena may,
therefore, also alter the evolutionary path compared with the mean-field case and
we may see other strategies evolve. : _

In Lindgren and Nordahl,?” we performed a detailed analysis of the dynamic be-
havior of memory-1 strategies for the parameter region1 <7< 2and0 < P < 1.
Already at memory 1, there are several spatiotemporal phenomena that may lead
to global stability while the system is locally unstable. Spatial coexistence in frozen
patterns is also possible. In Figure 9, four examples of spatial patterns from simu-
lations of memory-1 strategies for different parameter choices are shown.

In Figure 10, the strategy abundancy is shown for the first 800 generations
of the CA model, with T' = 1.6.and P = 0.3. (In the examples presented here,
we have used a 64 x 64 lattice, and the mutation rates are Ppoint = 2+ 10~3 and
Pdupl = Peplit = 1073.) It is clear that the strategy 1001 (or S;) is successful, even
though we are close to the line above which it can be exploited, cf. Figure 8. Before
1001 takes over, the system is dominated by 00 and 11, i.e., ALLD and ALLC.
This is contrary to what we found in the mean-field case, where 01 (TFT) and 10
(ATFT, does the opposite to TFT) dominate before memory-2 strategies appear.
The reason is the possibility to form cooperating regions in the spatial model. Here
we get ‘islands of ALLC surrounded by ALLD, similar to the pattern in Figure
9(d). The ALLC individuals at the edges of the islands are certainly exploited by
the ALLD individuals and, in the reproduction step, they are removed and replaced
by the offspring of the most successful individual in their neighborhood. Now, an
ALLC individual that is not in contact with ALLD has the highest score and,
therefore, the edge individuals are replaced by an offspring of their own kind. This
can be viewed as “kin selection,” in which the individual at the edge sacrifices
herself since that is beneficial for her own strategy type.

If we would choose a more “rational” procedure for selecting the new strategy,
e.g., by taking the strategy in the neighborhood that maximizes the score in the
particular cell in the next time step (generation), ALLD would invade the island
and wipe out the ALLC strategy from the population. It would be interesting to
investigate the difference between “rational” and “natural” selection in this type of
model, and to see how the evolutionary dynamics changes.

In Figure 11, the evolutionary path is shown for T = 1.7 and P = 0.4. Here,
1001 (S;) should not be stable, according to Eq. (4), but instead, strategies of type
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FIGURE 9 Examples of four different types of patterns from simulations of memory-
1 strategies on the lattice. The payoffs are (a) (T, P) = (1.4, 0.05), (b) (T, P) =
(1.9,0.2), (c) (T, P) = (1.9,0.8), (d) (T, P) = (1.4,0.5). The strategies ALLD, TFT,
ATFT, and ALLC are represented in gray-scale from white to black:

S, should be able to successfully deal with both mistakes and exploiting strategies.
The simulation ends with one of the strategies using the S2 pattern for error correc-
tion, i.e., two rounds of mutual defection after a mistake. There is a large number
of strategies in this group, and longer simulations show that in the CA model there
is usually a certain memory-5 strategy that takes over the whole population, since
even very small score differences may lead to the total dominance of one of the
strategies. In the CA model there are also examples of spatial coexistence between
strategies of longer memory, that were not observed in the mean-field model. For
some examples of these phenomena, see Lindgren and Nordahl.?”
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t=0 - 800

FIGURE 10 The evolution of finite memory strategies in the CA model is shown for
800 generations, with the parameter values T = 1.6, P = 0.3, cf. Figure 6. There is a
metastable coexistence between 00 (ALLD) and 11 (ALLC), which is based on a spatial
pattern of ALLC islands surrounded by ALLD, similar to what is seen in Figure 9(d). Still
the 1001 strategy dominates at the end.

1001000100011001

FIGURE 11 The evolution of finite memory strategies in the CA model is shown for
2000 generations, with the parameter values T' = 1.7, P = 0.4, cf. Figure 7. Initially,
during the first 200 generations, there is a metastable coexistence between TFT, ALLC,
and ALLD in the form of spiral waves, similar to the pattern in Figure 9(b). The spatial
dimension allows 1001 to dominate in a metastable state, due to the possibility to form
cooperative regions. At the end, the Sy-like strategy from Figure 7 comes to dominate.
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Before 1001 dominates the system, in Figure 11, there is a period with three
strategies coexisting. This is due to a spatiotemporal pattern of spiral waves in-
volving the strategies TFT, ALLD, and ALLC, similar to Figure 9(b). Again, we
see an example of a locally unstable composition of strategies that can be globally
stable in the CA model.

FINITE AUTOMATA STRATEGIES

As a final modification of the previous models, we shall look at a different represen-
tation of strategies for the game. A natural approach is to use finite automata, and
this has been done before by Miller? and by Stanley et al.,*® see also Nowak et
al.39 The novelty in the approach presented here is the combination of an evolvable
genome size, the analytically solved iterated Prisoner’s Dilemma with mistakes, and
the finite automata representation. o '

The reason why this representation could be interesting to investigate is that
there are reasons to believe that more successful strategies may evolve. In fact, there
is an extremely simple, cooperative, uninvadeable, and error-correcting strategy in
this representation.

This strategy was suggested by Sugden,*? as a robust strategy that can maintain
cooperation in the presence of mistakes. We call the strategy “Fair,” since the
error-correcting mechanism is built on the idea of a fair distribution of the scores.
The Fair strategy can be in one of three possible states: “satisfied” (cooperating),
“apologizing” (cooperating), and “angry” (defecting). In the satisfied state Fair
cooperates, but if the opponent defects, Fair switches to the angry state and defects
until the opponent cooperates, before returning to the satisfied state. If, on the other
hand, Fair accidentally defects, the apologizing state is entered and Fair stays in
this state until it succeeds in cooperating. Then it returns to the satisfied state
again, regardless of the opponent’s action. The strategy can be described as a finite
automaton, see Figure 12.

This means that two players using the Fair strategy will quickly get back to
cooperation after an accidental defection. The player making the mistake enters the
apologizing state and the opponent the angry state, so that in the next round they
will switch actions making the scores fair. Thus, a sequence of rounds including
an accidental defection D looks like (...,CC,DC,CD,CC,CC,...). (Only if the
apologizing player fails to cooperate, for example by another mistake, they will
both stay in the apologizing and angry state, respectively, until the apologizing
player succeeds in a C action.) .

Before we go on discussing the evolutionary simulations based on finite au-
tomata, we shall take a look at the game-theoretic properties of the Fair strategy.
The stability properties of the Fair strategies were investigated by Sugden,* and
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DX CC/DD XD

.. DC XC
Apologizing Satisfied Angry

FIGURE 12 The Fair strategy can be represented as a finite automaton with three
states. The symbols in the state circles denote the action that is intended, though a
mistake may alter the action. After each round of the game, the performed actions are
inspected and the strategy enters the state given by the appropriate transition. (On the
transition arcs, the left and right symbols correspond to the action performed by the
strategy itself and the opponent, respectively, where an X denotes an arbitrary action.)
The anti-symmetry assures that when two Fair players meet they will either both be in
the satisfied state, or they will be in the Apologizing and the Fair state, respectively,
from where they simultaneously return to the satisfied state. :

the analysis was extended by Boyd,® who labeled the strategy “contrite-tit-for-tat.”
Wu and Axelrod52 showed the advantage of the Fair strategy in a population dy-
namics simulation, starting with a population mainly consisting of the 63 strategies
submitted to the second tournament organized by Axelrod.?

In the following analysis, we are assuming the infinitely iterated PD with a
small probability e for mistakes, i.e., the performed action is not the intended one.
In the game between two Fair strategies, the probability is 1/(1 + 2e) to be in the
satisfied state and e/(1 + 2e) for both the apologizing and the angry state.??) This
leads to an average score of R + 2e(S + T — 2R), if terms of order €? or higher are
neglected. (We are assuming small e, and in the following we shall make a first-
order analysis, omitting terms of order e? or higher.) For the standard parameter
values used by Axelrod (R =3, T =5, $ =0, and P = 1) and e = 0.01, the score
is 2.98. This is close to the score that two ALLC strategies get when they meet, %]
R +¢e(S + T - 2R), or, for the same parameters, 2.99. .

For a small probability for mistakes (in the limit e — 0), a new player entering
a population of Fair players must adopt the same strategy not to be out-competed:
If Fair is in the satisfied state, a defect action (by the invader) scoring T’ must be

[2A detailed analysis will be presented elsewhere.

BlEven if ALLC is more cooperative, it cannot invade a population of Fair players for small values
of e, since the score received by an invading ALLC, R + (25 + T — 3R), differs by e(R-T)<0
compared to the score for Fair, if terms of order e are neglected. .
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compensated for by an apology scoring only S, before Fair enters the satisfied state
again, or Fair will stay in the angry state giving a score of P. Since S+T < 2R and
P < R, the invader would have done better cooperating with Fair in the satisfied
state. This also implies that when Fair expects an apology, the opponent had better
cooperate. In the apologizing state, Fair does not take any notice of the opponent’s
action and, therefore, the opponent should defect.!

REPRESENTATION

Each individual has a strategy represented by a finite automaton like the one in
Figure 12. The size of the automaton is not fixed in the evolution, but nodes may
be added by mutation increasing the number of internal states. Other mutations
may alter the actions associated with the internal states, move transition arcs, and
change start node. .

The game between two FA strategies is a stochastic process on a finite automa-
ton representing the game between the two strategies. This “game” automaton has,
as its internal states, the pairs of possible internal states for the two players, and
the transitions are given by the transitions of the two strategies. The average score
for the players is then calculated from probability distribution over the internal
states of the game automaton.

Note that all finite memory strategies can be represented by FA, but that the
FA representation results in a larger evolutionary search space. As in the finite
memory models, we start with a population consisting of equal numbers of the
memory-1 strategies, ALLD, ALLC, TFT, and ATFT, which can be represented as
FA like in Figure 13.

The mutations we allow are the following. The node mutation changes the action
associated with a certain node. The transition mutation changes the destination
node of a transition. The start mutation changes the start node of the FA. The
growth mutation adds a node to the FA. This is done in a neutral way by adding
a copy of a node that has a transition to itself. After the mutation, this transition
connects the original node with a new one that is identical to the original one, see
Figure 14. There is also a delete mutation that randomly removes a node of the
FA. The mutation rate is pyyt per node for all mutations, except for the transition
mutation that has a rate of 4pmut per node, i.e., Pmut.per transition. In the mean-
field model we have used a rate of pmut = 107%. In the lattice model, we have used
the same mutation rate per individual for all types of mutations, pjnq = 103,

M4The Fair strategy can only be invaded if the constants of the payoff matrix are close to the
limits, e.g., the punishment score P for mutual defection is not much less than the reward for
mutual cooperation R, R = P, or if the risk for mistake is high. Fixing S = 0, one finds that the
mistake probability must be of the order e = (1 — P/R)/(4 — 3P/R) for ALLD to exploit the Fair
strategy. The punishment score P must not be less than 0.99R, for ALLD to invade with an e
of 1%. For the standard parameter values, an error probability of e & 2/9 ~ 22% is required for

ALLD to invade.
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FIGUﬁE 13 The initiai state of the finite automata (FA) models consists of equal
numbers of four FA that correspond to the memory-1 strategies: (a) ALLD, (b) ATFT,

"7 (c) TFT, and (d) ALLC.

CC/DD
CD CX

XD .@‘@@’ DX

FIGURE 14 The growth mutation can only be applied if the parent FA has a node with
a transition to itself. In that case, the mutation creates a copy of the original node with
transitions from the copied node identical to the original one. The self-transition of the
original node is directed to the copy, while the self-transition of the copy remains. This
results in a mutation that increases the number of internal states without changing the

strategy—the mutation is neutral.
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MEAN-FIELD MODEL

Even if we start with the same strategies as in the finite memory representation, the
evolutionary paths usually look very different since the evolutionary search space
is dramatically increased and the points (in this space) corresponding to the finite
memory strategies are not close to each other (in terms of mutations). It turns
out that in the mean-field model with finite automata (FA) representation, the
ALLD strategy more often takes over the whole system, compared with the finite
memory representation. In the simulations shown below, we have chosen a smaller
population size (N = 500) than in the previous case, which reduces the probability
for ALLD to dominate.

In the first illustration of the evolution of FA, Figure 15, the payoff is T = 1.6
and P = 0.3. After the initial oscillations dominated by TFT, a strategy (not of
finite memory type) that only differs from TFT by a transition mutation appears.
This strategy is slightly better than TFT since it does not leave the cooperative
state if both players defected last round, while in the defecting state it requires a
cooperation from the opponent to get back to its cooperating state. The strategies
that dominate the picture later on are similar to the finite memory strategy 1001,
showing the same pattern for correcting for single mistakes. The slowly growing
strategy at which the arrow is pointing in the bottom right-hand corner is the FA
representation of 1001.

In the second example, Figure 16, the payoff is T = 1.7 and P = 0.4, which
means that the error-correcting mechanism of 1001-like strategies can be exploited.

FIGURE 15 The evolution of finite automata (FA) is shown for 25000 generations

in the mean-field model, with payoff parameters (T, P) = (1.6,0.3). Some of the
automata that evolve are drawn on top of their abundancy curves, respectively. The
FA, drawn at the bottom toward the end of the simulation, is the FA representation of
the finite memory strategy 1001. Also, the dominating strategy at the end has an error-
correcting mechanism similar to 1001.
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FIGURE 16 The evolution of finite automata (FA) is shown for 60000 generations in
the mean-field model, with payoff parameters (T, P) = (1.7,0.4). Here, strategies
corresponding to 1001 (S1) should not be stable, cf. Figure 8. The automaton shown
in the middle is related to the Fair strategy in its mechanism for dealing with accidental
defections, but it can be exploited. Instead, an FA that defects twice, after an isolated
defect action, dominates at the end similar to the finite memory strategy S>.

The strategy shown in the middle of the figure, dominating for more than 10000
generations, resembles the Fair strategy, but it is too forgiving, which implies that
it will be exploited. The strategy shown at the end, dominating for more than 15000
generations, has an error correction similar to Sz, and it is possible (but not certain)
that this simulation would end with a mixture of strategies of this type.

LATTICE MODEL

The spatial dimension again increases the chances for cooperative strategies to
succeed in the population. Many simulations end with cooperative strategies, like
Fair, dominating the whole lattice for large parts of the parameter region. This is
in accordance with the analysis of the Fair strategy above.

In the first example, Figure 17, we have the parameters (7, P) = (1.7,0.4) on
a 64 x 64 lattice. After the initial oscillations we again see the Sj-like strategy that
dominated at the end of the mean-field simulation of Figure 15. This behavior is not
stable here, according to Eq. (4), and the simulation continues with a sequence of FA
with three and four states, all having an S,-like mechanism for correcting mistakes.
There are many FAs that coincide with the pattern of two mutual defect actions
after an isolated mistake, but that differ when it comes to second-order effects, i.e.,
when there is a mistake within the error-correcting pattern. These second-order
effects may be sufficient to give a decisive advantage so that only one of them will
dominate.
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In the second example, Figure 18, we are in the upper right-hand corner of the
payoff matrix parameter region (1.9, 0.9), see Figure 8. For these parameters, not
even So will be stable, but, according to Eq. (4), ten rounds of mutual defection
are required to punish exploiting strategies. The simulation shows a metastable
state dominated by a pair of strategies, of which one is a three-state FA that

FIGURE 17 The evolution of finite automata for the cellular automaton model is shown
for 1500 generations, with the parameter values (T, P) = (1.7,0.4). The automata

of three and four states that evolve all show the Sz-mechanism of the finite memory
strategies for error correction.

t=0 1800

FIGURE 18 The evolution of finite automata for the cellular automaton model is shown
for 1800 generations, with the parameter values (T, P) = (1.9,0.9). This is close to the
upper right-hand corner of the payoff parameter region, see Figure 8. The chance that
an S, strategy-would evolve here is small since the stability requirement Eq. (4) implies
that n. would be 10. In the simulation, we see that a predecessor to Fair dominates for
a long time until Fair appears, but at the end there is a four-state variation of Fair that
manages to take over.
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resembles the Fair strategy. The Fair strategy is two transition mutations away,
and the intermediate FA can be seen as one of the two narrow peeks before Fair
appears, cf. Figure 12. However, there is a four-state variation of Fair that succeeds
in out-competing the original Fair. The difference lies in a fourth-order effect, i.e.,
involving three mistakes in the apology pattern following one mistake. This strategy
only differs from Fair by a (neutral) growth mutation and a transition mutation.

Other simulations, from various parts of the parameter region of the payoff
matrix in Figure 8, show that Fair is successful and not very sensitive to the pa-
rameter choices. In most cases, the simulations end with one strategy dominating
the whole lattice, a result that is not general in the CA simulations of the finite
memory strategies. From the evolutionary point of view, these simulations may
seem less interesting in the sense that the evolutionary transients appear to be
short. On the other hand, they demonstrate the important difference between the
spatial and the nonspatial models, as well as between different evolutionary search
spaces, and that cooperative behavior may not be given the chance unless there is
some compartmentalization possible, here in the form of spatial locality.

The examples presented here are, of course, preliminary, and a more detailed
study of the evolution of finite automata strategies will be reported elsewhere.

MISUNDERSTANDING VS. MISTAKES

As a possibility for future modifications of these models, one could consider a dif-
ferent kind of noise. Mistakes are a relatively simple form of noise to deal with in
games, since both players have the same history of actions to look at. Misunder-
standings, on the other hand, leave the two players with different histories, and
one cannot be sure whether the distribution of scores is fair or not even for a few
rounds. This is of course critical for strategies like Fair, since a misunderstanding
may lead them into situations where one player isin a satisfied state while the other
one is in an angry state, which may result in sequences of alternating defect and
cooperate actions, as in the TFT strategy.

The class of evolutionarily stable strategies (S,) in the case of mistakes, dis-
cussed before, turn out to be error correcting also in the case of misunderstanding,
at the same time as there is a possibility of avoiding both exploiting strategies and
strategies that are more cooperative.

In the case of misunderstanding, two players using, e.g., the S; strategy, will
show the same pattern as in the case of mistake, (..., CC,CC*,DC,DD, DD, CC, CC,
CC,...), where C* denotes a C action that is perceived as a D action by the op-
ponent. As before, the length of the “quarrel” must be large enough to prevent
potential exploiters to defect on purpose, which leads to the inequality requirement

of Eq. (3).
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But when misunderstandings are involved, there is another possibility to invade
a population of S, strategies, which leads to an additional requirement for the
choice of n. If a player ignores a perceived D action from its opponent and still
cooperates the score may increase, since the action could have been C, and then
the cost of quarrel could have been be avoided, e.g., (...,CC,CcC* CC,...). On
the other hand, if the action was truly D, then the opponent will defect again, and
the return to cooperation will be delayed. For example, ignoring a defect action
from S, leads to the pattern (...,C*C,CD,CD, DD, DD, CC,CC,...), where D is a
defect action due to S» misunderstanding the previous action C*. Since the risk for
misunderstanding is equal for both players, the two patterns above that can result
from ignoring a perceived D action occur with equal probability. The expected score
for ignoring instead of answering directly is oo = (n + 2)R/2 + (28 + nP)/2, to
compare with the score for Sy, on = (S +T)/2+nP + R, for the rounds following
a defect action. Thus, for S, to avoid invasion, the inequality on > 0o must be
fulfilled. This can be rewritten as a requirement on n, n < (T' — §)/(R — P), or
n < (T - R)/(R—P)+1+ (P —S)/(R— P). Since the third term is positive, there
is always an integer n satisfying both conditions

P-S
R-P

T-R
R-P

T-R
R-P

<n< +1+ (5)

For the parameters used by Axelrod (R =1,§ =0,T =5,P = 1), we get n = 2,
and the score is 2.92. Contrary to Fair, the error correction of these strategies works
for both mistake and misunderstanding, but at a cost of a lower average score.

DISCUSSION

By showing examples from various models based on the Prisoner’s Dilemma as
the interaction between individuals, I have illustrated some aspects of evolution-
ary models. The differences between the mean-field models and the lattice models
are evident in all these cases. The possibility of spatiotemporal phenomena may
give rise to a stable coexistence between strategies that would otherwise be out-
competed. These spatiotemporal structures may take the form of spiral waves, irreg-
ular waves, spatiotemporal chaos, frozen patchy patterns, and various geometrical
configurations.?® This is very clear in the first model (finite game) where ALLD is
the only fixed point in the mean-field model, but where ALLD seldom appears in
the simulations of the CA model. Space also allows for increased cooperative be-
havior by a mechanism that can be described as kin selection. For example, regions
of ALLC can be stable in an ALLD environment, since the ALLC individuals at the
border are replaced (in the next generation) by more successful ALLC individuals
from the interior of the region. :

A e e
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The choice of representation is important, as the difference between the simu-
lations of the finite memory and FA strategies illustrates. Still, the existence of a
stable fixed point, e.g., in the form of the Fair strategy, does not necessarily mean
that the evolutionary dynamics always finds it. Of course, the regions of attraction
of the fixed points are important to characterize the evolutionary search space.
This may, however, be a very difficult task since the space of strategies is poten-
tially infinite. The final example also illustrates that the region of attraction may
increase dramatically if the spatial dimension is added. The increased probability
for the Fair strategy to succeed probably depends on the advantage for cooperative
strategies in the spatial world. The Fair strategy may more easily survive in a local
situation from where it may then spread. '

The models presented here all have in common that they are very simple and
can be easily simulated. Despite their simplicity, a number of complex phenomena
in the form of evolutionary dynamics and spatiotemporal patterns can be observed.
Models similar to these (in terms of simplicity) could be constructed in a more
economic context to study economic phenomena like, e.g., trading and price forma-
tion. Some of the ingredients of the models presented here should be considered in
that work, for example, the advantage of starting small in combination with neu-
tral mutations. (This has been used in another context, where evolving artificial
neural networks were selected for recognizing strings of a regular language.?®) The
workshop has inspired us to start constructing economics models along these lines,
and we hope to report on these in future contributions.
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