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2Nanofabrication Laboratory, Department of Microtechnology and Nanoscience-MC2, Chalmers University of
Technology, SE-41296 Göteborg, Sweden
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Spectrally engineered semiconductor Fabry-Perot laser resonators are designed to enhance the

optical feedback for selected longitudinal modes, which thereby require less gain for lasing. This is

achieved by introducing refractive index perturbations along the length of the resonator. However,

the physical realization of these resonators is a challenge because of very narrow tolerances; in

particular the need for precise positioning of the end facets of the resonator in relation to the

perturbations, and the excess propagation loss associated with the perturbations, has been a major

concern. We report on a method to achieve high-quality end facet mirrors enabling precise

positioning relative to the perturbations, the latter which are realized as lateral corrugations of the

waveguide. Measurements show that the mirror quality is comparable to that of cleaved mirrors

and that the additional loss introduced by the perturbations adds. 10 cm�1 to the overall

propagation loss, provided that the perturbations are densely enough spaced along the resonator.

This implies that the number of perturbations should be large, which is beneficial for the realization

of strongly perturbed resonators enabling the most flexible engineering of the spectral properties of

the laser. VC 2011 American Institute of Physics. [doi:10.1063/1.3587359]

I. INTRODUCTION

The longitudinal modes in a conventional Fabry-Perot

laser (FPL) are defined by the mirror separation L, with reso-

nance wavelengths given by km ¼ 2nL=m, where km is the

wavelength of the mth mode, m ¼ 1; 2;…; and n is the effec-

tive mode index inside the FP resonator. The only feedback

mechanism in an FPL is provided by the reflections at the

end facets. Since this feedback is equally strong for all wave-

lengths the threshold gain needed for lasing is the same for

all longitudinal modes. In this work, we use the term thresh-

old gain spectrum for the (net modal) threshold gain of the

various longitudinal modes in some wavelength region of in-

terest (coinciding with the gain bandwidth of the active me-

dium). For the FPL, the threshold gain spectrum is thus

defined at the resonance wavelengths, with identical values

for the threshold gain for all modes. The only wavelength se-

lectivity in an FPL is thus provided by the gain medium and

FPLs therefore emit in multiple longitudinal modes since the

mode spacing is much narrower than the gain bandwidth. By

introducing perturbations of the mode index along the length

of the resonator an extra feedback mechanism is employed;

the optical field will be partially reflected at each interface

between segments with an unperturbed and perturbed mode

index. The extra feedback can be used to tailor the threshold

gain of the longitudinal modes, in order to create an almost

arbitrary threshold gain spectrum. Such a spectrally engineered

Fabry-Perot resonator (SE-FPR) can, e.g., be designed to

preferentially lower the threshold gain for one or several lon-

gitudinal modes. In this way, ridge waveguide lasers with

strong single mode operation as well as those with two-color

operation, i.e., simultaneous emission of two wavelengths,

have been realized.1–3 These lasers were conventional (Fabry-

Perot) ridge waveguide lasers where the spectral properties

were engineered by introducing short trenches, or perturba-

tions, at a few (normally less than 50) positions along the

ridge, in the upper part of the ridge. The trench changes the

cross section of the waveguide and thus the effective index is

different in the trenched region. Previously, the design methods

required that the perturbation was not too strong—multiple

reflections between perturbations were ignored. This implies

that the number of perturbations is not too large. Recently,

though, a design method for arbitrarily strongly perturbed

waveguides, accounting for any number of multiple reflec-

tions, was developed.4 In this treatment, the perturbed and

unperturbed waveguide sections were viewed as cascaded

subcavities with different effective indices. The intricate

coupling between all the subcavities was accounted for using

a transfer matrix formalism. Strongly perturbed resonators

allow for an almost arbitrary threshold gain spectrum to be

created and can use up to �1000 perturbations. It should also

be noted, that even in the strongly coupled case the end facets

play an important role—unlike conventional distributed Bragg

reflector mirror resonators where the optical field falls off to-

ward the end facets, in an SE-FPR there can be a significant

optical field incident on the end facets. Therefore, the positiona)Electronic mail: goran.adolfsson@chalmers.se.
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and quality of the end facets are critical for this type of reso-

nator. In the realization of lasers with SE-FPRs, there are three

critical steps:

A) The numerical design of the size and location of the per-

turbed parts of the waveguide;

B) The physical realization of the perturbed resonator geom-

etry, including the end facets;

C) Control of the material properties determining the optical

gain and refractive index (dispersion).

Step A is a purely numerical procedure, and was

described in Ref. 4 for a strongly perturbed resonator. The

waveguide is then mathematically divided into a large num-

ber of short segments of equal length, and the design method

iteratively determines the optimal effective index of each

segment to reach the desired spectral behavior as closely as

possible. The lengths of these fundamental “building block”

segments are an integer number, s, of (approximately) quar-

ter wavelengths in the waveguide. Using a large s in the

design means longer and thus fewer subcavities, giving a

more weakly perturbed resonator. To simplify the design we

consider a binary perturbation, i.e., the effective index of the

wave propagating in the segment can be either n
(“unperturbed”) or nþ Dn (“perturbed”). In this step, some

of the material parameters (which need to be precisely

known or controlled) are fed into the design algorithm, most

notably the effective refractive index n. Step B is the topic of

this paper. In this step, one must first determine how the

physical perturbation should be realized. As will be shown,

in our case we chose it to be a sidewall etch of the ridge of

the waveguide, making it narrower, so that the effective

index in a perturbed segment is reduced, i.e., Dn < 0. A top

view of one such perturbed ridge waveguide is schematically

shown in Fig. 1; as can be seen the perturbed segments are

so many that they often appear immediately next to each

other and thus form longer segments of a narrow ridge. In

this case, the unperturbed ridge width was 6 lm, whereas the

perturbed was 3 lm. Second, processing techniques must be

found that enable the realization of these complex structures.

Third, a method must be found to lithographically define and

subsequently etch the end facet mirrors. This point is critical,

since cleaved mirrors can only be positioned with one or a

few micrometer accuracy with respect to the perturbations.

By far, this is not accurate enough, and therefore cleaved

mirrors cannot be used. Figure 2 illustrates the high precision

required in the positioning. This example is for a two-color

resonator, and the figure shows the error function E, which is

the rms deviation of the actual threshold gain spectrum from

the desired, normalized to its lowest value, i.e., for perfect

positioning. The insets also show more directly how the

threshold gain spectrum deteriorates as the distance from the

end mirror to the nearest perturbation deviates from the

design value. As can be seen, for the worst position, one

quarter wavelength away from its optimum, the function of

the feedback is even reversed—the threshold gain for the

two “lasing” modes is now higher than for the other modes.

As could be expected there are multiple positions, one half

wavelength apart, that would work, but the chance of ran-

domly position both end mirrors at such positions is very

small; such a strategy for device fabrication would result in

an extremely low yield for this reason alone. In addition to

the precise positioning, the etched facets must have a smooth

surface and a deviation from perfect vertical orientation of

less than a few degrees to provide feedback comparable to

that of a crystal-oriented cleaved facet.5

In this work, we present a fabrication method that

involves the use of a single self-aligned metallic mask for

definition of both the laterally corrugated, perturbed, ridge

waveguide and the etched facets. This offers a precise posi-

tioning of the end facets with respect to the perturbations.

FIG. 1. (Color online) Example of results from the design of an SE-FPR. At

the top is shown a schematic top view of the ridge waveguide, with narrow

(perturbed) and broad (unperturbed) sections. Below is shown the threshold

gain spectrum for the longitudinal modes, obtained in the design. This accu-

rately matches the target, since the target is any threshold value equal to or

higher than the indicated value, except for the two wavelengths with a low-

ered threshold, where the indicated value should be precisely obtained. The

slight blueshift of the modes in the design, compared to the target, is caused

by the introduction of perturbed segments, with a lower effective index. In

the design specification, s¼ 3, so that the smallest possible perturbed section

had a length d¼ 270 nm; the longest had a length 20d ¼ 5:4 lm. In the

design n ¼ 3:25 and Dn ¼ �0:0033 were used. The total number of per-

turbed segments in the design solution was Np ¼ 538.

FIG. 2. (Color online) The error E as a function of the error in longitudinal

positioning of the facet mirrors relative to the perturbations. The insets show

the calculated threshold gain spectra for the longitudinal modes for three dif-

ferent values of positioning error DL.
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With the developed fabrication method we achieved high-

quality etched facets. Moreover, we find, perhaps surpris-

ingly, that the excess propagation loss introduced by the per-

turbations decreases with the number of perturbations,

adding incentive to consider the realization of strongly per-

turbed laser resonators.

II. PHYSICAL REALIZATION OF INDEX
PERTURBATIONS

The perturbed resonator segments can be achieved by

decreasing the cross section area of the ridge waveguide, ei-

ther by making it shallower, with a top etch, or narrower,

with an etch of the side walls. Top etched perturbations have

been successfully implemented in cases where the perturba-

tions have been sparsely positioned, i.e., for weakly per-

turbed resonators.1–3 However, with a sidewall etch it is

easier to reach higher spatial resolution,3 which is thus pre-

ferred for strongly perturbed resonators with their densely

positioned perturbations. One example of a more conven-

tional laser resonator using etched sidewall gratings was a

distributed feedback laser using a third order grating with a

period of �440 nm.6 As a further complication of the top

etch geometry, it may aggravate the current injection through

the top contact on the ridge if the perturbations are numerous

and densely spaced. For these reasons, we chose to use the

sidewall etch as a means to reduce the effective index in the

perturbed sections. To calculate the effective indices of the

unperturbed ridge, 6 lm wide, and the perturbed ridge, 3 lm

wide, we used the numerical technique described in Ref. 7 to

obtain the transverse field profiles of the waveguide modes

and their effective indices for different wavelengths. The cal-

culated dispersion curves are shown in Fig. 3, together with

an example of an obtained transverse mode profile of the

fundamental mode. The epitaxial structure used in the calcu-

lations consisted of an InGaAs quantum well active region

embedded between AlGaAs cladding layers. Details of the

structure are given in Sec. IV. In the calculations, the mate-

rial (bulk) dispersion for AlGaAs was taken from Ref. 8. As

can be seen in the figure, Dn is very nearly constant through-

out the considered wavelength region, suggesting that disper-

sion can be safely neglected for Dn, and only be considered

for the unperturbed effective index n. The figure also shows

that in order to obtain a large Dn the ridge height should be

as large as possible, i.e., the ridge should be etched down to

just above the active region.

III. PHYSICAL REALIZATION OF LATERALLY
PERTURBED RIDGE WAVEGUIDES AND
HIGH-QUALITY END FACET MIRRORS

It has been shown that facets of good quality can be fab-

ricated using a number of highly anisotropic dry etching

techniques in combination with a suitable etch mask. The

quality of the dry-etched facet strongly depends on the prop-

erties of the etch mask.9–14 Corrugations of the mask edges,

caused either by mask erosion during etching or originating

from the fabrication of the mask itself, are transferred to the

facet during the etching process, which may result in both

surface roughness and nonverticality of the end facet. Addi-

tional roughness may be caused by the post etching process-

ing steps, suggesting that the facet etching should be one of

the final steps in the device fabrication. In addition, as men-

tioned, the etched facet must be precisely positioned with

respect to the perturbations. This we solved with a self-

aligned process in which a single etch mask was used for dry

etching both the laterally corrugated ridge waveguide and

the resonator facets.

A schematic drawing of the etch mask is shown in left-

hand part of Fig. 4. The main part of it defines the width-

modulated ridge of the waveguide, but near both ends of the

resonator, where the facets will be etched, its width is

strongly extended, thus defining a waveguide with T-bar

shaped ends. The width of the extended waveguide is taken

to be much larger than the lateral extension of the optical

mode in the waveguide, making sure that the optical field is

practically zero on the perimeter of the etched facet mirror.

It may be noted that a similar approach has previously been

used to fabricate dry etched facets with low surface rough-

ness.10 The introduction of the wide T-bar changes slightly

the effective index in the waveguide at its very ends, but it

can be accounted for in the design. The “length” of the T-bar

(i.e., its extension in the longitudinal direction of the wave-

guide, which should be much shorter than its width) should

be just large enough to allow for convenient alignment of the

etch masks used for protecting the area near the facet during

the waveguide etching, and for protecting the waveguide

during the facet etching, as will be described in the next sec-

tion. In Ref. 10, it was demonstrated that lengths of up to 4

lm would be sufficient to achieve a flat facet, without caus-

ing any significant influence on the guided mode. This made

it possible for us to use conventional photolithography and

mask aligners to align the resist masks along the symmetry

line of the T-bar in the extended direction. In order to obtain

a well defined etch mask it is desirable to use a mask that is

as thin as possible and defined on a planar surface. Many

FIG. 3. (Color online) Calculated effective index as a function of wave-

length for the fundamental mode in the unperturbed (width w ¼ 6 lm) and

perturbed (w ¼ 3 lm) waveguide sections. The index of the unperturbed

waveguide is almost independent of ridge height h, unlike that of the per-

turbed waveguide, as indicated.
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different mask materials for facet etching have been investi-

gated in the literature, including conventional9 and multiple

layer resists,10 electron beam resists,11 dielectrics,12 and me-

tallic masks.13,14 Among these, metallic masks have proven

to be more resistant to erosion, and are therefore preferred

for dry etching of deep (&2 lm) features.15 Further, by a

proper choice of the metal composition of the mask, it can

additionally be used for the current injection into the ridge, thus

leading to a self alignment of the p-contact to the ridge wave-

guide. For these reasons we chose to use a metallic mask. The

metal should be chosen such that the selectivity between the

metal and the semiconductor layers is as high as possible—

which depends on the specific gas chemistry and plasma

powers used in the dry etching process—while at the same time

it should make a good ohmic contact with the top GaAs layer.

In this work, we have used inductively coupled plasma (ICP)

dry etching with a SiCl4-Ar chemistry suitable for etching of

AlGaAs waveguide layers, as explained in more detail in the

next section. From measurements on selectivity and contact re-

sistance, we found that a Ti/Au/Ni-mask is highly advantageous

to use. The etch selectivity of Ni to AlGaAs in our etch process

is very high, with a typical value of �80, while the specific

contact resistance was �10�5 X � cm2. It is not critical if there

is residual Ni after etching, since this does not significantly

influence the contact resistance, which makes it possible to

use the Ti/Au/Ni-mask mask also as a p-contact.

We define the mask by lithography and lift-off in the

very first processing step when the wafer does not yet have a

pronounced topography. This makes it possible to obtain a

well defined mask with minimally corrugated edges, using

thin metal layers. Further, to minimize any end facet surface

roughness caused by post etching processing, the ridge

waveguide and the facets are dry etched in separate steps

with the facets being etched toward the end of the device

processing; the ridge waveguide, with its perturbations, is

etched earlier in a single step.

IV. FABRICATION OF SPECTRALLY ENGINEERED
RESONATORS

In order to evaluate our fabrication method we designed

a number of different SE-FPRs with a varying number of

perturbations. The resonators were designed to promote ei-

ther single mode or two-color operation by lowering the

threshold gain for one or two selected longitudinal modes,

respectively. All resonators had a length of 500 lm. The

number of perturbations in each resonator design was limited

by varying the length of the shortest segment d between

d¼ 270 nm and d ¼ 2:44 lm, corresponding to s¼ 3 and

s¼ 27 quarter-wavelengths in the material. When deciding

on a desired threshold gain spectrum, used in the design, the

amount of threshold gain reduction for the selected modes

was chosen according to the number of possible perturba-

tions in each design—using more perturbations enables a

larger reduction of threshold gain. For all designs the unper-

turbed effective index and the index perturbation were set to

n ¼ 3:25 and Dn ¼ �0:0033, respectively, for all 52 modes

within the �22 nm bandwidth considered, i.e., dispersion

was neglected. All single mode resonators were designed to

lower the threshold gain for a mode at k ¼ 1174:6 nm while

the two-color laser resonators were designed to simultane-

ously lower the threshold gain for two modes at k ¼ 1174:6
and k ¼ 1169:9 nm. An example of one of these designed

two-color resonators, with d¼ 270 nm, is the one shown in

Fig. 1; a summary of some characteristics of all designed res-

onators is given in Table I.

The epitaxial laser structure used in this study was

grown on a GaAs substrate by metal-organic chemical vapor

deposition. It consists of an undoped active region including

a compressively strained 7 nm thick InGaAs quantum well,

with an In content of 37%, embedded between 40 nm

undoped Ga0:08As0:92P/GaAs strain compensating barriers.

The active region is surrounded by 200 nm thick graded

composition AlxGa1�xAs confinement layers (x ¼ 0:2�0:45)

cladded by 1 lm thick p- and n-type Al0:45Ga0:55 As layers

doped with C and Si at 5 � 1017 � 1 � 1018 cm�3, respectively.

A 100 nm thick pþ-GaAs layer doped with C at 3 � 1019 cm�3

serves as a contact layer. Fabricated broad-area reference

lasers (w ¼ 100 lm) with cleaved facets emit around 1170

nm with a threshold current density of 122 A/cm2 for a 1

mm long cavity, indicating good material quality.

All SE-FPRs were fabricated on a single chip from this

wafer, together with conventional ridge waveguide FPLs

FIG. 4. (Color online) Mask layout (left) and indication of major processing steps that are used in the realization of (a) the perturbed ridge of the waveguide,

and (b) the end facet mirrors of the resonator.
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with a ridge waveguide width of either w ¼ 6 lm or

w ¼ 3 lm, and a cavity length of 500 lm, defined by facet

etching as for the SE-FPRs. Three different sets of each SE-

FPR design were fabricated; the unperturbed ridge width

was w ¼ 6 lm for all sets while the perturbed waveguide

width was either w ¼ 3:0 lm, w ¼ 3:4 lm or w ¼ 4:1 lm in

a given set, corresponding to ridge width modulations of

Dw ¼ 3:0 lm, Dw ¼ 2:6 lm, and Dw ¼ 1:9 lm, respec-

tively. Figure 4 indicates the most important steps in the

fabrication process. Processing is initiated by defining the p-

contact also used as the masking material for etching the per-

turbed ridge waveguide and the facets. Either direct-write

electron-beam lithography (EBL) or conventional lithogra-

phy can be used, depending on the smallest feature size of

the laterally corrugated waveguides (i.e., d, the length of an

isolated perturbed or unperturbed cavity segment). For fea-

ture sizes larger than �1 lm it is possible to use a standard

image reversal process with photoresist for pattern definition

and electron-beam evaporation of the metal films. However,

in this work we have used direct-write EBL since the feature

size is well below 1 lm for several of the SE-FPRs. In this

process, the chip is first spin-coated with a bi-layer resist

stack of MMA-MAA copolymer (MMA(8.5)MAA) at the

bottom and high resolution ZEP520 A at the top. The etch

mask pattern, which includes all SE-FPRs and FPLs, is sub-

sequently transferred to the sample via an electron-beam ex-

posure in a JEOL JBX-9300FS system (the patterns were

proximity effect compensated by dose correction) followed

by development using n-amyl acetate and MIKB:IPA (1:1)

for development of the ZEP520 A and copolymer resists,

respectively. The sample is rinsed in IPA and blow-dried

with N2 immediately after development. Using two different

resists that require two different developers makes it easier

to control the resist undercut profile needed for a successful

lift-off process. Next, the combined p-contact and etch mask

is finalized by depositing Ti/Au/Ni with electron-beam evap-

oration followed by a standard lift-off step.

The thicknesses of the Ti/Au layers, incorporated to cre-

ate a p-contact with a low resistance, are not crucial. How-

ever, since the Ni-layer serves as an etch mask its thickness

must be chosen such that it can withstand etching of both the

ridge waveguide and the end facets. We use ridge waveguide

and end facet etch depths of 1.4 and 5 lm, respectively,

which together with a typical etch selectivity of 80:1

between Ni and AlGaAs in our dry etch process implies that

at least an �80 nm thick Ni layer is required. To have some

margin we have used a Ni thickness of 90 nm together with

Ti adhesion and Au layer thicknesses of 10 and 40 nm,

respectively, thus yielding a total p-contact thickness of 140

nm. In order to avoid etching the facets during the ridge

waveguide etching a pattern of positive AZ1512 resist is

applied, with the edge of the resist aligned to the center of

the 2 lm long T-bar segments at both ends of the waveguide.

The ridge waveguides are etched in an ICP etcher under low

pressure (<1 Pa) using SiCl4 and Ar flows of 10 and 20

sccm, respectively, together with low inductive source and

substrate bias powers of 55 and 50 W in order to reduce sur-

face damage of the etched areas. This is important since

rough side walls may cause significant light scattering of the

optical mode; this should be particularly important for the

SE-FPR with its narrow sections along the ridge waveguide.

The resulting etch rate was 120 nm/min for the AlGaAs

layers and slightly higher for the GaAs layers. The ridges are

etched to a depth of 1.4 lm which leaves 0.1 lm of the upper

cladding layer above the active region. The etching system

allows for precise depth control through a laser interferome-

ter end point detection system, which is important since the

magnitude of the obtained index perturbation Dn depends

strongly on the etch depth, as shown in Fig. 3. The sample is

rinsed for 60 seconds in de-ionized water immediately after

removal from the ICP chamber. This is necessary to prevent

corrosion, caused by chlorinated etch product residues, of

the �70 nm thick Ni film remaining on top of the ridge

waveguide after etching. The so obtained ridge waveguide

sidewalls are vertical and smooth, as illustrated in the tilted

view scanning electron micrograph in Fig. 4. To electrically

isolate the ridge waveguide, a 160 nm thick layer of SiNx is

subsequently deposited on the entire chip surface with

plasma-enhanced chemical vapor deposition, after which 1.0

lm wide openings, centered on top of the ridge waveguides,

are defined in AZ1512 resist and etched using ICP etching

with NF3 (20 sccm) using 30 and 300 W source and substrate

bias powers, respectively. Next, 100� 490 lm2 Ti(15 nm)/

TABLE I. Summary of characteristics of SE-FPRs designed for single

mode and two-color emission.

Segment lengtha Single mode design Two-color design

s d (nm) Np
b Dcc Np

b Dcc

27 2439 55 1.0 58 1.0

11 994 120 1.9 112 1.9

7 633 213 5.1 224 3.9

3 270 500 11.8 538d 11.0d

aThis is the length of the shortest segment in the resonator.
bNumber of perturbations.
cThreshold gain reduction Dc of the selected “lasing” mode(s), given in per-

cent of the mirror loss of an unperturbed waveguide (�25:5 cm�1).
dThis design is shown in Fig. 1.

FIG. 5. SEM image of the perturbed ridge of a fabricated SE-FPR, showing

the high definition and smoothness of the etched side walls.
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Au(250 nm) bond pads are patterned and sputtered on top of

the ridge waveguides followed by patterning with AZ1512

resist for protection of the ridge waveguides and bond pads

during facet etching, with the protective mask being posi-

tioned between the centers of the T-bar segments of the ridge

waveguide, as shown in Fig. 4. The facets are then ICP

etched using the same conditions as used previously for the

ridge waveguide etching. The etch depth is about 5 lm

which corresponds to a complete removal of the epitaxial

structure and an additional �1:8 lm etch into the GaAs sub-

strate. The obtained facet surfaces are smooth and vertical as

shown in Fig. 6. After the facets have been etched the sub-

strate is thinned to approximately 150 lm (during which the

sample surface is protected with resist) before a Ni/Ge/Au n-

contact layer is evaporated on the entire backside of the chip,

followed by a rapid thermal annealing treatment of the n-

contact at 430 �C for 30 s. Finally, the sample is cleaved at

positions approximately 100 lm in front of the etched facets

in order to have access to the facet surfaces for light-current

(L-I) measurements. A tilted view SEM image of a fabri-

cated device is shown in Fig. 7.

V. MEASUREMENTS AND ANALYSIS

The electrical and optical characteristics of the fabri-

cated lasers were measured under continuous-wave condi-

tions at a heat sink temperature of 25 �C. The light output

from one of the facets was detected with a large-area InGaAs

photodetector while a butt coupled standard multimode fiber

was used to simultaneously collect the laser light emitted

from the other facet. The fiber was positioned at an angle in

front of the facet to minimize reflections from the fiber back

into the laser resonator. A fiber-coupled optical spectrum an-

alyzer with a resolution of 0.01 nm was used to record the

emission spectra.

The quality of an etched facet is reflected in the L-I

characteristics of the laser since a reduced reflectivity caused

by scattering and/or nonvertical facets would result in a

higher threshold current (Ith) as well as a lower slope effi-

ciency (DP=DI). For this investigation we used only the

FPLs. The L-I characteristics for 6 lm wide FPLs, all fabri-

cated from the same wafer, with both facets either cleaved or

etched are shown in Fig. 8. The length of the lasers with

etched facets was lithographically defined to be 500 lm

while the length of the lasers with cleaved facets was meas-

ured with an optical high magnification microscope to be

somewhat larger, �580 lm. For the lasers with cleaved fac-

ets, typical Ith and DP=DI-values of 10 mA and 0.46 WA�1,

respectively, were obtained. The corresponding values for

the lasers with etched facets were 11.5 mA and 0.46 WA�1,

respectively. Although there is a small difference in resona-

tor length, the similarity of these values suggests that the

etched facets are of high quality; a more detailed quantitative

analysis is difficult because of the uncertainties in some pa-

rameter values but indicates that if the perfectly cleaved

facet has a (Fresnel) reflectivity of 30%, the etched facets

would have a reflectivity of 22–25%.

Next, the lasers with SE-FPRs were characterized.

Measurements of the threshold current as a function of the

number of introduced perturbations (Np) were performed to

FIG. 6. One of the etched end facet mirrors of the resonator. The cross sec-

tion of an etched facet is seen in the inset, showing the smooth and vertical

mirror surface.

FIG. 7. SEM image of a fabricated device illustrating one etched facet and

the perturbed waveguide.

FIG. 8. (Color online) Measurements on FPLs: output power and slope effi-

ciency as functions of the injection current for lasers with cleaved and

etched end facet mirrors.
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examine the additional propagation loss caused by the per-

turbations. Figure 9 displays typical L-I characteristics for a

range of lasers with a ridge width modulation Dw ¼ 3 lm.

As can be seen, the perhaps slightly surprising result is that

the threshold current decreases with the number of perturbed

cavity segments. To coarsely quantify the additional propa-

gation loss we used a simple logarithmic dependence of ma-

terial gain on current density approximately valid for

quantum well materials.7 Then the additional loss can be

written as

Da ¼ aSE�FPR�aFPL ¼ Cg0 ln
Ith; SE�FPR

Ith; FPL

� �
; (1)

where a is the propagation loss (internal optical loss) of the

optical mode, C its confinement factor, and g0 is a material

gain coefficient. The uncertainty 6r in the determination of

Da is estimated as a root mean square

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@Da
@x

rx

� �2

þ @Da
@y

ry

� �2

þ @Da
@z

rz

� �2
s

; (2)

where x, y, and z are introduced as short notations for

Cg0; Ith; SE�FPR; and Ith; FPL, respectively, the derivatives are

calculated from Eq. 1, and rx; ry; and rz denote the esti-

mated uncertainty in the values for these parameters. The

additional loss is plotted in Fig. 10 as a function of the num-

ber of perturbations, Np, and ridge width modulation Dw. For

the calculations a value for Cg0 ¼ 35 6 5 cm�1 was used,

which was obtained from cavity-length dependent L-I meas-

urements on broad-area lasers. From the figure, we observe a

decrease in additional propagation loss from 53 6 11:1 cm�1

to 10:0 6 2:1 cm�1 when Np is increased from �100 to

�500, for Dw ¼ 3:0 lm. From Hakki-Paoli measurements of

the net modal gain16 the propagation loss of an FPL was

determined to be aFPL � 20 cm�1 yielding a total resonator

loss, consisting of the propagation loss, mirror loss, and addi-

tional loss caused by the perturbations, of �60 cm�1 for an

SE-FPR with Np � 500, where R ¼ 25% was used for esti-

mating the mirror loss. The additional loss thus constitutes

�15% of the total loss in this case. Further, the measured se-

ries resistance was as low as �5�7 ohms for all devices,

demonstrating that the Ti/Au/Ni/Ti/Au p-contact achieved a

low contact resistance.

One reason for the higher loss for an SE-FPR with a low

number of perturbations might be that the narrow segments

are so few that the optical field propagates long distances in

unperturbed, broad, portions of the waveguide, and thus that

the mode size of the optical field adjusts to the broad wave-

guide. Once the field reaches a narrow portion of the ridge,

there will be a large mode mismatch and a relatively large

field at the edge of the narrow ridge, causing additional opti-

cal loss through scattering and/or absorption in the sputtered

Ti/Au bond pad layer. On the other hand, if the perturbations

are dense, as for an SE-FPR with large Np, the mode should

adjust to the average width of the waveguide, making the

modal width constant throughout the length of the resonator6

and thereby avoiding a large mismatch between the propa-

gating mode and any part of the waveguide. This is further

supported by a significant decrease in excess propagation

loss for Np. 200 when the ridge width modulation is reduced,

as seen in Fig. 9. For resonators with Np � 100; the excess

loss is for example decreased from Da ¼ 53 6 11:1 cm�1 to

Da ¼ 23:9 6 3.8 cm�1, when Dw is reduced from 3.0 lm to

2.6 lm.

Although the fabricated SE-FPRs cannot be expected to

exactly produce the desired laser spectra (since there are

uncertainties in some material parameters), we should be

able to establish that the perturbations at least strongly influ-

ence the spectral behavior. To examine this, emission spectra

FIG. 9. (Color online) Measurements on lasers with SE-FPRs: output power

and applied voltage (inset) as functions of the injection current for lasers

with different number of perturbations, Np. The ridge width modulation

Dw ¼ 3 lm.

FIG. 10. (Color online) Estimations of the excess propagation loss, i.e., the

additional loss caused by the perturbations, compared to an unperturbed res-

onator. The estimation is based on a threshold current analysis according to

Eq. (1) and the error bars are calculated using Eq. (2), where the uncertain-

ties are estimated from measurements on several, nominally identical, lasers.

Note that the obtained values for Dw ¼ 2:6 lm and Dw ¼ 1:9 lm have been

shifted slightly along the Np-axis for clarity. The inset shows results from

Hakki-Paoli measurements of the net modal gain for an FPL, for four differ-

ent bias currents, from which the propagation loss value, aFPL, can be

estimated.
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were recorded as a function of bias current for both FPLs

and lasers with SE-FPRs. The lower part of Fig. 11 shows

the evolution of peak emission wavelength(s) with current

for an FPL and for lasers with SE-FPRs designed for single

mode and two-mode emission, respectively. Also shown in

Fig. 11 are examples of recorded emission spectra. For the

displayed single mode SE-FPR, at a bias current above

�1:1Ith a single longitudinal mode at 1174.1 nm was prefer-

entially enhanced, yielding a side-mode-suppression-ratio

(SMSR) of >30 dB. The device oscillated at this mode for

bias currents up to �4:5Ith with maintained SMSR. As can

be seen, the measured peak wavelength shift with bias cur-

rent was 0.03 nm/mA. This value is roughly 3 times lower

than the shift of the gain peak with current, the latter which

is given by the rate of the shift in peak emission wavelength

of the FPL, as shown. This indicates that in the SE-FPR the

lasing mode was preferentially selected by mode-selective

optical feedback and not by the gain peak, whereas in the

FPL no such strongly mode-selecting mechanism was evi-

dent. A similar single mode emission behavior was observed

for all devices with spectrally engineered single-mode reso-

nators, in the entire range of different values for Np, although

the selected mode differed within �5 longitudinal modes

between devices. As is seen in the figure, also the SE-FPRs

designed for two-mode emission exhibit the slow depend-

ence of wavelength on current which indicates that the

emission wavelength is governed primarily by modal prefer-

ence rather than gain. However, only for a small bias current

range were the two modes approximately equal in power; at

the optimal bias current where the two modes have identical

power an SMSR of �30 dB was obtained. Also, some two-

mode resonators had single-mode emission throughout the

entire range of bias currents, which likely implies that the

two-mode designs are more sensitive to imperfections in the

realization of the etched structures and uncertainties in the

material parameters. In spite of this sensitivity, any specific

laser remained stable in its spectral characteristics with

respect to time and operating conditions: measurements after

several weeks, and after having used such high bias currents

that the lasers switched to lasing at the first excited state in

the quantum well, produced the same spectra as the initial

measurements on the same device.

VI. CONCLUSIONS

In this work, we have developed methods for the highly

precise geometrical definition of spectrally engineered

Fabry-Perot resonators with low optical loss. Self-alignment

of the perturbations relative the resonator end facets as well

as self-alignment of the p-contact to the ridge waveguide

was critical in this realization. In addition, the mask layout

as well as the use of separate dry etching steps for defining

the waveguide and facets resulted in a process well suited for

obtaining etched facets with a low surface roughness. Also, a

careful choice of etch mask materials that serve several pur-

poses simplified the processing. Measurements on fabricated

lasers indicate that the etched structures are of high surface

quality and high verticality, the latter which is particularly

important for the deeply etched end facet mirrors. Moreover,

the measured variation of the emission wavelength with bias

current shows that the spectral behavior is governed by the

partial reflections from the resonator perturbations, although

uncertainties in material gain and refractive index cause

deviations from the desired spectra.

ACKNOWLEDGMENTS

This work was supported by the Swedish Research
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