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VARIATION CONTROL IN VIRTUAL PRODUCT REALIZATION
- ASTATISTICAL APPROACH

KRISTINA WARMEFJORD

ABSTRACT

All manufacturing processes are afflicted by variation, which leads to products that may not
fulfill assembly, functional or esthetical requirements. The variation in the final product
originates from variation in individual parts and assembly processes. In this work, methods
and tools aimed to reduce the amount of variation and, more importantly, the effects of the
variation in the final product are treated.

Four main areas are treated in this thesis:

e Statistical process control: When a deviation or increased variation arises in a process, it
is important to discover this as soon as possible. Different methods for statistical process
control, based on inspection data, are suggested and compared. When an increased
variation or deviation is obtained, it is also important to find the cause. Methods for the
diagnosis of assembly fixtures are suggested, compared and evaluated.

e Inspection: In the verification phase of product development, a product is normally
inspected at a large number of points in order to learn as much as possible about the
product and processes. When full production starts, the main purpose of inspection shifts
toward statistical process control, which normally requires fewer inspection points. Today,
the reduction in demand is usually done manually. This puts great demands on experience
and craftsmanship. A method based on cluster analysis is presented and applied to
inspection data in order to achieve a systematic reduction. By the clustering of the data, a
representative for each cluster or group of points with correlated inspection values can be
selected. By inspecting only those representatives, the number of points needed to monitor
the product can be reduced. This method leads to larger reductions than manual
procedures. The information in a set of inspection points is quantified.

e Spot welding sequence optimization: By altering the joining sequence when joining two
parts together, using, for example, spot welding, the level of variation in the final
assembly is affected. Different strategies to find optimal spot welding sequences (in other
words, sequences that minimize the variation in the final assembly) are suggested and
compared.

e Simulation accuracy: Variation simulation is used to predict variation in the final product
or in sub-assemblies. In that manner, the requested number of physical verifications and
tests can be reduced, leading to saved resources and increased sustainability. However, if
the simulation is to be able to replace physical tests, it is vitally important that the
simulation results are accurate and agree with real outcome. Factors affecting this
agreement for non-rigid variation simulation are investigated. Four of the factors (spot
welding sequence, contact modeling, fixture repeatability and the influence of heat during
welding) are further examined and methods to include them in variation simulation are
suggested

Keywords: Variation simulation, quality control, inspection point reduction, contact modeling,
spot welding sequence, fixture repeatability, welding simulation.
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ABSTRACT

All manufacturing processes are afflicted by variation, which leads to products that may not
fulfill assembly, functiona or esthetical requirements. The variation in the final product
originates from variation in individual parts and assembly processes. In this work, methods
and tools aimed to reduce the amount of variation and, more importantly, the effects of the
variation in the final product are treated.

Four main areas are treated in thisthesis:

Statistical process control: When a deviation or increased variation arises in a process, it
is important to discover this as soon as possible. Different methods for statistical process
control, based on inspection data, are suggested and compared. When an increased
variation or deviation is obtained, it is also important to find the cause. Methods for the
diagnosis of assembly fixtures are suggested, compared and evaluated.

Inspection: In the verification phase of product realization, a product is normally
inspected at a large number of points in order to learn as much as possible about the
product and processes. When full production starts, the main purpose of inspection shifts
toward statistical process control, which normally requires fewer inspection points. Today,
the reduction in demand is usually done manually. This puts great demands on experience
and craftsmanship. A method based on cluster analysis is presented and applied to
inspection data in order to achieve a systematic reduction. By the clustering of the data, a
representative for each cluster or group of points with correlated inspection values can be
selected. By inspecting only those representatives, the number of points needed to monitor
the product can be reduced. This method leads to larger reductions than manual
procedures. The information in a set of inspection pointsis quantified.

Spot welding sequence optimization: By altering the joining sequence when joining two
parts together, using, for example, spot welding, the level of variation in the final
assembly is affected. Different strategies to find optimal spot welding sequences (in other
words, sequences that minimize the variation in the final assembly) are suggested and
compared.

Simulation accuracy: Variation simulation is used to predict variation in the final
product or in sub-assemblies. In that manner, the requested number of physical
verifications and tests can be reduced, leading to saved resources and increased
sustainability. However, if the simulation is to be able to replace physical tests, it is
vitally important that the simulation results are accurate and agree with rea outcome.
Factors affecting this agreement for non-rigid variation simulation are investigated. Four
of the factors (spot welding sequence, contact modeling, fixture repeatability and the
influence of heat during welding) are further examined and methods to include them in
variation simulation are suggested.

Keywords: Variation simulation, quality control, inspection point reduction, contact
modeling, spot welding sequence, fixture repeatability, welding simulation.
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1. INTRODUCTION

This chapter describes the background
of the research and introduces the basic
concepts within the research area. The
goal is to provide an understanding of
the research questions.

1.1. BACKGROUND

All manufacturing processes are afflicted by variation. Therefore, no final product will ook
the same from time to time, and in some cases, functional or esthetical requirement will not be
fulfilled. This is of course associated with costs and/or disappointed customers. Completely
avoid variation is difficult, if even possible, and extremely expensive. But there are methods
and tools aimed at reducing the amount of variation and, more importantly, the effect of the
variation. In this thesis, such methods and tools are treated. Most of the examples come from
automotive industry, but the methods are of course applicable to other types of products as
well.

The variation that affects the final result consists of geometrical variation in the parts included
in the assembly and variation in the assembly process. The geometrical variation in the parts
shows itself as variation in form and size. The assembly process contributes variation due to
variation in the contact between parts and assembly fixtures, variation in welding guns, et
cetera.

To reduce variation and its effect, it is important to use al disposable methods and tools,
described later in this thesis, in all three phases of the product realization loop, seen in Figure
1. This product realization loop describes, somewhat simplified, the different phases of, for
example, the development of anew product in automotive industry.

PRODUCTION

CONCEPT

VERIFICATION

FIGURE 1: THE PRODUCT REALIZATION LOOP



In the concept phase, new design solutions and different concepts are suggested and compared
using virtua methods. In the verification phase, a reduced number of suggested concepts are
verified using physical prototypes and test series.

In the production phase, the full production starts. Now it isimportant to monitor the process
in order to quickly discover disturbances and increased variation. Another important aspect
here is to gather data, and thereby also information about the product and process, in order to
be able to transfer this knowledge to future product devel opment processes. Questions related
to this topic are how often to measure, what inspection points to use and how to use the
inspection datain an effective way.

The research carried out in thisthesisis a part of the research conducted by the research group
for “Geometry Assurance and Robust Design” at the Wingquist Laboratory at Chalmers
University of Technology in Gothenburg, Sweden. This research group deals with methods
for minimizing the effect of geometrical variation in assembled products, and there are
research activities in all phases of the product realization cycle. The Wingquist Laboratory is
an internationally competitive competence center for multi-disciplinary research within the
field of efficient product realization.

1.2. GEOMETRY ASSURANCE AND ROBUST DESIGN

The work of aiming to reduce the geometrical variation and its effects are often referred to as
geometry assurance. The most important phase from a geometry assurance point of view is
perhaps the concept phase. There, it is very important to choose a good concept, which is a
concept that is robust (in other words, insensitive to variation). A robust concept suppresses
variation in the input parameters while a concept sensitive to variation amplifies the incoming
variation instead. The robustness of the concept is to some extent determined by the shape of
the included parts and the parts other characteristics, but most important are the locating
schemes. The locating schemes can be optimized with respect to robustness (L66f et al.,
2009), but there are of course aso a number of different practical factors that affect the choice
of locating schemes.

1.3. LOCATING SCHEMES

A positioning system or locating scheme is a way to fixate parts that will be assembled or
inspected in space. A rigid part has six degrees of freedom; three trandations and three
rotations. For each rigid part, six points are used to position it. Those points are called
locators and are realized in the fixture by pins with corresponding holes or dotsin the parts or
with clamps.

The principles of the so called 3-2-1 locating system are showed in Figure 2. The primary
points Al, A2 and A3 define a plane and lock the geometry in space in two rotations (RX and
RY) and one trandation (TZ). The secondary points, B1 and B2, define a line and lock the
geometry in space in one rotation (RZ) and one trandlation (TY). The tertiary point C1 locks
the geometry in space in one trandation (TX).



If the part is non-rigid (compliant), additional points can be added to support the part and to
avoid a deformation of the part due to gravity or other forces during assembly. Those points
are called support points and can be of an arbitrary number.

FIGURE 2: THE 3-2-1 LOCATING SCHEME.

The locating schemes are realized by the use of fixtures. In Figure 3, a part, a front fender, is
positioned in a fixture during inspection with a coordinate measuring machine (CMM). The
locating schemes will be described in detail later on in the thesis.

FIGURE 3: POSITIONING OF A FRONT FENDER IN AN INSPECTION FIXTURE.

1.4. VARIATION SIMULATION

The idea of variation simulation is to be able to predict the geometrical outcome of an
assembled product or sub-assembly as early on as in the concept phase of the product
realization cycle. Variation and offset, i.e. deviation from nominal values, are predicted in a
number of important key characteristics or critical dimensions.



The inputs to a variation simulation consist of, among other things, digital models of the parts
that are to be assembled, in the form of meshes for non-rigid parts. Further, information about
locating schemes for the parts and a so their tolerances (i.e., information about what variation
can be expected for an individual part) is necessary. If there are any other factors influencing
the fina result, those should of course also be included. This problem is two-sided: first, those
factors should be identified; and second, they should be implemented and included in the
simulation model. Good accuracy in variation simulation is necessary if the simulations shall
be able to replace physica testing and prototypes. The use of simulations does more than
shorten lead times and effect the economics. It is aso important from a sustainable point of
view. Accurate simulation results lead not only to the increased use of virtual tools, but also to
reduced risks of migudgments and thereby also a reduced scrap rate. A reduced scrap rate
will benefit sustainability, with respect to both economical and ecological aspects. Also, the
social sustainability is gained by the increased use of virtual tools, since this usualy implies
improved working conditions.

1.5. RESEARCH QUESTIONS
The research conducted can mainly be grouped under four general research questions:

Resear ch Question 1.
How can statistical methods be used to control variation in production?

When gathering data about the product and production process, it is important to be able to
make the most of this data and to quickly discover disturbances in the processes. Further, the
methods should be as easy to use as possible and give a good overview of the process. Under
this research question, different methods for root cause analysis (in other words, the analysis
of inspection data in order to find the reasons of increased variation and offsets) are also
treated. Thisis addressed in Paper A.

Resear ch Question 2:
How can statistical methods be used to reduce the need for inspection?

Ingpection is a necessary part of geometry assurance, and the activity should not be
eliminated. But it is a costly procedure and with too much data, there is also arisk that it is
difficult to get a clear picture of the product/process in question. Therefore, it is important to
find methods that can reduce the number of inspection points without losing too much of the
information. Thisis addressed in Papers B and C.

Resear ch Question 3:
How can variation due to joining sequence be reduced?

The geometry assurance process aims to reduce the variation and deviation in the fina
assembly or product. It can be shown that the joining sequence affects the final outcome.
Therefore, it is important not only to include this factor in ssimulations aiming to predict the
final variation but aso to develop methods to find sequences that reduce the variation in the
fina assembly. Thisis addressed in Papers E and F.

4



Resear ch Question 4:
How can the accuracy of non-rigid variation simulation be improved?

The accuracy of the variation simulation is vitally important for its ability to replace physica
prototypes and test series. An increased accuracy in the variation simulation gives a better
basis for the decisions that must be made regarding concepts, tolerances and so on in the early
phases of the product realization cycle. Generally, the accuracy is improved by modeling the
reality in abetter way. Thisis addressed in Papers D, G and H.

1.6. OUTLINE OF THE THESIS

The work that make up this thesis can be divided into three parts and has been somewhat
dispersed in time.

Thefirst part of the work, aiming to answer the first research question, deals with methods for
statistical process control and root cause analysis, where the latter one is a method to find
causes of geometrical variation in the fina product. This work, which constitutes a licentiate
thesis, was conducted at the Department of Mathematical Science at the University of
Gothenburg and was done in cooperation with Saab Automobile AB.

The second part, which mainly deals with how to reduce the number of inspection points
without losing too much information and how to quantify the term information, was done
within a MERA-project (Manufacturing Engineering Research Area). This project was a
cooperative effort between the Department of Product and Production Development at
Chamers University of Technology and Volvo Car Corporation.

The third part was partly done within the MERA-project mentioned above and partly executed
at the same Department of Product and Production Development. This part deals with
methods to predict and reduce geometrical variation due to joining strategies and with how to
improve the accuracy of the variation simulation.

The outline of the thesisis asfollows. In thisfirst section, a brief background and introduction
to the research area is given. The research questions and limitations are also described.
Section 2 is the frame of reference aiming to give an overview of previous work and
knowledge within the research area. The research methodology used in this work is presented
in Section 3, and the results are summarized in Section 4. In Section 5, the verification and
validation of the results are discussed. Finally, conclusions and thoughts about future work are
found in Section 6.

1.7. DELIMITATIONS

Since the parts constituting this thesis have been dispersed in time and cover different areas,
there are different limitations for different parts of the thesis. Therefore, the delimitations
differ for the different research questions.

e RQ1: How can statistical methods be used to control variation in production?

The work grouped under RQL is based on the assumptions that all parts are rigid bodies.
5



e RQ2: How can statistical methods be used to reduce the need for inspection?

The cluster reduction method is based on the repeated measurements of discrete points,
and those points must be evaluated in the same way from time to time.

e RQ3: How can variation due to joining sequence be reduced?

The heat effect from spot welding is neglected. This effect is assumed to only have local
influence on the assembly. Further, the material models are linear, al forces are applied to
nodes and it is assumed that the changes in the stiffness matrix due to part and positioning
variation can be neglected.

e RQ4: How can the accuracy in non-rigid variation simulation be improved?

There are alot of factors affecting the accuracy of a variation simulation. Not all of them are
covered here. An attempt to identify the most important ones is done, and methods to include
such factors in variation simulation are suggested for three of the factors.



2. FRAME OF REFERENCE

In this chapter, an overview of previous
work and knowledge within the
research areain question is given.

The outline and content of this chapter follow roughly the product realization loop, shown in
Figure 4.

e Quality Control

PRODUCTION

CONCEPT

e Robust Design
e Locating Schemes

e  Tolerances WVERIFICATION
e Basic Statistics
e Variation Simulation e Inspection

e Continuous Welding
e Finite Element Analysis

e  Optimization

FIGURE 4 THE OUTLINE OF THE FRAME OF REFERENCE IN RELATION TO THE PRODUCT
REALIZATION LOOP.

At the concept phase, a number of different concepts are evaluated and compared. Therefore,
the frame of reference starts with an overview of the idea of robust design. Locating
schemes turn out to be an important control factor for a robust design and are treated next.
Another main input to a variation simulation, namely the tolerances, is also considered.
When discussing tolerances and variation simulation, a number of statistical terms and
concepts are used. Therefore, a brief overview of some basic statistics is presented. Given
tolerances and locating schemes, the variation simulation can be treated. The joining method
considered in this work is mainly spot welding. However, since continuous welding is also
treated in one of the papers, a short introduction to this topic is given. In non-rigid variation
simulation, finite element analysis (FEA) frequently occurs. That is why on overview of the
method is included.



During the verification phase and to some extent in the full production phase, inspection isin
focus. In the production phase, it is important to check the processes to detect disturbances.
Thisiswhy quality control is discussed.

Finally, there is also a short section about optimization in the frame of references, since one
of the research question deals with optimization-related i ssues.

2.1. RoBUST DESIGN

As mentioned in the previous section, a robust design is a design insensitive to variation. The
word robust is used in many contexts to describe products and processes insensitive to various
kinds of disturbances. In this work, the focus of the robust design is to reduce the sensitivity
of a concept to manufacturing variation. The ideas of robust design and quality improvement,
however, were originally introduced by Taguchi (1986). The factors affecting a concept are
divided into control factors, which are easy to control, and noise factors, which are hard to
control. Taguchi's idea is to choose the levels of the control factors in such a way that the
expected loss caused by noise factorsis minimized. If those principles are applied to geometry
assurance, the control factor equals, somewhat simplified, the locating schemes, while the
noise factor is the variation in parts (Soderberg, 1998); (Soderberg & Lindkvist, 1999).

All manufacturing processes are afflicted by variation. Therefore, the locating schemes should
be chosen in such a way that the design concept is robust. The robustness can be evaluated
using a variation simulation tool (Soderberg & Lindkvist, 1999), where different concepts can
be compared and iteratively improved. It is also possible to optimize the locating schemes
with respect to robustness in critical product dimensions (Cai, 2006); (L66f et al., 2009) or
with respect to the assembly as a whole (Wang, 1999); (Wang & Pelinescu, 2001).

2.2. LOCATING SCHEMES

The idea of location schemes or positioning systems was introduced in the previous chapter,
but will be described in more detail here, since it is a central concept in geometry assurance.
As previously mentioned, a locating scheme is used to position and support parts during
manufacturing operations or inspection. Since a rigid part has six degrees of freedom (three
trandations (TX, TY, TZ) and three rotations (RX, RY, RZ)), six points are used to lock those
trandations and rotations. In the physical realization of the locating scheme, i.e. in the
fixture, some of those points can coincide, but a minimum of three locators is always
necessary.

Jigs are similar to fixtures, but are used to guide cutting tools during boring and drilling
operation (Neeet al., 2004).

If there are deviations or variations in the positioning of parts during the joining process, this
will lead to errors in the final assembly. Therefore, the robustness of the locating scheme is
very important in order to achieve a good geometrica outcome of the final product
(Soderberg & Lindkvist, 1999). The variation in positioning is related to the repeatability of
the fixture (in other words, with what precision one detail repeatedly can be positioned in a
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fixture). To examine the repeatability of the fixtures, repeatability studies are made on a
regular basis.

Payne and Cariapa (2000) investigate the repeatability of machining fixtures by using a
measure to quantify the variability contributed by the fixture in a number of inspection points
on a part. Warmefjord et al. (2010) describe a method for transforming the variations in
inspection datainto variations in the contacts between workpiece and locators.

Another source of inaccuracy of the final assembly is the non-simultaneous application of
clamping forces on the workpiece (Chang et al., 1997).

The design of the fixture affects not only the geometrical outcome of an assembly, but also
the production efficiency (Nee et a., 2004). To decrease the manufacturing cycle time, it is
important to keep the time for loading and unloading the fixture to a minimum.

SAderberg et al. (2006) describe different kinds of locating schemes. The locating scheme can
be orthogona or non-orthogonal. For an orthogonal system, the locating directions are
orthogonal to each other.

e 3-2-1locating scheme (orthogonal):

Three points Al, A2 and A3 define the primary locating plane and lock TZ, RX and
RY. The second locating plane is defined by the points B1 and B2, locking TX and
RZ, while the last point, C, defines the last locating plane and locks TY . All planes are
perpendicular to each other. This kind of locating scheme is shown in the left part of
Figure5.

e 3-point locating scheme (orthogonal):

Thisis aspecia case of the 3-2-1 locating scheme using only three different pointsin
the locating scheme, since A1=B1=C and A2=B2. This locating scheme is shown in
the right part of Figure 5.

e 3directions locating scheme (non-orthogonal):

The points A1, A2 and A3 define the primary locating direction. Those points are not
necessarily located in the same plane on the workpiece. The second locating direction
is defined by the points B1 and B2. This direction may be non-orthogonal to the A
direction. The third locating direction is defined by C1, and the direction C may be
orthogonal to the directions A and/or B. This kind of locating scheme is shown in the
left part of Figure 6.

e 6 direction locating scheme (non-orthogonal):

All six points, D1-D6, define the locating directions, perpendicular to the locating
surfaces of the parts. This kind of locating scheme is shown in the right part of Figure
6.



For non-rigid parts, the purpose of the locating system is not only to fixate the workpiece in
space, but also to support the workpiece to counteract the effect of gravity and other forces.
To achieve this, anumber of support points exist in addition to the six main locators.

FIGURE 5: LEFT PART SHOWS A 3-2-1 LOCATING SCHEME AND RIGHT PART SHOWS A 3-POINT
LOCATING SCHEME (SODERBERG ET AL ., 2006).

FIGURE 6: LEFT PART SHOWS A 3 DIRECTION LOCATING SCHEME AND RIGHT PART SHOWS A 6
DIRECTION LOCATING SCHEME (SODERBERG ET AL ., 2006).

2.3. TOLERANCES

According to Zhang & Wang (1994), the tolerance is one of the most important parametersin
product and process design and is defined as the maximum deviation from nominal
specification within which a part is acceptable for its intended purpose. A tolerance is often
defined by specifying an upper specification limit (USL) and a lower specification limit
(LSL).

The tolerances are, in addition to the locating schemes, one of the main factors affecting the

geometrical outcome of an assembly. In the early stages of the product development phase,
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the locating scheme can be optimized with respect to geometrical robustness without any
additional costs. Tight tolerances are another way to achieve a good geometrical outcome, but
thisis normally associated with an increased cost and is generally desirable to avoid.

There are tolerances not only for size but also for the form and position of different features.

Tolerancing can be done top-down or bottom-up. The top-down strategy, used at, for
example, Volvo Car Corporation (PE Geometry Development AB, 2007), means that a
breakdown is made from the specification of the complete product. The most important areas
on single part level are given tight tolerances, while less important ones are given wider
tolerances. Using this methodology, it is necessary to be able to predict the final outcome of
an assembly by calculating the tolerance chains. The problem isillustrated in Figure 7, where
the tolerance t of a critical dimension D on an assembly shall be broken down into tolerances
t;, t; and t3 on part level. Different methods for doing this are described in Section 2.5.1.

Top-down tolerancing is also described in (LO6f et a., 2007); (Soderberg, 1993); (Soderberg,
1994); (Soderberg, 1994); (Soderberg, 1995).

D,tt, (?) Dytt,(?) Dstts(?)

FIGURE 7: TOLERANCE ALLOCATION

Using the aternative, the bottom-up strategy, means that a generic or experience based
tolerance is set on different parts. Those tolerances are then leading to fina tolerances on the
finished product.

In reality, the methods are however quite similar, since atop-down strategy usually implies an
iterative bottom-up way of working.

Hong & Chang (2002) give a comprehensive review of different issues related to tolerancing.

2.4. BASIC STATISTICS

When discussing tolerances and variation simulation, a number of statistical ideas and
concepts frequently occur. Therefore, a brief overview of some statistical terms used later on
in thiswork will be given here.
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Statistics involves the interpretation of data and how to draw correct conclusions about a
population, given only a sample of limited size. In order to do this, it is often necessary to
create some kind of model of reality. A model that describes the range of possible values for a
continuous random variable, X, and the probability that the value of X is within any subset of
that range is called a probability density function of X. One of the most common density
functionsis the normal density function, and arandom variable following that model is said to
be normally distributed. Inspection data from complex products often follow this distribution.
Therefore, only the normal distribution is considered here.

Some basic statistical concepts for a continuous random variable X are given in Table 1. This
kind of information can be found in any basic statistical textbook (see, for example, Larsen &

Marx (1986)).

Notation Formula Remarks
Expected value ° The mean value of the whole
p=E[X]= f xf(x)dx | population.
Mean value 7 lz" . An estimate of the expected
T nduit value based on a sample
X1, X2, o) X
Variance 0% = E[(X —w)?]

= E[X?] — E[X]?

Standard deviation

Sample variance

n

o= ot
1
i=1

An estimate of the variance

SZ:n—l (x; = %)° based on a sample
X1, X2, o) X
Capability index = USL — LSL Normal  distribution s
p 60 assumed (see adso Section
2.9).
Adjusted capability index Cpi Normal distribution s
 USL—pu pu—LSL_ | assumed (see aso Section
= min{———,"—-—} | 59) This index takes the
expected value into
consideration.
Normal density function 1 _Ge=w)?
fx) = e 20
V2ma?
Distribution function P{a <X <b}=F(b) Those values are usualy
— F(a) looked up in statistical tables.
b
- [ e
a

TABLE 1: SOME BASIC CONCEPTSIN STATISTICS.
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In Figure 8, the density function f(x) of a standardized (i.e., u = 0,0 = 1), normally

distributed random variable is plotted together with specification limits equal =3 standard

deviations. This illustrates the situation when C, = USLé;LSL =1, which corresponds to

99.73% of the produced items within the specification limits.
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Distance from p in standard deviations

FIGURE 8: A STANDARDIZED NORMAL DISTRIBUTION.

2.5. VARIATION SIMULATION

Asindicated in Section 2.3, it is desirable to have a method or tool for predicting the variation
in the final product or sub-assembly, given tolerances and other information on part level and
information about the assembly process. These kinds of tolerance stack up calculations are
usually gathered under terms like variation analysis, variation simulation or tolerance
analysis. In this section, some of the different methods will be described and the accuracy of
the simulations will be discussed. In the work within this thesis, the software RD& T (RD& T
Technology, 2009) has been used and some of the different kinds of analyses supported in this
tool will be described, since they illustrate some of the issues within this area.

According to Zhang & Wang (1994), different issues within tolerancing are the following:

e Tolerance alocation/synthesis. How to distribute tolerances to individual parts (top-
down).
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e Tolerance optimization: How to reduce manufacturing costs, but still produce assemblies
within specifications.

e Tolerance analysis/accumulation: How the tolerances on individua parts stack up to affect
afinal assembly dimension (bottom-up).

Tolerance alocation and tolerance analysis are of course closely related since both are about
how tolerances stack up or accumulate.

2.5.1. TOLERANCE ACCUMULATION
There are two main approaches to statistical tolerance anaysis: the Monte Carlo simulation-

based approach and deterministic methods, often based on Taylor's series expansion. Both
approaches aim at finding the resulting tolerance in the final assembly, given tolerances on
parameters describing the input.

The Monte Carlo method performs the prediction of the final variation of an assembly by
using a random number generator that selects values for each toleranced parameter, based on
the type of statistical distribution assigned by the designer. This is repeated a large number of
times, thereby generating a distribution for critical dimensions of the final assembly.

The main characteristics of the two respective methods are that the Monte Carlo simulations
are said to be exact but time-consuming, while the deterministic methods sometimes lack
accuracy, are somewhat complicated to use, but are usually not as computer-expensive as the
Monte Carlo method.

Since the key question is how the tolerances on individual parts stack up to affect a critical
dimension of the final assembly, the assembly function that describes the relationship between
input and output to a variation anaysis is of vital interest. Suppose that X is a stochastic
variable representing the input to variation simulation, that Y=f(X) is the resulting variable
describing the critical dimension and that f is the assembly function. The expected value and
variance of Y are sought. The assembly function describes the tolerance accumulation in one,
two or three dimensions.

The function f is often approximated, using Taylor expansion, as
Y = fuy, tg o ) + Zi2g @i (X — ), (1]

where the assembly function f relates n inputs X; to the critical dimension Y. The sensitivity
coefficients a; = %(ﬂi) describe the sensitivity of the given concept. Each input X is a
stochastic variable, following a certain distribution and having expected vaue y; and
variance /. The tolerances of X; are +t;. The accumulated tolerance of the final assembly is

denoted T and can be calculated in some different ways. An overview is given in Chase &
Parkinson (1991). Some of the most frequently used are listed in Table 2.
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In worst case tolerancing, al dimensions are assumed to be in their worst conditions. The
worst case technique guarantees assembly and function of finished products regardless of
which components are used in the assembly, as long as the components are within their
specification limits.

In reality, the probability that all dimensions contributing to the final result of an assembly
will be at their worst case condition is very low. Instead, most of the dimensions are
distributed close to their mean values. In statistical tolerancing, the possible values for a
dimension of a component are described by the distribution function for the dimension in
guestion. Using the root sum square (RSS) method, and different modifications of the RSS
method, all component dimensions are assumed to follow anormal distribution.

The worst case method gives results that are too pessimistic, while the RSS gives results that
are too optimistic (Nigam & Turner, 1995). Therefore, some modified versions or
combinations of the both methods are constructed, as presented in Table 2.

Accumulation Model Name Comment
n Worst case Dimensions are assumed to
T= ;(aiti) be in their extreme
i tolerance val ues.
. 2 RSS Assuming that the
T=.>(at) dimensions follow a normal
= distribution.
N 2 Modified RSS Using a correction factor c,
T=c Z(aiti) often equal to 1.5, to add an
=t extra safety limit.
N 0 2 Spotts RSS model Mean value of worst case
Z(aiti )+ Z(aiti) and RSS.
i=1 i=1
T
2
0 o 2 | Estimated Mean shift | m; is the mean shift factor
T = Z(mialtl)+\/2((l m;)at;) | model for dimension i, where 0 <
i—1 i1 mi=1.

TABLE 2: SUMMARY FROM CHASE & PARKINSON (1991) AND WU ET AL. (1988), CREATED BY LOOF
(2010).

2.5.2. 3D MODELS FOR APPLIED TOLERANCE ANALYSIS
An assembly model can be constructed to take one, two or three dimensions into

consideration. In 1D, only tolerances in the same direction as the evaluated measure
contribute to the result. In 3D, rotations also affect the final result. Thisisillustrated in Figure
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9. Here, variation in the y-direction is evaluated and illustrated using color coding. The
tolerances, illustrated with red arrows, are in the z-direction. In the right part of the figure, the
result from a 3D modéd is shown. The rotations of the part lead to variation in the y-direction.
In the left part of the figure, the result from a 1D model is shown. Here, the tolerances in the
z-direction do only affect the variation and the z-direction. Consequently, there is no variation
a al in the y-direction. Modern methods for variation simulation take the 3D behavior into
consideration, and only such methods will be considered in this work.

FIGURE 9: VARIATION IN THE Y-DIRECTION IS EVALUATED. THE TOLERANCES, WHICH ARE IN THE
Z-DIRECTION, ARE ILLUSTRATED WITH RED ARROWS. IN THE RIGHT PART OF THE FIGURE, A 3D
MODEL |SUSED WHILE A 1D MODEL ISUSED IN THE LEFT PART.

The parts in a variation simulation can be modeled as rigid or non-rigid parts. Thin sheet
metal parts, common in the automotive industry, should be treated as non-rigid to achieve
good accuracy in the variation simulation, while thicker parts may be treated as rigid. To
handle non-rigid parts, variation simulation is usually combined with FEA.

Further, the assembly function f can be linear or nonlinear. However, Cai et a. (2006) show
that linear models are only valid if the parts do not penetrate and that nonlinear models
generaly should be used for accurate assembly dimension prediction. The most common
approach to handle nonlinear assembly functions is Monte Carlo simulations. The Monte
Carlo simulations are usually enclosed in simulation software where a total sensitivity matrix
is implicitly defined by a FEA-based simulation model describing al mating conditions,
kinematic relations and non-rigid behavior. Most commercial software for tolerance analysis
are based on Monte Carlo simulation.

Methods for the tolerance analysis of rigid parts have been investigated by a number of
authors. One of the first survey papers was written by Evans (Evans, 1974) and (Evans, 1975)
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in the middle of the seventies. During the following years, the interest on tolerancing issues
increased. An extensive survey on this can be found in Chase & Parkinson (1991). Gao et al.
(1998) developed a deterministic model called “direct linearization method” for rigid models,
based on linearization of the assembly function.

In the late 90's, non-rigid tolerance analysis began to develop. Cai et al. (1996) proposed the
‘N-2-1" locating scheme to handle compliant parts and investigated its impact on geometrical
quality. Merkeley et a. (1996) studied part flexibility and demonstrated its significance in
tolerance analysis. Hu & Koren (1997) created a model for how dimensiona variation
propagates in non-rigid assemblies. Hsieh & Oh (1997) developed the software called EAVS
(Elastic Assembly Variation Simulation) to predict the geometrical variation for multi-station
assembly processes.

Hu et a. (2001) considered variation analysis combined with FEA. They took part variation,
assembly tooling variation, welding distortion and spring back effects into consideration.

Camelio et a. (2003) developed a methodology to evaluate the dimensional variation
propagation in a multi-station compliant assembly system based on linear mechanics and a
state space representation. Jaime et al. (2004) presented variation modeling of a compliant
assembly based on geometric covariance analysis. Cai (2008) suggested afixture optimization
model, formulated to minimize the assembly dimensiona variation under welding gun
variation. A deterministic assembly model was used.

Cid et a. (2007) investigated the influence of components geometrical variations on
functiona conditions. Finally, Wang & Ceglarek (2009) presented a beam-based deterministic
variation model that can be used in early design phases.

2.5.3. DIFFERENT KINDS OF ANALYSESIN RD&T
There are various commercial software for variation simulation, and most of them are based

on Monte Carlo simulations. In this section, the different kinds of possible anaysisin one of
the software, RD& T (Robust Design and Tolerancing), used in many of the studies in this
work, will be described in order to illustrate the possibilities in such software.

RD&T is implemented in the MS Windows environment using Visual C++ and has
IGES/'VRML/JT and ABAQUS interfaces (RD&T Technology, 2009). It is used for variation
simulation at a number of different companies, such as Volvo Car Cooperation, Volvo
Trucks, Ford Europe, Jaguar/Land Rover and Renault Trucks. It is based on Monte Carlo
simulations and includes a FE solver for non-rigid analyses. To analyze a compliant part or an
assembly, meshes for each included part must be imported as files from a FEA system. The
stiffness matrices for both parts and assemblies are then calculated in the tool. The unit
displacement method is used to create sensitivity matrices, corresponding to specified sets of
clamping and welding points. Since FEA meshes are imported and used inside the tool, this
solution does not require the FEA system during analysis. The main benefit with this is that
once the meshes are imported, the user is free to define and analyze different locating,
clamping and welding layouts without communication with a FEA program. However, it is
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necessary to know the material properties and thickness of the included parts. Of coursg, it is
also possible to run simulations with rigid parts or a mixture of rigid and non-rigid parts.

As described by Soderberg (1998) and Soderberg et a. (2006), there are three main analysis
toolsin this software:

The stability analysis, evaluates the geometrical robustness of a locating scheme (Soderberg
& Lindkvist, 1999). The result can be presented as a stability matrix or by using color coding
(see Figure 10).

A Reinf torsional stiffness bra

Part (RSS)
FistureD1 (3.27)

Lower (2.27)

Upper (4.01)

FIGURE 10: AN EXAMPLE OF A STABILITY ANLYSISIN RD&T. THE RED COLOR REPRESENTS AREAS
WITH A LARGE AMPLIFICATION OF VARIATION, WHILE THE BLUE COLOR REPRESENTS AREAS
WITH A LOW AMPLIFICATION LEVEL.

The idea of the stability analysis is to vary each locating point, one at a time, with a small
increment Ainput and investigate the resulting quote Aoutput/Ainput in a number of points
representing the geometry of the parts. The RSS-value for all points can be shown in color-
coding. The blue areas represent stable areas, where the amplification of the variation in the
locators are small, while the red areas represent areas with alarge amplification. By using this
analysis, different locating schemes can be compared and evaluated as early on as in the
concept phases of the product realization cycle. It is aso possible to optimize the locating
schemes with respect to overall robustness (Wang, 1999); (Wang & Pelinescu, 2001) or with
respect to some critical dimensions (LOof et al., 2009).
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A statistical variation ssimulation isthe very core of the simulation tool. Here, Monte Carlo-
based simulations are conducted in order to analyze the tolerance stack up and to predict the
variation in the final assembly. In Figure 11, an example of the predicted result in a critica
dimension is shown. A lot of information can be extracted from such a simulation, including
distribution, mean value, variation and capability. In this case, the capability in the inspection
point in question is quite low, and the requirements are not fulfilled.

Variation Results for Reinf torsional stiffness bracket X
All Measuresl Previousl Next MP
Type: One Paint, distance from neminal position
Direction:  Vector: -0.94, -0.05, 033
Description M
Points Upper\Node(00838
Ref. Points:
Alt Asbl.
~Results
Runs 5000 LDL upL
Mean -0.00222 M1
Nominal 0
STD 0338
6STD 203
857D 27
Range 229
Min -125
Max 1.05
Rel. Min -1.25
Rel. Max B e e e s 1 e R I o
48 -38TD -28 -18 Mean +1S +28 +38TD
-1.02 -0.00222 1.01
Lower Limit Upper Limit
Cpk 0.885 | Abs 09| Abs 0.9 | Lower Out 0.34%
Cp 0887 | Rel -0.9 |Rel 0.9 UpperOQut 0.34%
Value Sigma Probabili
[~ Pick lteration 2 Y Offset I Dﬂ

FIGURE 11: THE RESULT OF A VARIATION ANALYSISFOR A SPECIFIC INSPECTION POINT.

Finally, a contribution analysis can be used to calcul ate the relative importance of each input
on the outputs. This means that for a critical dimension, the input parameters (in other words,
the tolerances on the different parts of the assembly) can be ranked and their contribution can
be determined. Thisanalysisisvery useful when arequirement is not fulfilled and some of the
tolerances contributing to the result must be reduced. A contribution analysis is run for the
same inspection point that was used for illustration of the variation analysis in Figure 11. In
Figure 12, the result is shown. Since the variation analysis showed that the requirements on
this point will not be fulfilled (i.e., the capability is low) either the concept, for example the
locating scheme, should be improved, or the contributing tolerances should be tightened. In
the latter case, the contribution analysis shows that among the influencing tolerances, the
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tolerances in the welding points on the upper part is the largest contributor, with a
contribution of 25.3% to the total result. Therefore, it can be a good idea to start with
tightening that tolerance.

The contribution analysis is done by varying the influencing parameters, one a a time, at
three levels (high, low, mean) and registering the result.

Contribution Results for Reinf torsional stiffness bracket @

All Measures | Previous | Next MP

Type: One Point, distance from nominal position.
Direction Wector. -0.94, -0.05, 0.33
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FIGURE 12: A CONTRIBUTION ANALYSISFOR A SPECIFIC MEASURE.

2.5.4. ACCURACY IN VARIATION SIMULATION
Virtua tools, such as simulation tools, usually aim at replacing physical tests. To do thisin a

successful way, it is very important that the simulations have good accuracy (in other words,
that the simulated outcome and the real outcome are as similar as possible). The gap between
the two outcomes should be as small as possible (see Figure 13).
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FIGURE 13: SIMULATED AND REAL OUTCOME IN FOUR DIFFERENT INSPECTION POINTS. THE
DIFFERENCE BETWEEN THE TWO OUTCOMES SHOULD BE MINIMIZED.

To achieve good accuracy in a Monte Carlo-based variation simulation, it is important to
include as many of the factors that affect the outcome of an assembly as possible. Such factors
are listed in the chart shown in Figure 14, athough the list may not be complete. The most
obvious factors, for example representative part geometries and correctly defined locating
schemes, are excluded. In the figure, the following factors can be found:

The assembly sequence is shown to affect the geometrical outcome (Spensieri et a.,
2009) and should therefore be included in the simulation.

The fixture repeatability istreated in Paper G.

Clamping sequence as well as joining sequence are shown to have effect on the final
geometrical outcome by Xie and Hsieh (2002), who use a genetic algorithm to
optimize spot welding/clamping sequence and cycle time. Welding sequence for spot
welding is treated in Papers E and F. More about welding is found in the next section.
Forces might arise due to variations in parts and fixture, but also due to other kinds of
process deviations, such as variation in welding guns, and those naturally affect the
result.

The influence of heat for continuous welding has substantial influence on the
geometrical outcome of the assembly; thisisinvestigated in Paper H.

Other welding parameters, such as welding speed and direction, might also affect the
result.

If parts or tools are non-nominal, the parts might penetrate during the simulation of an
assembly. To avoid this non-realistic phenomenon, contact modeling is used. The
inclusion of contact modeling has great influence of the geometric outcome and
implies an obvious improvement of the accuracy of the variation simulation (see Paper
D).
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e Inorder to be able to predict springback accurately, it is important to have information
about the materia model, inherent stresses from previous steps and parameters such as
material thickness, Poisson ratio and modulus of elagticity.

e Themesh quality is aso important.

e When it comes to statistical parameters, it is of course important to have redlistic
distributions or inspection data of good quality and a sufficient number of samples.

I‘{Assembly sequence:‘

Fixturing Fixture repeatability*
Clamping sequence
Joining sequence*
Welding gun variations

. Influence of heat*
Joining process

|
| Welding direction

Welding speed

Contact modeling and number of contact points*

Material thickness
accuracy

Simulation %

Poisson quote
) Heat transfer coefficient
Material model —
Elasticity
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Stresses

Number of samples

Inspection data Number/Position of inspection points

\Statistical parameters | Inspection error
L | e E—

Number of iterations

| Predicted data-———
—\Distributions

FIGURE 14: FACTORS THAT SHOULD BE INCLUDED IN A VARIATION SIMULATION IN ORDER TO
ACHIEVE GOOD ACCURACY. FACTORSMAKED WITH * ARE TREATED IN PAPERS INCLUDED IN THIS
THESIS.

2.5.5. THE EFFECT OF WELDING ON TOLERANCE ANALYSIS
One of the factors that should be included in a variation simulation, as outlined in Figure 14,

is the joining sequence. The joining process can consist of riveting, gluing, welding, et cetera.
In this work, the focus is on welding, and to be more precise, on spot welding. The spot
welding sequence (i.e., in what order the weld spots will be executed when two parts are
joined together using spot welding) affects the final geometrical outcome of an assembly. The
geometrical variation in critical dimensions of a sub-assembly will, in most cases, differ if the
welding sequence is altered. Therefore, it isimportant to find methods, not only to predict the
outcome given a certain welding sequence, but also to find an optimal sequence with respect
to geometrical variation.

Preferably, this optimal spot welding sequence should be specified in the early phases of the
product development process, before the tools and processes are completely determined. By
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using simulation tools as described in previous sections, different design concepts, including
different welding sequences, can be evaluated and compared to each other.

The task of finding a good welding sequence is a fast growing problem. If there are N
different spot welds, those can be applied in N!=N*(N-1)*...*1 different sequences. This
means that the option of testing all different possibilities soon becomes unreasonable.
Therefore, there is demand for a method for finding a good sequence without testing all
possible aternatives.

The effect of the spot welding sequence is investigated by Liu & Hu (1995), but they do not
include the phenomenon in variation simulation. They present two principles for minimizing
the dimensional variance; namely to weld from weak to strong and to weld simultaneoudly if
possible. Lee et al. (2009) examine how welding sequences for continuous welding can be
included in variation simulations by using a pre-generated database. Warmefjord et al. (2010)
(2010) include the welding sequence in variation ssimulation and verify the result on an
industrial case study. They aso investigate different strategies for finding an optimal welding
sequence with respect to geometrical variation.

Hu et a. (2001) investigate the effect of the welding sequence on a dash panel assembly.
They propose a numerical ssimulation method for compliant assemblies, including the
possibility to ssimulate different welding sequences, and verify their results using experimental
data.

Shiu et a. (2000) investigate the relationship between stress build-up due to different spot
welding sequences and the resulting dimensional variation. General guidelines for welding
sequences are also established.

Genetic algorithms suitable for these kinds of problems are suggested by Bean (1994) and
Huang et a. (1997). Liao (2005) describes how to find the optimal number and position of the
spot welds using a genetic algorithm for minimizing an objective function, which is the
weighted sum of the deviations and/or variation in the inspection points. Xie and Hsieh (2002)
also use a genetic agorithm to find spot welding sequences that minimize deformation in
user-defined points. They also take cycle time into consideration. The agorithm is
implemented in the software EAVS (Elastic Assembly Variation Simulation). However, this
work considers only deformation, not variation. Segeborn et al. (2010) apply a genetic
algorithm on an industrial case and evaluate its result.

Xiong et a. (2002) built a mathematical model for variation prediction taking locator errors,
part errors and welding errors into account. However, the welding errors must be specified as
an input to the model and dependency between part error and the resulting welding error is
not taken into account.

Not only is the sequence of interest when studying the spot welding process. The number of
spot welds and their positions also affect the final geometrical outcome. However, those
parameters are usually set by strength requirements and are used as input to the work in this
thesis.
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Usually, the spot welds are executed in severa robot stations in the assembly line. The idea of
the spot welds set in the very first joining station is that they will lock the geometry. These
welding points are called geometry points. After the geometry points are welded, the
assembly can be released from its fixtures and the remaining spot welds can be welded in one
of the following stations. However, different welding orders for the geometry points give rise
to different forces and, therefore, different displacementsin the final assembly as well. For the
re-spot points, the welding sequence should be chosen mainly with respect to cycle time.

The spot welding gun has two electrodes, which are applied from either side of the sheet
metal parts. When the parts are in contact, an electric current is applied and the result is a
small spot, heated to the melting point, in which the parts are joined. The amplitude and
duration of the current are chosen to match the specific case. Another important question is
how much force is needed to bring the parts to be welded in contact. This depends on the
original shape and position of the parts, which may be affected by geometrica variation, and
of course the stiffness of the parts. For nomina parts, the parts should be in contact after
positioning and clamping. However, this is not always the case for non-nominal parts. If the
parts and fixtures are nominal, the welding sequence will not affect the geometrical outcome.

The spot welding gun is usually a balanced or a position gun. Both types have two weld pins
that are applied simultaneously from each side of the metal sheets in order to connect the
parts. With a balanced gun, equal forces are applied to the welding pins. Therefore, the sheet
metal parts will meet in a position of equilibrium. When a position gun is used, the welding
pins will meet each other in a fixed position, no matter what the position or stiffness of the
sheet metal parts are. Therefore, even if the parts are deflected, they will still be forced to
move to that fixed position when the welding gun is applied. The different kinds of welding
guns give disparate results, and the type of welding gun must, therefore, be specified. In this
work, balanced guns are used.

During the welding process, heat is generated of course. This may lead to the deformation of
parts. For spot welding, though, this deformation is of minor importance (Cai et al., 2005).
Theresidual stressesin spot welds are investigated by Henrysson et a. (1999).

2.6. THE EFFECTS OF CONTINUOUS WELDING ON GEOMETRICAL OUTCOME

The effect of continuous welding and how deviations due to welding can be simulated are
large research areas, and no claims are made to covering those subjects in this thesis.
However, since the effects of welding on geometrical outcome are included in Paper H
through the cooperation with another research group, a brief introduction to the area will be
given here. This overview is based on Lundback (2003), Weman (2007) and The Welding
Institute (1968).

There are a large number of different welding methods. The main idea in welding is to melt
the workpiece, and in many cases add a filler material, to form a pool of molten materia that
cools to a strong joint between the workpieces. In resistance welding, which spot welding is
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an example of, the melting of the workpieces is done by passing a current through the
resistance caused by the contact between two or more metal surfaces.

During the welding process, a local area is heated up rapidly. The material expands due to
this. However, since it is surrounded by colder and stronger material, the expansion is
restricted. This leads to thermal stress, and plastic strains will develop in the weld region.
When the weld cools down, the material will shrink and be “too small”, which leads to
residua stress. There might also be inherent stress present in the material, caused by
operations such as rolling, forming and bending. The heat applied during welding will tend to
relieve this stress. The deformations due to welding are driven by thermal expansion
(temporary deformation) and residua stress (permanent deformations). From a geometrical
point of view, it is desirable to reduce residua stress in the welding process, but that is out of
the scope of this work.

Welding simulation aims to predict such things as residual stress, distortions and micro-
structural changes after welding. From a geometrical point of view, the distortion is the
parameter of main interest.

In Pahkamaa et al. (2010), welding simulation and variation simulation were combined. It
turned out that those two kinds of simulations should be combined in order to predict the
outcome of a welded assembly accurately. One reason was because the effect of welding is
crucial for geometrical deviations and variation. Another was because there is a large
difference between applying the welding simulations on homina or non-nomina parts. The
results from welding simulation and variation ssimulation cannot be superposed to predict the
fina result either. Lee et a. (2009) use a pre-generated database to include the effect of
welding in variation simulation. However, they do not consider the coupling effect between
part tolerances and welding distortions.

Just as in spot welding, the welding sequence is an important parameter for the final
geometrical result. An approach for the optimization of the welding sequence with respect to
displacement was suggested by Voutchkov et a. (2005). They propose a surrogate model to
reduce the computational expense and get satisfying results with quite a small number of FEA
runs. Genetic algorithms are also used to find optimal sequences for continuous welding (see,
for example, Kadivar et al. (2000)). There is, however, no work done to optimize the welding
sequence using combined welding simulations and variation simulations.

2.7. THE FINITE ELEMENT ANALYSISIN VARIATION SIMULATION

Finite element analysis is a numerical technique, used to solve a diversity of problems when
finding an anaytic solution is too complicated. FEA is also a standard method in non-rigid
variation simulation.

Theideaof FEA used in non-rigid modeling is to discretize the geometry using a collection of
finite elements. Those elements are joined by shared nodes. The finite elements and nodes
together form a mesh. In non-rigid analysis, the displacements in the nodes are of
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fundamental interest. Those displacements depend on forces applied to the geometry, which,
for example, can be caused by variation in single parts or fixtures.

It is also necessary to know the stiffness of the materia, i.e. how resistant each node is to
deflection when exposed to an applied force. This information is included in the so-called
stiffness matrix.

Finite element analysis is used to solve equilibrium equations, where the sum of the forces
must be in balance. Assembly deviations can be predicted through the use of this method.

The direct Monte Carlo simulation, combined with FEA, is a standard technique for the
variation prediction of non-rigid parts. However, since a large number of runs are required to
achieve satisfactory accuracy, the method is very time-consuming if anew FEA calculation is
executed in each run. Liu & Hu (1997) presented a technique called Method of Influence
Coefficients (MIC) to overcome this drawback. The main idea of their method is to find a
linear relationship between part deviations and assembly spring-back deviations. A sensitivity
matriX, constructed using FEA, describes that linear relationship. This sensitivity matrix is
then used in the simulations, and a large number of FEA calculations can be spared. The
method was used by Camelio et a. (2003), who applied it to a multi-station system.
Dahlstrém & Lindkvist (2004) investigated how to combine MI1C with contact modeling.

2.8. INSPECTION
During the building of physical test series and prototypes, inspection is an important activity
in order to learn as much as possible about the product and the processes. When full
production starts, the main goa of inspection shifts towards quality control and the detection

of deviations and variation. A lot of different aspects of inspection are discussed in Winchell
(1996).

Of course, it would be ideal to be able to rely on the premise that only acceptable items are
produced and to be able to do that without inspection. However, for most manufacturers, that
seems quite unattainable. Instead, inspection is an inevitable part of the manufacturing
process. An efficient inspection process can lead to the faster detection of deviations, thereby
avoiding costly adjustments and cassations. The advantages of inspection are difficult to put a
figure on, according to Kunzmann et a. (2005).

The inspection of a part or assembly can be done by manual inspection, by inline inspection,
by the use of checking fixtures or by coordinate measurement machines (CMMs). Each
method has its advantages and drawbacks when it comes to accessibility, precision, accuracy
and cost. When discussing inspection, the following terms are frequently used, which justifies
defining them clearly (Winchell, 1996):

e Accuracy: The closeness of the measurement to the true value of the characteristics
(see Figure 15).

e Precison: The degree of agreement of measurements made under the same conditions
(see Figure 15). The precision can be judged using:
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0 Repeatability studies: Repeated measurements made under the same conditions
(i.e., precision under the same conditions).

0 Reproducibility studies: Repeated measurements using the same test procedure
but different operators (i.e., precision under different conditions).

High precision, Low precision, High precision,
low accuracy high accuracy high accuracy

FIGURE 15: ILLUSTRATION OF ACCURACY AND PRECISION.

In a repeatability or reproducibility study, the inspection error is an important aspect. The
inspection error should of course be minimized to the utmost possible extent, but thisisaso a
guestion related to costs. Therefore, it is valuable to compare the size of the measurement
error to the magnitude of the standard deviation of the features to be measured. Wetherill &
Brown (1991) point out that measurement error is not very serious if the standard deviation of
the measurement procedure o is smaller than oy/2, where oy is the standard deviation of the
feature to be measured. This may seem to be a large measurement error, but the idea is that
the actual observation will then have a standard deviation of

2
Joi + a2 = o, /1+Z_ZZ' [2]

2
Without any measurement error, the standard deviation would be a9, so the factor /1 + % IS
0

the inflation of the true standard deviation due to measurement error. If o, = g,/2, then the

inflation factor equals fl +iz 1.12 and an error equa or less than 12% is probably

acceptable in most cases.

An interesting question related to inspection is where to put the inspection points. Key
characteristics are of course interesting to measure, to make sure that the requirements on
those are fulfilled. Locators from previous assembly steps might also be interesting to
measure, to facilitate potential fault-localization procedures. Inspection points aimed to
control the assembly process can, somewhat simplified, favorably be positioned at sensitive
areas according to a sensitivity analysis (described in Section 2.5.3). This supports the
diagnosis of fixture-related faults. Allocations of sensors for the purpose of diagnosis in a
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single station are treated by Khan & Ceglarek (2000). For multi-stations assembly process,
see Ding et al. (2003).

For a genera inspection strategy, a survey is given by Mandroli et a. (2006). Here, a
minimization of the total manufacturing costs associated with quality appraisal and failure is
considered.

2.9. QUALITY CONTROL AND ANALYSIS OF INSPECTION DATA

Given inspection data of good quality, it is also important to analyze datain a proper way and
to learn from this. A concept of frequent occurrence in this area is capability. The capability
indices, defined in Table 1, are measures of how many products outside the specification
limits can be expected. The capability indices should in most cases be larger than 1.33 and
sometimes recommendations of 1.67 are used (Montgomery, 2005).

Capability indices are a good generic measure of the process's capability to produce items
within the specification limits. Unfortunately, capability index are also often misused in
industry. In order to be able to use the capability indices in a proper way, some general
assumptions must be fulfilled:

e Thequality characteristic has anormal distribution.

e Theprocessisin statistical control.

e The standard deviation and the expected value must be properly estimated, and this
estimate must be based on a sufficient number of inspected items.

The inspection has several purposes, and the way inspection data should be anayzed
obviously depends on those purposes. If the purpose is to use inspection data to monitor the
process in order to detect disturbances, control charts can be used. The idea of a control chart
isto plot a statistic, for example the mean value of the range, for an inspection point. Control
limits are plotted as well, and observations outside the control limits imply that the processis
out of control. The control limits are estimated from inspection data and correspond to the
natural variation that can be expected in the process, on the assumption that no specia causes
of variation or deviation are present. In Montgomery (2005), different control charts are
described. Some of the most widespread charts are also described in the appendix of Section
2, Paper A, inthisthesis.

Problems with the traditional charts and ideas about how to solve these problems are
presented in Stoumbos et a. (2000).

If several related points should be monitored at the same time, a multivariate control chart can
be used. By using a multivariate chart, the number of control charts can be reduced, leading to
a better survey of the processes. Furthermore, the relationships between the points are taken
into consideration. An overview of multivariate control chartsis given in Montgomery (2005)
(2005).
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Since amultivariate control chart is used to monitor all the inspection points at the same time,
it is sometimes complicated to identify the point or points that cause an aarm. Butte and Tang
(2010) deal with this problem for T2, multivariate exponentially weighted moving average and
multivariate cumulative sum control charts.

The root cause of an increased variation or deviation can be bad raw materials, worn out
machines or fixture faults. According to an investigation performed by Ceglarek and Shi
(1995), the major part of all root causes are due to fixture faults.

2.10. OPTIMIZATION

Formal optimization methods are not used in this work and they will not be considered in
detail here. However, a brief overview of some different types of methods, mainly based on
the work by Rao (2009), will be given to explain why these kinds of methods are not utilized
for the problem of optimizing the spot welding sequence.

2.10.1.CONTINUOUS OPTIMIZATION PROBLEMS
A general optimization problem can be formulated like that in Rao (2009):

min f(x), 3]
gx) <0,
I(x) = 0, (4]

where X, in the multi-dimensional case, is the design vector, f(x) is the objective function and
g(x) and I(x) are inequality and equality constraints. The optimization problems can be
classified in different ways. One important classification is based on the nature of the
objective function and the constraints, where the most important classes are linear and non-
linear optimization problems.

If there are no constraints and f(x) is a function of one variable, defined in the interval
a < x < b, thegeneral solution x* fulfills the conditions:

1 f'(x") =0,

2. Let f'(x) =f"(x) == fOD(x)=0,fWE) 20, If fFWE) >0 and n is
even, f(x*) is a minimum vaue of f(x). If f™&®) <0 and n is odd, f(x*) is a
maximum value of f(x).

Those conditions can aso be generalized to the multivariate case, and the derivative is then
replaced by the gradient.

Generally, if there is only an equality constraint, Lagrange multipliers can be utilized. Thisis
done by studying the Lagrange function

L(x, D) = f(x) + AUx). [5]
Through this method, the constrained problem can be treated as an unconstrained problem
(i.e., the Lagrange function is minimized).
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In the case of alinear optimization problem, the simplex method is one of the most frequently
used methods. The ssmplex method constitutes of two phases. In the first, the set of feasible
values is investigated, and a starting point is generated. In the second, the solution is
iteratively improved by a systematic search through the feasible values using matrix
mani pul ation techniques.

For non-linear programming, some kind of interpolation method is a widespread aternative to
solve the problem. Among these, the Newton method or Quasi-Newton method are natural
choices. Newton's method is an iterative procedure, where a new value is a function of the
previous value and of the first and second order derivatives in that point.

2.10.2.DISCRETE OPTIMIZATION PROBLEMS
The methods concerned so far involve continuous variables. Sometimes optimization

problems can be discrete. Thisis frequently referred to as combinatoria optimization, and the
variables may even be limited to integer values. In this case, the optimization problem is
called integer programming. The discrete optimization methods can also be classified in linear
and non-linear optimization problems. In the field of integer non-linear programming, very
little work has been done (Rao, 2009), although different penalty function methods and other
methods exist. In linear programming problems, the branch-and-bound method is one of the
most frequently used. The branch-and-bound method can aso be used for solving some types
of non-linear problems. The main idea of the method, which originaly was developed by
Land & Doig (1960) and further developed by Dakin (1965), is to first solve a continuous
problem by relaxing the integer restrictions on the variables. With this as a starting point, the
feasible solution space is divided (branching) and sub-problems are formulated. By repeating
this, the solution spaceis limited and the solution can be found.

The welding sequence optimization problem (i.e., the problem of minimizing the variation in
the final assembly by varying the spot welding sequence) is a combinatorial optimization
problem. Another well-known combinatorial optimization problem is the travelling salesman
problem (TSP). This problem is about how to find the cheapest way of visiting a number of
cities and then returning to the starting point. The problem isillustrated for 15 German cities
in Figure 16. Theillustrated route is the cheapest one among 43,589,145,600 alternatives. The
input to the method is the distance or cost between all different cities. The TSP can be solved
by various branch and bound techniques, and there are also a lot of other approaches to the
problem. The spot welding sequence problem is similar to TSP. However, amain differenceis
that the distance or cost between the different cities is known in the TSP, while the
contribution to the total variation associated with the execution of a welding point depends on
the whole sequence of spot welds. Therefore, the method used for solving the TSP is not
applicable to the spot welding problem. Since there is no explicit function for the final
variation due to different spot welding sequences, most traditional approaches to optimization
areinapplicable.
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FIGURE 16: AN ILLUSTRATION OF THE TRAVELLING SALESMAN PROBLEM FOR 15 GERMAN CITIES
(WIKIPEDIA, 2011)

There are, however, modern methods of optimization that require only the function values and
no derivatives, such as Genetic Algorithms (GA), Simulated Annealing and neural nets.

A GA imitates biologica evolution. Over generations, populations evolve according to the
principles of natural selection. In each generation, a number of design aternatives are
available to reproduce or mate with each other, with bias towards the more fit design
aternatives, to form the next generation. This is imitated by the GA, which leads to an
iteratively improved objective function value. Although GAs generally find acceptable
solutions, they are not guaranteed to find the global optimum. Besides exhaustive
calculations, there is no way to determine how close to the actual optimum a GA solution has
reached.

Simulated Annealing is based on the simulation of thermal annealing of critically heated
solids. When a metal melts, the atoms in the melted metal move freely with respect to each
other. When the temperature is reduced, their movements get restricted again. A slow cooling
process is desirable in order to avoid defects inside the material. This process of cooling at a
sow rate is known as annedling. This process is imitated in the optimization method
simulated annealing. The method is based on Boltzmann’s probability distribution, describing
the distribution of the energy of a system in therma equilibrium (which corresponds to the
objective function). The energy is dependent on the temperature, and, by controlling the
temperature, the convergence of the smulated annealing is controlled.

A neura network is an optimization strategy imitating the human nervous system with alarge
number of simple processors (neurons) connected to each other. Each neuron takes weighted
inputs from other neurons and computes an output, in the form of a sigmoid function, that is
propagated to the output nodes. The neural network maps an input vector from one space to
another. This mapping is not specified but is learned. The training is done by adjusting the
weights on the inputs to minimize the mean-squared error between the actua output and the
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target output for a given input pattern. Through a suitable formulation of the target output, this
method can be used for optimization.

The class of optimization methods that only require a function value should be possible
candidates for the solution to the spot welding sequence problem, and GA has also been
shown to be successful in this field. However, one disadvantage is that quite a large number
of welding sequences must be evaluated in order to train or learn the methods about the
problem. In so doing, the methods can learn the relationship between input and output. This
is, for a large number of spot welds, a time-consuming task. Therefore, faster alternatives to
those methods are sought (see Paper E).
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3. RESEARCH APPROACH

In this chapter, the research
methodology used in this work is
presented.

3.1. BACKGROUND

Within the area of research considered in this thesis, there is no common research model used
among researchers, although the Design Research Methodology (DRM) presented by Blessing
et a. (1998) frequently occurs. This methodology is also used in this thesis. Other influences
exist as well. However, the DRM isidentified as being well-suited for computer-aided design
tool research (Bracewell et al., 2001).

Blaxter et a. (2006) write that “Research is a systematic investigation to find answers to a
problem”. They emphasize the importance of a research methodology, but also indicate the
difficulties of choosing a standard method for a certain type of problem. Thisis aso pointed
out by Arbnor & Bjerke (2009). They state that there are no such things as a best
methodology for a certain kind of problem types; rather, it varies from case to case depending
on the previous experiences of the researcher, the techniques used and how the research
evolves.

3.2. RESEARCH METHODS IN THIS THESIS

In the Wingquist Laboratory, within whose procedural framework this research has been
conducted, the research process illustrated in Figure 17 is used. This means that to start a
research project, an industrial need and a research challenge must both exist. Together they
give rise to aresearch idea. The research is conducted using a suitable research method, and
the result of the research is used to form a demonstrator, which forms the bases of
demonstrations and industrial evaluations. The Wingquist research process has an emphasized
implementation strategy. As such, if the evaluations are satisfactory, the demonstrator can be
further developed into a product used in industry. This working methodology secures
knowledge transfer and has been developed over time. The research in this thesis has mainly
been based on these thoughts. Therefore, the research questions are chosen in such away that
complete answers to them meet both an industrial need and a scientific chalenge. The
research is conducted mainly based on DRM, which is described below. Further, in most
cases the research has also formed the basis for some kind of demonstrator, and in some cases
even for a product for industrial use. More about industria implementations of the research
can be found in Section 4.3.
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FIGURE 17: THE WINGQUIST RESEARCH PROCESS (WINGQUIST LABORATORY, 2010).

The DRM method, based on the work of Blessing et. a (1998), can in a rough outline be
described as a four stage process (see Figure 18). In the first phase, the Criteria are defined.
This means measurable success criteriafor the research (for example, reduced ssimulation time
or improved quality). In the next phase, Description I, the existing tool/procedure shall be
analyzed in order to discover its relationships to the Criteria and thereby also identify where
and how the suggested research can lead to improvements. The third stage is the Prescription
phase, where insights gained in the Description phase are used as input for the new and
improved tool or procedure. Finaly, in Description I1, the new tool is tested, and itsimpact on
the Criteriais evaluated.
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FIGURE 18: THE DESIGN RESEARCH METHODOLOGY FRAMEWORK (BLESSING ET AL ., 1998)

The Wingquist Laboratory research process seems very suitable to combine with DRM. The
research idea, based on both research challenges and industrial needs, can and should be
linked to some criteria for evaluating the possible success of the research. If there are no such
criteria, the condition regarding industrial needs is probably not fulfilled either. The DRM
helps however to express the need for stating such criteria. The demonstrator, part of the
Wingquist Laboratory research process, can be seen as a result of the Prescription phase. By
iteratively improving the demonstrator, the process will finally result in afinal product, whose
effects can be evaluated in Description |1 phasein the DRM.

3.3. APPLIED RESEARCH APPROACH

The research in this project is mainly based on the DRM and the Wingquist Laboratory
research process. In Figure 19, the different phases in the DRM are matched up with the
research questions and papers.

For all the research questions, or parts of work in this thesis, the goals have been quite clear.
This is perhaps due to the fact that all research questions are linked to industrial challenges,
due to the Wingquist Laboratory research process. Since the goals are clear, the formulation
of the criteria is facilitated. Clearly stated criteria also make the Description Il phase, the
evaluation, much easier. In a rough outline, the content of the first description phase can be
divided into two main parts; an investigation of the present working procedure at the
industrial partner and a literature study to review previous work within the area. This work
also providesinput and ideas for the prescription phase.
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4. RESULTS

In this chapter, a summary of the
appended papers is given, and the
results are discussed.

4.1. SUMMARY OF APPENDED PAPERS

Short summaries of the appended papers are provided. The papers are presented in the order
they were written in this research. However, this order does not necessarily coincide with the
order in which they were published.

4.1.1. PAPERA: “MULTIVARIATE QUALITY CONTROL AND DIAGNOSIS OF
SOURCES OF VARIATION IN ASSEMBLED PRODUCTS”
This work, which congtitutes a licentiate thesis, consists of three mgjor parts. Thefirst partis

an introduction, describing the causes and effects of geometrical variation and how this can be
handled. The assembly and inspection processes used at Saab Automobile AB are also
described. With this as a starting point, the second part of the licentiate thesis deals with a
system for acceptance quality control for the kind of processes existing at Saab Automobile
AB. Both grouped and ungrouped inspection data are considered. In atypical process in the
automotive industry, there are trends and cycles causing variation in the mean value. Some of
this variation is very difficult to eliminate at a reasonable cost. As long as the produced items
are within their specifications (in other words, the capability of the process is good), this
variation might be accepted. If not, the process must be improved. This leads to a system with
different types of control charts for grouped and ungrouped data and different kinds of charts
depending on the capability of the process. By using the suggested system, trends in the
processes are allowed, as long as the produced items are within specifications and traditional
control charts are used as atool to improve processes with low capability.

The third part of this work considers multivariate quality control and diagnosis. All methods
are compared and evaluated using two larger case studies. By using multivariate control
charts, several inspection points can be monitored using the same chart. A traditional T?chart,
a T2-chart based on principal components, regression adjustment, self organizing maps and
specia methods aimed to control errors due to variation or deviations in the assembly fixtures
are all considered. When an error is detected using the control charts, it is of course of vital
importance to find the causes of this error in order to be able to adjust it. For this purpose,
different methods for root cause analysis are proposed and compared.

Main scientific contribution: Methods specialized for fixture related control and diagnosis
were compared and their performances were evaluated. The work also contributed to an
increased knowledge of the characteristics of the assembly process in automotive industry.

Main industrial contribution: Increased understanding of the usefulness of statistical
methods for quality control and diagnosis was gained. A system for quality control, adapted
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for Saab Automobile, was proposed. The methods were applied to three industrial case
studies.

4.1.2. PAPER B: “AN INVESTIGATION OF THE EFFECT OF SAMPLE SIZE ON
GEOMETRICAL INSPECTION POINT REDUCTION USING CLUSTER ANALYSIS”
In order to monitor the process during series production, it is generally not necessary to use as

many inspection points as when gathering knowledge about the products and processes in the
early phases. Today, this reduction of the number of inspection points is usualy done
manually and requires great experience and craftsmanship. In this paper, a method for
reducing the number of inspection points in a more scientific and methodical way is tested,
and the matter of sample size is addressed. The suggested method is based on the cluster
analysis of inspection data and finds correlation between inspection points. For each group, or
cluster, of correlated inspection points, one point is chosen as representative for the cluster. In
that way, the number of inspection points can be reduced. The cluster-based method is
complemented by a sensitivity-based method, where inspection points well-suited to monitor
the locators are found. Those points are identified by minimizing the covariance matrix of the
least square estimator of the movements in the locators. By applying the cluster analysis,
combined with the method for finding suitable points for monitoring the locators on three
industrial case studies, reductions of 92 %, 72 % and, on an already “manually” reduced case,
42 % can be made.

Main scientific contribution: A statistical method to reduce the number of inspection points
was further developed and guidelines for the required sample size were acquired.

Main industrial contribution: A tool for efficient inspection point reduction, leading to
saved costs and resources was implemented in commercial software. The method has
successfully been applied to severa industrial case studies, of which three were included in
this paper.

4.1.3. PAPER C: “A MEASURE OF THE INFORMATION LOSS FOR INSPECTION
POINT REDUCTION”
In Paper B, methods for reducing the number of inspection points without losing too much

information were outlined. In Paper C, the concept of information in this context is
considered. The information loss due to the removal of inspection points can be quantified
using an efficiency measure based on linear multiple regression. There, the part of the
variation in the discarded variables that can be explained by the remaining variables is
calculated. This measure can be illustrated graphicaly and that helps to decide how many
clusters should be formed (i.e., how many inspection points can be discarded). It turns out that
the stop criterion for clustering used in Paper B (as well as in the work performed by other
authors) gives a reduction that is a little too comprehensive, at least if the goal is to retain
most of the information.

The suggested information measure is applied to three case studies, and the suggested method
appears to give a clear indication of how the information increases with the number of kept
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points. At some point, the information curve starts to level off, and the corresponding
reduction quota can be a suitable choice for the number of remaining points.

Main scientific contribution: A new method to quantify the information contained in a set of
inspection points was devel oped.

Main industrial contribution: The accuracy of the method described in Paper B was further
improved. The method has successfully been applied to several industrial case studies, of
which three were included in this paper.

4.1.4. PAPER D: “TOLERANCE SIMULATION OF COMPLIANT SHEET METAL
ASSEMBLIES USING AUTOMATIC NODE-BASED CONTACT DETECTION”
Contact modeling is a method for preventing the digital parts in a ssmulation model from

penetrating each other during assembly. This increases the accuracy and the degree to which
the predictions agree with reality. A simplified, and thereby also timesaving, method for
automatic contact detection, well-suited for tolerance simulations, is suggested.

The suggested automatic contact detection is a timesaving procedure, dealing only with
contact pairs that consisting of one node from the dlave part and one node from the master
part. For each contact pair, a plane is defined by the master node and its normal direction. The
slave node is not allowed to pass through this plane, and a search algorithm is used to find
force equilibrium. To avoid a too large number of contact points close to each other, which
leads to time-consuming cal culations, an attenuation algorithm for contact pairs is introduced.
The method is tested on an industria case study, and the correlation between simulated
outcome and inspection datais greatly improved by including the contact modeling.

Main scientific contribution: A new method for contact modeling, suited for tolerance
simulations, was devel oped.

Main industrial contribution: A method for contact modeling in variation simulation,
leading to improved product quality and saved costs, was implemented in commercial
software. The method was applied to numerous industrial cases. In this paper, one industrial
case study was included.

4.1.5. PAPER E: “ STRATEGIES FOR OPTIMIZATION OF SPOT WELDING
SEQUENCE WITH RESPECT TO GEOMETRICAL VARIATION IN SHEET
METAL ASSEMBLIES”
The spot welding sequence is one of many factors affecting the amount of geometrical

variation in a sheet metal assembly. In this paper, a method for including the spot welding
sequence in variation simulation is described, which leads to improved simulation accuracy.
The methodology is validated on a case study.

Further, the problem of the optimization of the spot welding sequence with respect to
geometrical variation is considered. Since this is a fast growing problem - the number of
possible sequences for N welding pointsis N! - testing all possible sequencesis not doable. In
this work, some different strategies for finding an optima sequence are tested on severa
industrial case studies. This should be seen as an alternative to more formal optimization
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methods, such as genetic agorithms (which have been shown to be successful on this kind of
problem). Though successful, genetic agorithms are quite time-consuming for
computationally expensive cases with many spot welds. The strategies tested here are based
on general guidelines (for example, aways weld insde/out, or from left to right), on
minimizing variation in each welding step respectively and on calculations of the movements
in unwelded points in each step. The strategies based on general guidelines were not
successful, nor was the one based on the minimization of the variation in each step. However,
the strategy based on movements in the unwelded points seems promising. It resulted in the
best or one of the better sequences for all of the eight tested industrial case studies.

Main scientific contribution: A method for including the spot welding sequence in variation
simulation was developed. New knowledge about strategies for finding optimal spot welding
sequences was gained.

Main industrial contribution: A method for including spot welding sequences in variation
simulation, leading to saved costs and increased quality, was implemented in commercial
software. The suggested method for including welding sequence in variation simulation was
applied to an industria case study. The investigated methods for finding optima welding
sequences were applied to eight industrial case studies.

4.1.6. PAPERF: “VARIATION SIMULATION OF SPOT WELDING SEQUENCE FOR
SHEET METAL ASSEMBLIES’
Just as in Paper E, the spot welding sequence and its effects on geometrical outcome are in

focus in this paper. Here, the correlation between variation and deviation for different spot
welding sequences is investigated. It is of course interesting to see if a sequence that is good
with respect to variation is also good with respect to deviation from nomina (i.e., offset). It
turns out that there is quite a strong positive correlation between the both quantities. The
study is based on investigations of eight case studies. There is also a mathematical
judtification for why this relationship is sensible.

Further, an investigation of the number of geometry points (in other words, the spot welds
needed to lock the geometry of an assembly) shows that the level of variation and offset level
off as early as after two or three executed spot welds. However, it should be noted that there
might be other reasons for having a larger number of geometry points, for example, the ability
to withstand forces from gravity and misaligned respot guns and so on. In addition, this
examination was based on good sequences with respect to offset and variation. Whether
similar results can be achieved for sequences resulting in poorer geometrical quality is not yet
investigated.

Main scientific contribution: New knowledge about the correlation between mean vaue and
variation of the final assembly for different spot welding sequences was gained.

Main industrial contribution: Applicable knowledge about the correlation between mean
value and variation of the final assembly for different spot welding sequences was gained.
The investigations were applied to eight industrial case studies.
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4.1.7. PAPER G: “COMBINING VARIATION SIMULATION WITH WELDING
SIMULATION FOR PREDICTION OF DEFORMATION”
In Papers E and F, the effect of the spot welding process on the geometrical outcome of an

assembly was studied. In this paper, continuous welding is considered. The motivation hereis
to investigate the effect of welding on geometrical variation, how welding simulations based
on nominal parts differ from welding simulations based on non-nominal parts and if the effect
of variation and the effect of welding in some way could be superposed.

A number of non-nomina parts are generated and used as input to welding simulation
software. The results are gathered and compared to the welding of nominal parts. The results
before and after welding are also compared. It turns out that the influence of welding on the
geometrical outcome is large and that the effect of welding must be included in the variation
simulation. This was perhaps not a very big surprise. More interesting is that the difference
between welding simulations applied to nominal parts and those applied to non-nominal parts
shows evident differences in some areas of the parts. For example, in one node, the added
deviation from nomina is in the size of tenths of a millimeter. The welding simulation on
nomina parts shows amost no deviation at al after welding, while the welding simulation of
the disturbed parts results in a deviation of about four millimeters.

The main conclusion of this work is that variation simulation and welding simulations should
be combined. The effect of welding cannot be neglected in variation simulation and welding
simulation should also be applied to non-nominal parts. The effects of welding and part
deviations cannot be superposed.

Main scientific contribution: Better insight into the need for combined variation simulation
and welding simulation was gained. A new method for prediction of the geometrical outcome
of awelded assembly was devel oped.

Main industrial contribution: A method to combine variation simulation and welding
simulation was developed. This method led to better accuracy in the predictions, and thereby
to decreased costs and improved quality.

4.1.8. PAPER H: “INCLUDING ASSEMBLY FIXTURE REPEATABILITY IN
VARIATION SIMULATION”
Sometimes repeatability studies of assembly fixtures are conducted. In them, one single part is

positioned a repeated number of times in the fixture, and the part is measured at a number of
inspection points. This inspection data usually shows some variation, due to a lack of
repeatability in the fixture. As part of the incessant aspiration for better accuracy in the
variation simulation, the tolerance due to this lack of repeatability should of course be
included in the variation simulation. Traditionally, thisis done, by adding this tolerance in the
points actually inspected during this study. In this paper, a method for transforming the
tolerance from the inspection points to the very origin of the variation. The source of the
variation is namely the locators, or to be more precise, the contact between the locator and the
part. By applying the tolerances in those points, instead of in the inspection points, they affect
not only the inspected points, but also the part as a whole.

41



Main scientific contribution: A new method for including fixture repeatability in variation
simulation in an efficient way was devel oped.

Main industrial contribution: A method for including fixture repeatability in variation
simulation, leading to improved accuracy in variation simulation, and thereby to reduced costs
and improved quality, was developed. The method was applied to an industrial case study.

4.2. THE RESULTSIN THE CONTEXT OF A VIRTUAL GEOMETRY
ASSURANCE PROCESS
This section aims to position the results described in the appended papers in the virtua
geometry assurance loop. The loop, illustrated in Figure 20, has three main areas: the concept
phase, the verification phase and the full production phase.

Six Sigma
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VERIFICATION Virtual Matching

Tolerance Optimization
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FIGURE 20: THE VIRTUAL GEOMETRY ASSURANCE LOOP.

4.2.1. RESULTSFOR THE CONCEPT PHASE
Papers D and H deal with methods that improve the accuracy of variation smulation. In the

concept phase, different concepts are compared and evaluated using variation simulation,
aiming to predict the geometrical outcome of different concepts and to compare those results
to functional, aesthetical and assembly requirements. When the accuracy of the simulationsis
improved, the value of the variation simulation is further increased.

Papers E and F also describe methods for improved accuracy in the variation simulation,
namely how to include the spot welding sequence in the variation simulation. But those
results not only improve the accuracy of the simulations, they also give the user the possibility
to test different welding sequences and investigate how those affect the capability of the fina
sub-assemblies or products.
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Paper G, which considers how variation simulation can be combined with continuous
welding, also improves the accuracy of the smulations. Thus, it is a result belonging in the
concept phase.

4.2.2. RESULTS FOR THE VERIFICATION PHASE
In the verification phase, the concepts are verified and prepared for production. To do this, it

is necessary to gather as much information and inspection data about the products as possible.
Therefore, it is common practice to inspect the parts at a large number of points. During full
production, it is only desirable to inspect the products at a fewer number of inspection points,
with aview to monitoring the process and detecting additional variation or offsets.

Papers B and C deal with methods to reduce the number of inspection points without losing
too much information.

4.2.3. RESULTS FOR THE PRODUCTION PHASE
As mentioned in the previous section, it is important to monitor the processes during full

production in order to detect additional variation or offsets. Paper A suggests a system for
acceptance quality control for typical processes in automotive industry. This paper also deads
with methods for finding the root causes of such additional variation or offsets.

4.3. INDUSTRIAL IMPLEMENTATION OF RESEARCH RESULTS

Industrial implementation of research results is not only a satisfaction for the researcher; it is
also acriterion for evaluating the success of the research result (Eckert et a., 2004). Much of
the research in this thesis has been done in close cooperation with industry. In addition, most
of the results have been applied to industrial case studies and are included in demonstrators,
shown to audiences from various industries to collect feedback on the suggested methods.

e Paper A: This research was done in close cooperation with Saab Automobile AB, and
most of the work was done on site at Saab. At the time for this work, all methods were
tested on industrial cases, and the company made some changes in its working
methodology due to the results from the project.

e Paper B: Implemented in software used at various industrial companies.

e Paper C: Tested at alarge number of industrial cases and included in demonstrators.

e Paper D: Implemented in software used at various industrial companies.

e Papers E and F: The method for including spot welding sequence is included in
software used at various industrial companies; the optimization strategy is tested on
industrial cases and shown at demonstrations.

e Paper G: Not yet implemented or tested on industria case studies.

e Paper H: Tested on industria case studies but not yet implemented.






5. DISCUSSION

In this chapter, the answering of the
research questions and the relevance of
the used research methodology are
discussed. The contribution this work
makes to new knowledge is aso
considered.

5.1. ANSWERING THE RESEARCH QUESTIONS
The research questions will be answered one question at atime.

¢ RQ1: How can statistical methods be used to control variation in production?

This question istreated in Paper A, where statistical methods to
1. monitor processes in order to detect deviations or variation leading to products not
fulfilling their requirements, and
2. find theroot cause of variation in processes
were suggested.

e RQ2: How can statistical methods be used to reduce the need for inspection?

This research question was treated in Papers B and C, where a method for reducing the
number of inspection points needed to monitor a product was presented.

e RQ3: How can variation due to joining sequence be reduced?

A method for including the spot welding sequence in variation simulation was proposed in
Papers E and F. This is a prerequisite for finding methods to reduce the variation due to
joining sequences using spot welding. In Paper E, severa different strategies for reducing the
variation due to spot welding sequence were investigated. One of the methods seems
promising and resulted in one of the better or even the best sequence for all of the eight tested
case studies. In Paper F, the correlation between the best sequence with respect to variation
and the best sequence with respect to mean deviation from nominal was investigated.

Joining sequences can of course refer to other joining methods than spot welding, but the
open formulation of this question makes it difficult to completely answer. It is, however,
likely that the work done on optimizing spot welding sequences can be transferred to other
joining methods as well.

e RQ4: How can the accuracy in non-rigid variation simulation be improved?

The accuracy of non-rigid variation simulations is highly dependent on the realism of the
model. In order to increase the realism of the model, it is necessary to include as many of the
factors that affect the geometrical outcome of the assembly in the real world as possible. An
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outline of such factors is given in Section 2.5.4. Four of those factors are treated in Paper E,
D, G and H, and methods for including them in variation simulation are presented.

As a result, the accuracy of the simulations is indeed improved. Nonetheless, openings for
future research exist in this case aiming at an even better accuracy of the variation simulation.

5.2. V ERIFICATION AND VALIDATION

In this section, the verification and validation of the results from this research will be
discussed.

Boehm (1979) states that validation is the process of determining how well a model
accurately represents the real world from the perspective of the intended uses of the model.
Meanwhile, verification involves how well the model corresponds to its specifications. A way
of making the concepts clear is by defining the terms via the following questions (Boehm,
1979):

e Validation: Are we building the right product?
e Vaerification: Are we building the product right?

In DRM (the research methodology used in this thesis and presented in Section 3), the
evaluation of the results is an important activity. In the beginning, some success criteria are
formulated. These criteria should be considered as a specification of the research to be
conducted. In the last phase, the Description Il, how well the criteria are fulfilled (i.e., how
well the specifications are fulfilled) is evaluated. This methodology should facilitate the
verification, following Boehm's definition of verification.

According to Buur (1990), results can be verified by logical verification or verification by
acceptance. Logica verification means that there may not be any contradictions between
different parts of the suggested theory. It aso means that the theory needs to be complete.
Further, the result shall be evaluated in relation to other well-established theories and
methods. Verification by acceptance means that the suggested methods are accepted by
experienced users within the area of application.

In Section 4.3, the industrial implementations of the results in this thesis are outlined. All
results are discussed with industrial partners and competent engineers in the area of appliance.
Further, in several cases, the methods are also implemented in commercial software accepted
and used in industry. Finaly, the appended papers have been reviewed and accepted by
scientific experts.

Oberkampf et. al (2004) deal with the validation of computational models. They state that the
validity of the computational simulation result can be tested by a comparison with
experimental data. Instead of just considering a graph, different kinds of metrics are
suggested. This topic is aso treated in Hills & Trucano (2002) and Easterling (2001), for
example.
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In the work performed by Oberkampf & Barone (2006), the statistical uncertainty, present due
to the limited sample size of the materia for comparison, isincluded in the validation metric.
A confidence interval is derived for the deviation between the real world data and simulated
data. Thisdeviation or error can aso be related to the size of the input variables.

However, the work of Oberkampf & Barone (2006) is focused on statistical interferences
about mean values. In most of the work presented here, the focus is on a comparison between
variance (or standard deviation) in a number of inspection points and the simulated variance.
However, an equivalent confidence interval can be constructed for the difference in variation
between simulated and real outcome, using the fact that a100(1 — a)% confidence interval
for the population variance o2 is given by

(n—1)s? <2 < (n—1)s?
12 =0 =T, (6]
7,71—1 1—5,71.—1

where the sample variance s? is estimated from a sample of size n. If the deviation between

simulated variance ¢Z,, and the population variance o2, is denoted 0 = 6,, — d2,,, @
100(1 — )% confidenceinterval for d is given by
(n— 1)55017 2 (n— 1)55017 2
2—_O_simSaS2—_O-sim' [7]
X%,n—l Xl—%,n—l

This confidence interval is applied to the A-pillar case study used to validate the results in
Papers D and E. Only points on the part “extension” are considered. Here, results with and
without the inclusion of contact modeling and the spot welding sequence are compared, and
the results are shown in Figure 21. For a few of the inspection points, the confidence interval
contains zero, implying that there is no significant difference between simulated and real
outcome in those points. In other inspection points, the zero is outside the interval. This
indicates that there is indeed a significant difference between simulated and real outcome. It
should be noted, however, that it is not claimed in the appended papers that the difference
between simulated and real outcome will be zero; rather, the difference between the unities
will decrease when using the methods suggested in the papers. That can also be seen in the
figure.

However, it is important to be aware that both the validation metrics based on confidence
intervals for mean value presented by Oberkampf & Barone (2006) and the confidence
interval for variation are based on the assumption of normal distribution. Nonetheless,
considering the mean values, this is not a very severe assumption. The centra limit theorem

implies that when n islarge, x = % ™ . x; isapproximately normally distributed, regardless
of the distribution of x; .
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FIGURE 21: THE DIFFERENCE BETWEEN VARIATION IN THE SAMPLE AND THE SIMULATED
VARIATION IS ILLUSTRATED WITH "*", AND THE CORRESPONDING ERROR BARS SHOW THE
CONFIDENCE LIMITSFOR THISDIFFERENCE.

5.3. DI1SCUSSING THE RESEARCH METHODOLOGY

Design Research Methodology has been criticized due to the facts that the success criteriais
such a central topic, formulated in the beginning of the study, and that it is problematic to use
numerical metrics to assess the success of a new method or computer tool (Eckert et al.,
2004). Instead, Eckert et al. (2004) state that the most useful criterion for success might be the
perception of value in new methods in industry.

Much of the work within this research has been conducted in close cooperation with industry.
In addition, a number of seminars, demonstrators and the actual implementations of the
methods in software used in industry should aso guarantee the industrial awareness of the
suggested methods. Most likely, it will actually be easier to gain a hearing for research ideas
in industry, as Eckert et al. (2004) encourage, if the research is connected to a measurable
criterion, showing how the research actually can improve a situation or solve a problem.

The Wingquist Laboratory research process also supports the use of demonstrators and
industrial cooperation and feedback.

Arbnor & Bjerke (2009) point out that there is no such thing as a best methodology for a
certain type of problem. Instead, the best methodology varies from case to case depending on
the previous experiences of the researcher, the techniques used and how the research evolves.
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However, the chosen methodologies, DRM combined with the Wingquist Laboratory research
process, seem to be adequate choices for this kind of research.

5.4. SCIENTIFIC CONTRIBUTION

So far, there has perhaps been more emphasis placed on the industrial benefits of the methods
suggested in this thesis compared to the scientific importance. The scientific importance is of
course also vital in this kind of work. The contribution in that respect of this research is
enhanced knowledge about how to handle geometrical variation in the product realization
process. The results have been presented at scientific conferences, at seminars and in
scientific journas. All appended papers are reviewed by scientific referees. It is of course
important to spread knowledge about scientific results in industry, and that has been done
here, through a close cooperation with industrial partners. But increasing the awareness in
academia of problems occurring in industry and what industrial working procedures look like
is also important, and this work has contributed to improve that awareness.

To be more precise, scientific contributions have been made regarding:

¢ New knowledge about the characteristics of assembly processes in automotive industry
and methods for control and diagnosis.

¢ A method to reduce the number of inspection points and to quantify the information
contained in a set of inspection points.

¢ Increased understanding of parameters affecting the accuracy in variation simulation and
methods to improve this accuracy.

¢ Increased knowledge about the effect of the spot welding sequence on assemblies and a
deeper understanding of methods suitable to optimize the spot welding sequence.

e New knowledge about the effect of combining variation simulation and welding
simulation.

5.5. INDUSTRIAL CONTRIBUTION

The industrial benefits of this work have been indicated in Section 4.3, but will be
summarized here:

e Increased knowledge about statistical methods for controlling variation in production,
potentially leading to increased product quality.

e An implemented tool for efficient inspection point reduction, leading to saved costs and
resources.

e An implemented method for contact modeling in variation simulation, leading to
improved product quality and saved costs.

e Animplemented method for including the spot welding sequence in variation simulation,
leading to improved product quality and saved costs.
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6.1.

6. CONCLUSIONS AND FUTURE WORK

In this final chapter, the results are
summarized and future work is
outlined.

CONCLUSIONS

This work has been divided into four parts, corresponding to the research questions. The
conclusions will be presented one part a atime.

e RQ1: How can statistical methods be used to control variation in production?

A system for statistical process control for the kind of processes that can be found in
automotive industry is presented. By using the suggested methods, the processes with
alow capability can be improved, and the processes with satisfying capability can be
monitored in order to maintain their performance.

Different methods for multivariate process control are applied to case studies, and
their performances are compared. The benefit of multivariate control chartsis that by
using such a method, a large number of univariate control charts can be replaced by
one single chart, leading to a better overview of the processes. Further, since the
correlation between different points/characteristics can be taken into account, the
sensitivity to process changes is improved. The probability of false alarms is aso
reduced.

When avariation or deviation is detected by the control charts, it isimportant to find
the root cause of this problem. Here, the focus is on fixture-related root causes, and
methods for identifying which locator caused the problem are compared. The
methods are compared and applied to the same case studies as the multivariate
methods for process control.

e RQ2: How can statistical methods be used to reduce the need for inspection?

A structured way of reducing the number of inspection points when going from the
verification phase to full production is suggested. The method, demonstrated on three
industrial case studies, leads to larger reduction than the ones done by “manual”
methods, based on experience and craftsmanship.

The term “information” in a set of inspection pointsis quantified using methods based
on linear regression.

e RQ3: How can variation due to joining sequences be reduced?

A method to include the spot welding sequence in variation ssmulation is proposed and
tested on industrial case studies.

Different methods for finding a spot welding sequence leading to low levels of
variation in the final sub-assembly are investigated.
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- The number of spot welds needed to ensure that the geometry of an assembly is fixed
has been investigated.

e RQ4: How can the accuracy in non-rigid variation simulation be improved?

- A method for handling contact modeling in variation ssimulation is presented. The
method is verified on an industrial case study, and the accuracy is significantly
improved.

- A method for deriving the variation in inspection points, obtained during a
repeatability study, going back to the very origin of the variation (namely, the contact
between the workpiece and the locators), is presented. By using this method, the
obtained variation influences all pointsin the model, not only the inspected ones.

- Variation simulation is combined with welding simulation. It is shown that those two
simulation methods should be combined in order to improve the accuracy of the
predictions of the geometrical outcome of an assembly.

To sum up the results for all four research questions, the proposed methods and procedures
have the potentia of leading to a more efficient and cost effective product realization
procedure. The focus in this work is on automotive industry, but the methods should be
possible to apply to al kind of manufacturing industry.

6.2. FUTURE WORK
Finally, much of the work in this thesis has involved how to reduce variation without
increased cost. That kind of research has of course not come to an end with this thesis; it will
continue in the future.

The accuracy in the non-rigid variation simulation can be further increased by including more
and more of the phenomena that affect the result.

Examples of future work are:

e To further investigate, and possibly improve, the suggested method for spot welding
seguence optimization.

e To find more efficient methods for including the effect of different joining methods, such
as continuous welding, in variation ssmulation.

e Tofind optimal welding sequences for continuous welding.

e To apply variation simulation on other types of materials than sheet metal part (for
example, molded parts in aluminum or plastic). Within this area, it might also be possible
to include variation in material parameters and so on in the variation simulation.

e Toinvestigate the impact of assembly order for non-rigid parts and find optimal assembly
seguences.

e To combine the optimization of welding sequences and assembly sequences for non-rigid
multi-station assemblies.
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e To include the effect of the weight of the parts and fixtures in variation stability analysis
and variation simulation.
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Multivariate Quality Control and Diagnosis of Sources of Variation in As-
sembled Products

KRISTINA WARMEFJORD
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Abstract

Variation in key geometrical characteristics in assembled products is a usual
problem in automotive and other industries. Geometrical variation and
its causes and effects are described and different methods to reduce this
variation are considered.

In order to control the variation, a control chart is traditionally used
to detect if the process is out of control and therefore should be adjusted.
However, some of the variation is very difficult to eliminate at a reasonable
cost. Therefore, a quality system that allows for trends in the processes as
long as the produced items are within specifications is introduced. This is
done by using traditional charts to improve low capability processes, while
high capability processes are controlled by acceptance control charts, in
order to see that the produced items still are will within specifications.

If a variation is detected it is essential to find the root cause of the
problem. Different methods for root cause analysis are applied to indus-
trial data and their performances are compared. Methods for multivariate
statistical process control are also considered. The most successful method
for root cause analysis is based on a sensitivity matrix. This matrix relates
the movements of the inspection points to those of the locators.

Keywords: geometrical variation, quality control, acceptance control charts,
multivariate statistical process control, root cause, rigid body, fixture di-
agnosis
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Chapter 1

Introduction

This work is a part of a two-year long project between Saab Automobile
AB, Chalmers University of Technology and Fraunhofer Chalmers Research
Centre. It aims to develop principles, working procedures and tools for
finding fixture related root causes of geometrical variation in assembled
products. The work is contained in a research project, called “Three Di-
mensional Tolerance Management” (3DTM), going on at Chalmers. It deals
with methods for minimizing geometrical variation in assembled products.

The thesis is divided into three major parts. The first part is this in-
troduction, where general ideas and principles concerning geometrical vari-
ation in assembled products are considered. The introduction gives the
motivation of the methods described in later chapters, and it also gives a
basis for concepts and ideas used in those chapters.

In the remaining two parts of the thesis, topics related to geometrical
variation are discussed; namely how to detect variations and deviations
using statistical process control and how to identify root causes of the vari-
ation. In Chapter 2 a suggestion of how to use process control in order
to get a process able to meet specifications is given. This means that an
acceptance chart can be used to control a stable process with high capabil-
ity, while a traditional control chart is used to improve a process with low
capability.

The last part of the thesis, Chapter 3, contains a study of methods used
for multivariate statistical control and methods for root cause analysis of
geometrical variation in assembled products. The methods are applied on
case studies and their performances are compared.



Chapter 1. Introduction

The methods described are tested on data from automotive industry.
However, most of the methods should be applicable to any kind of rigid
assembled product, provided that key geometrical characteristics of the
product are measured.

1.1 Goal of the project

The goal of the project is to develop and adopt methods for process control
and diagnosis that support a tool based on geometrical inspection data,
which may be used in everyday work with the assembly processes. The
tool shall

e Be easy to use and enable quick identification of root causes in com-
plex assemblies.

e Translate variations and deviation in geometric data to adjustable
process parameters.

e Make it possible to simulate and verify the effects of actions taken in
the process.

e Be a support in evaluation of different inspection point layouts.

1.2 The assembly process

In order to discuss geometrical variation, considered in Section 1.5, it is
crucial to have a knowledge of the assembly process, which is described in
this section.

The position of inspection and positioning points are described using
a coordinate system of the car. A point on the car body is completely
determined by its coordinates. The coordinate system comprises three
mutually perpendicular planes, where:

e The X axis runs in the longitudinal direction of the car, with its origin
in front of the car.

e The Y axis runs in the transverse direction of the car, with its origin
in the centre line of the car.

e The Z axis describes the height in the car.
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Figure 1.1: The coordinate system of a car, Saab standard (28)

The coordinate system is illustrated in Figure 1.1.

To position a part or subassembly during assembly and inspection a
positioning frame (P-frame) is used. In automotive industry a 3-2-1 locat-
ing scheme is a usual choice to lock the six degrees of freedom of a part.
Three master locating points, usually called A1, A2 and A3, are used to
form a plane locking one translation and two rotations, two points, B1 and
B2, lock one translation and one rotation and the last point, C1, lock the
remaining translation. The part is assumed to never loose contact with the
locators.  This is illustrated in Figure 1.2. The part is positioned in its
fixture or joined to another part by bringing its P-frame in contact with a
mating P-frame on the target, see Figure 1.3. In addition to the master lo-
cation points, supplementary points can be required to provide a complete
guidance of a part, due to slenderness or spring back factors. Planes, holes
and slots are used to represent the locator points in practise.

The selection of master location points is in high extent based on expe-
rience, but there are some guidelines in Saab standard (27);

e The manufacturing variations within restricted master location sur-
faces shall be possible to regard as negligible.
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Figure 1.2: A 3-2-1 locating scheme, Soderberg and Lindkvist (30)
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Figure 1.3: Positioning of a part using 3-2-1 locating scheme, Séderberg
and Lindkvist (30)
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e The master location points on mating parts shall, if possible, be po-
sitioned directly opposite each other.

e The master location points shall be selected so that the locating fea-
tures permit accessibility of welding equipment and assembly equip-
ment.

e The range of the master location points on a coordinate shall be as
wide as possible.

A complete car is made up of many subassemblies. In every assembly
step, it is crucial that the parts are joined with as good precision as possi-
ble. This is supported by a robust locating scheme, i.e. a positioning that
suppresses variation in the resulting assembly. However, there is always
variation between the local P-frame and the target P-frame, and this vari-
ation propagates through the assembly. When the assembly is measured,
this variation will be detected. At this stage, it may though be a difficult
task to identify the root cause of the variation. This is illustrated in the
following example. Consider the assembly in Figure 1.4. It consists of two
parts, and both parts are positioned using a hole and a slot. The parts
are joined and finally measured. The inspection points are represented by
arrows in Figure 1.4. The arrows indicate the evaluation direction. Hence,
only the deviations in the indicated directions are determined. During the
inspection process the assembly is positioned using hole P1 from Part 1 and
slot P4 from Part 2. If there is variation in P4 during assembly this per-
turbation will result in a departure from nominal in the inspection points
as shown in the figure. Considering inspection data only, it is not obvious
what caused the deviation.

It is important to realize that if there is variation in P4, the only way
to achieve a correct assembly is to reduce this variation. If there is a
deviation in P4, there are two possible corrections opportunities. The first
is to correct the position of P4. The second one is to compensate the
deviation in P4 by moving the positions of the locators P1, P2 and P3.

1.3 The inspection process

To detect deviations and variations in parts and subassemblies it is neces-
sary with a continuous control of the processes. The inspection data, used
for this purpose, belong to one of two categories; ungrouped or grouped
data. The ungrouped data, also called “one at a time’-data, come from
inline measurements. An example of inline data can be seen in Figure 1.5.
The measurements come from parts produced after each other. Every item
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Figure 1.4: An assembly consisting of two parts. In a) the parts are posi-
tioned correctly, in b) there is a perturbation in locator PJ.

produced in a line containing an inline measurement machine is measured
as a stage in the production line.

The grouped data consist of samples of n items each. At Saab, a sample
size of n = 3 is used. These samples are usually taken once or twice a week
and the items are measured in coordinate measurement machines (CMMs).
A CMM can be seen in Figure 1.6.

In Figure 1.7 an example of CMM data is given. Compared to the inline
data in Figure 1.5, those data are sampled during a much longer period of
time. There are often trends and long-term variation in a typical process.
Much of this long-term variation is not included in the inline data, which
are measured during a day or two, but can be seen in the plot of the CMM-
data, that are collected during several months. In this example, a sample
size of three observations is used. A larger sample size would of course give
more accurate information about the process but this must be weighted
against an increased cost.
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Figure 1.5: In the top of the figure the inspection point in question is encir-
cled. Below, an example of inline data for this inspection point is plotted.
There are 200 items measured.

The sampling frequency is a question related to the sample size. The
frequency should depend on how quick the process may be expected to
change, Montgomery (25). If the process may be assumed to vary quickly
the sampling should be more frequent then if the process varies slowly. A
process that is essential to the final product should be sampled more fre-
quent then a process that only give a minor contribution to the final result.
However, just as with the sample size, this issue is a question of balance
between costs for inspection and costs for undetected changes in a process.

An inline measurement machine uses laser beams to measure possible
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Figure 1.6: A front fender is measured in a CMM.

deviation from the nominal coordinates of a point. The measurements have
a good precision, i.e. there is a high degree of conformity between inde-
pendent measurements under the same conditions. The agreement between
real value and the value given by the measurement machine, i.e. the accu-
racy, is lower than for a CMM. Inline measurements are though valuable
since they give continuous information about the process. However, while
every produced item is measured, it is too time consuming to measure as
many points as in the CMM’s. There is also some lack of accordance be-
tween the CMM and the inline measurements. The CMM is considered as
the more reliable measurement device. It is important to be aware of the
possible drift in the inline measurement machine and first and foremost use
it as a tool for detecting increased short-term variation.

The inspection data is monitored using Statistical Process Control (SPC).
SPC is a tool aimed at controlling and, hopefully, improving a process
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Figure 1.7: In the top of the figure the inspection point in question is encir-
cled. Below, CMM data for this point. There are 217 samples, where each
sample consists of three objects.

through statistical analysis of inspection data. More about SPC can be
read in Chapter 2.
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1.4 Finding root causes

Sampling, measuring machines and SPC-methods are tools for detecting
deviations and variations in a process. When a variation is detected, it
is essential to identify the cause of the problem. Sometimes the cause is
obvious. Sometimes finding the variation source is a very demanding and
time-consuming work, since variation propagates in a complex way during
assembly. Today, much of this work is based on experience and a good
process-knowledge. However, some problems may still be difficult to solve;
an illustration of this was given in Figure 1.4. Further, merely depending
on a small number of experienced problem-solvers makes the organization
vulnerable. The methods for root cause analysis (RCA) presented in the
following chapters are a set of tools for identifying fixture related causes of
variations. Very concisely, the first step in RCA is to find a relation between
variations in the P-frames of the parts and the resulting variations in the
inspection points of the final subassembly. Using this relation, variation in
inspection data can be translated to variation in one or more of the locators.

In Figure 1.8 a future RCA working procedure at Saab is outlined. If the
SPC chart indicates increased variation and the reason of this phenomenon
is unknown, then the user orders a root cause analysis. The sensitivity ma-
trix A, containing product and process knowledge, is a part of the analysis
and is calculated from a virtual model of the assembly. The RCA can be
based on inline data or CMM data. The inline data is quickly available and
is usually the first choice. However, since only a reduced number of points
are measured here, that may not give enough information for a RCA. In
that case, a RCA based on CMM data is performed. This gives usually a
satisfactory result that is the base of an action to reduce the variation in
the process. In some cases the method for RCA requires a modification to
suit the current case, like excluding inspection points that not reflect the
fixture related errors. RCA will be described more thoroughly in Chapter
3.

1.5 Geometrical variation
Geometrical variation in assembled products is a general problem in au-
tomotive industry. In this section, the causes and effects of geometrical

variation, as well as different possibilities to reduce and handle the effects
in different stages of the process development cycle, will be discussed.

10
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Figure 1.8: An outline of a possible working procedure at Saab for RCA.

1.5.1 Causes and effects of geometrical variation

Geometrical variation in parts and assembly process results in variation
in size, shape and position of subassemblies or final products. This may

11
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lead to difficulties in assembling parts or products not fulfilling functional
and esthetical requirements. In Figure 1.9 examples of areas that can be af-

o

Figure 1.9: Geometrical variation can cause problems with cumber/caster-
angles and poor fit.

fected by geometrical variation are shown. To the left, variation in camber-
and caster angles can affect the driving characteristics of the car. To the
right, variation during assembly can give rise to non-nominal flush between
for example lamp and applica. Problems caused by geometrical variation
are often discovered quite late in the product development cycle, maybe
during pre-production or even when the product and the process are pre-
pared for full-scale production. A correction of the problem at this phase
is often very costly and time-consuming.

There are usually a number of different sources of geometrical variation
in key characteristics of the assembled product; variation in parts and as-
sembly process is thought two major contributors, see Figure 1.10.

Geometrical variation is controlled by locating schemes and by toler-
ances. The locating schemes describe how parts are positioned during as-
sembly and was described in the Section 1.2. The tolerances are allocated
with respect to assembly sensitivity, process variation and cost.

1.5.2 How to minimize the effects of geometrical vari-
ation

The principles of this section are based on the results within the 3DTM
project.

12
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Figure 1.10: Major sources of variation in a Product Key Characteristic
(PKC) of an assembled product, Carlson et al. (7)

ssembily
ocess

Figure 1.11: Geometrical variation and tolerance management in a devel-
opment cycle of products, Carlson et al.(7).
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The development cycle can be divided into three main parts; the design
phase, the verification phase and finally the full production phase, see Fig-
ure 1.11.

y h
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Figure 1.12: A robust design is characterized by the fact that its important
output characteristics are insensitive to disturbance, i.e. variation in input
parameters, Soderberg and Lindkvist (31)

During the first phase, the design phase, it is important to find a ro-
bust design concept. A robust design suppresses incoming variation, i.e.
the design makes the variation in the output less than the variation in
the incoming parts, see Figure 1.12 for an illustration. In order to find a
satisfying design concept, it is usually necessary to test different concepts
and evaluate their robustness and characteristics. One way of doing this
is using prototypes and full-scale models. However, this is expensive and
time-consuming. Further, it is not possible to try as many concepts as may
be desirable. Using a virtual model is a much more effective way of testing
different concepts. However, there are high demands on the software. It
must of course be user friendly and offer suitable analysis tools. Further, it
is interesting to examine the difference in perception of virtual and physi-
cal models. Wickman and Séderberg (37) showed that usually the physical
model is experienced as better than an equivalent virtual model, analysing
physical requirements.

Within the 3DTM research project, a software called Robust Design and

Tolerancing (RD&T) is developed. This software offers different types of
analysis of an assembly, like

14
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e Stability analysis: Evaluates geometrical robustness and degree of
coupling.

e Variation analysis: Statistical analysis of variation in critical dimen-
sions.

e Contribution analysis: Ranking of variation contributors.

The analyses show how chosen key characteristics are affected by different
tolerances and perturbations in the locating scheme. These facilitate the
design of a robust concept and the allocation of tolerances with respect
to assembly sensitivity, process variation and cost. Using the contribution
analysis it is also possible to get a ranking list of the tolerances contribu-
tion to the variation in a chosen point. This ranking list is helpful if the
variation in a specific point must be reduced. These analyses are illustrated
on the assembly shown in Figure 1.13. It is a rear wheelhouse that is as-

Figure 1.13: The rear wheelhouse consists of five parts. The parts are
assembled in two stages.

sembled in two stages. In the first station three reinforcements (labelled
1,2 and 4) are put together with the wheelhouse panel (labelled 3). In the
next step, this subassembly is moved to another station. In this station the
subassembly is positioned using the same locators that were used to hold
the panel in the first station. The support for the parcel shelf (labelled 1
in the right part of the figure) is put together with the subassembly, and
finally the complete assembly is measured in an inspection station. Dur-
ing inspection the assembly is again positioned using the locators of the

15
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Figure 1.14: The position of the inspection point labelled “Meall” is illus-
trated by an arrow.

wheelhouse panel. This assembly is analysed using the different kinds of
analysis available in RD&T. For the variation and contribution analyses
an inspection point called “Meal4”; located on the upper part of the parcel
shelf support, is utilized. The exact position of “Meal4” is illustrated in
Figure 1.14.

The stability analysis for the wheelhouse is shown in Figure 1.15. The
stability matrixes reflect the robustness and the degree of geometrical cou-
pling in the assembly. The matrix elements relate the input columns, the
P-frames, to the output parameters, the parts. A high value of a matrix
element indicates that the input P-frame has a high influence on the part
position. The value shown in the matrix is the root sum square (RSS)
value of the six individual points of the P-Frame. For stability analysis,
the only information needed is the nominal position of locators for parts
and fixtures. Therefore, this analysis is a usable tool in the early design
phase.

On the last row of the stability matrix shown in Figure 1.15, the degree
of robustness for the parcel shelf support is shown. The measured position
of this part is depending on the positioning of the wheelhouse in the in-
spection station, on the positioning of the subassembly from station one in

16
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Figure 1.15: Stability analysis, rear wheelhouse.

stage two when the parcel shelf support is assembled, and of course, on the
positioning frame for the part itself.

A variation analysis of the wheelhouse assembly is shown in Figure 1.16.
The variation analysis uses Monte Carlo simulation technique to analyse
variation in specified points. Tolerances for contacts between parts and
fixtures are chosen by the user. Figure 1.16 shows the simulation results
for the inspection point “Meal4”, which position was illustrated in Figure
1.14. The specification limits for this inspection point are set to 0 £ 1.25
mm. The variation analysis shows the mean value, standard deviation, ca-
pability index et cetera for the simulations. These results give an indication
on how well tolerance demands can be satisfied. In this case there are high
capability indices; Cp, = Cpr = 2.89, and these tolerances will most likely
not cause problems in production.

The result of the contribution analysis of the wheelhouse is shown in
Figure 1.17. The same inspection point as in the variation analysis is con-
sidered. The contribution analysis presents a ranked list of all points and
tolerances contributing to measure variation. This analysis may be used in
the work of optimising the selection of tolerances, and for trouble shouting
during production. In this case, the locator A2 on the panel is the major
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Figure 1.16: Variation analysis, rear wheelhouse.

contributor, since this locator give rise to 20.5% of the variation in this
inspection point.

RD&T and the different analyses available in the program are further
described by Lindkvist and Séderberg (24) and Soderberg and Lindkvist
(30).

When a satisfactory design concept is chosen, the verification phase
starts, see Figure 1.11 on page 13. During this stage, the design concept
will be confirmed through tests and different pre-production series. It is
important to keep this phase as short as possible. Today new car models
are launched frequently and a requirement for doing this is short verifica-
tion phases. Important activities at this stage are inspection planning and
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Figure 1.17: Contribution analysis, rear wheelhouse.

measurement machine programming.

In the last phase in Figure 1.11 the production starts and during this
phase it is important to monitor and control the process in order to detect
offsets and variations, which may result in non-conforming products and
big costs. A suggestion of a system for detecting such problems is given in
Chapter 2. Of course, it is also necessary to identify the root cause of a
detected problem. Methods for finding root causes of geometrical variation
will be considered in Chapter 3.
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Chapter 2

A System for Acceptance
Quality Control

2.1 Introduction

Companies with complex production systems and products have often prob-
lems with process variation affecting the products key characteristics. Tra-
ditionally, a control chart is used to detect if the process is in statistical
control and therefore should be left alone, or if there are reasons for process
adjustments. However, some of this variation is very difficult to eliminate
at a reasonable cost. In this chapter we propose a quality system that
allows for trends in the processes as long as the produced items are within
specifications. Industrial data are used to illustrate the different charting
methods.

2.1.1 Outline

The outline of the chapter is as follows. A background to the topics dis-
cussed is given in Section 2.1.2. In Section 2.2 problems related to a system
for quality control are concidered. Methods proposed to solve those prob-
lems for different types of data are described in Section 2.3. This is followed
by a discussion about when to use an acceptance control chart instead of
a traditional chart in Section 2.4. Finally, the conclusions can be found in
Section 2.5. In the Appendix an overview of some frequently used control
charts and capability indices are given.
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2.1.2 Background

During the car manufacturing process, many parts are joined together.
The geometries of the resulting subassemblies are controlled by measur-
ing deviations from nominal values in a set of inspection points. Often,
many inspection points on each subassembly are utilized to give a good
understanding of the assembly process. The inspection data is grouped or
ungrouped.

The demands on the quality system are that the charts will be easy to
interpret and the same kind of chart will be used for all inspection points
belonging to the same category (grouped or ungrouped data). Further, the
estimates required will be calculated in the same way for all data belonging
to the same category. This is necessary since there is a great number of
inspection points to which the charts will be applied and it is far too time
consuming to find special solutions for every point. There are also many
different users of the charts, and not all users are aware of the characteris-
tics of different estimates and charting methods.

In a typical process, there are trends and cycles that result in variation
in the mean value. Some of this variation is very difficult to eliminate at
a reasonable cost. This variation may correspond to seasonal variations in
temperature, different workers, different batches of raw material and also
some unknown factors. For each inspection point there is an upper spec-
ification limit (USL) and a lower specification limit (LSL). The tolerance
limits are product rejection/adjustment limits, so it is vital that the pro-
duced items are within the specified limits. As long as that is fulfilled, the
group means may be allowed to vary over time. Of course, it is always
good to keep the process in control and to improve the process. This is
illustrated by Taguchi’s loss function, see Figure 2.1. Taguchi (33) claims
that every deviation from the target represents a loss, and the size of the
loss is increasing with the size of the deviation. However, if the resources
are limited, the first priority is to produce items within the specification
limits. That means that under these circumstances, an acceptance chart
may be preferable over a usual control chart.

So, the traditional control charts might not always be the best choice
when the resources are limited. This issue, with the belonging questions
about what acceptance charts to use, is partially discussed by Woodall (38).
One of the methods discussed is pre-control. Pre-control is based on the
tolerance limits and means that the range of the tolerance limits is divided
into four parts of equal length. The middle two parts constitute the green
zone, the outer two parts are the yellow zone and the area outside the tol-
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Figure 2.1: Above: A usual way of thinking. All items within specification
are considered equal. Below: Taguchi’s loss function.

erance limits is called the red zone. The process is allowed to operate as
long as the inspection data do not fall into the red zone or into the yellow
zone too often. There is a range of sampling and decision rules to ensure
this. Woodall (38) among others, points out that the pre-control believers
promote the idea with a lot of exaggeration. However, a pre-control chart
gives no information about the statistical control of a process.

There are other methods beside pre-control that are based on the tol-
erance limits and can be used for controlling the mean value of a process.
These so called acceptance control charts may be used when the process
has a high capability. Consider a normally distributed variable with ex-
pected value p and variance 2. The idea is to allow the mean value, Z, to
vary over an interval (Uiower, Hupper), Such as the fraction non-conforming
produced items is at most d, see Montgomery (25). Further, it is desirable
to have a probability « of a type I error, i.e. a false alarm. This is achieved
by using an upper control limit

Za

UCL=USL — (Zs — \/ﬁ)a,
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and a lower control limit

Z
LCOL=LSL+ (Zs — —=)o.
+(Zs \/ﬁ)a
A quantity Z,o is a value such that p = 1— ®(Z,), where ®(z) is the value
of the standard normal cumulative distribution at the point z. By using
these limits the chart gives an alarm when the mean value is so close to a
tolerance limit that the expected fraction non-conforming exceeds 4. The

Figure 2.2: Positions of control and specification limits in an acceptance
chart for controlling mean value of a process, related to pypper aNd Wiower,
the largest respective smallest permissible value of p. The notation o, =

o/v/n is used.

positions of the UCL and USL are illustrated in Figure 2.2.

Chang and Gan (9) use the same method as Montgomery, but express
the fraction non-conforming as a capability value. They test the method on
data from an integrated circuit assembly and calculate the power function
for a one-sided acceptance control chart.

Considering ungrouped data, an EWMA-chart is a better alternative

for controlling the mean value than the Z-chart, since the EWMA-chart
is creating a group-structure in data, making the chart more sensitive to
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small deviations. A brief overview of the EWMA-chart is given in the
Appendix. An acceptance control chart based on the usual EWMA-chart
is considered by Holmes and Mergan (15). The principles are the same
as for the acceptance chart for z. Using the same notations as before, the
process mean value, Z, is allowed to vary between pyoyer and fiypper, such as
the fraction non-conforming produced items is at most 8. If the probability
of type I error is «, the control limits are given by

UCL=USL - Zso + Z,op,,

and
LCL=LSL+ Zso — Zyom.

The quantity o,, is the standard deviation of m, the weighted exponentially
moving average, and can be expressed as

Om = LO’
m 2_p )

where o is the standard deviation of the originally variables and p is the
amount of weight put to the current value in the EWMA-chart. Holmes
and Mergan (15) illustrate the method using simulated data.

2.2 Problem

This section describes problems related to quality control and gives mo-
tives for a new system for acceptance control, based on as well traditional
control charts as the acceptance control charts introduced in the previous
section.

The manufacturing process is often quite complex with many sources
of variations. Since many of the causes of variation depend on long-term,
but recurring, external conditions, operators and other unknown factors
the data contains trends, see Figure 2.3 for an example. Those trends must
be taken into consideration when the quality control system is designed.

The terms within-group variation and between-group variation are used
to describe different kinds of variation for grouped data. The within-group
variation is the variation in each sample, while the between-group variation
can be seen as a factor determining the locations of the group means. In
Figure 2.4 the group means are plotted together with the individual obser-
vations. The sizes of the group ranges, illustrated for the first three samples
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Figure 2.3: The sample group means for a typical process. Deviation from
nominal value are measured

in the figure, are connected to the within-group variation. The group means
differ though more than what can be expected due to within-group varia-
tion. Those are namely also affected by the between-group variation caused
by external conditions, operators et cetera. If the data are ungrouped, the
corresponding terms short-term variation and long-term variation are used.

Another problem is that the inspection data in the automotive industry
are often of two different categories; ungrouped or grouped data. The un-
grouped data originate from inline measurements. Every produced item is
measured in the inline measurement machine as a step in the production.
The grouped data consists of samples of n items each measured offline in
coordinate measurement machines (CMM’s).

The reason for using both inline- and offline-inspection is that the two
approaches complement each other. The inline-measuring machine is fast
enough to measure every produced item and it gives therefore a very good
picture of the process. It is designed for detecting variations in the process
quickly. The precision, i.e. the repeatability, in the inline measurement is
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Figure 2.4: The groupmeans are plotted together with the individual obser-
vations.

good. There may though occur long-term variation in the measurement
machine and the measured value may not be in agreement with the true
value, i.e. the accuracy is not so good. Therefore, the inline measurement
machine is best suited for controlling the short-term variation. The CMM
on the other hand, has a very good accuracy. The precision of the CMM
is also good. Since the CMM is used offline, there is also time to measure
more inspection points on each item then during the inline-inspection.

At Saab Automobile AB, the sample size is n = 3, and the samples are
usually taken once or twice a week. Each inspection point has an upper
and a lower tolerance limit, and today these tolerances are the basis for the
process control. The alarm limits for the mean value are set to 70% of the
tolerance limits. The same method is used for the range; the range must
not exceed 70% of the tolerance width. If these requirements are not met,
there is an alarm. These alarms initiate fault localization and possibly a
correction of the process.
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There are many arguments against process control based on tolerance
limits. Since the tolerances do not always reflect the characteristics of the
process, problems may occur. In all kind of process control, there are two
types of mistakes. The first one, the Type I error, is to take action when
the process has not changed. The second one, called Type II error, is to
not take action despite a change has occurred. The tolerance limits are
set due to functional and design requirements and of course, also due to
process performance. Despite this, the tolerance limits are not related to
the mean and variance of the process in such a way that the probability of
the different types of errors can be controlled. Nevertheless, the tolerance
limits are a very important factor in a quality control system.

Consider a control chart based on the tolerance limits. If the capability
of the process is low, the probability of type I error will be high. If an
already centered process is adjusted due to these false alarms, the process
will perform even worse and even more items outside tolerance will be pro-
duced. For a low capability process, a traditional control chart is the best
chart in order to analyse and improve the process.

On the other hand, when the capability of the process controlled by
using tolerance limits is high, the probability of type I is small and the
probability of type II error is high. A type II error is though preferable
to the type I error and might not be a major concern, as long as the pro-
cess is capable and produces conforming products. Actually, it might be
desirable to avoid alarms as long as the produced items are well within the
specifications, in order to cut down the costs. One way of handle this is
to use acceptance control charts, mentioned in the introduction. Such a
chart allows trends and variation, provided the produced items are within
specifications.

To summarize these thoughts, it would be desirable to have a system
for quality control that consists of two different types of chart. Traditional
control charts should be used to improve and control low capability pro-
cesses. This kind of chart helps bringing the process in statistical control
and can also be used as a tool for reducing trends and variations in the
process. For a high capability process on the other hand, eliminations of
these trends are not always economically justifiable. In those cases, an ac-
ceptance control chart is suitable, since it allows variation provided that
the produced items are well within specifications.
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2.3 Proposed methods

As mentioned, there are two different kinds of data, grouped and ungrouped
measurements. In the grouped data the group structure is utilized for
increasing the sensitivity of the chart. For ungrouped data some kind of
artificial group structure is usually created. Therefore, different charting
methods are used for these two categories of data. Further, charts for
controlling the mean value can be of two types; a traditional Z-chart if the
process has a low capability or an acceptance control chart if the process
capability is high. In this section all those different types of charts are
described. Range-charts for controlling the variation in the process are
also discussed for the different types of data.

2.3.1 Grouped data

For control of the mean value of the process, there are two different alterna-
tives, depending on the capability of the process. If the capability is low, it
is important to improve the process and avoid Type II errors. In this case,
a traditional control chart is used. If the capability is high, some trends
may be allowed, provided the produced items are within the specification
limits. In this case, some kind of an acceptance chart may be used.

Traditional control charts
This alternative is suitable for a process with low capability and is a tool

for improving the process.

The grouped data available for estimating the parameters of the process
consist of k samples of size n. In the examples, n = 3. Let z;; be the j:th
observation in the 4:th sample for ¢ = 1,2, ...,k and j = 1,2, ...,n. For each
group the sample group mean,

1 n
_Eg

and the sample group variations

T;)

-1 ]:1
are calculated. The within-group variation o2
of the group variances:

s 15 estimated by the mean
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Further, the total sample mean Z and the sample variation of the group
means, s%, is determined in the following way:

_ 12":
= - x;
k’i:l '

1 k
=512

The estimated variation of the group means, s%, will contain contributions
from both within-group variation, o2, and between-group variation, 0%,
since

V(%) = 0% + o2 /n.

The process is controlled by a Z-chart and a range-chart. The control limits
of the Z-chart are usually given by

- Sw
CL=z+3—.
z i
If it would be desirable to allow between group variation the following
control limits can be used, Wetherill and Brown (36),

CL :.Q:Ii3SB.

By using these control limits as well within-group variation as between-
group variation are permitted. Using this kind of control limits allow for
trends, but unlike the acceptance control charts, the specification limits
are not taken into consideration. Therefore, this chart does not necessarily
alarm, even if the trends cause the products to be out of specifications.

The estimates should be based on data representing a satisfying part
of the process. It is necessary that the data is representative for the pro-
cess and covers a period long enough to reflect the behaviour of the process.

If this procedure leads to control limits close to, or even outside, the
tolerance limits the cause of this must be examined. There are two possible
reasons; one is that the process is not centred in the tolerance band and
the other is that the variation is too big compared to the tolerance width.
If the problem is due to offset, the consequences of this offset must be ex-
amined. If the offset does not affect the product negatively, it will usually
be accepted, and the tolerance limits will be updated. Otherwise, it must
be corrected. If the problem is due to variation, actions to reduce this vari-
ation should be taken. Of course, this problem may have been caused by a
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temporary deviation in the process and in such case it is not appropriate
to include these data in the parameter estimation of the control chart limits.

It is also necessary to control the within-group variation for a sample.
To do that a range-chart can be used. In the range-chart the group ranges
are plotted. The upper control limit is given by

UCL = D1 sy
and the lower control limit, if such one is used, is given by
LCL = D3sy.

The values of the constants D; and D, depend on n, the number of ob-
servations in each group, and can be found in for example Wetherill and
Brown (36). When n =3, D; = 0.06 and Dy = 5.06. There is no relation
between specification limits and the range of a group. Further, the ranges
are not affected by trends or between-group variation.

Acceptance control chart for mean value

Another alternative for controlling the mean value is to use some kind of
acceptance control chart, if the process has a high capability. The benefit is
that alarms are avoided when the items produced are far enough from the
specification limits. The alarm limits for an acceptance chart, described in
the introduction, are based on the maximal fraction non-conforming units,
d, that can be tolerated. The fraction non-conforming corresponds to the
process capability. In the automotive industry C}, > 1.33 is often used as a
target. This corresponds, as the following calculations show, to a fraction

non-conforming § < 6.61 * 107> if the process is centred, i.e. C, = Cp,
since USL LSL
R RO 34133
o o
and
P{non — conforming} = 1—P{LSL<X <USL}=
USL —p LSL—p
= 1 (P (PP ) =

= 1—{2¢(3%1.33) — 1} = 6.61%107°.

This fraction of non-conforming items corresponds in a one-tailed distribu-
tion to Zs5 = 3.82.
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The control limits for an acceptance chart for the mean value, described
in Section 2.1, are given by

Za

and 7
LCL =LSL+ (Z; — =%)o.
C SL+ (Zs \/ﬁ)a

The probability of Type I error is determined by «, and a usual choice is
a = 0.0013. This value corresponds to Z, = 3. The standard deviation o
is estimated by the within-group standard deviation, s,,. The within-group
variation is used since the mean value is allowed to vary within an interval
(Hiowers Bupper), sSuch that when g = fypper O 4 = Wiower, the fraction
non-conforming is §. The position of y is examined for each group and
for the observations in a specific group the variance is given by 2. When
using this chart, it is important that the variation o2, of the process is in
control, this is examined by using a range-chart.

When an acceptance chart is used, there is no alarm if the process is
out of control, as long as power < 1t < fupper- This is a way to reduce
costs, since when p belongs to this interval the probability of producing a
non-conforming item is less then §. However, if pt = pypper OF 8 = Liower
the chart is designed to detect an increase or decrease of the process mean.
Hence, an alarm is always the result of the process being out of control,
on the other hand there is not an alarm every time the process is out of
control. In other words, the probability of Type II error is big when the
process mean is in the interval (Ljower, fliower), Decause then it is not de-
sirable with an alarm, since the fraction nonconforming units is very small.
But when the fraction non-conforming units increase, i.e. the capability
decreases, the probability of Type II error decreases. This is illustrated us-
ing a power function, see Figure 2.5. The power is defined as 1 — 3, where
B is the probability of Type II error, i.e. the power is the probability of
detecting a change in the process.

In Section 2.4 there are examples of as well traditional Z-chart as ac-
ceptance control charts.

2.3.2 Ungrouped data

The ungrouped data origin from an inline measurement machine, i.e. all
produced items are measured. Just as with the grouped data, it is possible
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Power function, modified chart
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Figure 2.5: Power function for an acceptance chart. When the capability
is high, the probability of an alarm for a change in the process is small.

to use traditional charts when the capability of the process is low and ac-
ceptance charts for controlling the mean value of high capability processes.

Data consist of a number of individual observations z;. The estimates
of necessary parameters are based on n observations.

Traditional control charts

To control the short-term variation in the process a moving-range chart is
used. In the chart the range of a small number of consecutive measurements
is plotted. The upper control limit is given by

UCL = D3 * s.

The constant D3 depends on the number of observations included in the
moving range, and is tabulated by for example Wetherill and Brown (36).
In order to control the short term variation, the moving range is usually
based on two successive measurements. In that case, D3 = 4.65. The
sample standard deviation, s, is calculated from data using a moving range
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method. This is done by calculating the moving ranges, R;, for groups of
size k, determine the mean range and then divide this number by a constant
depending on the value of &, i.e.

_ 2k
~ #ranges

/dkn

where dj, is a constant depending on the size of the moving ranges and can
be found in tables in for example Wetherill and Brown (36). Often, k = 2 is
used. By using k = 3 slightly more variation than what could be expected
in the moving ranges in the chart is permitted. If ¥ = 2, then dj, = 1.128
and if k¥ = 3, then d; = 1.683.

It may also be desirable to use a chart for the mean value. However,
the main potency of an inline measurement machine is to control the short-
term variation in the process. If control of the mean value is required, then
some kind of moving average chart should be used in order to enhance
the sensitivity of the chart. An EWMA-chart is often a good choice, since
compared to an ordinary moving average chart, more weights are paid to
the last observations than to the earlier ones.

In an EWMA-chart
m; =px; + (1 —p)m; 1

is plotted. The constant p is the weight given to the most recent observa-
tion. A usual choice is p = 0.4. The control limits are given by

T+ Als.

If p = 04 is used, then A; = 1.545 for ungrouped data. Values of A;
for different values of p can be found in for example Wetherill and Brown
(36). The sample standard deviation, s, is calculated by the moving range
method. For the grouped data, we noticed that it sometimes may be de-
sirable to allow between group variation. For the ungrouped data this
corresponds to allowing-long term variation and the estimate of the stan-
dard deviation should in that case be based on all data. To calculate s? in
that case, the following formula is used:

Acceptance chart using EWMA

Just as with the grouped data, it is possible to use traditional charts when
the capability of the process is low and an acceptance chart for controlling
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the mean value of a high capability process. The benefit is that alarms
are avoided when the items produced are far enough from the specification
limits. The alarm limits for an acceptance EWMA-chart, described in the
introduction, are based on the maximal fraction non-conforming units, 4,
that can be tolerated. Just as in the case with the Z-chart the maximal
fraction non-conforming products, 4, is set to 6.33x10~°, which corresponds
to capability of 1.33. The probability of false alarm, «, is 0.0013.

The control limits are given by
UCL=USL - Zso + Z,op,,

and
LCL = LSL + Zs0 — Zoom,

Om = LO’
m 2_p ’

and o is the standard deviation of the originally variables. The standard
deviation ¢ is estimated by the moving range method described in the pre-
vious section. In Figure 2.6 are acceptance and traditional EWMA-charts
plotted for an inspection point with high capability. The acceptance chart
gives no alarms, since the plotted values are far enough from the specifica-
tion limits. The traditional chart alarms, indicating that the process is out
of control. However, in this case, the process being out of control does not
result in an unacceptable fraction non-conforming items.

where

2.3.3 Multivariate data

To control several related inspection points at the same time it may be
convenient to use a multivariate control chart. It is easier to only have one
chart, instead of one for each point, and the multivariate chart takes the
relationship between different inspection points into consideration. Fur-
ther, by using a multivariate chart the total probability of a type I error
is controlled. The disadvantage of a multivariate chart is that since it is
used to control all the inspection points at the same time, it is sometimes
difficult to identify the point or points that cause an alarm. Different kinds
of multivariate control charts are discussed in Chapter 3.

The p-variate inspection data vector is supposed to follow a p-variate
normal distribution N (u, ).
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Modified Ewma-chart
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Figure 2.6: EWMA-charts for a high capability process. The charts are
based on measurements of deviation from nominal geometry at one inspec-
tion point.

Multivariate capability indices

There are several different suggestions of multivariate capability indices.
Three of these indices are compared by Wang et al. (35). These are a
multivariate capability vector by Shahriari et al. (29), a multivariate capa-
bility index M Cpy, by Taam et al. (32) and finally a multivariate capability
index M C, by Chen (10).

Naturally, all of these three indices have their advantages and disad-
vantages. Here, we have chosen to use the multivariate capability index
MCpm by Taam et al. (32). The index is defined as the ratio between the
volume of R;, the modified tolerance region, and the volume of Ra, the
scaled 99.73 percent process region,

vol.(Ry)

M = .
Com vol.(Ry)

The modified tolerance region, Ry, is the largest ellipsoid centred at the
process target and completely within the tolerance region. Since data is
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normally distributed R, is also an ellipsoid. The capability index is esti-
mated by

N

MCpm = —,

(o}

S

where

& vol. (tolerance region) _wol. (tolerance region)

p

where K is the 99.73% percent quartile of a x2 distribution. The denomi-
nator D is given by

A ne o\ Ta-liw 1/2
D—(1+—n_1(x o) STH(X No)) ;

The quantity 1/ D takes values between zero and one and measures the
deviation from target. The closer 1/ Dis to one, the closer is the processes
to their targets. If the mean vector equals the target vector po, 1 / D equals
1 and accordingly M Com = C The quantlty C is interpreted just like
the univariate process capability, i.e. a value Cp = 1 implies that 99.73%
of the produced items are within the specification limits.

Multivariate acceptance control chart

The idea of a multivariate acceptance chart is analogous to the univariate
acceptance chart. The starting point is to decide an allowable region for
the mean vector of the p points, given an upper limit for the fraction non-
conforming produced items. Thereafter, this process area is transferred
into an allowable region for the mean value vector, given a type I proba-
bility a. The tolerance region is usually formed as a hypercube, at least
when the specification settings are independent. This region must in some
way be transformed into the same shape as the process region, which is an
ellipsoid so the regions can be compared to each other. In the multivariate
capability index by Taam et al. (32) the tolerance region is transformed
to the largest ellipsoid completely within the tolerance region and centered
at the process target. Using this procedure as a starting point, it should
probably be possible to construct a multivariate acceptance control chart.
This area is though subject to future research.
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2.4 When to use an acceptance control chart?

A usual Z-chart gives with a high probability an alarm when the process
mean changes. If there is no alarm, the mean value is stable and the process
is in statistical control. An acceptance chart gives with high probability
an alarm if the process is out of control and the mean value is to close to
the tolerance limits. Another way of saying this would be to define a group
capability index, C%, = min{USL— N LSL} = 1...k, for every group.
Then the acceptance chart gives alarm when the group capablhty index is
too low. It is important to note that the group capability index says noth-
ing about the future process performance, since the mean is allowed to vary.

Traditional control chart
0.4 T T T
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Figure 2.7: Above: A traditional control chart for the mean value. Below:
An acceptance control chart for the same data. The specification limits are
+ 0.5 mm.

In Figure 2.7 an example of control charts for mean value of a high capa-
bility process is shown. The upper plot is based on the traditional methods,
while the lower one is an acceptance control chart. The acceptance chart
gives no alarms since the process is far from the specification limits. The
upper chart indicates that the process is out of control. In this case, the
process being out of control is not regarded as important, since the process
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still produces items well within specifications, and the acceptance control
chart is the preferable chart here.

In Figure 2.8 the circumstances are reversed. In this case the process
has a low capability, and therefore the traditional chart is preferable. In the
upper plot, the traditional chart indicates that the process is out of control.
The reasons of this should be examined. Since the capability is low, the
acceptance control chart in the lower part of the figure is not suitable.

Traditional control chart
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Figure 2.8: Top: Traditional control chart for an inspection points with
Cp = 2.76 and Cp, = 0.20 The specification limits for this point are £ 0.9
mm. Below an acceptance control chart for the same data.

The question is when to use traditional charts and when to use accep-
tance charts. At some point the control limit for a usual control chart and
the control limit for an acceptance control chart coincide. This point can
be expressed as a certain value of the capability of the process. The value
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is determined assuming min(USL — u,u — LSL) =USL — ;

UCLqgcceptance = UCLg
USL - (2 —%)a - u+3%
7[]5{;_” = %%—Za—%
C = %+%_;/aﬁ.

Using n = 3, Zs = 3.82 and Z, = 3 this gives Cpr, = 1.27. If the value of
the adjusted capability index is below this value a usual Z-chart should be
used. Otherwise, an acceptance chart is preferable.

It would also be possible to combine these two kinds of charts if the
capability index C, > 1.27 and the adjusted capability index Cp, < 1.27,
by using a modified lower control limit and a usual upper control limit if
min(USL — p,u— LSL) = USL — u and vice versa.

2.5 Conclusions

In a typical process in automotive industry, there are trends and cycles
causing variation in the mean values. Some of this variation is very diffi-
cult to eliminate to a reasonable cost. For each inspection point there are
an upper specification limit (USL) and a lower specification limit (LSL),
and sometimes it may be desirable to allow the variation in mean value as
long as those specifications are fulfilled. The specifications can be fulfilled,
despite the variation, if the process has a high capability. A low capability
process on the other hand, must be improved, to avoid products out of
specifications.

An overview of the different charting methods is given in Figure 2.9.
Here the relation between what kind of data, process capability and what
charts to use for controlling mean and variance of process are illustrated.
The different methods were described and the question about when to use
an acceptance chart instead of a traditional chart was also discussed.

If resources are unlimited, the ideal is perhaps to use some kind of tra-
ditional chart in order to analyse and improve the process. Unfortunately,
this is not often the case, and therefore the system for quality control de-
scribed in this chapter may be a way to improve processes to a level where
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Grouped Data Ungrouped Data

High Capabhility Low Capability High Capability Low Capability
[ 1 I 1
Acceptance chart Traditional chart Acceptance chart Traditional
for mean Formean for EAWMA EWMA-chart
& & & &
Range-chart Range-chart Moving range-chart Moving range-chart

Figure 2.9: An illustration of the different charting-alternatives.

the items produced are within specifications, and to control that this level
then is remained.
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2.6 Appendix - Frequently used control charts
and process capability

A control chart consists of a statistic, which is plotted in the diagram for
each measurement. If the statistic plots outside the calculated values called
control limits, there are assignable causes and the process is considered to
be out of control. This means that the process is believed to have changed.
The probability that the statistic plots outside the limits, despite the pro-
cess remains in control, and causes a false alarm is denoted . A common
choice is @ = 1% or a = 0.1%.

To control the mean value of a process an Z-chart can be used, Wetherill
and Brown (36). This chart is of Shewhart-type and is probably one of the
most frequently used control charts today. This method assumes that the
distribution of the plotted data is approximately Normal and uses the fact
that most of the dispersion is included within £30 from the mean. The
upper control limit (UCL) and the lower control limit (LCL) of the chart
are given by

UCL = p+ 30, and LCL = p — 30,

where o, is the standard deviation of the group mean, i.e. if the standard
deviation within a group of size n is o, then g, = 04, /4/n. The expected
value, u, can be estimated by the mean .

Other methods used to control the mean value of a process are cumula-
tive sum procedures (CUSUM) and exponentially weighted moving average
(EWMA) charts. These procedures are especially useful to detect small
shifts. In a CUSUM chart the cumulative sum, S,, of the observations
Z1,Zs2,-.. 1S plotted, i.e.

Sp=8n—1+ (xn - T),

where Sp = 0 and T is a target value, often the mean is used as target.
In the CUSUM chart a so-called truncated V-mask is generally used. An
out of control signal is given when the arms of the mask cross the previous
trace of CUSUM values.

The EWMA chart is basically formed by determination of a new moving-
average at each sampling point by calculating a weighted average of the
new value and the previous moving-average. The moving-average, m;, is
calculated using the formula

m; = px; + (1 — p)m;_q
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where p is the amount of weight put on the current value. In an EWMA
chart only action limits are used, and they are placed at pu + A6, where
A, is a tabulated value, depending on the group size.

The dispersion of a process can be controlled by using a s- or r-chart.
The procedure is similar to the construction of a Z-chart. The standard de-
viation (or range) of each group is plotted and the control limits in this case
are given by o,, times a constant, see for example Wetherill and Brown (36).

The capability index of a process is reflecting the process’s ability to
produce items within the specification limits. The capability index, Cj is
a comparison between the specification width and the width of the distri-
bution. For a normal distribution 99.7% of the distribution is covered by
60 and the process capability index is defined by

USL—-LSL

Cr = 60

Usually, €, > 1.33 is recommended. A high capability process may still
produce many non-conforming items if the mean is not appropriately cen-
tred. Therefore, another capability index sometimes called the adjusted
capability index, Cpy, is defined,

min{USL — p,pp — LSL}
30

Cor =

The definitions of the indices above are both based on a normal distribution
assumption. Further, the process must be in control. Otherwise, the indices
cannot be used as a prediction of the process performance. The indices can
be calculated no matter what distribution the data have. However, if the
indices will be used to predict the process performance it is crucial that
the process is in control, otherwise the only information given is what the
process performs at the moment when the data is collected.
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Chapter 3

Multivariate Quality
Control and Diagnosis

3.1 Introduction

In the auto body assembly process, fixtures are used to position parts dur-
ing assembly and inspection. Geometrical variation in parts and in the
assembly process results in variation in size, shape and position of the final
product. This may lead to difficulties in assembling parts or products not
fulfilling functional and esthetical requirements. Geometrical variation is
controlled by locating schemes and tolerances. The locating schemes de-
scribe how parts are positioned during assembly. The tolerances are ideally
allocated with respect to assembly sensitivity, process variation and cost.

Parts and subassemblies are measured many times during the manufac-
turing process in order to detect offsets and variations as soon as possible.
In order to use data in an optimal way, statistical process control (SPC)
may be used. It is a statistical analysis of inspection data aiming at con-
trolling and, hopefully, improving the process. There is also a multivariate
equivalence of SPC, the namely the MSPC suited for simultaneous analyse
of data from several inspection points.

If an offset or variation is detected, it is of course desirable to find its
root cause. For example bad raw materials, worn out machines or fixture
faults can cause variation. But a major part of all root causes are due
to fixture faults, according to an investigation performed by Ceglarek and
Shi (8). In this chapter, methods for MSPC and methods for diagnosing
variation in fixtures by using process knowledge and inspection data are
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considered.

There are many different methods used in multivariate quality control.
The purpose of this chapter is to illustrate and compare some of these
methods by applying them to given data sets, collected from industrial
case studies. The procedures for quality control are then put together
with methods for fixture fault diagnosis. Different methods to diagnose the
fixture or fixtures causing the error are illustrated using the same data sets.

3.1.1 Outline

This chapter is outlined as follows. In Section 3.2 the two case studies are
presented. The methods described in subsequent sections will be applied
to the data from these case studies.

In Section 3.3 different kinds of multivariate control charts are consid-
ered. Two special methods, aimed for detecting fixture related faults are
also illustrated. For each type of chart the theory of the chart is described
and thereafter the chart is tested on data from the case studies.

When a process is found to be out of control, it is obviously of main
importance to find the root cause of the erroneously state. This topic is
discussed in Section 3.4. The methods are demonstrated in the same way
as in Section 3.3; the description of each method is followed by a test on
data from the case studies.

Among the methods discussed in Section 3.4 one of the techniques are
tested further on an additional case study. The assembly in the case study
is adjusted in accordance with the results of the RCA. The assembly, the
analyses and the results of the adjustment are described in Section 3.5.

Finally, in Section 3.6 the different methods and techniques for quality
control and root cause analysis are discussed and compared.

3.2 Data and models

The methods outlined in the following sections will be applied on two case
studies. The assemblies and the corresponding measurement data are pre-
sented in this section.
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3.2.1 Case study 1

The first case is an assembly consisting of two parts called outer side panel
and doorframe. The parts can be seen in the top of Figure 3.1. This assem-
bly is only analysed in z— and z-direction, since the assembly is not rigid
in the y-direction, which is a necessary condition for some of the diagnosis
methods considered in Section 3.4. A fixture is used to position both parts.
In Figure 3.1 the locators in zz-direction are marked with black triangles.
Both parts are fixed in z-direction using a pin/hole contact (labelled B1/C)
and a pin/slot contact (labelled B2). The pin/hole contacts are also used
for positioning the parts in z-direction. A pin/slot is a pin placed in a slot,
i.e. an oval hole. Therefore the part is only restricted in one direction using
this kind of locator. A pin/hole locator restricts the part in two directions.

After the positioning, the parts are welded together. When the assem-
bly is measured, it is fixed in zz-direction using the pin/hole contact on the
doorframe (B1) and the slot/pin contact on the side panel (B2), as shown
in the middle part of Figure 3.1.

Four inspection points are used, marked by arrows in Figure 3.1, and
three of these points are measured in z-direction as well as the z-direction.
The fourth inspection point is only measured in z-direction.

The inspection data consist of 217 groups, where each group contains
measurements from three consecutive cars. The data contain trends, see
Figure 3.2. These trends may partially be caused by fixture faults, but
if there are fixture faults causing variation, these faults will cause within
group variation as well. Therefore, it is possible to estimate the variation
caused by the fixtures by concentrating on the short-term variation only.
The trends are therefore eliminated and the estimate of the covariance ma-
trix is based on the within group variation.

The measurements are denoted x;;, ¢ = 1,2,...,m and j = 1,2,...,n,
where x;; is a vector consisting of inspection data for p inspection points
on the jth item in the i¢th group. Here, m = 217 and n = 3. The n
observations in each group are put together in the group mean,

n
_ 1
r;, = — Lii.
TLE : J
Jj=1

The inspection data can be decomposed into an overall mean, p, a group
effect, T;, and a error component, €;;, i.e.

Tij = B+ Ti+ €,
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Inspection station

Figure 3.1: Top: The side panel assembly consists of the door panel and the
outer side panel. Middle: The assembly is positioned in xz-direction using
the locators labelled B1 and B2. Bottom: The assembly is measured in four
inspection points.

and the covariance matrix of the data can consequently be expressed as the
sum of the between group variation, Y., and the within group variation,
Y, ie.

y=3%,+3..
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Figure 3.2: Top: The original data from inspection point 2 in x-direction,
side panel assembly. Bottom: The same data but with the trends eliminated.

As mentioned before, the variation caused by the fixtures can be estimated
by the within group variation, .. To eliminate the trends, the group mean
is subtracted from each observation in every group,

Zy = x;; —&;,wherer =1,2,...,mn,

This procedure gives m * n measurements without trends and the p-variate
vector Z = 0, so the within group variation can be estimated as

. 1 mn
¥ = e D (ze) (20T (3.1)

r=1

3.2.2 Case study 2

The second case study deals with an assembly where a rear bumper is
joined with a vehicle floor, see Figure 3.3. The bumper is in yz-direction
positioned by a fixture, using the locators labelled B1, B2 and C, and in
z-direction by the contact (the contact points are labelled A1, A2 and A3)
with the floor.

To monitor the assembly process 14 inspection points on the bumper
are measured after the two parts are joined. During inspection the locators
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Inspection. -
e

Figure 3.3: The bumper and floor are assembled. Finally 14 points on the
bumper are measured.

of the floor are used to position the assembly. Hence, inspection points on
the floor, if any, will not show any assembly variation even if the floor was
incorrectly positioned during assembly. This variation will on the other
hand be observed in the inspection point on the bumper. Therefore, the
assembly process can only be monitored using inspection points on the
bumper. The inspection data are, unlike case study 1, not arranged into
subgroups. The data consist of 36 measurements of each inspection point,
see Figure 3.4. It can be seen from the figure that there are considerable
changes in the process after 16 measurements. There is much more variation
in measurement 17 to 36, than in measurement one to 16. It is known that
this variation is due to a variation in the contact between the bumper and
the locator controlling translations in y-direction. That knowledge make
the case study very suitable for testing different methods for RCA, since
the results can be compared to this information. The case study is also
well suited for testing and evaluation of MSPC-methods.
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Measurements, bumper assembly
T T

Measurement Number

Figure 3.4: Inspection data for 36 assemblies in 1/ inspection points.

3.3 Multivariate Statistical Process Control

In order to improve and maintain the quality of a product it is important
to detect any changes in the process as soon as possible. There can be
various causes of extra variation in a process. One of these possible reasons
is fixture failure and in this section, an overview of methods to detect this
type of variation is given. In Section 3.3.1-3.3.4 general methods to detect
variation and offsets in the process are given, in Section 3.3.5 and Section
3.3.6 special methods designed to detect variation caused by fixture faults
are considered.

The methods for statistical process control can be divided into univari-
ate and multivariate procedures. The univariate methods are aimed at
controlling measurements of one quality variable or inspection point. To
control several related points at the same time it is convenient to use a
multivariate control chart, and it is this kind of charts that is considered
in this chapter.

A control chart consists of a statistic, which is plotted in the diagram
for each observation, and corresponding control limits. If the statistic plots
outside the control limits, the process is assumed to be out of control, and
this implies that the process has changed. The probability of false alarm,
a, i.e. the probability that the statistic plots outside the limits despite
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the process remains in control, is depending on the significance level of the
control limits. A usual choice is @ = 1% or a = 0.1%.

Since a multivariate control chart is used to control all the inspection
points at the same time, it is sometimes complicated to identify the point or
points that cause an alarm. In the regression adjustment method and the
self-organizing map method, considered later in this chapter, this problem
is partly solved. There are also many other methods that deal with this
question, see for example Runger et al. (26), Jackson (19) and Hayter and
Tsui (14).

3.3.1 T?-chart

One of the most frequently used multivariate control charts is the T'2-chart.
It is used to control the mean value of p inspection points. It is also sensi-
tive to increased process variation.

The statistic
Xt =n(Z — o) ¢ (Z — o),
where p is a p x 1 vector of in-control means and X is a p x p in-control
covariance matrix, follows a x2-distribution with p degrees of freedom, see
e.g. Montgomery (25). When the true population parameters are not
known, the following statistic is used to form a Hotelling’s T2 control chart:

T? = n(z; — 3)78~ (& — &).

This statistic was developed by Hotelling (16). Alt (2) showed that T2
(times a constant) follows an exact F-distribution, and the upper control
limit (UCL) is therefore given by

p(m+1)(n—-1)

L=
ve nimn—m—p+1)

a,p,mn—m—p+1,

where n is the number of observation in each sample, m is the number
of samples taken and Fi p mn—m—p+1 is the inverse of the F' distribution
function with p and mn —m — p+ 1 degrees of freedom, at the value of a.
If the sample mean X and the sample covariance matrix S are estimated
from a relatively large number of samples (at least 20 or 25) it is customary
to use Xi,p as an upper control limit on the Hotelling T2 chart.

Test on data

When using the data from the side panel assembly, with p = 7 inspection
points, we concentrate on controlling the within group variation, so ¥, from
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Equation (3.1) on page 49 is used instead of S. In Figure 3.5

T = (2:)"27 " (21)
is plotted for i = 1,...,651. Here, X3 o1 7 is used as an upper control limit.
There are several observations above the control limit, so the process is said
to be out of control. Since a, the probability of type I error is chosen to be
0.001 the expected number of false alarms is 0.001 * 651 = 0.651 when the
process is in control.

T2~chart
70 T

50k . N : 4

40 —

e ! < o
0 100 200 300 400 500 600
Measurement No

Figure 3.5: Multivariate T?-control chart based on within group variation
for side panel assembly.

The method is also applied on the bumper assembly data. Since the
process is in an unacceptable stage during measurements 17 to 36, these
data are not included in the estimates of the parameters. The multivari-
ate T2-chart, see Figure 3.6, shows a considerable change in measurement
17. However, the covariance matrix for the 14 inspection points is nearly
singular. This fact makes the T2-values after the 16th measurement very
big. Often, a principal component analysis is recommended for this kind
of data. That method is considered in the next section.

This example shows that the T?-chart is an effective tool when it comes

to detect changes in a process, especially when the changes affects several
inspection points.
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Figure 3.6: Multivariate T?-control chart, bumper assembly

3.3.2 Principal Components and SPE

Principal Component Analysis (PCA) can be used to control a process as
well as for diagnosing sources of variation, which is considered in Section
3.4.2.

The idea of PCA is to form a set of new variables, which are linear com-
binations of the old ones. The new variables, the principal components, are
independent of each other. These principal components display different
amounts of variance and usually, the variance of some of the components
will be so small that they can be considered negligible. Therefore, the vari-
ation in the original variables can be described by a smaller number of new
variables. The general objectives of PCA are reduction and interpretation
of data.

In short, the PCA is performed by computing eigenvalues and eigenvec-
tors of the covariance matrix, 3, of the original variables. An eigenvalue,
A, is a root of the characteristic equation

X -NI=0
and a the corresponding eigenvector is a non-zero vector v;, satisfying

E’U,’ = )\z’Uz
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The eigenvalues and their corresponding eigenvectors are sorted in order of
size. The principal components, Y, are formed in the following way

Vi=vlX,i=1,2,..,p
where ¥, the covariance matrix of X, has eigenvalues
AL > A2 2> 2 Ay,

with corresponding eigenvectors v;) with unit length. Often, a few of the
principal components contain the main part of the total variance in the
population. The ith principal component, Y ;, contains

Ai

100
5 VS VTR W

percent of the total variation. If the major part of the variance is contained
in the first k principal components, then these components may replace the
p original variables, without loosing too much of the information. To de-
termine k, it is possible to perform a x2-test, see Jackson (18).

A more elaborate discussion of principal component analysis will be
found in Johnson and Wichern (21).

To control the process using PCA the statistic
T2 (i) = (X; - X)"PPTs'PPT(X; — X)

peca
is used, see Jackson (20). Here, P = [v;|va]...|vg] is the matrix of the
first k eigenvectors. The statistic is x2-distributed and the upper control
limit is given by x2(a). The k principal components used span a subspace
containing the variation described of these principal components, and the
T2, ,-statistic is used to control the quantity of this variation. If the nature
of the variation changes, for example there is increased variation outside
the subspace spanned by the principal components, the control diagram
does not detect that. This means that there is need for a chart controlling
the size of the residual, i.e. the distance between an observation and the
subspace, see Figure 3.7 for an illustration of the residual. Since PPTgx
is a projection of an observation & on the subspace, the following statistic
can be used:
SPEy., = (x — PPTz)" (x — PPTx)

According to Jackson (20), the SPE statistic is @)-distributed and the con-
trol limit is given by

h2 who(hg — 1
Qa:(ﬁl(ca\/iiz o+¢z 0(¢%0 1)4_1);107
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Figure 3.7: An observation (*) plot outside the principal component sub-
space. The SPE,.,-statistic measure the distance between the observation
and the principal component subspace.

where ¢, is the inverse of the standard normal cumulative distribution
function,

1= X, o= D N, gz= Y X

i=k+1 i=k+1 i=k+1

2¢1¢3 ‘

ho=1-—
0 3¢2

Test on data

In Figure 3.8, the T, and SPE,,-statistics for the side panel assembly
are plotted. No between group variations are included, i.e. the PCA is
based on X.. The matrix P consists of the three first principal component
vectors, P = [v|va|vs], and these three together contain 86% of the total
variation. The UCL is given by x3(0.001).

This chart gave some fewer alarms compared to the usual T?-chart, used
in Section 3.3.1. The reason for this is that only 86% of the total variation
is included in the principal components. Despite this, there are indications
that the process is out of control. The usual T?-chart alarmed five times,

while the T2, -chart alarmed three times.
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Figure 3.8: On top a Tgca-chart and below a SPEpc a-chart for the side
panel assembly.

The method is also tested on the bumper assembly, and the result can be
seen in Figure 3.9. The mean value and the covariance matrix are estimated
from the first 16 measurements. The chart gives an alarm in measurement
19. The SPE-chart gives an alarm as well, which indicates that the variation
no longer is contained in the subspace spanned by measurement one to 16.
In this case, the fixture related fault caused an increased variation after the
16:th measurement. But the fault also implied a different kind of variation
compared to the one spanned by the first 16 measured objects, and that
causes an alarm in the SPEpg a-chart. When comparing this chart to the
usual T2 chart a major difference is that the increase after observation 16
is much more moderate when PCA is used. That is because the problem
with the almost singular covariance matrix is avoided using PCA.

3.3.3 Regression adjustment

Regressing one variable on all the others and then control the regression
residuals is an approach for MSPC, considered by Hawkins (12). In regres-
sion adjustment separate charts for controlling mean value and variation
can be used, which may be advantageous. The method is especially well
suited when only a shift in some of the variables is expected. This is usually
not the case if the error is fixture related, since a movement in one locator
often affects many inspection points, but the method is nevertheless tested
on the case studies. An overview of the method is also given by Mont-
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Figure 3.9:  On top a Tho 4-chart and below a SPEpca-chart for the
bumper assembly.

gomery (25).

The residuals, r; = X — X;,i = 1,...,p, are calculated for each in-
spection point ¢ using a usual multiple linear regression for each inspection
point, 4,2 =1,...,p, i.e.

X,’ =+ Z,Bij.
i#]

The standardized residual of the regression of one variable on the other
variables will follow a N(0,1)-distribution when the process is in control.
Therefore, the control charts are similar to univariate control chart. But
since the regression residuals are plotted the correlation between different
variables is taken into account.

Test on data

The regression analysis for the side panel assembly is based on the mea-
surements with removed trends, i.e. z;, 4 = 1,...651, is considered. The
residuals are controlled by an EWMA-chart, see Figure 3.10, and a moving
range chart, see Figure 3.11. The EWMA-charts give only a few alarms,
while the moving range-charts signals more often. This indicates that the
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Figure 3.10: Regression adjustment case study 1, EWMA chart for control-
ling the regression residuals.

major problem in the side panel assembly is too much variation, not shifts
in the mean value.

The regression adjustment is also applied to nine of the inspection points
on the bumper assembly. In this case it is known that the major problem
is caused by increased variation after measurement 16. The residuals are
therefore controlled with a moving range chart, see Figure 3.12. The num-
bers of alarms are not increasing distinctly after the 16:th measurement. A
reason of that may be that the root cause affects several variables, not only
one or two. These kinds of charts perform best when only one variable is
likely to be affected by the variation.
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Figure 3.11: Regression adjustment case

controlling the regression residuals.
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Figure 3.12: A moving range chart of the regression residuals, bumper as-

sembly.
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3.3.4 Self Organizing Maps

A Self Organizing Map (SOM) is a special type of artificial neural network
(ANN) that can be used for multivariate process control and in some cases
also for fault identification. A neural network is an adaptive model for
non-linear multivariate data. It can learn from the data and generalize
the things learned. An ANN consists of a number of neurons in different
layers. Each neuron has an individual weight vector and all neurons have
connections to other nodes. There are two different kinds of ANN; the
supervised ANN and the unsupervised ANN. In supervised learning the
system directly compares the network output with a known correct or de-
sired answer, whereas in unsupervised learning the desirable output is not
known. ANN is studied by for example Haykin (13).

The SOM was developed by Kohonen (23), and is one of the most pop-
ular network models. It is based on unsupervised, competitive learning. It
provides a topology preserving mapping from high dimensional input vec-
tors to a low dimensional (usually two dimensional) grid of neurons. Each
neuron is represented by a weight vector of the same size as the input vector.

The SOM is trained iteratively, Ahola et al. (1). In each step the
Best Matching Unit (BMU) for the input vector is found by comparing the
input vector, x, with the weight vector, m, of every neuron in the net. The
neuron closest to the input vector wins, i.e. if the BMU is labelled m.,

llz —mec|| = min{[|z —m;][}.

Usually, the Euclidian norm is used. The weights of the BMU as well as
the weights of the neighbours of the BMU are updated to be more similar
to the input vector,

m; = m; + at)hei(t) (x — mi),

where «(t) is the learning rate and h,; is a neighbourhood function around
the winner unit ¢. Both the learning rate and the neighbourhood function
are decreasing function of time. By this procedure the net is formed to
estimate the distribution of the input data.

Ultsch and Siemon (34) use a unified distance matrix (u-matrix) to visu-
alize the structure of a SOM. The mean difference between a neuron and its
neighbours is calculated. The result of these calculations is presented using
a two-dimensional grey-scale picture. A dark area can for example mean
that there are small differences between the neurons in the region, while
a bright area means that the neurons in that region are not very similar
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to each other. By this procedure the dark areas can be identified as clusters.

If the SOM is trained on data from the normal operation state as well as
on data from different erroneous states the clusters corresponding to these
faulty states can be labelled with the fault type or even better, the root
cause of the fault.

After the SOM is trained then the net can be used for process control.
The inspection data vectors are fed in to the net and the BMU is identified.
When the BMU is a node labelled "undesired state" the process is out of
control. Plotting the trajectory of the BMU for each measurement vector
can be a way of monitoring the process. Since the undesired states are
labelled with root causes this procedure may help in fault detection.

If the SOM is trained using measurement vectors describing the normal
state of the process only, then the net is forming a mapping of the "normal
operation" input space. In order to detect a faulty situation the quantiza-
tion error can be studied, Ahola et al. (1). The quantization error for unit
i, ¢ = \/ch’:l(svk — myg)2, is the distance between the input vector and
the BMU. A large quantization error implies that the process no longer is
in the "normal operation" space. This method gives no information of the
root cause of the fault.

Test on data

When it comes to applying SOM to data in order to perform process control
the results seem to be highly dependent on the number of nodes chosen,
what subset of the data that are used for training and so on. Perhaps,
SOM is best suited for use by an expert in the area, who can analyse those
questions and find the appropriate settings.

Having this in mind, the method is tested only on the bumper assembly.
The net is trained using measurement one to 16, i.e. data representing the
normal state of the process are used. These data are also used to estimate
the mean and standard deviation of the process in order to standardize
data. The measurements used for calculating the quantifization error are
not included during the training phase. Usually a SOM is supposed to be
trained on a much larger data set then the one used here, but still, it gives
an idea of how the SOM works.

In Figure 3.13 is the quantization error plotted. The first four bars is the
quantifization error for data before measurement 16, while the remaining

62



Chapter 3. Multivariate Quality Control and Diagnosis

ones are the quantifization errors for data after the 16:th measurement. The
quantifization errors obviously increase after measurement 16, indicating
that the process is no longer in the normal operation state.

Quantification error

1 2 3 4 5 6 7 8 9
Observation No

Figure 3.13: Quantization error for a SOM for bumper assembly. The first
four bars correspond to observations before the fixture failure occurred, while
the remaining five bars correspond to observations after that fault.

3.3.5 Fixture failure index

In this section, as well as in the following one, special methods for exam-
ining the occurrence of fixture faults are considered.

Carlson et al. (4), introduce a fixture failure index in order to deter-
mine if a fixture failure is present. To calculate this index the sensitivity
matrix, A, must be known. The sensitivity matrix describes the connection
between a displacement in the locators and the resulting displacement in
the inspection points. This means that a displacement, d, in the inspection
points can be expressed as

d = A§,

where ¢ is a small displacement in the locators. The matrix A is calculated
analytical or numerical, see Carlson and Séderberg (5).

In order to calculate the fixture failure index the observations are split
into two orthogonal subspaces, the failure subspace and the noise subspace.
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The failure subspace contains the fixture errors and the residual errors,
and the noise subspace contains no fixture errors. A measurement x can
accordingly be written as

x=UU ' x+ U, UL x,

where U, is an orthonormal basis for the r-dimensional column space of
the sensitivity matrix A and U,_, is an orthonormal basis for the (p — r)-
dimensional null space of AT.

This decomposition makes it possible to calculate the fixture failure
variation index, ¥, by comparing the amount of variation in the failure
subspace with the total variation;

. Trace(U,ULS,U,UT)
B Trace(X,)

A value of ¥ close to one indicates a fixture fault. When there is no
fixture fault variation, the expected value of ¥ is r/p.

Since an estimate of the covariance matrix must be used, an uncertainty
in the calculations arise. This uncertainty is taken care of by introducing
an approximate confidence interval, derived by Carlson et al (4). The
confidence interval for the fixture failure variation index is, when a = 0.05,
given by

& +1.96V72 where

(1 — ¥)2Trace(UT S, U,)% + l112”I‘ramce(UpT_TkS’a,;Up,r)2

22 _9 (n — 1)(Trace(S,))?

Test on data

In Figure 3.14 the variation index, ¥, is plotted for the side panel assem-
bly. The index is calculated for each group of observations using a moving
estimate of the within variance-covariance matrix over seven groups.

If there is no fixture fault the expected value of the index is r/p, where
r is the rank of the sensitivity matrix A and p is the number of inspection
points. This value corresponds to the horizontal limit in Figure 3.14. In
Figure 3.14 the fixture failure index and the 95% confidence interval are
plotted. The index is based on the within group variation, i.e. S, = X..
The index indicates that a fixture failure may be present.
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Figure 3.14: Fizture failure variation index, side panel assembly.

This method is also applied on the bumper assembly. Since the data is
ungrouped the covariance matrix is calculated by a moving estimate. The
index is above the limit for all groups, see Figure 3.15. The index is even
closer to one after the 16:th measurement. The increased variation after
measurement 16 is consequently probably due to fixture faults. This con-
clusion is in accordance with the information known; there is a noticeable
fixture fault in measurement 16 to 36.

3.3.6 Fixture failure subspace chart

To control the variation that originates from the fixtures, the amount of
variation in the fixture failure subspace can be studied. The fixture failure
subspace is spanned by U,., the orthonormal basis for the r-dimensional
column space of the sensitivity matrix A. The vectors that span A can be
collected into the matrix P, and the same method as in Section 3.3.2 can
be used by considering the statistics

T}iture = (@ — )" PP'S™' PP (z — 7),
and

SPEfizture = (ZI) - PPT{E)T(:B — PPTII:)
The control limit for the 7?2

fizture
control limit is not yet developed.

-chart is x2(a). For the SPE-chart a
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Figure 3.15: Fizture failure variation index, bumper assembly.

Test on data

In Figure 3.16 the T7;,,,,..-statistic for the outer panel assembly is plotted.
As a control limit x2(0.001) is used. The SPEj;ztyre-statistic measure the
amount of variation that are not contained in the fixture failure subspace.

The chart in Figure 3.16 is based on measurements with the trends
eliminated, i.e. z;,% = 1,...,601. The chart indicates that there is too
much variation in the fixture failure subspace.

In Figure 3.17 the T]?mme is plotted for the bumper assembly. The
chart alarms before measurement 16 (i.e. before the known fixture related
error) and indicates, just like the fixture index, that there are some fixture
related errors in measurement one to 16 as well. After measurement 16
there is a considerable change in T]?iwtwe and it is obvious that there is
increased variation in the fixture failure subspace.
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Figure 3.16: T)?iwtme— and SPEf;ziure-chart to control the variation in the
fixture failure subspace, side panel assembly.
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Figure 3.17: T)?iwtme— and SPEy;ziure-chart to control the variation in the
fixture failure subspace, bumper assembly.
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3.4 Fixture diagnosis

The methods described in Section 3.3 are used to control the process. Usu-
ally, the root cause of a problem detected by statistical process control
methods is not known. The fault can depend on material, external circum-
stances, fixture faults and so on. In the previous section some methods for
discovering fixture related faults were given. If a process is out of control
and the fixture fault index is below the corresponding limit the fixtures
can be excluded from the list off possible root causes. If the index is above
the limit the root cause is probably fixture related and then it is of course
desirable to find out what fixture and what locator that caused the prob-
lem. In this section some suggestions of how to identify the cause of fixture
related faults are given.

The methods of fixture diagnosis can be divided into two separate
groups of approaches; the methods that require knowledge of the assem-
bly process, coordinates of inspection points et cetera and the data based
methods that only utilize inspection data for diagnosis.

3.4.1 Root Cause Analysis

One way to find the reason of the unwanted variation in the inspection
points would be to estimate the variation in each locator of the fixtures
involved. The locator or locators affected by most variation is said to be
the root cause of the variation. This approach is considered by Carlson and
Soderberg (6), and requires knowledge of the assembly process.

The inspection data are supposed to have covariance matrix ¥,. When
the fixture failure index is large, we will assume that ¥, can be written as

Y, = ANAT 4+ 671, (3.2)

where A is the sensitivity matrix and Aj is a diagonal locator covariance
matrix. The model
Y, = AY;AT + 671,

can also be used. Here, the locator covariance matrix Y4 is a full matrix.
However, the condition that the locators will be independent, and conse-
quently that the covariance matrix will be diagonal, is usually no limitation,
since variation in one locators seldom affects other locators. Therefore, the
model described in Equation (3.2) will be used.

The measurements are supposed to follow a multivariate normal distri-
bution. If it is possible to estimate the elements in A, the diagnosis can be
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accomplished. A maximum likelihood estimate of As and o2 can be found

by maximizing the likelihood function
n

@ 1, Tp) = 2log det(27X,) — gTrace(Eglsz)

n 1o _
— o Trace(¥; (2 — p)(@ — p)").
The maximization may be done numerically by Fishers scoring method;

more about this method can be read in J6reskog (22). Large sample confi-
dence regions for the estimates may be constructed.

Unfortunately, it is not always possible to separate variation from dif-
ferent locators. The reason for this is that two locators can cause the same
dimensional deviation in the inspection points. If this is the case, the as-
sembly is said to be incomplete diagnosable. The conditions for complete
diagnosability implies the following relation

AAlAT + O'%Ip = AAQAT + Ung < Al = Ay and 01 = 0s.

This condition can be rewritten as 7' = A ® A have full rank, Carlson and
Soderberg (6). Further, the number of inspection points must exceed the
number of locators analysed. If a full locator covariance matrix is used, the
condition on A for complete diagnosability is strengthened to A having full
rank. If the assembly is not completely diagnosable, it is still possible to
perform a diagnosis. By solving the linear programming problems

maxy \g

IAX=LX,A>0

miny Ag
IAX=LX\",A>0

for each k, the minimal and maximal possible locator variance can be found.
Here, L is an orthonormal basis matrix, V,., for the r-dimensional column
space of TT and A\* is a particular solution of the problem.

The estimation of locator variances is also considered by Ding et al.
(11). They rewrite Equation (3.2) as
vec(Z,) = T vec(As) + vec(I)o?.
Using the notation B = [T vec(1,,)] and d = vec(X,) this can be written as
B)\* =d,

and the the equation is solved by multiplication with the inverse of B.
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Test on data

The outer side panel assembly considered in Section 3.2 is incompletely di-
agnosable, and the minimal and maximal variation for each locator can be
seen in Figure 3.18. The method by Carlson and Séderberg (6) is used for
this case. The variation is calculated from measurement 53 to measurement
60, which is a period with a high fixture failure index. The horizontal limit
in the figure correspond to 66 = 0.5 mm, which seems to be reasonable to
use as a an upper limit for the allowable variation in a locator. As seen in
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o

N
T

Variation [mmz]
o
o
2
o
T

o

=)

2
T

0.005

Locator Number

Figure 3.18: Minimal and mazimal variation in the locators due to incom-
plete diagnosability, side panel assembly. The extension of the dark area is
from the minimum variance to the maximum variance.

Figure 3.18, the interval from minimal to maximal variation for locator 1
is the only one which is above the limit. Therefore, this locator is pointed
out as the main root cause. Locator 1 is a hole in the front part of the
assembly, controlling the assembly in z-direction.

The methods are applied on the bumper assembly as well. The assem-
bly is completely diagnosable. Here, both the estimates by Carlson and
Soderberg (6) and by Ding et al. (11) are tested. The estimates can be
seen in Figure 3.19. The first bar in each pair corresponds to the estimate
developed by Carlson and Séderberg and the second one to the estimate
by Ding et al.. Locator number six is the one containing most variation ac-
cording to both estimates. There is also much variation in the first locator
according to the second method. The sixth locator is a pin/hole contact
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controlling translation in y-direction. In this case study there is a key; the

Estimate of 60 for each locator, two different methods
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Figure 3.19: FEstimate of 60 for the bumper assembly, measurement 17 to
36. The first bar in each pair corresponds to the estimate by Carlson and
Soderberg, while the second one corresponds to the estimate by Ding et al.

adjustment made was a correction of the pin/hole contact, i.e. the sixth
locator in Figure 3.19. This adjustment reduced the variation in the mea-
surements. This locator was pinpointed as the locator with most variation
by both methods. However, the method by ding et al. indicated almost as
much variation in the first locator.

There is also considerably variation in locator one, three and four. The
fixture index indicated that there were fixture related variations in the
process in measurement one to 16, i.e. before the variation in locator six
occurred. Possibly the variation in these measurements could have been
reduced by an adjustment of locator one.

3.4.2 Principal Component Analysis

In Section 3.3.2 PCA was described and utilized as a tool for process control.
However, it is also possible to identify the sources of variation using PCA.
Hu and Wu (17), propose that the result of a PCA can be interpreted by
plotting the elements of each eigenvector at the respective inspection point
location. If the normal directions of the inspection points are of opposite
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signs, it is important to include this information in the analysis. It is con-
venient to plot the eigenvector times the sign of the normal direction of the
respective inspection point. This approach is data based, so when using
this method there is no need to calculate the sensitivity matrix used in
Section 3.4.1.

The PCA is conducted on the estimated joint covariance matrix, S, for
the inspection points evaluated in all directions. This seems to be a more
attractive approach than the method conducted by Hu and Wu (17). Their

Figure 3.20: Top: A box with four inspection points. To the right the box
is rotated. Bottom: Principal components. To the left, based on the joint
covariance matriz and to the right, based on separate covariance matrices.
Observe that the right angle between the sides of the rotated box (illustrated
by the dotted line) is preserved in the left picture, but not in the right one.

method is based on separate PCAs on the covariance matrix for the inspec-
tion points in each direction. The difference is illustrated in the following
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example. Consider a box with four inspection points, see the upper part
of Figure 3.20. Two of the points are evaluated in the y-direction, and
two are evaluated in z-direction. The box is rotated around the z-axis as
shown in the right-hand upper part of Figure 3.20. In the bottom part of
Figure 3.20 the principal components for this rotation are outlined. If the
principal components are based on the joint covariance matrix for the four
inspection points the geometry of the box is preserved. If the PCA is based
on the two separate covariance matrices, the relation between the y-plain
and the z-plain of the box is lost, and less information of the deviation can
be extracted.

If the separate matrices are considered it is difficult to compare the
amount of variation explained by the principal components in the different
directions. Therefore, when comparing the length of the eigenvectors of
the different covariance matrices, the geometric proportions between the
movements in z- and z-directions are not preserved.

Test on data

The analysis is now applied to the case studies. As before, only the within
group variation, X, is considered in the side panel assembly, and the prin-
cipal component analysis is conducted on this matrix. This results in two
principal components that together contain 78% of the total variation. In
Figure 3.21 and Figure 3.22 the elements of the eigenvectors are plotted
at the respective inspection point location. The first eigenvector, repre-
senting 58% of the total variation, corresponds mainly to a translation in
z-direction, see Figure 3.21. The second eigenvector corresponds mainly to
a translation in z-direction, see Figure 3.22. These translations are though
combined with rotations, since the arrows, representing movements in dif-
ferent inspection points, are of unequal length.

The first principal component, explaining much of the variation in the
assembly, corresponds mainly to a translation in z-direction. The conclu-
sion must be that the root cause is one of the locators that position the
assembly in z-direction. In the previous section was locator number one
pointed out as the root cause. This locator was positioning the side panel
in z-direction. However, the interpretation of the analysis is not completely
obvious, since the translation is combined with a rotation.

The method is also applied to the bumper assembly. Here is the in-
terpretation of the result more clear. In Figure 3.23 is the first principal
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Figure 3.21: The first eigenvector, representing 58% of the variation, side
panel assembly.

Figure 3.22: The second eigenvector, representing 20% of the variation,
side panel assembly.

component drawn. This component explains 90% of the variation in data
and indicates that there has been a translation in y-direction. This is in
agreement with the conclusion drawn in Section 3.4.1.

This method is illustrative and no sensitivity matrix is needed. How-
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Figure 3.23: The first principal component. Contains 90% of the variation,
bumper assembly.

ever, the method does not give a result as exact as the methods described
in Section 3.4.1. This visual RCA is best suited for detecting single locator
fault for small assemblies in one station (to avoid reorientation).

3.4.3 Designated Component Analysis

Designated Component Analysis (DCA) is an approach to fixture fault
analysis developed by Camelio and Hu (3). DCA requires knowledge of
the sensitivity matrix A. It is aiming to identify multivariate patterns,
just like the PCA. This is achieved by defining a set of mutually orthogo-
nal variation patterns with known physical interpretations. In sheet metal
assembly processes, the physical interpretations are usually rigid body mo-
tion. Hence, the assembly variation can be decomposed in terms of all rigid
body motions.

The designated patterns, denoted d;, i = 1,...,p, span the subspace of
the sensitivity matrix A. Their corresponding designated components, w;,
can be calculated from inspection data X in the following way:

w; :dzT*X, i=1,..,p
The inspection data can then be expressed as the sum of rank one matrices:

X=P+Py+..+P,
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where
Pi=d;xw;,i=1,...,p.

Using this decomposition, the multivariate variation contained in X can be
separated into p terms, each corresponding to a designated pattern.

When the designated components are calculated they can be analysed
and removed from the original data. The remaining variation, contained
in the residuals, R = X — ). P;, can be analysed by applying the prin-
cipal component analysis described in the previous section to the residual
covariance matrix Sg.

Test on data

When applying DCA to the side panel assembly described in Section 3.2
the three first designated patterns, corresponding to rigid body motions,
are obtained. These span the subspace of the sensitivity matrix A. The
first designated variation pattern contains 42% of the variation; the sec-
ond 37% and the third one contains 21%. The first designated pattern,
see Figure 3.24, seems to correspond to a translation in z-direction, but
only in three out of four points. Therefore, this designated pattern can-
not be interpreted. The second DC, see Figure 3.25, is also difficult to
interpret. The third designated pattern, in Figure 3.26, corresponds to a
translation in z-direction in two of the three points evaluated in z-direction.

Figure 3.24: First DC side panel, explains 42% of the variation.
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Figure 3.25: Second DC, side panel assembly, explains 37% of the variation

Figure 3.26: Third DC, side panel assembly, explains 21% of the variation.

After removing the designated components from data, a principal com-
ponent analysis of the residuals is carried out. This gives the fourth, fifth
and sixth designated components. The fourth DC, see Figure 3.27, cor-
responds to 75% of the variation in the residuals, and is also difficult to
interpret.

In the second case study, the bumper assembly, three designated com-
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Figure 3.27: Fourth DC, side panel assembly, explains 75% of the variation
in the residuals.

ponents corresponding to rigid body movements caught by the model were
included.

Figure 3.28: The first designated component, bumper assembly. Contains
38% of the variation.
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Figure 3.29: The second designated component, bumper assembly. Contains
37% of the variation.

The first component shown in Figure 3.28, explains 38% of the variation
caught by the model and corresponds mainly to a translation in y-direction.
The second component, see Figure 3.29, corresponds to a rotation around
the z-axis, just like the third one, Figure 3.30. The second designated com-
ponent contains 37% of the variation caught by the model and the third
one contains 13%.

In the bumper assembly the DCA method points out translation in y-
direction as a major root cause, just like the other methods tested. Some
kind of rotation around the z-axis is incorrectly pointed out by DCA. When
it comes to the side panel assembly there is no obvious interpretation of
the results. The first DC seems to mainly correspond to a translation in
z-direction, but only in three out of four inspection points. The second DC
gives contradictory results, just like the third.
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Figure 3.30: The third designated component, bumper assembly. Contains
13% of the variation.

80



Chapter 3. Multivariate Quality Control and Diagnosis

3.5 RCA on another case study

Among the methods for diagnosis that was tested, the RCA described by
Carlson and Soderberg (6) gives the most easily interpreted result. This
method gave also the best agreement with the corrections known to be
done in the bumper assembly. On the other hand, there is need of much
information about the assembly considered. In this section this method
will be further tested on industrial data in order to evaluate its usefulness.

3.5.1 The assembly

The assembly considered is a rear wheelhouse. The wheelhouse consists of
five parts and is assembled in two stations. In the first station the wheel-
house panel is positioned and three different reinforcements are assembled
to the panel, see left part of Figure 3.31. As shown in the right part of Fig-
ure 3.31 this subassembly is then put together with the last part of the rear
wheelhouse, namely the support for the parcel shelf. Finally, the complete

Station 1

Station 2

=

Figure 3.31: In station one three reinforcements are assembled to the wheel-
house panel. In station two the subassembly from station one is put together
with the support for the parcel shelf.

wheelhouse is measured in an inspection station. It is important to note
that the subassembly from station one is positioned in station two using
the locators of the wheelhouse panel. This is also the case when the wheel-
house is measured; the locators used can be seen in Figure 3.32. Using
those locators results in that a variation in the contact between locator
and wheelhouse panel in station one will never be seen as a variation in the
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Figure 3.32: To the left: The locators used to position the subassembly
during inspection. To the right: The inspection points are illustrated by
arrows.

inspection points at the wheelhouse panel. Instead, this variation appears
in the inspection points situated on the reinforcements that are joined to
the panel in the first station. If there is variation in the contacts between
the locators and the panel in the second station, this will result in variation
in the inspection points on the parcel shelf support. In the right part of
Figure 3.32 the 38 inspection points utilized for analysis are illustrated.

RCA is a method that demands knowledge about the sensitivity ma-
trix A, describing the relation between movements in inspection points and
movements in the contact between locators and parts. In this case the
sensitivity matrix is determined by using simulations in a program called
“Robust Design and Tolerancing” (RD&T). It is necessary to describe how
every included part is positioned and if the position is completely deter-
mined by the fixture or if the mating part positions the part in some direc-
tion. The coordinates of the inspection points are also required.
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3.5.2 Inspection data

The complete wheelhouse assembly is measured using a coordinate mea-
surement machine. Totally, 38 inspection points are used in the analysis.
There are 14 samples of wheelhouses, where each sample consists of three
consecutive parts. The inspection data can be seen in Figure 3.33.

Measurement wheelhouse
2.5 T T T T

[mm]
o

ANOTR A ’ "‘

N
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5 10 15 20 25 30 35 40
Observation No.

Figure 3.33: Measurements of 42 wheelhouses in 38 inspection points. De-
viations from nominal value are measured.

The inspection data can be influenced by a lot of different sources of
variation. Some of the variations are long-term variations, which slowly
change the process over time, for example variations due to changes in
raw material or wear in tools. To avoid mixing up these sources of vari-
ation with variation caused by the fixtures, only within samples variation
is considered. This is logical since if there is fixture related variation, this
variation will affect every produced item, and consequently also contribute
to the variation within every sample.

In order to decide if the variation in data can be a consequence of vari-
ation in the contacts between parts and locators, the fixture fault variation

83



Chapter 3. Multivariate Quality Control and Diagnosis

index is determined. The index is calculated for each sample, see Figure
3.34. Since the index is above the line corresponding to the value of ¥ when

Fixture Variation Index

-

12F -~ = 1

Sample No.

Figure 3.34: Fizture fault variation index for 14 samples.

there is no fixture fault, it seems reasonable to continue with the root cause
analysis.

3.5.3 Root Cause Analysis

To conclude what fixture or fixtures that caused the variation, the variation
in the contact between parts and locators are estimated using inspection
data. This is done for most of the locators. Some locators are though
excluded. The reason is that it otherwise would be necessary to use more
inspection points in order to carry out a complete analysis.

In Figure 3.35 are the estimated variances shown. As seen, the major
source of variation is the contact between the locator called B2 and the
wheelhouse panel in the first station. The locator B2 consists of a pin in a
slot and position the wheelhouse panel in z-direction, see Figure 3.36.
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Estimated variation in contacts
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Figure 3.35: Estimated variance in the contacts between parts and locators.

3.5.4 Adjustment of the fixture

RCA is a tool for identifying the fixture related sources of variation in a
process. When this identifying is done, the result should be translated into
an adjustment of the fixtures. It is though important to note that RCA
gives no outline for this adjustment. The work of doing the adjustment
should be done by someone with good knowledge of the process and a good
understanding about how different kinds of locators affect the positioning
of parts.

Since the contact between the wheelhouse panel and the locator B2 was
pinpointed as a major source of variation this locator is adjusted. The
adjustment consists of changing the pin in B2 to an egg-shaped pin cor-
responding to the shape of the slot. After this modification 24 complete
wheelhouses are measured. Unfortunately, this adjustment did not reduce
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Figure 3.36: The contact B2 in station 1 is a major source of variation.

the variation. The variation in the inspection points situated on the rein-
forcements assembled in station one increased, see Figure 3.37. As men-
tioned before, variation in the positioning of the wheelhouse panel in station
one, will give rise to variation in the inspection points on the reinforcements
assembled to the panel in station one. The reason is that the wheelhouse
assembly is positioned using the locators of the panel in the inspection sta-
tion.

The adjustment lead to increased variation in the inspection points,
but it is still of interest to analyse the inspection data after the adjust-
ment to estimate the corresponding variation in contacts between parts
and locators. In Figure 3.38 is the estimated variation before and after the
adjustment shown. Here, the locators in station two are excluded, since
they are not involved in the adjustment.

From Figure 3.38 it can be seen that the variation in the contact between
the part and the adjusted locator B2 undoubtedly has increased. The
variation has also increased in the contact between the panel and the locator
A2. This locator is situated just beside B2, and position the panel in y-
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Inspection data after adjustment
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Figure 3.37: Inspection data after the adjustment.

direction.

3.5.5 Conclusions of the case study

Since the adjustment of the fixtures is well known it is a very good case for
testing the method. In this case the variation increased, but the important
thing is that the locator corresponding to these increased variation could
be pinpointed by using RCA.

If the case would have been the reversed, i.e. there would have been
much variation because of an unsuitable positioning element (like B2 after
the adjustment), the method could have been used to pinpoint the source
of the variation and is thereby a tool for reducing the variation.
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Estimated variation in contacts before and after adjustment
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Figure 3.38: For each locator the left bar corresponds to estimated variation
in the contact between part and locator before adjustment, and the right bar
corresponds to estimated variation after the adjustment.
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3.6 Discussion and conclusions

Different methods for as well multivariate quality control as diagnosis have
been tested on the case studies. Both case studies turned out to be out
of statistical control. The second case study, the bumper assembly, was
in advance known to be out of control due to a fixture failure occurring
after 16 measurements. This fixture failure occurred as a result of a defect
locator in y-direction. No prior information of fault or fault types were
available when it comes to the side panel assembly, but the result from
different methods can still be compared.

3.6.1 Process control

The T2-chart is one of the most popular multivariate charts and it works
satisfyingly on the case studies. It detects quickly the change in the process
of the bumper assembly. The covariance matrix for the inspection data is
though nearly singular. This affects the T?-statistic and may in some cases
lead to misinterpretations. When it comes to the side panel assembly there
are several alarms even though trends in data are eliminated. The T'2-
chart requires no advanced calculations and is easy to use. A disadvantage
is that the chart gives no indication of which inspection points that caused
an alarm. The chart is also based on the assumption that data is normally
distributed.

The PCA- and SPE-chart is similar to the T2-chart but operates in the
subspace spanned by the principal components. This means that the dimen-
sion of data is reduced, but in the same time some information is lost. In
addition there is need of two charts, both the T2, and the SPE-chart. The
PCA/SPE chart alarms after the change in the bumper assembly process,
nevertheless there is a delay compared to the T2-chart. The PCA-chart
are, unlike the usual T'2-chart, not affected by singularity in the covariance
matrix.

Regression adjustment differs from the other charts. This method can
be used for controlling mean and variance separately, which is an advantage.
However, this is also possible to achieve by using a T'2>-chart complemented
by a multivariate chart for controlling within group variation. However,
such a chart can be complicated to use when the data are ungrouped. The
regression adjustment chart is suitable when only a few of the variables are
expected to change. However, this is usually not the case if the fault is
caused by fixture fault. This property makes this chart unsuitable for con-
trolling the process from the case studies. Using this chart it is necessary
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to generate one chart for each variable, but on the other hand this chart
indicates what variable causing an alarm.

To train a SOM there is need of much data, but there is no need of
assumptions on distribution of the data. In some cases the SOM helps
finding the root cause of an erroneously state.

The fixture fault index and the fixture fault chart are both aimed to
detect fixture related faults. For both methods there is need to know the so
called A-matrix, the sensitivity matrix relating a movement in the locators
to a corresponding movement in the inspection points. The methods are
also intended for normally distributed data. The fixture fault index is use-
ful when it comes to find the root cause of a variation. If the index is high a
fixture probably caused the fault and the main efforts can be concentrated
to examining the fixtures. The methods work well on the case studies.

Method Panel ass. Bumper ass. | Remarks
T2_Ch art 5 alarms Alarm after mea | Sensitive to S
16 almost singular
T2 /SPE. |3 alarms Alarm after mea | Not sensitive to S
e 16 almost singular
Reg. ad_] Many alarms Alarms, but no | Most suitable
obvious change | when few
after mea 16 variables change
ot teste vious change o assumptions
SOM Not tested Obvi hang N pti
after mea 16 about
distribution
i any alarms arms, obvious ecialized for
Fixture Many al: Al bvi Specialized f
: change after mea | controlling
index 16 fixture faults
T2f /SPE Many alarms Alarms, obvious | Specialized for
Ixture change after mea | controlling
16 fixture faults

Figure 3.39: A comparison of the different methods used for multivariate

quality control.

In Figure 3.39 the performances of the different charts are tabulated.
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3.6.2 Fixture fault diagnosis

When it comes to finding the cause of the fixture fault there are two main
methods, namely the RCA and the both visual methods PCA and DCA.
The RCA is more complex then the PCA and DCA methods. On the other
hand the result is clear and easy to interpret. In the PCA-method there
is no need of the sensitivity matrix A, which is demanded in the RCA and
DCA methods. For both PCA and DCA the calculation is simple, but
the interpretation of the result is not always trivial. The DCA is similar
to the PCA, but is specialized to find fixture faults. A drawback of DCA
compared to PCA is that the sensitivity matrix is needed.

When applying the methods to the case studies the RCA identified the
failing locator in the bumper assembly. This is a locator in y-direction and
also the PCA and the DCA show translation in y-direction as a main prob-
lem. In this case there is only one locator in y-direction and this locator
is consequently pointed out as the main cause of the variation. If there
would have been several locators in y-direction, it might have been hard to
separate them using the visual methods. The DCA does also incorrectly
point out rotation around the z-axis as a root cause.

In the side panel assembly a pin/hole contact in z-direction located in
the front of the doorframe is pointed out as the root cause by the RCA.
This is confirmed by the PCA, where the first eigenvector corresponds to
a translation in z-direction. This translation is though combined with a
rotation. The designated components are very difficult to interpret and
seem to give contradictory results. The multi-fixture side panel assembly
is not completely diagnosable and both the visual methods PCA and DCA
are very hard to interpret.

To sum up, PCA and DCA is easy to calculate and when using the
PCA there is no need to know the sensitivity matrix A. However, the
methods seem to be best suited for identifying single locator fault in small
completely diagnosable assemblies. The RCA is a more versatile method
that gives more exact results. However, to use this method the sensitivity
matrix must be known.
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