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Abstract. A fully explicit, discontinuous hybrid finite element/finite difference method is proposed for the numerical solution
of Maxwell’s equations in the time domain. We call the method hybrid since the different numerical methods, interior penalty
discontinuous finite element method, developed in [1], and finite difference method [2], are used in different parts of the
computational domain. Thus, the flexibility of finite elements is combined with the efficiency of finite differences. Our
numerical experiment illustrates stability of the proposed new method.

Keywords: adaptive finite element method, discontinuous finite element method, hybrid FEM/FDM methods, Maxwell’s equations
PACS: 41.20.Jb, 42.30.Va, 42.30.Wb, 45.10.Db, 46.40Cd

INTRODUCTION

In real life applications unknown material coefficients and geometric singularities occupy only a small part of the

computational domain Ω. It is well known that the Finite Difference Time-Domain (FDTD) scheme [2] is simple and

efficient for solution of Maxwell’s equations. However, it can be applied only on structured meshes. On other hand,

Finite Element Method (FEM) can handle complex geometries using unstructured mesh discretization. Thus, hybrid

FEM/FDTD method for solution of Maxwell’s equations combines advantages of both schemes by using flexibility of

Finite Elements with efficiency of FDTD scheme.

In our hybrid method the computational domain Ω is divided into two subregions, ΩFDM and ΩFEM , corresponding

to the FD and the FE regions, respectively, such that Ω = ΩFDM ∪ ΩFEM . These two regions are meshed using

structured and triangular/tetrahedral meshes, respectively, with common nodes shared at the interface. Typically, the

unstructured region ΩFEM is much smaller than ΩFDM . We assume that ΩFEM lies strictly inside Ω, that is away from

the physical boundary Γ. It may consist of one or more subdomains and typically covers only a small part of Ω.

While in ΩFDM FDTD scheme [2] is used, for the FE discretization of Maxwell’s equations in ΩFEM we use interior

penalty discontinuous Galerkin method (IPDGFEM) developed in [1] which lead to diagonal mass matrice and fully

explicit scheme. By adding suitable bilinear forms (numerical fluxes) to the standard variational formulation continuity

across element interfaces is weakly enforced and thus, implementation of IPDGFEM using piecewise-linear functions

is allowed. Efficiency of the resulting hybrid scheme in Ω is obtained by using mass lumping in both space and time

in ΩFEM , which makes the scheme fully explicit [1].

MAXWELL’S EQUATIONS

We consider Maxwell’s equations in an inhomogeneous isotropic medium in a bounded domain Ω ⊂R
d , d = 2,3 with

boundary Γ:
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∂D

∂ t
−∇×H =−J, in Ω× (0,T ),

∂B

∂ t
+∇×E = 0, in Ω× (0,T ),

D = εE,

B = µH,

E(x,0) = E0(x),

H(x,0) = H0(x).

(1)

Here E(x, t) and H(x, t) are the (unknown) electric and magnetic fields, whereas D(x, t) and B(x, t) are the electric and

magnetic inductions, respectively. The dielectric permittivity, ε(x)> 0, and magnetic permeability, µ(x)> 0, together

with the current density, J(x, t) ∈ R
d , are given and assumed piecewise smooth. Moreover, the electric and magnetic

inductions satisfy the relations

∇ ·D = ρ , ∇ ·B = 0 in Ω× (0,T ), (2)

where ρ(x, t) is a given charge density. For simplicity, we restrict ourselves to perfectly conducting boundary condi-

tions

n×E = 0, on Γ× (0,T ),

H ·n = 0, on Γ× (0,T ),
(3)

where n is the outward normal on Γ.

By eliminating the magnetic field from (1) we obtain vector wave equation with for the electric field E

ε
∂ 2E

∂ t2
+∇× (µ−1∇×E) =− j, (4)

with appropriate initial conditions and perfectly conducting boundary condition (3). In ( 4 ) the source function j is

defined as j = ∂J
∂ t

. Equation for magnetic field H can be obtained similarly by eliminating the electric field from (1).

Discontinuous finite element method

For the finite element discretization of (4) we use IPDGFEM developed in [1] together with initial conditions

∂E

∂ t
(x,0) = E(x,0) = 0, in Ω, (5)

and perfectly conducting boundary condition

n×E = 0, on Γ× (0,T ). (6)

In ΩFEM we associate with Kh a mesh function h, which represents the mesh size of Kh given by h = maxK∈Kh
hK ,

where hK is the diametr of the element K. Next, we denote by F I
h the set of all interior faces of elements in Kh and by

FB
h the set of all boundary faces of elements in Kh, and denote by Fh := F I

h ∪FB
h . If µ is discontinuous then the local

mesh sizes are of bounded variation such that there exists a constant k > 0 which depends only on the shape regularity

of the mesh such that kh+K ≤ h−K ≤ k−1h+K where K+ and K− are neighboring elements in the mesh.

For the time discretization we let Jτ = {J} be a partition of the time interval I = [0,T ], where 0 = t0 < t1 < ... <
tN = T is a sequence of discrete time steps with associated time intervals J = (tk−1, tk] of constant length τ = tk − tk−1.

Let w is a piecewise smooth vector-valued function and f ∈ F I
h be an interior face shared by two neighboring

elements K+ and K−. Denoting by w± the traces of w taken from K±, respectively, the tangential jumps and averages

across f defines as follows

[[w]] := n+×w++n−×w−, {{w}} :=
w++w−

2
, (7)
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respectively. On boundary faces we set [[w]] := n×w and {{w}} := w.

For a piecewise smooth scalar function ϕ with ϕ± := ϕ|±K the tangential jumps and averages across f defines as

follows

[[ϕ]] := n+×ϕ++n−×ϕ−, {{w}} :=
ϕ++ϕ−

2
, (8)

respectively. On boundary faces we set [[ϕ]] := n× ϕ and {{ϕ}} := ϕ . We note that the jump [[ϕ]] of the scalar

function ϕ across f is a vector tangential to the normal to f , and the jump of vector function w is a scalar quantity.

To formulate a finite element method for (4), (5) and (6) we introduce the finite element trial space W E
h , defined by

W E
h := {w ∈W E : w|K×J ∈ [P1(K)×P1(J)]

3, ∀K ∈ Kh, ∀J ∈ Jτ},

where P1(K) and P1(J) denote the set of discontinuous linear functions on K and continuous on J, respectively, and

W E := {w ∈ [H1(Ω× I)]3 : w(·,0) = 0, n×w|Γ = 0}.

We also define the following L2 inner products and norms

((p,q)) :=
∫

Ω

∫ T

0
pqdxdt, ‖p‖2 = ((p, p)),

(α,β ) :=
∫

Ω
αβ dx, |α|2 = (α,α),

The discontinuous finite element method for (4) now reads: Find Eh ∈W E
h such that ∀ϕ̄ ∈W E

h ,

−((ε
∂Ek

h

∂ t
,

∂ ϕ̄

∂ t
)) + ((

1

µ
∇×Ek

h ,∇× ϕ̄))+(( jk, ϕ̄))−
∫ T

0

∫

Fh

[[Ek
h ]] · {{

1

µ
∇× ϕ̄}} ds dt (9)

−
∫ T

0

∫

Fh

[[ϕ̄]] · {{
1

µ
∇×Ek

h}} ds dt +
∫ T

0

∫

Fh

a[[Ek
h ]] · [[ϕ̄]] ds dt = 0. (10)

Here, the initial condition
∂Eh

∂ t
(x,0) = 0 and perfectly condacting boundary conditions are imposed weakly through

the variational formulation. We also used the notation
∫

Fh
ϕds := ∑ f∈Fh

∫

f ϕds.
The function a is called interior penalty stabilization function and is defined as

a := αm−1h−1, (11)

where α > 0 is a parameter independent of the mesh size and the wave number. The functions h and m are defined as

in [1].

The explicit scheme for the electric field

To solve (9) we apply discontinuous finite element method of piecewise linear functions in space and continuous in

time, and seek a discrete solution E ∈W E
h presented by functions E(x, t) = ∑N

l=1 ∑M
i=1 El

iϕi(x)ψl(t), where {ϕi(x)}
M
i=1

is basis of discontinuous piecewise linear functions in space and {ψl(t)}
N
l=1 is a basis of continuous linear functions

in time. This yields the linear system of equations:

M(Ek+1 −2Ek +Ek−1) = −τ2Fk − τ2K(
1

6
Ek−1 +

2

3
Ek +

1

6
Ek+1)

+ τ2Ak
(1

6
[[E]]k−1 +

2

3
[[E]]k +

1

6
[[E]]k+1

)

(12)

+ τ2Bk
(1

6
{{E}}k−1 +

2

3
{{E}}k +

1

6
{{E}}k+1

)

− a τ2Ck
(1

6
[[E]]k−1 +

2

3
[[E]]k +

1

6
[[E]]k+1

)

,
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with initial conditions E0 and E1 set to zero because of (5). Here, M is the block mass matrix in space, K is the block

stiffness matrix corresponding to the curl term, A,B and C are the stiffness matrices corresponding to the tangential

jumps, averages and penalization terms in (9), correspondingly, Fk is the load vector at time level tk corresponding to

j(·, ·), whereas Ek denotes the nodal values of E(·, tk).
At the element level the matrix entries in (12) are explicitly given by: Me

i, j = (ε ϕi,ϕ j)e,K
e
i, j = (µ−1 ∇×ϕi,∇×

ϕ j)e,Ai, j
f = (ϕi,{{µ−1 ∇×ϕ j}}) f ,B

f
i, j = (µ−1 ∇×ϕi, [[ϕ j]]) f ,Ci, j

f = (ϕi, [[ϕ j]]) f ,F
e
j = ( j,ϕ j)e.

Since mass matrix in discontinuous finite element method is always block-diagonal, it can be inverted and yield fully

explicit time stepping method, if mass lumping is used also in time with replacing the terms 1
6
{{E}}k−1 + 2

3
{{E}}k +

1
6
{{E}}k+1 and 1

6
[[E]]k−1 + 2

3
[[E]]k + 1

6
[[E]]k+1 by {{E}}k and [[E]]k, correspondingly, in (12):

Ek+1 =− τ2M−1Fk +2Ek − τ2M−1KEk −Ek−1

+ τ2M−1Ak[[E]]k + τ2M−1Bk{{E}}k −a τ2M−1Ck[[E]]k.
(13)

THE HYBRID METHOD

To formulate the hybrid method we note first, that the interior nodes of the computational domain Ω belong to either

of the following sets:

ωo nodes ’o’ interior to ΩFDM that lie on the boundary of ΩFEM ,

ω× nodes ’×’ interior to ΩFEM that lie on the boundary of ΩFDM ,

ω∗ nodes ’∗’ interior to ΩFEM that are not contained in ΩFDM ,

ωD nodes ’D’ interior to ΩFDM that are not contained in ΩFEM .

At every time step we perform the following operations:

Algorithm.

1. On the structured part of the mesh ΩFDM compute Hn+ 1
2 , with Hn− 1

2 known, and then compute En+1 with En

known and Hn+ 1
2 given by Yee scheme [2].

2. On the unstructured part of the mesh ΩFEM compute En+1 by using the explicit finite element scheme (13).

3. Use the values of the electric field En+1
FEM at nodes ω× as a boundary condition for the finite difference method in

ΩFDM .

4. Use the values of the electric field En+1
FDM at nodes ωo as a boundary condition for the finite element method in

ΩFEM .

NUMERICAL EXAMPLE

We analyze the hybrid interior penalty discontinuous FEM/FDM method in the computational domain Ω = [0,1.0]2.

The domain Ω= [0,1.0]2 separates into a finite element domain, ΩFEM = [0.4,0.6]2, and a surrounding finite difference

domain, ΩFDM . In all computations we choose the time step τ according to the CFL condition while the interior penalty

factor in (9) is set to a = 10. We set also j = 0, ε = µ = 1.0 and launch a wave by forcing the time dependent boundary

condition

E1(x,y, t) = 0,

E2(x,y, t) = 0.1(sin(50 t −π/2)+1), 0 ≤ t ≤
2π

50
,

(14)

at the left boundary of ΩFDM . The initial electric and magnetic fields in the domain are zero. At the top and bottom

boundaries of ΩFDM we use periodic boundary conditions, and at the right boundary - absorbing boundary condition.

The simulations was run in time T = [0,1], what was enough for the wavefront to propagate to the length of

the computational domain. We choose the time step τ = 1.0/600 which satisfies CFL condition. Comparison of the

computed electric field using Yee scheme and stability of hybrid IPDGFEM/FDTD scheme is presented on Fig. 1.
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FIGURE 1. a) L2 norms at time interval T = [0,1] of hybrid DGFEM/FDM method and Yee scheme in ΩFEM ; b) Isolines of the
computed solution in hybrid method in Ω at time t = 0.8.
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