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Dispersion Characteristics of a Metamaterial-Based
Parallel-Plate Ridge Gap Waveguide Realized by

Bed of Nails
A. Polemi,Member, IEEE, S. Maci,Fellow, IEEE, P-S. Kildal,Fellow, IEEE

Abstract—The newly introduced parallel-plate ridge gap waveguide con-
sists of a metal ridge in a metamaterial surface, covered by ametallic plate
at a small height above it. The gap waveguide is simple to manufacture,
especially at millimetre and sub-millimetre wave frequencies. The metama-
terial surface is designed to provide a frequency band wherenormal global
parallel-plate modes are in cut-off, thereby allowing a confined gap wave
to propagate along the ridge. This paper presents an approximate analyt-
ical solution for this confined quasi-TEM dominant mode of the ridge gap
waveguide, when the metamaterial surface is an artificial magnetic conduc-
tor in the form of a bed of nails. The modal solution is found bydividing
the field problem in three regions, the central region above the ridge and the
two surrounding side regions above the nails. The fields within the side re-
gions are expressed in terms of two evanescent TE and TM modesobtained
by treating the bed of nails as an isotropic impedance surface, and the field
in the central ridge region is expanded as a fundamental TEM parallel-plate
mode with unknown longitudinal propagation constant. The field solutions
are linked together by equalizing longitudinal propagation constants and
imposing point-continuity of fields across the region interfaces, resulting in
a transcendental dispersion equation. This is solved and presented in a dis-
persion diagram, showing good agreement with a numerical solution using
a general electromagnetic solver. Both the lower and upper cut-off frequen-
cies of the normal global parallel-plate modes are predicted, as well as the
quasi-TEM nature of the gap mode between these frequencies.The evanes-
cent fields in the two side regions decay very rapidly away from the ridge,
being in the order of 100dB per lower cut-off wavelengths over most of the
single-mode bandwidth.

Keywords—bed of nails, waveguide, metamaterials, EBG, artificial sur-
face

I. I NTRODUCTION

TH IS paper deals with the modal analysis of a new typology
of metamaterial-based waveguide, particularly suitable for

millimetre and sub-millimetre realizations [1] [2]. The basic
structure is shown in Fig. 1. In the above-mentioned range of
frequencies, this solution presents advantages compared to ex-
isting technologies like hollow rectangular waveguide (HRW)
and microstrip lines. Indeed, HRW can be manufactured in two
parts and joined together, but not without consequent problems
of good electrical contacts. On the other hand, microstrip lines
suffer from losses with increasing frequency, limited power han-
dling capability, and spurious resonances when encapsulated.
Other solutions like Substrate Integrated Waveguide (SIW) [3]
exhibit undesired losses due to substrate at increasing frequen-
cies. Therefore, there is still needs to find new technological
solutions for waveguides above30GHz that have low losses
and are cheap to manufacture. The structure analyzed in this
paper is shown in Fig. 1 and can be seen as a particular real-
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ization of the more general ridge gap waveguide introduced in
[1] [2]. It is composed of a pin surface, so called ”fakir’s bed”
or ”bed of nails”, surrounding a metallic ridge, and everything
covered by a metal plate. The bed of nails can be immersed in
dielectric substrate to reduce the size and the following analy-
sis will account for it. However, in applications at millimetre
wave frequency, the better solution is avoiding any dielectric.
The fakirs bed is designed in such a way to create an artificial
magnetic surface [4], over a certain frequency range. With the
metallic top cover, it forms a PEC-PMC parallel plate waveguide
which will have a cut-off for all modes when the gap heighth is
smaller than a quarter of a wavelength (PEC = Perfect Electric
Conductor, PMC = Perfect Magnetic Conductor). This implies
that a quasi-TEM mode can propagate in the gap along the ridge
without spreading into the cut-off region above the pin surface.
The large bandwidth of the high impedance of the pin surface
allows a quasi-TEM mode propagation over a large frequency
band without significant dispersion.
The ridge gap waveguide is a result of research on so called soft
and hard surfaces [5], which in their simplest form are realized
by corrugations. They can in the ideal form be represented by
a PEC/PMC strip grid, as explained in [6]. A hard surface cov-
ered by a PEC was in [7] and [8] shown to suppress higher order
parallel plate modes. Instead there exist several degenerate lo-
cal quasi-TEM waves following the ridges, as studied in detail
by numerical simulations in [9]. Related surface waves in open
hard structures were detected already in [12] but these follow
individual grooves of corrugated surfaces rather than individual
ridges, which is the case for the gap waveguides. The new ridge
waveguide is a direct consequence of the local waves studiednu-
merically in [9]. The present paper represents the first attempt to
find an analytic solution to the modal fields. The gap waveguide
can also be understood as a miniaturized hard waveguide hav-
ing two PEC walls and two PMC walls [10], where the vertical
PMC walls of the present ridge gap waveguide are realized by
the cut-off between two parallel plates which gives a very wide-
band solution compared to the narrow-band dielectric slab and
FSS wall realizations in [10] and [11], respectively.
The main purpose of the present paper is to model the dispersion
characteristics of the quasi-TEM mode in an analytical form, in
order to take under control the dispersion effects and to design
the structure in the appropriate frequency band. The fields as-
sociated with this mode are mainly transverse to the direction
of propagation, but small longitudinal components of the fields
are also anticipated and included in the formulation in Section
II. The field is expected to have an exponential decay later-
ally away from the ridge into the region above the pins. In the
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present formulation, we will not describe the field inside the bed
of nails itself, but instead represent the latter by a spatially dis-
persive anisotropic homogeneous medium characterized by an
equivalent homogeneous reflection coefficient according to[4].
The assumed field expressions in the region above the ridge and
the two side regions above the surrounding pin surfaces are used
to establish point matching continuity at the interfaces between
the regions, and thereby to obtain a dispersion equation.

Fig. 1. Geometry of the ridge gap waveguide embedded in a bed of nails

II. B ED OF NAILS PHENOMENOLOGY

As a fist step we analyze the phenomenology associated with
the bed of nails shown in Fig. 2. The nails are constituted by
small metallic cylinders of heightd, with radiusb, and spacing
a in bothx andy directions. For completeness, we assume the
nails to be embedded in a host medium with permittivityεh; in
practical application however, it is better to have nails immersed
in free space. In [4] the same geometry has been studied by
assuming a plane wave with wave vectorki incident on the tex-
tured surface. Following [4], the bed of nails is regarded asa

Fig. 2. Bed of nails basic geometry. (left) 3D-view; (right) top-view.

spatial and frequency dispersive medium whose permittivity is
characterized by the tensor

ε(ω, ky) = ε0εh (x̂x̂ + ẑẑ + εyy(ω, ky)ŷŷ) . (1)

In (1),

εyy(ω, ky) = 1 − k2
p/k2

h − k2
y (2)

wherekh =
√

εhk is the wave number of the host medium and

kp =
1

a

√
2π

ln( a
2πb ) + 0.5275

(3)

is the plasma wave number accounting for the local spatial dis-
persion [13], only dependent on the geometrical lattice proper-
ties. The mathematical model described by (1) arises from an
evolution for the wire medium model, which accounts for spa-
tial dispersion. In [4] it is shown that the homogenized medium
can support three different modal solutions: a transverse elec-
tromagnetic (TEM) mode, a transverse magnetic (TM-y) mode,
and a transverse electric (TE-y) mode. Imposing the continuity
of all the possible fields at the air-medium interface (including
vertical component of induced fields), allows one to calculate
the reflection coefficients. For an impinging plane TM wave [4]
we obtain

ΓTM (ky) = (4)

−
khk2

p tan(khd) − k2
‖γTM tanh(γTMd) + εhγ0(k

2
p + k2

‖)

khk2
p tan(khd) − k2

‖γTM tanh(γTMd) − εhγ0(k2
p + k2

‖)

wherek‖ =
√

k2
x + k2

z =
√

k2 − k2
y, γ0 =

√
k2
‖ − k2, and

γTM =
√

k2
p + k2

‖ − k2. The reflection coefficient in (4) ac-

counts for the penetration of TM mode inside the bed of nail
through the attenuation constant gamma TM. This constant goes
to infinity when the nails are densely packed. In (4),ky is dic-
tated by the impinging direction of the plane wave on the sur-
face. For a TE polarized incident plane wave, the reflection co-
efficient is that associated with a bare grounded slab, because the
electric field, perpendicular to the surface of the pins, does not
significantly interact with them. This is consistent with the as-
sumption of very small radius; this assumption can be removed
by using the approach in [14]; this will be subject of a future
investigation. Within the hypothesis of TE not-perturbingnails,
we obtain

ΓTE(ky) = −

√
k2

h − k2
‖ − j

√
k2 − k2

‖ tan(
√

k2
h − k2

‖d)
√

k2
h + k2

‖ − j
√

k2 − k2
‖ tan(

√
k2

h − k2
‖d)

. (5)

In (4) and (5) we have maintained the definition in [4], where the
reflection coefficients are are those associated with the magnetic
field; thus, whend = λh/4 we haveΓTM(TE) = −1(+1).
Finally, the validity of this coefficient is given in [4] for values
of kha comparable withπ.
As mentioned above, when the metallic pins are closely packed,
which meansa/d << 1 [15], one hasγTM → kp → 1/a → ∞
(while b/a is kept constant), and

ΓTM (ky) ' Γ = −
kh tan(khd) + εhγ0

kh tan(khd) − εhγ0
(6)

which is the solution of the reflection problem when only the
TEM mode is considered, as expected. Thus, when the pins are
densely packed, the wire medium behaves approximately as an
anisotropic material withεxx = εzz = εh andεyy = ∞. Its
equivalent impedance is

Zs = j
ξ

√
εh

tan(khd) (7)

and it behaves as an inductance when (i)d ≤ λh/4, and as a
capacitance when (ii)λh/4 < d ≤ λh/2. Whend = λh/4, the
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equivalent impedance represents a PMC. The same condition as
in [15] is in [16] referred to as an asymptotic boundary condition
when dealing with corrugations and strip grids. Therefore,(7)
represents also an asymptotic boundary condition of a bed of
metal nails.

III. D ISPERSION EQUATION FORPEC-PLATE COVERED BED

OF NAILS

The guiding phenomenon on the bed of nails surface is
strongly modified by the presence of a metallic plate. They
form together a parallel plate waveguide where one face is PEC
and the other is reactive through the homogenized surface de-
scribed in Section II (see Fig. 3). For simplicity, hereinafter
we consider free-space embedded nails (εh = 1). The same

Fig. 3. Reflection phenomenology supported by the bed of nailssurface covered
by a PEC plate.

has been done in [17], but one of the parallel-plate faces was
there constituted by an anisotropic hard/soft surface along the
direction of propagation, obtained as a periodic structuremade
up of corrugations. Here, the fakir’s bed homogenized surface
is completely 3D, and then the modal field configuration sup-
ported is more complicated. The wave bouncing in the gap be-
tween the two faces can still be described by the reflection coef-
ficientsΓTM (ky) andΓTE(ky), where now theky value is the
solution of the eigenvalue problem obtained by imposing the
vanishing of the tangential electric field at the upper wall,i.e.[
ejkyy + ΓTM,TE(ky)e−jkyy

]
y=h

= 0. In absence of the di-
electric background in the bed of nails, TE mode solution is that
associated with the resonance between the upper and lower PEC
walls, i.e. ky = π/(h + d). For TM modes, the equation to be
solved can be conveniently rewritten by employing (4), which
leads to

ky

k
tan (kyh) +

[
1 −

k2 − k2
y

k2
p + k2 − k2

y

]
tan (kd) +

+
k2 − k2

y

k2
p + k2 − k2

y

√
k2

p − k2
y

k
tan

(√
k2

p − k2
yd

)
= 0 (8)

The above equation can be easily interpreted as a circuit series
resonance equation of the kind

Zsc
0,TM (ky) + [1 − η(ky)]Zsc

TEM + η(ky)Zsc
TM (ky) = 0 (9)

where, referring to the equivalent circuit in Fig. 4,Zsc
0,TM (ky) =

jξ
ky

k tan(kyh) is the TM modal impedance seen at the pin sur-
face towards the PEC cover plate, whileZsc

TEM = jξ tan(kd)

and Zsc
TM (ky) = jξ

√
k2

p
−k2

y

k tan
(√

k2
p − k2

yd
)

are the TEM

and TM modal impedances seen from the nail’s top surface
towards the short circuited nail’s medium, respectively (note
that the TM mode feels the pins with a characteristic dispersive

impedanceξ
√

k2
p
−k2

y

k ). In (9),η(ky) =
k2−k2

y

k2
p
+k2−k2

y

is a parameter

Fig. 4. Equivalent resonant circuit associated with the dispersion equation of
the bed of nails surface covered by a top metal plate at heighth.

which weights the TM mode relative to the TEM mode inside
the bed of nails, and it can be easily derived from the continuity
of the magnetic field at interface, or equivalently of the current
in a series resonant circuit. In particular, whenk2

p >> k2 − k2
y,

corresponding to the densely packed bed of nails,η(ky) → 0;
thus, the resonance condition becomes

Zsc
0,TM (ky) + Zsc

TEM = 0 (10)

thus leading to the conventional dispersion equation wherethe
TEM mode is the only one considered inside the bed of nails.
Equation (8), or possibly (10) can be solved numerically. Here,
the intrinsic MatlabFSOLVE routine is employed, which finds a
root of a system of nonlinear equations, given a certain starting
point [18]. Results in terms of frequency are shown in Fig. 5
for a reference geometry (see Fig. 3) withh = 1mm (height
of gap), d = 7.5mm (height of pins),a = 2mm (periodic-
ity of pins) andb = 0.5mm (radius of pins). Eigenvaluesky

of the complete TM resonance equation (8) and of the approx-
imated TEM resonance equation (10) are reported as solid and
dashed lines, respectively. The two solutions agree well, es-
pecially in the low frequency regime, where the bed of nails
appears more closely packed with respect to the wavelength,
and then the surface acts like the surface impedance in (7).
In Fig. 5, the TEky eigenvalue is also shown (dashed line),
which is constant in frequency and dictated by the PEC-PMC
resonance, i.e.ky = π/(h + d). As the frequency increases,
the two solutions slightly tend to veer. Let us discuss the type
of wave in the various frequency region. Forf < f(d=λ/4),
ky is found to be purely imaginary (see Fig. 6); there, a TM
surface wave propagate along the interface without being sub-
stantially affected by the top cover. In the frequency region
between the two resonance frequenciesf(d=λ/4) andf(d=λ/2),
ky is real and a bouncing wave is standing in the gap as de-
picted in Fig. 3. In this range, we identify two regions; the first
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Fig. 5. TM dispersion equation of the complete (8) form (solidlines) and ap-
proximated (10) (dashed lines). The eigenvalue solution is real or imaginary
in three frequency regions, separated by vertical dashed lines. TE eigenvalue
is also shown (constant short-dashed line). The light line is also depicted
(long dashed line). These results have been obtained for a reference geom-
etry (see Fig. 3) withh = 1mm (height of gap),d = 7.5mm (height of
pins),a = 2mm (periodicity of pins) andb = 0.5mm (radius of pins).

(f(d=λ/4); f(d+h=λ/2)), whereky is real and greater thank, that
implies attenuation along any direction along the surface,and
the second region(f(d+h=λ/2); f(d=λ/2)) where the propagation
is admitted along the surface. The first range is the stop bandof
the structure, whose upper bound is the cut-off frequency ofthe
first TE mode. The upper cut-off of the stop band, corresponds
to the lower cut-off frequency. In order to better identify the
stop band, a dispersion diagramf versuskz is shown in Fig. 6

wherekz =
√

k2 − k2
y, with ky = k̃y for TM solution (dotted

line), andky =
˜̃
ky for TE solution (dashed line). The light line

Fig. 6. Frequency versus real part ofkz for TM (black dots) and TE (dashed
line) solutions of the pertinent eigenvalues problems. The light line is also
shown (solid line). These results have been obtained for thesame geometri-
cal parameters used for Fig. 5.

is shown. From the dispersion diagram in Fig. 6 it is possibleto

observe the stop band (shadowed area) where no propagation is
permitted. As expected, there is a surface wave propagatingat
the low frequency up to10GHz, corresponding tof@(d=λ/4).
The dispersion diagram is in the same graph compared with re-
sults from a commercial software (CST Microwave Studio, di-
amond line), where the basic cell of the periodic structure is
depicted in the inset of Fig. 6, and phase shifts alongx andz
directions have been imposed. The agreement is found to be
overall good.

IV. D ISPERSION EQUATION FOR A BED OF NAILS-BASED

RIDGE GAP WAVEGUIDE

We can realize a gap waveguide by inserting a conducting
ridge of widthw into the bed of nails structure in the geometry
in Fig. 3, thus leading to the structure in Fig. 1. From an intu-
itive point of view, we expect that the fundamental modal field
will be propagating along the ridge, with a mechanism very sim-
ilar to that of the narrow standard parallel-plate waveguide, with
a quasi-TEM behavior. This mode will match the evanescent
modes supported by the surrounding cut-off structure, in which
we assume that only the first TM and TE modes (with respect
to y) will be present. In particular, in order to achieve the field
confinement in the ridge region, the cut-off modes must decay
laterally away from the ridge (along directionx). In order to
prove this approximation, we have run a simulation in CST Mi-
crowaveStudio in order to get the transverse field distribution.
This result is plotted for a few frequencies in Fig. 7, where the
amplitude of the vertical electric field is shown. It is easy to rec-
ognize that the bed of nails surface stops propagation alongthe
lateral direction and keeps the desired confinement of the field
in the ridge region for frequencies within the stop band.
Under the approximations used above, we can now write the ex-

pressions for the fields. In particular, the TMy evanescent mode
fields in the region above the bed of nails are,

Hx = jATM
kz√

k2 − k̃2
y

g̃(x, z) cos
[
k̃y(y − h)

]
(11a)

Hz = −ATM
α̃x√

k2 − k̃2
y

g̃(x, z) cos
[
k̃y(y − h)

]
(11b)

Ex = −jATM
ξ

k

α̃xk̃y√
k2 − k̃2

y

g̃(x, z) sin
[
k̃y(y − h)

]
(11c)

Ey = −jATM
ξ

k

√
k2 − k̃2

y g̃(x, z) cos
[
k̃y(y − h)

]
(11d)

Ez = ATM
ξ

k

kz k̃y√
k2 − k̃2

y

g̃(x, z) sin
[
k̃y(y − h)

]
(11e)

where

g̃(x, z) = e−jkzze−
�

αx(|x|−w/2). (12)

The reference system is centered in the middle of the widthw
of the ridge. In equations (11),ATM is an unknown coefficients
while k̃y is the eigenvalue solution of equation (8). Thus, the
dispersion relation for this mode isk2 = (−jα̃x)2 + k̃2

y + kz,
where the attenuation constantα̃x and the propagation constant
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Fig. 7. Normalized amplitude of the vertical (alongy) electric field for different
frequencies calculated through CST Microwave Studio

kz are also unknowns. A secondx-evanescent TEy mode is as-
sumed to be excited in the bed of nails region, whose expression
is give by

Ex = jATE
kz√

k2 − ˜̃
k

2

y

˜̃g(x, z) sin

[
˜̃
ky(y − h)

]
(13a)

Ez = −ATE

˜̃αz√
k2 − ˜̃

k
2

y

˜̃g(x, z) sin

[
˜̃
ky(y − h)

]
(13b)

Hx = −jATE
1

ξk

˜̃αx
˜̃
ky√

k2 − ˜̃
k

2

y

˜̃g(x, z) cos

[
˜̃
ky(y − h)

]
(13c)

Hy = jATE
1

ξk

√
k2 − ˜̃

k
2

y
˜̃g(x, z) sin

[
˜̃
ky(y − h)

]
(13d)

Hz = ATE
1

ξk

kz
˜̃
ky√

k2 − ˜̃
k

2

y

˜̃g(x, z) cos

[
˜̃
ky(y − h)

]
(13e)

where

˜̃g(x, z) = e−jkzze−
�

�

αx(|x|−w/2). (14)

In (13),ATE is an unknown coefficient, whilẽ̃ky = π/(h + d)
is the eigenvalue solution for the associated TE problem. The

dispersion equation for this mode isk2 = (−j ˜̃αx)2 +
˜̃
k

2

y + kz,
where the attenuation constantα̃x and the propagation constant

kz are unknowns.
In the central region above the ridge, we assume a quasi-TEM
mode, propagating alongz according to the phase factore−jkzz,
of the kind

Ey = E0 cos(k̂xx)e−jkzz (15a)

Hx = −E0
kz

ξk
cos(k̂xx)e−jkzz (15b)

Hz = −jE0
k̂x

ξk
sin(k̂xx)e−jkzz (15c)

whereE0 is a constant related to the incident power at the input
port, andk̂x is a propagation constant alongx, andk2 = k̂2

x +

k2
z . The overall unknowns are six,ATM , ATE , α̃x, ˜̃αx, k̂x, kz.

Therefore, six equations are required to uniquely solve theprob-
lem. Three of these equations are provided by the dispersion
relations in the three media, reported below for convenience:

k2
z = k2 − k̃2

y + α̃2
x (16a)

k2
z = k2 − ˜̃

k
2

y + ˜̃α
2

x (16b)

k2
z = k2 − k̂2

x. (16c)

To find the remaining three equations, we enforce a razor blade
continuity of the three field components across the separation
walls x = ±w/2. The matched field componentsEy, Hx are
namely all those belonging to the quasi-TEM mode. The non-
matched componentsEx, Ez andHy (only present in the bed
of nails regions) are very weak, since the boundary conditions
at the top cover impose vanishing of them. Thus, we obtain the
three matching field equations

−jATM
ξ

k

√
k2 − k̃2

y = E0 cos(k̂xw/2) (17a)

−ATM
α̃x√

k2 − k̃2
y

+ ATE
1

ξk

kz
˜̃
ky√

k2 − ˜̃
k

2

y

=

= −jE0
k̂x

kξ
sin(k̂xw/2) (17b)

jATM
kz√

k2 − k̃2
y

− jATE
1

ξk

˜̃αy
˜̃
ky√

k2 − ˜̃
k

2

y

=

= −E0
kz

kξ
cos(k̂xw/2) (17c)

that, added to the ones in (16), allow us to find the dispersion
equation

√
k2 − k2

z tan
[√

k2 − k2
z

w

2

] (
k2 − k̃2

y

)
+

k2
z k̃2

y − k2
√

k2
z − k2 + k̃2

y

√
k2

z − k2 +
˜̃
k

2

y√
k2

z − k2 +
˜̃
k

2

y

= 0 (18)

that relateskz to frequency.
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A. Numerical results

The solution is found numerically and plotted as the disper-
sion diagram in Fig. 8, where the ridge width isw = 5mm.
Again, the MatlabFSOLVE routine is employed [18]. The ge-
ometry is the same as that used in the previous results (see cap-
tion of Fig. 6). The curve has been successfully compared
with the dispersion diagram obtained by a CST Microwave Stu-
dio simulation (diamond line). The CST reference structureis
shown above the graph in Fig. 8. Our approximated solution
tends to fail when the frequency is larger than the upper parallel-
plate cut-off frequency, because we have only included one fun-
damental mode for each region, and this is not sufficient. Higher
order modes could be accounted for at higher frequencies.

Fig. 8. Dispersion diagram for the ridge waveguide (dotted line). The geometry
is the same as that reported in caption of Fig. 6, but includingan inserted
a 5mm wide ridge. The dispersion diagram is compared with the one ob-
tained through a CST Microwave Studio simulation (diamond line) of the
reference structure inserted above the graph. The light line is also shown.

In the most interesting frequency band between10 and
20GHz, the approximations used work well, and the mode
propagating along the ridge is really quasi-TEM, as expected.
Oncekz is found, all the remaining quantities in (16) can be de-
termined as well. Notice that the CST eigenmode solver gives
many more modes than the curves shown in Fig. 8 due to the
equivalent boundary conditions set atx = ±w/2 (in the present
casew = 5mm). This modes have been left out in Fig. 8.
Therefore, to avoid misunderstandings, we present the complete
multimode dispersion diagram in Fig. 9 to give an idea about
the multiplicity of modes that can be found in a practical pack-
aging. We see that there are severaly-attenuated modes below
the lower bound of the bed of nails stopband. Other modes start
appearing at17GHz. This first of these modes seems to have a
cut-off within the parallel-plate stopband10 − 17.5GHz. The

Fig. 9. Dispersion diagram obtained by CST Microwave Studioincluding all
modes due to enclosure resonances. The diamond marked lines arethe same
as in Fig. 8. The light line is also shown.

apparently strange fact is readily explained: this mode is asso-
ciated with an odd transverse variation along the ridge, which
is large enough at that frequency. The cut-off frequency of this
mode is actually the one which sets the upper bound of the uni-
modal region, for ridge width not so small. It is worth noticing
that the stopband predicted in Fig. 6 for the parallel-platestruc-
ture without ridge still holds approximately when looking into
the dispersion diagram with ridge in Fig. 8.
We stress the fact that in the lower frequency regime below the
lower bound of the bed-of-nails band gap, thex-infinite struc-
ture supports a slow wave (kz > k). This means that in the tran-
sition region of the bed of nails, attenuation constants in (16a)
and (16b) become propagation constants, and, as a consequence,
the surface of nails cannot confine the field in the ridge region.
This can be easily inferred from Fig. 7.
In order to validate the modal field expansion approximationin
(11), (13) and (15), the amplitude of the vertical (Ey) electric
field is plotted, in the same way as done in Fig. 7. Results
are shown in Fig. 10. We have for simplicity drawn the field
distribution inside the gap only, according to the assumption of
homogenized surface. In Fig. 11, the normalized amplitude of
Ey and Hx (in dB) are compared with the same components
obtained through CST, atf = 13GHz (inside the band gap)
and at a height (y = h + d/2), just in the middle of the gap
region. The field distribution shows, as expected, a discontinu-
ity at the region interfaces when the fields are evaluated in the
middle of the gap. The reason for this is that the fields’ conti-
nuity has been enforced only at the top cover. There, the results
appear quite similar due to the small dimension of the gap, the
only difference being the continuity of the approximated solu-
tion. However, the agreement between the numerical and ana-
lytical solutions looks reasonable, also in considerationof the
following comments. Firstly,Ey and Hx from our approxi-
mated modal solutions show a different degree of decay. This
is due to the fact that the decay of those components is associ-
ated withα̃x for Ey, and bothα̃x and ˜̃αx for Hx. In particular,
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Fig. 10. Normalized amplitude of the vertical (alongy) electric field for differ-
ent frequencies calculated by the expressions in (11), (13)and (15)

Fig. 11. Normalized amplitude (in dB) ofEy (solid line) andHx (dashed line)
field distributions at13GHz, computed along the middle of the gap region
(y = d + h/2)

α̃x =
√

k2
z + k̃2

y − k2 and ˜̃αx =

√
k2

z +
˜̃
k

2

y − k2 are plotted
in Fig. 12 in the stop band of the parallel-plate region, corre-
sponding to the working bandwidth of the ridge gap waveguide.
While α̃x is strongly varying with frequency and has a value
greater than100dB/λ0 almost over the entire bandwidth,˜̃αx is
almost a constant in the same bandwidth. Indeed, sincekz ' k,
˜̃αx → ˜̃

ky = π/(h + d), and the resulting value is smaller over
the bandwidth. This implies thatHx component has a weaker
decay, dictated by the attenuation factor˜̃αx. Secondly, regard-
ing the CSTHx component, we see oscillations in the nails re-
gion which are due to the actual periodicity of the pins, that
we neglect in the surface impedance model. It is evident from
Fig. 11 that the CSTEy component does not show the same
ripples. Indeed,Ey has a stronger decay alongx thanHx, and
this preventsEy from being influenced by the periodicity of the
pins. The results are given indB/λ0, whereλ0 is calculated at

Fig. 12. Transverse attenuation constant inx-direction plotted asdB/λ0 versus
frequency compared with the one obtained through a CST simulation where
the field decaying is captured by a couple ofδ-spaced probes located as
shown in the inset.

f0 = 13GHz, the same frequency used in Fig. 11. The CST
curve (dashed) in Fig. 12 has been obtained from the computed
field values at a couple of field probes located at the wall of the
smooth PEC plate, and spaced apartδ = 2a (see inset of Fig.
12). This procedure is valid in the limit where only one mode is
present, and it seems to hold in our case. Indeed, results arein
a good agreement, and they highlight that the attenuation has a
value greater than100dB/λ0 almost over the entire bandwidth.
The same result has not been generated for thex component of
the magnetic field, because of the strong ripple due to the peri-
odicity of the pins.

V. CONCLUSIONS

We have presented an analytical solution for the fundamental
quasi-TEM mode of a ridge gap waveguide where the parallel-
plate cut-off is realized using a bed of nails. The modal solution
has been obtained by matching plane wave modal expressions in
three regions; the region above the ridge and the two side regions
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above the bed of nails. The dispersion diagram so obtained well
matches the one numerically predicted by a full-wave eigen-
solver and catches the main physical features of the structure,
such as the rapid lateral field decay away from the ridge, show-
ing values over100dB per wavelength within the stop band of
the normal parallel-plate modes. The single-mode bandwidth of
the ridge gap waveguide is mainly limited by the cut-off band-
width of the surrounding bed of nails-type parallel-plate waveg-
uide. This single mode bandwitdh is seen to be10− 17GHz in
Fig.6, but it can also be larger if the gap size or ridge width are
reduced. The cut-off bandwidth of parallel-plates with different
metamaterial-type loadings of the lower surface are studied in
[19], showing bandwidths up to two octaves. This has no rela-
tion to the surface band gap of the corresponding open surfaces,
except for the lower cut-off frequency being approximatelythe
same, which is clear by comparing results in [19] with results
in [20]. The dispersion lines of the global parallel-plate modes,
not included in Fig. 8, are then reported in Fig. 9, showing how
they are affected by the enclosure having parallel-plate cut-off.
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