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Abstract

Position information is often one of the key requirements for a wireless sensor network
(WSN) to function as intended. Due to drawbacks in using GPS or having to manually
setting sensor positions, extracting the position information by means of the network itself
has been extensively studied in the literature. In this approach, it is commonly assumed
that there are a few sensor nodes with known positions, called reference nodes, and some
type of measurements are taken between different nodes.

During the last decade, a number of positioning algorithms have been proposed for the
positioning problem. Evaluating the performance of various algorithms based on practical
data is an important step in classifying different positioning methods. Paper A studies
the performance of different approaches through real range measurements made by two
ultra-wideband devices. The main result of Paper A is that no positioning algorithm
uniformly shows the best performance in different situations.

Paper B considers the positioning problem using received signal strength measure-
ments when the channel parameters (transmit power and path-loss exponent) are unknown
in sensor nodes. Assuming fixed values for the channel parameters, the positioning prob-
lem is formulated as finding a point in the intersection of a number of halfplanes (in a 2D
network). The well-known approach projection onto convex sets (POCS) is employed to
solve the problem. The proposed method gives a good coarse estimate for the positioning
problem.

In the literature, it has been shown that cooperation between reference nodes can
improve the position estimate. To cope with difficulty in solving the optimal estimator
in this type of network, which are mainly due to nonlinearity and nonconvexity issues, a
two-step linear estimator is proposed in Paper C to solve the positioning problem. In the
first step, a coarse estimate is obtained, and it is refined in the second step. For sufficiently
high signal-to-noise-ratios, the proposed estimator attains the optimal performance; i.e.,
it attains the Cramér-Rao lower bound.

Finally, Paper D formulates the positioning problem as a convex feasibility problem
(CFP) for both non-cooperative and cooperative networks. To solve a CFP, two methods
based on POCS and outer-approximation are employed (two geometric solutions). The
properties of POCS for non-cooperative networks are reviewed and an upper-bound on
the position error of POCS is proposed. Simulation results show that the positioning al-
gorithms based on geometric solutions are more robust against non-line-of-sight compared
to proposed statistical approaches such as nonlinear least squares.

Keywords: Wireless sensor network, performance metric, measurement model, coop-
erative and non-cooperative networks, maximum likelihood estimator, nonlinear least
squares, linear least squares, projection onto convex sets, outer-approximations
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Chapter 1

Introduction

Recent advances in technology have instigated the use of tiny devices such as sensors in
a large distributed wireless sensor network (WSN). A sensor device is able to sense its
environment for monitoring, controlling, or tracking purposes for both civil and military
applications [1]. Every sensor can communicate with nearby sensors or with a central
processing unit. Wireless sensors commonly use radio frequency bands to communicate
with each other. Although no unique physical layer technology has been finalized for
WSNs, there are a number of candidates for employment with WSNs, e.g., ultra-wide
band (UWB) and code division multiple access [2, 3].

In practical applications, WSNs may have a random or a regular deployment. For
data gathered by sensor nodes to be useful in processing procedures, the positions of
sensor nodes should be known beforehand, otherwise the data collected by the sensors
is meaningless. As an example, consider Fig. 1.1 where a few sensors inside the dashed
circle detect a fire event and then report this alarm to a central unit for further processing.
Suppose that the short range sensors can find a route to the central unit using a routing
protocol. In the central unit, before any decision about the alarm has been made, the
positions of the sensors detecting the fire event need to be known.

Position information is often a key requirement for a WSN to function as intended.
This information can be obtained by equipping sensors with global positioning system
(GPS) devices or manually setting the correct position. Since sensor devices are often
very small and cheap, adding GPS receivers increases the cost of the network. In addition,
GPS receivers work well in line-of-sight (LOS) conditions, meaning they cannot be used
in an indoor scenario or situations in which there is limited visibility to the GPS satellites.
Manually setting the sensor positions may be possible for a small and fixed network, but
it is quite cumbersome for large networks. In some scenarios, sensors may have a short
lifetime and new ones need to be deployed in a possibly random manner in the network.
This implies that the positioning process may need to be repeated at certain times. For
instance, to monitor the quality of crops on a farm, thousands of tiny sensors may be
randomly distributed over a large area. Every sensor may only be operational for a few
days, thus creating the need to distribute new sensors.

1 Positioning of nodes

Due to drawbacks in using GPS or manually setting the sensor position, extracting po-
sition information by means of the network itself, also called localization, has been ex-
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Figure 1.1: An example of the application of a WSN. Solid dots denote wireless sensors. Sensors
inside the dashed circle detect a fire event and then report an alarm to a central
unit for further processing.

tensively studied in the literature [1, 4–7]. In the literature, it is commonly assumed
that there are a number of fixed sensors called reference or anchor nodes whose positions
are initially known using GPS receivers or manual settings [8]. Besides reference nodes,
there are a number of other sensor nodes at unknown positions, called target, unknown
sensor, or agent nodes. In this thesis, we will use the terms reference nodes and target
nodes, unless stated otherwise. We assume sensor nodes are able to make some type of
measurements. Sensor nodes in WSNs can be either stationary or moving. They can be
either transmitters or receivers, or both. To study the positioning problem in a WSN, we
need suitable models for the measurements taken between sensor nodes. It is commonly
assumed that measurements are made between target and reference nodes, but in some
situations measurements between target nodes are also available.

WSNs can be categorized into two groups based on the type of interaction between tar-
get nodes: cooperative and non-cooperative networks. In cooperative networks, measure-
ments between target nodes are used in the positioning process, as well as measurements
between target nodes and reference nodes. In non-cooperative networks, only the latter
type of measurements are used. When there are limited number of reference nods, coop-
eration effectively improves the performance of positioning algorithms [9]. In summary,
the positioning problem studied here can be defined as follows:

The position of target nodes should be estimated based on known positions of a number
of reference nodes and using some type of measurements taken between sensor nodes.

Positioning algorithms commonly aim at positioning target nodes as accurately as
possible. The performance of a positioning algorithm depends on the type of measure-
ment taken, reference node selection, measurement errors, geometry of network and other
factors. Moreover, the practical impairments, e.g., modeling or round-off, that might be
unknown also considerably affect the performance of positioning algorithms. During the
last decade, a large number of positioning methods have been proposed in the literature.
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It is not always straightforward to compare all the different approaches based on a unique
criterion. Hence, to evaluate different positioning methods, we use a number of different
metrics, e.g., complexity or accuracy.

In this thesis, we study a number of important factors, e.g., accuracy or coverage, in
designing an algorithm and propose some methods to solve the positioning problem for
both cooperative and non-cooperative networks.

2 Thesis outline

The positioning problem is a wide research area that involves many different topics. Based
on one statistic, about 13.3% of recent papers in the WSN area have been focused on track-
ing and positioning topics [1]. In this thesis, we focus on designing positioning algorithms
to be accurate, to have low complexity, and to be robust for both non-cooperative and
cooperative networks. To present our contributions, we first give a brief and general de-
scription of the positioning problem and then introduce our work. This thesis is organized
as follows: in Chapter 2, we formulate the positioning problem and explain some perfor-
mance measures. In Chapter 3, we review the measurement models commonly used in the
positioning literature. Using the measurement models, we study a number of positioning
algorithms in Chapter 4. The contributions of this thesis are discussed in Chapter 5. This
thesis is based on four papers, i.e., Papers A, B, C, and D, that are attached to the thesis.





Chapter 2

Problem statement

In this chapter, we briefly study the positioning problem. The positioning problem can
be formulated as an estimation problem, thus different estimation techniques can be
employed to solve it. To evaluate the performance of a positioning algorithm, we study a
number of performance metrics. Classification and evaluation may be considered together
to assess an algorithm. For instance, one can classify algorithms based on cooperation or
non-cooperation, ranged-based or connectivity-based, and then evaluate the performance
of different positioning methods. Moreover, if the prior knowledge about the position of
target nodes is available, performance metrics may be defined such that to consider that
information. In this thesis we assume that there is no prior knowledge about the position
of the target nodes.

1 The positioning problem

As mentioned in the previous chapter, there are usually a number of fixed sensors at
known positions and some type of measurements taken by sensor nodes. The goal is to
estimate the positions of targets as accurately as possible. To position the target nodes,
we need a system model for the problem. Throughout this thesis we use a unified system
model for both cooperative and non-cooperative networks.

Let us consider a two-dimensional1 network with N + M sensor nodes. Suppose that
M target nodes are at the unknown positions2 xi = [xi1 xi2]

T ∈ R
2, i = 1, ..., M , and

the remaining N reference nodes are located at known positions aj = [aj1 aj2]
T ∈ R

2,
j = M + 1, ..., N + M . Every target can communicate with nearby sensor nodes and also
with other targets. Let us define

Ai = {j | reference node j can communicate with target i} (2.1)

and

Bi = {j | i 6= j, target j can communicate with target i} (2.2)

as the sets of indices of all reference and target nodes that can communicate with target
i, respectively. For a non-cooperative network, Bi = ∅, ∀i.

1Generalization to the three-dimensional case is often straightforward, but is not explored in this
thesis.

2In some appended papers, different notations for reference and target nodes have been used.
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Figure 2.1: A cooperative network with two targets and four reference nodes.

Let us consider the measurements taken between different nodes as a function of their
positions. Formally, the measurement between nodes i and j collected at node i is given
by

mij =

{

f(xi, aj) + εij, j ∈ Ai,

f(xi,xj) + εij, j ∈ Bi,
(2.3)

where f(α,γ) is a deterministic function that defines a type of noiseless measurement
between two sensors at positions α and γ, and εij is the measurement error. The function
f(α,γ) may have different shapes based on the positions α and γ. For instance, for
distance measurements, it is the `2-norm of difference between α and γ, i.e., ‖α−γ‖. The
measurement errors εij may have any probability density function (PDF). Measurements
can be collected at reference nodes, target nodes, or both reference and target nodes. As
an example, Fig. 2.1 shows a cooperative network consisting of four reference nodes and
two target nodes.

Generally, the positioning problem can be defined as follows: The positioning problem
is to find the position of the M target nodes based on N known sensors’ positions and
measurements in (2.3).

Note that sensor nodes can, in general, be moving or stationary. However, in this thesis
we only study the positioning problem for fixed reference and target nodes. In the next
chapters, we study different types of measurements and various positioning algorithms
that are commonly used for the positioning problem in wireless sensor networks.

2 Algorithm evaluation

The means for estimating the position of an unknown target considering measurements (2.3)
actually depends on the application. Based on different assumptions, various techniques
can be derived to estimate the position of an unknown target. For instance, if the full
statistics of measurement errors are assumed to be known, one can apply traditional es-
timators to solve the problem. On the other hand, one may relax the problem to some
degree and design suboptimal3 algorithms that might be of low complexity. Since po-

3Optimality here refers to the accuracy of estimation, normally in root mean square error sense.
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sitioning algorithms are expected to be implemented in practical systems, they should
satisfy a number of practical requirements as well. To the best of our knowledge, there
are no unique criteria to compare and evaluate various proposed approaches in the lit-
erature. Moreover, there are different factors in practice, e.g., modeling and round-off,
affecting the performance of an algorithm and they might be unknown. Therefore, a
good algorithm that shows excellent performance considering a theoretical model through
simulation, may have poor performance in practice.

In addition, robustness is another important issue when designing a positioning algo-
rithm or in general for any estimator. Since the measurements are noisy, a positioning
algorithm might not be able to localize an unknown target accurately. Due to outliers
(measurements with large errors), the performance of a positioning algorithm may change
dramatically. Moreover, in practical scenarios for some types of measurements, non-line-
of-sight (NLOS) conditions might appear in which a measurement has very large positive
errors due to, for instance, an unknown obstacle. There are a number of traditional meth-
ods for dealing with outliers and NLOS conditions that may be useful for the positioning
problem [10, 11].

The sensor network may consist of a few or many sensor nodes [1]. Thus, one way to
assess algorithms is to consider whether an algorithm designed for a small network can be
extended to a large network, often referred to as scalability. For example, in centralized
processing, a proposed algorithm for a small network can be extended to a large network
with more complexity, while for the distributed version, it is not straightforward to answer
this question.

There are a number of criteria for the evaluation and comparison between different
positioning algorithms [1], among them we consider a few important metrics to compare
different methods.

2.1 Accuracy metrics

It is of great importance to have an algorithm that estimates the position of an unknown
target as accurately as possible. It is clear that the accuracy requirement changes from one
application to another. To evaluate the accuracy of an estimator, we need a reasonable
benchmark. One way to evaluate the performance of different algorithms is to compare
to a lower bound on the estimation error. However, it might be difficult to compute such
a lower bound. There are a number of lower bounds in the literature, e.g., the Cramér-
Rao lower bound (CRLB), that can be employed as benchmarks. The CLRB can be
computed if the PDF of the measurement error is known and satisfies some regularity
conditions [12]. The CRLB is a lower bound on the variance of any unbiased estimator.
If the estimator is biased, it is not necessarily bounded by the CRLB and other bounds
should be considered [13, 14]. If there is a priori information about the unknown target,
the CRLB may not be a tight bound. One possibility for deriving a lower bound, when
there is a priori information, might be Bayesian CRLB [15] that considers the prior
distribution of the targets as well as the distribution of the measurement errors.

Different positioning algorithms, regardless of whether a lower-bound is computable
or not, can be compared with each other based on various accuracy metrics. Here, we
consider a number of such metrics.
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Let us define the error ei as

ei = x̂i − x, i = 1, . . . , M, (2.4)

where x̂i is an estimate of the position of target i given by a positioning algorithm. Due
to randomness in measurement errors or network deployment, the vector ei is random.

There are different ways to study the performance of a positioning algorithm through
the position error ‖ei‖. In the following, we study a number of accuracy metrics such as
the cumulative distribution function (CDF), root mean square error (RMSE), and norm
of bias (NB).

Note that the positioning information derived by a positioning algorithm constructs a
geometrical layout of the actual layout. Therefore, one way to assess the performance of
a positioning algorithm is to consider how exactly the layout represented by a positioning
algorithm matches to the actual layout [1].

Cumulative distribution function (CDF): One way to evaluate the performance
of an algorithm is to investigate the PDF or CDF of ‖ei‖. The CDF of the position error
for target i is defined as

P‖ei‖(α) = Pr(‖ei‖ ≤ α), i = 1, 2, ..., M. (2.5)

The CDF gives more insight into the performance of positioning algorithms than, for
instance, root mean square error, which gives one value. For example, two different al-
gorithms may have relatively different performances for different error intervals. One
algorithm might be superior in small errors while other may perform better for medium
errors. Let us consider Fig. 2.2 which shows the CDF of the position error for two Al-
gorithm 1 and 2. It demonstrates that if the position error is less than α, Algorithm 1
outperforms Algorithm 2. If the position error is larger than α, Algorithm 2 shows better
performance.

Root mean square error(RMSE): The RMSE for target i is defined as

RMSEi =
√

E
(

‖x̂i − xi‖2
)

≈

√

√

√

√

1

K

K
∑

k=1

‖x̂i(k) − xi‖2, i = 1, . . . , M, (2.6)
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where x̂i(k), k = 1, 2, . . . , K, are the estimates of target i at position xi given by a
positioning algorithm for the kth realization of noise or network deployment. The RMSE
for a network consisting of M targets can then be computed as

RMSE =
1

M

M
∑

i=1

RMSEi. (2.7)

Instead of the average error, we can investigate maximum or median error, which may be
useful in some scenarios. For instance, the maximum error is defined as [16]

Max-Errori = max
k=1,...,K

‖x̂i(k) − xi‖, i = 1, 2, . . . , M. (2.8)

The maximum position error for the network can be obtained as

Max-Error = max
i=1,...,M

Max-Errori. (2.9)

Norm of bias (NB): Bias is another factor that is sometimes considered to evaluate
an algorithm. The bias of an estimator is defined as

Bi = E (ei) , i = 1, 2, . . . , M. (2.10)

Moreover, to evaluate the bias, we define the NB as

NBi = ‖E (ei) ‖, i = 1, 2, . . . , M. (2.11)

Frobenius metric (FROB): Suppose that the distance d̃ij is the distance between a
located target i, i.e., x̂i, and node j. The FROB, which has been considered as a method
for evaluation of positioning algorithms in the literature, is defined as [17]

FROB =

√

√

√

√

1
∑M

i=1
|Ai ∪ Bi|

M
∑

i=1

∑

j∈Ai∪Bi

(d̃ij − dij)2, (2.12)

where |X | denotes the cardinality of set X and dij is the actual distance between target
i and node j.

There are other accuracy metrics including the global energy ratio, which involves the
geometry of the network, the global distance error, the average relative deviation, and the
boundary alignment ratio [1, 17].

In all accuracy metrics described above, we need to know the position of the target to
compute performance metrics. For instance, to compute the CDF of the position error,
we should subtract the target’s estimated position from the exact position of the target.
In simulation scenarios, we know the targets positions and then it is straightforward to
compute different metrics. However, in a practical scenario prior knowledge of the targets
is not always initially available. In fact, the geometry of network is not initially known.
For example, in range-based localization, an algorithm estimates the position of targets
based on measurements between different nodes. In such a scenario, the accuracy metric
should be defined regardless of the geometry of the network. In [18] a metric based on
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average distance error (ADE), which can be considered as an accuracy measure, was
defined as

ADE =
1

∑M

i=1
|Ai ∪ Bi|

M
∑

i=1

∑

j∈Ai∪Bi

(d̂ij − d̃ij) (2.13)

where d̃ij is distance between node i and j after positioning and d̂ij is the observed
(measured distance) distance.

2.2 Cost metrics

Another evaluation criterion, which is mainly a practical issue, is the cost of implementing
an algorithm. Cost is often a trade-off against accuracy. Different parameters determine
the cost of a positioning algorithm, such as power consumption, overhead, time taken
to obtain a position estimate, and the required amount of RAM (memory) [1, 19]. In
general, cost is commonly studied using the following metrics:

• Reference to node ratio is defined as the number of reference nodes divided by
the number of sensor nodes in a network. It is commonly used to investigate the
trade-off on accuracy of algorithms. For instance, it determines how the accuracy
of an algorithm changes if the percentage of references nodes decreases [1];

• Communication overhead is defined as the number of packets transmitted or the
actual power consumed to reach the positioning goal;

• Power consumption determines the lifetime of a sensor node. Power consumption
is a combination of the power required to perform local processing, e.g., the task of
a sensor node for the distributed processing, and the power used to send and receive
packets;

• Algorithm complexity determines the computational complexity in time and
space. It is common to use standard notation, i.e., big O, to express the computa-
tional complexity for both time and space [19];

• Convergence time is defined both based on the time taken to gather measurements
and the time needed for the positioning algorithm to converge. This metric is mostly
studied as a function of the size of a network. For instance, this metric measures
how much time takes for collecting the measurement or position changes if the size
of a network increases.

2.3 Coverage metrics

The coverage metric is the percentage of target nodes in a WSN that can be positioned,
regardless of accuracy. The geometry and the node density have the most effect on cov-
erage results. For a target to be positioned successfully, there should be enough reference
nodes around it and sufficient measurements taken by sensor nodes. Density can be de-
termined as the minimum number of neighbors required for target nodes to be positioned
considering a certain level of accuracy [1]. If the density of the deployment is low, it is
possible that a number of nodes cannot be positioned, due to lack of enough reference
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nodes around a target node. In this case, cooperation between target nodes can remedy
the problem and then improve the coverage metric. Increasing the density also improves
the coverage metric, but this might not be an option due to increased message collisions
and energy consumption. In addition to node density, the reference node placement has
a great impact on positioning error. The effect of the geometry of reference nodes has
been studied using the Geometric Dilution of Precision (GDOP) [1, 20]. GDOP analysis
shows that if target nodes are located inside the convex hull of the reference nodes, they
can be localized with lower error.

2.4 Composite metrics

Instead of considering different metrics individually, one can consider a composite metric
where different criteria are combined [1, 21]. For instance, the cost metric defined in [21]
is such a composite metric which merges accuracy and complexity in one performance
measure.

In conclusion, although there is no unique way to compare different positioning algo-
rithms, various positioning approaches can be evaluated based on a number of metrics,
e.g., the performance measures considered in this chapter. A comprehensive assessment
of an algorithm may require that a hardware implementation of the algorithm is tested
in a real world scenario.





Chapter 3

Measurement models

The type and quality of measurements taken have a considerable effect on the performance
of a positioning algorithm in WSNs. Different types of measurements have been consid-
ered for the positioning problem, e.g., received signal strength (RSS), angle-of-arrival
(AOA), time-of-arrival (TOA), and time-difference-of-arrival (TDOA). Since designing an
estimator for the positioning problem strongly depends on the model of measurements, it
is of great importance to use an accurate model for measurements. We assume a sensor
node either transmits or receives a signal, or both. The measurement, in general, between
two nodes i and j follows the model introduced in (2.3). The sensor nodes can be either
stationary or moving. They might also be able to make more than one type of measure-
ment. In this chapter we briefly study three types of measurement based on RSS, AOA,
and TOA.

1 Received signal strength

The following model for received power in wireless channels is widely used to model RSS
in WSNs. The average received power from transmitter i at receiver j, in dB, can be
expressed as

Pij = P0i − 10β log

(

d(xi,xj)

d0

)

+ nij, (3.1)

where P0i denotes the power at distance d0, d(b, c) = ‖b − c‖ is the Euclidean distance
between a and b, β is a path-loss exponent that is commonly between 2 and 6 [20],
and nij is modeled as a zero mean Gaussian random variable with variance σ2

ij [22], i.e.,
nij ∼ N (0, σ2

ij).
As can be seen, the model is nonlinearly dependent on the position of the transmitter i.

Here, f(xi,xj) = P0i−10β log
(

‖xj−xi‖

d0

)

. If channel parameters, i.e., P0i and β, are known,

the maximum likelihood estimate of the distance between node i and j can be obtained
as

d̂ij = d010
P0i−Pij

10β . (3.2)

It can be shown that the distance estimate obtained in (3.2) is biased. An unbiased
estimate for the distance can be derived as [20]

d̂u
ij = d010

P0i−Pij

10β e
− 10β

σij ln 10 . (3.3)



14 Measurement models

The Cramér-Rao lower-bound for the variance of any unbiased distance estimator based
on RSS measurements can be obtained as [5]

E
(

d̂ij − E(d̂ij)
)2 ≥

(σijd(xi,xj) ln 10

10β

)2

. (3.4)

It is observed that the distance estimate accuracy deteriorates with the distance between
two nodes as well as the standard deviation σij of measurement noise in (3.1). It also
shows that the larger a path-loss exponent β, the more accurate the distance estimate,
the reason being that the average power is more sensitive to distance for the larger path-
loss [5].

Note that if the path-loss exponent β or reference power P0i are unknown, they must
be treated as nuisance parameters when estimating distance based on RSS [23, 24].

2 Angle-of-arrival

Using an array of antennas in a sensor node, we are able to measure the angle-of-arrival
for a signal received from a sensor i. The measured angle can be written, in radians, as:

θ̂ij = tan−1

(

xj2 − xi2

xj1 − xi1

)

+ nij, (3.5)

where tan−1 denotes four-quadrant inverse tangent and nij is often modeled by a zero

mean Gaussian random variable. Then, f(xi,xj) = tan−1

(

xj2−xi2

xj1−xi1

)

. Let us consider

a uniform linear array with Na elements with distance r between elements as shown
in Fig. 3.1. Assuming the same fading coefficient α for all signal arriving at the array
elements, the Cramér-Rao lower bound on variance of any unbiased estimator of AOA,
also called direction-of-arrival or bearing, is given by [5]

E
(

θ̂ij − E(θ̂ij)
)2 ≥

√
3c√

2π
√

SNRBer
√

Na(N2
a − 1) sin(θij)

, (3.6)

where θij is the actual angle, c is the speed of propagation, SNR = α2E
N0

is the received
signal-to-noise-ratio, N0 denotes the spectral density of additive white Gaussian noise,
and Be is the effective bandwidth defined by

Be =

(

1

E

∫ ∞

−∞

f 2|S(f)|2df
)

1

2

, (3.7)

with S(f) and E representing the Fourier transform and the energy of the transmitted
signal s(t) [5].

Eq. (3.6) shows that the performance of AOA estimation can be improved by increasing
the SNR, the number of array elements, or the distance between elements. It also shows
that the performance depends on the angle of θij. In a 2D network and in the absence
of noise, AOA measurements from at least two receivers can be used to estimate the
location of a transmitter, while in the presence of measurement noise, more than two
AOA measurements are needed to find the position of a transmitter [1].

Note that AOA measurements are obtained versus local coordinates, therefore, we
need to know the orientation of reference nodes with respect to global coordinates.
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Figure 3.1: A uniform linear array that measures the angle between two nodes i and j.

3 Time-of-arrival

Time-of-arrival (TOA) measurements are one of the most popular techniques used to solve
the positioning problem. To calculate the distance between two sensor nodes based on the
time the signal spends traveling from one node to another node, we need a time synchro-
nized network that can be achieved by using a number of techniques [25–29]. The TOA
estimate is commonly obtained by employing correlator or matched filter receivers [30–32].
In this thesis, we review three strategies to compute the TOA measurements: one-way
TOA, two-way TOA (TW-TOA), and time-difference-of-arrival (TDOA) measurements.

3.1 One-way time-of-arrival

Suppose sensor nodes are synchronized with a common clock and assume a line-of-sight
transmission. The TOA estimate for the signal transmitted from sensor i at the jthe
sensor can be modeled by

t̂ij =
‖xi − xj‖

c
+ nij, (3.8)

where nij is often assumed to be a zero mean Gaussian random variable, i.e., nij ∼
N (0, σ2

ij) [1, 31, 33]. The distance estimate is then obtained by

d̂ij = ct̂ij = ‖xi − xj‖ + c nij. (3.9)

Considering the effective bandwidth Be defined in (3.7), the CRLB for the TOA estimate
is computed as [5]

E
(

t̂ij − E(t̂ij)
)2 ≥ 1

2
√

2π
√

SNRBe

. (3.10)
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It is seen that increasing the SNR or effective bandwidth improves the performance of
TOA estimation.

3.2 Two-way time-of-arrival

In two-way TOA (TW-TOA), the distance between two nodes is computed using the
round-trip delay estimation without the need for a common time reference. In this
method, a sensor node i sends a signal to a node j and waits for a response from it.
Node j, then, replies with an acknowledgment after a turn-around time T ar

j . Therefore,
the estimated distance using TW-TOA can be obtained as

d̂ij = ‖xi − xj‖ + cT ar

j + c
(nij

2
+

nji

2

)

, (3.11)

where nij and nji are TOA estimation errors at node j and node i for the signals trans-
mitted from node i and j, respectively. It is seen that the T ar

j should be known or at
least accurately estimated. Although TW-TOA removes the error due to imperfect syn-
chronization between a reference node and a target, it still suffers from clock drift in the
reference node when measuring TW-TOA [31]. The drawback of this method is that we
need to send two signals for every range measurement compared to the TOA approach,
which of course increases the complexity.

For error-free measurements, distances derived from RSS, one-way TOA, or TW-TOA
define a number of circles around the reference nodes, and the target node is found in the
intersection of them.

A practical measurement: To study the effect of practical impairments, let us
consider real distance measurements collected by UWB devices. A measurement cam-
paign was performed on the second floor of the Department of Electronic, Information
and Systems at the Cesena campus of the University of Bologna, Italy [34]. The net-
work deployment, shown in Fig. 3.2, consisted of 20 sensor nodes. Two ultra-wideband
devices were used to measure the distance between every pair of nodes using a TW-TOA
technique.

Measurements for different distances are plotted in Fig. 3.3. We also depict the CDF
of all measurement errors in Fig. 3.4. As can be seen from both Fig. 3.3 and Fig. 3.4, there
are positive and negative outliers. Fig. 3.4 shows that the Gaussian assumption for the
measurement errors is not accurate in this case.

3.3 Time-difference-of-arrival

Instead of measuring the absolute distance between two nodes, time-difference-of-arrival
(TDOA) alternatively measures the distance difference between an unknown node and two
synchronized reference nodes. This method is used by the GPS system where a receiver
at an unknown position measures the TDOA of received signals from two synchronized
satellites. For example, the TDOA between target node xi and synchronized sensor nodes
at positions xj and xk can be written as

t̂ijk = t̂ij − t̂ik =
‖xi − xj‖

c
− ‖xi − xk‖

c
+ nij − nik. (3.12)
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Therefore, an estimation of the distance differences between node j and k to node i can
be written as

d̂i
jk = c t̂ijk = ‖xi − xj‖ − ‖xi − xk‖ + c(nij − nik). (3.13)

As can be seen from (3.13), this technique creates correlation between measurements:
e.g., t̂ijk and t̂ilk are correlated through nik. Each TDOA measurement defines a hyperbola
where every point on the hyperbola has a constant distance difference to nodes j and k.

Generally, the main sources of error in time-based ranging are [31]; propagation effects,
clock imperfections, and interference. The propagation effects include multipath fading,
direct-path delay, and direct-path blockage. Imperfect synchronization between nodes
causes range estimates to have large errors [27–29]. Finally, the interference from other
signals using the same frequency band (or neighboring band) will deteriorate the range
estimate.

In general, the different techniques can be summarized as [1, 31]:

• RSS is simple to implement and not sensitive to timing. It requires an accurate
model of the RSS-distance dependency. However, the estimation using RSS is not
accurate enough compared to, e.g., TOA-based approach;

• AOA is strongly affected by NLOS conditions. The accuracy depends on RF band-
width and SNR.

• TOA/TDOA is an accurate technique that suffers from NLOS conditions. For
perfectly synchronized networks, the accuracy depends on RF bandwidth and SNR.

4 Hybrid measurements

It is also possible to use hybrid measurements for positioning. A number of hybrid schemes
have been studied in the literature, e.g., TOA/AOA [35], TDOA/AOA [36], TDOA/TW-
TOA [37, 38], and TOA(TDOA)/RSS [39, 40].



Chapter 4

Positioning algorithms

The most obvious and easy solution to the positioning problem of a sensor node is probably
to equip the sensor with a GPS receiver. Although GPS is a reliable solution, it may not
be suitable for some scenarios. In an advanced GPS technology, called differential GPS,
it is possible to reach accuracies of 1 to 3 meters [1]. Thus, the GPS accuracy is not a
drawback to be used for positioning in some networks. The main drawbacks of the GPS
receiver when used in sensor nodes are that it is an expensive solution for tiny low cost
sensor nodes and it is not applicable in scenarios where there is a limited visibility of GPS
satellites, e.g., in indoor scenarios. Alternatively, self-positioning by the network itself
has found a growing interest during the last few years [1, 4–6, 8, 9, 41].

A positioning algorithm commonly takes the position of a number of reference nodes
and some types of measurements between reference nodes and an unknown target, and
locates the unknown target. Fig. 4.1 shows a high level implementation of a positioning
algorithm. Reference nodes (or even unknown target nodes) obtain some type of mea-
surements, e.g., TOA, TDOA, RSS, or hybrid measurements, based on a received RF
signal1 from an unknown target. A positioning algorithm is consequently applied to es-
timate the unknown target position. Positioning algorithms can be either centralized or
distributed; therefore, the measurements need to be sent to a center (centralized) or can
be locally processed (distributed). During the last decades, various positioning algorithms
have been proposed for WSNs. For instance, as long as the model and the statistics of
measurement errors are known, classical estimators can be employed to solve the problem.
When the distribution of measurement errors are unknown or the complexity of classical
estimation algorithms is extensive, a number of simplified techniques can be applied to
the problem. One important factor in evaluating a positioning algorithm is its robustness
against outliers, especially for non-line-of-sight conditions. In this thesis, we study a num-
ber of positioning algorithms with a focus on range-based methods. We categorize the
positioning algorithms in three families: classic algorithms, convex relaxation techniques,
and set theoretic approaches.

1 Classic estimators

In this section, we review the maximum likelihood (ML) estimator and the least squares
approximation (both nonlinear and linear) for the positioning problem.

1Other type of signals such as acoustic or laser signal can also be used for positioning.
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1.1 Maximum likelihood

Suppose measurement errors are independent and identically distributed (i.i.d.). Let the
PDF of the measurements in (2.3) be pMij

(mij;X), where X = [x1, ....,xM ]T ∈ R
2×M .

The maximum likelihood estimator can be derived as [12, 42]

X̂ = arg max
X∈R2×M

M
∑

i=1

∑

j∈Ai∪Bi

log pMij
(mij;X). (4.1)

In general, the optimization problem in (4.1) is a nonconvex problem and thus is difficult
to solve. For i.i.d. Gaussian measurement errors, (4.1) is

X̂ = arg min
X∈R2×M

M
∑

i=1

(

∑

j∈Ai

1

σ2

ij

(

mij − f(xi, aj)
)2

+
∑

j∈Bi

1

σ2

ij

(mij − f(xi,xj))
2

)

. (4.2)

where σ2

ij is the variance of measurement errors.
For distance measurements, using the TOA approach for synchronized networks, (4.2)

can be written as

X̂ = arg min
X∈R2×M

M
∑

i=1

(

∑

j∈Ai

1

σ2

ij

(

d̂ij − ‖xi − xj‖
)2

+
∑

j∈Bi

1

σ2

ij

(

d̂ij − ‖xi − aj‖
)2

)

. (4.3)

Note that for TDOA measurements, the correlation between different measurements
also needs to be included in the ML objective function.

Note that if there are additional unknown parameters besides the targets’ positions,
we can involve them as nuisance parameters in the ML objective function. For instance,
for positioning based on RSS measurement, if the path-loss exponent and transmission
powers are unknown, one way to obtain an estimator is to minimize the following cost
function over all unknown transmission powers and path-loss exponents
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X̂ = arg min
X∈R2×M ,β>0

P0i∈R

M
∑

i=1

(

∑

j∈Ai

1

σ2

ij

(

Pij − P0i + 10β log

(

dij(xi, aj)

d0

))2

+
∑

j∈Bi

1

σ2

ij

(

Pij − P0i + 10β log

(

dij(xi,xj)

d0

))2
)

. (4.4)

Here, we assumed that the path-loss factor is the same for all links.

The ML estimator is asymptotically efficient; i.e., it attains the CRLB when the
statistics of the measurement errors are available. In practice, however, it is difficult to
obtain a priori knowledge of the full statistics of measurement errors.

1.2 Nonlinear least squares

The least squares approximation is commonly used in the positioning literature as a
benchmark to compare different algorithms. A nonlinear least squares algorithm for
positioning tries to minimize the following cost function [43]:

X̂ = arg min
X∈R2×M

M
∑

i=1

(

∑

j∈Ai

(mij − f(xi, aj))
2 +

∑

j∈Bi

(mij − f(xi,xj))
2

)

. (4.5)

When the variances of measurement errors are available, the NLS can be formulated
as a weighted nonlinear least squares (WNLS):

X̂ = arg min
X∈R2×M

M
∑

i=1

(

∑

j∈Ai

1

σ2

ij

(mij − f(xi, aj))
2 +

∑

j∈Bi

1

σ2

ij

(mij − f(xi,xj))
2

)

. (4.6)

In general, the WNLS solution coincides with the ML estimate if measurement errors
are i.i.d. Gaussian; e.g., for the range-based positioning, WNLS is similar to (4.3). There
are a number of techniques that can be employed to solve the (W)NLS problem, e.g., the
Gauss-Newton approach [12].

An alternative approach in the positioning literature is applying the squared-range
NLS squares (SR-NLS) [44–47] for the range-based positioning. Then

X̂ = arg min
X∈R2×M

M
∑

i=1

(

∑

j∈Ai

(

d̂2

ij − ‖xi − aj‖2

)2

+
∑

j∈Bi

(

d̂2

ij − ‖xi − xj‖2

)2

)

. (4.7)

Note that the SR-NLS approach is suboptimal in the maximum likelihood sense, but
it can be shown that a global solution to (4.7) can be obtained efficiently [46].
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1.3 Linear least squares

Due to the nonlinear and often nonconvex objective function in NLS, we need to resort to
numerical methods to find the position, e.g., an iterative search with a good initial point.
A method that often gives good estimates at high SNR is to linearize the measurements
versus the position of the target nodes and then to employ linear least squares (LLS) [48–
52]. To form a linear least squares problem, we need to find a signal model that is
linear in the unknown parameters [49]. Here, we derive the LLS for the non-cooperative
network, i.e., Bi = ∅, and for distance measurements. Suppose that there are at least
three non co-linear nodes with known positions around a target. Let the measurement
error be small compared to the true distances, and assume that the distance measurement
between target i and reference node j is

d̂i,j = d(xi, aj) + εij, j ∈ Ai (4.8)

where εij is measurement noise with variance σ2

ij. Here, there are no particular assump-
tions about noise statistics other than variance.

Squaring both sides of (4.8), after dropping small terms and some manipulations,
yields:

d̃ij = d̂2

ij − ‖aj‖2 ≈ [−2aj
T 1]ψi + 2d(xi, aj)εij , j ∈ Ai, (4.9)

where ψi =
[

xT
i , ‖xi‖2

]T
. Now a set of linear equations can be written as

di = Aiψi + νi , (4.10)

where

di =
[

d̃ij1 d̃ij2 . . . d̃ijk

]T

, (4.11a)

Ai =







−2aT
j1

1
...

...
−2aT

jk
1






(4.11b)

νi =
[

2d(xi, aj1) εij1 . . . 2d(xi, ajk
) εijk

]T
(4.11c)

where Ai = {j1, . . . , jk}, and k = |Ai| is the cardinality of set Ai.
If the matrix Ai is full rank, then the unknown parameter ψi can be estimated by [12]

ψ̂i = (AT
i C−1

νi
Ai)

−1AT
i C−1

νi
di , (4.12)

where the weighting matrix Cνi
, for i. i. d. measurement noise, is given by [48]

Cνi
= diag

(

4d2(xi, aj1)σ
2

ij1
, . . . , 4d2(xi, ajk

)σ2

ijk

)

. (4.13)

The covariance matrix of ψ̂i can be computed as [12]

cov(ψ̂i) =
(

AT
i C−1

νi
Ai

)−1

. (4.14)

To compute the weighting matrix Cνi
, the real distances between known nodes to the

target i are required. Since in practice the real distances are not available, we instead use
the measured distances in (4.13). Since the linear estimator derived in the positioning
literature is suboptimal [52], a number of techniques can be used to improve the estimate,
e.g., correction techniques [50, 53] or constrained least squares approaches [54].

It is also possible to derive the LLS by removing the quadratic term ‖xi‖2 [34, 49, 52,
55].
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2 Convex relaxation techniques

Since ML and NLS methods yield nonconvex optimization problems that are in general
NP-hard [56], convex relaxation techniques can be employed to solve them in an efficient
way. In this section, we briefly study two techniques based on semidefinite programming
(SDP) and second-order cone programming (SOC) for TOA range-based positioning [44,
56–58]. For TDOA, RSS, and AOA see [59–61]. SDP relaxation techniques are suitable for
small and medium sized networks [56]. For large networks, a distributed version of SDP is
required [62]. Alternatively, SOCP techniques have been considered to solve positioning
problems in large networks [56]. It has been shown that the SOCP relaxation approach
is always weaker than the SDP relaxation [56], thus SDP gives more accurate estimates
compared to SOCP.

2.1 Semidefinite programming

Let us consider the ML problem in (4.3) and reformulate it as

minimize
X∈R2×M ,αij ,γij∈R

M
∑

i=1

(

∑

j∈Ai

1

σ2

ij

αij +
∑

j∈Bi

1

σ2

ij

γij

)

subject to
(

d̂ij − ‖xi − aj‖
)2

= αij, j ∈ Ai,

(

d̂ij − ‖xi − xj‖
)2

= γij, j ∈ Bi, i = 1, . . . , M. (4.15)

To solve the nonconvex optimization problem in (4.15), we can use relaxation techniques
and reformulate it as an SDP problem. The basic idea behind formulating an SDP relax-
ation is to remove the quadratic term in distance constraints by adopting a relaxation [57].
The constraints in (4.15) can be written as

(

d̂ij − ‖xi − aj‖
)2

=
[

d̂ij,−1
]

Dij

[

d̂ij,−1
]T

= αij, j ∈ Ai,

(

d̂ij − ‖xi − xj‖
)2

=
[

d̂ij,−1
]

Vij

[

d̂ij,−1
]T

= γij, j ∈ Bi, (4.16)

where

Dij =

[

1 ‖xi − aj‖
‖xi − aj‖ ‖xi − aj‖2

]

, j ∈ Ai,

Vij =

[

1 ‖xi − xj‖
‖xi − xj‖ ‖xi − xj‖2

]

, j ∈ Bi.

We can further write the Euclidian distance ‖xi − xj‖2 and ‖xi − aj‖2 as

[0,ui − uj] Z [0,ui − uj]
T = ‖xi − xj‖2, j ∈ Bi,

[−aj,ui] Z [−aj,ui]
T = ‖xi − aj‖2, j ∈ Ai, (4.17)

where the matrix Z is

Z =

[

I2 X
XT XTX

]

, (4.18)
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and I2 denotes the 2 × 2 identity matrix. The vector ui is a vector with all zeros except
its ith entry, which is one.

Now, we obtain the SDP relaxation as

minimize
X,αij ,γij ,Dij ,Vij ,Z

M
∑

i=1

(

∑

j∈Ai

1

σ2

ij

αij +
∑

j∈Bi

1

σ2

ij

γij

)

subject to
[

d̂ij,−1
]

Dij

[

d̂ij,−1
]T

= αij, j ∈ Ai,

[

d̂ij,−1
]

Vij

[

d̂ij,−1
]T

= γij, j ∈ Bi,

[0, ei − ej]Z [0, ei − ej]
T = ‖xi − xj‖2, j ∈ Bi,

[−xj, ei]Z [−xj, ei]
T = ‖xi − aj‖2, j ∈ Ai,

Dij � 0, j ∈ Ai,

Vij � 0, j ∈ Bi,

Z � 0. (4.19)

The SDP relaxation given in (4.19) originates from the MLE cost function. It is also
possible to derive an SDP relaxation for other cost functions in positioning problem, e.g.,
the sum of squared method [44, 56].

2.2 Second-order cone programming

Let the positioning estimate be the solution to the following nonconvex optimization
problem [56] (to formulate the ML estimator as a SOCP see [59]):

[x̂1, ...., x̂M ]T = arg min
X∈R2×M

M
∑

i=1

(

∑

j∈Ai

∣

∣d̂2

ij − ‖xi − aj‖2
∣

∣ +
∑

j∈Bi

∣

∣d̂2

ij − ‖xi − xj‖2
∣

∣

)

.

(4.20)

By introducing new variables tij and lij, (4.20) can be written as

minimize
X∈R2×M ,tij ,lij∈R

M
∑

i=1

(

∑

j∈Ai

∣

∣d̂2

ij − tij
∣

∣+
∑

j∈Bi

∣

∣d̂2

ij − lij
∣

∣

)

subject to ‖xi − aj‖2 = tij, j ∈ Ai,

‖xi − xj‖2 = lij, j ∈ Bi. (4.21)

Now, relaxing the equality constraints to ‖xi −xj‖2 ≤ lij and ‖xi −aj‖2 ≤ tij, we get the
SOCP relaxation

minimize
X∈R2×M ,tij ,lij∈R

M
∑

i=1

(

∑

j∈Ai

|d̂2

ij − tij| +
∑

j∈Bi

|d̂2

ij − lij|
)

subject to ‖xi − aj‖2 ≤ tij, j ∈ Ai

‖xi − xj‖2 ≤ lij, j ∈ Bi. (4.22)
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Alternatively (4.22) can also be written as

minimize
X∈R2×M ,tij ,lij ,yij ,pij∈R

M
∑

i=1

(

∑

j∈Ai

yij +
∑

j∈Bi

pij

)

subject to ‖xi − aj‖2 ≤ tij, j ∈ Ai

‖xi − xj‖2 ≤ lij, j ∈ Bi,

|d̂2

ij − tij| ≤ yij,

|d̂2

ij − lij| ≤ pij. (4.23)

Note that it is also possible to obtain a distributed version of SOCP that is suitable for
large networks.

3 Set theoretic approach

Let us consider the ranged-based positioning problem as an optimization problem

minimize
X∈R2×M

0

subject to ‖xi − aj‖ = d̂ij, j ∈ Ai

‖xi − xj‖ = d̂ij, j ∈ Bi. (4.24)

In fact, in the absence of measurement errors, the target i, at position xi can be found
at the intersection of a number of circles with distances dij and centers aj and xj, i.e.,

dij = d̂ij.
The nonconvex problem in (4.24) renders to a convex feasibility problem (CFP)2, more

precisely a SOCP feasibility problem, by relaxing the nonconvex constraints to the convex
constraints as follows:

minimize
X∈R2×M

0

subject to ‖xi − aj‖ ≤ d̂ij, j ∈ Ai

‖xi − xj‖ ≤ d̂ij, j ∈ Bi. (4.25)

When the measurement errors are all positive [64], the relaxation in (4.25) makes
sense; i.e., the actual distance cannot be larger than the measured distance.

To get some insight into problem (4.25), let us consider Fig. 4.2 for a cooperative
network consisting of two targets and four reference nodes. For positive measurement
errors, we obtain two intersection areas where target one and target two can be found.

To find a point in the intersection area, we can apply the well-known approach projec-
tion onto convex sets (POCS) [65] or a technique based on outer-approximation (OA). In
the this section, we study POCS and OA for non-cooperative networks. For cooperative
versions, we refer the reader to Paper D in this thesis.

2The CFP is to find a point in the nonempty intersection of convex sets Qi = {z ∈ R
n | fi(z) ≤ 0},

i.e., Q = ∩m

i=1Qi, where fi(·) is a convex function [63].
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3.1 Projections onto convex sets

POCS, also called successive orthogonal projections onto convex sets [63] or alternating
projection [66], was first introduced to solve the convex feasibility problem in [67]. POCS
has then been applied for different problems in various fields, e.g., in image restoration
problems [68–70]. There are generally two versions of POCS: sequential and simultaneous.
In this thesis, we only consider sequential POCS and refer the reader to [63] for a study
of both sequential and simultaneous projection algorithms. POCS is implemented by
sequential projection onto discs. First an arbitrary initial point is chosen. The projection
of that point to one disc is computed and then this new point is projected onto another
disc. This procedure is continued until a stopping rule is fulfilled. To see how POCS
works, let us consider Fig. 4.3, where three reference nodes measure distances to target
one. If the measurement errors are all positive, then target one can be found in the
intersection shown in this figure. Choosing an arbitrary initial point and after three
sequential projections, we end up in one point at boundary of the intersection.

The convergence of POCS has been extensively studied in the literature [63, 71, 72]. It
has been shown that for the consistent case, i.e., with a non-empty intersection, the POCS
estimate converges to a point in the intersection. For the inconsistent case, using suitable
relaxation parameters, POCS converges to a point that minimizes the sum of squared
distances to the convex sets (here a number of discs). The performance of POCS evaluated
through practical data confirms theoretical claims [34, 55]. In positioning problems, POCS
has been proposed for a number of scenarios [38, 72–74].

3.2 Bounding the feasible set

As mentioned in the previous section, for positive measurement errors, the intersection
of discs is not empty and the target definitely is found there3. This assumption can be
fulfilled for range estimation based on, e.g., TW-TOA for a reasonable signal-to-noise
ratio [64]. The intersection in general may have any convex shape and every point in the
intersection can potentially be an estimate of the target position. POCS gives one point as
an estimate. In contrast to POCS, OA tries to approximate the feasible set by a suitable
shape and then one point inside of it is taken as an estimate, e.g, the middle of the approx-
imated set. The main problem is how the intersection can be accurately approximated.
Generally speaking two kinds of approximations, i.e., inner-approximation and outer-
approximation, have been extensively studied in the literature. In inner-approximation
family, the maximum volume ellipsoid contained in an intersection of ellipsoids and the
maximum volume ellipsoid contained in a polyhedron given as a set of linear equalities
are tractable [75]. A number of outer-approximation problems are known to be tractable,
such as the minimum volume ellipsoid containing a polyhedron and the minimum volume
ellipsoid containing a union of ellipsoids [75]. Note that the minimum volume ellipsoid
enclosing the intersection of a number of ellipsoids seems to be an intractable problem.
There is work in the literature to approximate the intersection by convex regions such as
polytopes, ellipsoids, or discs [55, 76–78].

In this thesis, we consider a disc approximation of the feasible set. In a kD network,
k = 2 or 3, when the number of discs is less than k− 1, it is possible to efficiently find the

3It is also possible to have a non-empty intersection for mixed positive and negative measurement
errors.
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smallest disc covering the intersection [78] by solving an SDP problem. In other cases,
finding the smallest disc enclosing the intersection is difficult. Using simple geometry, we
are able to find all intersection points between different discs and finally find a disc that
passes through them and covers the intersection. However, there is no guarantee that
this disc is the minimum disc enclosing the intersection. We can solve this problem by,
for instance, a heuristic method as explained in Paper D. The generalization of bounding
feasible sets to the cooperative scenario is also investigated in Paper D.



Chapter 5

Conclusions and future work

This thesis aims at proposing robust and reliable algorithms with acceptable complexity
for the WSN positioning problem. To reach this goal, a number of contributions were
introduced for different situations. However, it is still needed to do further explorations
for future work.

1 Contributions

The main contributions of this thesis are found in four appended papers.

1.1 Paper A- Indoor sensor node positioning using UWB range
measurements

In this paper the performance of a number of positioning algorithms was evaluated based
on RMSE and position error CDF for practical distance measurement. Two UWB devices
were used to estimate the distance between every pair of nodes in an indoor scenario. We
applied different positioning approaches directly on the raw data without any modifi-
cations and compared different methods. The main conclusion of this paper is that no
method uniformly performs best.

1.2 Paper B- Positioning of node using plane projection onto
convex sets

Since obtaining an accurate model for RSS is difficult in practice, in this paper we assume
that no prior information about channel models, transmission power and path-loss factor,
is available. We only consider a fixed value for these channel parameters for all links
and assume that power decreases with distance on average. We modeled the positioning
problem as a convex feasibility problem (CFP) and obtained a new method based on
projection onto halfplanes (halfspaces). Although this method is not very accurate, it can
be considered as a coarse estimate for positioning based on RSS when channel parameters
are unknown.



30 Conclusions and future work

1.3 Paper C- Hybrid TW-TOA/TDOA positioning algorithms
for cooperative wireless networks

In this paper we consider the positioning problem using hybrid TW-TOA/TDOA mea-
surements in a cooperative network. Two different reference nodes, called primary and
secondary nodes, measure TW-TOA and TDOA, respectively. The MLE derived for this
problem is nonconvex and difficult to solve. We propose a two-step linear estimator that
has closed-form solution in each step. In the first step, a nonlinear processing of data
yields a linear model and a traditional least squares approach can be employed to solve
the problem. In the second step, another linear estimator is derived using a first-order
Taylor-series expansion and a regularized linear estimator is used to refine the first step
estimation. Simulation results show that the proposed estimator attain the CRLB for
sufficiently large SNRs.

1.4 Paper D- Wireless network positioning as a convex feasibil-
ity problem

In this paper, we study how the positioning problem can be modeled as a CFP. To solve
the CFP, we considered two different approaches: POCS and OA. The properties of POCS
for non-cooperative networks were reviewed and a method for finding an upper-bound on
the position error of POCS has been shown. We also proposed two techniques based on
POCS and OA for cooperative networks as well as a constrained nonlinear least squares
methods. Simulation results show that the positioning algorithms based on geometric
solutions are more robust against NLOS compared to proposed statistical approaches
such as NLS.

2 Future work

In Paper D, we proposed a variant of POCS for cooperative networks. The convergence
properties of this approach are not known and need more exploration in future work. We
also proposed a method for finding the upper-bound on the POCS estimate by solving a
nonconvex problem. It seems that convex relaxation techniques can be applied to solve
this nonconvex problem. In the literature, it is commonly assumed that the sensor nodes
are synchronized and the positioning algorithms are obtained considering a perfect syn-
chronized network. For an unsynchronized network, synchronization can be done before
the positioning or it can be jointly done with the positioning. Moreover, other impairments
such as uncertainty of the position of reference nodes exist in most practical scenarios.
For future work, we will focus on joint positioning and synchronization approaches and
we will also consider practical impairments in designing positioning algorithms.

3 Related contributions

Other related publications by the author, which are not included in this thesis, are listed
below.
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