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Predictive Threat Assessment via Reachability
Analysis and Set Invariance Theory

Paolo Falcone∗, Mohammad Ali∗,† and Jonas Sjöberg∗

Abstract—We propose two model based threat assessment
methods for semi-autonomous vehicles, i.e., human driven ve-
hicles with autonomous driving capabilities. Based on infor-
mation about the surrounding environment, we introduce a
set of constraints on the vehicle states, which are satisfied
under “safe” driving conditions. Then we formulate the threat
assessment problem as a constraint satisfaction problem. Vehicle
and driver mathematical models are used in order to predict
future constraints violation, indicating the possibility of accident
or loss of vehicle control, hence the need of assisting the driver.
The two proposed methods differ in the models used to predict
the vehicle motion within the surrounding environment.

We demonstrate the proposed methods in a roadway departure
application and validate it through experimental data.

Index Terms—Active Safety, Semi-Autonomous Vehicles,
Threat Assessment, Decision Making, Reachability Analysis,
Invariant Set Theory.

I. I NTRODUCTION

Classical active safety systems like, e.g., yaw stability
control, only affect the dynamical behavior of the vehicle while
its motion control within the environment is left to the driver.
Thanks to recent advances in sensing technologies [16, 6],
modern Advanced Driver Assistance Systems (ADAS) can
instead influence both the dynamical behavior of the vehicle
and its motion within the surrounding environment to prevent
accidents. In particular, sensors measurements can be fused to
obtain information about the surrounding environment like,
e.g., road geometry and relative position and velocity of
moving objects. This is demonstrated in, e.g., [12] where a
standard radar, typically used for adaptive cruise control, is
used along with anoff the shelfcamera for joint road geometry
estimation and vehicle tracking.

Motivated by the described state-of-the-art in sensing tech-
nologies, the current trend in the development of ADAS for
passenger cars points towards systems with increased au-
tonomous driving capabilities in complex environments [23],
beyond what is currently available in production active safety
systems. In particular, future ADAS are envisioned to assist the
driver in negotiating curves or intersections and autonomously
drive the vehicle in order to avoid accidents,if needed. Proto-
types of autonomous vehicles have been shown to successfully
accomplish different and complex driving tasks at both low
speeds, in urban environments, [26, 24, 3] and in high speed
maneuvers on low friction surfaces [13, 14]. The promising
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results obtained with these prototypes of autonomous vehicles
clearly demonstrate the possibilities offered by the autonomous
driving technologies for active safety applications. However,
in active safety applications for passengers cars it is essential
that an assisting autonomous driving intervention is initiated if
and only if it is needed, i.e., if a risk of accident is detected that
the driver is not able to avoid. The formulation oftransition
conditionsbetween, e.g., a manual and a fully autonomous
driving mode, is not trivial.

In this paper, we consider a threat assessment problem for
semi-autonomousvehicles, i.e.,human driven vehicles with
autonomous driving capabilities. We assume that information
about the surrounding environment is given with a certain
amount of preview and focus on the problem of determining,
based on the current vehicle state, whether the driver needs
assistance in order to safely (i.e., without colliding withother
objects in the surrounding environment or losing stability)
accomplish a driving task. Although the method is general
and can be used in a wide range of accident scenarios, for
the sake of easy illustration, in this paper we consider a lane
departure application. In particular, we consider lane guidance
systems assisting the driver in maintaining the vehicle within
the lane boundaries.

In several lane guidance algorithms, the transition condi-
tions to an autonomous driving mode are formulated based
on the “Time to Line Crossing” (TLC). An intervention or
warning is issued once the TLC passes a predefined threshold.
An overview and assessment of methods for calculating the
TLC is provided in [21]. Artificial potential fields, instead, are
used in the method presented in [29], where lane crossings
are prevented by introducing cost functions whose value
increase as the vehicle approaches the lane boundaries. An
optimization-based approach is presented in [2]. Every time
step, based on current vehicle state and information about
the surrounding environment, a Model Predictive Controller
is used to compute a vehicle trajectory over a future time
horizon. An assisting intervention is issued if the computed
trajectory is considered hazardous. We observe that in these
approaches the transition criteria activating the autonomous
driving interventions are based on the evaluation of a controller
behavior and/or the limitations of the vehicle capability of
remaining stable and within the lane, without accounting for
the limitations of the driver’s ability to perform the same task.
This might lead to the initiation of an autonomous driving
intervention in situations where the driver does not need
assistance. On the other hand, if the controller is outperforming
the driver, no intervention might be issued at all. In this
paper, instead, we propose two threat assessment methods
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explicitly accounting for the human driving behavior. The
idea underlying the proposed methods is to use vehicle and
driver mathematical prediction models, along with information
about the surrounding environment, to assess the risk of
accidents over a future, finite time horizon. We demonstrate
the proposed method in a lane guidance application and
validate it through experimental data. The paper is organized
as follows. In Section II, we provide basic definitions and
results on reachability analysis and set invariance theory. In
Section III, we present the vehicle and driver modeling used
next, in Section IV, where the threat assessment algorithms
are presented. In Section V, we discuss the validation results
obtained through the proposed algorithms, while Section VI
closes the paper with final remarks.

II. BACKGROUND ON SET INVARIANCE THEORY AND

REACHABILITY ANALYSIS

In this section we introduce a few definitions and recall
basic results on set invariance theory and reachability analysis
for constrained systems. A comprehensive survey of papers on
set invariance theory can be found in [9]. This section adopts
the notation used in [15].

We will denote the set of all real numbers and positive
integers byR andN+, respectively.

Denote byfa the state update function of an autonomous
discrete time system

x(t + 1) = fa(x(t), w(t)), (1)

wherex(t) andw(t) denote the state and disturbance vectors,
respectively. System (1) is subject to the constraints

x(t) ∈ X ⊆ R
n, w(t) ∈ W ⊆ R

d, (2)

whereX andW are polyhedra that contain the origin in their
interiors. For the autonomous system (1)-(2),

Definition 1 (Reachable set (for autonomous systems)):
we define the one-step robust reachable set for initial states x
contained in the setS as

Reachfa(S,W) , {x ∈ R
n |

∃ x(0) ∈ S, ∃ w ∈ W : x = fa(x(0), w)}.
(3)

For the nominal system, i.e., withw(t) = 0, ∀t, the one-
step reachable set is defined as

Reachfa(S) , {x ∈ R
n | ∃ x(0) ∈ S : x = fa(x(0))}. (4)

For the autonomous system (1)-(2), we define the dual of
the reachable set as,

Definition 2 (Pre set (for autonomous systems)):the set of
states that evolves toS in one step, as

Prefa(S,W) , {x ∈ R
n | fa(x,w) ∈ S, ∀w ∈ W}. (5)

For the nominal system, the “Pre” set is defined as

Prefa(S) , {x ∈ R
n | fa(x) ∈ S}. (6)

Equivalently, for the system with inputs

x(t+ 1) = f(x(t), u(t), w(t)), (7)

subject to the constraints

x(t) ∈ X , u(t) ∈ U ⊆ R
m, w(t) ∈ W , (8)

Definition 3 (Reachable set (for systems with external inputs)):
the one-step robust reachable set for initial statesx contained
in the setS is defined as

Reachf (S,W) , {x ∈ R
n |

∃ x(0) ∈ S, ∃ u ∈ U , ∃ w ∈ W : x = f(x(0), u, w)}.
(9)

Moreover,
Definition 4 (Pre set (for systems with external inputs)):

we define the set of states which can be driven into the target
setS in one time step as

Pref (S,W) , {x ∈ R
n |

∃ u ∈ U s.t. f(x, u, w) ∈ S, ∀w ∈ W}.
(10)

The setsReachf (S) and Pref (S), for the nominal system
with external inputs, are defined similarly as in (4) and (6),
respectively.

In this paper we will userobust invariant setsand robust
control invariant sets. The following definitions are derived
from [9, 8, 7].

Definition 5 (Robust positive Invariant Set):A set O is
said to be a positive invariant set for the autonomous sys-
tem (1) subject to the constraints in (2), if

x(0) ∈ O ⇒ x(t) ∈ O, ∀t ∈ N
+ (11)

Definition 6 (Maximal Positive Invariant SetO∞): The
set O∞ is the maximal invariant set of the autonomous
system (1) subject to the constraints in (2), if0 ∈ O∞, O∞

is positive invariant andO∞ contains all positive invariant
sets that contain the origin.
Control invariant sets are defined for systems subject to
external inputs. The following definitions are derived from
[9, 8, 7, 19].

Definition 7 (Control Invariant Set):A set C ⊆ X is said
to be a control invariant set for the system in (7) subject to
the constraints in (8), if

x(t) ∈ C ⇒ ∃ u(t) ∈ U such thatf(x(t), u(t)) ∈ C, ∀t ∈ N
+

(12)
Definition 8 (Maximal Control Invariant SetC∞): The

setC∞ is said to be the maximal control invariant set for the
system in (7) subject to the constraints in (8), if it is control
invariant and contains all control invariant sets contained in
X .

III. M ODELING

In this section, we present the vehicle and driver’s steering
behavior mathematical models used in Section IV as basis of
the threat assessment algorithm.
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Fig. 1. Vehicle modeling notation.

A. Vehicle model

Consider the vehicle model sketched in Figure 1. The
vehicle motion within the lane, subject to the lateral and yaw
dynamics, is described by the following set of differential
equations

mv̇y = −mvxψ̇ + 2
[

Fyf + Fyr
]

, (13a)

Jzψ̈ = 2[lfFyf − lrFyr ], (13b)

ėψ = ψ̇ − ψ̇d, (13c)

ėy = vy + vxeψ, (13d)

wherem and Jz denote the vehicle mass and yaw inertia,
respectively,lf and lr are the distances of the vehicle center
of gravity from the front and rear axles, respectively,vx andvy
are the longitudinal and lateral velocities, respectively, in the
vehicle body frame,ψ̇ is the turning rate, whereψ denotes
the vehicle orientation w.r.t. the fixed global frame(X,Y ) in
Figure 1.Fyf , Fyr are the lateral tire forces at the front and
rear axles, respectively. In (13c) and (13d),eψ andey denote
the vehicle orientation and position errors, respectively, w.r.t.
the road centerline andψd is the desired vehicle orientation,
i.e., the slope of the tangent to the curveΓd in the pointO.

The lateral tire forces in (13a) and (13b) are generated at
the tire contact patch and are, in general, nonlinear functions
of the vehicle states. In this paper, we compute the lateral tire
forces as

Fyi = −Ciαi, i ∈ {f, r}, (14)

whereCi are the tire cornering stiffness coefficients at the two
axles andαi are the tyre slip angles which, for small values,
can be approximated as

αf =
vy + lf ψ̇

vx
− δ, αr =

vy − lrψ̇

vx
, (15)

where δ denotes the front steering angle as depicted in
Figure 1.

Remark 1:The simplified linear tire model (14) well ap-
proximates more complex nonlinear tire characteristics [4] for
small tire slip angles, i.e.,αi ∈ [αimin

, αimax
]. However, this

interval also corresponds to a “normal driving” region where
drivers usually operate [27, 18].

For a given vehicle longitudinal speedvx, the model (13)-
(15) can be compactly written as

ẋ(t) = Ax(t) +Bu(t) + Ew(t), (16)

where x =
[

vy , ψ̇, eψ, ey

]T

and w = ψ̇d are the state
and the disturbance vectors andu = δ is the steering input
command.

B. Driver model

In this section, we consider the vehicle model (16) and
present a feedback control law resembling the human driver’s
steering behavior while performing a lane following task.
The driver model, combined with the vehicle model (16),
is used next in Section IV as basis of the proposed threat
assessment algorithm. The literature on the modeling of driver
steering is rich, early studies on driver modeling date back
to the sixties and demonstrated the importance of preview
information for human drivers [28]. McRueret al. were
among the first proposing a human driver’s steering “preview
control” algorithm consisting of a “pursuing” part and a
closed loop correcting part [22]. The various preview control
algorithms can be divided in two main groups, depending on
whether the “preview signal” is provided as a reference or a
disturbance [25]. In this paper, the driver’s steering behavior
is described by a preview control law, where the “preview
signal” enters as a disturbance.

Define the orientation errorelpψ , w.r.t. the look-ahead point
in Figure 1, as

elpψ = ψ − ψlpd = eψ +∆ψd, (17)

whereψlpd is the desired orientation at timet + tlp, with t

the current time,∆ψd = ψd − ψlpd and tlp the preview time
that can be mapped into the preview distancedlp under the
assumption of constant speedvx.

We consider the vehicle model (13) and compute the steer-
ing angleδ as

δ = Kyey +Kψe
lp
ψ , (18)

with Ky,Kψ gains that are, in general, time varying and might
be updated online.

Clearly,∆ψd in (17) depends on the preview timetlp that,
in our modeling framework, is considered as a parameter of
the driver’s model and can be identified from experimental
data. Recursive least squares estimation results of the driver’s
model parameters are demonstrated in Section V.

C. Driver controlled vehicle model

We consider the autonomous system, obtained by combining
the vehicle and driver models (16) and (18), respectively, that
can be compactly written as

ẋa(t) = Aaxa(t) + Eawa(t), (19)

where xa =
[

vy, ψ̇, eψ, ey

]T

and wa =
[

ψ̇d, ∆ψd

]T

are the state and the disturbance vectors, respectively. The
definitions of the matricesAa, Ea are straightforward.
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D. System Constraints

Next we define a set of operating conditions, in the space of
the states and inputs of systems (16) and (19), corresponding
to stable driving within the lane boundaries.

We denote byeyij , i ∈ {f, r}, j ∈ {l, r}, the distances of
the four vehicle corners from the lane centerline. By assuming
small orientation errors,eyij can be written as

eyfl
= ey +

c

2
+ aeψ, eyfr

= ey −
c

2
+ aeψ, (20a)

eyrl = ey +
c

2
− beψ, eyrr = ey −

c

2
− beψ, (20b)

where c is the vehicle width,a and b are the distances of
the center of gravity from the front and rear vehicle bumpers,
respectively. Furthermore, in order to avoid possible vehicle
instability due to the effects of the tire nonlinearities (see
Remark 1), the vehicle can be forced to operate in a region of
the state space by limiting the tire slip anglesαi, i ∈ {f, r}.

The constraints on the vehicle position and slip angles can
then be compactly written as

−eymax
≤ eyij ≤ eymax

, (21a)

αimin
≤ αi ≤ αimax

, i ∈ {f, r}, j ∈ {l, r}, (21b)

whereeymax
is the maximum distance of the vehicle corners

from the lane centerline. The model (13)-(15), subject to
constraints (21), describes the stable vehicle motion within the
lane. In such operating conditions assuming small orientation
errors is deemed reasonable.

The constraints (21) can be compactly rewritten for the
system (16) as

[

Hx Hu

]

(

x
u

)

≤ h, (22)

while for the system (19) we have

Haxa ≤ ha, Ha = Hx +HuK, ha = h−HuKψ∆ψd.
(23)

IV. T HREAT ASSESSMENT VIA REACHABILITY ANALYSIS

AND SET INVARIANCE THEORY

In this section we propose two threat assessment methods
based on the vehicle and driver modeling presented in Sec-
tion III. The idea underlying the proposed methods is to first
introduce a set of constraints on the vehicle state and input
trajectories, describing a “safe” driving. For the specificlane
guidance application considered in this paper, the constraints
are set by the lane boundaries and the stability limits the
vehicle should not exceed, i.e., the inequalities (21). Hence,
constraints satisfaction implies that the vehicle is traveling
within the lane boundaries in a stable operating region. The
threat assessment problem is then reformulated as a constraints
satisfaction problem over a future time horizon, solved through
the predictive, model based methods described next.

Based on the vehicle and driver models, every time step
we calculate a “safe set”. This is the set of vehicle states at
current timet which, according to the considered vehicle and
driver models, are guaranteed to evolve to a given final set in

finite time while satisfying the constraints (21). The safe set
is updated in receding horizon, as new information about the
surrounding environment is available, e.g., the coming road
curvature in our lane guidance application. Once the safe set
is computed, a set membership test on the current vehicle state
is performed to check whether the vehicle is in the safe set
and decide whether the driver needs to be assisted.

We use the reachability analysis and set invariance theory
definitions, given in Section II for linear systems, to calculate
the safe sets. Similar ideas can be found in [1] and [5] in
the automotive and aerospace fields, respectively. In [1], the
authors propose a collision detection method in autonomous
driving. In particular, a traffic scenario is considered where
the path of an autonomous vehicle has to be planned in
order to avoid collisions with other traffic participants, whose
future trajectory is unknown. A safe planned path for the
autonomous vehicle is required to not intersect thestochastic
reachable setscomputed for each traffic participant, i.e., the
set of future positions possibly occupied by the other traffic
participants. In [5], a safety analysis of an aircraft autoland
system is developed based on the calculation of reachable sets.
In the landing phase, the set of the aircraft configurations,
evolving within a safe envelope to the set of acceptable states
at touchdown, is calculated as a backward reachable set.

In this paper we propose two predictive and model based
threat assessment methods. In particular, in the first approach
the vehicle motion within the lane is described by the vehicle
model (16) only, while in the second we assume that the
steering angleδ in (16) is generated by the state feedback
control law (18) and consider the driver controlled vehicle
model (19). Next in this section we will highlight how the
difference in the used models reflects on the computational
scheme used to compute the safe sets (Remark 4) and the
results of the threat assessment (Remark 3).

In both approaches, the road curvature is assumed to be
known over a future time horizon and to lie within a given
set. In particular, we introduce the following assumptionson
the disturbance signalsw andwa in (16) and (19), respectively.

Assumption 1:w(t) ∈ W , wa(t) ∈ Wa, ∀ t ≥ 0,
whereW ⊆ R, Wa ⊆ R

2 are polyhedrons that contain the
origin in their interiors.

We discretize the model (16) with a sampling timeTs, to
obtain the following discrete time constrained system with
disturbances

x(t+ 1) = Adx(t) +Bdu(t) + Edw(t) (24a)

subj. to
[

Hx Hu

]

(

x(t)
u(t)

)

≤ h (24b)

where, for the sake of simple notation, we have denoted
the state, the disturbance and the time index with the same
symbols as in the continuous time model (16).

Assumption 2:Every time instant t, the distur-
bancesw(t), wa(t) are known over a finite time horizon
of N steps.
We recall that, every time instantt, the second component of
the disturbance vectorwa, i.e., ∆ψd, is based on the desired
orientationψlpd at time t+ tlp/Ts. This is the desired vehicle
orientation at the look-ahead point. Hence, the Assumption2
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on the disturbancewa requires the knowledge of the road
geometry over a future time horizontlp/Ts + N . We define
the set of admissible vehicle states as

Xfeas = {x ∈ R
4 :

[

Hx Hu

]

(

x
u

)

≤ h}. (25)

Every time instant, we consider a terminal target setT ⊆
Xfeas. Further details about the choice ofT are pro-
vided next, in Section IV-A. Moreover, denote byWt =
[wt, wt+1, . . . , wt+N−1], the sequence of disturbance sam-
ples over the time horizon[t, t+N − 1] and by Wt,i =
[wt+i, . . . , wt+N−1] any sequence extracted fromWt.
We compute the sequence of states setsXt (Wt) =
[Xt,Xt+1, . . . ,Xt+N−1] as:

Xt+i (Wt,i) = Xfeas
⋂

Pref (Xt+i+1, wt+i), (26a)

i = N − 1, . . . , 0,

Xt+N = T , (26b)

where,f denotes the right hand side of (24a). We call the
setXt the safe setat time t.

The calculation of the sequenceXt (Wt) is performed every
time step, based on the updated disturbance sequenceWt.
In the set operatorPre·(·, ·) in (26), with a slight abuse of
notation, a vector is used as second argument instead of a set.
This corresponds to the case of known disturbance.

In summary, the proposed threat assessment algorithm is
made of three main steps performed every time instant

1) select the terminal target setT ,
2) based on the future disturbance sequenceWt and the

setT , perform the backward calculation of the sequence
of safe setsXt+i according to (26),

3) check whether the current statex(t) belongs to the safe
set Xt, in order to assess the driver’s ability of safely
driving the vehicle from the current state to the target
setT over the future horizon ofN steps.

The steps of the method are detailed next in Algorithm 1. By
construction, if the state of the system (24) at the current time t
belongs to the safe setXt (Step10 of Algorithm 1), a steering
controller exists such that the vehicle can be driven over the
nextN time steps, while operating within its stability limits
and without leaving the lane. That is, over the futureN time
steps, the vehicle can be driven within the lane boundaries,
while operating in a region of the system states and inputs
spacewhere the driver is deemed capable of driving without
loosing vehicle stability(see Remark 1).

Algorithm 1 is based on the vehicle model (16). Next
we propose a method based on the driver controlled vehicle
model (19). In this case, the calculation of the safe sets is based
on the reachable and invariant sets for autonomous systems,
defined in Section II.

Algorithm 1:Input: Current statex(t), target setT , se-
quence of disturbancesWt, state update mappingf =
(

Ad, Bd, Ed
)

, the constraints matrices(Hx, Hu, h)
Output: The safe setXt at the current timet, safe

flag Safe
1 let Xt+N = T ,
2 for i = N − 1 to 0
3 let Xt+i+1 = {x ∈ R

4 : Hi+1x ≤ hi+1},
4 Pref (Xt+i+1, wt+i) = {x ∈ R

4 : ∃ u ∈ R subj. to
[

Hi+1A
d Hi+1B

d
]

(

x
u

)

≤
[

hi+1 −Hi+1E
dwt+i

]

},
5 if Pref (Xt+i+1, wt+i) = ∅ then Safe = 0, EXIT
6 else let Pref (Xt+i+1, wt+i) =

{x ∈ R
4 : HPrex ≤ hPre}

7 Xt+i (Wt,i) = {x ∈ R
4 :

[

HPre 0

Hx Hu

](

x
u

)

≤

[

hPre

h

]

}, end

8 if Xt+i (Wt,i) = ∅ then Safe = 0, EXIT, end
9 end

10 if x(t) ∈ Xt then Safe = 1,
11 elseSafe = 0, end
12 EXIT.

We discretize the model (19) with a sampling timeTs,
to obtain the following discrete time constrained autonomous
system with disturbances

xa(t+ 1) = Adaxa(t) + Edawa(t) (27a)

subj. to Haxa(t) ≤ ha, (27b)

where, for the sake of simple notation, we have again denoted
the state, the disturbance and the time index with the same
symbols as in (19). With a slight abuse of notation we let
Xfeas, Xt andT denote the set of admissible states, the safe
set at timet and the terminal set, respectively, also for the
system (27). For the system (27), the set of admissible states
is defined as

Xfeas = {x ∈ R
4 : Hax ≤ ha}. (28)

The sequence of safe sets for the constrained system (27) is
then computed through (26), where the mappingf is replaced
by the mappingfa, denoting the right hand side of (27a) and
the disturbance vectorswi are replaced bywai .

The steps of the threat assessment based on the vehicle
and driver’s models presented in Sections III-A and III-B,
respectively, are detailed in Algorithm 2.

Remark 2: If the safe setXt is empty (Steps5, 7 of
Algorithm 2) or if the current statexa(t) does not belong
to the safe setXt (Steps9, 10 of Algorithm 2), there exists
no state trajectory of system (16) that, under the driver’s
steering feedback control law (18), can evolve from the
current statexa(t) to the target setT , while satisfying the
constraints (21). On the other hand, a different, in general
time varying, steering law might exist driving the vehicle from
the current statexa(t) to the target set, while satisfying the
constraints (21). The existence of such steering law can be
verified through Algorithm 1.
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Algorithm 2: Input: Current statexa(t), target setT ,
sequence of disturbancesWt, state update map-
ping fa =

(

Ada, E
d
a

)

, the constraints matrices(Ha, ha)
Output: The safe setXt at the current timet, safe

flag Safe
1 let Xt+N = T ,
2 for i = N − 1 to 0
3 let Xt+i+1 = {xa ∈ R

4 : Hi+1xa ≤ hi+1},
4 Prefa(Xt+i+1, wt+i) = {xa ∈ R

4 :
Hi+1A

d
axa ≤ hi+1 −Hi+1E

d
awt+i}

5 if Prefa(Xt+i+1, wt+i) = ∅ thenSafe = 0, EXIT
6 else Xt+i (Wt,i) = {xa ∈ R

4 :
[

Hi+1A
d
a

Ha

]

xa ≤

[

hi+1 −Hi+1E
d
awt+i

ha

]

}, end

7 if Xt+i (Wt,i) = ∅ then Safe = 0, EXIT, end
8 end
9 if xa(t) ∈ Xt then Safe = 1,

10 elseSafe = 0, end
11 EXIT.

Remark 3: In Algorithm 2, the restriction of the steering
law to the class of linear state feedback control laws (18)
leads to smaller safe sets than in Algorithm 1.

The oversimplified driver model (18) might not be able to
capture the driver’s steering behavior in hazardous scenarios
like, e.g., when(i) he/she is required to drive beyond the
vehicle stability limits or(ii) he/she is distracted or drowsy.
Nevertheless, for the threat assessment problem formulation
considered in this paper, we believe it is not necessary to ex-
haustively describe the driver’s behavior. In fact, if the vehicle
is either beyond its stability limits or the lane boundaries,
case-(i), a threat assessment problem is not meaningful any
longer and an assisting intervention has to be issued. In case-
(ii) , since our threat assessment problem formulation is not
depending on any driver monitoring system, driver’s distrac-
tion or drowsiness is not accounted for. Hence an assisting
intervention would not be issued as long as the vehicle can be
maintained within its stability limits and the lane boundaries
by the considered “nominal” driver (i.e., behaving according
to model (18)). However, the vehicle, driven by the drowsy or
distracted driver, would very likely eventually exit the “safe
set”, calculated based on the “nominal” driver behavior, thus
enabling the activation of a lower level intervention.

Remark 4:We observe that Steps4 and 7 of Algorithm 1
involve a projection operation, while Algorithm 2 does not.
In general, the projection operation can be quite involving
depending on the dimension of the state and input spaces.
In the proposed approaches we formulate the threat assess-
ment problem as a constraint satisfaction problem, for which
efficient methods [10] exist. In particular, we calculate a
polyhedral representations of the safe sets rather than just
assessing the constraint satisfaction for the current vehicle
state and the road curvature over the prediction horizon. A
polyhedral representation of the safe set can be exploited for
both control and verification purposes.

As last remark of this section, we observe that the Algo-
rithm 2 assesses the capability of a driver, whose steering
behavior is modeled by (18), of driving the vehicle, modeled
by (16), from the current statexa(t) to the target setT .

Fig. 2. Test track used for the experimental validation. Next, validation
results of the Algorithms 1 and 2 are shown when the vehicle isin the marked
positions.

Hence, just like as in Algorithm 1, constraint satisfactionis
not guaranteed after the timet + N . In the next section we
comment the choice of the target setT and propose a method
for guaranteing persistent constraint satisfaction, i.e., that the
driver will maintain the vehicle withinT , for t > t+N .

A. Terminal Set

The choice of the terminal setT in the threat assessment
Algorithms 1 and 2 affects theeffectivenessand theconser-
vativenessof the algorithms. Indeed, the simplest choice is
settingT = Xfeas. In this case, Algorithms 1 and 2 can be
used to assess the driver’s ability of driving safely only over
the futureN time steps. As alternative, for Algorithm 1, the
set T could be chosen asT = C∞, whereC∞ ⊆ Xfeas is
the maximal robust control invariant set for the constrained
system with inputs (24). We recall that in this case,

x(t+N) ∈ C∞ ⇒ x(t+N+k) ∈ C∞, ∀w(t) ∈ W , k ∈ N
+,

that is,the vehicle will be kept within the lane and its stability
limits, despite all admissible lane curvature beyond the look-
ahead point. Similarly, for Algorithm 2, the setT could be
chosen asT = O∞, whereO∞ ⊆ Xfeas is the maximal
robust positive invariant set for the constrained autonomous
system (27). In this case,

xa(t+N) ∈ O∞ ⇒ xa(t+N + k) ∈ O∞, ∀wa(t) ∈ Wa,

that is, the driver is deemed capable of keeping the vehicle
within the lane and its stability limits, despite all admissible
lane curvature beyond the look-ahead point. Nevertheless,
setting the final set equal to the maximal robust control
invariant set or the maximal robust positive invariant set
for Algorithms 1 and 2, respectively, might lead to high
conservativeness of the threat assessment algorithms.

V. RESULTS

The algorithms presented in Section IV have been exper-
imentally validated and the results are shown next in this
section. Data have been logged by driving a Volvo V50 along
the test track shown in Figure 2. This track is narrow in several
sections and has many sharp curves, thus resembling a country
road. The logged data has then been offline post-processed
through the Algorithms 1 and 2 in order to calculate the safe
sets along the track. For the sake of brevity, the computed
safe sets will be shown only for the vehicle positions along
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the track, marked in Figure 2 with numbers from 1 to 6, where
the vehicle either approaches or travel along a curve.

Data has been collected in order to calculate the state and
the disturbances variables of the vehicle models (16) and (19).
In particular the vehicle lateral velocityvy and yaw rateψ̇ have
been measured through a high precision Inertial Measurement
Unit (IMU). The vehicle position and orientation errors within
the laneey andeψ, respectively, and the desired orientation at
the look-ahead pointψlpd are calculated through dual antennas
GPS measurements and a digital map including the road
geometry.

Remark 5:The set of measurements used in the proposed
threat assessment methods could also be obtained on-line by
using the measurements setup and the sensor fusion algorithms
used in [16, 6, 12] (see Section I). Nevertheless, dependingon
the combination of sensors set and sensors fusion algorithms,
a lower accuracy set of measurements might be obtained
compared to the data used in this paper for the validation
of the proposed threat assessment algorithms.

We first present validation results of the driver model (18).
The data used for parameters estimation have been collected
in both normal and slightly rougher driving styles. Compared
to the normal driving case, where the driver has been asked
to drive according to the suggested road speed limits, in the
rough driving case the driver was asked to drive as fast as
possible. The problem of estimating the parametersKy, Kψ

and tlp in (18) has been formulated as a recursive nonlinear
least squares problem since the driver model is linear only in
the parametersKy, Kψ. The recursive nonlinear least squares
method described in [17] has been used.

Figure 3(a) shows the identification results in normal driving
conditions. We observe high uncertainty in the estimated
parameters at the beginning of the considered time interval.
The uncertainty is however reduced as soon as the vehicle
enters a curve and the system is excited. Moreover, we observe
that the estimated value of the parameterKy is very small
and has a quite large variance. This indicates that the vehicle
lateral deviation from the lane centerlineey has a minor or
no influence on the steering angle. The obtained results are in
line with the conclusions of previous studies [28, 22] and show
that the human steering behavior is preeminently based on a
pursuit component, i.e., based on the preview of the desired
path. Figure 3(b), instead, shows the driver’s model parame-
ters estimation in rougher driving maneuvers. Due to higher
excitation, the initial uncertainty in the estimated parameters is
reduced quicker than in Figure 3(a). The estimated parameter
Ky is in this case slightly negative. We also observe a higher
magnitude of the estimated parameterKψ and a shorter look
ahead timetlp, compared to the normal driving case. We
conclude that the correcting part is more relevant in rough
than in normal driving. The driver model (18) has been used
to validate, through experimental data, Algorithm 2.

Algorithms 1 and 2 have been implemented by settingT =
Xfeas as terminal set and using the following parameters

αfmax
= αrmax

= −αfmin
= −αrmin

= 4◦,

eymax
= 1.56m, N = 35, Ts = 0.01s.

The vehicle parameters are shown in Table I.

(a) Normal driving

(b) Rough driving
Fig. 3. Recursive driver model parameters estimation. In the two upper
plots of figures a) and b), the solid lines show the estimated parameters mean
values while the dotted lines show their estimated variances. In the lower
plots, the solid and dashed lines show the measured and predicted steering
angles, respectively.

TABLE I

m Jz lf lr a

1695 kg 2617 kgm2 1.14 m 1.50 m 1.83 m
Cf Cr b c

54 kNm/rad 45 kNm/rad 2.69 m 1.77 m

Remark 6:The calculation of the safe sets shown in this
section has been implemented using the sets operations
implemented in the Multiparametric Programming Toolbox
(MPT) [20]. For the safe sets calculation, these operations
require 1-2 minutes for Algorithm 1 and 0,3-0,4 seconds for
Algorithm 2 on a laptop computer.

Consider the driving scenarios1 and 2 shown in Figure 2
where the driver is negotiating a curve at a speed of 63 km/h,
which can be considered a maneuver requiring normal driving
skills. Denote byt1 andt2 the time instants, when the vehicle
is in positions 1 and 2 on the track, respectively. Figure 4
shows cuts of the safe setsXt1 and Xt2 calculated through
both algorithms at timest1 and t2, respectively.

The following compact notation is introduced to denote sets
cuts:

X 3,4
t (τ) = Xt

⋂

{

x ∈ R
4 :

[

1 0 0 0
0 1 0 0

]

x =

[

x1(τ)
x2(τ)

]}

,

(29)
where the superscripti in xi(τ) denote thei-th component
of the vectorx(τ). The symbolX 3,4

t (τ) will here denote a
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Fig. 4. Illustration of safe sets calculated through Algorithms 1 and 2 at timest1 andt2. The circles denote the measured current state of the vehicle at time
t1 while the solid lines denote the measured trajectory over the future horizon ofN steps. The sets filled with black and white stripes and the sets filled with
solid black illustrate cuts of the feasibility setsT in Algorithms 1 and 2, respectively. The solid grey and whitesets show cuts of the safe setsXt calculated
through Algorithm 1 and 2, respectively.

set in theey − eψ space obtained by cuttingXt at x1(τ) and
x2(τ), i.e. vy(τ) and ψ̇(τ). We observe that, as indicated in
Remark 3, the feasibility and safe sets in Algorithm 2 are
always enclosed by the corresponding sets in Algorithm 1.
This can be explained by recalling that the feasibility and safe
sets are derived from the constraints (21) which have been used
in both algorithms. Moreover the inclusion of the driver model
(18) in Algorithm 2 results in an additional set of equality
constraints which further limits the set of admissible states.

We also note that in Figures 4(a), 4(c) the feasibility sets
used in the two algorithms overlap. The additional limitations
enforced by the driver model (18) only affects the terminal
constraints that directly depend on the steering inputδ, which
is not the case forey or eψ.

The statesx(t1) and x(t2) are marked with a circle
in Figure 4. We observe that, for Algorithm 1,x(t1) ∈
X 3,4
t1

(t1), x(t1) ∈ X 1,2
t1

(t1) and x(t2) ∈ X 3,4
t2

(t2), x(t2) ∈
X 1,2
t2

(t2). Hence, from both the initial statesx(t1), x(t2), the
vehicle is predicted to safely travel over a horizon ofN steps.
This is confirmed by the vehicle state trajectories measured
over the time intervals[t, t+NTs], t = {t1, t2} and reported
in Figure 4 with solid lines. In particular, starting from the
initial states x(t1) and x(t2), the measured vehicle state
trajectories entirely evolve over the nextN steps within the

setsT1 andT2, respectively, whereT1 =
t1+N−1

⋃

t=t1

T 3,4(t), T2

is similarly defined and the setsT 3,4 are obtained by replac-
ing Xt with T in (29), i.e., the vehicle “safely” travels over the
time intervals[t, t+NTs], t = {t1, t2}, as predicted through
Algorithm 1. In Figure 4, we also observe thatxa(t1) ∈ Xt1
and xa(t2) ∈ Xt2 when the safe sets are calculated using
Algorithm 2. Recall that, for the sake of simple readability,
we have adopted the same notation for the safe sets obtained
with the two algorithms.

Figure 5 shows the safe setsXt3 and Xt4 corresponding
to the positions 3 and 4 of the track in Figure 2, when the
driver is negotiating a curve at a speed of approximately
92 km/h, traveling close to the lane edge. We observe that,
for Algorithm 1, x(t3) ∈ Xt3 , while x(t4) /∈ Xt4 . That is,
the vehicle is predicted to safely travel over the time inter-
val [t3, t3 +NTs], while a constraint violation is predicted
over the time interval[t4, t4 +NTs]. This is confirmed by the
actual vehicle trajectories shown by the solid lines. Similar
results are obtained through Algorithm 2 and also shown
in Figure 5. We observe that, starting from the position 4,

the driver cuts the curve in order to quickly traverse the
path. However, such driving behavior might not be consid-
ered unsafe and an intervention should be avoided. Methods
for suppressing warnings or interventions have even been
proposed in [11] for a lane departure warning system. We
observe that, in the framework proposed in this paper, instead,
warnings or interventions in such driving situations couldbe
avoided by just increasing the boundseymax

, eymin
, for the

“inner curve” to allow the driver cutting a curve without
causing an intervention.

We finally consider the vehicle positions5 and6 in Figure 2,
where the driver approaches the curve, with a velocity of
approximately 84 km/h, which is a very high speed for
such a narrow curve. We start with the results obtained with
Algorithm 1. In Figure 6 we observe thatx(t5) ∈ Xt5 and
x(t6) ∈ Xt6 , which means that there exists a control law that is
capable of steering the vehicleN time steps without violating
constraints starting from both positions 5 and 6. The safe set
obtained with Algorithm 2, instead, is smaller, compared to
Algorithm 1, and do not enclose the statexa(t6). Hence both
algorithms predict a safe driving when the vehicle starts from
the position 5, while the results provided by the two algorithms
significantly differ in position 6. In this case, Algorithm 2
correctly predicts a constraint violation. In this extremedriving
scenario, according to Algorithm 2, the “nominal” driver is
not capable of keeping the vehicle in a safe operating region.
Depending on his or her driving skills, the actual driver,
instead, might succeed in keeping the vehicle in such an
operating region by deviating from the “nominal” behavior
described by the model (18). Nevertheless, since a deviation
from the nominal steering behavior is required, the situation
can be considered critical and an intervention motivated.

Remark 7:As anticipated in Remark 2, Algorithm 1
showed that in position6, even if the driver is expected to
violate constraints, there exists a, in general time varying,
control law that is capable of driving the vehicle over the future
N time steps, without violating constraints. We conclude that
a steering controller could in this case be used to assist the
driver. The combination of the driver’s steering command and
of such a low level steering controller could thus enlarge or
move the safe set to enclose the statex(t6).

VI. CONCLUSION AND FUTURE WORKS

We have presented two model based threat assessment
methods for semi-autonomous vehicles and validated them in
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Fig. 5. Illustration of safe sets calculated through Algorithms 1 and 2 at timest3 and t4 . The color convention in Figure 4 has been used.
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Fig. 6. Illustration of safe sets calculated through Algorithms 1 and 2 at timest5 and t6 . The color convention in Figure 4 has been used.

a lane guidance application. The two approaches are based
on reachability analysis tools and set invariance theory, and
differ in the model used to predict the vehicle motion within
the lane. In particular, in the second algorithm, the driver’s
steering behavior is estimated based on the road geometry
and the vehicle state and used to predict the vehicle motion
within the lane. The two methods have been validated offline
by using experimental data. The obtained results demonstrate
that the proposed methods can effectively predict lane crossing
and vehicle instability over a future, finite time horizon, thus
allowing the activation of driver assistance systems.

Nevertheless, we point out that(i) lower accuracy data might
be available in an online implementation where a different
measurements setup is used (see Remark 5),(ii) the proposed
algorithms have been tested in a small range of operating
conditions(iii) the adopted driver models might not be able
to describe the human driver’s driving behavior well, thus
introducing a high level of uncertainty,(iv) the computational
burden of the driver’s model parameters identification and the
safe sets calculation might represent an obstacle to the real-
time implementation of the proposed algorithms. The points
(i)-(iii) address robustness issues with respect to measure-
ments errors and models uncertainties, while the point(iv)
addresses computational complexity issues. The preliminary
results presented in this manuscript motivate further investiga-
tions aiming at analyzing the impact of measurements errors
and model uncertainties on the performance of the proposed
threat assessment methods and proposing approaches in order
to compensate for them. Moreover, computational complexity
issues will be addressed by adopting real-time oriented code
(see Remark 6) and investigating the use of further simplified
vehicle models involving simpler reachability analysis prob-
lems (see Remark 4).

We finally highlight that, as observed in Remark 7, the
proposed threat assessment methods can be a convenient basis
of decision making algorithms which blend driver’s commands

and supporting lower level autonomous driving interventions.
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Jonas Sj̈oberg. Jonas Sjöberg , received the M.S.
degree in engineering physics in 1989 from Uppsala
University and the Ph. D. in 1995 from Linköping
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