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Abstract—We propose two model based threat assessmentresults obtained with these prototypes of autonomous le=hic
methods for semi-autonomous vehicles, i.e., human drivenev  clearly demonstrate the possibilities offered by the aooous
hicles with autonomous driving capabilities. Based on info  q.ying technologies for active safety applications. Huere
mation about the surrounding environment, we introduce a . ; L .
set of constraints on the vehicle states, which are satisfied "N active sqfer applications for pgssgngers cgrs _'t |.sr_ﬂ=:|a_te
under “safe” driving conditions. Then we formulate the threat thatan assisting autonomous driving intervention isaeti if
assessment problem as a constraint satisfaction problemeticle and only if itis needed, i.e., if a risk of accident is deteldteat
and driver mathematical models are used in order to predict the driver is not able to avoid. The formulation wénsition

future constraints violation, indicating the p053|b|I!ty_of acm_dent conditionsbetween, e.g., a manual and a fully autonomous
or loss of vehicle control, hence the need of assisting the ider. . . g
driving mode, is not trivial.

The two proposed methods differ in the models used to predict

the vehicle motion within the surrounding environment. |n_thi3 paper, we QOnSid(?r a threat assessmenF prObk?m for
We demonstrate the proposed methods in a roadway departure semi-autonomousehicles, i.e.,human driven vehicles with
application and validate it through experimental data. autonomous driving capabilitie$Ve assume that information

Index Terms—Active Safety, Semi-Autonomous Vehicles, about the surrounding environment is given with a certain
Threat Assessment, Decision Making, Reachability Analysj amount of preview and focus on the problem of determining,

Invariant Set Theory. based on the current vehicle state, whether the driver needs
assistance in order to safely (i.e., without colliding wittiher
I. INTRODUCTION objects in the surrounding environment or losing stability

Classical active safety systems like, e.g., yaw stabili@fcomp"Sh a driving task. Although the method is general

control, only affect the dynamical behavior of the vehicleile and can be used_ In a V‘_"de range of accident scenarios, for
its motion control within the environment is left to the driv e Sake of easy illustration, in this paper we consider & lan

Thanks to recent advances in sensing technologies [16, %&f’parture application. In particular, we consider lanelgnce

modern Advanced Driver Assistance Systems (ADAS) caystems assisting the driver in maintaining the vehicléiwit
instead influence both the dynamical behavior of the vehidfae lane boundarles._ . . .
and its motion within the surrounding environment to preven In several lane gmdance_ glgorlthms, the transition condi-
accidents. In particular, sensors measurements can be iselONS 10 an autonomous driving mode are formulated based
obtain information about the surrounding environment lik@" the “Time to Line Crossing”(TLC). An intervention or
e.g., road geometry and relative position and velocity ggarning is issued once the TLC passes a predefined threshold.

moving objects. This is demonstrated in, e.g., [12] whereA overview and assessment of methods for calculating the
standard radar, typically used for adaptive cruise contgol TLC is provided in [21]. Artificial potential fields, insteadre

used along with aoff the shelfcamera for joint road geometry US€d in the method presented in [29], where lane crossings
estimation and vehicle tracking. are prevented by introducing cost functions whose value

Motivated by the described state-of-the-art in Sensing_tecincrease as the vehicle approaches the lane boundaries. An

nologies, the current trend in the development of ADAS fdgPtimization-based approach_ is presented i_n [2]. E\_/er)e tim
passenger cars points towards systems with increased sfgp: based on curr_ent vehicle state and |r_1f0_rmat|on about
tonomous driving capabilities in complex environments][23th€ surrounding environment, a Model Predictive Controlle
beyond what is currently available in production activeegaf 'S Used to compute a vehicle trajectory over a future time

systems. In particular, future ADAS are envisioned to a$ises horlzon. An assisting intervention is issued if the comdute
driver in negotiating curves or intersections and autonastyo trajectory is considered hazardous. We observe that irethes

drive the vehicle in order to avoid accidenifsneeded Proto- approaches the transition criteria activating the autamgm

types of autonomous vehicles have been shown to succgssfdiving interventions are based on the evaluation of a ofietr
accomplish different and complex driving tasks at both |o\9ehaV|0r and/or the limitations of the vehicle capability o

speeds, in urban environments, [26, 24, 3] and in high Sper(g(ljnaining stable and within the lane, without accounting fo

maneuvers on low friction surfaces [13, 14]. The promisin e limitations of the driver’s ability to perform the sansesk.
his might lead to the initiation of an autonomous driving
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explicitly accounting for the human driving behavior. Theubject to the constraints

idea underlying the proposed methods is to use vehicle and

driver mathematical prediction models, along with infotima z(t) e X, u(t) e CR™, w(t) e W, (8)
about the surrounding environment, to assess the risk of

accidents over a future, finite time horizon. We demonstratepefinition 3 (Reachable set (for systems with external isjut

the proposed method in a lane guidance application afié one-step robust reachable set for initial statesntained
validate it through experimental data. The paper is orgahizin the setS is defined as

as follows. In Section I, we provide basic definitions and

results on reachability analysis and set invariance thdary Reach;(S,W) = {z € R" |

Section Ill, we present the vehicle and driver modeling used 3 ;(0) e S, Juel,3weW:z = f(x(0),u,w)}.

next, in Section IV, where the threat assessment algorithms 9)

are presented. In Section V, we discuss the validation tesworeover,

obtained through the proposed algorithms, while Section VI pefinition 4 Pre set (for systems with external inputs)):
closes the paper with final remarks. we define the set of states which can be driven into the target

setS in one time step as
Il. BACKGROUND ON SET INVARIANCE THEORY AND

REACHABILITY ANALYSIS Pres(S,W) £ {z € R™ |
In this section we introduce a few definitions and recall Juel st f(z,u,w) €S, Yw € W}
basic results on set invariance theory and reachabilitlyaisa (10)

for constrained systems. A comprehensive survey of papersdie setsReach(S) and Pre((S), for the nominal system
set invariance theory can be found in [9]. This section aslop¥ith external inputs, are defined similarly as in (4) and (6),

the notation used in [15]. respectively.
We will denote the set of all real numbers and positive In this paper we will useobust invariant setsand robust
integers byR andN™T, respectively. control invariant sets The following definitions are derived
Denote byf, the state update function of an autonomousom [9, 8, 7].
discrete time system Definition 5 (Robust positive Invariant Setk set O is
B said to be a positive invariant set for the autonomous sys-
ot +1) = fala(t), w(t), (@ tem (1) subject to the constraints in (2), if
wherez(t) andw(t) denote the state and disturbance vectors,
respectively. System (1) is subject to the constraints 2(0)e O = z(t)eO, VteN' (11)
n d
a(t) € X CR", w(t) € WC R, (2)  Definition 6 (Maximal Positive Invariant S€?..): The

whereX’ andW are polyhedra that contain the origin in theif€t O iS the maximal invariant set of the autonomous
interiors. For the autonomous system (1)-(2), system (1) subject to the constraints in (2)PiE O, O

Definition 1 (Reachable set (for autonomous systems)): is positive inva_riant an_c(?_oo contains all positive invariant
we define the one-step robust reachable set for initial state S€tS that contain the origin.

contained in the se§ as Control invariant sets are defined for systems subject to
N n external inputs. The following definitions are derived from
Reachy, (S,W) = {z ¢ R" | [9, 8, 7, 19].

F2(0) €S, FweW = fo(x(0),w)} Definition 7 (Control Invariant Set)A setC C X is said

For th inal . it (1) — h () to be a control invariant set for the system in (7) subject to
or the nominal system, i.e., with(¢) = 0, V¢, the one- " iraints in @®), if

step reachable set is defined as

Reachy, (S) £ {z € R" | 32(0) € Sz = fo(x(0))}. (4) =() € C = Fu(t) €U such thatf(x(t), u(t)) € C,Vt e(N;)
1
For the autonomous system (1)-(2), we define the dual ofpefinition 8 (Maximal Control Invariant Set..): The
the reachable set as, setC. is said to be the maximal control invariant set for the
Definition 2 Pre set (for autonomous systemsjie set of system in (7) subject to the constraints in (8), if it is cohtr
states that evolves t§ in one step, as invariant and contains all control invariant sets contdiie

Pres, (S, W) £ {x € R" | fu(z,w) € S, Yw e W}. (5) X.

@, 9

For the nominal system, théPte” set is defined as

Ill. M ODELING
Prey, (S) L2z e R" | fu(x) € S}. (6)
In this section, we present the vehicle and driver’s stgerin
behavior mathematical models used in Section IV as basis of

z(t+1) = flxt),u(t),w(t)), (7) the threat assessment algorithm.

Equivalently, for the system with inputs



For a given vehicle longitudinal speed, the model (13)-
(15) can be compactly written as

&(t) = Az(t) + Bu(t) + Ew(t), (16)

. T .
wherez = [vy, Y, €y, ey} and w = 1, are the state
and the disturbance vectors and= ¢ is the steering input
command.

B. Driver model

In this section, we consider the vehicle model (16) and
present a feedback control law resembling the human dsiver’
steering behavior while performing a lane following task.
The driver model, combined with the vehicle model (16),
Fig. 1. Vehicle modeling notation. is used next in Section IV as basis of the proposed threat
assessment algorithm. The literature on the modeling o&dri
steering is rich, early studies on driver modeling date back

Consider the vehicle model sketched in Figure 1. The the sixties and demonstrated the importance of preview
vehicle motion within the lane, subject to the lateral and yainformation for human drivers [28]. McRueet al. were
dynamics, is described by the following set of differentishmong the first proposing a human driver’s steering “preview
equations control” algorithm consisting of a “pursuing” part and a
closed loop correcting part [22]. The various preview contr

A. Vehicle model

m“U = —mue + 2 [Fy, + Fy, ], (132) algorithms can be divided in two main groups, depending on
Jb =2l Fy, — 1. F, ], (13b) whether the “preview signal” is provided as a reference or a
by = b — b, (13c) plisturbance [25]. In this. paper, the driver’s steering lvimq
i is described by a preview control law, where the “preview
€y = Uy t Uzy, (13d)

signal” enters as a disturbance.

wherem and J. denote the vehicle mass and yaw inertia, D_efine the orientation err(nff, w.r.t. the look-ahead point
respectively/; and!, are the distances of the vehicle centdf Figure 1, as

of gravity fro_m the front and rear axlesf,_respectlveg_/gndvy eif — - w(lip = ey + Ay, (17)
are the longitudinal and lateral velocities, respectivelythe

vehicle body framey) is the turning rate, where> denotes where ¢ is the desired orientation at time+ t;,, with ¢
the vehicle orientation w.r.t. the fixed global frar¥,Y) in  the current time Aty = 1y — ' andt,, the preview time
Figure 1.F,,, F,, are the lateral tire forces at the front andhat can be mapped into the preview distamgg under the
rear axles, respectively. In (13c) and (13€l),ande, denote assumption of constant speegl.

the vehicle orientation and position errors, respectjvaly.t. We consider the vehicle model (13) and compute the steer-
the road centerline and, is the desired vehicle orientation,ing angles as
i.e., the slope of the tangent to the cuivg in the pointO. §=Kye, + Kﬂ)eif (18)

The lateral tire forces in (13a) and (13b) are generated at _ . . . _
the tire contact patch and are, in general, nonlinear fansti With K, K, gains that are, in general, time varying and might

of the vehicle states. In this paper, we compute the lateeal tbe updated online.
forces as Clearly, A4 in (17) depends on the preview tinig, that,

F,i = —Cyau, i € {f,r}, (14) in our_modeling framework, is cpnsid_e_red as a parar_neter of
the driver's model and can be identified from experimental
whereC; are the tire cornering stiffness coefficients at the twdata. Recursive least squares estimation results of thertri
axles andn; are the tyre slip angles which, for small valuesmodel parameters are demonstrated in Section V.
can be approximated as

; ; C. Driver controlled vehicle model
ls — 1,
_w Y s, s by (15)

v v We consider the autonomous system, obtained by combining
xT xr

. ) the vehicle and driver models (16) and (18), respectivaiy t
where § denotes the front steering angle as depicted [, pe compactly written as

Figure 1.

Remark 1:The simplified linear tire model (14) well ap- Tq(t) = Aaa(t) + Eqwa(t), (19)
proximates more complex nonlinear tire characteristi¢$de ) T ) T
small tire slip angles, i.eq; € [a;,,,,,®i,,.]- However, this where z, = {vy, Y, ey, ey} and w, = [wd, Alﬂd]

interval also corresponds to a “normal driving” region wderare the state and the disturbance vectors, respectively. Th
drivers usually operate [27, 18]. definitions of the matricesl,, F, are straightforward.



D. System Constraints finite time while satisfying the constraints (21). The saé¢ s

Next we define a set of operating conditions, in the Spaceiéfupdated in receding horizon, as new information about the

the states and inputs of systems (16) and (19), corresp@no%'”oundir!g environmen_t is availabl_e, e.g., the comingdroa
to stable driving within the lane boundaries curvature in our lane guidance application. Once the séfe se

We denote by, ., i € {f,r}, j € {I,r}, the distances of is computed, a set membership test on the current vehidte sta
the four vehicle corners from the lane centerline. By asagmiiS Performed to check whether the vehicle is in the safe set
small orientation errors;,,,. can be written as and decide whether the.z.drlver negds to be qssmt_ed.

. ‘ . Wg use thg rea}chab|ll_ty analy3|§ and set invariance theory
ey = eyt 5 tacy, ey, = ey — o +aey, (20a) definitions, given in Section Il for linear systems, to cédde
- P the safe sets. Similar ideas can be found in [1] and [5] in
Cyu =€yt 5 —bey, ey, =ey—5—bey, (20b) the automotive and aerospace fields, respectively. In f, t
authors propose a collision detection method in autonomous

where ¢ is the vehicle width,a and b are the distances of _ .. . ) L .
driving. In particular, a traffic scenario is considered vehe

the center of gravity from the front and rear vehicle bumpert'%e path of an autonomous vehicle has to be planned in

respectively. Furthermore, in order to avoid possible skehi order to avoid collisions with other traffic participantshese

instability due to the effects of the tire nonlinearitie®ds . .

. . ~ future trajectory is unknown. A safe planned path for the

Remark 1), the vehicle can be forced to operate in a region 0 o ) ! _
S : . . autonomous vehicle is required to not intersect gteechastic

the state space by limiting the tire slip angles i € {f,r}.

. ) e . reachable setgomputed for each traffic participant, i.e., the
The constraints on the vehicle position and slip angles can h " ibl ied by th h i
then be compactly written as set of future positions possibly occupied by the other taffi
participants. In [5], a safety analysis of an aircraft aamal
—Cymar < €y < €y (21a) systemis developed based on the calculation of reachatsle se
ai. <ai <., ie{f,r}, je{lr} (21b In thg Ianqlin.g phase, the set of the aircraft configurations,
evolving within a safe envelope to the set of acceptablestat
wheree,, . is the maximum distance of the vehicle cornerat touchdown, is calculated as a backward reachable set.
from the lane centerline. The model (13)-(15), subject to In this paper we propose two predictive and model based
constraints (21), describes the stable vehicle motioniwitie threat assessment methods. In particular, in the first agpro

lane. In such operating conditions assuming small ori@rtat the vehicle motion within the lane is described by the vehicl

errors is deemed reasonable. model (16) only, while in the second we assume that the
The constraints (21) can be compactly rewritten for thsteering angleS in (16) is generated by the state feedback
system (16) as control law (18) and consider the driver controlled vehicle
model (19). Next in this section we will highlight how the
[ H, H, } ( z ) < h, (22) difference in the used models reflects on the computational
u scheme used to compute the safe sets (Remark 4) and the
while for the system (19) we have results of the threat assessment (Remark 3).

In both approaches, the road curvature is assumed to be
known over a future time horizon and to lie within a given
set. In particular, we introduce the following assumptioms
the disturbance signais andw, in (16) and (19), respectively.

Assumption Liw(t) € W, we(t) € Wy, V t > 0,

IV. THREAT ASSESSMENT VIA REACHABILITY ANALYSIS  \where W C R, W, C R? are polyhedrons that contain the
AND SET INVARIANCE THEORY origin in their interiors.

In this section we propose two threat assessment method¥Ve discretize the model (16) with a sampling tirfig, to
based on the vehicle and driver modeling presented in Sebtain the following discrete time constrained system with
tion Ill. The idea underlying the proposed methods is to firslisturbances
introduce a set of constraints on the vehicle state and input d d d
trajectories, describing a “safe” driving. For the speciéine P z(t+1) = A%(t)+ B(t) + ()  (24a)
guidance application considered in this paper, the caonséra subj. to [ H, H, ] ( z(t) ) <h (24b)
are set by the lane boundaries and the stability limits the u(?)
vehicle should not exceed, i.e., the inequalities (21).dden where, for the sake of simple notation, we have denoted
constraints satisfaction implies that the vehicle is tliage the state, the disturbance and the time index with the same
within the lane boundaries in a stable operating region. TBgmbols as in the continuous time model (16).
threat assessment problem is then reformulated as a dotstra Assumption 2:Every time instant ¢, the distur-
satisfaction problem over a future time horizon, solvedtiygh bancesw(t), w,(t) are known over a finite time horizon
the predictive, model based methods described next. of N steps.

Based on the vehicle and driver models, every time st&je recall that, every time instant the second component of
we calculate a “safe set”. This is the set of vehicle statesthte disturbance vectar,, i.e., Ay, is based on the desired
current timet which, according to the considered vehicle andrientationwff at timet + t;,,/Ts. This is the desired vehicle
driver models, are guaranteed to evolve to a given final setanentation at the look-ahead point. Hence, the Assump®ion

Haxa < h/aa Ha = Hz + HuKa ha =h- HquAwd
(23)



on the disturbancev, requires the knowledge of the road Algorithm 1:Input: Current stater(t), target sef, se-

geometry over a future time horizap,/Ts + N. We define quence of disturbancd®;, state update mappint)j=
the set of admissible vehicle states as (A%, B, E%), the constraints matricesd,, H,, h)
Output: The safe sett; at the current time, safe
flag Safe

Xfm:{xeR‘*:[Hm HH(i)Sh}- (25 1let X n=T,
2fori=N-11t00
3 let Xt+i+1 = {.T cR*: Hi+1x < hi+1},
Every time instant, we consider a terminal target ‘getC 4 Pref(Xipiv1, witq) = {x € R*: 3 u € R subj. to

Xfeas. Further details about the choice 6f are pro- g.oAd f. B z\ o
vided next, in Section IV-A. Moreover, denote By, = [ Hina 187 ] w )=
[wg, w1, .., wern—1], the sequence of disturbance sam- [ hiv1 — Hip1Ewys ]},
ples over the time horizoijt,t+ N —1] and by W;;, = 5 if Pres(Xitit1,wits) = 0then Safe =0, EXIT
[Witi, .., wern—1] any sequence extracted froni;. 6 else let Pref(Xyyiy1, wiri) =
We compute the sequence of states séfs(W;) = {x € R*: Hprex < hpre}
[Xta Xit1s- -y XH*N*l] as: 7 Xiyi (Wtﬂ') = {I cR*:
() [ e
Xeri (Wei) = Xpeas [\ Pres(Xipiss, weri),  (268) 8 if X5 (W) = 0 then Safe =0, EXIT, end
i=N-1,...,0 9 end
o 10 if z(t) € &, then Safe =1,
X, = 26b
N =T, (26b) elseSafe =0, end
12 EXIT.
where, f denotes the right hand side of (24a). We call the We discretize the model (19) with a sampling tirfig,
set X, the safe setat timet. to obtain the following discrete time constrained autonamo
The calculation of the sequenég (W) is performed every system with disturbances

time step, based on the updated disturbance sequénce r11) = Al (5 + Edw. ( 27a
In the set operatoPre.(-,-) in (26), with a slight abuse of Zal + ) a%a(t) + Egwa(?) (272)

subj. to Hyxo(t) < hg, (27b)

notation, a vector is used as second argument instead of a set

This corresponds to the case of known disturbance. where, for the sake of simple notation, we have again denoted
In summary, the proposed threat assessment algorithmHg state, the disturbance and the time index with the same
made of three main steps performed every time instant  symbols as in (19). With a slight abuse of notation we let
. Xteas, A andT denote the set of admissible states, the safe
1) select the terminal target &} set at timet and the terminal set, respectively, also for the

2) based on the future disturbance se_queW;eand the system (27). For the system (27), the set of admissiblesstate
setT, perform the backward calculation of the sequenGg jofined as

of safe setsX;; according to (26),
3) check whether the current stat&) belongs to the safe Xfeas = {x € RY: Hyx < ha}. (28)
set X, in order to assess the driver’s ability of safely
driving the vehicle from the current state to the target The sequence of safe sets for the constrained system (27) is
setT over the future horizon ofV steps. then computed through (26), where the mappfng replaced
by the mappingf,, denoting the right hand side of (27a) and
The steps of the method are detailed nextin Algorithm 1. Bye disturbance vectors; are replaced byu,, .
construction, if the state of the system (24) atthe curieT@t  The steps of the threat assessment based on the vehicle
belongs to the safe séf; (Step10 of Algorithm 1), a steering ang driver's models presented in Sections IlI-A and I1I-B,
controller exists such that the vehicle can be driven over ”ﬂespectively, are detailed in Algorithm 2.
next N time steps, while operating within its stability limits Remark 2:1f the safe setX; is empty (Stepss, 7 of
and without Iea_lvmg the Iane._That is, over the futi¥etime _Algorithm 2) or if the current stater,(t) does not belong
steps, the v§h|cl_e can bg driven within the lane bounc_iarlgg,the safe seft, (Steps9, 10 of Algorithm 2), there exists
while operating in a region of the system states and iNpyl§ state trajectory of system (16) that, under the driver's
spacewhere the driver is deemed capable of driving withouweering feedback control law (18), can evolve from the
loosing vehicle stabilitysee Remark 1). current stater, (¢) to the target sef, while satisfying the
Algorithm 1 is based on the vehicle model (16). Nextonstraints (21). On the other hand, a different, in general
we propose a method based on the driver controlled vehitime varying, steering law might exist driving the vehicterh
model (19). In this case, the calculation of the safe setaseth the current state:,(¢) to the target set, while satisfying the
on the reachable and invariant sets for autonomous systepmstraints (21). The existence of such steering law can be
defined in Section II. verified through Algorithm 1.



Algorithm 2:Input:  Current stater,(¢), target setT, Trveling
sequence of disturbancel’;, state update map- J d‘t/
ping f, = (A2, EY), the constraints matrice$i,, h,) 6 =

Output: The safe setX; at the current time, safe
flag Safe

llet Xyn=T,
2fori=N-11t00
3 let Xiyiv1 = {2 €R?*: Hit1zq < higr},
4 Prefa (Xt+i+1, thri) = {Ia S R*:
Hi1 A%, < hit1 — Hip1 Edwy}

Fig. 2. Test track used for the experimental validation. tNe=lidation

S if Pre.fa (Xt+i+la wt-H’) = () then Safe =0, EXIT results of the Algorithms 1 and 2 are shown when the vehidie ke marked
6 else X (Wi,;) = {z, € R*: positions.
Hip1 AG < hit1 = Hip1 Bfwig }, end Hence, just like as in Algorithm 1, constraint satisfactisn
Ha ‘- ha ' not guaranteed after the timte+ N. In the next section we
7 it Xy (Wey) = 0 then Safe =0, EXIT, end comment the choice of the target §6tand propose a method
8 ?”d for guaranteing persistent constraint satisfaction, fteat the
9 if z4(t) € &, then Safe =1, driver will maintain the vehicle withir7", for t > ¢t + N.
10 elseSafe =0, end
11 EXIT.

Remark 3:In Algorithm 2, the restriction of the steering”A- Terminal Set
law to the class of linear state feedback control laws (18) The choice of the terminal sét in the threat assessment
leads to smaller safe sets than in Algorithm 1. Algorithms 1 and 2 affects theffectivenessind theconser-
The oversimplified driver model (18) might not be able teativenessof the algorithms. Indeed, the simplest choice is
capture the driver's steering behavior in hazardous s@@arsetting7 = Xy.qs. In this case, Algorithms 1 and 2 can be
like, e.g., when(i) he/she is required to drive beyond thaised to assess the driver's ability of driving safely onlgiov
vehicle stability limits or(ii) he/she is distracted or drowsythe future N time steps. As alternative, for Algorithm 1, the
Nevertheless, for the threat assessment problem formnlatset 7 could be chosen a§ = C.., whereCoo C Xjeqs iS
considered in this paper, we believe it is not necessary 10 éke maximal robust control invariant set for the constrdine
haustively describe the driver’s behavior. In fact, if thehicle system with inputs (24). We recall that in this case,
is either beyond its stability limits or the lane boundaries N
caseli), a threat assessment problem is not meaningful afiff ) € Coo = z(t+N+k) € Coo, Yu(t) € W, k € N7,

longer and an assisting intervention has to be issued. ke cagat is, the vehicle will be kept within the lane and its stability
(i), since our threat assessment problem formulation is ngfits, despite all admissible lane curvature beyond thekio
depending on any driver monitoring system, driver's distraghead point Similarly, for Algorithm 2, the setl” could be
tion or drowsiness is not accounted for. Hence an assistiposen asT = 0., where O, C Xjeqs is the maximal
intervention would not be issued as long as the vehicle can g st positive invariant set for the constrained autonasno
maintained within its stability limits and the lane bouniear gysiem (27). In this case,

by the considered “nominal” driver (i.e., behaving accogdi

to model (18)). However, the vehicle, driven by the drowsy ofa(t + N) € O = za(t + N + k) € O, Ywa(t) € W,
distracted driver, would very likely eventually exit theafe
set”, calculated based on the “nominal” driver behaviousth

enabling the activation of a lower level intervention. X
Remark 4-We observe that Stessand 7 of Algorithm 1 lane curvature beyond the look-ahead poiievertheless,
) pe 9 setting the final set equal to the maximal robust control

involve a projection operation, while Algorithm 2 does not. . : e .
LT : oo - fnvariant set or the maximal robust positive invariant set
In general, the projection operation can be quite involvi

"@r Algorithms 1 and 2, respectively, might lead to high
depending on the dimension of the state and input spaces. gort ' P Y, mg . 9
conservativeness of the threat assessment algorithms.

In the proposed approaches we formulate the threat assess-
ment problem as a constraint satisfaction problem, for fwhic
efficient methods [10] exist. In particular, we calculate a
polyhedral representations of the safe sets rather than jusThe algorithms presented in Section IV have been exper-
assessing the constraint satisfaction for the currentcleshiimentally validated and the results are shown next in this
state and the road curvature over the prediction horizon. s&ction. Data have been logged by driving a Volvo V50 along
polyhedral representation of the safe set can be exploited the test track shown in Figure 2. This track is narrow in salver
both control and verification purposes. sections and has many sharp curves, thus resembling a gountr
As last remark of this section, we observe that the Alggead. The logged data has then been offline post-processed
rithm 2 assesses the capability of a driver, whose steeritigough the Algorithms 1 and 2 in order to calculate the safe
behavior is modeled by (18), of driving the vehicle, modelesets along the track. For the sake of brevity, the computed
by (16), from the current state,(t) to the target set/. safe sets will be shown only for the vehicle positions along

that is, the driver is deemed capable of keeping the vehicle
within the lane and its stability limits, despite all adniide

V. RESULTS



the track, marked in Figure 2 with numbers from 1 to 6’ where o .'~.......M............-.....................................c.....’
the vehicle either approaches or travel along a curve. o [T

Data has been collected in order to calculate the state and 40 60 8 100 120 140
the disturbances variables of the vehicle models (16) a@d (1
In particular the vehicle lateral velocity, and yaw rate) have :
been measured through a high precision Inertial Measuremen o 60 &0 100 120 140
Unit (IMU). The vehicle position and orientation errors kit

the lanee, ande,,, respectively, and the desired orientation at ~
the look-ahead poin]bff are calculated through dual antennas %0 60 810 1(1)0 1%0 140
GPS measurements and a digital map including the road . ooz} A N
geometry. = 0ol \ I \ ﬁ

Remark 5:The set of measurements used in the proposed 40 60 80 100 120 140
threat assessment methods could also be obtained on-line by o
using the measurements setup and the sensor fusion atgerith
used in [16, 6, 12] (see Section I). Nevertheless, deperating i
the combination of sensors set and sensors fusion algajthm =
a lower accuracy set of measurements might be obtained 50 160 170
compared to the data used in this paper for the validation ‘ ‘
of the proposed threat assessment algorithms. Rl i

We first present validation results of the driver model (18). 10 160 170
The data used for parameters estimation have been collected ‘ ‘
in both normal and slightly rougher driving styles. Compuhre ~
to the normal driving case, where the driver has been asked 00 110 120 130 140 150 160 170
to drive according to the suggested road speed limits, in the  _ oosf ‘ ‘ ‘ ‘ ‘ ‘ ]
rough driving case the driver was asked to drive as fast as TOOQ’W\‘/“\—
possible. The problem of estimating the parameféys K. 100 110 120 130 140 150 160 170
andt;, in (18) has been formulated as a recursive nonlinear tld
least squares problem since the driver model is linear anly i - (b) Rough driving
the parameter(,. I, The recursive nonlinear least square§s, Recirsve diver, mode parameters esimatorn, b tho upper

method described in [17] has been used. values while the dotted lines show their estimated varisinte the lower
Figure 3(a) shows the identification results in normal digyvi plots, the solid and dashed lines show the measured andcieetditeering

conditions. We observe high uncertainty in the estimat@g9'es respectively.

parameters at the beginning of the considered time interval TABLE I

The uncertainty is however reduced as soon as the vehicle m J= . Ly I a
enters a curve and the system is excited. Moreover, we abserv 16%5 kg 2617Ck.gm 1'1;1 m 1'58 m| 183 m
that the estimated value of the paramefey is very small 51 kN]rcn/rad 15 kN:n/rad 260m | L.77m

and has a quite large variance. This indicates that the fehic

lateral deviation from the lane centerlirg has a minor or ‘Remark 6:The calculation of the safe sets shown in this

no influence on the steering angle. The obtained resultsiare i .. . : :
. . . ; . section has been implemented using the sets operations
line with the conclusions of previous studies [28, 22] anovsh . : . .

lemented in the Multiparametric Programming Toolbox

. L ! im
that the human steering behavior is preeminently based o . .
pursuit component i.e.g based on thg preview o)f/ the desirlze@):-r) [20]. For the safe sets calculation, these operations

path. Figure 3(b), instead, shows the driver's model paramklggg:fhé'zz rg;n;tle;ngg @lc?rzgturlzr 1 and 0,3-0,4 seconds for

ters estimation in rougher driving maneuvers. Due to higher . 0 ) N
9 g 9 Consider the driving scenaridsand 2 shown in Figure 2

excitation, the initial uncertainty in the estimated paesens is he driver i o d of 63 km/h
reduced quicker than in Figure 3(a). The estimated parame\iy ere the driver |s_negot|at|ng a curve at aspeed o i,
ich can be considered a maneuver requiring normal driving

K, is in this case slightly negative. We also observe a high\é'_ o .
magnitude of the estimated paramefés and a shorter look skills. Denote byt; andt, the time instants, when the vehicle

ahead timet;,, compared to the normal driving case.

wis in positions 1 and 2 on the track, respectively. Figure 4
conclude that the correcting part is more relevant in rougq‘ows cuts of the safe sef, and;, calculated through
than in normal driving. The driver model (18) has been us

&)th algorithms at times; andi,, respectively.
to validate, through experimental data, Algorithm 2 The following compact notation is introduced to denote sets

Algorithms 1 and 2 have been implemented by setfing:  CUS:
Xteqs @s terminal set and using the following parameters 100 0 Sy
o Xt3’4(7)—Xtm{“’€R4:[o 10 o]x—[ﬁETg }
Qf = Q= Q= == 40 (29)

€ymaz = 1.56m, N =35, T, =0.01s. where the superscript in z*(7) denote thei-th component
The vehicle parameters are shown in Table I. of the vectorz(r). The symbolX?*(7) will here denote a
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Fig. 4. lllustration of safe sets calculated through Alguoris 1 and 2 at times; andts. The circles denote the measured current state of the eefidime
t1 while the solid lines denote the measured trajectory overfukure horizon ofV steps. The sets filled with black and white stripes and the filled with
solid black illustrate cuts of the feasibility sefsin Algorithms 1 and 2, respectively. The solid grey and wisisés show cuts of the safe séts calculated
through Algorithm 1 and 2, respectively.

set in thee, — e,, space obtained by cutting; atz!(7) and the driver cuts the curve in order to quickly traverse the
2%(7), i.e. v, (1) and (7). We observe that, as indicated irpath. However, such driving behavior might not be consid-
Remark 3, the feasibility and safe sets in Algorithm 2 arered unsafe and an intervention should be avoided. Methods
always enclosed by the corresponding sets in Algorithm fbr suppressing warnings or interventions have even been
This can be explained by recalling that the feasibility aafis proposed in [11] for a lane departure warning system. We
sets are derived from the constraints (21) which have bessh usbserve that, in the framework proposed in this paper, &uste
in both algorithms. Moreover the inclusion of the driver mmbd warnings or interventions in such driving situations cobél
(18) in Algorithm 2 results in an additional set of equalityavoided by just increasing the boundg, .., e,,..., for the
constraints which further limits the set of admissiblees$at “inner curve” to allow the driver cutting a curve without
We also note that in Figures 4(a), 4(c) the feasibility setsusing an intervention.
used in the two algorithms overlap. The additional lim@as We finally consider the vehicle positioAsand6 in Figure 2,
enforced by the driver model (18) only affects the terminavhere the driver approaches the curve, with a velocity of
constraints that directly depend on the steering ifputhich approximately 84 km/h, which is a very high speed for
is not the case foe, or e,. such a narrow curve. We start with the results obtained with
The statesx(t;) and z(t2) are marked with a circle Algorithm 1. In Figure 6 we observe thaf(ts) € X}, and
in Figure 4. We observe that, for Algorithm Iy(¢t;) € z(ts) € X4, which means that there exists a control law that is
X2 (t), x(t) € X% (1) and z(ta) € X2*(t2), =(t2) € capable of steering the vehiclé time steps without violating
Xi’Q(tz). Hence, from both the initial stategt,), x(t,), the constraints starting from both positions 5 and 6. The saffe se
vehicle is predicted to safely travel over a horizondfsteps. obtained with Algorithm 2, instead, is smaller, compared to
This is confirmed by the vehicle state trajectories measur&tgorithm 1, and do not enclose the statg(ts). Hence both
over the time interval§, t + NTy], t = {t1, to} and reported algorithms predict a safe driving when the vehicle startsnfr
in Figure 4 with solid lines. In particular, starting frometh the position 5, while the results provided by the two aldoris
initial states z(¢,) and z(t,), the measured vehicle statesignificantly differ in position 6. In this case, Algorithm 2
trajectories entirely evolve over the neit steps within the correctly predicts a constraint violation. In this extredn#ing
. t1itN-1 scenario, according to Algorithm 2, the “nominal” driver is
setsTy and7», respectively, wherd, = tgl THUD), T2 not capable of keeping the vehicle in a safe operating region
is similarly defined and the sef6>* are obtained by replac- Depending on his or her driving skills, the actual driver,
ing X; with 7 in (29), i.e., the vehicle “safely” travels over theinstead, might succeed in keeping the vehicle in such an
time intervals[t, t + NTy], t = {t;, t»}, as predicted through operating region by deviating from the “nominal” behavior
Algorithm 1. In Figure 4, we also observe thaf(t,) € X}, described by the model (18). Nevertheless, since a demiatio
and z,(t) € X;, when the safe sets are calculated usinigom the nominal steering behavior is required, the siorati
Algorithm 2. Recall that, for the sake of simple readabijlitcan be considered critical and an intervention motivated.
we have adopted the same notation for the safe sets obtaine@emark 7:As anticipated in Remark 2, Algorithm 1
with the two algorithms. showed that in positio, even if the driver is expected to
Figure 5 shows the safe sef§, and X;, corresponding violate constraints, there exists a, in general time varyin
to the positions 3 and 4 of the track in Figure 2, when theontrol law that is capable of driving the vehicle over thieife
driver is negotiating a curve at a Speed of approximateN time steps, without violating constraints. We conclude tha
92 km/h, traveling close to the lane edge. We observe thatsteering controller could in this case be used to assist the
for Algorithm 1, z(t3) € A;,, while z(t4) ¢ X;,. That is, driver. The combination of the driver’s steering command an
the vehicle is predicted to safely travel over the time intePf such a low level steering controller could thus enlarge or
val [ts,ts + NT,], while a constraint violation is predictedmove the safe set to enclose the statg;).
over the time intervalty, t4 + NTs]. This is confirmed by the
actual vehicle trajectories shown by the solid lines. Samil VI. CONCLUSION AND FUTURE WORKS
results are obtained through Algorithm 2 and also shownWe have presented two model based threat assessment
in Figure 5. We observe that, starting from the position 4methods for semi-autonomous vehicles and validated them in
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Fig. 5. lllustration of safe sets calculated through Algoris 1 and 2 at times; andt4. The color convention in Figure 4 has been used.
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Fig. 6. lllustration of safe sets calculated through Algoris 1 and 2 at times; andts. The color convention in Figure 4 has been used.

a lane guidance application. The two approaches are based supporting lower level autonomous driving intervemsio
on reachability analysis tools and set invariance theang, a

differ in the model used to predict the vehicle motion within VIl. ACKNOWLEDGEMENTS
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within the lane. The two methods have been validated offline

by using experimental data. The obtained results demdastra REFERENCES

that the proposed methods can effectively predict laneseigs  [1] M. Althoff, O. Stursberg, and M. Buss. Model-based
and vehicle instability over a future, finite time horizohus probabilistic collision detection in autonomous driving.
allowing the activation of driver assistance systems. IEEE Transactions on Intelligent Transportation Systems

Nevertheless, we point out th@ lower accuracy data might 10(2):199-310, June 2009.
be available in an online implementation where a differenf2] Sterling J Anderson, Steven C Peters, Tom E Pilutti, and
measurements setup is used (see Remarkipthe proposed Karl lagnemma. An optimal-control-based framework
algorithms have been tested in a small range of operating for trajectory planning , threat assessment , and semi-
conditions(jii) the adopted driver models might not be able  autonomous control of passenger vehicles in hazard
to describe the human driver’s driving behavior well, thus  avoidance scenarioft. J. Vehicle Autonomous Systems
introducing a high level of uncertaintgiy) the computational 8:190-216, 2010.
burden of the driver’s model parameters identification dved t [3] C. Baker and J. Dolan. Traffic interaction in the urban
safe sets calculation might represent an obstacle to the rea  challenge: Putting boss on its best behawvisternational
time implementation of the proposed algorithms. The points  Conference on Intelligent Robots and Systems (IROS
(i)-(iii) address robustness issues with respect to measure- 2008) pages 569-597, September 2008.
ments errors and models uncertainties, while the p@int [4] E. Bakker, L. Nyborg, and H. Pacejka. Tyre Modeling for
addresses computational complexity issues. The prelippina  Use in Vehicle Dynamics StudiesSAE Paper 870421,
results presented in this manuscript motivate furtherstiga- 1989.
tions aiming at analyzing the impact of measurements errofs] A. M. Bayen, |. M. Mitchell, and C. J. Tomlin. Aircraft
and model uncertainties on the performance of the proposed autolander safety analysis through optimal control-based
threat assessment methods and proposing approaches in orde reach set computatiodournal of Guidance, Control and
to compensate for them. Moreover, computational complexit ~ Dynamics 30(1):68—77, January—February 2007.
issues will be addressed by adopting real-time oriente@ cod6] M. Bertozzi, A. Broggi, and A. Fascioli. Vision-
(see Remark 6) and investigating the use of further simglifie based intelligent vehicles: State of the art and perspec-
vehicle models involving simpler reachability analysi®ipr tives. Robotics and Autonomous SysteB#(1):1-16, juli
lems (see Remark 4). 2000.

We finally highlight that, as observed in Remark 7, the[7] D. P. BertsekasControl of Uncertain Systems with a set—
proposed threat assessment methods can be a conveniant basi membership description of the uncertaintyhD thesis,
of decision making algorithms which blend driver's commsind Electronic Systems Laboratory, MIT, 1971.



(8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

D. P. Bertsekas and I. B. Rhodes. On the minimax
reachability of target sets and target tubdsitomatica
7:233-247, 1971.

F. Blanchini. Set invariance in control — a survey[25]
Automatica 35(11):1747-1768, November 1999.

S.P. Boyd and L. Vandenbergh&€onvex optimization
Cambridge Univ Pr, 2004.

X. Dai, A. Kummert, S. B. Park, and D. Neisius. A[26]
warning algorithm for Lane Departure Warning system.
2009 IEEE Intelligent Vehicles Symposiupages 431—
435, juni 2009.

A. Eidehall, J. Pohl, and F. Gustafsson. Joint road ggom
try estimation and vehicle trackingontrol Engineering [27]
Practice 15(12):1484-1494, 2007.

P. Falcone, F. Borrelli, J. Asgari, H. E. Tseng, an{l8]
D. Hrovat. Predictive Active Steering Control for
Autonomous Vehicle SystemslEEE Transactions on
Control Systems Technolqgls(3), 2007.

P. Falcone, F. Borrelli, H. E. Tseng, J. Asgari, an{P9]
D. Hrovat. Integrated braking and steering model pre-
dictive control approach in autonomous vehicldsfth

IFAC Symposium on Advances of Automotive Control
2007.

10

G. Stanek, D. Stavens, A. Vogt, and S. Thrun. Junior:
The stanford entry in the urban challengdournal of
Field Robotics pages 569-597, September 2008.

H. Peng and M. Tomizuka. Preview Control for Vehicle
Lateral Guidance in Highway AutomationJournal of
Dynamic Systems, Measurement, and Confrab:679—
687, 1993.

R. Philippsen, S. Kolski, K. Macek, and R. Siegwart.
Path planning, replanning, and execution for autonomous
driving in urban and offroad environments. Rroc. of
The Workshop on Planning, Perception and Navigation
for Intelligent Vehicles (ICRA)2007.

R. Rajamani.Vehicle Dynamics and ControlSpringer,
2006.

R. D. Roland and T. B. Sheridan. Simulation study
of the driver's control of sudden changes in previewed
path. Technical report, MIT, Department of Mechanical
Engineering, 1967.

E. J. Rossetter and J. C. Gerdes. A Study of Lateral Ve-
hicle Control Under a Virtual Force Framewotk. Proc.
International Symposium on Advanced Vehicle Control
2002.

P. GriederEfficient Computation of Feedback Controllers
for Constrained SystemsPhD thesis, Institut fur Au-
tomatik, Swiss Federal Institute of Technology Zurich,
2004.

J. JanssonCollision avoidance theory with application
to automotive collision mitigatian PhD thesis, ISY,
Linkdping University, 2005.

S. M. Kay. Fundamentals of statistical signal processing:

Paolo Falcone Paolo Falcone received the “Laurea”
degree in Computer Science Engineering in 2003
from the Universit di Napoli Federico Il, Italy. In

2007 he received the Ph. D. degree in Automatic

PLACE Control from the Dipartimento di Ingegneria at Uni-
PHHE%TEO versita del Sannio, Benevento, Italy.

Since April 2008 he is Assistant Professor in
Mechatronics at the Department of Signals and Sys-
tems of the Chalmers University of Technology in
Gteborg, Sweden.

estimation theoryPrentice hall signal processing serie
1993.

U. Kiencke and L. NielsenAutomotive Control Systems
Springer, 2005.

Sdontrol, real-time model
vehicle dynamics control, active safety systems.

His research interests include constrained optimal
predictive control for fast autaime applications,

I. Kolmanovsky and E. G. Gilbert. Theory and computd
tion of disturbance invariant sets for discrete-time linea
systems.Mathematical Problems in Egineering:317—
367, 1998.

M. Kvasnica, P. Grieder, and M. Baoti¢. Multi-Paramet
Toolbox (MPT), 2004.

S. Mammar, S. Glaser, and M. Netto. Time to Ling

Mohammad Ali. Mohammad Ali received his M.S.
degree in Electrical Engineering from Chalmers Uni-
versity of Technology.

Since 2007 he is pursuing the Ph.D degree in
Mechatronics at Chalmers University of Technology.
He is currently with the Active Safety and Chas-
sis department at Volvo Car Corporation and his
current research interests involve active safety and
autonomous driving.

PLACE
PHOTO
HERE

Crossing for Lane Departure Avoidance: A Theoretical

Study and an Experimental SettinEEE Transactions
on Intelligent Transportation System&226-241, 2006.
D. T. McRuer, R. W. Allen, D. H. Weir, and R. H. Klein.
New results in driver steering control modelsluman
Factors 19(4):381-397, August 1977.

U. Mellinghoff, T. Breitling, R. Schéneburg, and H. Me
zler. The Mercedes-Benz Experimental Safety Vehicle
2009.In Proc.International Technical Conference on the¢

Jonas Spberg. Jonas Sjoberg , received the M.S.
degree in engineering physics in 1989 from Uppsala
University and the Ph. D. in 1995 from Linkoping
University, both in Sweden. He has held visiting
research positions at ETH Zurich, Switzerland, TU
Wien, Austria, Technion, Haifa, Israel, and Vrije
Universiteit, Brussels, Belgium. He has served as an
Associate Editor for Control and Control Engineer-
ing Practice (1999-2008), and he regularly serves as
international program committee member at interna-

PLACE
PHOTO
HERE

Enhanced Safety of Vehicles Conference (Ef&fes 1-
11, 2009.

tional conferences. He is Professor at the Department

of Signals and Systems, Chalmers, Gothenburg, Swedere 8d@1. He is
Programme Director of the Automation and Mechatronics atioic program.

M. Montemerlo, J. Becker, S. Bhat, H. Dahlkampiis research interests are in Mechatronics, and Mechatrmtated fields,
D. Dolgov, S. Ettinger, D. Haehnel, T. Hilden, G. Hoff-such as Signal Processing, and Control. Within these fieitimest focus on

mann, B. Huhnke, D. Johnston, S. Klumpp, D. Langeg1

odel based methods, simulations, system identificatiot optimization for
esign and product development of Mechatronic systemse@uapplications

A. Levandowski, J. Levinson, J. Marciland, D. Orenare, for example, Automotive Active Safety and Hybrid Efieciehicles.

stein, J. Paefgen, |. Penny, A. Petrovskaya, M. Pflueger,



