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Abstract 

 
Microencapsulation and controlled release of a pesticide intended for 

coating application is the central issue of this thesis. 

 

Today forestry industries are facing enormous problems as conifer seedlings 

are attacked by insect Hylobius Abietis which feeds on young cortex. Only in 

Sweden, the annual loss is 0.5 to 2 billion Swedish kronor. To achieve 

protection for at least two years, until the plant become strong enough to 

withstand a pest attack, it necessitates developing an effective pesticide 

delivery system. 

 

In this work, a pesticide called butylated hydroxytoluene (BHT) has been 

found effective against the insect. Antifeedant activity bio-assay tests and 

release studies in aqueous medium revealed that the coating formulation is 

more efficient in presence of a non-ionic surfactant (alkyl glucoside). 

 

To control the release from coatings microencapsulation technology has 

been employed. The microcapsules were based on poly(methyl methacrylate) 

(PMMA). The release of freely dispersed and encapsulated active substances 

from both oil- and water-based coatings has been studied in an aqueous 

release medium. Slower release was observed for encapsulated substance 

compared to freely added substance. 

 

For release of BHT from core-shell microcapsules two different types of core 

materials, with similar chemical characteristics but different physical states, 

were studied: dodecane (liquid) and octadecane (solid). The release was 

faster from liquid-core microcapsules and the state of the core was argued to 

be the main reason. For both microcapsule types, an initial "burst" release was 

followed by a slower release. The burst was attributed to accumulation of BHT 

in the PMMA shell whereas the slowly releasing fraction was attributed to 

BHT in the microcapsule core. The conclusions were further supported by 

QCM-D investigations where a PMMA film was used to monitor both 
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absorption and release. It was noted that the absorption of BHT was much 

higher than that of dodecane. 

 

In this thesis, it is shown that encapsulated active substances can be 

effectively formulated into a protective coating. The main advantage using 

microcapsules is that the release of active ingredients can be better controlled 

and that the mechanical properties of the coating can stay intact even at high 

concentrations of the active. 

 

Keywords: microcapsule, microsphere, coating, latex, controlled release, 

pesticide, BHT, dodecane, octadecane, PMMA, pine weevil. 
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Chapter 1. Introduction 

 

The pine weevil insect Hylobius Abietis is one of the central pests that causes 

severe damage in conifer forests in Europe, Asia and North America. Forestry-

based industries are facing enormous problems when replanting in harvested 

conifer forests. The main reason is that the pine weevil, which feeds on young 

cortex, destroys the stems of newly planted seedlings. Thus, high degree of 

pest attacks results in high costs for forestry-based industries. In Sweden 

alone, 80% of the pine and spruce seedlings are damaged by the pine weevil 

to such extent that the plant dies shortly after plantation [1, 2]. An estimated 

cost arising from this damage is around 0.5 to 2 billion Swedish kronor per 

year [3]. In the past, the chemical substance permithrin has been applied to 

minimize the pest attacks. But due to detrimental effects on aquatic 

organisms, the use of permithrin has been abrogated. Cypermethrin has been 

proposed as an alternative pesticide. However, it turned out to be even more 

toxic not only to aquatic organisms but also to terrestrial insects as well as 

mammals [4, 5]. Since the pesticides that worked against pine weevil were 

found as broad–range toxics and have detrimental effect on terrestrial and 

aquatic animals/organisms, it was needed to replace these pesticides with 

less toxic compounds. In other words, the necessity to develop an effective 

and more environmentally-friendly pesticide delivery system with proper 

active ingredients became obvious in order to achieve a long-lasting solution 

to the pine weevil problem. 

 

There are different kinds of semio-chemicals that either attract or distract 

pine weevil for different activities [6]. A semio-chemical that attracts is called 

a “stimulant” or an “attractant” and the one that repels is called an 

“antifeedant” or a “repellent” [7]. Several antifeedants like the alkanoic acids 

have showed activity against pine weevil where they act as 

suppressant/feeding deterrent or as arrestant [7]. But these are rather 

volatile chemicals, which is an obstacle for maintaining a long action period. A 



2                                               

 

 

molecule with smaller volatility, butylated hydroxytoluene (BHT), has been 

found to be discarded by pine weevil when it is added on stems of pine and 

spruce seedlings [4, 8, 9]. These results suggest the possibility of using BHT as 

an antifeedant for the protection of pine and spruce seedlings against pine 

weevil. 

 

Generally it is considered that an efficient pesticide formulation should not 

only show an effective biological activity, it must also be user friendly and 

environmentally friendly. Depending on the criterions, different pesticides 

delivery system has recently been developed [10-12]. The pesticides are 

formulated in the form of wettable powders, emulsifiable concentrates, water 

solutions, powder or granules, aerosols or spray formulations. But such 

formulations have different degrees of health hazards ranging from 

respiratory exposure (powder, aerosol, spray) to penetration through the skin 

(emulsifiable concentrates). Being larger in size, granules do not pose any of 

the upper mentioned health hazards but the formulation is not suitable 

enough to deliver in a convenient way for field application. Considering all 

these facts, perhaps microencapsulation is the most efficient way of delivering 

pesticides. The versatility of this method leads to the possibility to 

encapsulate a wide range of pesticides [12]. 

 

The delivery system needs to last for a certain period of time to release its 

content on the treated seedling surface during two or more growing seasons. 

It is thus essential to add the active substance using a controlled formulated 

system rather than applying the active as pure substance. Putting the active 

within a controlled release system helps to release the active slowly and 

thereby prolonging the protection of the seedling until it is physically strong 

enough to withstand insect attack. To meet this requirement microparticles, 

e.g. core-shell particles or microcapsules, could be basis of a system where the 

active is stored for future release to the surrounding. Besides prolonged ac-

tion, microencapsulation controls the release to improve residual activity [13-

15], to prevent environmental degradation [16, 17], and to reduce the applica-

tion dose hence aquatic toxicity and volatilization [10, 18]. Microencapsula-

tion of the active provides a possibility to obtain an efficient and economically 

beneficial pest management [19]. For long-lasting protection purposes, the 

microcapsules must be adhered to the seedling surface. One way is to disperse 
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microcapsules in a matrix which is compatible with the microcapsule shell 

material [20]. Water-based latex paint might be the best choice of use in this 

respect. This will ensure strong adhesion of microcapsules on the seedling 

surface [21]. 

 

Besides the development of a microencapsulated pesticide delivery system, 

this thesis also to some extent investigates the development of delivery 

system for anti-growth agents. Mold and/or algae growth on exterior facades 

or fouling growth on ship hulls are major problems. The growth is occurring 

on a painted surface that is applied as a protective coating for the houses and 

ships. Usually biocides are applied as anti-growth agents within the paint 

system. A fast release and loss of the biocides renders the paint matrix to be 

quickly exposed to unwanted growth [22]. By enclosing the biocides in 

microparticles, the possibility of prolonging the release is also studied in this 

work. 

 

The purpose of this thesis work is to develop a microencapsulated delivery 

system to be formulated in protective coatings. By microencapsulation of 

pesticides/biocides it is possible to prolong the release for a longer period of 

time and to protect the target objective from attack of insects or from the 

growth of bio films on the surface. 
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Chapter 2. Pesticides/biocides and their                                          
a                      application 

 

Pesticides or biocides are active substances that destroy, deter, render 

harmless, or prevent pests or microorganisms in order to protect either any 

kind of crops or protective coatings. Depending on the target and the place 

where it would be applied, the distinction between these two substances is 

made. Usually pesticides are molecules which combat against pest to protect 

crops and crop products. Biocides, on the other hand, are molecules which 

combat the living organism in order to prevent or destroy any kind of fouling 

growth. In this thesis depending on the target of application, active substances 

are referred to as pesticides or biocides. 

 

2.1 Pesticides in agriculture 

 

Semio-chemicals are compounds that cause behavioural changes among the 

insects. There are different kinds of semio-chemicals that are named after the 

action on the insect. Pheromones are semio-chemicals which are secreted 

from the exocrine glands of insects. These secreted pheromones are used by 

the insects of same species for finding mates, aggregation, alarm, tracking or 

trial marking defence [23]. Antifeedants are another kind of semio-chemicals 

which inhibit food-intake activities. The insect’s taste sensitivity is dominated 

by GABAA receptors and antifeedants work against one of these receptors 

[24]. The GABA receptors (GABAA and GABAB) belong to a class of receptors 

that respond to the neurotransmitter gamma-aminobutyric acid (GABA). 

Pheromones and antifeedants have useful potential to control various pests 

and replace toxic pesticide [6, 25]. 

 

Due to excessive use of pesticide chemicals, pest insects have developed re-

sistance towards such chemical substances. The insect development of resis-
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tance towards chemicals leads researchers to re-think about the basic under-

lying tenets of pest control [15, 26-29]. There is a concern of replacing pesti-

cides by other pesticides of natural origin [29]. One group of alternative sub-

stances are insect repellents, antifeedants, which are more bio-friendly and 

often have weak physical effect on insects [30, 31]. Generally, antifeedants are 

secondary metabolites from natural origin that modify the feeding behaviour 

of insects [32, 33]. 

 

Antifeedants have some advantages over traditional insecticides: faster 

degradation, less development of insect resistance, less harmful to human and 

environment [34]. Antifeedants are classified as (a) repellents that repel the 

insect to get in contact with the plant, (b) arrestants that stop the insect to 

move towards the plant, (c) suppressants that stop insect to continue the 

feeding after biting the plant, and (d) feeding deterrents that deter the insect 

from feeding after it has already bitten the plant once or repeatedly [4, 35, 

36]. 

 

There are a number of plant-derived carboxylic acids like hexanoic and 

nonaonic acid, carvone and carvacol as well as esters of 2,4- and 3,5-

dimethoxy benjoic acid which are found highly active against pine weevil [5, 

32]. Two glucosides, simmondsin and simmondsin 2’-ferulate, isolated from 

jojoba seed have antifeedant activity against the cotton leaf larvae named S. 

Littoralis an agricultural pest [37]. Flavones are important heterocyclic 

compounds and some of these compounds are able to affect insects by 

inhibiting larvae feeding or by acting as feeding deterrent [24]. Terpenoid 

compounds are the most developed antifeedants that acts on aphids. Since 

effective antifeedants are often of plant origin and achieved by extraction, 

they are usually provided in low yield. It is thus necessary to synthesize 

antifeedants to get more substance [38]. 

 

 



                                               7 

 

 

 

(A) 

 

(B) 

 

 
Figure 2.1 (A) A pine weevil, Hylobius abietis, that feed on young cortex of seedlings, 

(Photo: by Fredrik Schlyter). (B) The pesticide and antifeedant, butylated hydroxytoluene 

(BHT), that has feeding inhibitory effect on pine weevil. 

 

In this work, a synthetic antifeedant 2,6-di(tert-butyl)-4-methylphenol 

(BHT) is used as an active agent in the development of a pesticide delivery 

system for pine weevil (see figure 2.1). The outcome of this work is presented 

in papers Ι, ΙΙΙ and IV. 

 

2.2 Biocides in coatings 

 

Biocides are chemical agents that are capable of severely affecting living 

organisms. Here biocides are referred to as micro-biocides and marine 

antifouling agents. Micro-biocides are agents that are capable of inhibiting or 

controlling the growth of microorganisms including fungi, bacteria and algae. 

Marine antifouling agents include algaecides and molluscicides and their 

activity includes the elimination and inhibition of growth of marine organisms 

[39]. The fouling growth of barnacles on a ship hull and a biocide that acts 

against barnacles are shown in figure 2.2. 

 

A wide range of biocides has been used for the preservation of materials 

during the last 50 years. Former mercury-based biocides had the potential to 

meet the requirement for in-can and dry state preservation of paints or 

coatings against all kind of microorganisms. Tin–based biocides were 

extensively used in marine paint as antifouling agent. But the toxicity and 

ecological persistence lead to a phasing-out of such applications. Similarly  
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PCPs, (pentachlorophenols), PCBs (Polychlorinatedbiphenyls) and 

formaldehyde are all banned as biocides in the paint application [38-40]. 

 

 

(A) 

 

(B) 

 

 

Figure 2.2 (A) Barnacle or fouling growth on ship hull, (Photo: Marine Paint programme). 

(B) An antifouling agent, medetomidine, that works against the fouling growth. 

 

There are a number of products including paint and building materials which 

are exposed to a number of different microorganisms. On the coating surface, 

a bio-film of fungus or bacteria grows. The effect of microbial contamination 

on a product like a coated surface is obvious in the form of visible surface 

growth, gassing, pH drift, viscosity loss or increase, malodour and 

discoloration [41, 42]. Fungal growth on outdoor surfaces or even on indoor 

surfaces is obvious since fungi do not produce their own food and they grow 

on surfaces that take nutrients from others, may be from the surface itself or 

from the surrounding environment [42-44]. The surface may be of organic or 

artificial origin where cellulose or surfactants from water based paints, or 

resins and oils from solvent based paints supply proper nutrients. Fungi can 

also penetrate the coating and break down the components of the coating, and 

thereby allowing moisture penetration which further facilitates growth [41, 

42]. 

 

Microorganisms cause a considerable economic loss to the paint users and it 

means excessive use of chemicals. This drives the researchers to develop 

better paint formulations for surfaces [45]. A prevention of fouling growth can 

be controlled by incorporating biocides in the coating. Biocides may be used 

for dual purposes: 1) to protect from biological growth, 2) to be used as in-can 

preservative while the product is still in wet state. 
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As biocides are toxic to a certain extent, a legislative pressure has been put to 

reduce the amount of exposure or leakage. As a molecularly small biocide 

diffuses through the porous coating, it reaches the surface where it acts 

against the growing organisms [38]. However, this release of biocide is often 

rapid and an excessive amount is released very shortly after the paint has 

been applied. A formulation of microencapsulated biocides rather than freely 

dispersed biocides can be a way to minimize the amount released to the 

environment and to prolong the protection. By microencapsulation, a 

minimum inhibitory concentration at the coating surface can be maintained 

over an extended period of time while inhibiting aqueous extraction during 

rainy periods [41, 46]. 

 

In this work, a marine biocide has been used as a model compound in a study 

using water- and solvent–based exterior wall paint. This study is presented in 

paper ІІ. The basic idea was to use free biocide and encapsulated biocide 

respectively in paint systems and to compare how the release behaviour 

alters when the biocide is applied in each of the formulations. The 

incorporation of encapsulated biocides was expected to provide a slower 

release compared to a freely dispersed biocide in the paint. The reason for 

working with this biocide is that it was available with a 14C-label which 

makes release studies much easier and faster. 
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Chapter 3. Controlled Release Technology 

 

Commercial applications of sustained or prolonged release technology in 

both pharmaceutical and agricultural industry have existed for decades [47, 

48]. The concept of enteric coating was invented in the early 50’s and was 

widely used in pH-sensitive tablets by the pharmaceutical industry. In this 

process the tablet is designed to be resistant against the low pH of the 

stomach and instead releases its content in intestine [49]. Thus the action of 

the drug is maintained and controlled by the specific coating. Other examples 

of sustained release formulations are encapsulated pellets or beads, sparingly 

soluble salts, porous insoluble tablets containing a dispersed drug, and other 

complex systems [50, 51]. In agriculture, sustained release fertilizers of 

various materials have been used. These can be slowly activated by microbial 

attack, by complexation of the active agent with an ion exchange resin, or by 

membrane-regulated formulations [48]. 

 

The basic concept of controlled release technology described in this thesis 

comes from sustained release or prolonged release technology. Such technol-

ogy provides a release profile which is usually controlled by the design of the 

system and is less dependent on external factors [52]. 

 

Following the concept of sustained release technology, Folkman and Long 

developed the first membrane diffusion device in 1964 where silicon rubber 

was used to control the release of anaesthetic and cardiovascular drugs. In the 

late 1960s, Alex Zaffaroni at the Alza Corporation continued their research 

with novel controlled release drug delivery systems. The company developed 

an ophthalmic insert called Ocusert® which releases the anti-glaucoma drug 

at a constant rate in the eye. Another development called Progestesert® was 

an intrauterine device (IUD) release contraceptive steroid, progesterone, 

released at a constant rate in the uterine cavity. This development on 

controlled release technology inspired the entire pharmaceutical industry. 



11 

 

 

 

During the 1970s, the interest of using controlled release technology was 

extended to agrochemical, cosmetic and food industries [48, 53, 54]. 

 

From the first use in 1930, today’s agriculture highly depends on synthetic 

pesticides. The use became widespread after the World War II [55]. From an 

estimation of the total agrochemicals used in crop protection, only 0.1 % 

reach the target pest while the rest enters the environment and may cause 

hazards to non-target organisms including humans [23]. Various applications 

of controlled release technology in the agricultural area are being used in 

order to handle the problems. Those can be associated with ground water 

contamination, degradation, volatilization [55], excessive exposure of 

chemicals to environment, phyto-toxicity [56] , and other runoff [56, 57]. 

 

The purpose of using controlled release technology in both the agriculture 

and the paint industry is to decrease the excess supply and to prolong the 

protective use of pesticides, herbicides, agrochemicals or biocides by 

maintaining an effective concentration over a given interval of time [57, 58]. 

Additionally, it helps to protect against uncontrolled distribution of 

xenobiotics in the environment [59]. 

 

There are different ways to control the release of an active substance. The 

release behaviour from a controlled release system can generally be classified 

into three types: (1) “zero-order release” where the release rate remains 

constant until the carrier is exhausted of active agent, (2) “first-order release” 

where the release rate is proportional to the amount of active agent within the 

reservoir and declines exponentially with time as the reservoir approaches to 

exhaustion, and (3) “square-root-of-time“ release where the release rate is 

linear with the reciprocal of the square root of time. The release rate remains 

finite as the carrier advance towards exhaustion [48] (figure 3.1). 
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Figure 3.1 Different release mechanisms of actives from micro reservoir delivery device 

system. 

 

Depending on the application, the mechanism of controlled release device 

can generally be explained as: (1) chemically–controlled where the release 

may occur from (a) bio-erodible systems and (b) drug-polymer conjugates, (2) 

diffusion-controlled where the release may occur from (a) membrane-

reservoir systems (solution-diffusion and osmotic pumping) and (b) matrix 

systems (ex: matrix diffusion, polymer erosion, polymer swelling, geometry 

and concentration distribution) [60]. The application of controlled release 

technology can be target specific and the advantage varies from one 

application to another. By this technology it is possible to deliver effective 

concentration of an active to the target object without releasing too little or 

too much. Since excessive release can be suppressed by this method, it is 

possible to maintain efficient utilization of the active agent. By tuning the 

internal factors of the carrier system it is possible to make site-specific or 

target-specific delivery of the agent. Since the release is slowed down by 

different controlling parameters it is possible to avoid frequent application of 

the active agent [48, 60, 61]. 

 

 



13 

 

 

 

3.1 Approaches to control pesticide and biocide release 

 

A great challenge in the development of a controlled release delivery system 

of pesticides lies on the regulation of the length of time during which the 

effectiveness of the active ingredient is maintained [25]. There are numerous 

ways to control the release and the final choice depends on the required 

application. This can be a bio-erodible or drug-polymer conjugate system, 

membrane-reservoir system, matrix carrier system or an osmotic and 

mechanical pump system [61]. Hydrogel polymers are extensively used for 

controlled release applications. The swelling and de-swelling behaviour of a 

hydrogel makes it useful in biomedical and controlled release pharmaceutical 

applications [57, 62-65]. 

 

Biodegradable microbial polyesters like poly(hydroxyl alkanoates) (PHAs) 

are used as carrier for pesticides and alginate for controlled release herbicides 

[18, 59-65]. Temperature sensitive polymers (e.g. Intelimer) are used to 

encapsulate pesticides and give only slow release below a specific 

temperature, thereby protecting the active pesticide from unwanted leaching 

and degradation [55]. Insecticides and biocides can also be applied within 

granular system [56]. Previously, encapsulation of pesticides could be done by 

dispersing the pesticides into an aqueous dispersion of gelatinized starch and 

then cross linking the starch by xanthide or calcium chloride. This technique 

improves worker safety in the handling of pesticides and also helps to 

decrease the phyto-toxicity to the crop [66]. In another example, liquid neem 

oil is dispersed in a matrix where urea-formaldehyde pre-polymer is cross 

linked with natural polymer such as starch or guar gum [67]. 

 

In this thesis work, microparticles (more explicitly microcapsules and 

microspheres) have been used as controlled release reservoir devices. 

Membrane-reservoir systems have been used to study the release behaviour 

of an antifeedant from core-shell microcapsules. Matrix (or monolithic) 

systems have been used to study the release behaviour of a biocide from 

microspheres. In both cases the release depends on a diffusion-controlled 

release mechanism. 
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For core–shell microcapsule in general, the shell encloses the active agent to 

be released. In this thesis, the release of the active is shown to initially occur 

from the shell where the active has partially been dispersed. This release is 

followed by diffusion from the inner core (figure 3.2). In a membrane- 

reservoir system, the release rate depends on the thickness, area and 

permeability of the membrane. 

 

(A) 

(B)  

 

 
 

Figure 3.2 (A) SEM image of microcapsules where the core is surrounded by a PMMA shell 

and active is reserved in the oil core. (B) Typical release behaviour of the active from core- 

shell microcapsules, (a) initial fast release from the membrane, (b) constant release rate as 

long as a constant concentration is maintained, (c) rapid declination of release when device 

approaches zero concentration. 

re
le

as
e

 r
at

e

time

a

b

c



15 

 

 

 

In a microsphere, the active agent is dispersed or dissolved in a rate-

controlling polymer matrix. In a matrix system, the release of active depends 

on the nature of active and polymer and the geometry of the matrix device. In 

general, the release of active starts from the surface layer followed by the next 

layer. The release rate also depends on the loaded amount of active within the 

polymer matrix. When the loading is low, a slower release can be observed 

since the diffusional path is more restricted due to extensive polymer network 

within the matrix. A microsphere containing homogeneously or 

heterogeneously dispersed active, and the release behaviour of active from 

microspheres are shown in figure 3.3. 

 

 
 

 

 

 

 

 

 

 

 

(A) 
 

 
 

 

 

 

 

 

 

 

 

(B) 
 

 

Figure 3.3 (A) Microsphere or polymer matrix where the active is homogeneously or 

heterogeneously dispersed. (B) Typical release behaviour of active from a microsphere. 

 

 

3.1.1 Microparticles 

 

There are a number of controlled release devices. These include 

microcapsules, microspheres, coated granules and granular matrices (see 

examples in figure 3.4) among others. During the last 20 years much of the 

research in industry and academia has been devoted to specialization and 

utilization of microcapsules in particular [68]. 
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(A) (B) (C) (D) 

 
Figure 3.4 Morphologies of microparticles: (A) Mononuclear core and homogeneous shell 

microcapsule, also called core-shell microcapsule. (B) Poly-nuclear core and homogeneous 

shell microcapsule. (C) Mononuclear core and multi-shell microcapsule. (D) Polymer 

matrix, also called microsphere, where active is homogeneously or heterogeneously 

dispersed. 

 

A microcapsule is a reservoir system where the active chemical is contained 

within the core and is surrounded by shell or membrane. There may be one or 

several cores and one or several shells. The inner core can be solid, liquid, 

gaseous, or a combination of any of these. The protective matrix may be an 

organic or an inorganic polymer or even a metal oxide [69]. The microcapsule 

wall material protects the active ingredient from adverse reactions, 

volatilization, and restrict a direct exposure to outside environment. 

Microcapsules can also be utilized as micro-reactors where the membrane is 

used to separate as well as help to perform chemical reactions [70-72]. 

Microencapsulation has a wide range of applications including 

pharmaceuticals, dyes, perfume, agriculture, printing, adhesives, cosmetics, 

and food products [73, 74]. Techniques involved in microencapsulation 

include spray-drying, spray-cooling, extrusion, freeze-drying, co-

crystallization, emulsification, photo-polymerization [30, 75, 76]. 

 

A microsphere is a monolithic system where the active agent is dissolved or 

dispersed in a polymer matrix [51]. Microspheres are spherical or irregularly 

shaped particles in the size ranging from 20 nm to 2000 µm and are composed 

of one or more polymers. 

 

Different properties and performances of microcapsules and microspheres 

can be achieved by variation at the molecular level. By property-performance 

morphology and choice of the core material, it is possible to achieve a desired 

release of the active [75, 77]. For instance, enhanced release of a highly 
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hydrophobic compound can be obtained by increasing the surface area of the 

microcapsule. This can be achieved by decreasing the size of the particle [78]. 

If it is an organic polymer employed in the microcapsule or microsphere, it is 

biodegradable or non-biodegradable. The naturally occurring polymers 

mostly used are polysaccharides including cellulose, agarose, dextran, 

alginates, carrageenans, starch, chitosan [79-85] and proteins including 

gelatin and albumin [86, 87]. Among synthetic polymers the most frequently 

used are polystyrene, polyacrylamide, polymethylacrylates, polyamides, 

polyesters, polyanhydrides, polyurethanes, amino resins and 

polycyanoacrylates [69, 71, 88]. Inorganic materials for microsphere 

preparations include silica, zeolites, inorganic oxides as well as glass beads 

and ceramics [69, 71, 82-84, 87, 88]. 

 

In this work, poly(methyl methacrylate) or PMMA is used as protective 

membrane for core-shell microcapsules and matrix material for microspheres. 

Alkane oil of various chain length (C12 and C18) are used as core material 

within the active is dissolved. 

 

3.1.2 Coatings 

 

A latex coating is a polymeric coating which can be used to control the 

release of active agents [89, 90]. Latex can either be an aqueous or non-

aqueous based polymer particle with a co-polymer of different glass transition 

temperature or Tg is present. These are often submicron-sized particles [90-

92]. Depending on the ratio of low Tg and high Tg polymer in the dispersion , 

latex are called soft latex and hard latex [93]. In latex coatings, the polymer is 

used as a binder which is capable of coalescing to form a water-permeable 

coating upon curing [92, 94, 95]. The presence of low Tg polymer in the 

dispersion allows the particles to deform under surface tension and capillary 

forces to results in a relatively void-free film. High Tg polymer on the other 

hand, ensures a high mechanical strength of the coating while retaining the 

elasticity of the film [96-98]. Also, the polymer chains in latex particles are 

mobile enough to inter-diffuse between adjacent particles in order to form a 

homogeneous film. The formation of a latex film occurs in a series of steps. 

Initially, evaporation of water or another solvent allows the particles to form a 
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close-packed structure. With the progress of water evaporation, deformation 

of particles takes place without void formation. This finally leads to inter-

diffusion of polymer chains across the particle boundaries and the formation 

of a continuous film (figure 3.5) [99-102]. 

 

 

Step 1 
 

 

Step 2 
 

 

Step 3 

 

 
 

Step 4 

 

 
 
Figure 3.5 The mechanism of latex film formation: Step 1, evaporation of water until the 

latex particles come into contact to each other. Step 2, more evaporation of water increase 

particle connectivity. Step 3, deformation of particles. Step 4, complete particle 

deformation and inter-diffusion of polymer chains. 

 

In this work, a 30 % latex dispersion in water, called Eudragit NE 30 D, was 

used. The co-polymer is produced by an emulsion polymerization of ethyl 

acrylate and methyl methacrylate in a ratio of 2:1. To obtain an elastic film 

with high mechanical strength, additional additives are used in the mixture. 

Alkyl glucoside, a non-ionic surfactant, was added to improve the surface 

properties of the coating. A hydrophobically modified EHEC (ethyl hydroxyl 

ethyl cellulose), a non-ionic cellulose ether, was used as a thickener to 

improve the rheological properties of the latex paint. 

 

In this work, it was expected that the application of encapsulated BHT within 

the latex coating should allow for gradual release of the active. Another 

advantage would be a reduction of environmental hazard risks [103]. 
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Chapter 4. Analytical methods 

 

4.1 UV-visible spectroscopy 

 

One of the most common applications of UV-visible spectroscopy is to 

determine the concentration of an analyte in a solution. Molecules that 

absorb light in the UV-visible region (200-800 nm) have pi-electron 

functions [104]. When the molecules are exposed to light, the light 

absorbing groups absorbs energy from the radiation beam and promotes a 

pi electron to a higher molecular orbital. Thus, the intensity of the 

radiation beam decreases once a molecule is excited. The wavelength at 

which the light is absorbed is recorded by an optical spectrophotometer 

along with the intensity of absorption. The instrument compares the 

intensity before and after passing through the sample and the resulting 

spectrum is presented with absorbance (A) as a function of radiation 

wavelength (). 

 

At a specific wavelength for a given molecule, there is a relationship 

between the absorbance and the number of absorbing molecules. The 

relation is explained by Beer’s law which says that the amount of absorbed 

light is proportional to the number or concentration of absorbing 

molecules. 

A = log I0/I = ελ b c                                                                                                        [1] 

 
 

Figure 4.1 Absorption of light by the sample solution, I0, the incident light and I, the 

transmitted light that passes through the sample solution. 

 

The absorption and transmission of light by the sample solution has been 

presented in figure 4.1. Here, I0 and I are the intensity of incident light and 
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transmitted light respectively, A is the absorbance, c is the concentration, b 

is the sample cell path length and ελ is the molar absorptivity at the 

wavelength λ. If I < I0, then A > 0 and it indicates that molecule has 

absorbed energy. If I = I0, then A = 0 which indicates that the molecule has 

not absorbed energy. Absorbance is usually measured in the range of 0-1 

[104]. 

 

In a UV-visible spectrometer the sample solution is often placed in a 

quartz cuvette. Two lamps are used; one is a hydrogen or deuterium lamp 

for the ultraviolet region and the other a tungsten lamp for the visible 

region. In this way, radiation across the whole wavelength range is 

scanned by one spectrometer [105]. 

 

In this work, a UV-visible spectroscopy (GBC UV-Vis 920 spectrophotome-

ter, Australia) is used for a complementary quantitative analysis of the 

active compound BHT released from coating in an aqueous SDS solution.  

 

4.2 Light microscopy 

 

In light microscopy, visible light is transmitted through or reflected from 

the sample through a single or multiple lenses in order to give a magnified 

view of the sample. The magnified image of an object is generated by the 

objective lens and this image is further magnified by a second lens system 

the ocular or eyepiece for viewing. The final magnification of the objective 

is the result of magnifying power of the objective times the magnifying 

power of the ocular. The resulting image can be directly detected by the 

eye and is often recorded by a digital charge-coupled device or CCD 

camera. The maximum resolution with light microscopy is 0.2 

micrometers due to the wavelength region of visible light [106]. 

 



21 

 

 

 

 
 

Figure 4.2 Optic micrographs of core-shell microcapsules containing octadecane oil as 

core and PMMA polymer as shell. 

 

In this work, an optical light microscope (Olympus BH-2) equipped with a 

digital camera (Olympus DP1) has been used to analyze the morphology 

and to determine the size distribution of microcapsules. A light microscopy 

image of oil-core and polymer shell microcapsules has been shown in 

figure 4.2. 

 

4.3 Scanning electron microscopy (SEM) 
 

In scanning electron microscopy (SEM), an electron beam is used to get 

information about the sample. Electrons do not pass through the sample as 

the acceleration voltage is considerably low (1-50 kV). A beam of electrons 

(primary) is focused onto a sample which gives rise to emission of 

different kinds of electrons from the sample. These emitted electrons are 

collected to form an image. Depending on the intensity of the electrons, 

these might be low-energy secondary electrons (SE) or high-energy 

backscattered electrons (BSE). SE that is emitted from the sample surface 

gives rise to a topographical image from a depth down to 5 nm below the 

surface. BSE which is emitted from 0.5 µm below the surface give more 

qualitative information about the phases in the material rather than 

topography. For a conventional type of SEM, resolutions of few nm to 1 nm 
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can typically be obtained and it depends strongly on the nature of the 

sample. In SEM analysis, solid and conducting samples are most 

appropriate to analyze. However, non-conducting sample can also be 

analyzed but in this case, samples are coated with a thin conducting layer 

of e.g. gold. From SEM very local information of the sample can be obtained 

[107-110]. 

 

In this work, topography of the coating and morphology of microcapsules 

have been analyzed by a Leo Ultra 55 FEG SEM (paper II and paper III). A 

SEM image of dry coating with and without microcapsule has been 

presented in figure 4.3. Before analysis, the samples are spinned on glass 

plates using a spin coater. The glass plate is then placed on a so-called SEM 

stub and coated by gold film of 105 Å thickness under reduced pressure 

using a JEOL JFC-1100 E Ion Sputter. 

 

 
 

 

Figure 4.3 Scanning electron micrographs (SEM) of (A) a dry coating. (B) a dry coating 

containing microcapsules. 

 

4.4 Nuclear magnetic resonance spectroscopy 

 

Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for 

determination of molecular structure and dynamics. NMR signals provide a 

quantitative measure of the analyte concentration [108]. The principle of 

NMR is based on the atom nuclei that possess magnetic properties. These 

properties can be utilized to yield chemical information [108]. The spectral 

position is called the chemical shift and it gives valuable information 
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regarding the structure of the molecule. Different atoms within a molecule 

have different electronic environments. Differences in the electronic 

environment or variations in electronic density will cause shielding or de-

shielding effects on the local magnetic field around the atom. As an 

example, a proton in close proximity to an electron-withdrawing group 

will cause the resonance signal to appear downfield in the spectrum due to 

the experienced de-shielding effect. The opposite is found when the proton 

is near to an electron-donating group [111-114]. The integral area of an 

NMR signal is directly proportional to the number of nuclei. It is thus 

possible to quantify the population of one compound relative to another 

[111]. 

 

In this work quantification of the sample with respect to different 

molecules was determined by integration of signals in the spectrum 

against an internal standard substance. A JEOL NMR spectrometer, with 1H 

resonance at 400 MHz, has been used for this purpose. 
 

4.5 Scintillation Counter 

 

Difference in atomic mass due to the presence of less or more neutrons in 

the atomic nucleus makes an element to exist as different isotopes. Usually 

isotopes are stable but some isotopes possess too few or too many 

neutrons in order to be stable. These are so-called radioactive isotopes and 

they rearrange their nuclei by emitting electromagnetic radiation or 

particles. Different types of radioactive emission are alpha particles (α), 

beta particles (β) and gamma radiation (γ). To quantify the radioactive 

compound in scintillation counter, a scintillation cocktail is used which is 

mixed with the sample. The scintillation cocktail absorbs the energy 

emitted by sample isotopes during radioactive decays and re-emit it as 

flashes of light. The resulting flashes of fluoresce are quantified by the 

scintillation counter. A scintillation cocktail contains two basic 

components, the solvent and the phosphor(s). The solvent absorbs energy 

and the phosphor within the solvent convert the absorbed energy into 

light. Quantification of radioactive decay is done by measuring the 

intensity of radiation emitted and it is often expressed as disintegrations 
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per minute or DPM. The SI unit of radiation is Becquerel or Bq which is 

equal to one disintegration per second. The curie or Ci, which is another 

measure, is equal to 3.7·1010 Bq [115]. 

 

In this work, a liquid scintillation counter is used to determine the 

solubility of radio-labelled BHT in water and to quantify the released 

amount of (radio-labelled) active. A scintillation cocktail Ultima GoldTM 

and a liquid scintillation counter (PerkinElmer Wallac Guardian 1414) has 

been used to measure the radioactivity. 

 

4.6 Quartz Crystal Microbalance with Dissipation Monitoring 
(QCM-D) 

 

The quartz crystal microbalance with dissipation monitoring (QCM-D) is 

an ultra-sensitive weighing device that simultaneously measures the 

frequency and amplitude of an oscillating quartz crystal covered with gold 

electrodes. It utilizes the mechanical resonance of piezoelectric single-

crystalline quartz. A thin quartz disc placed between two electrodes 

(typically gold electrodes) is subjected to an AC voltage across the 

electrodes. The quartz crystal starts to oscillate at a specific frequency 

which is directly proportional to the total mass of the crystal. Absorption 

of any species on the crystal surface results in an increase of total mass 

and change in oscillation frequency (∆f) [116, 117]. 

 

When the absorbed mass is less than the weight of the crystal, rigidly 

absorbed and evenly distributed over the active area of the crystal, the 

mass, ∆m (g cm-2) , can be calculated by the Sauerbrey equation [118, 119]. 

 

                                 DQCMff

r

f
mf

n

C

                                               [2] 

Here Cf is the mass sensitive constant (17.7 10-9 g cm-2 Hz-1), nr is the 

shear wave number, ρ and δ are the density and volume of the film, 

respectively. 

 

However, the adsorbed films do not obey the Sauerbrey relationship if 

the surface is non-rigid and flexible. The combined effect of hydration 
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water, water trapped between adsorbed species, and the non-rigid 

character of many polymers/biomolecules induces frictional (viscous) 

losses and thus a dampening of the crystal's oscillation [117]. 

 

The quartz crystal microbalance with dissipation monitoring (QCM-D) 

used in this study was a Q-Sense D300 (Q-Sense AB, Sweden) with a 

temperature controlled fluid cell. 
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Chapter 5. Results and discussion 

 

Papers I and II presented in this thesis are related to the designing of 

pesticide and biocide delivery systems which are applicable in the 

protective coating for plants, ship hulls, or building facades and many 

other situations. In paper I, pesticide is freely dispersed in a latex-based 

coating and the release behaviour and antifeedant activity are evaluated 

with respect to pesticide concentration and coating properties such as 

elasticity, wet ability and surface morphology. In paper II, encapsulated 

biocides and free biocides respectively are dispersed in both water- and 

organic solvent-based exterior wall paints. The release behaviours are 

compared in order to understand the controlled delivery system with 

respect to release retardation imposed by the encapsulation. In paper III, 

alkane oils of different melting points are employed as microcapsule core 

material from where the release behaviour of the pesticide to an aqueous 

SDS solution has been studied. This work helps to understand the effect of 

liquid and solid oil core on the diffusion of pesticide through the polymer 

shell. In paper IV, a study regarding the uptake and release to and from 

the microcapsule shell has been performed by QCM-D. The results help to 

understand the reasons behind the initial burst release out from the 

microcapsule. 

 

5.1 Surface and release properties of coatings containing 
antifeedant 

 

Understanding of surface properties like porosity and wettability are 

crucial since these properties have direct effect on the release behaviour of 

active from the coating [120]. The coating properties depend critically on 

the composition, i.e. the coating formulation. In the coatings studied in 
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paper I, water-based latex containing Eudragit copolymer (ethyl acrylate-

co-methyl methacrylate, Eudragit NE 30 D) was used as binder. Such 

polymer forms a highly flexible, elastic coating. A hydrophobically 

modified cellulose polymer (HM-EHEC) was used as thickener to enhance 

the viscosity in order to facilitate the application procedure. Moreover, a 

non-ionic surfactant, alkylglucoside and the pesticide BHT (2, 6-butylated 

hydroxytoluene) were added to the coating. The variation of surfactant 

and pesticide concentration in the coating was done to check their effects 

of coating surface properties and ultimately on the release. Microscopic 

roughness and wettability of the coatings were analyzed by atomic force 

microscopy (AFM) and contact angle measurement, respectively. 

 

5.1.1 Pesticide effect on the coating surface 

 

The surface morphological changes of latex coating in presence or 

absence of antifeedant have been analyzed at nanometer length scale by 

atomic force microscopy (AFM). From the AFM analysis it is observed that 

the addition of BHT alters the dried coating properties. With BHT present 

in the dry coating, the surface becomes rougher. The difference in coating 

structure at the nanometre length was apparent and is shown in figure 5.1 

and figure 5.2. This can be explained by the hydrophobic nature of BHT. 

The solubility of BHT in water is 0.2 to 1.0 ppm [16]. Being a rather 

hydrophilic latex there is a possibility of lower solubility of BHT in the 

coating and the surplus of BHT might form crystals upon drying. This is 

apparent as the coatings get dried and the roughness of the coating is 

enhanced [121]. In dynamic angle tests, almost a constant contact angle θ 

= 60 was observed when the BHT concentration was increased from 0% 

to 12 %. The hydrophobicity of BHT might enhance the wetting resistance 

of the coating which was confirmed by the higher contact angle in DAT 

analysis (figure 5.3B). 
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(A) 

 

(B) 

 
 

Figure 5.1 Atomic force microscopy image (AFM) of (A) Eudragit co-polymer coating 

surface. (B) Eudragit co-polymer + BHT (antifeedant) coating surface. 

 

 
(A) (B) 

 
 

Figure 5.2 Atomic force microscopy image (AFM) of (A) Eudragit co-polymer + 

surfactant coating surface. (B) Eudragit co-polymer +surfactant+ BHT (antifeedant) 

coating surface. 
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Figure 5.3 Contact angle of water on dry coating containing (A) Eudragit + BHT + 

surfactant at varying surfactant concentration and BHT concentration of (a) 4.5%, (b) 

6%, and (c) 9%. (B) Eudragit + BHT at varying BHT content. Data points are means ± 

1SD (n= 3 per data point). 

 

5.1.2  Surfactant effect on the coating surface 

 

The addition of alkylglucoside, revealed an effect on the surface 

properties of the coating. From AFM analysis, insignificant difference 

between latex coating and latex + surfactant coating was observed (figure 

5.1A and figure 5.2A) although by a simple ocular observation indicated 

smoother coating in presence of surfactant. A plausible explanation may be 

that the surfactant renders the surface smoother by enhancing the 

plasticizing effect of the coating. Another explanation is that the surfactant 

phase separates from the latex medium and migrates towards the coating-

air interface or redistributes in the coating matrix [122]. The former 

explanation was partly supported the observation of a decrease in contact 

angle (figure 5.3A). The water contact angle of the latex coating decreased 

with the increase of surfactant indicating that the wetting resistance of the 

coatings decreased at higher surfactant content. This signifies the immense 

effect of surfactant on the increased wettability of the coating. 
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On the other hand, presence of BHT makes the coating rough with 

significant protrusions of the surface even in the presence of surfactant 

(figure 5.1B and figure 5.2B). The roughness varies between ca. 7 to 70 nm. 

This could be due to a significant difference in latex content in the various 

coating formulations. To attain a fixed concentration of BHT (33%), the 

total latex content in EC+B+S and EC+B formulation was decreased by 

more than one third compared to pure EC+S and EC formulations where 

the latex content was 93.2% and 99.2%, respectively. With the decrease of 

latex and the addition of pesticide the smoothness of the coating decreases 

which appeared as an enhanced roughness of the coating surface. 

 

5.1.3 Surfactant effect on coating release properties 

 

In this work it has been critical to set up methods that quantify the 

release of pesticides from coatings. In paper І and paper ІІІ, an aqueous 

SDS solution was used as a release medium for BHT. The choice to include 

SDS was by pragmatic laboratory means in order to provide a decent time-

scale for the experiments. Naturally, this does not provide the future 

applied situation where the pesticide is released from a plant coating in 

outdoor environment. The hydrophobicity of BHT made it difficult to study 

the release to pure water medium. In paper I and paper III, 0.01 and 

0.125 M SDS respectively, were used as release media that (i) speed up the 

release of BHT from the coating and (ii) enable a water reservoir large 

enough to avoid influence of BHT water saturation. 

 

To study the release behaviour of BHT, two different coating 

formulations, with EC+BHT and EC+BHT+S (berol) respectively, were 

studied. For each system, the BHT concentration was varied. 
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Figure 5.4 Concentration of BHT in a 0.01 M SDS aqueous solution after the release 

from following coating compositions: (A) Eudragit + BHT + S at (a) 9% of BHT (b) 4.5% 

of BHT. (B) Eudragit + BHT where BHT concentration has been varied. Experiments 

carried out in triplicates (n= 3 per data point). 

 

In the Eudragit + BHT coating, the concentration of BHT ranged 4%-12 %. 

Surprisingly and within experimental accuracy, from all coating 

formulations, a similar amount of released BHT was found (figure 5.4 B). A 

higher release from coatings with higher concentration of BHT was 

expected. The result from this study indicates that the increase of BHT 

content does not lead to higher BHT release. During the coating drying 

process, BHT other than the molecularly dispersed fractions forms 

crystalline phases (figure 5.5). Such effect could explain the similar 

released amount of BHT despite various concentrations of BHT in the 

coating formulation. The dispersed fraction of BHT first enters into the 

release medium. The following crystalline fraction most probably releases 

as a very slow process. 
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Figure 5.5 Optical micrograph under cross polarizer where free BHT crystals were 

observed in the dry Eudragit coating. 

 

For the Eudragit + BHT + surfactant formulation, two different 

concentrations of BHT were loaded, 4.5 % and 9 % (dry coating weight). 

For each formulation, the concentration of surfactant was varied from 3% -

12 %. The released amount of BHT from these coatings were similar within 

the experimental accuracy (figure 5.4 A). In other words, we see a similar 

behaviour as shown in figure 5.4B and described above. On the other hand, 

with the increasing concentration of surfactant an increasing amount of 

released BHT was observed. The latter result signifies the effect of 

surfactant on the release behaviour of BHT from the coating. The 

surfactant may increase the solubility of BHT in the wet coating and 

provides a molecular dispersion in dry coating. It may also increase the 

porosity as well as hydrophilicity of the coating during the film forming 

process, at the final stage by segregation of the surfactant at the surface of 

the coating [122-125]. 

 

From the surface morphology and release studies, it can be assumed that 

the surfactant is one key additive in the coating formulation and governs 

the release of BHT from the coating. 
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5.1.4  Antifeedant activity bioassays 

 

The antifeedant activity of a test compound is generally demonstrated 

through laboratory bioassays and/or field tests. In the antifeedant activity 

tests, the insects are introduced to an antifeedant compound. The activity 

of the test compound is then quantified on the basis of value from 

antifeedant index (AFI). A unity value of antifeedant index, AFI=1.00, 

corresponds to a complete inhibition of feeding, half effect at a value of 

0.50 and no effect at zero AFI. Negative values indicate (< 0) feeding 

stimuli. 

 

In this work, the pine twigs were coated with coating formulation 

containing varying concentration of BHT and surfactant. The antifeedant 

activity of BHT at various concentrations in coating formulation is 

presented in figure 5.6. 

 

               

Figure 5.6 Feeding inhibition expressed as antifeedant index for coatings with 

laboratory no-choice test on pine twig sections (n = 10). The bark on conifer twig 

sections and seedlings was uncoated (Blank) or coated by formulations. Abbreviations: 

Eudragit copolymer (EC), BHT antifeedant (B), surfactant (S). Numbers next to the 

abbreviations below the x-axis denote the wt % of BHT in the dry coating. The y-bars 

denote a 95% confidence interval.  
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In figure 5.6, the antifeedant activity of BHT with increasing doses and 

with (EC+S, EC+6B+S, EC+9B+S, EC+12B+S) or without surfactant (EC, 

EC+4.5B, EC+6B, EC+9B, EC+12B) are compared. No antifeedant activity 

was obtained for the control samples (blank, EC, EC+S) since these 

coatings did not contain any antifeedants. The EC+BHT formulations 

showed moderate antifeedant activity (0-0.5). The highest antifeedant 

activity was obtained from the Eudragit copolymer + BHT+ surfactant 

formulations giving an AFI close to 1. The results from these two series of 

formulations indicate the strong effect of surfactant on BHT release. 

Surfactant seems to enhance antifeedant activity of BHT and impart 

specific properties of the coating, allowing it to inhibit feeding of pine 

twigs. 

 

5.2 Gravimetric analysis of free and encapsulated pesticide 
 

A simple gravimetric analysis was performed to monitor the evaporation 

of BHT in free and encapsulated form and thereby to follow the effect of 

encapsulation. The encapsulation can restrict the diffusion of BHT and this 

is presented in figure 5.7. A specific amount of free BHT and encapsulated 

BHT (18 % of the microcapsule) has been placed on glass slides. The 

declining weight of BHT over time from both systems has been measured 

by weight measurements. From figure 5.7, faster decrease in weight is 

observed from pure BHT compared to the encapsulated form. The 

considerable difference in weight loss indicated the restricted evaporation 

of BHT from microcapsules compared to air-exposed free BHT. 
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Figure 5.7 Gravimetric analysis of BHT evaporation placed on glass slides: (□) free 

BHT and (○) encapsulated BHT. 

5.3 Release behaviour of free and encapsulated biocide 
containing coatings 

 

In paper II, the encapsulation and its effect on the release behaviour of a 

biocide from a coating system have been presented. PMMA polymer-based 

microspheres have been formulated rather similar to the procedure 

described by Loxley and Vincent [126]. The biocide medetomidine, which 

is used in marine applications, was used here as a model compound and 

dispersed within the microsphere polymer matrix. It has already been 

discussed in section 5.2 that by encapsulating the active in a polymer 

network it is possible to restrict the diffusion of molecules into the outer 

release medium (e.g. coating, air or water). The main objective of paper II 

is to investigate the use of microspheres in coating systems for controlled 

release of biocides ultimately for prolonging biofouling protection. In this 

part of work, both water- and organic solvent-based exterior wall paints 

were used and the study compared the release behaviour of free and 

encapsulated biocide into water release medium. The release profiles are 

presented in figure 5.8. 
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Figure 5.8 The release of biocides, from () water-based paint with free biocide, () 

water-based paint with encapsulated biocide, () solvent-based paint with frbiocide, 

and () solvent-based paint with encapsulated biocide. 

 

From figure 5.8, it is seen that the biocide release is affected by both 

release medium [71] as well as by the choice of paint system. Using an 

aqueous release medium it is expected that the water-based coating has 

higher wettability than the solvent-based coating and indeed a faster 

release was observed from the water-based paint. Water penetration into 

the coating swells the paint polymer network and facilitates the biocide 

leakage. More importantly, the release of free biocide in both water- and 

solvent-based coatings was faster compared to coatings with encapsulated 

biocides. This result significantly implies the effect of restriction imposed 

by the microsphere PMMA matrix on the diffusion of the biocide. Figure 

5.9 confirms the consistency of the embedded microsphere and equivalent 

SEM images were detected for both types of coating systems. 
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Figure 5.9 Electron micrograph of a dry paint matrix (scratched by a needle) of water-

based paint with encapsulated biocide. 

 

From figure 5.8, it is noticeable that the initial release is faster which 

might be interpreted as the primary swelling of the coating which 

facilitates the dynamic activity of biocide within the coating. 

 

The results of this study provide a conclusion that a coating containing 

microencapsulated biocide prolonged the release compared to a coating 

with non-encapsulated biocide. 

 

5.4 Controlled release from liquid and solid core 
microcapsules and the effect on release rate 

 

In paper III, the pesticide BHT, is encapsulated in an oil-core PMMA-shell 

microcapsule. In the previous work presented in paper I, it is described 

that BHT acts as a pesticide, an antifeedant, against the pine weevil 

Hylobius abietis. In paper I, BHT was freely dispersed in the latex coating. 

Being dispersed in this simple way it may deplete too rapidly from the 

coating which mean that the protective nature of the coating will be too 

short [127]. A more long-lasting protection is here proposed to be 

achieved if the BHT is encapsulated before added to the latex. In paper III, 

BHT was encapsulated in solid and liquid oil-core PMMA-shell 
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microcapsules, respectively. The ultimate aim was to prolong the life-time 

of the coating by controlling/slowing down the release of actives and keep 

the antifeedant activity of the coating over an extended period of time. The 

core medium can be an effective parameter for controlling the release of 

organic substances from microcapsule systems [128]. In paper III, two 

alkane oils of different melting temperature, dodecane (-9C) and 

octadecane (28-30C), were used and BHT release studies were performed 

with dispersed microcapsules in a 0.125 M SDS aqueous solution at room 

temperature. The size distributions of microcapsules were investigated by 

optical light microscopy images and are presented in figure 5.10. 

Subsequent to the release studies, the experimental data were compared 

to analytical release models that describe diffusive release out from core-

shell systems. The release profiles are presented in figure 5.11. 
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5.4.1  Size distributions of microcapsules 

 

 

                            
 

Figure 5.10 Size distributions of microcapsules with (a) dodecane and (b) octadecane 

as core medium. Data collected from optic micrographs and are fitted according to a 

normal Gaussian function. 

 

The size distribution of microcapsules was obtained from 200 particles 

from light microscopy images. The experimental data (bars) and the 

results from fitting a normal Gaussian distribution model (lines) to the 

dodecane and octadecane microcapsule systems are presented in figure 

5.10 .The mean radius was 2.0±0.8 µm and 2.3±0.7 µm for dodecane and 

octadecane oil-core microcapsules, respectively. 
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5.4.2  Release studies from microcapsules 

 

 
 

Figure 5.11 Release of BHT from microcapsules with (a) dodecane and (b) octadecane 

as core medium. Solid line represents the release from octadecane capsules calculated 

by computer simulation of Brownian motion. Note the different axis scales. 

 

The release profiles (figure 5.11) obtained from dodecane and 

octadecane microcapsules are both characterized by an initial burst 

release followed by a slow release over an extended period of time. The 

very high initial release rate might be due to accumulation of BHT in 

PMMA shell during the formulation procedure [48]. A major fraction of 

BHT is thus released from the microcapsule very rapidly leaving a minor 

fraction to release slowly. This behaviour was more pronounced in the 

dodecane microcapsule system. The fraction released at short times most 

probably originated from the shell whereas the fraction that released at 

long times originates from the core of the microcapsule which rendered 

the active molecule to diffuse over a longer distance to reach to the 

aqueous phase. Also, the BHT in the core was thermodynamically prone to 

enter the shell only when the concentration of the molecule in the shell 

was low sufficiently. In both the dodecane and octadecane microcapsules, 

BHT was initially present in unsaturated concentration. This ultimately 

leads to the continuous declining of BHT concentration as well as 

decreased release rate over time [48]. 
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The initial release rate as well as the total released yield of BHT from the 

liquid dodecane microcapsule (figure 5.11a) is higher than from the solid 

octadecane (figure 5.11b) microcapsule. This result is considered to origin 

from a combination of several factors. The movement of the liquid 

dodecane phase allow BHT (by diffusion) to come into contact with the 

inner surface of the shell, an effect which speeds up the overall flux [48]. 

When BHT was dispersed in the octadecane core the release was slower as 

the diffusion coefficient is several orders of magnitude lower in a solid 

alkane compared to a corresponding liquid. The plasticizing effect of oil in 

the shell (PMMA) might also increases the permeability of the polymer 

material. Being a liquid with lower molecular weight, dodecane exerts 

more plasticizing effect on PMMA shell than octadecane. The presence of 

dodecane in PMMA thus increases the flexibility of the PMMA chain as well 

as the free volume of the polymer [129]. Thereby the permeability of the 

shell increases which means that the diffusion rate of BHT increases and 

the release is faster [130-132]. Also the solubility of dodecane in water is 

higher compared to octadecane oil which in turn adds to faster diffusion of 

BHT from the microcapsule [133, 134] 

 

5.4.3  Computer Simulations 

 

The release profile of BHT from core-shell microcapsules was calculated 

from Brownian dynamics simulations and the result that best compared to 

the experimental data is presented in figure 5.11b. Here, a BHT molecule is 

allowed to "jump" a certain distance chosen from Gaussian probability 

distribution function. The jump length during one time step was set to 

0.1% of the domain length L (where L = 1.6·10-6 m, i.e. L is set to the radius 

of the core). The polymer shell thickness was set to 0.4·10-6 m. A particle 

(BHT molecule) is considered to diffuse in the predefined domain length 

(within the core and the shell) with two different diffusion constants – one 

in the core and the other in the shell. The diffusion coefficient of BHT in the 

octadecane core was set to Dcore = 1·10-20 m2s-1 which is a typical value for 

diffusion in a solid material. The diffusion coefficient of BHT in the 

polymer shell and the initial partition coefficient between core and shell 

were fitted to experimental data and the results were Dshell = 1·10-17 m2s-1 

and p = 0.5, respectively. This clearly indicated the presence of a significant 
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initial fraction of BHT both in the core and in the shell. The result obtained 

for the dodecane microcapsule (i.e. a liquid core) was not in good 

agreement with experimental result, an effect that we attribute to the 

burst release of BHT. 

 

The result of this study indicated that the material in the core of the 

microcapsule has a strong influence on the diffusion of active substances 

from core-shell microcapsules. In an octadecane microcapsule the core is 

solid at room temperature resulting in slow release compared to the case 

when the core consists of liquid dodecane. By using solid or liquid oils as 

core material it is possible to control the release rates from microcapsule 

systems. 

 

5.5 Kinetics of uptake and release from a model 
microcapsule shell 

 

In paper III, oils of different melting temperatures were used in the core 

of the microcapsules. The active substance was BHT and PMMA was the 

shell material of the microcapsules. The release behaviour of BHT from 

microcapsules of different physical states was then studied. One 

interesting finding was the initial "burst" release followed by a much 

slower release. The results formed the basis of the investigation performed 

in paper IV. The aim was to further enhance our basic understanding of 

the release mechanisms of BHT from microcapsule systems. 

 

In this investigation, a 25 nm thick PMMA film was prepared on a gold 

surface by spin coating from a dichloromethane solution. The film was 

then used as a model of the microcapsule shell. The idea was that the film 

behaves in a similar manner, with respect to BHT uptake and release, as 

the PMMA shell of the microcapsule. The properties under investigation 

were the presence of BHT and alkane oil in PMMA by monitoring the time-

dependent uptake and release of PMMA by the QCM-D technique. Upon 

uptake of BHT in the PMMA film a change in QCM-D resonance frequency 

was noted. The basics of the experiment are shown in figure 5.13. 
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Figure 5.13 A schematic diagram of a model PMMA shell showing the frequency 

change with BHT uptake. 

 

The uptake or mass absorption of dodecane and BHT in the film as well as 

release of the above-mentioned compounds into milli-Q water and 

aqueous SDS solution were monitored and are presented in figure 5.14 and 

figure 5.15, respectively. 

 

5.5.1 Kinetics of dodecane and BHT uptake on PMMA film 

 

The uptake of BHT into the PMMA film was monitored at 22° C. A thin 

film (25 nm thickness) was prepared on a QCM-D sensor surface and 300 

µl dodecane was applied on top of the film. The frequency and dissipation 

changes were monitored as a function of time until a stable baseline was 

obtained. After stabilization, 300 µl BHT/dodecane solution (5 mg/ml) 

was applied on the dodecane-soaked PMMA film in order to monitor the 

uptake of BHT. Following the uptake, dodecane was again applied on the 

film to flush the surface of excess BHT. The release was monitored at the 

same time. The result is presented in figure 5.14. 

 



45 

 

 

 

 

 
Figure 5.14 Kinetics of dodecane and BHT uptake in PMMA film: (□) dodecane, (●) 

dodecane + BHT. 

 

As noted in figure 5.14, a negative frequency shift was observed following 

dodecane/BHT solution addition, indicating that absorption into the 

PMMA film had taken place. The quantification of frequency data into mass 

was done by the Sauerbrey equation. This equation relates the change in 

frequency to change in mass of the film according to equation 3 [118, 119], 

 

                              polymerpolymerpolymer

r

f
mf

n

C
                                [3] 

 

Here, ρpolymer and δpolymer are the density and volume of the film, 

respectively. 

 

It is obvious that BHT was the reason for change in frequency and not the 

dodecane. The change in frequency for dodecane was only -8Hz after 10 

minutes whereas a rapid drop to -40 Hz was observed for BHT. Flushing 

the film with pure dodecane resulted in a slow increase in frequency 

indicating that the desorption was much slower than the absorption 

process of BHT [135]. 
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5.5.2 Release studies of dodecane and BHT from PMMA film 

 

To measure the release of BHT and dodecane from the PMMA film, 0.125 

M aqueous sodium dodecyl sulfate (SDS) solution was used as release 

medium. As a reference, the same experiment was carried out with milli-Q 

water as release medium. The release profiles of BHT and dodecane from 

the film are presented in figure 5.15. 

 

  

 
Figure 5.15 Release studies of (A) BHT from BHT+ dodecane PMMA film, (B) dodecane 

from dodecane PMMA film in (○) aqueous SDS solution and in (■) milli-Q water. 

 

Upon rinsing with SDS solution a positive frequency shift was observed. 

The positive shift was an indication of mass loss from the film. The amount 

desorbed was again quantified by Sauerbrey equation and presented as 

released amount. The loss of BHT was relatively high for the 

BHT/dodecane-treated film. For dodecane, from dodecane-treated film, it 

was already observed in previous section that dodecane absorbs to a small 

amount compared to BHT. The small absolute amount of absorbed and 

released dodecane is the most likely reason for the signal being dominated 

by noise and noted change is likely to be originating from drift in the 

measurements. With milli-Q water as release medium, a negligible amount 

of BHT was desorbed most likely due to the very low solubility of BHT 

(0.2-1.0 ppm) in milli-Q water [16]. 
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The result of this study showed that the extent of BHT uptake (7.7% of 

the total mass of PMMA) in the PMMA film was much higher than that of 

dodecane. This indicated that the PMMA shell in microcapsules is likely to 

contain significant concentrations of BHT. We therefore suggest that this 

fraction is the reason for the initial “burst" release. The release of BHT was 

strongly facilitated by SDS solution. Taken together, these results strongly 

indicate that the PMMA film contains relatively large amounts of BHT but 

rather insignificant amounts of dodecane. 
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Chapter 6. Conclusion 

 
The goal of this work was to better understand how to control the release 

of pesticides from microparticles formulated into protective coatings. In 

the first part of the thesis, release studies of molecularly dispersed and 

encapsulated pesticides/biocides from coatings have been performed. In 

the second part, the effect of different oils present in the microparticles 

was studied. 

 

The release of molecularly dispersed pesticide in a latex coating into an 

aqueous release medium was studied with respect to coating properties 

such as elasticity, wettability and surface morphology (paper I). It was 

found that the release of butylated hydroxytoluene (BHT) is higher when 

an alkyl glucoside surfactant is present in the coating. The surfactant likely 

increases the dispersibility of BHT as well as the porosity and wettability 

of the coating. Bio-assay tests were also performed and showed that the 

antifeedant activity is higher in the presence of surfactant. 

 

In order to control the release and thereby to prolong the protection of 

coatings, biocides were encapsulated and formulated into coating systems 

and characterized in terms of release. The results are presented in paper 

II. The release of free and encapsulated biocide from water-based and 

solvent-based exterior wall paint was studied. A slower release was found 

in systems where the biocide was encapsulated. It was observed that 

encapsulation of biocide significantly restricts the release and the physical 

properties, e.g. swelling, of the coating may affect the release behaviour. 

 

To further study the release behaviour from microcapsule systems, two 

oils with different melting temperatures (solid and liquid at room 

temperature, respectively) were used as microcapsule core materials. The 
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release behaviour of the BHT pesticide from these capsules is presented in 

paper III. For both the oils an initial burst release was followed by a 

slower release pattern. An accumulation of BHT in the shell during 

microcapsule formulation was likely the reason for the burst release. Once 

the BHT concentration in shell became small enough a much slower 

release mechanism, from the microcapsule core, took over. The release 

rate from dodecane (liquid at 25°C) microcapsules was higher than that of 

octadecane (solid at 25°C) microcapsules. The release data were modeled 

by computer simulations assuming two diffusion coefficients, one for the 

core and the other for the shell, respectively. In addition, the initial 

core/shell partition of BHT was varied in the simulations. The result 

obtained for the octadecane microcapsule was in good agreement with the 

experimental results. The diffusion constant of BHT in the core was set to 

10-20 m2s-1. The diffusion constant of BHT in the polymer shell and the 

core-shell partition coefficient were calculated to be 10-17 m2s-1 and 0.5, 

respectively. 

 

To increase our understanding concerning the shell impact on the burst 

release, noted from core-shell microcapsule systems, the distribution of oil 

and BHT in a PMMA film was studied by Quartz Crystal Microbalance with 

Dissipation monitoring (QCM-D) in paper IV. The total mass uptake and 

release of dodecane and BHT into and from the film was quantified by the 

crystal frequency shift. The absorption of BHT was 7.7 wt% with respect to 

PMMA, a value that was much higher than for dodecane absorption. The 

results supports the results of paper III where the initial burst release was 

described as an accumulation of BHT within the shell during microcapsule 

formulation. 

 

From the studies in this thesis it can be concluded that the formulation of 

a coating plays a major role on the release behaviour of pesticides and 

biocides. The release of active compounds can be restricted by 

encapsulation within a reservoir system. In future studies, it would be 

highly significant to investigate the compatibility of microparticles in 

various coating formulations and to tune the chemistry of core-shell 

materials to be able to control release behaviour. It would also be highly 

interesting to investigate these systems in real-life situations. 
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