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Sammanfattning

Vi studerar numerisk 16sning av optimala styrningsproblem. Problemen
bestar av ett system av differentialekvationer, tillstandsekvationerna, som
styrs av en kontrollvariabel. Malet ar att bestamma de tillstand och kontroll-
er som minimerar en given kostnadsfunktional.

Den numeriska metoden i den hér avhandlingen baseras pa en indirekt
metod, vilket innebar att nédvandiga villkor fér optimum hérleds och sedan
16ses numeriskt, i vart fall med en finita elementmetod. Optimalitetsvill-
koren hérleds med Lagranges metod fran variationskalkylen. Detta resul-
terar i ett randvérdesproblem for ett system av differential/algebraiska ekva-
tioner. Ekvationerna diskretiseras med en finita elementmetod och det ger
mojligheten att anvénda funktionalanalys for att harleda feluppskattningar.
I det har arbetet hérleds berdkningsbara a posteriori feluppskattningar.
Metoden med dualviktade residualer anvénds for att héarleda feluppskatt-
ningarna. Denna metod passar mycket bra for optimala styrningsproblem
eftersom den &r formulerad inom samma ramverk som Lagranges metod.

En indirekt metod i kombination med en a posteriori feluppskattning
gor det mojligt att implementera finita elementmetoder dar forfiningen av
berdkningsnitet ar automatiserad. Vi har implementerat adaptiva finita
elementmetoder for kvadrat/linjéra optimala styrningsproblem, for helt icke-
linjara problem och for problem med olikhetsbivillkor pa kontroller och till-
stand.
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Abstract

In this thesis we study the numerical solution of optimal control prob-
lems. The problems considered consist of a system of differential equations,
the state equations, which are governed by a control variable. The goal is to
determine the states and controls which minimize a given cost functional.

The numerical method in this work is based on an indirect approach,
which means that necessary conditions for optimality are first derived and
then solved numerically, in our case by a finite element method. The op-
timality conditions are derived using Lagrange’s method in the calculus of
variations resulting in a boundary value problem for a system of differen-
tial/algebraic equations. These equations are discretized by a finite element
method. The advantage of the finite element method is the possibility to
use functional analysis to derive error estimates and in this work this is used
to prove computable a posteriori error estimates. The error estimates are
derived in the framework of dual weighted residuals which is well suited for
optimal control problems since it is formulated within the Lagrange frame-
work.

Using an indirect method combined with an a posteriori error estimate
makes it possible to implement adaptive finite element methods where the
refinement of the computational mesh is automated. We have implemented
such adaptive finite element methods for quadratic/linear optimal control
problems, fully nonlinear problems, and for problems with inequality con-
straints on controls and states.

Keywords: finite element method, discontinuous Galerkin method, op-
timal control, a posteriori error estimate, dual weighted residual, adaptive,
multilevel algorithm, Newton method, control constraint, variational in-
equality, vehicle dynamics.
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1 Introduction

Consider a car trying to avoid an object that suddenly appears in the road.
The driver has some ability to maneuver the car by steering and braking. Is
there a way to maneuver the car an optimally, both avoiding the obstacle and
minimizing the final velocity? This is an optimal control problem consisting
of a system of differential equations, describing the dynamics of the car, and
an objective function that should be minimized.

Optimal control problems appear in various fields of engineering, for ex-
ample, in vehicle dynamics [20, 24|, biomechanics [13], robotics [25], and
economics [35]. This work originated from the need for more automated
ways to solve optimal control problems in vehicle dynamics.

There are two ways to obtain the numerical solution of optimal control
problems: the direct and the indirect approaches. In the direct approach
one discretizes the objective functional and the dynamical system and then
looks for an optimal solution of the finite dimensional discrete problem. In
the indirect approach one determines the necessary conditions for optimality,
and solves them numerically. In this work we focus on the indirect approach
and use variational calculus to derive the optimality conditions, resulting
in a system of differential algebraic equations to be solved. We choose to
discretize this system by an adaptive finite element method. The error in
the discrete solution is computed using a posteriori error estimates, derived
by the standard duality-based a posteriori error analysis in Paper 1, and by
the methodology of dual weighted residuals in the following papers.

The next section presents a mathematical formulation of the optimal
control problem considered in this thesis and a brief summary of the his-
tory of such problems. Section 3 includes a description of the most common
numerical methods used to solve the optimal control problems and an intro-
duction to the finite element method. The following four sections contain
summaries of the appended papers. Section 5 contains a summary of Pa-
per 1, including a description of the solution of an optimal control problem
using variational calculus and an adaptive finite element method. The error
estimate which is used for the adaptive method is also presented. Section 6
describes the approach of dual weighted residuals to quadratic/linear optimal
control problems taken in Paper 2. In Section 7 the results from Paper 3 are
summarized. The dual weighted residuals approach is applied to nonlinear
problems. An error estimate is presented and used in the implementation of
a multilevel adaptive solver. Section 8 contains an overview of Paper 4, in
which inequality constraints on controls and states are introduced. The last
section includes conclusions and directions of future research.



2 The optimal control problem

In this thesis optimal control problems of the following form are considered:
Find the states (t) € R? and the controls u(t) € R™ that

T
minimize 7 (z,u) = 1(2(0), 2(T)) + /0 L(z,u) dt,

2.1
such that = = f(u,z), for0<t<T, (2.1)

Io$(0) = X, ITQT(T) = XT.

The history of optimal control goes back to the end of the 17th century when
Bernoulli formulated the brachystochrone problem. For a more thorough
account of the history and development of optimal control and variational
calculus, see [39]. Introductions to the field are given in [2, 10, 19, 23, 30, 34].

The numerical solution of optimal control problems can be approached
in two different ways, the direct and the indirect approaches [7]. In the
direct approach the dynamical system is discretized and approximated by
a finite number of parameters. After the discretization, the problem is a
finite-dimensional optimization problem, which can be solved using nonlinear
programming methods, see [7, 11, 22]. The advantage of this approach is the
existence of effective software that can be used, for example, SNOPT |21].
The direct method has been implemented in for example the software SOCS
[8] and PROPT |[33].

In the indirect approach necessary conditions for optimality are first de-
termined by using variational techniques, such as variational calculus [10] or
Pontryagin’s maximum principle [31], and then the resulting equations are
discretized and solved. The necessary conditions for optimality consist of
the original differential equations, an additional set of differential equations
called the adjoint equations, and a set of algebraic equations. The number
of adjoint equations equals the number of state equations and a drawback
with the approach is that the size of the problem is doubled. The indirect
approach has been used in the solver BNDSCO [29].

The purpose of this work is to investigate the potential of using adaptive
finite element methods to automate the numerical solution of optimal control
problems. Therefore, we take an indirect approach to the optimal control
problem and derive the necessary conditions for optimality using variational
calculus in a functional analytic framework. Choosing the indirect approach
in combination with the finite element method, which is described below,
gives us the possibility to derive a computable error estimate for the nu-
merical solution. The error estimate can then be used to adaptively refine



the computational mesh. However, it would also be possible to combine a
finite element discretization with a direct approach and existing nonlinear
programming software, but it would be more difficult to combine such an
approach with adaptivity.

3 Numerical solution methods

The most common numerical methods for solving the boundary value prob-
lems that arise in optimal control problems are the multiple shooting method
and the collocation method [6]. Even though the previous methods are the
most common, the finite element method has also been used in [13, 17, 18].

3.1 The shooting and collocation methods

The shooting method is a numerical method which can be used for solving
boundary value problems of the form

= f(t,x), 0<t<T,
9(x(0),2(T)) =0,

where z,g € R? The name of the method comes from the procedure of
aiming a cannon so that the cannon-ball hits the target 7, 32]. One considers
the function h(c) = g(c, (T, ¢)), where (T, ¢) is the value of x(T) obtained
by shooting with 2(0) = ¢, that is, propagating the solution numerically from
0 to T. The equation h(c) = 0 can then be solved using any appropriate
method.

The shooting method has been further developed into multiple shoot-
ing. In this method the computational interval is refined into smaller sub-
intervals, where the shooting method is applied in each sub-interval. This
method is used for optimal control problems, see, for example, [29].

The use of sub-intervals is present also in the collocation method [1|. One
determines a continuous piecewise polynomial which fulfils the differential
equation in the collocation points ¢, 4+ ¢;h, where t, is the left endpoint of
the sub-interval, h is the interval length and 0 < ¢; < 1 are suitable points,
for instance, the roots of the Legendre polynomials [12].

In Paper 1 we use the boundary value problem solver bvp4c [36, 37] in
Matlab [28] to bench-mark our results. This solver is based on the collocation
idea. In Paper 3 and Paper 4, the results are validated with PROPT [33].
These solvers are based on the direct approach and collocation.



3.2 The finite element method

The finite element method was developed in the 1950’s and 1960’s, mainly by
engineers, to solve equations in structural mechanics. It was developed as a
geometrically more flexible alternative to the finite difference method (see, for
example, [38]). The finite element method is a special case of the Rayleigh-
Ritz-Galerkin-methods, which are used to approximate partial differential
equations and it has a solid foundation in functional analysis [9]. This is one
of its strengths, as is the possibility to use it on complicated domains. The
mathematical foundation makes it easier to derive analytic error estimates
which, for example, can be used to refine the computational mesh in an
adaptive way.

Traditionally the finite element method has been used for partial differen-
tial equations. However, some work has been done on adaptive finite element
methods for ordinary differential equations, see, for example, [15, 16, 26, 27].

We illustrate how the finite element method works in the context of a
simple boundary value problem:

—&=f(t), for0<t<T,

z(0) =a, z(T)=0. 8.1)

We start by reformulating the problem in weak form by introducing the space
W = H'(]0,T)) of functions with square integrable first derivative and we let
V = H{([0,T]) be the subspace of functions v € W with v(0) = v(T) = 0.
We multiply equation (3.1) by a test function v € V, integrate over the
interval [0, 7], and then integrate by parts. The weak form is: Find z € W
such that

z(0) =a, z(T)=0,
T T
/ T dt = / fodt, for all v e V. (3.2)
0 0

Let W) be a subspace of W consisting of, for instance, piecewise linear
functions on [0, 7] with sub-intervals of size h and Vj, = W, NV. We want to
solve (3.2) for all v € V}, with the Ansatz xp(t) = apo(t) + Zf:;l Tnpn(t) +
bon(t) € Wh, where p,,n =1,...,N — 1 is a basis for V}, and ¢ and ¢x
are additional basis functions such that ¢o(0) = ¢n(T") = 1. In this example
the trial space W and test space V), that is, the spaces containing = and v,
respectively, are discretized in the same way, but this need not be the case.
The fact that the finite element methods are based on the weak form (3.2)
rather than (3.1) makes it easier to use tools from functional analysis to
derive error estimates.



There are two types of error estimates, a prior: and a posteriori error
estimates. The first type gives a bound of the error e = x — xy,, in terms of x,
h, and the data a, b and f. Since the estimate depends on the unknown exact
solution it cannot be explicitly computed but it can be used to investigate the
convergence of the numerical method. In the second type of error estimate,
the a posteriori error estimate, the error bound is expressed in terms of xp,
h, and the data. An a posterior: error estimate can be explicitly computed,
since it depends only on known or computable quantities. The a posterior:
error estimates are used to construct adaptive algorithms which solve the
equation repeatedly on refined meshes, see Algorithm 1..

Algorithm 1: An adaptive finite element method

Solve the equation on an initial mesh;
Compute the error estimate F;
while |E| > TOL do
Refine the mesh according to the error estimate, that is, refine
sub-intervals that give large contributions to the error;
Solve the equation on the refined mesh;
Compute the error estimate on the refined mesh;
end

More about error estimates and adaptive finite element methods can be
found in |3, 9, 14, 15].

In this work we consider a posteriori error estimates, since the goal is to
construct adaptive algorithms. We start by using a standard duality-based a
posteriori error analysis, see [14, 15|, to derive an a posteriori error estimate
minimizing the error in an arbitrary linear functional. Next, we use the
dual weighted residuals methodology for a posteriori error analysis. It is
formulated within the Lagrange framework and is therefore well suited for
optimal control problems and yields a representation formula for the error
in the goal functional J [3, 5].

4 Mathematical framework

In order to summarize the work in the appended papers we introduce the no-
tation which is used. Let C¥ denote k times continuously differentiable func-
tions and H! denote functions with square integrable derivative. Further,



Cllwv denotes piecewise continuously differentiable functions [0,7] — R%;
more precisely, functions that are C! except at a finite number of points in
0, 7] and with left and right limits w(t™) = limgy w(s), w(tt) = limgy w(s)
for all points ¢ € [0,7], and we denote jumps as [w]; = w(t™) — w(t™).

We introduce the function spaces

W =R x Chw ([0, T],RY) x RY,

W = R(I — Iy) x Chw ([0, T],R?Y) x R(I — Ir)
= {w eW : Tow(07) =0, Ipw(T) = o},

U= ao,T],R™),

V = H([0,T],RY),

W=i+W= {weW:w—ieW}.

Here R(I — Iy) and R(I — Ir) denote the ranges of the matrices. The two
factors R? in W are used to accomodate the boundary values w(0~) and
w(TT). The space W will contain the state variable x, and V and U will
contain the costate z, and the control u, respectively. The affine space W
contains functions satisfying the prescribed boundary conditions if £ € W is
chosen so that 2(07) = x¢ and Z(T") = x7.

In the discretizations we use a mesh 0 =ty < t; <ty < ... <ty =T,
with steps h, = t, — t,_1 and intervals J, = (t,_1,t,). With P* denot-
ing polynomials of degree k, we introduce the function spaces used in the
discretization:

Wi, = RY x {wEW:an e P*1(J,,RY), n:l,...,N} % RY,
Wi = R(I — Ip) x {w eEW :wly, € PY(Jn,RY), n= 1,...,N}
x R(I — Ir)
- {w €W : Tow(07) = 0, Irw(T+) = o},
Uy, = {u e ([0, T),R™) : uly, € PE(Jp,R™), n=1,... ,N},
Vi = {v e ([0, T],RY) : v, € P*(J,,RY), n = 1,...,N},
Wh = & + W, for some & € Wj,.

Now we have W, C W, W), C W, W, € W, U, C U, and V, C V.
In this thesis we have implemented the algorithms for £ = 1, that is, the
states in W, are discretized by piecewise constant discontinuous functions



and the controls in U}, and costates in V), are discretized by piecewise linear
continuous functions. However, the theory is valid for higher k.
5 A first approach

In Paper 1 the optimality conditions for the optimal control problem (2.1)
are derived using the classical variational calculus by introducing the costates
z(t) € R? and the Hamiltonian

H(z,u,z) = L(z,u) + 2" f(z,u).

Then the optimal (z*,u*, 2*) fulfil the Hamilton-Jacobi equations

i= 2= pa),
2__3_H__3_L_<3_f>Tz

ox Ox oz ) 7
,_OH 0L ,0f (5.1)

(I —1p)z(0) = z0, (I —1I7)2z(T) = 2r.

We note that since zg and xp are in the ranges of Iy and Ip, respectively,
the boundary conditions are imposed on those components of the costates z
that are complementary to the components of x with boundary conditions.

In order to simplify the problem we make the assumption that the al-
gebraic equation %—ZI = 0 in (5.1) has an explicit solution w which can be
substituted into the other equations. This assumption reduces the problem
from a system of Differential Algebraic Equations (DAE) to a boundary value
problem for Ordinary Differential Equations (ODE). We make an additional
simplification by joining the states x(¢) and the costates z(t) into one new

variable y(t) € R? and end up with a system of the form

y:f2(y)> 0<t<T,

Ioy(0) = yo, Iry(T) = yr, (5-2)

where Iy and I are two new diagonal matrices with zeroes or ones on the
diagonals and rank(Ip) + rank(I/7) = 2d. We thus have to solve a boundary
value problem of twice the dimension of the original problem. The states
and costates are joined into one variable to simplify the implementation.



The problem in (5.2) is written in weak form by multiplying the equations
by a test function and integrating over the interval [0, 7], resulting in: Seek
y € W (with d replaced by 2d) such that

Ioy(0) = zo, Iry(T) = yr,

T 5.3
F(y,v) ::/0 V(g — fa(y))dt =0 Vv e V. (5:3)

The finite element problem can be stated: Find a function Y € W, which
fulfils

LYy =vo, IrYN =yr,

N ) N
F(Y,v) = Z/J Y = foa(V)dt+ > ([Y], 0(ta) =0 Vo € V.
n=1vJn n=0
(5.4)

Here the definition of the form F from (5.3) has been extended to include
the jump terms which appear since we write the derivative of the discontin-
uous trial function Y as a weak derivative. Since the trial space consists of
piecewise constant functions, we have Y = 0 inside the intervals J,,. Hence,
(5.4) results in a system of (N +2)2d equations, more precisely, 2d boundary
conditions and (N +1)2d equations. With boundary conditions at both ends,
the equations are coupled and thus we cannot use time stepping. Therefore,
the equations in the system have to be solved simultaneously. In order to
evaluate how good the computed solution is and to construct an adaptive
finite element method we derive an a posteriori error estimate. We intro-
duce the notation [|v||s, = supse;, ||v(t)|, where || - || denotes the norm in
R? or R™. Let e = y — Y be the error in the finite element solution of the
boundary value problem in (5.2). The error expressed in a linear functional
G is bounded by

N
Gle)] <Y RuIn, 0<t<T,

n=1



where

. h
Ri= [ = O + 10 |+ 77 L
. hn, hy,
R = [V = O, + = N [+ = (1D )
n=2,...,N—1,
. h
RNZhNHY—f(Y)“JNﬂLﬁ]:WH Yinoa |+ ([ Ix ()5

7, = C’hn/J ()] dt.

C' is a constant and ¢ is the solution to the linearised dual problem to (5.2)
with data functional G.

In this error estimate, R, mainly describes how well the approximate
solution satisfies the differential equation and Z,, describes the sensitivity of
G(y) to perturbations. The proof is based on a standard duality argument
[14]. The residual quantities R,, are computable, but the weights Z,, must be
bounded a priori or computed approximately by the solution of the linearized
adjoint problem which is another boundary value problem in 2d variables,
which doubles the number of unknowns again. This a posteriori error has
been used in the implementation of an adaptive finite element method, which
in numerical tests inserts nodes in a way that reduces the number of nodes
needed to reach a certain tolerance. A similar approach was taken in [17, 18].

6 The dual weighted residuals approach

Another approach based on the Lagrange framework in the calculus of varia-
tions is taken in Paper 2. The error in the objective functional 7 is analyzed
using the methodology of dual weighted residuals [3, 5]. The optimal con-
trol problem is written in an abstract form using the smooth functionals
F(x,u;p) and J(z,u),

F:WxUxV =R,
T WxU—R,

defined by
N N
Flouig) =Y [ @ faa)dt+ S (ol oltn),
n=1"1tn-1 n=0

9



and

T
J(z,u) = 1(x(0),z(T)) —|—/O L(x(t),u(t)) dt.

We use the convention that functionals depend linearly on the arguments
after the semicolon.

The optimal control problem in (2.1) now takes the form: Determine
2 €W and u € U that

minimize J(z,u), 6.1)
subject to  F(z,u;¢) =0 Ve e V. .
Introducing the Lagrange functional
L(z,u;2) =T (x,u) + F(x,u;2), (z,u,z)€ W xU XV,
where z is a Lagrange multiplier, yields the optimality conditions
L(z,u;2,0) =L (z,u;2)p =0, YoeWxUxXV, (6.2)
that is,
Tz, u; ) + Fo(z,u; 2, 05) =0 Yo, € W, (6.3a)
Tu(@, s pu) + Fo(w,us 2,00) =0 Vo, €U, (6.3b)
F(r,u;0,) =0 Vo, € V. (6.3c)

The equations above are discretized and solved by a finite element method
using the function spaces in Section 4.

Let (z,u,z2) € W x U x V be the exact solution and (zh,up,2n) € W X
Uy, x Vi, be the discrete solution of (6.3a)—(6.3c), respectively. Then the error
in the goal functional is

with the residuals p;, p., and p, defined as

/ =~ / -
Pz = jx(‘rhvuh; T — mh) + fz(xh,Uh; Zh, T — l’h),
! ~ / -
Pu = ju(-'lfh,Uh;u - uh) + Fu(l'h,Uh; Zh, U — uh),
pz = F(Tp,un; z — Zp).
Here (Zp,up, 2n) € Wh X U, X Vy, is arbitrary and R is a remainder term.

This error estimate is used in the implementation of an adaptive finite el-
ement method. We implement the method for quadratic J and linear F,

10



a quadratic/linear optimal control problem and then R is zero. The ad-
vantage of this error estimate compared to the one used in Paper 1 is
that the dual solution in the form of the costates z is already computed
as a part of the original indirect approach of the optimal control problem.
Therefore, no extra dual solution is needed to compute the error estimate.
In the proof of the error estimate we use Galerkin orthogonality, that is,
F(xn,up;on) = 0 Vo € V. Therefore only optimal control problems with
linear ODE as constraints have been considered in the implementation of the
solver.

7 Nonlinear problems

The approach of Paper 2 is extended to fully nonlinear problems in Paper 3.
A Newton method is applied to the optimality conditions in (6.2). Given an
approximate solution (z,u,z), Newton’s method yields a new approximate
solution (Z,u, 2) by

(Z,u,2) = (z,u, z) + &0z, Oy, J2),

where o € R is a parameter and the increment § = (85, 8,,0,) € W xU x V
is the solution of

L'z 2,0,0) = =L (z,u;2,0) YoeW xU x V. (7.1)

The equations in (7.1) are discretized using the finite element spaces in
Section 4. The parameter « is determined through a line search ([4]) choosing
the a that minimizes the right hand side of the discrete version of (7.1).

The approximate solution of the nonlinear equations in (7.1) results in
a lack of Galerkin orthogonality, that is, F (&, Un;on) # 0V @p € Vi, used
in the error estimate in Paper 2. This results in a slightly different error
representation formula:

j(xau) - j(@hnﬁh) - %px + %pu + %pl‘ + ‘F(i‘haahaéh) + R7
with

Pr = Tp(&n, Uy — T) + Fop(Zh, Uns 2y — 2),
Pu = jzi('i:h>ﬂh7u - ﬂh) + f;(£h7ﬂh7 2}“’& - "LALh),
pz = F(Tn,n; 2z — 2p),

11



and the remainder
1
R= %/ (J”’(xh + 8y, up + 86456, 6, 6)
0
b T (g + S6aitn + 5643 5y + 562, 6, é)) s(s— 1) ds.

This formula is used to derive a computable a posteriori error estimate,
where the unknowns (z,u,z) are replaced by (Zfne, Ufine, 2ine), Which are
solutions on a finer mesh, which combined with the Newton method is the
basis for a multilevel adaptive finite element solver. The solver starts with
a coarse mesh, performs a certain number of Newton iterations, and refines
the mesh based on the computed error. This procedure is iterated until the
solution meets a certain tolerance.

For the examples solved, only a few Newton iterations are needed on
each level. New nodes are inserted where the error is expected to be large.
Compared to uniform refinement the adaptive refinement keeps down the
size of the computational mesh. The drawback of the combination of the
indirect method and a Newton method for solving optimal control problems
is the need for a good initial guess, which is not intuitive, especially for the
costates.

8 Inequality constraints

In vehicle dynamics it is important to allow inequality constraints on controls
in order to formulate realistic models. Therefore, tests were done using
penalty and barrier functions [4] in order to handle such constraints on the
controls during the work with Paper 3. These tests were not satisfactory and
only worked for some special cases.

In Paper 4, we derive a framework for solving quadratic/linear optimal
control problems of the form:

Minimize — J(z,u) = 3||=(0) — 37:0||220 + () — fTHéT

T
+ %/0 (lo(t) = 2O + llu(t) — a(®)|%) dt,

such that i(t) = A(t)x(t) + B(t)u(t), 0<t<T,
Iol’(O) = 2o, ITl'(T) =7,
lu@®| < ruy 2@ <12y 0<t<T.

The difference compared to the optimal control problem in Paper 2, (6.1),
is the inequality constraints on the states and controls on the last line. This
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means that the solution to the problem has to be found in a convex set
K=K, x I, xV, where

Ke = {w eEW: lwtE)|| <7, t € [O,T]},
Ky={uel:||lu@®)| <ru, t0,T]}.

This restriction yields that an optimum (z,u, z) € K satisfies

Ll u;2,00, —2) >0 VYo, € Ky, (8.1a)
Ll (x,u;2,00 —u) >0 Vo, € Ky, (8.1b)
L (z,u;z,0,) =0 Vo, €V. (8.1¢c)

Instead of a system of equations in weak form we have a system of variational
inequalities. These are discretized with a finite element method based on the
same finite element spaces as in our previous work. However, the discrete
solution is searched for in discrete versions of K, and K, instead of W, and
Vp,. In order to solve the variational inequalities in (8.1) a new projected
solver is derived. The solver starts by solving the system in (8.1) as equality,
then it projects the components of the states and controls that do no fulfil
the constraints onto X;, and then solves for new z. This procedure is iterated
until convergence.

The a posteriori error analysis based on the dual weighted residuals
methodology yields only an one-sided bound for the error J (z, u)—J (zp, up),
when applied directly to the variational inequality (8.1). We therefore intro-
duce an augmented Lagrangian

E(x7 u’ Z? O’I" O-u) = J(x7 u) + ’F(x7 u? Z)

T

3 [ ol — 1) d
T

4 [ o -

containing additional Lagrange multipliers o, o, corresponding to the in-
equality constraints. We now obtain a representation formula for the error
similar to (6.4) but with additional residuals coming from the additional
terms in L.

We emphasize that we solve the variational inequality (8.1) numerically.
Once the zp,up are found we can compute the extra multipliers to be sub-
stituted into the error estimator.
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9 Future research

The adaptive finite element methods developed in this work effectively in-
serts nodes and reduces the size of the computation compared to uniform
refinement. It is clear that using an adaptive finite element solver can be
useful. However, a more efficient implementation of the solver is needed in
order to solve more realistic problems.

The drawback of using an indirect method combined with a Newton
method to solve the optimal control problem is the need for a good initial
guess. This is especially difficult for the costates z and has to be handled
in a more automated way. So far some manual homotopy procedures have
been tested. In order to solve larger nonlinear problems, a more efficient
nonlinear solver has to be used in the multilevel adaptive finite element
method proposed in this work. In order to solve more advanced vehicle
dynamics problem, the theory has to be extended to handle constraints on
controls and states also for nonlinear optimal control problems. Some tests
with barrier and penalty functions were made during the work with Paper 3,
but these were not satisfactory so we suggest that the variational inequalities
approach in Paper 4 should be extended to nonlinear problems. We also know
that it is important to allow the final time 7" to be free in realistic models and
therefore this should be considered. It would also be interesting to implement
higher order finite element methods and to combine a direct method with
a finite element discretization. Finally, we summarize the suggestions for
future research that have been identified during this work:

e Automated initial guess.

e Implement free time.

e Constraints for nonlinear problems.
e Efficient nonlinear solver.

e Higher order finite element method.

o Investigate a direct approach combined with finite element discretiza-
tion.
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