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Sammanfattning

Vi studerar numerisk lösning av optimala styrningsproblem. Problemen
best̊ar av ett system av differentialekvationer, tillst̊andsekvationerna, som
styrs av en kontrollvariabel. Målet är att bestämma de tillst̊and och kontroll-
er som minimerar en given kostnadsfunktional.

Den numeriska metoden i den här avhandlingen baseras p̊a en indirekt
metod, vilket innebär att nödvändiga villkor för optimum härleds och sedan
löses numeriskt, i v̊art fall med en finita elementmetod. Optimalitetsvill-
koren härleds med Lagranges metod fr̊an variationskalkylen. Detta resul-
terar i ett randvärdesproblem för ett system av differential/algebraiska ekva-
tioner. Ekvationerna diskretiseras med en finita elementmetod och det ger
möjligheten att använda funktionalanalys för att härleda feluppskattningar.
I det här arbetet härleds beräkningsbara a posteriori feluppskattningar.
Metoden med dualviktade residualer används för att härleda feluppskatt-
ningarna. Denna metod passar mycket bra för optimala styrningsproblem
eftersom den är formulerad inom samma ramverk som Lagranges metod.

En indirekt metod i kombination med en a posteriori feluppskattning
gör det möjligt att implementera finita elementmetoder där förfiningen av
beräkningsnätet är automatiserad. Vi har implementerat adaptiva finita
elementmetoder för kvadrat/linjära optimala styrningsproblem, för helt icke-
linjära problem och för problem med olikhetsbivillkor p̊a kontroller och till-
st̊and.
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Abstract

In this thesis we study the numerical solution of optimal control prob-
lems. The problems considered consist of a system of differential equations,
the state equations, which are governed by a control variable. The goal is to
determine the states and controls which minimize a given cost functional.

The numerical method in this work is based on an indirect approach,
which means that necessary conditions for optimality are first derived and
then solved numerically, in our case by a finite element method. The op-
timality conditions are derived using Lagrange’s method in the calculus of
variations resulting in a boundary value problem for a system of differen-
tial/algebraic equations. These equations are discretized by a finite element
method. The advantage of the finite element method is the possibility to
use functional analysis to derive error estimates and in this work this is used
to prove computable a posteriori error estimates. The error estimates are
derived in the framework of dual weighted residuals which is well suited for
optimal control problems since it is formulated within the Lagrange frame-
work.

Using an indirect method combined with an a posteriori error estimate
makes it possible to implement adaptive finite element methods where the
refinement of the computational mesh is automated. We have implemented
such adaptive finite element methods for quadratic/linear optimal control
problems, fully nonlinear problems, and for problems with inequality con-
straints on controls and states.

Keywords: finite element method, discontinuous Galerkin method, op-
timal control, a posteriori error estimate, dual weighted residual, adaptive,
multilevel algorithm, Newton method, control constraint, variational in-
equality, vehicle dynamics.
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I want to thank Anna Nyström, Christoffer Cromvik, David Heintz,
Fredrik Lindgren, Milena Anguelova, Niklas Ericsson, Sofia Tapani, and
all former and present colleagues for making it fun to go to work!

Warm thanks to the families Nilsson-Jansson, Cromvik, and Nyström
for nice visits during the autumn 2010.
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1 IntroductionConsider a car trying to avoid an object that suddenly appears in the road.The driver has some ability to maneuver the car by steering and braking. Isthere a way to maneuver the car an optimally, both avoiding the obstacle andminimizing the �nal velocity? This is an optimal control problem consistingof a system of di�erential equations, describing the dynamics of the car, andan objective function that should be minimized.Optimal control problems appear in various �elds of engineering, for ex-ample, in vehicle dynamics [20, 24], biomechanics [13], robotics [25], andeconomics [35]. This work originated from the need for more automatedways to solve optimal control problems in vehicle dynamics.There are two ways to obtain the numerical solution of optimal controlproblems: the direct and the indirect approaches. In the direct approachone discretizes the objective functional and the dynamical system and thenlooks for an optimal solution of the �nite dimensional discrete problem. Inthe indirect approach one determines the necessary conditions for optimality,and solves them numerically. In this work we focus on the indirect approachand use variational calculus to derive the optimality conditions, resultingin a system of di�erential algebraic equations to be solved. We choose todiscretize this system by an adaptive �nite element method. The error inthe discrete solution is computed using a posteriori error estimates, derivedby the standard duality-based a posteriori error analysis in Paper 1, and bythe methodology of dual weighted residuals in the following papers.The next section presents a mathematical formulation of the optimalcontrol problem considered in this thesis and a brief summary of the his-tory of such problems. Section 3 includes a description of the most commonnumerical methods used to solve the optimal control problems and an intro-duction to the �nite element method. The following four sections containsummaries of the appended papers. Section 5 contains a summary of Pa-per 1, including a description of the solution of an optimal control problemusing variational calculus and an adaptive �nite element method. The errorestimate which is used for the adaptive method is also presented. Section 6describes the approach of dual weighted residuals to quadratic/linear optimalcontrol problems taken in Paper 2. In Section 7 the results from Paper 3 aresummarized. The dual weighted residuals approach is applied to nonlinearproblems. An error estimate is presented and used in the implementation ofa multilevel adaptive solver. Section 8 contains an overview of Paper 4, inwhich inequality constraints on controls and states are introduced. The lastsection includes conclusions and directions of future research.1



2 The optimal control problemIn this thesis optimal control problems of the following form are considered:Find the states x(t) ∈ Rd and the controls u(t) ∈ Rm thatminimize J (x, u) = l(x(0), x(T )) +

∫ T

0
L(x, u) dt,such that ẋ = f(u, x), for 0 < t < T,

I0x(0) = x0, ITx(T ) = xT .

(2.1)The history of optimal control goes back to the end of the 17th century whenBernoulli formulated the brachystochrone problem. For a more thoroughaccount of the history and development of optimal control and variationalcalculus, see [39]. Introductions to the �eld are given in [2, 10, 19, 23, 30, 34].The numerical solution of optimal control problems can be approachedin two di�erent ways, the direct and the indirect approaches [7]. In thedirect approach the dynamical system is discretized and approximated bya �nite number of parameters. After the discretization, the problem is a�nite-dimensional optimization problem, which can be solved using nonlinearprogramming methods, see [7, 11, 22]. The advantage of this approach is theexistence of e�ective software that can be used, for example, SNOPT [21].The direct method has been implemented in for example the software SOCS[8] and PROPT [33].In the indirect approach necessary conditions for optimality are �rst de-termined by using variational techniques, such as variational calculus [10] orPontryagin's maximum principle [31], and then the resulting equations arediscretized and solved. The necessary conditions for optimality consist ofthe original di�erential equations, an additional set of di�erential equationscalled the adjoint equations, and a set of algebraic equations. The numberof adjoint equations equals the number of state equations and a drawbackwith the approach is that the size of the problem is doubled. The indirectapproach has been used in the solver BNDSCO [29].The purpose of this work is to investigate the potential of using adaptive�nite element methods to automate the numerical solution of optimal controlproblems. Therefore, we take an indirect approach to the optimal controlproblem and derive the necessary conditions for optimality using variationalcalculus in a functional analytic framework. Choosing the indirect approachin combination with the �nite element method, which is described below,gives us the possibility to derive a computable error estimate for the nu-merical solution. The error estimate can then be used to adaptively re�ne2



the computational mesh. However, it would also be possible to combine a�nite element discretization with a direct approach and existing nonlinearprogramming software, but it would be more di�cult to combine such anapproach with adaptivity.3 Numerical solution methodsThe most common numerical methods for solving the boundary value prob-lems that arise in optimal control problems are the multiple shooting methodand the collocation method [6]. Even though the previous methods are themost common, the �nite element method has also been used in [13, 17, 18].3.1 The shooting and collocation methodsThe shooting method is a numerical method which can be used for solvingboundary value problems of the form
ẋ = f(t, x), 0 < t < T,

g(x(0), x(T )) = 0,where x, g ∈ Rd. The name of the method comes from the procedure ofaiming a cannon so that the cannon-ball hits the target [7, 32]. One considersthe function h(c) = g(c, x(T, c)), where x(T, c) is the value of x(T ) obtainedby shooting with x(0) = c, that is, propagating the solution numerically from
0 to T . The equation h(c) = 0 can then be solved using any appropriatemethod.The shooting method has been further developed into multiple shoot-ing. In this method the computational interval is re�ned into smaller sub-intervals, where the shooting method is applied in each sub-interval. Thismethod is used for optimal control problems, see, for example, [29].The use of sub-intervals is present also in the collocation method [1]. Onedetermines a continuous piecewise polynomial which ful�ls the di�erentialequation in the collocation points tn + cih, where tn is the left endpoint ofthe sub-interval, h is the interval length and 0 ≤ ci ≤ 1 are suitable points,for instance, the roots of the Legendre polynomials [12].In Paper 1 we use the boundary value problem solver bvp4c [36, 37] inMatlab [28] to bench-mark our results. This solver is based on the collocationidea. In Paper 3 and Paper 4, the results are validated with PROPT [33].These solvers are based on the direct approach and collocation.3



3.2 The �nite element methodThe �nite element method was developed in the 1950's and 1960's, mainly byengineers, to solve equations in structural mechanics. It was developed as ageometrically more �exible alternative to the �nite di�erence method (see, forexample, [38]). The �nite element method is a special case of the Rayleigh-Ritz-Galerkin-methods, which are used to approximate partial di�erentialequations and it has a solid foundation in functional analysis [9]. This is oneof its strengths, as is the possibility to use it on complicated domains. Themathematical foundation makes it easier to derive analytic error estimateswhich, for example, can be used to re�ne the computational mesh in anadaptive way.Traditionally the �nite element method has been used for partial di�eren-tial equations. However, some work has been done on adaptive �nite elementmethods for ordinary di�erential equations, see, for example, [15, 16, 26, 27].We illustrate how the �nite element method works in the context of asimple boundary value problem:
− ẍ = f(t), for 0 < t < T,

x(0) = a, x(T ) = b.
(3.1)We start by reformulating the problem in weak form by introducing the space

W = H1([0, T ]) of functions with square integrable �rst derivative and we let
V = H1

0 ([0, T ]) be the subspace of functions v ∈ W with v(0) = v(T ) = 0.We multiply equation (3.1) by a test function v ∈ V, integrate over theinterval [0, T ], and then integrate by parts. The weak form is: Find x ∈ Wsuch that
x(0) = a, x(T ) = b,
∫ T

0
ẋv̇ dt =

∫ T

0
fv dt, for all v ∈ V. (3.2)Let Wh be a subspace of W consisting of, for instance, piecewise linearfunctions on [0, T ] with sub-intervals of size h and Vh = Wh∩V. We want tosolve (3.2) for all v ∈ Vh with the Ansatz xh(t) = aϕ0(t) +

∑N−1
n=1 xnϕn(t) +

bϕN (t) ∈ Wh, where ϕn, n = 1, . . . , N − 1 is a basis for Vh and ϕ0 and ϕNare additional basis functions such that ϕ0(0) = ϕN (T ) = 1. In this examplethe trial space W and test space V, that is, the spaces containing x and v,respectively, are discretized in the same way, but this need not be the case.The fact that the �nite element methods are based on the weak form (3.2)rather than (3.1) makes it easier to use tools from functional analysis toderive error estimates. 4



There are two types of error estimates, a priori and a posteriori errorestimates. The �rst type gives a bound of the error e = x−xh, in terms of x,
h, and the data a, b and f . Since the estimate depends on the unknown exactsolution it cannot be explicitly computed but it can be used to investigate theconvergence of the numerical method. In the second type of error estimate,the a posteriori error estimate, the error bound is expressed in terms of xh,
h, and the data. An a posteriori error estimate can be explicitly computed,since it depends only on known or computable quantities. The a posteriorierror estimates are used to construct adaptive algorithms which solve theequation repeatedly on re�ned meshes, see Algorithm 1,.Algorithm 1: An adaptive �nite element methodSolve the equation on an initial mesh;Compute the error estimate E;while |E| ≥ TOL doRe�ne the mesh according to the error estimate, that is, re�nesub-intervals that give large contributions to the error;Solve the equation on the re�ned mesh;Compute the error estimate on the re�ned mesh;endMore about error estimates and adaptive �nite element methods can befound in [3, 9, 14, 15].In this work we consider a posteriori error estimates, since the goal is toconstruct adaptive algorithms. We start by using a standard duality-based aposteriori error analysis, see [14, 15], to derive an a posteriori error estimateminimizing the error in an arbitrary linear functional. Next, we use thedual weighted residuals methodology for a posteriori error analysis. It isformulated within the Lagrange framework and is therefore well suited foroptimal control problems and yields a representation formula for the errorin the goal functional J [3, 5].4 Mathematical frameworkIn order to summarize the work in the appended papers we introduce the no-tation which is used. Let Ck denote k times continuously di�erentiable func-tions and H1 denote functions with square integrable derivative. Further,5



C1
PW denotes piecewise continuously di�erentiable functions [0, T ] → Rd;more precisely, functions that are C1 except at a �nite number of points in

[0, T ] and with left and right limits w(t−) = lims↓tw(s), w(t+) = lims↑t w(s)for all points t ∈ [0, T ], and we denote jumps as [w]t = w(t+)− w(t−).We introduce the function spaces
W = Rd × C1

PW([0, T ],Rd)× Rd,

Ẇ = R(I − I0)× C1
PW([0, T ],Rd)×R(I − IT )

=
{
w ∈ W : I0w(0

−) = 0, ITw(T
+) = 0

}
,

U = H1([0, T ],Rm),

V = H1([0, T ],Rd),

Ŵ = x̂+ Ẇ =
{
w ∈ W : w − x̂ ∈ Ẇ

}
.Here R(I − I0) and R(I − IT ) denote the ranges of the matrices. The twofactors Rd in W are used to accomodate the boundary values w(0−) and

w(T+). The space W will contain the state variable x, and V and U willcontain the costate z, and the control u, respectively. The a�ne space Ŵcontains functions satisfying the prescribed boundary conditions if x̂ ∈ W ischosen so that x̂(0−) = x0 and x̂(T+) = xT .In the discretizations we use a mesh 0 = t0 < t1 < t2 < . . . < tN = T ,with steps hn = tn − tn−1 and intervals Jn = (tn−1, tn). With P k denot-ing polynomials of degree k, we introduce the function spaces used in thediscretization:
Wh = Rd ×

{
w ∈ W : w|Jn ∈ P k−1(Jn,Rd), n = 1, . . . , N

}
× Rd,

Ẇh = R(I − I0)×
{
w ∈ W : w|Jn ∈ P k−1(Jn,Rd), n = 1, . . . , N

}

×R(I − IT )

=
{
w ∈ Wh : I0w(0

−) = 0, ITw(T
+) = 0

}
,

Uh =
{
u ∈ C0([0, T ],Rm) : u|Jn ∈ P k(Jn,Rm), n = 1, . . . , N

}
,

Vh =
{
v ∈ C0([0, T ],Rd) : v|Jn ∈ P k(Jn,Rd), n = 1, . . . , N

}
,

Ŵh = x̂+ Ẇh, for some x̂ ∈ Wh.Now we have Wh ⊂ W, Ẇh ⊂ Ẇ, Ŵh ⊂ Ŵ, Uh ⊂ U , and Vh ⊂ V.In this thesis we have implemented the algorithms for k = 1, that is, thestates in Wh are discretized by piecewise constant discontinuous functions6



and the controls in Uh and costates in Vh are discretized by piecewise linearcontinuous functions. However, the theory is valid for higher k.5 A �rst approachIn Paper 1 the optimality conditions for the optimal control problem (2.1)are derived using the classical variational calculus by introducing the costates
z(t) ∈ Rd and the Hamiltonian

H(x, u, z) = L(x, u) + zTf(x, u).Then the optimal (x∗, u∗, z∗) ful�l the Hamilton-Jacobi equations
ẋ =

∂H

∂z
= f(x, u),

ż = −∂H

∂x
= −∂L

∂x
−

(
∂f

∂x

)T

z,

0 =
∂H

∂u
=

∂L

∂u
+ zT

∂f

∂u
,

I0y(0) = x0, IT y(T ) = xT ,

(I − I0)z(0) = z0, (I − IT )z(T ) = zT .

(5.1)
We note that since x0 and xT are in the ranges of I0 and IT , respectively,the boundary conditions are imposed on those components of the costates zthat are complementary to the components of x with boundary conditions.In order to simplify the problem we make the assumption that the al-gebraic equation ∂H

∂u = 0 in (5.1) has an explicit solution u which can besubstituted into the other equations. This assumption reduces the problemfrom a system of Di�erential Algebraic Equations (DAE) to a boundary valueproblem for Ordinary Di�erential Equations (ODE). We make an additionalsimpli�cation by joining the states x(t) and the costates z(t) into one newvariable y(t) ∈ R2d and end up with a system of the form
ẏ = f2(y), 0 < t < T,

I0y(0) = y0, IT y(T ) = yT ,
(5.2)where I0 and IT are two new diagonal matrices with zeroes or ones on thediagonals and rank(I0) + rank(IT ) = 2d. We thus have to solve a boundaryvalue problem of twice the dimension of the original problem. The statesand costates are joined into one variable to simplify the implementation.7



The problem in (5.2) is written in weak form by multiplying the equationsby a test function and integrating over the interval [0, T ], resulting in: Seek
y ∈ W (with d replaced by 2d) such that

I0y(0) = x0, IT y(T ) = yT ,

F (y, v) :=

∫ T

0
vT(ẏ − f2(y)) dt = 0 ∀v ∈ V.

(5.3)
The �nite element problem can be stated: Find a function Y ∈ Wh whichful�ls
I0Y

−
0 = y0, ITY

+
N = yT ,

F (Y, v) :=

N∑

n=1

∫

Jn

vT(Ẏ − f2(Y )) dt+

N∑

n=0

([Y ]n , v(tn)) = 0 ∀v ∈ Vh.(5.4)Here the de�nition of the form F from (5.3) has been extended to includethe jump terms which appear since we write the derivative of the discontin-uous trial function Y as a weak derivative. Since the trial space consists ofpiecewise constant functions, we have Ẏ = 0 inside the intervals Jn. Hence,(5.4) results in a system of (N+2)2d equations, more precisely, 2d boundaryconditions and (N+1)2d equations. With boundary conditions at both ends,the equations are coupled and thus we cannot use time stepping. Therefore,the equations in the system have to be solved simultaneously. In order toevaluate how good the computed solution is and to construct an adaptive�nite element method we derive an a posteriori error estimate. We intro-duce the notation ‖v‖Jn = supt∈In ‖v(t)‖, where ‖ · ‖ denotes the norm in
R2d or Rm. Let e = y − Y be the error in the �nite element solution of theboundary value problem in (5.2). The error expressed in a linear functional
G is bounded by

|G(e(t))| ≤
N∑

n=1

RnIn, 0 < t < T,8



where
R1 = h1

∥∥Ẏ − f(Y )
∥∥
J1

+
∥∥ [Y ]0

∥∥+
h1

h1 + h2

∥∥ [Y ]1
∥∥,

Rn = hn
∥∥Ẏ − f(Y )

∥∥
Jn

+
hn

hn + hn−1

∥∥ [Y ]n−1

∥∥+
hn

hn + hn+1

∥∥ [Y ]n
∥∥,

n = 2, . . . , N − 1,

RN = hN
∥∥Ẏ − f(Y )

∥∥
JN

+
hN

hN + hN−1

∥∥ [Y ]N−1

∥∥+
∥∥ [Y ]N

∥∥,

In = Chn

∫

Jn

|φ̈(t)|dt.

C is a constant and φ is the solution to the linearised dual problem to (5.2)with data functional G.In this error estimate, Rn mainly describes how well the approximatesolution satis�es the di�erential equation and In describes the sensitivity of
G(y) to perturbations. The proof is based on a standard duality argument[14]. The residual quantities Rn are computable, but the weights In must bebounded a priori or computed approximately by the solution of the linearizedadjoint problem which is another boundary value problem in 2d variables,which doubles the number of unknowns again. This a posteriori error hasbeen used in the implementation of an adaptive �nite element method, whichin numerical tests inserts nodes in a way that reduces the number of nodesneeded to reach a certain tolerance. A similar approach was taken in [17, 18].6 The dual weighted residuals approachAnother approach based on the Lagrange framework in the calculus of varia-tions is taken in Paper 2. The error in the objective functional J is analyzedusing the methodology of dual weighted residuals [3, 5]. The optimal con-trol problem is written in an abstract form using the smooth functionals
F(x, u;ϕ) and J (x, u),

F : W ×U × V → R,
J : W ×U → R,de�ned by

F(x, u;ϕ) =

N∑

n=1

∫ tn

tn−1

(ẋ− f(x, u), ϕ) dt+

N∑

n=0

([x]n, ϕ(tn)),9



and
J (x, u) = l(x(0), x(T )) +

∫ T

0
L(x(t), u(t)) dt.We use the convention that functionals depend linearly on the argumentsafter the semicolon.The optimal control problem in (2.1) now takes the form: Determine

x ∈ Ŵ and u ∈ U thatminimize J (x, u),subject to F(x, u;ϕ) = 0 ∀ϕ ∈ V. (6.1)Introducing the Lagrange functional
L(x, u; z) = J (x, u) + F(x, u; z), (x, u, z) ∈ Ŵ × U × V,where z is a Lagrange multiplier, yields the optimality conditions

L′(x, u; z, ϕ) := L′(x, u; z)ϕ = 0, ∀ϕ ∈ Ẇ × U × V, (6.2)that is,
J ′
x(x, u;ϕx) + F ′

x(x, u; z, ϕx) = 0 ∀ϕx ∈ Ẇ, (6.3a)
J ′
u(x, u;ϕu) + F ′

u(x, u; z, ϕu) = 0 ∀ϕu ∈ U , (6.3b)
F(x, u;ϕz) = 0 ∀ϕz ∈ V. (6.3c)The equations above are discretized and solved by a �nite element methodusing the function spaces in Section 4.Let (x, u, z) ∈ Ŵ × U × V be the exact solution and (xh, uh, zh) ∈ Ŵh ×

Uh×Vh be the discrete solution of (6.3a)�(6.3c), respectively. Then the errorin the goal functional is
J (x, u)− J (xh, uh) =

1
2ρx +

1
2ρz +

1
2ρu +R, (6.4)with the residuals ρx, ρz, and ρu de�ned as

ρx = J ′
x(xh, uh;x− x̃h) + F ′

x(xh, uh; zh, x− x̃h),

ρu = J ′
u(xh, uh;u− ũh) + F ′

u(xh, uh; zh, u− ũh),

ρz = F(xh, uh; z − z̃h).Here (x̃h, ũh, z̃h) ∈ Ŵh × Uh × Vh is arbitrary and R is a remainder term.This error estimate is used in the implementation of an adaptive �nite el-ement method. We implement the method for quadratic J and linear F ,10



a quadratic/linear optimal control problem and then R is zero. The ad-vantage of this error estimate compared to the one used in Paper 1 isthat the dual solution in the form of the costates z is already computedas a part of the original indirect approach of the optimal control problem.Therefore, no extra dual solution is needed to compute the error estimate.In the proof of the error estimate we use Galerkin orthogonality, that is,
F(xh, uh;ϕh) = 0 ∀ϕh ∈ Vh. Therefore only optimal control problems withlinear ODE as constraints have been considered in the implementation of thesolver.7 Nonlinear problemsThe approach of Paper 2 is extended to fully nonlinear problems in Paper 3.A Newton method is applied to the optimality conditions in (6.2). Given anapproximate solution (x, u, z), Newton's method yields a new approximatesolution (x̂, û, ẑ) by

(x̂, û, ẑ) = (x, u, z) + α(δx, δu, δz),where α ∈ R is a parameter and the increment δ = (δx, δu, δz) ∈ Ẇ × U × Vis the solution of
L′′(x, u; z, ϕ, δ) = −L′(x, u; z, ϕ) ∀ϕ ∈ Ẇ × U × V. (7.1)The equations in (7.1) are discretized using the �nite element spaces inSection 4. The parameter α is determined through a line search ([4]) choosingthe α that minimizes the right hand side of the discrete version of (7.1).The approximate solution of the nonlinear equations in (7.1) results ina lack of Galerkin orthogonality, that is, F(x̂h, ûh;ϕh) 6= 0 ∀ ϕh ∈ Vh, usedin the error estimate in Paper 2. This results in a slightly di�erent errorrepresentation formula:

J (x, u) − J (x̂h, ûh) =
1
2ρx +

1
2ρu + 1

2ρx + F(x̂h, ûh, ẑh) +R,with
ρx = J ′

x(x̂h, ûh;x− x̂h) + F ′
x(x̂h, ûh; ẑh, x− x̂h),

ρu = J ′
u(x̂h, ûh;u− ûh) + F ′

u(x̂h, ûh; ẑh, u− ûh),

ρz = F(x̂h, ûh; z − ẑh), 11



and the remainder
R = 1

2

∫ 1

0

(
J ′′′(xh + sêx, uh + sêu; ê, ê, ê)

+ F ′′′(x̂h + sêx, ûh + sêu; ẑh + sêz, ê, ê, ê)
)
s(s− 1) ds.This formula is used to derive a computable a posteriori error estimate,where the unknowns (x, u, z) are replaced by (xfine, ufine, zfine), which aresolutions on a �ner mesh, which combined with the Newton method is thebasis for a multilevel adaptive �nite element solver. The solver starts witha coarse mesh, performs a certain number of Newton iterations, and re�nesthe mesh based on the computed error. This procedure is iterated until thesolution meets a certain tolerance.For the examples solved, only a few Newton iterations are needed oneach level. New nodes are inserted where the error is expected to be large.Compared to uniform re�nement the adaptive re�nement keeps down thesize of the computational mesh. The drawback of the combination of theindirect method and a Newton method for solving optimal control problemsis the need for a good initial guess, which is not intuitive, especially for thecostates.8 Inequality constraintsIn vehicle dynamics it is important to allow inequality constraints on controlsin order to formulate realistic models. Therefore, tests were done usingpenalty and barrier functions [4] in order to handle such constraints on thecontrols during the work with Paper 3. These tests were not satisfactory andonly worked for some special cases.In Paper 4, we derive a framework for solving quadratic/linear optimalcontrol problems of the form:Minimize J (x, u) = 1

2‖x(0)− x̄0‖2Q0
+ 1

2‖x(T )− x̄T ‖2QT

+ 1
2

∫ T

0

(
‖x(t)− x̄(t)‖2Q + ‖u(t)− ū(t)‖2R

)
dt,such that ẋ(t) = A(t)x(t) +B(t)u(t), 0 < t < T,

I0x(0) = x0, ITx(T ) = xT ,

‖u(t)‖ ≤ ru, ‖x(t)‖ ≤ rx, 0 < t < T.The di�erence compared to the optimal control problem in Paper 2, (6.1),is the inequality constraints on the states and controls on the last line. This12



means that the solution to the problem has to be found in a convex set
K = Kx ×Ku × V, where

Kx =
{
w ∈ Ŵ : ‖w(t±)‖ ≤ rx, t ∈ [0, T ]

}
,

Ku =
{
u ∈ U : ‖u(t)‖ ≤ ru, t ∈ [0, T ]

}
.This restriction yields that an optimum (x, u, z) ∈ K satis�es

L′
x(x, u; z, ϕx − x) ≥ 0 ∀ϕx ∈ Kx, (8.1a)

L′
u(x, u; z, ϕu − u) ≥ 0 ∀ϕu ∈ Ku, (8.1b)

L′
z(x, u; z, ϕz) = 0 ∀ϕz ∈ V. (8.1c)Instead of a system of equations in weak form we have a system of variationalinequalities. These are discretized with a �nite element method based on thesame �nite element spaces as in our previous work. However, the discretesolution is searched for in discrete versions of Kx and Ku instead of Ẇh and

Vh. In order to solve the variational inequalities in (8.1) a new projectedsolver is derived. The solver starts by solving the system in (8.1) as equality,then it projects the components of the states and controls that do no ful�lthe constraints onto Kh and then solves for new z. This procedure is iterateduntil convergence.The a posteriori error analysis based on the dual weighted residualsmethodology yields only an one-sided bound for the error J (x, u)−J (xh, uh),when applied directly to the variational inequality (8.1). We therefore intro-duce an augmented Lagrangian
L̃(x, u, z, σx, σu) = J (x, u) + F(x, u, z)

+ 1
2

∫ T

0
σx(t)(‖x(t)‖2 − r2x) dt

+ 1
2

∫ T

0
σu(t)(‖u(t)‖2 − r2u) dt,containing additional Lagrange multipliers σx, σu corresponding to the in-equality constraints. We now obtain a representation formula for the errorsimilar to (6.4) but with additional residuals coming from the additionalterms in L̃.We emphasize that we solve the variational inequality (8.1) numerically.Once the xh, uh are found we can compute the extra multipliers to be sub-stituted into the error estimator. 13



9 Future researchThe adaptive �nite element methods developed in this work e�ectively in-serts nodes and reduces the size of the computation compared to uniformre�nement. It is clear that using an adaptive �nite element solver can beuseful. However, a more e�cient implementation of the solver is needed inorder to solve more realistic problems.The drawback of using an indirect method combined with a Newtonmethod to solve the optimal control problem is the need for a good initialguess. This is especially di�cult for the costates z and has to be handledin a more automated way. So far some manual homotopy procedures havebeen tested. In order to solve larger nonlinear problems, a more e�cientnonlinear solver has to be used in the multilevel adaptive �nite elementmethod proposed in this work. In order to solve more advanced vehicledynamics problem, the theory has to be extended to handle constraints oncontrols and states also for nonlinear optimal control problems. Some testswith barrier and penalty functions were made during the work with Paper 3,but these were not satisfactory so we suggest that the variational inequalitiesapproach in Paper 4 should be extended to nonlinear problems. We also knowthat it is important to allow the �nal time T to be free in realistic models andtherefore this should be considered. It would also be interesting to implementhigher order �nite element methods and to combine a direct method witha �nite element discretization. Finally, we summarize the suggestions forfuture research that have been identi�ed during this work:
• Automated initial guess.
• Implement free time.
• Constraints for nonlinear problems.
• E�cient nonlinear solver.
• Higher order �nite element method.
• Investigate a direct approach combined with �nite element discretiza-tion.
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