

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Göteborg, Sweden, January 2011

Formal Specification of Selected Android Core
Applications and Library Functions

Master of Science Thesis in the Programme

 Software Engineering and Technology

Masoumeh Al. Haghighi Mobarhan

The Author grants to Chalmers University of Technology and University of Gothenburg the
non-exclusive right to publish the Work electronically and in a non-commercial purpose make
it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author has
signed a copyright agreement with a third party regarding the Work, the Author warrants
hereby that he/she has obtained any necessary permission from this third party to let Chalmers
University of Technology and University of Gothenburg store the Work electronically and
make it accessible on the Internet.

Formal Specification of Selected Android Core applications and Libraries

Masoumeh alsadat.Haghighimobarhan,

© Masoumeh alsadat.Haghighimobarhan, December 2010.

Examiner: Reiner.Hähnle

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden January 2011

Department Of Computing Science And Engineering

Master of Science Thesis

Formal Specification of Selected

Android Core Applications and

Library Functions

by

Masoumeh Al. Haghighi Mobarhan

Supervisor : Dr.Richard Bubel

Examiner : Prof.Reiner Hähnle

Gothenburg,Sweden,2009-2010

Acknowledgments

I would like to express my gratitude to all those who gave me the possibility to

complete this thesis project. Special thanks go to professor Reiner Hähnle for

trusting me and offering the chance to work on this thesis. I am deeply indebted

to my thesis supervisor Richard Bubel for all his help, support and valuable hints.

He always had time for my questions and responded to them patiently. Finally,

special thanks go to my family for supporting me to complete this master thesis.

iii

List of Symbols

and Abbreviations

Abbreviation Description Definition

JML Java Modeling Language page 1

KeY Formal software development tool page 1

SDK Software Development Kit page 2

API Application Programming Interface page 2

URI Uniform Resource Identifier page 6

OCL Object Constraint Language page 18

DL Dynamic Logic page 18

PIN Personal Identifier Number page 46

RIL Radio Interface Layer page 46

GSM Global System for Mobile Communications page 46

SIM Subscriber Identity Module page 46

v

Contents

List of Symbols and Abbreviations v

Contents i

List of Figures iii

1 Introduction 1

1.1 What Is Android? . 2

1.2 Some Important Features . 2

1.3 Android Architecture . 2

1.3.1 Linux Kernel . 3

1.3.2 Android Runtime . 3

1.3.3 Libraries . 4

1.3.4 Application Framework . 4

1.3.5 Applications . 4

1.4 Application Components . 4

1.5 Activating Components . 6

1.6 The androidManifest.xml File . 6

1.7 Intent Filters . 7

1.8 Activity Lifecycle . 10

2 Specification and Verification Concepts 13

2.1 JML (Java Modeling Language) . 13

2.1.1 Precondition And Postcondition 13

2.1.2 Class Invariant . 15

2.1.3 Model And Ghost Fields . 15

2.1.4 Model Method . 16

2.1.5 Assignable Clause . 16

2.1.6 Inheritance In Specification 17

2.1.7 Some JML Keywords [4] . 17

i

ii CONTENTS

2.2 What Is KeY? . 18

2.3 Specifying and Verifying a Sample Android Application 22

2.3.1 Specification with JML . 22

2.3.2 Verification With KeY . 28

2.3.3 Verifying Enterpassword With KeY 30

3 Specification of Android Applications 45

3.1 Specifying the Phone Application 45

3.1.1 First Walk through Specifying Emergency Dialer 46

3.2 Specifying the Screen manager Application 61

3.2.1 Lock And Unlock Screen Functionalities 62

3.3 Specifying the Contact Application 69

4 Conclusion and Future Work 79

Bibliography 83

Appendices 85

A Specified Classes with JML 87

List of Figures

1.1 Android Operating System . 3

1.2 Activity Lifecycle . 11

2.1 KeY Prover . 21

2.2 Log In Application . 23

2.3 Proof Obligation Browser . 31

2.4 Contract Configuration . 32

2.5 Proof Obligation . 33

2.6 Proved Goal . 34

2.7 Contract Configuration . 36

2.8 Loaded Proof Obligation . 36

2.9 Contract Configuration . 37

2.10 Assumed Invariants . 38

2.11 Loaded Proof Obligation . 39

2.12 Proved Goal . 39

2.13 Proved Goal . 43

3.1 Phone Application(Dialer) . 46

3.2 Emergency Dialer . 47

3.3 Emergency Sequence Diagram . 48

3.4 Lock Screen . 61

3.5 Unlock Screen . 62

3.6 Unlock Screen sequence diagram . 64

3.7 Contact Application . 69

3.8 New Contact . 70

3.9 Edit Contact . 70

3.10 Contacts Diagram . 71

iii

Chapter 1

Introduction

Recently, mobile phones are one of the most popular devices among people; so

that people’s life in many aspects is dependent on them. Because of the variety of

the usage of mobile phones and their role in our life, investigating and assessing

the correctness of their functionalities are very vital.

Among platforms for mobile devices, Google’s android platform is currently one

of the most interesting developments in the mobile phone market.

The android platform consists of a Linux-based operating system, middle-ware

and a set of core applications. The core applications are most likely part of all

produced mobile devices running android and provide access to essential func-

tionality.

Possible bugs in these parts affect thus all devices and have the potential of caus-

ing serious financial losses, security or even safety critical issues. For instance,

the android application Phone provides an Emergency Dialer. To verify that a

dialed emergency number is actually handed over to the carrier is an important

safety property, while verifying that only emergency numbers are dispatched is a

central security feature.

To identify critical classes and methods in the android API and core applications

and also to assure that they fully satisfy all expected requirements are the pur-

pose of this master thesis.

To achieve this goal firstly, we identified critical code pieces and then specified

them in Java Modeling Language (JML) and finally verified them by KeY (formal

software development tool).

1

2 CHAPTER 1. INTRODUCTION

The structure of the thesis is as follow:

Chapter 1: Introducing the android software platform for mobile devices and

some of its features.

Chapter 2: Focusing on the specification and verification concepts and introduc-

ing JML as a specification language and KeY as a verification tool.

Chapter 3: Focusing on the specification of critical android applications like:

Phone application, Screen manager and Contact application.

Chapter 4: Conclusion and Future Work.

In this chapter we introduce the android software platform and its features.

1.1 What Is Android?

”Android is a software platform for mobile devices that includes an operating

system, middleware and key applications. The android SDK provides the tools

and APIs necessary to begin developing applications on the android platform

using the Java programming language”[1]. Android is developed by Google ac-

companied with the Open Handset Alliance (Intel, Motorola, Samsung, etc,...)[1]

1.2 Some Important Features

The following summarizes the most important features in android which are dis-

tinctive in comparison with other software platforms for mobile devices. Detailed

information can be found in [1]

• Dalvik virtual machine: It is a virtual machine optimized for mobile

devices. It is described in more details in section 1.3.2.

• Application framework: The android framework enables reuse and re-

placement of components. It is described in more details in section 1.3.4.

• Development environment: Android has a rich development environment

including a device emulator, tools for debugging, memory and performance

profiling, and a plugin for the Eclipse IDE.

1.3 Android Architecture

Fig. 1.2 shows the major components of the android operating system. The fol-

lowing summarizes the most important points. More detailed information about

android components can be found in [2].

1.3. ANDROID ARCHITECTURE 3

Figure 1.1: Android Operating System

1.3.1 Linux Kernel

This layer is designed as an abstraction layer between the hardware and the other

layers. The Linux Kernel is version 2.6 for core system services such as security,

memory management, process management, network stack, and driver model.

1.3.2 Android Runtime

Android Runtime layer consists of two parts.

• Core libraries: Most of the functionalities available in the core libraries

of the Java programming language, e.g., math, text, IO, etc. are provided

by the Core Libraries of the Runtime Layer.

• Dalvik Virtual Machine: Every android application is compiled into a

byte code format for android’s own register-based virtual machine called

Dalvik. Dalvik VM executes files in the Dalvik Executable (.dex) format

which is optimized for minimal memory footprint. The (.dex) files are cre-

ated by the (dx) tool. This tool transfers files compiled by a Java language

4 CHAPTER 1. INTRODUCTION

compiler into the (.dex) format. Moreover constants and duplicate strings

used in multiple class files are included only once in the (.dex) file to pre-

serve limited space [3].

1.3.3 Libraries

Developers can access a set of C/C++ libraries through the android applica-

tion framework. These libraries are used to access hardware and database or

sometimes to perform security or performance critical tasks.

1.3.4 Application Framework

Developers have full access to the same framework APIs used by the core ap-

plications. One of the important goals in android’s architecture is the reuse of

components; any application can expose its capabilities and any other application

can use those capabilities.

All APIs are written in the Java programming language.

1.3.5 Applications

Finally, the applications layer includes a set of core applications including an

Email client, Phone, Calendar, Maps, Browser, Contacts, and others. All appli-

cations are written in the Java programming language. Every new application

written by developers is part of this layer.

1.4 Application Components

An important feature of android is the reusability of components. In android,

applications can make use of elements of other applications (if they have sufficient

permissions). For example, if the application needs to display a list of contacts

which has already been developed by another application and is available to oth-

ers, it can call that list to do the work, rather than developing it is own. Further,

the application does not incorporate the code of the called application or link to

it. The applications just start up that piece of the other application when the

need arises.

To enable this feature, android starts an application process when any part

(component) of an application is needed and also it instantiates the Java objects

for that part. So, unlike applications in other systems, android applications do

not have just one single entry point for whole application. For example they do

not have a main() function. Rather, they are composed of some components.

These components can be instantiated and run as needed. There are four types

of components:

1.4. APPLICATION COMPONENTS 5

Activities: ”An activity presents a visual user interface for one focused endeavor

the user can undertake”.[2] For example, an activity might display a mes-

sage to the user and request a response. It might be a scrolling list of images

or contacts that the user can choose from. An application might consist of

one or several activities. For example, a Phone application might have an

activity for dialing a number, a second one to display a list of logged calls,

and other activities for displaying missed calls and so on. Functionality of

an application is dependent on all of its activities. On the other hand, each

activity is stand alone and independent of other activities so that it can be

called by other applications.

Actually, every application has one activity which is the starter of the ap-

plication. It is the first activity that the user can see when the application

is launched. Moving to the next activity is done in the current activity by

simply starting the next one.

Services: ”A service does not have a visual user interface that the user can

interact with, but rather runs in the background for an unlimited period of

time” [2]. For example a service can be used to calculate something in the

background and provide the result to every activity that is interested. All

of this process is done in the background and the user can also perform any

other action.

In other words, every action which needs to keep running even after leaving

the screen, should be handled by a service.

A good example is a media player. To play music, initially, the media player

application runs an activity displaying a list of songs. Afterwards the user

selects one song, expecting it keeps running in the background even if she

leaves the player application. To give this ability to the application we

should implement the player as a service instead of an activity. So, after

selecting a music, the activity starts a service to play the music. The music

keeps playing even after the starter activity leaves the screen and the user

attempts to perform some other action.

Broadcast receivers: ”A broadcast receiver is a component that does nothing

but receives and reacts to broadcast announcements”[2]. Broadcast an-

nouncements are some events which happen in the system and are received

and responded by any application which is interested in them. Although

the system has many broadcasts originally, applications can also initiate

other broadcasts if it is needed. Furthermore, an application can have any

number of broadcast receivers to answer different announcements which are

important for the application. Some of the original broadcasts in the sys-

tem are: announcement for changed time zone, the battery is low, a picture

is taken and so on.

6 CHAPTER 1. INTRODUCTION

Content providers: ”A content provider makes a specific set of the applica-

tion’s data available to other applications.”[2] Every content provider ex-

tends the ContentProvider base class and is responsible to control a specific

type of data. The data can be stored in different formats like a file system or

an SQLLite database. Every content provider implements a set of methods

so that every application can use them to save or retrieve data of the type it

controls. Other applications call these methods by using a ContentResolver

object and call its methods instead of calling ContentProvider methods. A

ContentResolver can communicate to any content provider.

1.5 Activating Components

When there is a request that should be handled by a specific component, firstly,

android starts the application process of the component if it is not running and

then creates an appropriate instance of the component if it is not available. To

activate a content provider we use a ContentResolver request whose target is the

content provider. The other components, such as: activities, services, broadcast

receivers, are activated by asynchronous messages called intents.

”Intent is an object that holds the content of the message. For activities and

services, it names the action being requested and specifies the URI of the data to

act on”[2], among other things. For example, it might include some information to

call an activity to display contact information of a specific person. For broadcast

receivers, the intent object contains the name of the action being announced.

For example it might announce the interested elements that the battery charge

is low.

1.6 The androidManifest.xml File

Before describing Intent filters more precisely, we should talk about Manifest.xml

files. Every android application must have an androidManifest.xml file (with pre-

cisely that name) in its root directory. The manifest includes essential information

that must be known by the system before running the application’s code. Among

other things, the manifest does the following:

• The name of the Java package for the application. For instance pack-

age=”com.android.phone” is a tag in the androidManifest.xml file of Phone

application which describes the package name of the application.

• The name of the components that the application is composed of, the

classes that implement each of the components (activities, broadcast re-

1.7. INTENT FILTERS 7

ceivers,content providers, services), and the capabilities of the components.

For example, which Intent message they can handle. By adding Intent fil-

ters for every Component, the android system knows what the components

are and which component can handle a specific launched Intent message.

• It declares the permissions that other applications must have to gain access

to application’s components.

• It declares the minimum level of the android API that the application re-

quires.

• It lists the libraries that the application must be linked against and some

other duties.

1.7 Intent Filters

As it is said in previous parts, to activate a component (activity, service, broad-

cast receiver) an Intent object is required. Usually an Intent object contains the

name of the target component. In this case, android finds that component (based

on the declarations in the manifest file) and activates it.

But sometimes the target name is not explicitly mentioned in the Intent object,

so android must search and find the best component to respond to the requested

intent object. android handles this by comparing the Intent object to the intent

filters of all components described in the Manifest file. It is feasible because de-

scribed components in the Manifest file have intent filters which inform android

of the kinds of intents the component is able to handle.

The following listing is an example of describing an activity along with two intent

filters in a Manifest file:

8 CHAPTER 1. INTRODUCTION

Listing 1.1: Manifest file

< ?xml version="1.0" encoding="utf -8"?>

<manifest . . . >

<application . . . >

<activity android:name="com.example.project.

FreneticActivity"

android:icon="@drawable/smallpic.

png"

android:label="@string/

freneticLabel"

. . . >

<intent -filter . . . >

<action android:name="android.intent

.action.MAIN" />

<category android:name="android.

intent.category.LAUNCHER" />

</intent -filter >

<intent -filter . . . >

<action android:name="com.example.

project.BOUNCE" />

<data android:mimeType="image/jpeg"

/>

<category android:name="android.

intent.category.DEFAULT" />

</intent -filter >

</activity >

. . .

</application >

</manifest >

There are separate methods for activating each type of component by passing

an Intent : Detailed information can be found at [2].

• ”An activity is launched (or given something new to do) by passing an In-

tent object to Context.startActivity() or Activity.startActivityForResult().”

[2]

The first activity is launched by the Home application. The next activity

often is started by the previous one. If the activity expects a result back

from the launched activity, it calls startActivityForResult() instead of star-

1.7. INTENT FILTERS 9

tActivity(). For example, if it starts the Contact List activity that lets the

user pick a contact number, the selected number is expected to be returned.

The result(selected number) is returned in an Intent object that is passed

to the calling activity’s onActivityResult() method. So the calling activity

needs to implement this method and handles the return value as it needs.

• ”A Service is started (or new instructions are given to an ongoing service)

by passing an Intent object to Context.startService(). Android calls the

service’s onStart() method and passes it the Intent object.”[2]

Furthermore, it is possible to bind a component to an running service. To

do this, an intent can be passed to Context.bindService() to establish an

ongoing connection between the calling component and a target service.

For example, if we have an activity to control the music playback by the

user, the activity need to establish a connection with the music playback

service. The activity would call bindService() to set up that connection,

and then call methods defined by the service to affect the playback.

• ”A Broadcast can be initiated by passing an Intent object to methods

like Context.sendBroadcast(), Context.sendOrderedBroadcast(), and Con-

text.sendStickyBroadcast() in any of their variations.” [2]

Actually, android delivers the Broadcasts to the system, and every inter-

ested broadcast receiver, receives that by its onReceive() method.

Interested receivers must implement the onReceive() method. They act cor-

responding to the information they receive. For example in the following

code the activity implements a receiver for the SCREEN OFF announce-

ment.

Java

private BroadcastReceiver mBroadcastReceiver =

new BroadcastReceiver() {

public void onReceive(Context context, Intent intent) {

if (Intent.ACTION_SCREEN_OFF.

equals(intent.getAction())) {

finish();

}

}

}

Java

10 CHAPTER 1. INTRODUCTION

1.8 Activity Lifecycle

The following summarizes some important points. Detailed information can be

found in [1]. Activities are the most used components in an android application

also they are the only components with which the user can interact with. Ev-

ery application might consist of one or several activities. Usually one activity

is marked as the first activity that should be presented to the user when the

application is launched. The next activity can be started by the current activity.

Activities in the system are managed as an activity stack. New started activities

are always placed on the top of the stack and they stay running, until a new

activity is started. The previous activity always remains below the new activity

in the stack and also they will not come to the foreground again as long as a new

activity exists. An activity is essentially in one of the following four states:

1. active or alive: When an activity occupies the foreground of the screen.

2. paused: When an activity has lost the focus but it is still visible. It happens

when an new non-full size or transparent activity has focus on top of the

stack. In this state activity is completely alive, but can be killed by the

system in extreme low memory situation.

3. stopped: When an activity is completely hidden by another activity. It

still preserves all state and member information, however, it is no longer

visible to the user. It is killed by the system when the memory is needed.

4. finishing: When an activity is paused or stopped the system can drop

the activity from the memory by killing its process or asking it to finish.

The diagram in Fig. 1.2 describes the whole lifecycle of an activity and the

paths an activity may takes between states. The colored ovals are major states

of an activity.

All methods in a rectangle can be overridden by the user to perform appro-

priate tasks when the activity transitions between states, however, super classes

should be called up when implementing these methods.

The entire life time of an activity starts from the first call to onCreate()

method until a single final call to onDestroy() method. The onCreate() method

is called when the activity is first created. It should be implemented by all

activities. It is where most of the initialization should go, e.g., create views, bind

data to lists, etc. In onDestroy() method all remaining resources will be released.

The visible life time of an activity starts from a call to onStart() until a call to

onStop(). During this time, the activity is visible to the user though it might

not be in the foreground. The needed resources can be maintained as long as the

activity is visible.

1.8. ACTIVITY LIFECYCLE 11

Figure 1.2: Activity Lifecycle

The foreground life time of an activity starts from a call to onResume() until a

call to onPause(). During this time activity is on the top of the Activity stack

and is in front of all other activities and the user can interact with.

Chapter 2

Specification and Verification

Concepts

To gain confidence that critical modules and classes in android will meet their

desired functionality, we use the formal specification language JML and the tool

KeY to prove the correctness of the code with respect to its formal specifications.

In this chapter, we introduce first, JML as a formal specification language and

the KeY tool as a prover. Later on, we use them to specify and verify a small

android application.

2.1 JML (Java Modeling Language)

JML (Java Modeling Language) is a language tailored to Java for formally spec-

ifying the sequential behavior and interfaces of Java programs. JML follows the

Design by Contract methodology.

”JML specifications are usually annotated to which entities they refer. They

are written as comments starting with the symbol /*@ and also optionally end-

ing with @*/. Because they are the same as Java comments, they are ignored by

the Java compiler and they are just recognized by tools which handle JML like

the JML checker”[4].

2.1.1 Precondition And Postcondition

JML contracts state what is guaranteed under which conditions. It states that

if the module is called in any state which satisfies the precondition, then the

postcondition is true in any terminating state of the method. For example in a

13

14 CHAPTER 2. SPECIFICATION AND VERIFICATION CONCEPTS

cell phone that needs an unlock password to unlock the cell phone, the unlock

method is specified in this way:

Precondition: cell phone is locked and the user is not authenticated, entered

password by the user is correct.

Postcondition: the cell phone is unlocked and the user is authenticated.

JML (2.1)

1 /*@ public normal_behavior

2 @ requires cellPhoneIsLocked && !authenticated;

3 @ requires enteredkey == correctKey;

4 @ ensures !cellPhoneIsLocked && authenticated;

5 @ assignable cellPhoneIsLocked,authenticated;

6 @*/

7 public boolean checkKey(int enteredkey){...}

JML (2.1)

As we know every thing between /* and */ is invisible by Java and it is rec-

ognized just with JML.

JML annotations come together with visibility modifiers which are helpful to for-

mulate sensible contracts. The public keyword here means the same thing in JML

as it does in Java language. It indicates that this JML specification is visible to

all other classes in the application. Moreover public specifications can only refer

to public methods and fields.

The normal behavior states that this specification describes the state in which

the method terminates normally without throwing any exception.

The JML keyword requires is used to describe the precondition. As it is men-

tioned earlier, a precondition is a condition that must be satisfied (by the caller)

before calling a method.

To state a precondition after requires, a boolean typed JML expression has to

be given. Actually, all side-effect free Java expressions are JML expression plus

certain extensions like ==> or quantifiers \forall, \exists etc.

In our example, the requires clause states that to unlock the cell phone by this

method, the cell phone should be locked and a correct password is needed. These

are described in JML expressions.

On the other hand, the JML keyword ensures is used to describe the post-

condition. The postcondition of a method specifies the responsibilities of a

method. It states that, if precondition is fulfilled in normal termination state

of the method, the postcondition should be true.

In our example, it means, if the user enters a correct password, the cell phone

should be unlocked in termination state.

2.1. JML (JAVA MODELING LANGUAGE) 15

This is described in the JML expression after ensures.Also a boolean typed JML

expression has to be given.

2.1.2 Class Invariant

Invariants are conditions that must be true on entry and exit of every method

of a class. Although invariants are declared on the class level not in the method

level, they will be added as precondition and postcondition of every method in

the class implicitly. So, they should be held while the object is alive. For example

the following code is an invariant:

JML (2.2)

//@ public invariant correctKey>0;

JML (2.2)

It means that correctKey field should be greater than zero while as the object

is alive.

2.1.3 Model And Ghost Fields

Sometimes it is convenient to introduce an extra field, only for the purpose of the

specification.

Actually, operation contracts and instance invariants in JML may only talk about

instance and static fields occurring in the Java program they annotate. Since

instance fields may only occur in classes and not in interfaces, so to specify

interfaces we need to introduce extra fields.

To do this, JML introduces model and ghost fields. model fields are like normal

fields in a Java class with the difference that,

• they only exist in the JML specification and they are ignored by Java.

• they are abstract fields.

• we cannot assign to them.

• JML uses a ”represents” clause to associate model fields to a concrete im-

plementation.

• they change their value whenever the representation changes.

Example:

JML (2.3)

/*@ public model int key;

@ private represents key <- correctkey;@*/

JML (2.3)

16 CHAPTER 2. SPECIFICATION AND VERIFICATION CONCEPTS

A ghost field also is like a normal field with the difference that:

• We can assign to it, using set, in JML annotations.

• A set statement can be used at any place where also a Java statement

could occur.

Example:

JML

//@ public ghost int key;

...SOME JAVA CODE HERE...

// @ set key=1234;

JML

In the above code, first a ghost variable of type int is declared. Afterwards in

the middle of code between Java codes, it is assigned to ”1234”.

2.1.4 Model Method

model methods are JML methods that can only be used in specifications. They

are declared in Java comments and cannot be used in regular Java implementation

code. Like model fields, they are declared only for the purpose of specification.

They can be used as auxiliary methods to compute something or perform some-

thing else just for the purpose of specification. The following is an example:

JML (2.4)

/*@ public model nullable String[] getEmergencyNumbers() {

@ ...

@ return emergency;}

JML (2.4)

the following code is an example of using a model method in specification code:

JML (2.5)

@ invariant (\forall int i;i>=0 && i<getEmergencyNumbers().length;

getEmergencyNumbers()[i]!=null);

JML (2.5)

2.1.5 Assignable Clause

The assignable clause is used to mention all fields that can be modified by a

method. For example in the listing (2.1), just cellPhoneIsLocked,authenticated

are allowed to be modified after termination of the method. On the other hand

a method allows modifying a field Loc if any of the following factors are true[5]:

2.1. JML (JAVA MODELING LANGUAGE) 17

• Loc is mentioned in an assignable clause.

• A location mentioned in an assignable clause depends on Loc (e.g., model

fields and data groups).

• Loc is not allocated once the method started execution(Loc is a local vari-

able).

• Loc is a formal parameter or a local variable of the method.

Using \nothing (e.g., assignable\nothing) states that none of the fields

are allowed to change.

2.1.6 Inheritance In Specification

JML specifications are inherited by subclasses and classes implementing inter-

faces. The JML keyword also, at the beginning of the specification indicates that

a specification is combined with specifications inherited from ancestor classes and

from interface being implemented or as simple conjunction. So an invariant of a

class is inherited by all its subclasses, on the other hand an operation redefined

in a subclass does not inherit the operation contract from the superclass.

2.1.7 Some JML Keywords [4]

Operators:

• \result: It is used in ensures clause of a non-void method. Its value is

the value returned by the method.

• \forall: It is an universal quantifier. For example:

(\forall int i,j; 0 <= i && i<j && j<10;a[i]<a[j]) says that

the values a[0] ... a[9] are sorted. The body must be a type of boolean.

• \exists: It is an existential quantifier. For example:

(\exists int i; 0 <= i && i<10; a[i]==20) says, there exists an el-

ement in array a that equals to 20. The body must be a type of boolean.

• \old: An expression of the form \old(Expr) refers to the value that the

expression Expr had in the pre-state of a method.

Modifiers:

• nullable: Because any member field, formal parameter, method return

type and bound variable whose type is a reference type, in JML are defined

as non-null implicitly, we use this modifier to declare them as nullable,

18 CHAPTER 2. SPECIFICATION AND VERIFICATION CONCEPTS

when it is necessary. For example, if there is an member field which can

have a null value, we add nullable modifier in its declaration.

• pure: pure is only applied to methods and constructors. A pure method

has an implicit specification that does not allow any side-effects and its

specification has the following clause implicitly :

assignable \nothing

• object creation(the class name of the created object):

This keyword is used to introduce any new created object, even those that

are local objects. Actually this keyword does not belong to the official

JML standard but will be interpreted by KeY. It can be used in the fol-

lowing way: If an object of type T is allowed to be created, the term

object creation(T) has to be added to the assignable-clause. Actually

this keyword is useful for KeY system for verification process which is de-

scribed in the following section.

2.2 What Is KeY?

”The KeY system is a formal method tool that integrates design, implementation,

formal specification and formal verification as seamlessly as possible. Its intention

is to provide a platform that allows close collaboration of conventional and formal

software development methods. At the core of the system there is a novel theorem

prover for the first-order Dynamic Logic for Java with a user-friendly graphical

interface” [6]. The KeY-Tool aims to formally prove that the implementation

actually satisfies the specification written in JML or OCL(Object Constraint

Language).

The foundation of the KeY system is based on induction plus symbolic execution

which are the verification paradigm of the KeY system. The following principles

describe more details:

• A deductive verification system, meaning that its core is a theorem prover,

which proves a formula of a suitable logic. The KeY approach employs a

logic called Java Card DL, which is an instance of Dynamic Logic(DL).[7]

Dynamic Logic has a rich type system and a sequent calculus. This predi-

cate logic can easily be used to describe and reason about data structures,

the relations between objects and the values of variables, in short: about

the states of (Java) programs. Moreover DL extends the first-order logic

and the calculus so that we can describe and reason about the behavior

of programs, which requires to consider not just one but several program

states.[6] Syntactically, DL extends full first-order logic with two additional

operators: the diamond 〈.〉. and the box [.]. modality.

2.2. WHAT IS KEY? 19

In both cases, the first argument is a program and the second argument is

another DL formula.

For example:

〈p〉φ

is true in a state s if execution of p terminates normally when started in s

and results in a state where φ is true. As for the other operator, a formula

[p]φ

is true in a state s if execution of p, when started in s, does either not

terminate or result in a state where φ is true.[8]

In explanation of state s we can say: a state can be seen as current snap-

shot of the memory when running a program. It describes the value of all

variables and fields of a program. A formula in JavaCardDL is evaluated

in such a state. For example:

x $ 0 −> 〈x+ +; 〉x $ 1

is a Java DL formula. It states that, if x $ 0 is fulfilled before executing

the program sequence x + +;, then the program sequence will terminate

and x $ 1 will hold after its execution. The statement that

x+ +;

will terminate, is implied by the usage of the operator 〈〉 . If no termination

is required, the operator [] can be used instead[6].

Deduction with the KeY-Prover is based on a sequent calculus for a Dy-

namic Logic for JavaCard (JavaDL). A sequent has the form:

φ1, ..., φn ⇒ ψ1, ..., ψm(n,m >= 0)

where the φi and ψi are JavaDL-formulas. The formulas on the left-hand

side of the sequent symbol are called antecedent and the formulas on the

right-hand side are called succedent. The intuitive meaning of a sequent

is: if we assume all formulas φ1, ..., φn hold, then at least one of the for-

mulas ψ1, ..., ψm holds. The order of formulas within φ1, ..., φn and within

ψ1, ..., ψm does not matter.

• The actual verification process in the KeY system can be viewed as symbolic

execution of source code.

Symbolic execution interprets a program similar to a normal interpreter,

but instead of using concrete values for variables or fields, it uses symbolic

values (terms). For example, to find out whether the sequent

⇒ 〈o.next.prev = o; 〉o.next.prev $ o

20 CHAPTER 2. SPECIFICATION AND VERIFICATION CONCEPTS

is valid, at first, the calculus rules transform it into an equivalent but longer

sequence of statements:

⇒ 〈ListEl v; v = o.next; v.prev = o; 〉o.next.prev $ o

This way, we have reduced the reasoning about the complex expression

o.next.prev = o

to reasoning about several simpler expressions.

This process is called unfolding, and it works by introducing fresh local vari-

ables to store intermediate computation results. Now, when analyzing the

first of the simpler assignments (after removing the variable declaration),

one has to consider the possibility that evaluating the expression o.next

may produce a side effect if o is null (in that case an exception is thrown).

However, it is not possible to unfold o.next any further.

Something else has to be done, namely a case distinction. This results in

the following two new goals:

!(o $ null)⇒ {v := o.next}〈v.prev = o; 〉o.next.prev $ o

o = null⇒ 〈 throw new NullPointerException(); 〉o.next.prev $ o

The validity of the simplified formulas is specified by calculus rules.

Moreover, unbounded loops and recursion are either handled by induction

over data structures occurring in the verification target or by specifying

loop invariants and variants.[7]

In the KeY system, proof obligations are formulas that have to be proved valid.

They are designated formulas occurring in the root sequent of the proof. Actually

they are generated to prove that the methods and classes respect certain parts

of their specification.The Proof Obligation Browser in the KeY system provides

a selection of proof-obligations to verify different aspects of a method contract.

A method contract for a method m of a class C consists in general of a precon-

dition, postcondition, assignable.[8] The most standard proof obligation is total

correctness of a method implementation with respect to its contract. For more

information about foundation of the KeY system and its usage please refer to [6].

Using KeY

In this section we introduce the user interface of the KeY system briefly. In order

to use the KeY system as a verification tool, we first need to run the KeY prover.

This is done either by:

2.2. WHAT IS KEY? 21

• Start it directly via Java Web Start from the KeY website[9]

• Download the pre-compiled bytecode version from the KeY website[9]

After starting the KeY system, we see the following user interface: As we can see

Figure 2.1: KeY Prover

the interface is divided to three panes:

• a small pane on the top left which lists the proof obligations loaded

• a tabbed pane on the bottom left containing tabs for:

– the proof history (the tab Proof),

– a list of currently open goals (the tab Goals),

– a pane for choosing the rule application strategies (the tab Proof

Search Strategy),

– a summary of all available rules (the tab Rules) and finally

– a pane for some user specific constraints (the tab User Constraint).

• a big pane on the right which shows the sequence representing the currently

selected goal.

After starting the KeY system, in order to verify a piece of code, first, we should

load a proof obligation. A proof obligation can be loaded by selecting the menu

item Load in the menu File and choosing the base folder of the Java program to

be verified. After KeY has parsed the program as well as its JML specification, a

dialogue will appear which lists all available kinds (EnsuresPost, RespectsModi-

fies, PreservesInv, etc.)(see Fig. 2.3) of proof obligations for all methods and all

classes. As we know a proof obligation is a formula that has to be proved valid.

22 CHAPTER 2. SPECIFICATION AND VERIFICATION CONCEPTS

After selecting a proof obligation type, and its parameter(the method contract

and the set of assumed invariants), the proof obligation will be created as a Java

Card DL formula and will appear in the pane on the right. Later on we can start

the automatic rule application to transform the formula under consideration by

clicking on the I button either in the toolbar or in the tab Proof Search Strat-

egy.

Of course, we can apply rules manually when it is needed. The KeY system

provides an easy to use, context sensitive highlighting and selection mechanism.

When the mouse is positioned over a function or predicate symbol, the corre-

sponding term or formula will be highlighted. Clicking on such a symbol will

open a context menu which lists all rules which are (manually) applicable to the

term or formula. The selection of a rule from the context menu will apply this

rule.

2.3 Specifying and Verifying a Sample Android Applica-

tion

Before specifying some critical APIs in android, there is a small application (Login

application) which can be a good start for getting familiar with android applica-

tions and JML specifications and also the usage of the KeY system.

To do this, we specify first the sample application with JML and then we verify

that with the KeY system.

Fig. 2.2 shows the user interface of the Login application:

2.3.1 Specification with JML

In this small android application, the program asks the user to enter a correct

password and then to press the ”OK” button. If the entered password was true,

the application shows the message ”the password is correct”, otherwise ”the pass-

word is not correct”.

What is important for us in this application is the correctness functionality of

the ”OK” button when it is clicked. In other words, the user expects a correct

reaction when the ”OK” button is clicked. So we try to specify the methods

that handle the ”OK” button with JML, as completely as possible, afterwards

we verify them with the KeY system.

The implementation of the application is done by EnterPassword and Listener

classes.

The EnterPassword class is an activity component that the user can interact

with. It is where the user interface is implemented and initialized, also it has to

extend the Activity base class.

On the other hand, Listener class is responsible to perform the appropriate

2.3. SPECIFYING AND VERIFYING A SAMPLE ANDROID APPLICATION 23

Figure 2.2: Log In Application

action when the ”OK” button is clicked by the user. Listener class implements

OnClickListener interface, so it has to implement the onClick() method. This

class implements reaction, in response to the user click on the ”OK” button.

First, we explain the EnterPassword activity which starts the application, later

on we focus on the onClick() and two other methods in the Listener class and

try to specify them with JML.

The EnterPassword class is implemented as follows:

Java + JML (2.6)

public class EnterPassword extends Activity {

...

/** Called when the activity is first created. */

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

...

Listener listener=new Listener(tempInputtext,tempText);

okButton.setOnClickListener(listener);

}

Java + JML (2.6)

As we can see in the above code, the onCreate() method is implemented in the

beginning of the class. As is mentioned earlier in section 1.8, every activity has

to implement the onCreate() method. This method is called when the activity

24 CHAPTER 2. SPECIFICATION AND VERIFICATION CONCEPTS

starts. This is the place where most initialization should go.

setOnClickListener() is called in the body of onCreate(). This is where we

assign a OnClickListener to ”OK” button.

The Listener class is the place where we perform appropriate action in response

to a click on the ”OK” button. The following code is the implementation along

with the specification of Listener class.

JML

public class Listener implements OnClickListener

{

//@ public ghost boolean userHasLoggedIn=false;

private /*@ spec_public @*/ int passCode=1234;

private /*@ spec_public @*/ TextView tempText;

private /*@ spec_public @*/ EditText tempInputtext;

private /*@ spec_public @*/ int textLength;

JML

As it is obvious, all fields are defined as spec public because they are private

and cannot be used in the specification of a public method. By using spec public

we state that they are public just for the purpose of specification. Then we can

use them in a public specification.

The following code is the specification and Java code for the onClick() method,

the place where the user enters a password and clicks ”OK” button and then

expects to see a message accordingly. Further, if the user enters a wrong password

for three times she can not log in anymore and she sees an alert message (other

functions can be implemented here instead of showing a message).

JML (2.7)

1 /*@ public normal_behaviour

2 @

3 @ requires tempInputtext.getText().length()>0 &&

4 @ incorrectPINEntered<3 && !userHasLoggedIn;

5 @ ensures true ;

6 @ assignable userHasLoggedIn,incorrectPINEntered;

7 @

8 @ also

9 @ public normal_behavior

10 @

11 @ requires tempInputtext.getText().length()==0 &&!userHasLoggedIn;

12 @ ensures !userHasLoggedIn ;

13 @ assignable \nothing;

14 @

15 @ also

2.3. SPECIFYING AND VERIFYING A SAMPLE ANDROID APPLICATION 25

16 @ public normal_behavior

17 @

18 @ requires incorrectPINEntered>=3 && !userHasLoggedIn ;

19 @ ensures !userHasLoggedIn ;

20 @ assignable \nothing; @ */

21

22 public void onClick(View v)

23 {

24 if(tempInputtext.getText().length()==0)

25 {

26 //tempText.setText("Please Enter The Password!");

27 return;

28 }

29 int intPass;

30 if (incorrectPINEntered < 3) {

31 intPass=getPassword(tempInputtext);

32 if (isPasswordCorrect(intPass)) {

33 incorrectPINEntered = 0;

34 } else {

35 incorrectPINEntered++;

36

37 }

38 }

39 else

40 {

41 //tempText.setText("You have entered the password

42 // incorrectly more than 3 times!");

43 return;

44 }

45 }

JML (2.7)

The specification code in the first line states the situation that the method ter-

minates in a normal behavior without any exception. The next section in line

3 is the first required clause, it states the first precondition of the method. It

represents the condition that the length of input string ”password” is greater

than zero and the incorrect entered password by the user does not exceed the

maximum number(3) and the user has not logged in yet.

The next clause in line 5 is the ensures clause or postcondition of the method

regarding the first precondition. It states that if the requirements(precondition)

are fulfilled after termination of the method, here, we do not expect any specific

result so we just say true.

26 CHAPTER 2. SPECIFICATION AND VERIFICATION CONCEPTS

The userHasLoggedIn field is a ghost field that is declared as an auxiliary field

for the purpose of specification and it is used to indicate if the user has logged

in. We set this field to true whenever the user has logged in, otherwise it stays

false. This field is assigned to true in the body of the isPasswordCorrect()

method.

The next clause is the assignable clause in line 6. It states the locations that

can be modified after termination of the method: userHasLoggedIn,

incorrectPINEntered .

The also JML keyword in line 8 describes the other condition of executing the

method. It states that if the password field is empty and the user has not filled

it in yet and just clicks the ”OK” button, after termination of the method, the

userHasLoggedIn field, should be false and no field may be changed during ex-

ecution.

The last precondition of the method starts at line 15. It states the condition that

the incorrect entered password by the user exceed the maximum number(3) and

the user has not logged in yet. The postcondition of this state in line 19 shows

that after termination of the method userHasLoggedIn should be false and no

field may change.

In lines 26 and 41 the code is commented out just for the purpose of the verifi-

cation, because the KeY system did not support string literals when this thesis

was prepared(it does in the meantime) .

The next method that we are going to specify is getPassword(). Actually

this method is used to simplify the verification process and its specification is

very simple. We just expect the result of the method to be equal or greater than

zero.

The specification and implementation of the getPassword()method is:

Java + JML (2.8)

/*@ private normal_behavior

@ requires true;

@ ensures \result >= 0;

@ assignable \nothing;

@*/

private int getPassword(EditText input) {

return Integer.valueOf(input.getText().toString()).intValue();

}

Java + JML (2.8)

The last candidate for specifying is the isPasswordCorrect() method The

following code is the specification and implementation of this method. Later on

2.3. SPECIFYING AND VERIFYING A SAMPLE ANDROID APPLICATION 27

we try to describe it in detail.

Java + JML (2.9)

1 /*@ public normal_behaviour

2 @ requires pwd==passCode && !userHasLoggedIn;

3 @ ensures userHasLoggedIn && \result==true;

4 @ assignable userHasLoggedIn;

5 @ also

6 @ requires pwd!=passCode && !userHasLoggedIn;

7 @ ensures !userHasLoggedIn && \result==false;

8 @ assignable \nothing;

9 @*/

10

11 public boolean isPasswordCorrect(int pwd)

12 {

13 if(pwd==passCode)

14 {

15 //tempText.setText("The Password is correct!");

16 //@ set userHasLoggedIn=true;

17 return true; }

18 else

19 {

20 //tempText.setText("The Password is not correct!");

21 return false; }

22 }

Java + JML (2.9)

As we can see in the implementation, if the entered password by the user is cor-

rect, a message is shown and the ghost field userHasLoggedIn is assigned to

true. Otherwise, it is assigned to false.

The specification of the method describes that in a normal termination, if entered

password is correct, and the user is not logged in before execution of the method,

after termination, the method should return true and also userHasLoggedIn

should be true.

In the assignable clause we stated that only userHasLoggedIn may be changed

after termination of the method.

In the other case, when the entered password is not correct and the user is not

logged in earlier, the return value should be false and the assignable clause

states that nothing may change after termination of the method.

Again in lines 15 and 20 the tempText.setText(...) statements are com-

mented out as KeY only recently implemented support for treatment of Strings,

but not yet when the presented work had been carried out. In other words, al-

28 CHAPTER 2. SPECIFICATION AND VERIFICATION CONCEPTS

though they are not commented out in the running mode of the application, we

have to comment them out when we go to the verification phase in next section.

2.3.2 Verification With KeY

To verify ”android applications” by the KeY system, first, the KeY system needs

to know about the signature of the android APIs that we have used in our ap-

plication. So, we need to create a directory containing all the used and needed

android library files in our application. We name this directory as Stubs.

To create Stub files, there is a prototype generator tool: Stubmaker.

When we are going to use android, we should download SDK somewhere on the

system. There is an ”android.jar” file in this folder which can be used to generate

Stub files. We add this file as input to this tool at the command prompt.

Further there are some options in this tool so that we can restrict generated

”Stubs” only to those which are actually needed (Classes that we used in our

application, not all android’s classes). The ”Stubs” should then be put under

”myapp/Stubs/”.

As the android libraries(android.jar) are compiled to bytecode, the inner and

anonymous classes are compiled away into external classes. In other words, an-

droid compiles Java classes so that every inner class or anonymous class is com-

piled away into an external class.

For example, if there is an inner class B in class A, android creates two compiled

classes which one is the main class A and another is A$B. It also creates external

classes for anonymous classes as well.

So, the android.jar file not only consists of the main library classes but also the

extra created classes for inner and anonymous classes.

On the other hand, the stubmaker does not know that A$B type of files are inner

or anonymous classes of the main classes and creates instead normal Java source

classes for them. This is wrong and will cause a problem for the verification and

we must fix it.

The next step is to create a ”myapp.key” file which is called problem file. That

is a text file containing the path of our source files and android library classes

which are used in our application(Stubs).

Afterwards, we load this file in the KeY system.

The following detailed steps should be taken:

1. Creating a directory for stubs, which contains all used and needed android

library files. We name this directory Stubs. These library files consist of

2.3. SPECIFYING AND VERIFYING A SAMPLE ANDROID APPLICATION 29

method signatures of all classes and super classes which we used in our

application. Furthermore, we do not need the actual implementation of the

methods for the purpose of the verification, instead only contracts should

be used if necessary.

For example, assume in the application we are using an android class:

”android.app.activity”. Then we need to create the Stub:

Java (2.10)

package android.app;

public class Activity extends <superclass> implements <interfaces>{

...

public void method1 (T arg1,..., T argN);

...

public void methodM (T arg1,..., T argK);

...

}

Java (2.10)

and put this ”Stub” under ”myApp/Stubs/android/app”

Afterwards, We need to create a similar ”Stub” for all its super classes and

interfaces that are not yet known to the KeY system.

If we use one of these methods in the implementation of the application,

we should also specify the used method.

Because the stubmaker cannot handle inner classes correctly, after creating

”Stub” files we need to change some part of these files in the following way:

There are several Java files named something like

<classname1>$<classname2>.java

these are inner classes, to fix this we have to open the file

<classname1>.java

and then to inline the code in

<classname1>$<classname2>.java

After inlining it, we should delete the file

<classname1>$<classname2>.java.

Further, we have to go searching through all the ”Stubs” and if we find

somewhere (method parameter type, field type etc.) a type name called

<cl1>$<cl2>replace the name by the real name <cl1>.<cl2>

30 CHAPTER 2. SPECIFICATION AND VERIFICATION CONCEPTS

2. Creating a ”name of application”.key file. This contains path of ”Stubs”

and source files. Here the source files are under ”srcKey” directory. This

directory contains all files under ”src” directory and ”gen” directory.

For example: the file ”myApp/myApp.key” would then look as the following

code:

\bootclasspath "Stubs";

\javaSource "srcKey";

\chooseContract;

Creating ”Stub” Files For Android Libraries

To create ”Stub” files, there is a prototype generator tool: Stubmaker. Once we

are going to use android, we should download SDK somewhere on the system.

There is an android.jar file in this folder which can be used to generate ”Stub”

files. We add this file as input to this tool in command prompt:

java -jar .../stubgenerator/stubmaker.jar Stubmaker -expand -d Stubs/ -seed

android.jar android.jar

Further there are some options in this tool so that we can restrict generated

”Stubs” only to those which are actually needed (Classes that we used in our

application, not all android’s classes).

2.3.3 Verifying Enterpassword With KeY

After starting the KeY system (version 1.7.1786), we choose FileÕLoad, then we

select the ”Enterpassword.Key” file from ”select file to load proof or problem”

dialogue. The KeY system loads all program files including the provided JML

specifications automatically.

Afterwards, the ”Proof Obligation Browser” (see Fig. 2.3) lists all packages,

classes/interfaces and methods of the project to be verified in a tree structure

similar to standard file managers. In the left pane we can choose the class and

the method which we are going to prove and in the right pane we can choose

different aspects of the method specification to prove.

As Fig. 2.3 shows there are different options in the right pane to select. They

are described briefly as follows, for more information please refer to [6, ”Proof

obligations”]

• StrongOperationContract: It generates a formula used to prove that our

contract is strong enough to ensure that all invariants of a given set of

invariants INV are satisfied after return of the method if our method is

2.3. SPECIFYING AND VERIFYING A SAMPLE ANDROID APPLICATION 31

Figure 2.3: Proof Obligation Browser

called in a state where all invariants of the given set of INV are held. It

tries to prove preservation of invariants without the need to symbolically

execute the method body, but approximates the final state by reusing the

assignable clause. If the post condition is not strong enough; we will have

to use the proof obligation ”preservesInv” to prove if the method preserves

the invariants.

• PreservesInv: It generates a formula used to prove that our contract

preserves validity of a given set of invariants INV. In other words, we try

to prove that, if our method is called in a state where its precondition and

all invariants in INV hold, then all of the invariants in INV are also valid

in the method’s final state.

• PreservesOwnInv: It is a special case of PreservesInv where set INV con-

tains exactly all invariants of our class.

• EnsuresPost: It generates a formula used to prove that if our method is

called in a state where the precondition and a given set of invariants INV is

satisfied, then in the method’s final state postconditions holds and option-

ally the method terminates. Furthermore the set of additional invariants

is user customizable and can be selected in the ”Contract Configurator”

dialogue.

• RespectsModifies: It generates a formula used to verify the assignable/-

modifies clause.

In this example, we want to verify that the ”OK” button has a correct reaction

when it is clicked by the user. The method onClick() implements this function-

ality. As explained before the method itself makes use of the helper methods:

32 CHAPTER 2. SPECIFICATION AND VERIFICATION CONCEPTS

isPasswordCorrect()and getPassword(). So we first verify the latter methods

and use the contracts then for the verification of the onClick() method.

On the other hand, we need to prove the EnsurePost, RespectsModifies aspects

of the method specifications isPasswordCorrect(), onClick(),

getPassword(), to prove correctness of the EnterPassword class .

So, as it is illustrated in Fig. 2.3, we choose isPasswordCorrect() in the left

pane, and EnsuresPost in the right pane. After clicking ”Start Proof” button

another dialogue is shown to the user. Fig. 2.4 shows the ”Contract Configura-

tion” dialogue.

In this dialogue we can choose the contracts which we are going to prove. Addi-

Figure 2.4: Contract Configuration

tionally, as is mentioned earlier, a set of invariants INV can also be assumed to

be proved. This set of invariants INV, can be changed by selecting or deselection

desired invariants in the ”Assumed Invariants” page.

Without any change we just click on ”OK” button, the obligation loads as it

is shown in Fig. 2.5.

As we can see in Fig. 2.5 the loaded proof obligation is an implication, with

inReachableState acting as basic condition under which the rest of the proof obli-

gation must be true. The predicate inReachableState restricts the states to those

reachable by any Java computation.

For instance, inReachableState implies that a created object can only reference

other created objects or null.

The remaining proof obligation starts with some quantifiers and updates. There-

after, we have an implication basically saying that the (translated) requires part,

2.3. SPECIFYING AND VERIFYING A SAMPLE ANDROID APPLICATION 33

Figure 2.5: Proof Obligation

together with the (translated) class invariant, implies that the (translated) en-

sures part holds after the method.

(translated means: translate to finite sets of JAVA CARD DL formulas that

can be submitted to the KeY prover.) Actually, being on the left side of the

implication, provides additional assumptions that may, or may not, be used for

establishing the right-hand side.

After loading the obligation we can prove it automatically by clicking on I
button either in the toolbar or by right clicking on the Current Goal pane and

selecting Apply rules automatically here.

The obligation closes automatically as shown in Fig. 2.6.

RespectsModifies aspect of the method specification isPasswordCorrect(),

is also proved automatically in the same way as stated above .

We have now verified that isPasswordCorrect() satisfies its contract and

preserves the invariants of its class. Later on, when we are going to verify

onClick() we can use the now proved contract of isPasswordCorrect() in-

stead of inlining the method.

Proving getPassword() method is somewhat different from the

isPasswordCorrect() method. As we can see in the implementation of the

method, some android APIs such as: getText(), intValue(), toString()

are invoked. The KeY system needs to know about these methods and we need

to reason about the incorporated methods. To do this, we have two possibilities:

34 CHAPTER 2. SPECIFICATION AND VERIFICATION CONCEPTS

Figure 2.6: Proved Goal

1. Replacing the invocation of an API by the actual method body.

2. Replacing the invocation of an API by its specification.

Actually we often prefer to replace the invocation of an API by its speci-

fication (except when we are verifying the API itself). Because we usually do

not have access to the implementation of the APIs and we just use them in our

application.

Usually, APIs are specified and verified just when they are implemented. After-

wards, to specify any application which have used these APIs, we just need to

use their specification. This means that we do not have to do the same work over

and over again.

In other words, for every invocation of an API, if there is a specification, and

the precondition of this method is satisfied in the current state, then one may

actually replace the method call with its postcondition.

In our example, to prove correctness of the method, we should also prove

the correctness of the invariants of called APIs before calling them, if they are

assumed to be proved(if they are in the set of selected invariants INV).

They should also be held after termination of the method. Furthermore, the

specification and implementation of our method should satisfy the contract of

the used APIs.[10]

For example, as it is illustrated in the implementation of getPassword(),

we have used getText() to get the entered password by the user. For the pur-

2.3. SPECIFYING AND VERIFYING A SAMPLE ANDROID APPLICATION 35

pose of verification, we need to specify this method in its Stub file which is the

TextView.java class.

The contract is as follows:

Java + JML (2.11)

1

2 public class TextView extends android.view.View implements

3 android.view.ViewTreeObserver.OnPreDrawListener

4 {

5 ...

6 //@ public model CharSequence inputText;

7 ...

8 /*@ public normal_behaviour

9 @ requires true;

10 @ ensures \result==inputText ;

11 @*/

12 public /*@pure*/ java.lang.CharSequence getText();

Java + JML (2.11)

As it is described precisely in [6, ”Components and Modular Proofs”], we need

to ensure invariants of used components before the call.

In other words, the contract of the used APIs should remain valid under com-

position. The caller of the API should ensure the precondition and invariants of

the API before the call, and invariants and its postcondition after the call.

Because only the public interface of the API is exposed and the internal im-

plementation of the API is hidden, model fields are then a necessity to provide

a specification of the API classes. This way the specification remains modu-

lar and does not need to be changed if the implementation changes. Actually,

only the represents clauses might have to be adapted and it allows to add new

subclasses(or classes implementing an interface) and to reuse and relate to the

specification of the superclass/interface.

In the getText() method, just for specification purposes we declared a model

field inputText. It is an abstract field. It represents the real field mText.

Actually, the real field mText is set in setText() method. So to state that

the getText() method should return exactly the value that has been set in

setText() method, we use a model field.

To prevent adding more complexity to our proof obligation and because of

the purpose of this example, we just add some specification as simple as possible

to other used APIs. To prove correctness of the getPassword() method, after

loading proof obligations, in Fig. 2.3 we select the getPassword() method in the

left pane and EnsuresPost in right pane. After clicking ”Start Proof” we see

36 CHAPTER 2. SPECIFICATION AND VERIFICATION CONCEPTS

”Contract Configuration” dialogue in Fig. 2.7.

Figure 2.7: Contract Configuration

In this dialogue we choose the contract and also in Assumed Invariants page

we keep the default selection of assumed invariant without any change. The

assumed invariants are the invariants of the Listener class and are some as-

sumptions that appear in the sequent and help us to prove the correctness of the

method.

After loading the proof obligation we see Fig. 2.8.

Figure 2.8: Loaded Proof Obligation

After some interaction with the KeY system and using the contracts of used

APIs(deselection of some of the assumed invariants to decrease complexity), our

goal closes automatically.

RespectsModifies aspect of the method specification is also proved automati-

2.3. SPECIFYING AND VERIFYING A SAMPLE ANDROID APPLICATION 37

cally in the same way as stated above.

We can now turn towards the verification of method onClick() and prove

its correctness. For this we can use the now proved contract of getPassword()

and isPasswordCorrect() instead of inlining the methods.

To prove correctness of the onClick() method, after opening Proof Obliga-

tion Browser dialogue, in Fig. 2.3 we choose the onClick() method in left pane

and

EnsuresPost in the right pane. After clicking ”Start Proof” we see the ”Con-

tractConfiguration” dialogue in Fig. 2.9.

In this dialogue we choose the first contract which corresponds to the third

Figure 2.9: Contract Configuration

part of the specification of the method and also on the Assumed Invariants page

we keep the default selection of assumed invariants without any change as it is

illustrated in Fig. 2.10. After loading the proof obligation, we see Fig. 2.11. This

goal closes automatically by clicking on I button in the toolbar as it is illustrated

in Fig. 2.12.

Proving the second contract is somewhat different from the previous one be-

cause it requires user interaction to be closed. Actually after clicking on I button

and applying rules automatically we need to apply some rules by hand to close

the goal. Because in this contract of the method we are calling other APIs

we need to specify these APIs and use their contracts. One of these APIs is

the length() method of type CharSequence. We have specified this API in

CharSequence interface and also in all its implementing classes. These classes

are: AlteredCharSequence, SpannableStringBuilder, CharBuffer. In the

following code we have specified CharSequence, AlteredCharSequence. The

other classes are specified in the same way as AlteredCharSequence.

38 CHAPTER 2. SPECIFICATION AND VERIFICATION CONCEPTS

Figure 2.10: Assumed Invariants

Java + JML (2.12)

1 public interface CharSequence{

2 /*@ public normal_behaviour

3 @ requires true;

4 @ ensures \result>=0;

5 @*/

6 public /*@pure*/int length();

Java + JML (2.12)

Java + JML (2.13)

1 public class AlteredCharSequence extends java.lang.CharSequence,...

2 /*@ public model int len; @*/

3 /*@ public invariant len >=0; @*/

4 ...

5 /*@ public normal_behavior

6 @ requires true;

7 @ ensures \result == len ;

8 @*/

9 public /*@ pure @*/ int length();

Java + JML (2.13)

2.3. SPECIFYING AND VERIFYING A SAMPLE ANDROID APPLICATION 39

Figure 2.11: Loaded Proof Obligation

Figure 2.12: Proved Goal

Now we can use their contract during verification. Further, we also can simplify

the proof operation by selecting the len >=0; invariant in AlteredCharSequence

class as ”Assumed invariant” when applying ”Use Operation Contract” rule on

the length() method.

After clicking on I button and using the ”castDel” rule on some nodes of the

proof tree, we reach a state that is not provable by just clicking on I button or

using ”castDel” rule. To clear this state we should explain this proof situation in

more detail.

40 CHAPTER 2. SPECIFICATION AND VERIFICATION CONCEPTS

Actually the proof situation when starting the proof for this contract (the second

contract) is basically something like the following:

inputText.length ()==0 ->

<{

if (inputText.length ()==0) {

var = false;

} else {

var = true;

}

}> var = false

This formula should be provable as obviously the else branch is never exe-

cuted. Still we cannot prove it, because when we try to evaluate the condition of

the if statement we get first something like:

inputText.length ()==0 ==>

<{

b= inputText.length ()==0;

if (b) {

var = false;

} else {

var = true;

}

}> var = false

Followed by:

2.3. SPECIFYING AND VERIFYING A SAMPLE ANDROID APPLICATION 41

inputText.length ()==0 ==>

<{

int j = inputText.length ();

b = (j==0);

if (b) {

var = false;

} else {

var = true;

}

}> var = false

Now we symbolically execute int j = inputText.length(); using our contract

we get then the following sequent:

inputText.length () == 0 ==>

{j:=c} (

(j>=0 && j == inputText.len) ->

<{

b = (j==0);

if (b) {

var = false;

} else {

var = true;

}

}> var = false

)

But the prove tree stops here and needs the user interaction to close the goal.

To close the goal, we need to show that the result of inputText.length() in the

specification is the same as it is in the implementation. So we use the ”query”

and ”Use Operation Contract” rules on the precondition to simplify the sequent

to something as follows:

42 CHAPTER 2. SPECIFICATION AND VERIFICATION CONCEPTS

d == inputText.len && d>=0),

d == 0

==>

(c>=0 && c == inputText.len) ->

{j:=c}<{

b = (j==0);

if (b) {

var = false;

} else {

var = true;

}

}> var = false

Now we can conclude that c==d and thus that c has the value 0 as well.

This allows then to show that only the ”then” branch of the if statement can

be entered and thus after some interaction with the KeY system and using the

”castDel” rule, our goal closes automatically as it is shown in Fig. 2.13 .

Figure 2.13: Proved Goal

2.3. SPECIFYING AND VERIFYING A SAMPLE ANDROID APPLICATION 43

The third contract also can be closed automatically by using the contract of

the used APIs and using the ”castDel” rule as described above.

Chapter 3

Specification of Android

Applications

In this chapter we are going to focus on android core applications and some crit-

ical aspects of their functionalities.

We introduce the Phone application as a fundamental application and also its

critical APIs, along with their specifications in JML.

Afterwards, we focus on the Screen manager and Contact applications, describ-

ing their important APIs and their specification in JML.

3.1 Specifying the Phone Application

The Phone application is one of the most often used applications in android and

provides functionalities such as: Dialer, Bluetooth, Ring Manager, and so on.

The Phone application is a part of all produced mobile devices running android

and provides (access to) essential functionalities.

In this section we are going to focus on Emergency Dialer as a special case of

Dialer functionality.

As the Phone application is used for critical use cases like: emergency calls

and financial transactions, possible bugs in these parts can lead to financial losses,

security or safety critical issues.

For example, every mobile phone provides an Emergency Dialer functionality. To

verify that a dialed emergency number is actually handed over to the carrier is

an important safety property, while verifying that only emergency numbers are

45

46 CHAPTER 3. SPECIFICATION OF ANDROID APPLICATIONS

dispatched is a central security feature. The following is an image of the Phone

application.

Figure 3.1: Phone Application(Dialer)

3.1.1 First Walk through Specifying Emergency Dialer

The EmergencyDialer is a special dialer that is used only to dial emergency

calls.

It must be possible to dial emergency numbers even when the phone is locked, no

SIM card is available, or the mobile phone is on Airplane mode, or an emergency

number is entered instead of the PIN. Therefore the android OS provides the

activity EmergencyDialer, which is the first activity for dialing an emergency

number.

On the other hand, it should only dispatch emergency numbers provided by the

RIL (Radio Interface Layer) and SIM card.

A RIL is a layer in the android operating system which provides an interface to

the hardware’s radio and modem on a mobile phone. The android provides a Ra-

dio Interface Layer (RIL) between android telephony services (android.telephony)

and the radio hardware[11].

The mobile phone and SIM card have a preprogrammed list of emergency

numbers.

”Most GSM(Global System for Mobile Communications) mobile phones have 112,

999 and 911 as pre-programmed emergency numbers that are always available.

The SIM card issued by the operator can contain additional country-specific

emergency numbers that can be used even when roaming abroad. The GSM

3.1. SPECIFYING THE PHONE APPLICATION 47

network can also update the list of well-known emergency numbers when the

phone registers to it”.[12]

Figure 3.2: Emergency Dialer

EmergencyDialer Activity

The EmergencyDialer.java class is the first activity for dialing an emergency

number. It is a special case of the TwelveKeyDialer that:

• Allows only emergency calls to be dialed.

• Disallows voicemail functionality. Voice Mail is a computer based means

of communication. All messages are sent in the original voice of the sender

using a standard telephone.

In a single call to Voice Mail, the user can send messages to others, pick up

messages sent to her by subscribers or outside callers, reply to messages,

and send a copy of a message to someone else. Moreover there is a personal

password that protects the Voice Mail.

We also may use Voice Mail to send messages to other individual sub-

scribers, or groups of subscribers, without calling them directly.

• Handles keyguard access correctly among all of its methods. The Keyguard

is a mechanism to control access to the cell phone by providing a password

or pin code or so on, to login. In Emergency Dialer calls, the Keyguard is

ignored to call emergency numbers even if the user is not authorized. After

ending the emergency call, the Keyguard is activated again.

48 CHAPTER 3. SPECIFICATION OF ANDROID APPLICATIONS

The following is the sequence diagram of the launched components involved in

dialing an emergency number.

Figure 3.3: Emergency Sequence Diagram

In explanation of the above sequence diagram, first, EmergencyDialer activ-

ity is called by the OS to handle the emergency calls. Further, In this class,

placeCall() method is called. It is the first method which is responsible to

handle the emergency calls. To ensure that the input number is actually an

emergency number, placeCall() method calls isEmergencyNumber() method

in PhoneNumberUtils class. This method checks a given number against the list

of emergency numbers and returns false if it is not an emergency number. In

this case the EmergencyDialer activity erases the number and shows an alert

dialogue. Otherwise, it creates an Intent with the given number. Afterwards, the

activity dispatches the Intent to the responsible activity: InCallScreen. It is

done by calling startActivity method with the specified Intent.

In InCallScreen activity, the emergency number actually is handed over to

the carrier by the placeCall() method. After dispatching the number, the re-

sult of the action (failure or success) can be sent back to the caller activity:

EmergencyDialer.

Finally the finish() method in EmergencyDialer is called to end the activity.

The following is Java and JML code for the placeCall() method in

EmergencyDialer class as the first handler for an emergency call.

3.1. SPECIFYING THE PHONE APPLICATION 49

Java + JML (3.1)

1 /*@ public model String number;

2 @ public ghost boolean isCallDispatched;

3 @ invariant number==mDigits.getText().toString();

4 @*/

5 /*@ public normal_behaviour

6 @ requires !DBG &&

7 @ PhoneNumberUtils.isEmergencyNumber(number) ;

8 @ ensures isCallDispatched;

9 @ assignable isCallDispatched,mFinished,

10 @ intent.callDispatched,\object_creation(Intent);

11 @ also

12 @ requires !DBG &&

13 @ !(PhoneNumberUtils.isEmergencyNumber(number));

14 @ ensures !isCallDispatched;

15 @ assignable isCallDispatched;

16 @*/

17 void placeCall() {

18 //@ set isCallDispatched = false;

19 final String number =

20 mDigits.getText().toString();

21 if (PhoneNumberUtils.isEmergencyNumber(number))

22 { ...

23 // place the call if it is a valid number

24 Intent intent = new

25 Intent(Intent.ACTION_CALL_EMERGENCY);

26 intent.setData(Uri.fromParts("tel", number,null));

27 intent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

28 //@ set intent.callDispatched = false;

29 startActivity(intent);

30 //@ set isCallDispatched =

31 intent.callDispatched;

32 finish();

33 }

34 else {

35 // erase the number and shows an alert dialogue.

36 ...

37 }

38 }

Java + JML (3.1)

50 CHAPTER 3. SPECIFICATION OF ANDROID APPLICATIONS

First of all the normal behavior keyword indicates that this specification de-

scribes the case in which placeCall() returns normally without throwing an

exception.

The requires clause in line 6 states that, the entered number should be an emer-

gency number. The number is checked by a function in PhoneNumberUtils class

to check if it is an emergency number. The other precondition of this method is

that DBG should be false which means we are not in debug mode.

In the ensures clause in line 8, we state that by fulfilling the requirements,

just the emergency numbers should be handed over to the carrier. We show

this by introducing a ghost variable which is set to false before calling the

corresponded activity which is InCallScreen. This activity is responsible to

actually dispatch the emergency number to the network. The declared ghost field

isCallDispatched is used to check if dispatching the number to the network

has been success or not. It is set to false at the beginning in line 18. There

is another ghost field callDispatched that is introduced as an auxiliary field in

the Intent class. See listing (3.2).

Java (3.2)

public class Intent implements Parcelable {

...

//@ public ghost boolean callDispatched;

....

Java (3.2)

Because we use an Intent to dispatch the emergency number to the correspond-

ing activity InCallScreen, we add a ghost field to the Intent object to lead to

access to the result of dispatching. This field is set to false before dispatching,

it will be set again in (InCallScreen) according to situation of dispatching. Af-

ter activity InCallScreen is finished and the success or failure case is recorded

by setting the ghost field callDispatched, the ghost field isCallDispatched is

now updated accordingly (line 30).

Finally the method finish() is invoked to end the activity (line 32).

As explained in the preceding paragraphs the fields isCallDispatched,

intent.callDispatched, are potentially changed and so they have to be in-

cluded into the assignable set, further the field mFinished also is changed in the

base class: Activity after calling finish() method in line 32. Their meaning is

not of importance for our purposes and therefore not further explained.

3.1. SPECIFYING THE PHONE APPLICATION 51

Java (3.3)

public class Activity extends ContextThemeWrapper

implements LayoutInflater.Factory,

Window.Callback, KeyEvent.Callback,

OnCreateContextMenuListener, ComponentCallbacks {

...

public void finish()

{

...

mFinished = true;

...

}

...

}

Java (3.3)

As it is described in section 2.1.7, \object creation(Intent) is a KeY key-

word and we should introduce any new created object in this way.

The second part starting with also is where the other case is described. Just

like the previous case, this situation also has a requires and an ensures clause

describing the situation that the entered number is not an emergency number.

In this case the number should not be handed over to the carrier and

isCallDispatched should be false. assignable clause in line 15 states that

just isCallDispatched can be changed after termination of the method.

As we can see in line 29, startActivity(intent) is called. Actually, after

calling startActivity(intent), as it is shown in the sequence diagram 3.3, the

corresponding activity in respect to the input parameter intent is launched. The

launched activity is InCallScreen. It is where the emergency number actually

is handed over to the carrier.

In this class, the placeCall(Intent intent) method is responsible for dis-

patching the dialed number. So, the correctness of the functionality of this

method is desired. In the next step we explain the placeCall method in

InCallScreen and its specification in JML.

52 CHAPTER 3. SPECIFICATION OF ANDROID APPLICATIONS

InCallScreen Activity

As already mentioned in the previous section, the InCallScreen activity is the

place where the number is dispatched to the carrier by calling its placeCall(Intent

intent) method. Actually, the method makes a call to whomever the intent

parameter tells us to and the intent parameter is the Intent we were launched

with.

The intent here is passed through startActivity in placeCall(Intent intent)

method of EmergencyDialer class see section 3.1.1.

Java + JML (3.4)

private InCallInitStatus placeCall(Intent intent) {

...

}

Java + JML (3.4)

The method returns InCallInitStatus.SUCCESS if it successfully initiated an

outgoing call. If there was some kind of failure, return one of the other InCall-

InitStatus codes indicating what went wrong.

We want to be sure that it actually dispatches the emergency numbers to the

carrier successfully.

The specification of the placeCall() method describes more details, as follows:

Java + JML (3.5)

1 /*@ public model InCallInitStatus okToCallState;

2 @ public ghost boolean isRadioOn;

3 @ represents okToCallState<-checkIfOkToInitiateOutgoingCall();@*/

Java + JML (3.5)

The above JML specification is added directly after the header of InCallScreen

class declaration. As we can see, first a model field is declared in line 1. This

field is used to specify the method in listing(3.6). We need to specify the rela-

tion between the concrete field and the model field. The model field okToCall-

State exactly corresponds to the result of checkIfOkToInitiateOutgoingCall()

method. It means whenever we refer to okToCallState in a specification, we

mean the result of checkIfOkToInitiateOutgoingCall() in the implementa-

tion.

We describe the placeCall() method precisely in listing(3.10).

3.1. SPECIFYING THE PHONE APPLICATION 53

JML (3.6)

4 /*@ public normal_behaviour

5 @ requires

6 @ !DBG &&

7 @ intent.getAction() == Intent.ACTION_CALL_EMERGENCY &&

8 @ intent.getFlags() == Intent.FLAG_ACTIVITY_NEW_TASK &&

9 @ intent.getData().getScheme().equals("tel") &&

10 @ !intent.callDispatched &&

11 @ PhoneNumberUtils.isEmergencyNumber(

12 @ intent.getData().getSchemeSpecificPart()) &&

13 @ (okToCallStatus == InCallInitStatus.SUCCESS);

14 @ ensures intent.callDispatched && \result==

15 InCallInitStatus.SUCCESS;

16 @ assignable intent.callDispatched,(mDialer.*);

JML (3.6)

The specification of the placeCall() method starting in line 4 (listing 3.6)

describes the method contract in a normal termination. Actually, we specify two

normal behavior and one exceptional behavior cases for the method. The first

normal behavior covers the case that the input intent corresponds to an emer-

gency number and the radio is on. The second case is when the input intent

corresponds to an emergency number but the radio is off. In the first case the

requires clause states that the fields of the input parameter intent should cor-

respond to an emergency call request. Moreover the requested number should be

an emergency number and it is checked in line 11 by calling isEmergencyNumber

method of PhoneNumberUtils class (listing 3.11).

We need to be sure that intent.callDispatched is false in line 10, before dis-

patching the number. Because it is already assigned to false in EmergencyDialer

class listing(3.1) and it will be set to true after dispatching .

The ensures clause in line 14, states that, by fulfilling these requirements, after

termination of the method, intent.callDispatched should be true, because

it is set to true in line 78 listing(3.9) after dispatching the emergency number

successfully.

Also, the return value of the method should be InCallInitStatus.SUCCESS that

means we successfully initiated an outgoing call.

54 CHAPTER 3. SPECIFICATION OF ANDROID APPLICATIONS

JML (3.7)

17 @ also

18 @

19 @ requires

20 @ !DBG &&

21 @ okToCallStatus == InCallInitStatus.POWER_OFF &&

22 @ PhoneNumberUtils.isEmergencyNumber(

23 intent.getData().getSchemeSpecificPart()) &&

24 @ !isRadioOn;

25 @

26 @ ensures

27 @ isRadioOn ==>(\result==InCallInitStatus.SUCCESS &&

28 mFinished && intent.callDispatched);

29 @ assignable isRadioOn,mFinished,intent.callDispatched;

JML (3.7)

The listing(3.7) covers the second normal behavior case. It presents the situa-

tion that radio is explicitly powered off and the number is an emergency number.

As it is mentioned earlier an emergency number should be dialed even if the radio

is off. In this case, the system should try to power on the radio and try to dial the

number. To do this, the system calls another activity EmergencyCallHandler

to do whatever else is needed. The called activity is responsible to turn on the

radio and callback placeCall() in InCallScreen again.

So, for now, the method finishes the InCallScreen (since it is expecting a call-

back when the responsible activity dictates it) and just returns the success state.

To handle this situation we introduce a ghost field: isRadioOn in line 2 list-

ing(3.5). It is assigned to false in line 75 listing(3.9) once the radio is off and

the number is an emergency number. After calling the new activity, we check the

status of the radio in line 78 listing(3.9), and isRadioOn is assigned again.

The specification states that, if the radio is off and the number is an emergency

number, after termination of the method, it should be on and the number should

be dialed.

The return value should be InCallInitStatus.SUCCESS and InCallScreen ac-

tivity should be closed (mFinished==true).

In the assignable clause we state that just isRadioOn,mFinished,

intent.callDispatched are allowed to be changed after termination of the

method.

3.1. SPECIFYING THE PHONE APPLICATION 55

JML (3.8)

30 @ also

31 @

32 @ public exceptional_behaviour

33 @ requires

34 @ !DBG &&

35 @ intent.getData().getScheme().equals("voicemail") &&

36 @ (intent.getData().getSchemeSpecificPart() == null

37 @ || TextUtils.isEmpty(intent.getData().

38 @ getSchemeSpecificPart()));

39 @

40 @ signals (Exception e) e instanceof

41 @ PhoneUtils.VoiceMailNumberMissingException &&

42 @ \result==okToCallStatus ;

43 @ assignable \nothing; */

JML (3.8)

The last specification part in line 32 listing(3.8), specifies exceptional behavior

case of the method. It is when the intent contains a voicemail URI, but there’s no

voicemail number configured on the device. It can happen when the call status

is not in an acceptable state, so it may effect the way the voicemail number to

be retrieved in line 56 listing(3.9).

In this case it has specified the exception that can be thrown within a signal

clause. The exception is of type (PhoneUtils.VoiceMailNumberMissingException).

The following code shows the implementation of the placeCall(Intent intent)

method.

Java + JML (3.9)

44 private InCallInitStatus placeCall(Intent intent) {

45 // Check the current ServiceState to make sure it is

46 // OK to even try making a call.

47 InCallInitStatus okToCallStatus =

48 checkIfOkToInitiateOutgoingCall();

49 try {

50 number = getInitialNumber(intent);

51 } catch (PhoneUtils.VoiceMailNumberMissingException ex) {

52

53 if (okToCallStatus != InCallInitStatus.SUCCESS)

54 return okToCallStatus;

55

56 return InCallInitStatus.VOICEMAIL_NUMBER_MISSING;

57 }

56 CHAPTER 3. SPECIFICATION OF ANDROID APPLICATIONS

58 ...

59 boolean isEmergencyNumber =

60 PhoneNumberUtils.isEmergencyNumber(number);

61 boolean isEmergencyIntent =

62 Intent.ACTION_CALL_EMERGENCY.equals(

63 intent.getAction());

64 if (isEmergencyNumber && !isEmergencyIntent) {

65 ...

66 return InCallInitStatus.CALL_FAILED;

67 } else if (!isEmergencyNumber && isEmergencyIntent) {

68 ...

69 return InCallInitStatus.CALL_FAILED;

70 }

71 ...

72 if (okToCallStatus != InCallInitStatus.SUCCESS) {

73 if (isEmergencyNumber && (okToCallStatus ==

74 InCallInitStatus.POWER_OFF)){

75 //@ set isRadioOn = false;

76 startActivity(intent.setClassName(this,

77 EmergencyCallHandler.class.getName()));

78 /*@ set isRadioOn==(checkIfOkToInitiateOutgoingCall()

79 ==ServiceState.STATE_POWER_OFF)*@/

80 finish();

81 return InCallInitStatus.SUCCESS;

82 } else {

83 return okToCallStatus;}

84 ...

85 //@ set intent.callDispatched=false;

86 int callStatus = PhoneUtils.placeCall(mPhone, number,

87 intent.getData());

88 switch (callStatus) {

89 case PhoneUtils.CALL_STATUS_FAILED:

90 ...

91 return InCallInitStatus.CALL_FAILED;

92 case PhoneUtils.CALL_STATUS_DIALED:

93 //@ set intent.callDispatched=true;

94 return InCallInitStatus.SUCCESS;

95 ... }

96 }

Java + JML (3.9)

3.1. SPECIFYING THE PHONE APPLICATION 57

As we described before in section 2.3.3, for the purpose of verification we

need to specify all called methods in placeCall(). So we first specify the

checkIfOkToInitiateOutgoingCall method, afterwards, the isEmergencyNumber

API in JML.

The checkIfOkToInitiateOutgoingCall method checks the current

ServiceState to make sure it is OK to try making an outgoing call to the speci-

fied number. It returns InCallInitStatus.SUCCESS if it is OK to try calling the

specified number. If not, like if the radio is powered off or we have no signal, it

returns one of the other InCallInitStatus codes indicating what the problem

is.

Specification and implementation is as follows:

Java + JML (3.10)

1 /*@ public model int state;

2 @ represents state<-mPhone.getServiceState().getState();

3 @*/

4

5 /*@ public normal_behaviour

6 @ requires state==ServiceState.STATE_IN_SERVICE;

7 @ ensures \result==InCallInitStatus.SUCCESS;

8 @ assignable \nothing;

9 @ also

10 @

11 @ requires state!=ServiceState.STATE_IN_SERVICE;

12 @ ensures \result!=InCallInitStatus.SUCCESS;

13 @ assignable \nothing;

14 @ also

15 @

16 @ public exceptional_behaviour

17 @ requires state!=ServiceState.STATE_IN_SERVICE &&

18 @ state!=ServiceState.STATE_POWER_OFF &&

19 @ state!=ServiceState.STATE_OUT_OF_SERVICE &&

20 @ state!=InCallInitStatus.EMERGENCY_ONLY;

21 @ signals (Exception e) e instanceof IllegalStateException;

22 @ assignable \nothing;

23 *@/

24 private /*@ pure @*/InCallInitStatus checkIfOkToInitiateOutgoingCall()

25 {

26 int state = mPhone.getServiceState().getState();

27 switch (state) {

58 CHAPTER 3. SPECIFICATION OF ANDROID APPLICATIONS

28 case ServiceState.STATE_IN_SERVICE:

29 // Normal operation. It is OK to make outgoing calls.

30 return InCallInitStatus.SUCCESS;

31

32 case ServiceState.STATE_POWER_OFF:

33 // Radio is explicitly powered off.

34 return InCallInitStatus.POWER_OFF;

35

36 case ServiceState.STATE_OUT_OF_SERVICE:

37 case ServiceState.STATE_EMERGENCY_ONLY:

38 // The phone is registered, but locked. Only emergency

39 // numbers are allowed.

40 return InCallInitStatus.EMERGENCY_ONLY;

41 default:

42 throw new IllegalStateException(

43 "Unexpected ServiceState: " + state);

44 }

45 }

Java + JML (3.10)

As the implementation shows, the method checks the current ServiceState and

if it is in STATE IN SERVICE mode it is OK to try making an outgoing call to

the specified number. So just in this mode the result value of the method is

SUCCESS. We have described this situation in the specification in lines 5 to 13.

If the current ServiceState is none of the permitted states, an exception will

be thrown. This is described in lines 16 to 22.

As we can see in the listings (3.1), (3.5) and (3.6), the isEmergencyNumber

API, is called to determine if the number entered by the user is an emergency

one.

The following is the specification and the implementation of the method.

This API checks a given number against the list of emergency numbers pro-

vided by the RIL and SIM card. If the number is in the list of emergency

numbers listed in the RIL / SIM, then it returns true, otherwise false. label-

list:PhoneNumberUtils

Java + JML (3.11)

1 /*@ public model static non_null java.lang.String[]

2 @ emergencynumbers;

3

4 @ invariant(\exists int i,j ; j>=0 && i>=0 &&

5 @ i<emergencynumbers.length && j<emergencynumbers.length ;

6 @ emergencynumbers[i].equals("911")&&

3.1. SPECIFYING THE PHONE APPLICATION 59

7 @ emergencynumbers[j].equals("112"));

8 @ invariant(\forall int i;i>=0 && i<getEmergencyNumbers().length;

9 @ (\exists int j;j>=0 && j<emergencynumbers.length ;

10 @ emergencynumbers[j]==getEmergencyNumbers()[i]));

11 @*/

12

13 /*@ public model String[] getEmergencyNumbers() {

14 @ String numbers = SystemProperties.get("ro.ril.ecclist");

15 @ String[] _emergency =

16 @ new String[numbers.split(",").length();

17 @ for (int i=0;i< numbers.split(",").length;i++)

18 @ _emergency[i]=numbers.split(",")[i];

19 @

20 @ return _emergency;}

Java + JML (3.11)

As we can see in line 1 we have declared a model field: emergencynumbers.

This field is an array of String. It saves a list of all emergency numbers and

contains all numbers that are in RIL/SIM, plus ”912”, ”112” which are two

international emergency numbers.

In line 4 to 11 we have declared two invariants. These invariants are used to

describe the included members of the emergencynumbers array. Later on, we

use this array to specify the isEmergencyNumber API.

We also declared a model method: getEmergencyNumbers. This method (from

line 13 to 20) is used just for the purpose of specification and retrieves the list of

emergency numbers from RIL/SIM.

Java + JML (3.12)

21 /*@ public normal_behaviour

22 @ requires number !=null;

23 @ ensures \result==((\exists int i;i>=0 && i< emergencynumbers.length ;

24 @ number.equals(emergencynumbers[i])));

25 @ assignable \nothing;

26 @ also

27 @ requires number==null;

28 @ ensures \result==false;

29 @ assignable \nothing;*/

30 public static boolean isEmergencyNumber(

31 String/*@ nullable @*/ number){...}

32

Java + JML (3.12)

60 CHAPTER 3. SPECIFICATION OF ANDROID APPLICATIONS

The specification of the method starts in line 21. In line 22 we specify the

first situation, when the input number is not null. In this case, we expect a re-

sult true if the input number is in the emergencynumbers array, otherwise we

expect a result false.

In line 27 we describe the second situation when the input value is null. In this

case the return value always should be false.

In line 31, we have added /*@ nullable @*/ to input value. This is because,

in JML all fields are assumed non null by default, so if we have such a field

which may have a null data, we should state this by adding /*@ nullable @*/

before the name of the field.

3.2. SPECIFYING THE SCREEN MANAGER APPLICATION 61

3.2 Specifying the Screen manager Application

Most cell phones in the market have a way to control the access to the cell phone.

For this purpose, they have the capability to set a kind of password on the device

so that the user needs to enter the password to activate the cell phone.

Android cell phones also have this capability to lock the screen and request a

password to unlock.

When the cell phone turns on or when it is on standby mode (when we do

not use it for a while), to activate it again, the device requests for a password.

If the entered password is a correct password then the screen would be unlocked,

otherwise it would remain locked.

In android these functions are accomplished by the Screen manager applica-

tion which is run automatically by the OS when the device is turned on.

Fig. 3.4 shows the lock screen.

Figure 3.4: Lock Screen

In android, unlocking the screen can be done in three different ways based on the

user’s choice:

1. drawing a pattern

2. entering a sim pin

3. entering an account’s login and password

Fig. 3.5 shows the unlock screen expecting a pattern to be drawn by the user.

62 CHAPTER 3. SPECIFICATION OF ANDROID APPLICATIONS

Figure 3.5: Unlock Screen

Since any defects in the unlock screen functionality can lead to a blocked cell

phone so ensuring correctness of its functionality is very critical for android.

In the following section, first, we try to describe the sequence of used APIs to

lock and unlock the screen. Afterwards we specify the important APIs formally

using JML.

3.2.1 Lock And Unlock Screen Functionalities

Whenever the cell phone is turned on by the user or it is on standby mode(when a

specified timeout after a user activity is finished) and the user is going to perform

some other activities, the Lock screen pops up. As shown in Fig. 3.4, it shows

general information about the device depending on its state. The user needs to

press Menu. Afterwards, the Unlock screen(base on the user choice) is shown to

the user expecting a correct pattern as shown in Fig. 3.5.

In this scenario, the system needs to start the lock screen activity automat-

ically, when it is needed. So, android uses a service: KEYGUARD SERVICE to

accomplish this.

As it is described in Section 1.4, a service is an application component that runs

in the background, not interacting with the user, for an indefinite period of time.

This service runs automatically by the android and starts the unlock screen

activity when it is needed.

Actually, there is also another scenario to call unlock screen it is when the

3.2. SPECIFYING THE SCREEN MANAGER APPLICATION 63

screen is unlocked temporarily for some reason and should be locked again af-

ter a certain action. For example, to receive an incoming call while the device

is locked, the system needs to disable the keyguard the entire time the activity

InCallScreen is active. later on, the application should re-enable the keyguard

again.

In this situation, after disabling the keyguard (temporary) the input would be in

restricted mode. In this mode if the application needs to navigate to something

that is not safe to view without getting past the keyguard (e.g., pressing Home

key), the system will bring up the unlock screen of the keyguard.

The input is always restricted when the keyguard is showing, or when the

keyguard was suppressed by an application that disabled the keyguard or the

device has not been provisioned yet(the device has not gone through the setup

wizard and it is not ready to use).

When the system is in such a mode, certain keys, such as the Home key and the

right soft keys, do not work.

The applications always check if the key input is in restricted mode. In this

situation, it should then bring up the unlock screen of the keyguard again.

This is done by a API exitKeyguardSecurely in KeyguardManager class.

If the user gets past the keyguard, the result of this API is successful, and any

other application requested by the user or other applications can be accomplished.

Another example is EmergencyDialer activity. As we described earlier in section

3.1.1, an emergency number should be dialed even if the cell phone is locked and

the keygaurd is not passed by the user. So, in this activity also the key input is

in restricted mode and some keys do not work.

In Fig. 3.6 the sequence diagram shows the involved APIs in order to un-

lock screen in the second scenario. As we can see in the sequence diagram,

exitKeyguardSecurely is the first API called by the application that needs

to get past the keyguard to navigate to something that is not safe to view

without getting past the keyguard. After passing through some other classes,

the final class which should verify the password depending on the user selec-

tion, is one of the following classes: SimUnlockScreen, AccountUnlockScreen,

UnlockScreen.

In the next section we specify the UnlockScreen class.

Specification Of UnlockScreen

The UnlockScreen class is responsible to verify a pattern mode password and

returns the result to the caller. In this class, the API onPatternDetected detects

the pattern. It checks the drawn pattern with the correct pattern pre-declared

by the user. If it was a correct pattern, the method would return the true result

to the caller. Otherwise, it shows a message regarding the wrong pattern and

also it increases the failed attempts since the last timeout by one.

64 CHAPTER 3. SPECIFICATION OF ANDROID APPLICATIONS

Figure 3.6: Unlock Screen sequence diagram

This field(failed attempts since the last timeout) is the maximum number of

incorrect attempts before the user is prevented from trying again for. It is by

default 5. It also increases the total failed attempts. If the user has more than 5

failed attempts, the footer shows a message regarding a forgotten lock pattern.

The following codes show the specification and implementation of Unlock screen

in a pattern mode:

Java + JML (3.13)

class UnlockScreen extends LinearLayoutWithDefaultTouchRecipient

implements KeyguardScreen,

KeyguardUpdateMonitor.ConfigurationChangeCallback {

/*@ invariant mFailedPatternAttemptsSinceLastTimeout>=0;

@ invariant mTotalFailedPatternAttempts>=0;

@ public ghost boolean keyguarddone;

*/

Java + JML (3.13)

In the above code, there are two defined invariants for this class. As it is

described earlier, mFailedPatternAttemptsSinceLastTimeout field is used to

count the failed attempts since the last timeout. The default number is 5. This

means that after 5 failed attempts, the user is prevented from trying again for

some seconds. On the other hand, the mTotalFailedPatternAttempts field is

to count the total failed attempts, so that after a specified failed attempt, the

3.2. SPECIFYING THE SCREEN MANAGER APPLICATION 65

system shows a message regarding the forgotten pattern on footer.

JML (3.14)

1 /*@ public normal_behaviour

2 @ requires mLockPatternUtils.checkPattern(pattern);

3 @ ensures mCallback.authenticationOK;

4 @ assignable mCallback.*,

5 @ mUnlockHeader.mCharWrapper.mChars,

6 @ mUnlockIcon.*,

7 @ mLockPatternView.mPatternDisplayMode,

8 mLockPatternView.mAnimatingPeriodStart,

9 @ mLockPatternView.mInProgressX,mLockPatternView.mInProgressY,

10 @ mLockPatternView.mPatternDrawLookup[*][*],

11 @ mLockPatternView.mPrivateFlags,

12 @ \object_creation(RandomAccessFile),\object_creation(byte[]),

13 @ \object_creation(IllegalStateException);

14 @

15 @ also

16 @

17 @ requires !mLockPatternUtils.checkPattern(pattern) &&

18 pattern.size() >=

19 @ LockPatternUtils.MIN_PATTERN_REGISTER_FAIL &&

20 @ mFailedPatternAttemptsSinceLastTimeout <

21 @ LockPatternUtils.FAILED_ATTEMPTS_BEFORE_TIMEOUT;

22 @ ensures !mCallback.authenticationOK &&

23 @ mTotalFailedPatternAttempts==

24 @ \old(mTotalFailedPatternAttempts)+1 &&

25 @ mFailedPatternAttemptsSinceLastTimeout==

26 @ \old(mFailedPatternAttemptsSinceLastTimeout)+1;

27 @ assignable mCallback.authenticationOK,

28 @ mFailedPatternAttemptsSinceLastTimeout,

29 @ mTotalFailedPatternAttempts,

30 @ mLockPatternView.mPatternDisplayMode,

31 @ mLockPatternView.mAnimatingPeriodStart,

32 @ mLockPatternView.mInProgressX,mLockPatternView.mInProgressY,

33 @ mLockPatternView.mPatternDrawLookup[*][*],

34 @ mLockPatternView.mPrivateFlags,

35 @ mUnlockHeader.mCharWrapper.mChars,

36 @ mCallback.*, mUnlockIcon.*,

37 @ \object_creation(RandomAccessFile),\object_creation(byte[]);

38 @

39 @ also

66 CHAPTER 3. SPECIFICATION OF ANDROID APPLICATIONS

40 @

41 @ requires !mLockPatternUtils.checkPattern(pattern) &&

42 @ mFailedPatternAttemptsSinceLastTimeout >=

43 @ LockPatternUtils.FAILED_ATTEMPTS_BEFORE_TIMEOUT;

44 @ ensures !mCallback.authenticationOK &&

45 @ mFailedPatternAttemptsSinceLastTimeout==0;

46 @ assignable mCountdownTimer,mCallback.authenticationOK,

47 @ mFailedPatternAttemptsSinceLastTimeout,

48 @ mLockPatternView.mPatternDisplayMode,

49 @ mLockPatternView.mAnimatingPeriodStart,

50 @ mLockPatternView.mInProgressX,mLockPatternView.mInProgressY,

51 @ mLockPatternView.mPatternDrawLookup[*][*],

52 @ mLockPatternView.mPrivateFlags,

53 @ mUnlockHeader.mCharWrapper.mChars,

54 @ mUnlockIcon.*,

55 @ mFooterForgotPattern.*,

56 @ mFooterNormal.*,

57 @ \object_creation(mCountdownTimer),

58 @ \object_creation(RandomAccessFile),

59 @ \object_creation(byte[]); */

JML (3.14)

The requires clause in line 2 represents the first condition when the checkPattern

method compares the drawn pattern with a correct one and returns true. It

means that the drawn pattern is correct. In this case in line 3 (listing 3.14)

mCallback.authenticationOK would be true. The field authenticationOK is

a boolean auxiliary field declared in interface KeyguardViewCallback as follows:

Java + JML (3.15)

1 public interface KeyguardViewCallback {

2 ...

3 //@ public instance model boolean authenticationOK;

4 ...

5 /*@ public normal_behaviour

6 @ requires true;

7 @ ensures authenticationOK==authenticated;

8 @ assignable authenticationOK;*/

9 void keyguardDone(boolean authenticated);

Java + JML (3.15)

As we can see in diagram 3.6, the onPatternDetected method calls back the

keyguardDone method of KeyguardViewMediator class to return the result of

3.2. SPECIFYING THE SCREEN MANAGER APPLICATION 67

pattern matching. On the other hand this class implements KeyguardViewCallback

interface. We need to be sure that the result of pattern matching is returned back

correctly to the caller.

The specification of keyguardDone method in listing(3.15) states that authenticationOK

should always be equal to authenticated parameter.

The keyguardDone method in KeyguardViewMediator class is implemented

as follows:

Java + JML (3.16)

1 public class KeyguardViewMediator implements

2 KeyguardViewCallback,..

3 {

4 public void keyguardDone(boolean authenticated) {

5 ...

6 if (authenticated) {

7 mUpdateMonitor.clearFailedAttempts();

8 }

9 if (mExitSecureCallback != null) {

10 mExitSecureCallback.onKeyguardExitResult(authenticated);

11 ...

12 }

13 }

Java + JML (3.16)

In listing(3.14), in the first situation we expect the mCallback.authenticationOK

ghost field to be true. It is stated in the ensures clause in line 3 listing(3.14).

In this state, failed attempts will be reset to zero in the keyguardDone method

in line 7 listing(3.16).

The assignable clause represents all fields that may change after running the

method. This means the fields of the current class and also fields of other classes

which may change through calling a method of them in this method.

The other condition starts in line 17 listing(3.14) after the also keyword. It

describes the situation that the drawn pattern is wrong and the checkPattern

method returns false. In this condition, mCallback.authenticationOK field

should be false, also the two fields mFailedPatternAttemptsSinceLastTimeout

and

mTotalFailedPatternAttempts will be increased by one.

The last situation describes the state that the number of failed attempts hits to

the maximum allowed attempts before the time out.

So mFailedPatternAttemptsSinceLastTimeout field will reset to zero and also

mCallback.authenticationOK will be false.

68 CHAPTER 3. SPECIFICATION OF ANDROID APPLICATIONS

Java + JML (3.17)

60 public void onPatternDetected(List<LockPatternView.Cell>

61 pattern) {

62 if (mLockPatternUtils.checkPattern(pattern)) {

63 mLockPatternView.setDisplayMode(

64 LockPatternView.DisplayMode.Correct);

65 mUnlockIcon.setVisibility(View.GONE);

66 mUnlockHeader.setText("");

67 mCallback.keyguardDone(true);

68

69 }

70 else {

71 mCallback.pokeWakelock(UNLOCK_PATTERN_WAKE_INTERVAL_MS);

72 mLockPatternView.setDisplayMode(

73 LockPatternView.DisplayMode.Wrong);

74 if (pattern.size() >=

75 LockPatternUtils.MIN_PATTERN_REGISTER_FAIL) {

76 mTotalFailedPatternAttempts++;

77 mFailedPatternAttemptsSinceLastTimeout++;

78 mCallback.reportFailedPatternAttempt();

79 }

80 if (mFailedPatternAttemptsSinceLastTimeout >=

81 LockPatternUtils.FAILED_ATTEMPTS_BEFORE_TIMEOUT) {

82 long deadline = mLockPatternUtils.

83 setLockoutAttemptDeadline();

84 handleAttemptLockout(deadline);

85 return;

86 }

87 mUnlockIcon.setVisibility(View.VISIBLE);

88 mUnlockHeader.setText(R.string.lockscreen_pattern_wrong);

89 mLockPatternView.postDelayed(

90 mCancelPatternRunnable,

91 PATTERN_CLEAR_TIMEOUT_MS);

92 }

93 }

94 }

Java + JML (3.17)

3.3. SPECIFYING THE CONTACT APPLICATION 69

3.3 Specifying the Contact Application

The Contact application is one of the most important and useful applications in

a cell phone.

A Contact application is like a phone book that the user can add some contact

information to it, such as: name, telephone number, address, email address, and

so on. The user can use these pieces of information to call people or send them

an email, etc.

The following figure shows a launched Contact application.

Figure 3.7: Contact Application

Because of the importance of the functions of Add Contact and Edit Contact

in this application, the correctness of New Contact and Edit Contact activities

is our interest.

We continue with explaining these activities and their functionality, afterwards

we try to specify them in JML.

As we can see in Fig. 3.7, to create a new contact we should select the New

Contact option in the Menu list. Then we see the next activity to enter the

necessary information (see Fig. 3.8).

On the other hand, if the user selects an available contact from the list, an

activity with saved information regarding the selected contact is shown to the

user. The user is able to select the Edit option to edit information, see Fig. 3.9.

In this case also the user encounters an new activity to edit old information.

70 CHAPTER 3. SPECIFICATION OF ANDROID APPLICATIONS

Figure 3.8: New Contact

Figure 3.9: Edit Contact

At the end, in both cases, the user selects the Done button to save data properly.

So, our goal is to prove the correctness of the save functionality. To do this, we

first explain the involved APIs and next, specify formally some of them in the

next section.

3.3. SPECIFYING THE CONTACT APPLICATION 71

Specification Of Involved APIs

The diagram in Fig. 3.10 indicates the sequence of involved activities.

Figure 3.10: Contacts Diagram

EditContactActivity Class As we can see in the diagram(Fig. 3.10) after

selection of New Contact from the menu, either selecting one item in the list of

contacts, the EditContact activity will be shown to the user, and the user can

create a new contact, or edit data of an existent one. In this class, our goal is to

specify the correctness of the methods create and save which are responsible

to create a new contact or edit an existing one.

Before focusing on these methods we proceed to describe how the database in

android is organized and how it communicates with it, and also which android

component is used for this communication.

As we described in section 1.4, to communicate with databases in android,

we always need a content provider component. Actually, this component is re-

72 CHAPTER 3. SPECIFICATION OF ANDROID APPLICATIONS

sponsible to control a specific type of data and make that type of data available

to other applications. This data can be a table in the database or a file system.

To do this, every content provider implements a set of methods so that every

application can use them to save or retrieve data of the type it controls. Further,

Other applications call these methods by using a ContentResolver object and

call its methods instead of calling ContentProvider methods. A ContentResolver

provides applications with access to the content model and acts as a wrapper for

the content providers. Also it can communicate to any content provider.

So, to have a connection with a database we need to acquire the ContentResolver

of the application and later on by calling its methods we can access different

methods of different content providers.

The following list shows implementation and specification of the create method.

This method takes the entered data and saves it to a new contact.

Java + JML (3.18)

1 /*@ public model int count;

2 @ invariant count<=getAllEntries().length;

3 @ public ghost URI insertedContactUri;

4 @ represents count<-ContactEntryAdapter.

5 @ countEntries(mSections, false);

6 @*/

7

8 /*@ public model nullable EditEntry[] getAllEntries() {

9 @ EditEntry[] entry = new EditEntry[count];

10 @ for (int i=0;i<count;i++)

11 @ entry[i]=ContactEntryAdapter.getEntry(mSections, i, false);

12 @ return entry};

13 @*/

14

15 /*@ public normal_behavior

16 @ requires (\forall int i;i<count && i>=0;

17 @ getAllEntries()[i]!=null &&

18 @ getAllEntries()!=null &&

19 @ (\exists EditEntry entry ;

20 @ entry==getAllEntries()[i]&&

21 @ !People.CUSTOM_RINGTONE.equals(entry.column) &&

22 @ !People.SEND_TO_VOICEMAIL.equals(entry.column)&&

23 @ entry.getData()!=null));

24 @ ensures mResolver.query(insertedContactUri,CONTACT_PROJECTION,

25 @ null,null,null)!=null &&

3.3. SPECIFYING THE CONTACT APPLICATION 73

26 @ mResultCode==RESULT_OK;

27 @ assignable mResolver.*,mPhoto.*,mUri.*,mUri,

28 @ mResultCode,\object_creation(ContentValues),

29 @ \object_creation(ByteArrayOutputStream),

30 @ \object_creation(String),

31 @ \object_creation(Intent),

32 @ \object_creation(ByteArrayOutputStream);

33 @ also

34 @ requires (\forall int i;i<count &&

35 @ i>=0;getAllEntries()[i]==null &&

36 @ !People.CUSTOM_RINGTONE.equals(entry.column) &&

37 @ !People.SEND_TO_VOICEMAIL.equals(entry.column)&&);

38 @ ensures mResultCode==RESULT_CANCELED;

39 @ assignable mResolver.*,mPhoto.*,mResultCode,

40 @ \object_creation(ContentValues),

41 @ \object_creation(ByteArrayOutputStream),

42 @ \object_creation(String);

43 @*/

44

45 private void create() {

46 ContentValues values = new ContentValues();

47 String data;

48 int numValues = 0;

49 // Create the contact itself

50 final String name = mNameView.getText().toString();

51 if (name != null && TextUtils.isGraphic(name)) {

52 numValues++;

53 }

54 values.put(People.NAME, name);

55 values.put(People.PHONETIC_NAME,

56 mPhoneticNameView.getText().toString());

57 // Add the contact to the My Contacts group

58 Uri contactUri = People.createPersonInMyContactsGroup(

59 mResolver,values);

60 /*@ set insertedContactUri=contactUri;*/

61 ...

62 if (numValues == 0) {

63 mResolver.delete(contactUri, null, null);

64 setResult(RESULT_CANCELED);

65 }

66 else {

74 CHAPTER 3. SPECIFICATION OF ANDROID APPLICATIONS

67 mUri = contactUri;

68 setResult(RESULT_OK, resultIntent);

69 ...

70 }

71 ...

72 }

Java + JML (3.18)

Before describing the specification of the method, we need to know about the

operation of the method. We proceed to describe its functionality.

Actually, to create a new contact and adding it to the contact list, first, we

need to acquire the ContentResolver of the application. By this object we can

communicate with the ContentProvider which is responsible to control Contact

table in the database.

By sending a specific URI(Uniform Resource Identifier) which is corresponding

to the Contact table to the Content Resolver we can access the desired table, and

later on we can call insert or update methods on this table.

As we have already mentioned in the previous part, to specify the correctness

of this method, we need to be assured that after creating a new contact and

adding it to the contact list, it is actually added to the Contact table. We assure

this by a query on the Contact table and looking for the just added contact. If

the added contact was actually there, so, the correctness of the method is assured.

To specify the method first, in line 1 we have declared a model field count. It

is representing the count of entries in all sections of a new contact, see Fig. 3.8.

We use this field to count all entries in all sections visible to the user e.g(Name,

Phone Number, Email Number,...).

To count entries we call a query in the ContactEntryAdapter class. This class

is an adapter which provides access to data items of a contact in the database.

This class is also responsible for making a view for each item in the data set.

In line 8 to 13, we have described a model method. This method is an auxiliary

method to help us in the specification purpose. This method returns an array of

all entries in all sections. We use this method in specification of the create and

save methods to check if the entries in Fig. 3.8 have data or they are empty. If

at least on of the entries(except some of them which have default value) has data,

we should have a new added row in contact table corresponding to the data of

the entries.

In line 16 in the requires clause, we state that the user needs to enter at

least one entry(e.g., name or phone number). In the ensures clause we state

that if the requirement is fulfilled, after returning method, the created contact

3.3. SPECIFYING THE CONTACT APPLICATION 75

with provided information should be added to the database . We check this by

calling a query on the ”mResolver” object. This object is a ContentResolver

which provides access to the content model.

As is mentioned earlier, by calling the methods of ContentResolver we actually

call the methods of the ContentProvider corresponding to a specific table. Fur-

ther, query is one of the ContentResolver methods which we can use to access a

specific row or a specific part of a data set. By using this method plus informa-

tion regarding the added contact we can access that row of the specific contact

table.

The first parameter of this method is the URI corresponding to the added contact

to the contact table. This field is set in line 60, when a new contact is created.

The second field is a static String array which consists of a list of all fields of

a Contact. The query retrieves a cursor over the result set if there is any row

corresponding to the specified URI, otherwise it returns null.

Also the result code which propagates back to the originating activity should be

RESULT OK. That means the operation has been successful.

In line 34 we stated the other situation, when all entries are empty and the user

did not enter any data. So after finishing the method we expect the return value

to be RESULT CANCELED.

The next method which we are going to specify is the Save method. This

method saves the various fields to the existing contact.

Actually, if the user selects a contact in the list, the contact’s data is shown

to edit. Afterwards, if the user selects the Done button to save the changed

information, the save method is called. The implementation and specification

of the method is illustrated in the following list:

Java + JML (3.19)

1 // invariant count<=getAllEntries().length;

2 /*@ public normal_behavior

3 @ requires \forall int i;i<count && i>=0 ;

4 @ (\exists EditEntry entry ;

5 @ entry==getAllEntries()[i] &&

6 @ entry.getData()!=null) &&

7 @ !People.CUSTOM_RINGTONE.equals(entry.column) &&

8 @ !People.SEND_TO_VOICEMAIL.equals(entry.column);

9 @ ensures (\forall int i;i<count && i>=0;

10 @ (mResolver.query(getAllEntries()[i].uri,

11 @ CONTACT_PROJECTION,null,null,null).

12 @ getString(getAllEntries()[i].column))

13 @ .equals(getAllEntries()[i].getData())

14 @ && mResultCode==RESULT_OK;

76 CHAPTER 3. SPECIFICATION OF ANDROID APPLICATIONS

15 @ assignable \fields_of(mResolver),

16 @ \fields_of(mPhoto),mResultCode,

17 @ \object_creation(ContentValues),\object_creation(Intent),

18 @ \object_creation(ByteArrayOutputStream);

19 @ also

20 @ requires (\forall int i;i<count && i>=0 ;

21 @ getAllEntries()[i].getData()==null)&&

22 @ !People.CUSTOM_RINGTONE.equals(entry.column) &&

23 @ !People.SEND_TO_VOICEMAIL.equals(entry.column);

24 @ ensures mResultCode==RESULT_CANCELED && mUri==null;

25 @ assignable \fields_of(mResolver),\fields_of(mPhoto),

26 @ mResultCode,\fields_of(mUri),

27 @ \object_creation(ContentValues),

28 @ \object_creation(ByteArrayOutputStream);

29 @*/

30 private void save() {

31 ...

32 mResolver.update(entry.uri, values, null, null);

33 ...

34 if (!People.CUSTOM_RINGTONE.equals(entry.column) &&

35 !People.SEND_TO_VOICEMAIL.equals(entry.column)) {

36 numValues++;

37 }

38 ...

39 if (numValues == 0) {

40 // The contact is completely empty, delete it

41 mResolver.delete(mUri, null, null);

42 mUri = null;

43 setResult(RESULT_CANCELED);

44 } else {

45 ...

46 setResult(RESULT_OK, new Intent().setData(mUri));

47 }

Java + JML (3.19)

To ensure correctness of the Save method, we have to ensure that the changed

data in the Edit Contact activity after clicking ”Done” button is saved correctly

in the database.

To specify this method, first in line 3 we express the precondition of the method

in the first case, when at least one of the entries (except Ringtone, Incoming

Calls which have default value) is not null.

To be convinced that the method has a correct behavior, we need to call query

3.3. SPECIFYING THE CONTACT APPLICATION 77

for all entries with their specific URI. Later on we compare the result of the

query which is the data of the given URI(each of the entries of a contact in the

database) with the data of the entry.

We expect them to be equal if the precondition is fulfilled , after running the

method. This is illustrated in the ensures clause in line 9.

Additionally, in this case, the result of the activity which will propagate back to

the originating activity should be RESULT OK.

In the other case, when all entries are empty(except Ringtone,Incoming Calls

which have default value), mResultCode and mUri should be, RESULT CANCELED

and null respectively. As they are set in the line 42 to 43.

The assignable clause in lines 15, 25 states that all fields may change during

execution of the method.

Chapter 4

Conclusion and Future Work

Today, the mankind life is really dependent on computers and complex softwares.

Most businesses run on computers and many people use them heavily in day-to-

day routines.

Today computer softwares are used for every imaginable purpose, anywhere from

banking to ordering products to looking up recipes.

One of the important usage of computer softwares is in sensitive and critical

places such as: car engines, phone devices, aircraft’s instruments and so on.

Due to its great complexity, it is inevitable that modern softwares will suffer

from the presence of numerous errors. These software bugs are frequent sources

of security vulnerabilities, and in safety-critical systems, they are not simply ex-

pensive annoyances but can endanger lives.

The growing demand for high availability and reliability of computer systems has

led to a formal verification of such systems.

The android platform for mobile devices is one of these critical systems which

malfunction in its functionalities can lead to serious financial losses, security or

even safety critical issues.

The thesis focused on the specification of the critical android applications, but

was carried out with respect to a possible later verification using the KeY system.

In addition we concentrated on potentially safety and security critical features of

the different applications like that emergency calls send via the EmergencyDialer

are eventually dispatched to the carrier.

A functional complete specification for the Android API was not in reach for this

thesis for several reasons:

• Android libraries make extensive use of callback methods and asynchron

method invocations. JML and the current KeY support for these features

79

80 CHAPTER 4. CONCLUSION AND FUTURE WORK

are not yet sufficient resp. supported. Enriching the passed result objects

by ghost field carrying intermediate results for state information allowed

partially to overcome these restrictions on the specification side.

• Specification of third party libraries requires the use of model fields. The

KeY version with which the thesis was carried out provided only limited

support for model fields and we worked around using ghost fields where pos-

sible. The upcoming KeY version using an explicit heap model will provide

full support for model fields and allow to actually verify the specifications

developed in this thesis.

• The API documentation of the android libraries is rudimentary at best

and a major part of the work was put into understanding the functionality

of the different involved methods as well as how they interact, e.g., the

ScreenManager was particularly hard to comprehend.

At the moment the specified classes are about 1700 lines in 16 classes, namely:

Listener,AlteredCharSequence,CharSequence,CharBuffer,

SpannableStringBuilder,EmergencyDialer,InCallScreen,Activity,Intent,

PhoneNumberUtils,UnlockScreen,KeyguardViewCallback,SimUnlockScreen,

EditContactActivity,AccountUnlockScreen,Instrumentation.

From the verification of a sample android application, we gained the following

insights:

• Performance Issue: Nearly the complete android API needs to be loaded to

be able to access the necessary JML invariants and contracts. The loading

of the JML enriched skeleton classes currently slows down KeY’s startup

time to several minutes until the proof obligation browser window is dis-

played. Further, the amount of memory required to hold the associated

data structures is considerable and leads to practical problems on machines

with less memory.

• Interactive Steps: To close the proof, it was necessary to comprehend the

proof situation at one open proof goal and to apply the necessary of rule

applications by hand until the strategies could take over again. Under-

standing the proof situation required a certain familiarity/expertise with

KeY not obvious to a normal Java developer.

Despite these bottlenecks we want to emphasize that we were able to complete the

proof using KeY indicating that current state of-the-art provers can be applied

to bigger problems and provide a reasonable automation even if the later needs

still to be improved. That is in particular interesting as the application itself was

relatively small, but the attached API rather large.

81

In later stages of this thesis support for Java Strings and also the explicit heap

version of KeY came available. We expect that if both would have been available

at earlier stage of the master thesis, more work on the verification side and even

more complete and elegant specifications could have been achieved. As future

work it will be interesting to verify the specified safety and security properties

using these new developments.

Bibliography

[1] Android developers. What is android? http://developer.android.com/guide/

basics/what-is-android.html. [cited at p. 2, 10]

[2] Android developers. Application fundamentals. http://developer.android.com/

guide/topics/fundamentals.html. [cited at p. 2, 5, 6, 8, 9]

[3] WIKIPEDIA. Dalvik virtual machine. http://en.wikipedia.org/wiki/Dalvik_

virtual_machine, February 2010. [cited at p. 4]

[4] Gray T.Leavens, Erik Poll, Curtis Clifton, Yoonisk Cheon, Clyde Ruby, David Cok,

Peter Müller, Joseph Kiniry, and Patrice Chalin. JML Reference Manual, draft

revision 1.200 edition, February 2007. [cited at p. i, 13, 17]

[5] IBM. Getting started with JML. http://www.ibm.com/developerworks/java/

library/j-jml.html, March 2003. [cited at p. 16]

[6] Bernhard Beckert, Reiner Hähnle, and Peter H.Schmitt. Verification of Object-

Oriented Software: The KeY Approach, volume vol.4334 of LNCS. Springer-Verlag,

2007. [cited at p. 18, 19, 20, 30, 35]

[7] Christian Engel, Christoph Gladisch, Vladimir Klebanov, and Philipp Rümmer.

Integrating verification and testing of object-oriented software. In Tests and Proofs,

April 2008. [cited at p. 18, 20]

[8] Christian Engel, Andreas Roth, Abian Blome, Richard Bubel, and Simon Greiner.

Key quicktour for JML. http://www.key-project.org/case_studies/, March

2009. [cited at p. 19, 20]

[9] The KeY Project. Key 1.4.0. http://www.key-project.org/download/key.html,

March 2009. [cited at p. 21]

[10] Andreas Roth. Specification and verification of object-oriented components. In PhD

thesis. Fakultät für Informatik der Universität Karlsruhe, 2006. [cited at p. 34]

[11] WIKIPEDIA. Radio interface layer. http://en.wikipedia.org/wiki/Radio_

Interface_Layer, November 2009. [cited at p. 46]

[12] WIKIPEDIA. Emergency telephone number. http://en.wikipedia.org/wiki/

Emergency_telephone_number. [cited at p. 47]

83

http://developer.android.com/guide/basics/what-is-android.html
http://developer.android.com/guide/basics/what-is-android.html
http://developer.android.com/guide/topics/fundamentals.html
http://developer.android.com/guide/topics/fundamentals.html
http://en.wikipedia.org/wiki/Dalvik_virtual_machine
http://en.wikipedia.org/wiki/Dalvik_virtual_machine
http://www.ibm.com/developerworks/java/library/j-jml.html
http://www.ibm.com/developerworks/java/library/j-jml.html
http://www.key-project.org/case_studies/
http://www.key-project.org/download/key.html
http://en.wikipedia.org/wiki/Radio_Interface_Layer
http://en.wikipedia.org/wiki/Radio_Interface_Layer
http://en.wikipedia.org/wiki/Emergency_telephone_number
http://en.wikipedia.org/wiki/Emergency_telephone_number

Appendices

85

Appendix A

Specified Classes with JML

Listener class

package com.example.enterpassword;

import com.example.enterpassword.R;

import android.text.Editable;

import android.view.View;

import android.view.View.OnClickListener;

import android.widget.EditText;

import android.widget.TextView;

public class Listener implements OnClickListener

{

//@ public ghost boolean userHasLogedIn=false;

private /*@ spec_public @*/ int passCode=1234;

private /*@ spec_public @*/ TextView tempText;

private /*@ spec_public @*/ EditText tempInputtext;

private /*@ spec_public @*/ int incorrectPINEntered=0;

public Listener(EditText temp_inputtext,TextView temp_text)

{

this.tempInputtext=temp_inputtext;

this.tempText=temp_text;

}

/*@ private normal_behavior

@ requires true;

@ ensures \result >= 0;

87

88 APPENDIX A. SPECIFIED CLASSES WITH JML

@ assignable \nothing;

@*/

private int getPassword(EditText input) {

return Integer.valueOf(input.getText().toString()).intValue();

}

/*@ public normal_behaviour

@

@ requires tempInputtext.getText().length()>0 &&

incorrectPINEntered<3 && !userHasLogedIn;

@ ensures true ;

@ assignable userHasLogedIn,incorrectPINEntered;

@

@ also

@ public normal_behavior

@

@ requires tempInputtext.getText().length()==0 && !userHasLogedIn ;

@ ensures !userHasLogedIn ;

@ assignable \nothing;

@

@ also

@ public normal_behavior

@ requires incorrectPINEntered>=3 && !userHasLogedIn ;

@ ensures !userHasLogedIn ;

@ assignable \nothing;

@ */

public void onClick(View v)

{

if(tempInputtext.getText().length()==0)

{

tempText.setText("Please Enter The Password!");

return;

}

int intPass;

if (incorrectPINEntered < 3) {

intPass=getPassword(tempInputtext);

if (isPasswordCorrect(intPass)) {

incorrectPINEntered = 0;

} else {

89

incorrectPINEntered++;

}

}

else

{

tempText.setText("You have entered the password

incorrectly more than 3 times!");

return;

}

}

/*@ public normal_behaviour

@

@ requires pwd==passCode && !userHasLogedIn;

@ ensures userHasLogedIn && \result==true;

@ assignable userHasLogedIn;

@

@ also

@ public normal_behavior

@

@ requires pwd!=passCode && !userHasLogedIn;

@ ensures !userHasLogedIn && \result==false;

@ assignable userHasLogedIn;

@ */

public boolean isPasswordCorrect(int pwd)

{

if(pwd==passCode)

{

tempText.setText("The Password is correct!");

//@set userHasLogedIn=true;

return true;

}

else

{

tempText.setText("The Password is not correct!");

//@ set userHasLogedIn=false;

return false;

}

}

90 APPENDIX A. SPECIFIED CLASSES WITH JML

}

Listener class

AlteredCharSequence class

package android.text;

public class AlteredCharSequence extends java.lang.Object implements

ava.lang.CharSequence, android.text.GetChars

{

/*@ public model int len; @*/

//@ public invariant len >=0;

...

/*@ public normal_behavior

@ requires true;

@ ensures \result == len;

@*/

public /*@ pure @*/ int length();

}

AlteredCharSequence class

CharSequence class

package java.lang;

public interface CharSequence

{

/*@ public normal_behaviour

@ requires true;

@ ensures \result>=0;

@ assignable \nothing;

@*/

public /*@pure*/int length();

/*@ public normal_behaviour

@ requires true;

@ ensures true;

@ assignable \nothing;

@*/

public java.lang.String toString();

}

CharSequence class

91

SpannableStringBuilder class

package android.text;

public class SpannableStringBuilder extends java.lang.Object

implements java.lang.CharSequence,

android.text.GetChars, android.text.Spannable,

android.text.Editable, java.lang.Appendable

{

/*@ public model int len; @*/

//@ public invariant len >=0;

/*@ public normal_behavior

@ requires true;

@ ensures \result == len ;

@*/

public /*@ pure @*/ int length();

SpannableStringBuilder class

CharBuffer class

package java.nio;

public abstract class CharBuffer extends java.nio.Buffer implements

java.lang.Comparable, java.lang.CharSequence,

java.lang.Appendable, java.lang.Readable

{

/*@ public model int len; @*/

//@ public invariant len >=0;

/*@ public normal_behavior

@ requires true;

@ ensures \result == len;

@*/

public /*@ pure @*/ int length();

CharBuffer class

EmergencyDialer class

//package com.android.phone;

package com.android.phone;

public class EmergencyDialer extends Activity

92 APPENDIX A. SPECIFIED CLASSES WITH JML

implements View.OnClickListener,

View.OnLongClickListener,

View.OnKeyListener,

TextWatcher {

/*@ public model String number;

@ public ghost boolean isCallDispatched;

@ invariant number==mDigits.getText().toString();

@*/

private /*@ nullable*/ ToneGenerator mToneGenerator;

private /*@nullable*/ Object mToneGeneratorLock = new Object();

/*@

@ public normal_behaviour

@ requires !DBG && keyCode==KEYCODE_CALL &&

@ !(TextUtils.isEmpty(number))

@ &&PhoneNumberUtils.isEmergencyNumber(number)

@ && (number!=null ||TextUtils.isGraphic(number);

@ ensures iscalldispatched==true && \result==true;

@ assignable iscalldispatched,mFinished,intent.call_dispatched,

@ \object_creation(Intent),\object_creation(String);

@ also

@ requires !DBG && keyCode==KEYCODE_CALL && !(TextUtils.isEmpty(number)) &&

@!PhoneNumberUtils.isEmergencyNumber(number);

@ ensures iscalldispatched==false && \result==true;

@ assignable iscalldispatched,\object_creation(String),

@ \fields_of(mDigits.getText());

@ also

@ requires !DBG && keyCode==KEYCODE_CALL && (TextUtils.isEmpty(number))

@ ensures \result==true;

@ assignable mFinished;

*/

@Override

public boolean onKeyDown(int keyCode, KeyEvent event) {

switch (keyCode) {

case KeyEvent.KEYCODE_CALL: {

if (TextUtils.isEmpty(mDigits.getText().toString())) {

// if we are adding a call from the InCallScreen and the phone

// number entered is empty, we just close the dialer to expose

93

// the InCallScreen under it.

finish();

} else {

// otherwise, we place the call.

placeCall();

}

return true;

}

}

return super.onKeyDown(keyCode, event);

}

private void keyPressed(int keyCode) {

KeyEvent event = new KeyEvent(KeyEvent.ACTION_DOWN, keyCode);

mDigits.onKeyDown(keyCode, event);

}

/*@ public normal_behaviour

@ requires !DBG && keyCode==KeyEvent.KEYCODE_ENTER &&

@ view.getId()== R.id.digits &&!(TextUtils.isEmpty(number)) &&

@ PhoneNumberUtils.isEmergencyNumber(number) &&

@ (number!=null ||TextUtils.isGraphic(number);

@ ensures iscalldispatched==true && \result==true;

@ assignable iscalldispatched,mFinished,intent.call_dispatched,

@ \object_creation(Intent),\object_creation(String);

@ also

@ requires !DBG && keyCode==KeyEvent.KEYCODE_ENTER &&

@ view.getId()== R.id.digits

@ &&!(TextUtils.isEmpty(number)) &&

@!PhoneNumberUtils.isEmergencyNumber(number);

@ ensures iscalldispatched==false && \result==true;

@ assignable iscalldispatched,\object_creation(String),

@ \fields_of(mDigits.getText());

@ also

@ requires !DBG && view.getId() != R.id.digits;

@ ensures \result==false;

@ assignable \nothing;

*/

public boolean onKey(View view, int keyCode, KeyEvent event) {

switch (view.getId()) {

case R.id.digits:

94 APPENDIX A. SPECIFIED CLASSES WITH JML

if (keyCode == KeyEvent.KEYCODE_ENTER) {

placeCall();

return true;

}

break;

}

return false;

}

/*@ public normal_behaviour

@ requires !DBG && view.getId()== R.id.digits &&

@ !(TextUtils.isEmpty(number)) &&

@ PhoneNumberUtils.isEmergencyNumber(number)&&

@ (number!=null ||TextUtils.isGraphic(number);

@ ensures iscalldispatched==true ;

@ assignable iscalldispatched,mFinished,intent.call_dispatched,

@ \object_creation(Intent),\object_creation(String);

@ also

@ requires !DBG && view.getId()== R.id.digits &&

@ !(TextUtils.isEmpty(number)) &&

@!PhoneNumberUtils.isEmergencyNumber(number);

@ ensures iscalldispatched==false ;

@ assignable iscalldispatched,\object_creation(String),

@ \fields_of(mDigits.getText());

@*/

public void onClick(View view) {

final Editable digits = mDigits.getText();

switch (view.getId()) {

case R.id.one: {

playTone(ToneGenerator.TONE_DTMF_1);

keyPressed(KeyEvent.KEYCODE_1);

return;

}

case R.id.two: {

playTone(ToneGenerator.TONE_DTMF_2);

keyPressed(KeyEvent.KEYCODE_2);

return;

}

case R.id.three: {

playTone(ToneGenerator.TONE_DTMF_3);

95

keyPressed(KeyEvent.KEYCODE_3);

return;

}

case R.id.four: {

playTone(ToneGenerator.TONE_DTMF_4);

keyPressed(KeyEvent.KEYCODE_4);

return;

}

case R.id.five: {

playTone(ToneGenerator.TONE_DTMF_5);

keyPressed(KeyEvent.KEYCODE_5);

return;

}

case R.id.six: {

playTone(ToneGenerator.TONE_DTMF_6);

keyPressed(KeyEvent.KEYCODE_6);

return;

}

case R.id.seven: {

playTone(ToneGenerator.TONE_DTMF_7);

keyPressed(KeyEvent.KEYCODE_7);

return;

}

case R.id.eight: {

playTone(ToneGenerator.TONE_DTMF_8);

keyPressed(KeyEvent.KEYCODE_8);

return;

}

case R.id.nine: {

playTone(ToneGenerator.TONE_DTMF_9);

keyPressed(KeyEvent.KEYCODE_9);

return;

}

case R.id.zero: {

playTone(ToneGenerator.TONE_DTMF_0);

keyPressed(KeyEvent.KEYCODE_0);

return;

}

case R.id.pound: {

playTone(ToneGenerator.TONE_DTMF_P);

keyPressed(KeyEvent.KEYCODE_POUND);

96 APPENDIX A. SPECIFIED CLASSES WITH JML

return;

}

case R.id.star: {

playTone(ToneGenerator.TONE_DTMF_S);

keyPressed(KeyEvent.KEYCODE_STAR);

return;

}

case R.id.digits: {

placeCall();

return;

}

case R.id.backspace: {

keyPressed(KeyEvent.KEYCODE_DEL);

return;

}

}

}

/*@ public normal_behaviour

@ requires !DBG &&

@ PhoneNumberUtils.isEmergencyNumber(number) ;

@ ensures isCallDispatched;

@ assignable isCallDispatched,mFinished,

@ intent.callDispatched,\object_creation(Intent);

@ also

@ requires !DBG &&

@ !(PhoneNumberUtils.isEmergencyNumber(number));

@ ensures !isCallDispatched;

@ assignable isCallDispatched;

@*/

void placeCall() {

//@ set iscalldispatched = false;

final String number = mDigits.getText().toString();

if (PhoneNumberUtils.isEmergencyNumber(number)) {

if (DBG) Log.d(LOG_TAG, "placing call to " + number);

// place the call if it is a valid number

if (number == null || !TextUtils.isGraphic(number)) {

// There is no number entered.

97

playTone(ToneGenerator.TONE_PROP_NACK);

return;

}

Intent intent = new Intent(Intent.ACTION_CALL_EMERGENCY);

intent.setData(Uri.fromParts("tel", number, null));

intent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

//@ set intent.call_dispatched = false;

startActivity(intent);

//@ set iscalldispatched = intent.call_dispatched;

finish();

} else {

if (DBG) Log.d(LOG_TAG, "rejecting bad requested number " + number);

// erase the number and throw up an alert dialogue.

mDigits.getText().delete(0, mDigits.getText().length());

displayErrorBadNumber(number);

}

}

}

EmergencyDialer class

InCallScreen class

package com.android.phone;

public class InCallScreen extends Activity

implements View.OnClickListener, View.OnTouchListener,

CallerInfoAsyncQuery.OnQueryCompleteListener {

/*@ public model InCallInitStatus okToCallState;

@ public ghost boolean isRadioOn;

@ represents okToCallState<-checkIfOkToInitiateOutgoingCall();

@ public model int state;

@ represents state<-mPhone.getServiceState().getState();

@*/

/*@ public normal_behaviour

@ requires

@ !DBG &&

@ intent.getAction() == Intent.ACTION_CALL_EMERGENCY &&

@ intent.getFlags() == Intent.FLAG_ACTIVITY_NEW_TASK &&

@ intent.getData().getScheme().equals("tel") &&

98 APPENDIX A. SPECIFIED CLASSES WITH JML

@ !intent.callDispatched &&

@ PhoneNumberUtils.isEmergencyNumber(

@ intent.getData().getSchemeSpecificPart()) &&

@ (okToCallStatus == InCallInitStatus.SUCCESS);

@ ensures intent.callDispatched && \result==

InCallInitStatus.SUCCESS;

@ assignable intent.callDispatched,(mDialer.*);

@

@ also

@

@ requires

@ !DBG &&

@ okToCallStatus == InCallInitStatus.POWER_OFF &&

@ PhoneNumberUtils.isEmergencyNumber(

intent.getData().getSchemeSpecificPart()) &&

@ !isRadioOn;

@

@ ensures

@ isRadioOn ==>(\result==InCallInitStatus.SUCCESS &&

mFinished && intent.callDispatched);

@ assignable isRadioOn,mFinished,intent.callDispatched;

@

@ also

@

@ public exceptional_behaviour

@ requires

@ !DBG &&

@ intent.getData().getScheme().equals("voicemail") &&

@ (intent.getData().getSchemeSpecificPart() == null

@ || TextUtils.isEmpty(intent.getData().

@ getSchemeSpecificPart()));

@

@ signals (Exception e) e instanceof

@ PhoneUtils.VoiceMailNumberMissingException &&

@ \result==okToCallStatus ;

@ assignable \\nothing;

private InCallInitStatus placeCall(Intent intent) {

if (VDBG) log("placeCall()... intent = " + intent);

99

String number;

// Check the current ServiceState to make sure it’s OK

// to even try making a call.

InCallInitStatus okToCallStatus = checkIfOkToInitiateOutgoingCall();

try {

number = getInitialNumber(intent);

} catch (PhoneUtils.VoiceMailNumberMissingException ex) {

// If the call status is NOT in an acceptable state, it

// may effect the way the voicemail number is being

// retrieved. Mask the VoiceMailNumberMissingException

// with the underlying issue of the phone state.

if (okToCallStatus != InCallInitStatus.SUCCESS) {

if (DBG) log("Voicemail number not reachable in current SIM card state.");

return okToCallStatus;

}

if (DBG) log("VoiceMailNumberMissingException from getInitialNumber()");

return InCallInitStatus.VOICEMAIL_NUMBER_MISSING;

}

if (number == null) {

Log.w(LOG_TAG, "placeCall: couldn’t get a

 phone number from Intent " + intent);

return InCallInitStatus.NO_PHONE_NUMBER_SUPPLIED;

}

boolean isEmergencyNumber =

PhoneNumberUtils.isEmergencyNumber(number);

boolean isEmergencyIntent =

Intent.ACTION_CALL_EMERGENCY.equals(intent.getAction());

if (isEmergencyNumber && !isEmergencyIntent) {

Log.e(LOG_TAG, "Non-CALL_EMERGENCY Intent " + intent

+ " attempted to call emergency number " + number

+ ".");

return InCallInitStatus.CALL_FAILED;

} else if (!isEmergencyNumber && isEmergencyIntent) {

Log.e(LOG_TAG, "Received CALL_EMERGENCY Intent " + intent

+ " with non-emergency number " + number

100 APPENDIX A. SPECIFIED CLASSES WITH JML

+ " -- failing call.");

return InCallInitStatus.CALL_FAILED;

}

// need to make sure that the state is adjusted if we are ONLY

// allowed to dial emergency numbers AND we encounter an

// emergency number request.

if (isEmergencyNumber && okToCallStatus ==

InCallInitStatus.EMERGENCY_ONLY) {

okToCallStatus = InCallInitStatus.SUCCESS;

if (DBG) log("Emergency number detected, changing state to: " +

okToCallStatus);

}

if (okToCallStatus != InCallInitStatus.SUCCESS) {

// If this is an emergency call, we call the emergency call

// handler activity to turn on the radio and do whatever else

// is needed. For now, we finish the InCallScreen (since were

// expecting a callback when the emergency call handler dictates

// it) and just return the success state.

if (isEmergencyNumber && (okToCallStatus ==

InCallInitStatus.POWER_OFF)) {

// @ set isradioon = false;

startActivity(intent.setClassName(this,

EmergencyCallHandler.class.getName()));

/*@ set isRadioOn==(checkIfOkToInitiateOutgoingCall()

==ServiceState.STATE_POWER_OFF)*@/

if (DBG) log("placeCall: starting EmergencyCallHandler, finishing...");

finish();

return InCallInitStatus.SUCCESS;

} else {

return okToCallStatus;

}

}

// We have a valid number, so try to actually place a call:

//make sure we pass along the URI as a reference to the contact.

//@ set intent.call_dispatched=true;

int callStatus = PhoneUtils.placeCall(mPhone, number, intent.getData());

101

switch (callStatus) {

case PhoneUtils.CALL_STATUS_DIALED:

if (VDBG) log("placeCall: PhoneUtils.placeCall()

 succeeded for regular call ’"

+ number + "’.");

// Any time we initiate a call, force the DTMF dialpad to

// close. (We want to make sure the user can see the regular

// in-call UI while the new call is dialing, and when it

// first gets connected.)

mDialer.closeDialer(false); // no "closing" animation

// Also, in case a previous call was already active (i.e. if

// we just did "Add call"), clear out the "history" of DTMF

// digits you typed, to make sure it doesn’t persist from the

// previous call to the new call.

// TODO: it would be more precise to do this when the actual

// phone state change happens (i.e. when a new foreground

// call appears and the previous call moves to the

// background), but the InCallScreen doesn’t keep enough

// state right now to notice that specific transition in

// onPhoneStateChanged().

mDialer.clearDigits();

//@ set intent.call_dispatched=true;

return InCallInitStatus.SUCCESS;

case PhoneUtils.CALL_STATUS_DIALED_MMI:

if (DBG) log("placeCall: specified number was an MMI code:

// ’" + number + "’.");

// The passed-in number was an MMI code, not a regular phone number!

// This isn’t really a failure; the Dialer may have deliberately

// fired a ACTION_CALL intent to dial an MMI code, like for a

// USSD call.

//

// Presumably an MMI_INITIATE message will come in shortly

// (and we’ll bring up the "MMI Started" dialogue), or else

// an MMI_COMPLETE will come in (which will take us to a

102 APPENDIX A. SPECIFIED CLASSES WITH JML

// different Activity; see PhoneUtils.displayMMIComplete()).

return InCallInitStatus.DIALED_MMI;

case PhoneUtils.CALL_STATUS_FAILED:

Log.w(LOG_TAG, "placeCall: PhoneUtils.placeCall() FAILED for number ’"

+ number + "’.");

// We couldn’t successfully place the call; there was some

// failure in the telephony layer.

return InCallInitStatus.CALL_FAILED;

default:

Log.w(LOG_TAG, "placeCall: unknown callStatus " + callStatus

+ " from PhoneUtils.placeCall() for number ’" + number + "’.");

return InCallInitStatus.SUCCESS; // Try to continue anyway...

}

}

/*@ public normal_behaviour

@ requires state==ServiceState.STATE_IN_SERVICE;

@ ensures \result==InCallInitStatus.SUCCESS;

@ assignable \nothing;

@ also

@

@ requires state!=ServiceState.STATE_IN_SERVICE;

@ ensures \result!=InCallInitStatus.SUCCESS;

@ assignable \nothing;

@ also

@

@ public exceptional_behaviour

@ requires state!=ServiceState.STATE_IN_SERVICE &&

@ state!=ServiceState.STATE_POWER_OFF &&

@ state!=ServiceState.STATE_OUT_OF_SERVICE &&

@ state!=InCallInitStatus.EMERGENCY_ONLY;

@ signals (Exception e) e instanceof IllegalStateException;

@ assignable \nothing;*/

private /*@ pure*/ InCallInitStatus checkIfOkToInitiateOutgoingCall() {

// Watch out: do NOT use PhoneStateIntentReceiver.getServiceState() here;

// that’s not guaranteed to be fresh. To synchronously get the

// CURRENT service state, ask the Phone object directly:

int state = mPhone.getServiceState().getState();

if (VDBG) log("checkIfOkToInitiateOutgoingCall: ServiceState = " + state);

switch (state) {

103

case ServiceState.STATE_IN_SERVICE:

// Normal operation. It’s OK to make outgoing calls.

return InCallInitStatus.SUCCESS;

case ServiceState.STATE_POWER_OFF:

// Radio is explictly powered off.

return InCallInitStatus.POWER_OFF;

case ServiceState.STATE_OUT_OF_SERVICE:

case ServiceState.STATE_EMERGENCY_ONLY:

// The phone is registered, but locked. Only emergency

// numbers are allowed.

return InCallInitStatus.EMERGENCY_ONLY;

default:

throw new IllegalStateException("Unexpected ServiceState: " + state);

}

}

InCallScreen class

PhoneNumberUtils class

package android.telephony;

public class PhoneNumberUtils

{

//@ public model static int MIN_MATCH;

//@ invariant MIN_MATCH==5;

/*@ public model static non_null java.lang.String[]

@ emergencynumbers;

@ invariant(\exists int i,j ; j>=0 && i>=0 &&

@ i<emergencynumbers.length && j<emergencynumbers.length ;

@ emergencynumbers[i].equals("911")&&

@ emergencynumbers[j].equals("112"));

@ invariant(\forall int i;i>=0 && i<getEmergencyNumbers().length;

@ (\exists int j;j>=0 && j<emergencynumbers.length ;

@ emergencynumbers[j]==getEmergencyNumbers()[i]));

@*/

/*@ public model String[] getEmergencyNumbers() {

@ String numbers = SystemProperties.get("ro.ril.ecclist");

@ String[] _emergency =

@ new String[numbers.split(",").length()];

104 APPENDIX A. SPECIFIED CLASSES WITH JML

@ for (int i=0;i< numbers.split(",").length;i++)

@ _emergency[i]=numbers.split(",")[i];

@

@ return _emergency;}

/*@public normal_behaviour

@requires true;

@ensures \result==(c >= ’0’ && c <= ’9’);

@assignable \nothing;

@*/

/** True if c is ISO-LATIN characters 0-9 */

public static boolean

isISODigit (char c) {

return c >= ’0’ && c <= ’9’;

}

/*@public normal_behaviour

@requires true;

@ensures \result==((c >= ’0’ && c <= ’9’) || c == ’*’ || c == ’#’);

@assignable \nothing;

@*/

/** True if c is ISO-LATIN characters 0-9, *, # */

public final static boolean

is12Key(char c) {

return (c >= ’0’ && c <= ’9’) || c == ’*’ || c == ’#’;

}

/*@public normal_behaviour

@requires true;

@ensures \result==((c >= ’0’ && c <= ’9’) || c == ’*’ ||

c == ’#’ || c == ’+’ || c == WILD);

@assignable \nothing;

@*/

/** True if c is ISO-LATIN characters 0-9, *, # , +, WILD */

public final static boolean

isDialable(char c) {

return (c >= ’0’ && c <= ’9’) || c == ’*’ || c == ’#’ ||

c == ’+’ || c == WILD;

}

105

/*@public normal_behaviour

@requires true;

@ensures \result==((c >= ’0’ && c <= ’9’) || c == ’*’ || c == ’#’

|| c == ’+’);

@assignable \nothing;

@*/

/** True if c is ISO-LATIN characters 0-9, *, # , + (no WILD) */

public final static boolean

isReallyDialable(char c) {

return (c >= ’0’ && c <= ’9’) || c == ’*’ || c == ’#’ || c == ’+’;

}

/*@public normal_behaviour

@requires true;

@ensures \result==((c >= ’0’ && c <= ’9’) || c == ’*’ || c == ’#’

|| c == ’+’

@|| c == WILD || c == WAIT || c == PAUSE);

@assignable \nothing;

@*/

/** True if c is ISO-LATIN characters 0-9, *, # , +,

WILD, WAIT, PAUSE */

public final static boolean

isNonSeparator(char c) {

return (c >= ’0’ && c <= ’9’) || c == ’*’ || c == ’#’ || c == ’+’

|| c == WILD || c == WAIT || c == PAUSE;

}

/*@public normal_behaviour

@requires true;

@ensures \result==(c == PAUSE || c == WAIT);

@assignable \nothing;

@*/

/*@public normal_behaviour

@requires (a.length()!=0 && b.length()!=0 && a.length()==b.length()&&

@ a.length()<=MIN_MATCH);

@ensures \result==(a.equals(b));

@assignable \nothing;

106 APPENDIX A. SPECIFIED CLASSES WITH JML

@also

@requires (a.length()!=0 && b.length()!=0 &&

@ (a.length() >=MIN_MATCH && b.length() >=MIN_MATCH));

@ensures \result==(\exists String s;s.length()>=MIN_MATCH ;

@ a.lastIndexOf(s)>=0

@ && b.lastIndexOf(s)>=0);

@assignable \nothing;

@also

@requires (a.length()==0 || b.length()==0);

@ensures \result==false;

@assignable \nothing;

@*/

public static boolean compare(String a, String b) {

int ia, ib;

int matched;

if (a == null || b == null) return a == b;

if (a.length() == 0 || b.length() == 0) {

return false;

}

ia = indexOfLastNetworkChar (a);

ib = indexOfLastNetworkChar (b);

matched = 0;

while (ia >= 0 && ib >=0) {

char ca, cb;

boolean skipCmp = false;

ca = a.charAt(ia);

if (!isDialable(ca)) {

ia--;

skipCmp = true;

}

cb = b.charAt(ib);

if (!isDialable(cb)) {

107

ib--;

skipCmp = true;

}

if (!skipCmp) {

if (cb != ca && ca != WILD && cb != WILD) {

break;

}

ia--; ib--; matched++;

}

}

if (matched < MIN_MATCH) {

int aLen = a.length();

// if the input strings match, but their lengths < MIN_MATCH,

// treat them as equal.

if (aLen == b.length() && aLen == matched) {

return true;

}

return false;

}

// At least one string has matched completely;

if (matched >= MIN_MATCH && (ia < 0 || ib < 0)) {

return true;

}

/*

* Now, what remains must be one of the following for a

* match:

*

* - a ’+’ on one and a ’00’ or a ’011’ on the other

* - a ’0’ on one and a (+,00)<country code> on the other

* (for this, a ’0’ and a ’00’ prefix would have succeeded above)

*/

if (matchIntlPrefix(a, ia + 1)

&& matchIntlPrefix (b, ib +1)

) {

return true;

108 APPENDIX A. SPECIFIED CLASSES WITH JML

}

if (matchTrunkPrefix(a, ia + 1)

&& matchIntlPrefixAndCC(b, ib +1)

) {

return true;

}

if (matchTrunkPrefix(b, ib + 1)

&& matchIntlPrefixAndCC(a, ia +1)

) {

return true;

}

return false;

}

/*@ public normal_behaviour

@ requires number !=null;

@ ensures \result==((\exists int i;i>=0 && i< emergencynumbers ;

@ number.equals(emergencynumbers[i])));

@ assignable \nothing;

@ also

@ requires number==null;

@ ensures \result==false;

@ assignable \nothing;*/

*/

public static boolean isEmergencyNumber(String/*@ nullable*/ number) {

// Strip the separators from the number before comparing it

// to the list.

number = extractNetworkPortion(number);

// retrieve the list of emergency numbers

String numbers = SystemProperties.get("ro.ril.ecclist");

if (!TextUtils.isEmpty(numbers)) {

// searches through the comma-separated list for a match,

// return true if one is found.

for (String emergencyNum : numbers.split(",")) {

109

if (emergencyNum.equals(number)) {

return true;

}

}

// no matches found against the list!

return false;

}

//no ecclist system property, so use our own list.

return (number.equals("112") || number.equals("911"));

}

PhoneNumberUtils class

UnlockScreen class

package com.android.internal.policy.impl;

class UnlockScreen extends LinearLayoutWithDefaultTouchRecepient

implements KeyguardScreen, KeyguardUpdateMonitor.

ConfigurationChangeCallback {

/*@ invariant mFailedPatternAttemptsSinceLastTimeout>=0;

@ invariant mTotalFailedPatternAttempts>=0;

@ public ghost boolean keyguarddone;

@*/

/*@ public normal_behaviour

@ requires mLockPatternUtils.checkPattern(pattern);

@ ensures mCallback.authenticationOK;

@ assignable mCallback.authenticationOK,mCallback.*,

@ mUnlockHeader.mCharWrapper.mChars,

@ mUnlockIcon.*,

@ mLockPatternView.mPatternDisplayMode,

@ mLockPatternView.mAnimatingPeriodStart,

@ mLockPatternView.mInProgressX,mLockPatternView.mInProgressY,

@ mLockPatternView.mPatternDrawLookup[*][*],

@ mLockPatternView.mPrivateFlags,

@ \object_creation(RandomAccessFile),\object_creation(byte[]),

@ \object_creation(IllegalStateException);

@

@ also

@

@ requires !mLockPatternUtils.checkPattern(pattern) &&

110 APPENDIX A. SPECIFIED CLASSES WITH JML

@ pattern.size() >=

@ LockPatternUtils.MIN_PATTERN_REGISTER_FAIL &&

@ mFailedPatternAttemptsSinceLastTimeout <

@ LockPatternUtils.FAILED_ATTEMPTS_BEFORE_TIMEOUT;

@ ensures !mCallback.authenticationOK &&

@ mTotalFailedPatternAttempts==

@ \old(mTotalFailedPatternAttempts)+1 &&

@ mFailedPatternAttemptsSinceLastTimeout==

@ \old(mFailedPatternAttemptsSinceLastTimeout)+1;

@ assignable mCallback.authenticationOK,

@ mFailedPatternAttemptsSinceLastTimeout,

@ mTotalFailedPatternAttempts,

@ mLockPatternView.mPatternDisplayMode,

@ mLockPatternView.mAnimatingPeriodStart,

@ mLockPatternView.mInProgressX,mLockPatternView.mInProgressY,

@ mLockPatternView.mPatternDrawLookup[*][*],

@ mLockPatternView.mPrivateFlags,

@ mUnlockHeader.mCharWrapper.mChars,

@ mCallback.*, mUnlockIcon.*,

@ \object_creation(RandomAccessFile),\object_creation(byte[]);

@

@ also

@

@ requires !mLockPatternUtils.checkPattern(pattern) &&

@ mFailedPatternAttemptsSinceLastTimeout >=

@ LockPatternUtils.FAILED_ATTEMPTS_BEFORE_TIMEOUT;

@ ensures !mCallback.authenticationOK &&

@ mFailedPatternAttemptsSinceLastTimeout==0;

@ assignable mCountdownTimer,mCallback.authenticationOK,

@ mFailedPatternAttemptsSinceLastTimeout,

@ mLockPatternView.mPatternDisplayMode,

@ mLockPatternView.mAnimatingPeriodStart,

@ mLockPatternView.mInProgressX,mLockPatternView.mInProgressY,

@ mLockPatternView.mPatternDrawLookup[*][*],

@ mLockPatternView.mPrivateFlags,

@ mUnlockHeader.mCharWrapper.mChars,

@ mUnlockIcon.*,

@ mFooterForgotPattern.*,

@ mFooterNormal.*,

@ \object_creation(mCountdownTimer),

@ \object_creation(RandomAccessFile),

111

@ \object_creation(byte[]); */

public void onPatternDetected(List<LockPatternView.Cell> pattern) {

if (mLockPatternUtils.checkPattern(pattern)) {

mLockPatternView.setDisplayMode(LockPatternView.DisplayMode.Correct);

mUnlockIcon.setVisibility(View.GONE);

mUnlockHeader.setText("");

mCallback.keyguardDone(true);

} else {

mCallback.pokeWakelock(UNLOCK_PATTERN_WAKE_INTERVAL_MS);

mLockPatternView.setDisplayMode(LockPatternView.DisplayMode.Wrong);

if (pattern.size() >= LockPatternUtils.MIN_PATTERN_REGISTER_FAIL) {

mTotalFailedPatternAttempts++;

mFailedPatternAttemptsSinceLastTimeout++;

mCallback.reportFailedPatternAttempt();

}

if (mFailedPatternAttemptsSinceLastTimeout >=

LockPatternUtils.FAILED_ATTEMPTS_BEFORE_TIMEOUT) {

long deadline = mLockPatternUtils.setLockoutAttemptDeadline();

handleAttemptLockout(deadline);

return;

}

mUnlockIcon.setVisibility(View.VISIBLE);

mUnlockHeader.setText(R.string.lockscreen_pattern_wrong);

mLockPatternView.postDelayed(

mCancelPatternRunnable,

PATTERN_CLEAR_TIMEOUT_MS);

}

}

}

UnlockScreen class

KeyguardViewCallback interface

package com.android.internal.policy.impl;

public interface KeyguardViewCallback {

//@ public instance model boolean authenticationOK;

/*@ public normal_behaviour

@ requires true;

@ ensures authenticationOK==authenticated;

@ assignable authenticationOK;*/

112 APPENDIX A. SPECIFIED CLASSES WITH JML

void keyguardDone(boolean authenticated);

}

KeyguardViewCallback interface

EditContactActivity class

package com.android.contacts;

public final class EditContactActivity extends Activity implements

View.OnClickListener,TextWatcher, View.OnFocusChangeListener {

/*@ public model int count;

@ invariant count<=getAllEntries().length;

@ public ghost URI insertedContactUri;

@ represents count<-ContactEntryAdapter.

@ countEntries(mSections, false);

@*/

/*@ public model nullable EditEntry[] getAllEntries() {

@ EditEntry[] entry = new EditEntry[count];

@ for (int i=0;i<count;i++)

@ entry[i]=ContactEntryAdapter.getEntry(mSections, i, false);

@ return entry};

@*/

/*@ public normal_behavior

@ requires (\forall int i;i<count && i>=0;

@ getAllEntries()[i]!=null &&

@ getAllEntries()!=null &&

@ (\exists EditEntry entry ;

@ entry==getAllEntries()[i]&&

@ !People.CUSTOM_RINGTONE.equals(entry.column) &&

@ !People.SEND_TO_VOICEMAIL.equals(entry.column)&&

@ entry.getData()!=null));

@ ensures mResolver.query(insertedContactUri,CONTACT_PROJECTION,

@ null,null,null)!=null &&

@ mResultCode==RESULT_OK;

@ assignable mResolver.*,mPhoto.*,mUri.*,mUri,

@ mResultCode,\object_creation(ContentValues),

@ \object_creation(ByteArrayOutputStream),

@ \object_creation(String),

@ \object_creation(Intent),

@ \object_creation(ByteArrayOutputStream);

@ also

@ requires (\forall int i;i<count &&

113

@ i>=0;getAllEntries()[i]==null &&

@ !People.CUSTOM_RINGTONE.equals(entry.column) &&

@ !People.SEND_TO_VOICEMAIL.equals(entry.column)&&);

@ ensures mResultCode==RESULT_CANCELED;

@ assignable mResolver.*,mPhoto.*,mResultCode,

@ \object_creation(ContentValues),

@ \object_creation(ByteArrayOutputStream),

@ \object_creation(String);

@*/

private void create() {

ContentValues values = new ContentValues();

String data;

int numValues = 0;

// Create the contact itself

final String name = mNameView.getText().toString();

if (name != null && TextUtils.isGraphic(name)) {

numValues++;

}

values.put(People.NAME, name);

values.put(People.PHONETIC_NAME, mPhoneticNameView.getText().

toString());

// Add the contact to the My Contacts group

Uri contactUri = People.createPersonInMyContactsGroup(mResolver,

values);

/*@ set insertedContactUri=contactUri;*/

// Add the contact to the group that is being displayed in the contact list

SharedPreferences prefs = PreferenceManager.getDefaultSharedPreferences(this);

int displayType = prefs.getInt(ContactsListActivity.PREF_DISPLAY_TYPE,

ContactsListActivity.DISPLAY_TYPE_UNKNOWN);

if (displayType == ContactsListActivity.DISPLAY_TYPE_USER_GROUP) {

String displayGroup = prefs.getString(ContactsListActivity.PREF_DISPLAY_INFO,

null);

if (!TextUtils.isEmpty(displayGroup)) {

People.addToGroup(mResolver, ContentUris.parseId(contactUri), displayGroup);

}

} else {

// Check to see if we’re not syncing everything and if

114 APPENDIX A. SPECIFIED CLASSES WITH JML

//so if My Contacts is synced.

// If it isn’t then the created contact can end up not

// in any groups that are

// currently synced and end up getting removed from the phone,

// which is really bad.

boolean syncingEverything = !"0".equals(

Contacts.Settings.getSetting(mResolver, null,

Contacts.Settings.SYNC_EVERYTHING));

if (!syncingEverything) {

boolean syncingMyContacts = false;

Cursor c = mResolver.query(Groups.CONTENT_URI, new String[] { Groups.SHOULD_SYNC },

Groups.SYSTEM_ID + "=?", new String[] { Groups.GROUP_MY_CONTACTS }, null);

if (c != null) {

try {

if (c.moveToFirst()) {

syncingMyContacts = !"0".equals(c.getString(0));

}

} finally {

c.close();

}

}

if (!syncingMyContacts) {

// Not syncing My Contacts, so find a group that is being synced and stick

// the contact in there. We sort the list so at least all contacts

// will appear in the same group.

c = mResolver.query(Groups.CONTENT_URI, new String[] { Groups._ID },

Groups.SHOULD_SYNC + "!=0", null, Groups.DEFAULT_SORT_ORDER);

if (c != null) {

try {

if (c.moveToFirst()) {

People.addToGroup(mResolver, ContentUris.parseId(contactUri),

c.getLong(0));

}

} finally {

c.close();

}

}

}

}

}

115

// Handle the photo

if (mPhoto != null) {

ByteArrayOutputStream stream = new ByteArrayOutputStream();

mPhoto.compress(Bitmap.CompressFormat.JPEG, 75, stream);

Contacts.People.setPhotoData(getContentResolver(), contactUri,

stream.toByteArray());

}

// Create the contact methods

int entryCount = ContactEntryAdapter.countEntries(mSections, false);

for (int i = 0; i < entryCount; i++) {

EditEntry entry = ContactEntryAdapter.getEntry(mSections, i, false);

if (entry.kind != EditEntry.KIND_CONTACT) {

values.clear();

if (entry.toValues(values)) {

// Only create the entry if there is data

entry.uri = mResolver.insert(

Uri.withAppendedPath(contactUri, entry.contentDirectory), values);

entry.id = ContentUris.parseId(entry.uri);

if (!People.CUSTOM_RINGTONE.equals(entry.column) &&

!People.SEND_TO_VOICEMAIL.equals(entry.column))

{

numValues++;

}

}

} else {

// Update the contact with any straggling data, like notes

data = entry.getData();

values.clear();

if (data != null && TextUtils.isGraphic(data)) {

values.put(entry.column, data);

mResolver.update(contactUri, values, null, null);

if (!People.CUSTOM_RINGTONE.equals(entry.column) &&

!People.SEND_TO_VOICEMAIL.equals(entry.column)) {

numValues++;

}

}

}

}

116 APPENDIX A. SPECIFIED CLASSES WITH JML

if (numValues == 0) {

mResolver.delete(contactUri, null, null);

setResult(RESULT_CANCELED);

} else {

mUri = contactUri;

Intent resultIntent = new Intent()

.setData(mUri)

.putExtra(Intent.EXTRA_SHORTCUT_NAME, name);

setResult(RESULT_OK, resultIntent);

Toast.makeText(this, R.string.contactCreatedToast,

Toast.LENGTH_SHORT).show();

}

}

/*@ public normal_behavior

@ requires \forall int i;i<count && i>=0 ;

@ (\exists EditEntry entry ;

@ entry==getAllEntries()[i] &&

@ entry.getData()!=null) &&

@ !People.CUSTOM_RINGTONE.equals(entry.column) &&

@ !People.SEND_TO_VOICEMAIL.equals(entry.column);

@ ensures (\forall int i;i<count && i>=0;

@ (mResolver.query(getAllEntries()[i].uri,

@ CONTACT_PROJECTION,null,null,null).

@ getString(getAllEntries()[i].column))

@ .equal(getAllEntries()[i].getData())

@ && mResultCode==RESULT_OK;

@ assignable \fields_of(mResolver),

@ \fields_of(mPhoto),mResultCode,

@ \object_creation(ContentValues),\object_creation(Intent),

@ \object_creation(ByteArrayOutputStream);

@ also

@ requires (\forall int i;i<count && i>=0 ;

@ getAllEntries()[i].getData()==null)&&

@ !People.CUSTOM_RINGTONE.equals(entry.column) &&

@ !People.SEND_TO_VOICEMAIL.equals(entry.column);

@ ensures mResultCode==RESULT_CANCELED && mUri==null;

@ assignable \fields_of(mResolver),\fields_of(mPhoto),

@ mResultCode,\fields_of(mUri),

@ \object_creation(ContentValues),

@ \object_creation(ByteArrayOutputStream);

117

@*/

private void save() {

ContentValues values = new ContentValues();

String data;

int numValues = 0;

// Handle the name and send to voicemail specially

final String name = mNameView.getText().toString();

if (name != null && TextUtils.isGraphic(name)) {

numValues++;

}

mResolver.acquireProvider();

values.put(People.NAME, name);

values.put(People.PHONETIC_NAME, mPhoneticNameView.getText().toString());

mResolver.update(mUri, values, null, null);

if (mPhotoChanged) {

// Only write the photo if it’s changed, since we don’t initially load mPhoto

if (mPhoto != null) {

ByteArrayOutputStream stream = new ByteArrayOutputStream();

mPhoto.compress(Bitmap.CompressFormat.JPEG, 75, stream);

Contacts.People.setPhotoData(mResolver, mUri, stream.toByteArray());

} else {

Contacts.People.setPhotoData(mResomUrilver, mUri, null);

}

}

int entryCount = ContactEntryAdapter.countEntries(mSections, false);

for (int i = 0; i < entryCount; i++) {

EditEntry entry = ContactEntryAdapter.getEntry(mSections, i, false);

int kind = entry.kind;

data = entry.getData();

boolean empty = data == null || !TextUtils.isGraphic(data);

if (kind == EditEntry.KIND_CONTACT) {

values.clear();

if (!empty) {

values.put(entry.column, data);

mResolver.update(entry.uri, values, null, null);

if (!People.CUSTOM_RINGTONE.equals(entry.column) &&

!People.SEND_TO_VOICEMAIL.equals(entry.column)) {

118 APPENDIX A. SPECIFIED CLASSES WITH JML

numValues++;

}

} else {

values.put(entry.column, (String) null);

mResolver.update(entry.uri, values, null, null);

}

} else {

if (!empty) {

values.clear();

entry.toValues(values);

if (entry.id != 0) {

mResolver.update(entry.uri, values, null, null);

} else {

mResolver.insert(entry.uri, values);

}

if (!People.CUSTOM_RINGTONE.equals(entry.column) &&

!People.SEND_TO_VOICEMAIL.equals(entry.column)) {

numValues++;

}

} else if (entry.id != 0) {

mResolver.delete(entry.uri, null, null);

}

}

}

if (numValues == 0) {

// The contact is completely empty, delete it

mResolver.delete(mUri, null, null);

mUri = null;

setResult(RESULT_CANCELED);

} else {

// Add the entry to the my contacts group if it isn’t there already

People.addToMyContactsGroup(mResolver, ContentUris.parseId(mUri));

setResult(RESULT_OK, new Intent().setData(mUri));

// Only notify user if we actually changed contact

if (mContactChanged || mPhotoChanged) {

Toast.makeText(this, R.string.contactSavedToast,

Toast.LENGTH_SHORT).show();

}

}

119

}

EditContactActivity class

SimUnlockScreen class

package com.android.internal.policy.impl;

public class SimUnlockScreen extends LinearLayout implements

KeyguardScreen, View.OnClickListener,

KeyguardUpdateMonitor.ConfigurationChangeCallback {

//@ public ghost boolean checked;

private final int[] mEnteredPin = {0, 0, 0, 0, 0, 0, 0, 0};

//@ invariant (\forall int i;i>=0 && i< mEnteredPin.legth ;mEnteredPin[i]=0);

/*@ public normal_behaviour

@ requires mEnteredDigits>4 &&

@(ITelephony.Stub.asInterface(ServiceManager.checkService("phone")).

@ supplyPin(mPinText.getText().toString()));

@ ensures checked;

@ assignable mCallback.*,checked,\object_creation(CheckSimPin),

@ \object_creation(Progressdialogue),

@ mUpdateMonitor.mSimState,mSimUnlockProgressdialogue.*,

@ \object_creation(String);

@ also

@ requires mEnteredDigits<4 || @!

@ (ITelephony.Stub.asInterface(ServiceManager.checkService("phone")).

@ supplyPin(mPinText.getText().toString()));

@ ensures !checked,mEnteredDigits==0;

@ assignable @mHeaderText.mCharWrapper.mChars,

@ mPinText.mCharWrapper.mChars,

@ mEnteredDigits,mCallback.*,checked,\object_creation(String);

*/

private void checkPin() {

//@ set checked=false;

// make sure that the pin is at least 4 digits long.

if (mEnteredDigits < 4) {

// otherwise, display a message to the user, and don’t submit.

mHeaderText.setText(R.string.invalidPin);

mPinText.setText("");

mEnteredDigits = 0;

mCallback.pokeWakelock();

return;

}

getSimUnlockProgressdialogue().show();

120 APPENDIX A. SPECIFIED CLASSES WITH JML

new CheckSimPin(mPinText.getText().toString()) {

void onSimLockChangedResponse(boolean success) {

if (mSimUnlockProgressdialogue != null) {

mSimUnlockProgressdialogue.hide();

}

if (success) {

// before closing the keyguard, report back that

// the sim is unlocked so it knows right away

//@ set checked=true;

mUpdateMonitor.reportSimPinUnlocked();

mCallback.goToUnlockScreen();

} else {

//*@ set checked=false;

mHeaderText.setText(R.string.keyguard_password_wrong_pin_code);

mPinText.setText("");

mEnteredDigits = 0;

mCallback.pokeWakelock();

}

}

}.start();

}

SimUnlockScreen class

AccountUnlockScreen class

package com.android.internal.policy.impl;

public class AccountUnlockScreen extends RelativeLayout implements

KeyguardScreen,

View.OnClickListener, ServiceConnection, TextWatcher {

/*@ public model nullable String account;

@ represents account<-findIntendedAccount(mLogin.getText().toString());

@ public ghost boolean keyguarddone;

*/

/*@ public normal_behavior

@ requires v == mOk && checkPassword() ;

@ ensures keyguarddone ;

@ assignable \object_creation(FileOutputStream),

@ \object_creation(PrintWriter),

@ keyguarddone,

@ \object_creation(android.accounts.IAccountsService.Stub.Proxy),

@\object_creation(String),\object_creation(Intent),

121

@\object_creation(RandomAccessFile);

@ also

@ requires v == mOk && !checkPassword()

@ ensures !keyguarddone ;

@ assignable @\object_creation(FileOutputStream),

@ \object_creation(PrintWriter),

@ mInstructions.mCharWrapper.mChars,mPassword.mCharWrapper.mChars

@ \object_creation(android.accounts.IAccountsService.Stub.Proxy),

@\object_creation(String),\object_creation(Intent),

@\object_creation(RandomAccessFile),keyguarddone;

*/

public void onClick(View v) {

// set keyguarddone=false;

mCallback.pokeWakelock();

if (v == mOk) {

if (checkPassword()) {

// clear out forgotten password

mLockPatternUtils.setPermanentlyLocked(false);

// launch the ’choose lock pattern’ activity so

// the user can pick a new one if they want to

Intent intent = new Intent();

intent.setClassName(LOCK_PATTERN_PACKAGE, LOCK_PATTERN_CLASS);

intent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

mContext.startActivity(intent);

// close the keyguard

// set keyguarddone=true;

mCallback.keyguardDone(true);

} else {

mInstructions.setText(R.string.lockscreen_glogin_invalid_input);

mPassword.setText("");

// set keyguarddone=true;

}

}

if (v == mEmergencyCall) {

mCallback.takeEmergencyCallAction();

}

}

122 APPENDIX A. SPECIFIED CLASSES WITH JML

@Override

public boolean dispatchKeyEvent(KeyEvent event) {

if (event.getAction() == KeyEvent.ACTION_DOWN

&& event.getKeyCode() == KeyEvent.KEYCODE_BACK) {

mCallback.goToLockScreen();

return true;

}

return super.dispatchKeyEvent(event);

}

/*@ public normal_behaviour

@ requires account!=null

@ ensures \result==mAccountsService.shouldUnlock(account,

@ mPassword.getText().toString());

@ assignable \object_creation(FileOutputStream),

@ \object_creation(PrintWriter),

@ \object_creation(android.accounts.IAccountsService.Stub.Proxy),

@ \object_creation(String);

@ also

@ public normal_behaviour

@ requires account==null ;

@ ensures \result==false;

@ assignable @\object_creation(FileOutputStream),

@ \object_creation(PrintWriter),

@\object_creation(android.accounts.IAccountsService.Stub.Proxy),

@\object_creation(String);

@ also

@ public exceptional_behaviour

@ requires \nothing ;

@ signals (Exception e) e instanceof RemoteException && \result==false;

@ assignable \object_creation(RemoteException),

@\object_creation(FileOutputStream),

@\object_creation(PrintWriter),

@ \object_creation(android.accounts.IAccountsService.Stub.Proxy),

@\object_creation(String);

*/

private /*@pure*/ boolean checkPassword() {

final String login = mLogin.getText().toString();

final String password = mPassword.getText().toString();

try {

123

String account = findIntendedAccount(login);

if (account == null) {

return false;

}

return mAccountsService.shouldUnlock(account, password);

} catch (RemoteException e) {

return false;

}

}

AccountUnlockScreen class

Activity class

public class Activity extends ContextThemeWrapper

implements LayoutInflater.Factory,

Window.Callback, KeyEvent.Callback,

OnCreateContextMenuListener, ComponentCallbacks {

/*@ public model non_null boolean[] state={mResumed,

mStopped,mFinished,mStartedActivity};

@ invariant (\exists int i; i>=0 && i<state.length; state[i]==true &&

@ (\forall int j ;j>=0 && j<state.length;j!=i && state[j]==false));

*/

/*@ public normal_behaviour

@ requires intent.getAction() ==Intent.ACTION_CALL_EMERGENCY &&

@ intent.getFlags()==Intent.FLAG_ACTIVITY_NEW_TASK

@ && requestCode==-1;

@ ensures Integer.valueOf(activityResult)>=

@ IActivityManager.START_SUCCESS;

@ assignable intent.call_dispatched ,

@ mInstrumentation.mActivityMonitors.mHints,

@ activityResult;

@

@ also

@

@ public exceptional_behaviour

@ requires (intent.getAction() == Intent.ACTION_CALL_EMEnRGENCY &&

@ intent.getFlags()==Intent.FLAG_ACTIVITY_NEW_TASK && requestCode==-1);

@ ensures Integer.valueOf(activityResult)==

@ IActivityManager.START_CLASS_NOT_FOUND;

@ signal(Exception e)e instanceof android.content.ActivityNotFoundException;

@ assignable activityResult;

*/

124 APPENDIX A. SPECIFIED CLASSES WITH JML

//*@ String ghost activityResult;

public void startActivityForResult(Intent intent, int requestCode) {

if (mParent == null) {

Instrumentation.ActivityResult ar =

mInstrumentation.execStartActivity(

this, mMainThread.getApplicationThread(), mToken, this,

intent, requestCode/*@, activityResult*/);

if (ar != null) {

mMainThread.sendActivityResult(

mToken, mEmbeddedID, requestCode, ar.getResultCode(),

ar.getResultData());

}

if (requestCode >= 0) {

// If this start is requesting a result, we can avoid making

// the activity visible until the result is received. Setting

// this code during onCreate(Bundle savedInstanceState) or onResume() will keep the

// activity hidden during this time, to avoid flickering.

// This can only be done when a result is requested because

// that guarantees we will get information back when the

// activity is finished, no matter what happens to it.

mStartedActivity = true;

}

} else {

mParent.startActivityFromChild(this, intent, requestCode);

}

}

/*@ public normal_behaviour

@ requires intent.getAction() ==Intent.ACTION_CALL_EMERGENCY &&

@ intent.getFlags()==Intent.FLAG_ACTIVITY_NEW_TASK ;

@ ensures Integer.valueOf(activityResult)>=

@ IActivityManager.START_SUCCESS;

@ assignable intent.call_dispatched ,

@ mInstrumentation.mActivityMonitors.mHints,

@ activityResult;

@

@ also

@

@ public exceptional_behaviour

@ requires (intent.getAction() == Intent.ACTION_CALL_EMEnRGENCY &&

125

@ intent.getFlags()==Intent.FLAG_ACTIVITY_NEW_TASK);

@ ensures Integer.valueOf(activityResult)==

@ IActivityManager.START_CLASS_NOT_FOUND;

@ signal(Exception e)e instanceof android.content.ActivityNotFoundException;

@ assignable activityResult;

*/

public void startActivity(Intent intent) {

startActivityForResult(intent, -1);

}

/*@ public normal_behavior

@ requires resultCode==(RESULT_CANCELED || RESULT_OK

@ ||RESULT_FIRST_USER);

@ ensures mResultCode==resultCode && mResultData==null;

@ assignable mResultCode,mResultData;

*/

public final void setResult(int resultCode) {

synchronized (this) {

mResultCode = resultCode;

mResultData = null;

}

}

/*@ public normal_behavior

@ requires resultCode==(RESULT_CANCELED || RESULT_OK

@ ||RESULT_FIRST_USER);

@ ensures mResultCode==resultCode && mResultData==data;

@ assignable mResultCode,mResultData;

*/

public final void setResult(int resultCode, /*@ nullable*/Intent data) {

synchronized (this) {

mResultCode = resultCode;

mResultData = data;

}

}

/*@ public normal_behaviour

@ require mParent==null;

@ ensures mFinished;

@ assignable mFinished;

@ also

@ require mParent!=null;

126 APPENDIX A. SPECIFIED CLASSES WITH JML

@ ensures mParent.mFinished;

@ assignable mParent.mFinished;

*/

public void finish() {

if (mParent == null) {

int resultCode;

Intent /*@ nullable*/ resultData;

synchronized (this) {

resultCode = mResultCode;

resultData = mResultData;

}

if (Config.LOGV) Log.v(TAG, "Finishing self: token=" + mToken);

try {

if (ActivityManagerNative.getDefault()

.finishActivity(mToken, resultCode, resultData)) {

mFinished = true;

}

} catch (RemoteException e) {

// Empty

}

} else {

mParent.finishFromChild(this);

}

}

Activity class

Instrumentation class

package android.app;

public class Instrumentation {

public ActivityResult execStartActivity(

Context who, IBinder contextThread, IBinder token, Activity target,

Intent intent, int requestCode /*@, String ghost activityResult*/) {

IApplicationThread whoThread = (IApplicationThread) contextThread;

if (mActivityMonitors != null) {

synchronized (mSync) {

final int N = mActivityMonitors.size();

for (int i=0; i<N; i++) {

final ActivityMonitor am = mActivityMonitors.get(i);

if (am.match(who, null, intent)) {

am.mHits++;

if (am.isBlocking()) {

127

return requestCode >= 0 ? am.getResult() : null;

}

break;

}

}

}

}

try {

int result = ActivityManagerNative.getDefault()

.startActivity(whoThread, intent,

intent.resolveTypeIfNeeded(who.getContentResolver()),

null, 0, token, target != null ? target.mEmbeddedID : null,

requestCode, false, false);

//@set activityResult=Integer.toString(result);

checkStartActivityResult(result, intent);

} catch (RemoteException e) {

}

return null;

}

Instrumentation class

Intent class

package android.content;

public class Intent implements Parcelable {

//@ public ghost boolean callDispatched;

}

Intent class

	List of Symbols and Abbreviations
	Contents
	List of Figures
	1 Introduction
	1.1 What Is Android?
	1.2 Some Important Features
	1.3 Android Architecture
	1.3.1 Linux Kernel
	1.3.2 Android Runtime
	1.3.3 Libraries
	1.3.4 Application Framework
	1.3.5 Applications

	1.4 Application Components
	1.5 Activating Components
	1.6 The androidManifest.xml File
	1.7 Intent Filters
	1.8 Activity Lifecycle

	2 Specification and Verification Concepts
	2.1 JML (Java Modeling Language)
	2.1.1 Precondition And Postcondition
	2.1.2 Class Invariant
	2.1.3 Model And Ghost Fields
	2.1.4 Model Method
	2.1.5 Assignable Clause
	2.1.6 Inheritance In Specification
	2.1.7 Some JML Keywords Jml1

	2.2 What Is KeY?
	2.3 Specifying and Verifying a Sample Android Application
	2.3.1 Specification with JML
	2.3.2 Verification With KeY
	2.3.3 Verifying Enterpassword With KeY

	3 Specification of Android Applications
	3.1 Specifying the Phone Application
	3.1.1 First Walk through Specifying Emergency Dialer

	3.2 Specifying the Screen manager Application
	3.2.1 Lock And Unlock Screen Functionalities

	3.3 Specifying the Contact Application

	4 Conclusion and Future Work
	Bibliography
	Appendices
	A Specified Classes with JML

