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Fig. 5. The Sklansky construction for eight inputs. The construction recursively computes the

parallel prefix for each half of the inputs and then combines the last output S4
1 of the lower

half (shown by a dotted box in (a)) with each of the outputs of the upper half. The result,

for eight inputs, is that there are four operators on each of three levels.

Fig. 6. The Brent–Kung construction, fanout 2, 32 inputs, depth 9, 57 operators. The arrow

below the diagram points to a line that has (from top to bottom) first four combining nodes

and then four duplicating nodes. The output of the bottom-most combining node on that

line is fanned out to a total of six different destinations, but this fanout occurs at successive

levels, so that the overall fanout of the network is only 2.

Instead, we concentrate on ways to generalize the Brent–Kung and Ladner–Fischer

constructions. The following section provides the necessary background by showing

how to describe the Brent–Kung and Sklansky networks in Haskell. Next, we

generalize the Brent–Kung construction, and show how dynamic programming can

be used to find good networks. A lazy functional programming language proves
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Fig. 7. (a) LF0, the minimum depth Ladner–Fischer network, for 32 inputs and (b) LF1,

which is one level deeper (depth 6) but contains fewer operators (62 versus 74).

Fig. 8. The basic Kogge–Stone construction, with 16 inputs, depth 4 and fanout 2. For 16

inputs, it has 49 operators, compared to 31 for the minimum depth Ladner–Fischer network.

to be a suitable setting for this approach. To generate small shallow networks,

we must generalizefurther; we introduce the classic Ladner–Fischer construction,

generalize it, and then use dynamic programming to find solutions that improve

upon the classic solution. The insights gained in searching for networks in this way

lead finally to a new generalization of Ladner–Fischer that improves markedly upon

the original algorithm, and is even an improvement on the best known solution

found in the literature. We argue that the functional style of algorithm description

presented here provides a new tool for algorithm design and experimentation. We

hope, therefore, that this paper will be read not only by functional programmers,

but also by researchers in algorithms who might be willing to explore the use of

functional programming in their research. For this reason, we have tried to keep to

a simple style of functional programming.

3 Describing standard prefix networks in Haskell

3.1 Describing some simple networks

A prefix network takes a list of inputs, and returns a list of the same length. We

will concentrate on the patterns (or higher order functions) used to construct such

networks. The networks are built from k input, k output tiles that are defined as
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type Fan a = [a] -> [a]

mkFan :: (a -> a -> a) -> Fan a

mkFan op (i:is) = i:[op i k | k <- is]

This is a fanout structure, in which the binary operator is applied between the first

input and each of the remaining inputs. In the particular case of an input list of

length two, it gives a two-input, two-output prefix network, which is a much-used

building block. Wider instances of the tile are not themselves prefix networks, but

are used particularly in the bottom halves of prefix networks, as we shall see. For

example, if the binary operator is addition, then we can make a suitable tile as

follows:

pplus :: Fan Int

pplus = mkFan (+)

*Main> pplus [1,2]

[1,3]

*Main> pplus [1..8]

[1,3,4,5,6,7,8,9]

Now, we want to study higher order functions that capture patterns of building

prefix networks from such components.

type PP a = Fan a -> [a] -> [a]

As a first exercise, let us capture in Haskell the small network patterns shown in

Figure 3. The three input serial network is written

ser3 :: PP a

ser3 f [a,b,c] = [a1,b2,c2]

where

[a1,b1] = f [a,b]

[b2,c2] = f [b1,c]

*Main> ser3 pplus [0,2,4]

[0,2,6]

The middle network contains two tiles, one of width 2 and one of width 3.

f31 :: PP a

f31 f [a,b,c] = [a1,b2,c2]

where

[b1,c1] = f [b,c]

[a1,b2,c2] = f [a,b1,c1]

The rightmost network contains three tiles, and the one in the middle connects only

the first and last lines.
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Fig. 9. The general tile that we used to build prefix networks, with three example networks

from Figure 3, showing how each is constructed. The composition of tiles is described directly

in the Haskell functions.

f32 :: PP a

f32 f [a,b,c] = [a2,b2,c2]

where

[b1,c1] = f [b,c]

[a1,c2] = f [a,c1]

[a2,b2] = f [a1,b1]

These examples are illustrated in Figure 9. Notice that the operators in a tile always

take their inputs from exactly one level earlier than that on which the operators

are placed (a standard constraint in the literature). Each tile also has a flat bottom

edge, meaning that it produces all of its outputs simultaneously. This is indicated

in the diagrams by the grey shading. The bottom edges of prefix networks are not

necessarily flat, in the sense that some outputs may be available earlier than others;

when sub-networks are composed, we assume that later tiles appear at as early a

level as possible. These small examples are used to illustrate the style of description

that we use. More usually the networks that we describe are defined by recursion

over the input list, and are designed to work for any input width.

The function ser captures the serial connection pattern from Figure 4. It consists

of two obvious base cases and a recursive case. The latter includes one use of the

building block (the f parameter) and a recursive call of ser. Figure 4 illustrates

this recursive decomposition by showing a network of width 7 in a dotted box. This

corresponds to the recursive call of ser in the definition.

ser :: PP a

ser _ [] = []

ser _ [a] = [a]

ser f (a:b:bs) = a1:cs

where

[a1,a2] = f [a,b]

cs = ser f (a2:bs)

*Main> ser pplus [1..8]

[1,3,6,10,15,21,28,36]

3.2 Analysing networks by non-standard interpretation

To analyse the generated networks, we typically use non-standard interpretation

(NSI), see for instance (Singh 1992). In NSI, we simply replace the building blocks
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by ones designed to give the required information when the resulting network is

run. For instance, to calculate the delay through the network, we model the fanout

structure as

delFan :: [Int] -> [Int]

delFan [d] = [d]

delFan ds = [maximum ds + 1 | i <- ds]

Note that the outputs of an individual tile are all assigned the same delay. For an

input list of width one, the tile acts as the identity. Otherwise, the output delay of all

outputs is one greater than the maximum of the input delays. This approach gives

the means, for each output, to count how many components are on the longest path

from the inputs to that output.

Then, running the resulting network on a list of zeros (indicating delay-in) gives

us delay information for each of the outputs:

*Main> f32 delFan [0,0,0]

[3,3,2]

*Main> ser delFan (replicate 8 0)

[1,2,3,4,5,6,7,7]

This corresponds to what we would expect by examining Figure 9, and the reader

might like to consider where the tiles are in Figure 4, in order to understand the

output delays from the serial prefix network defined in the function ser.

A variant of delFan computes not with delays, but with pairs of a wire number

and a delay:

type WDels = [(Int,Int)]

wdFan :: WDels -> WDels

wdFan [wd] = [wd]

wdFan wds = [(w,maximum ds + 1) | w <- ws]

where (ws,ds) = unzip wds

zdel :: Int -> WDels

zdel n = [(i,0) | i <- [1..n]]

*Main> f32 wdFan (zdel 3)

[(1,3),(2,3),(3,2)]

Wire numbers pass through unchanged. The wd in the name stands for wire and

delay.

This simple analysis works because we restrict our attention to networks that can

be represented in the kinds of diagrams that we have already used to depict prefix

networks. Our interest is in these circuit-like data independent networks, and we do

not consider more general data-dependent algorithms.

Rather in the style of Lava (Bjesse et al. 1998), the Haskell functions describing

networks are a way to express the netlist of components; such a function indicates
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which fan components are present and how they are connected. In Lava, we would

run such a function on symbolic inputs in order to produce an internal data-structure

for the netlist, for later processing and analysis. We could easily do something similar

here, in order to produce a data-structure very similar to that used by Hinze to

describe prefix networks (Hinze 2004). (Our use of the fan structure as a building

block follows Hinze.) However, what is of interest to us here is not the netlist alone

but rather a version of it in which the fans are assigned a phase, and so can easily be

placed precisely on a diagram such as those we have seen. To visualize the process,

think of taking a netlist that is just a jumble of fans and wires, and painstakingly

nailing fans, one at a time, onto the correct points and wires in a diagram. Assigning

phases to fans is a not as easy as one might first assume. The assigned phases of

fans later in the netlist will depend on the phases of earlier fans. In our view, a

straightforward way to perform the necessary propagation of phases is to evaluate

the fans and have them propagate delays in a way similar to the delay calculations

that we have just seen. The fans must now also propagate the information that is

being gathered. We introduce a data-type Net for this purpose (see Appendix A for

further code related to this data type). It encodes information about a particular

abstract wire of the network, the current phase, and the fans that have had that

wire as their first input so far. Each fan is represented by a pair of its phase and the

list of wires to which it fans out, starting with the current wire and having length at

least two.

data Net =

Net

{ fans :: [(Int,[Int])]

, wire :: Int

, phase :: Int

}

netsz :: Int -> [Net]

netsz n = [Net [] w 0 | w <- [1..n]]

We also introduce an operator, netFan, which operates on a list of Nets and produces

a list of nets of the same length. It corresponds to the fanout component used to

build networks. It records the fanout, with its phase and wires, on its leftmost wire

(by which we mean that it adds information about this fanout to the list that comes

in, before outputting it). For the remaining wires, it changes the phase to the output

phase of the entire fanout tile.

netFan [i] = [i]

netFan (i:is) = (j:js)

where

ph = maximum map phase (i:is)

j = Net { fans = (ph, map wire (i:is)):fans i

, wire = wire i

, phase = ph + 1

}
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js = [Net { fans = fans k

, wire = wire k

, phase = ph + 1

} | k <- is ]

The definition records the fact that the outputs of a fan appear at a level one greater

than the maximum of the levels of its inputs. Now we can simply run some patterns

(e.g. the three shown in Figure 3), and look at the results:

*Main> netsz 3

[1/[],2/[],3/[]]

*Main> ser netFan (netsz 3)

[1/[(0,[1,2])],2/[(1,[2,3])],3/[]]

getNets0 f n = f netFan (netsz n)

*Main> getNets0 f31 3

[1/[(1,[1,2,3])],2/[(0,[2,3])],3/[]]

*Main> getNets0 f32 3

[1/[(2,[1,2]),(1,[1,3])],2/[(0,[2,3])],3/[]]

Each fanout tile is listed, on the wire from which the fanout happens, and with the

phase and the numbers of all of the input (and output) wires. The number of binary

operators in a fan is one less than the number of input wires. Appendix A lists

some functions that take a list of nets and return size, maximum fanout and other

measures. To produce the pictures of prefix networks used throughout the paper,

we have written a small Haskell program that takes a list of Nets and produces the

diagram as a .fig file, enabling easy production of many other formats.

3.3 The Sklansky network

The definition of the Sklansky network is straightforward:

skl :: PP a

skl _ [a] = [a]

skl f as = init los ++ ros’

where

(los,ros) = (skl f las, skl f ras)

ros’ = f (last los : ros)

(las,ras) = splitAt (cnd2 (length as)) as

cnd2 n = n - n ‘div‘ 2 -- Ceiling of n/2
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The two recursive calls appear explicitly, each working on roughly half of the inputs.

Again, we can run the resulting network to convince ourselves that we have got it

right.

*Main> skl pplus [1..4]

[1,3,6,10]

*Main> skl pplus [5..8]

[5,11,18,26]

*Main> pplus (10:[5,11,18,26])

[10,15,21,28,36]

*Main> skl pplus [1..8]

[1,3,6,10,15,21,28,36]

*Main> skl wdFan (zdel 8)

[(1,1),(2,2),(3,2),(4,3),(5,3),(6,3),(7,3),(8,3)]

As expected, the last outputs are produced after three units of time.

We can view the nets corresponding to an instance of the Sklansky construction:

*Main> getNets0 skl 8

[1/[(0,[1,2])],2/[(1,[2,3,4])],3/[(0,[3,4])],4/[(2,[4,5,6,7,8])],

5/[(0,[5,6])],6/[(1,[6,7,8])],7/[(0,[7,8])],8/[]]

Note that the largest fanout appears on wire 4 at phase 2 and that wire 4 fans out

to wires 5–8. All the outputs of this fan are produced at phase 3, which can be seen

from the previous delay calculation.

3.4 Checking correctness

To check functional correctness, we make use of parametricity, feeding singleton lists

[0], [1], [2] and so on into a network in which the binary operator is the function

that appends two lists. The result should then be [0], [0,1], [0,1,2], and so on.

If this is the case, then the pattern (for that width) is correct for any associative

binary operator. This idea is encoded in the following function:

check0 :: (Num a, Enum a) => PP [a] -> a -> Bool

check0 func m = func (mkFan (++)) [[a]| a <- l] == tail (inits l)

where l = [0..m-1]

*Main> check0 skl 33

True

For further exploration of parametricity in the context of prefix networks, see

(Voigtländer 2008), which was partly inspired by an earlier unpublished version of

this paper.
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Fig. 10. The recursive decomposition used in the Brent–Kung network. The inputs to the

recursive call (the shaded box P) are S2
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i+1 , . . . , and the corresponding outputs
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1 , . . . . The odd numbered inputs are interleaved with these values, to

give a1, S
2
1 , a3, S

4
1 , . . . , S

i
1, ai+1, S

i+2
1 , . . . . The final (bottom) row of operators combines adjacent

values (such as Si
1 and ai+1), to produce the correct result at each output. The Brent–Kung

paper is not explicit about how the outputs should be computed for input width not a power

of two. In our formulation, for an odd number of inputs, the rightmost wire and all attached

operators are dropped.

3.5 The Brent–Kung network and variations upon it

Consider again the network shown in Figure 6. Brent and Kung (1982) describe

their network as a binary tree producing the last output, and an ‘inverted tree’ that

produces all the remaining outputs. We prefer the recursive decomposition that is

also frequently used in the literature, and which we illustrate in Figure 10. The

network can be viewed as having three phases: a first in which adjacent inputs are

combined using small 2-input prefix networks; a second in which the last outputs

of those small prefix networks are passed to a smaller Brent–Kung network; a third

in which the final result is slightly adjusted, again by combining adjacent elements.

Figure 11 shows a generalization of the Brent–Kung pattern. The widths of the

small networks across the top and bottom are allowed to vary, and are captured by

a list of integers specifying the partition. The higher order function build0 captures

the important case in which each Ti is a serial prefix network. (We will consider

further generalizations later.)

type Partition = [Int]

split :: Partition -> [a] -> [[a]]

split [] [] = []

split (d:ds) as = let (las,ras) = splitAt d as in las : split ds ras

shift :: Partition -> Partition

shift (a:as) = a-1:init as ++ [last as + 1]



Searching for parallel prefix networks 73

Tn−1...

...F

T 0 T T1 2

1 2F

P

... Fn

w0 w1 w2

nT

(a)

p
p  +1

1

0
S

p
p  +1

2

1

S 1
p0 S 1

p1 S 1
p2 S 1

pi S 1
pn−1

S
p
p      +1

n−1

n−2

P

. . . . . .

. . . . . .

0p
1S S i

i−1

p
S p     +1

(b)

i+1
p

. . .

. . .

S
p +1

p +1

a
p +1

i

a
p +2

i i i+1
p +w

a

S
p +1

pi+1S
p +2

p +1
ii

i i i

Ti+1

= a

(c)

i+1

S i
1

p

S i
1

p

S
p +1

p +1
i

i
S

p +1

p +2
i

i
S

p +1

p   −1
i+1

i

S i
1

p +1
S i

1

p +2 S i+1
1

p   −1

...

F

(d)

Fig. 11. (a) Generalizing the Brent–Kung pattern. The widths of the small prefix networks

marked T across the top of the network in (a) can vary, and are no longer restricted to be 2.

All but the leftmost prefix network (T0) are matched by corresponding fan networks across

the bottom (marked F). If the partition on the top is [w0, w1, . . . , wn], then that across the

bottom is [w0 − 1, w1, . . . , wn + 1]. Each Ti has width wi. Each Fi has width wi for 0 < i < n.

Fn has width wn + 1. (b) The inputs and outputs to the recursive call marked P in (a). (c) The

inputs and outputs to one of the small prefix networks across the top. The last output goes

to P and the remaining outputs cross over it. (d) The shape of each fan at the bottom of the

network, showing that the outputs are as required. pi = Σi
0wi, so pi+1 = pi + wi+1.

build0 :: Partition -> PP a -> PP a

build0 ws p f = concat . toTail (map f) . split (shift ws) .

concat . toInit (toLasts (p f)) .

map (ser f) . split ws

The three distinct phases correspond to the three lines in the definition of build0,

and are composed using function composition. Reading from the right-hand end of

the chain of functions, in the first phase, using the function split, the input is split

according to the parameter ws, and the resulting sub-lists each become the input to

a serial prefix network. In the second phase, (p f) is applied to the last elements

of the outputs of all but the last of those serial networks (corresponding to the n

last outputs of T0 to Tn−1 in the diagram). f is a parameter to build0 and is a

fanout tile. All other ‘wires’ are passed through unchanged, and the result is then

concatenated back to a single list. In the third phase, split is once again used to
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divide up the inputs to that phase, but this time slightly differently. If the partition

in the first phase is [w0, w1, . . . , wn], then that in the third is [w0 − 1, w1, . . . , wn + 1].

This is what is captured by the function shift. When the division is made, all but

the first list is then input to a fan (toTail (map f)). (The functions toLasts and

toTail are defined in Appendix B.)

Think of the recursive call as being the filling of a sandwich, with small prefix

networks on one side and fans on the other corresponding to the two pieces of

bread. If the sandwiched network is a prefix network, then so is the network built

by build0. This recursive decomposition is inspired by (but not exactly the same

as) one by Snir (1986). Snir’s construction merges Tn and Fn into a prefix network

that is composed with P . We have separated out the fan in order to make it easier

to understand the constraints on the recursive call P , given a particular choice of

top level partition. In this formulation, the bottom row of operators in the network

now consists only of fans, so that it is easy to calculate the maximum allowed depth

of the P network above the fans.

The use of the partitions parameter in build0 differs from the style of combinators

that we have used earlier in Lava (Bjesse et al. 1998), where we tend to avoid explicit

size parameters. However, the inclusion of this parameter will permit our later use

of search to find good prefix networks. Hinze also used partitions in his study of

combinators for building scans (Hinze 2004). The function build0 is similar to, but

slightly more general than Hinze’s generalization of Brent–Kung (p. 16 of Hinze

2004). We will return to this topic in Section 6.4.

The rest of the paper is about investigating possible parameters to build0 and to

two further variants of it, and thus exploring the design space of prefix networks.

The following choice of parameters to build0 gives the standard ‘steps of two’

Brent–Kung construction (and bK0 was the definition used to produce both Figures 6

and 12):

twos :: Int -> Partition

twos n = replicate (n ‘div‘ 2) 2 ++ [n ‘mod‘ 2]

bK0 :: PP a

bK0 _ [a] = [a]

bK0 f as = build0 (twos (length as)) bK0 f as

The prefix network sandwiched between two layers is a recursive call of the function

bK0 itself. For an even number of inputs, the arrangement of small serial networks

along the top is given by the list [2,2,...,2,0], which means that the corresponding

list for the pattern along the bottom is [1,2,2,..,2,1]. When the last element of

the top partition is zero, the rightmost fan at the bottom of the network will have

width one (Figure 11). This means that that output will be produced earlier than

the outputs just to its left. When the input width is 2k for some k, this choice results

in a network whose last output is produced at depth k, while the overall depth is

2k − 1, see for example Figure 6. Such networks that produce their last outputs at

minimum depth are called restricted in the literature (Fich 1983). (Note that we now

allow some elements of the top partition to be zero. This means that those functions
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(a)

(b)

Fig. 12. The Brent–Kung-like pattern for 31 and 47 inputs, produced from the function bK0.

For depth d, the width of this construction is 2k− 1 if d is even, and 3k− 1 if it is odd, where

k = 2�d/2� is the width of the binary trees (as indicated in the diagrams).

that can be mapped across partitions, and in particular ser, must have a case for

when the input is an empty list.)

For an odd number of inputs, there are a number of possible choices. We have

chosen that the two sequences at top and bottom should be [2,2,...2,1] and

[1,2,..,2,2]. It seems clear from Brent and Kung (1982) that they intended to

produce restricted networks for all input widths. We have made a slightly different

choice, resulting, for example, in the attractively symmetrical network shown in

Figure 12.

3.6 The notions of depth and waist size optimality

The 31-input network shown in Figure 12(a) has depth 8 and size 52. Snir (1986)

has shown that for a prefix network of width n, depth d and size s, it is the case that

d+ s � 2n− 2. Thus, a network (like this one) that obeys d+ s = 2n− 2 has reached

that lower bound and is called depth size optimal (DSO). For the given depth and

width, there is no smaller network. Snir showed that the lower bound can be reached

for depths ranging from 2log2n− 2 to n− 1. Serial networks are DSO; for n inputs,

both depth and size are n− 1.

Following Lin et al. (2003), we have introduced the related notion of waist-size

optimality (Sheeran & Parberry 2006). The waist of a network is the difference in

levels between the first duplication node on the leftmost input and the production

of the rightmost output. For the network in Figure 12(a), the waist is 8, the same as

the depth, while the 32-input Brent–Kung network shown in Figure 6 has waist 5,

but depth 9. A network with waist w, width n and size s is waist-size optimal (WSO)

if w + s = 2n− 2 (Lin et al. 2003).

The Brent–Kung-like networks defined with bk0 and twos are WSO. For input

widths for which all recursive calls besides the last are on odd widths, for example

23, 31 and 47, the waist and depth are equal, and then they are also DSO.
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How would we go about building Brent–Kung-like networks that are DSO for

all input widths? We need to keep the waist and depth equal, by making sure that

the last element of the top sequence is 1 (and not zero). This means that our earlier

function twos (used in the definition of bK0) could, for instance, be replaced by

twos’ :: Int -> Partition

twos’ 1 = [1]

twos’ 2 = [1,1]

twos’ n = 2 : twos’ (n-2)

bK1 :: PP a

bK1 _ [a] = [a]

bK1 f as = build0 (twos’ (length as)) bK1 f as

*Main> check0 bK1 59

True

Even-width inputs are now divided as [2,2,..2,1,1], while the division of odd-
width inputs is unchanged. For 32 inputs, the following are the resulting Nets for
zero-delay inputs (with some additional formatting added by hand):

*Main> getNets0 bK1 32

[1/[(0,[1,2])], 2/[(2,[2,3]), (1,[2,4])],

3/[(0,[3,4])], 4/[(4,[4,5]), (3,[4,6]), (2,[4,8])],

5/[(0,[5,6])], 6/[(4,[6,7]), (1,[6,8])],

7/[(0,[7,8])], 8/[(6,[8,9]), (5,[8,10]), (4,[8,12]), (3,[8,16])],

9/[(0,[9,10])], 10/[(6,[10,11]),(1,[10,12])],

11/[(0,[11,12])],12/[(6,[12,13]),(5,[12,14]),(2,[12,16])],

13/[(0,[13,14])],14/[(6,[14,15]),(1,[14,16])],

15/[(0,[15,16])],16/[(7,[16,17]),(6,[16,18]),(5,[16,20]),(4,[16,24])],

17/[(0,[17,18])],18/[(7,[18,19]),(1,[18,20])],

19/[(0,[19,20])],20/[(7,[20,21]),(6,[20,22]),(2,[20,24])],

21/[(0,[21,22])],22/[(7,[22,23]),(1,[22,24])],

23/[(0,[23,24])],24/[(7,[24,25]),(6,[24,26]),(5,[24,28])],

25/[(0,[25,26])],26/[(7,[26,27]),(1,[26,28])],

27/[(0,[27,28])],28/[(7,[28,29]),(6,[28,30])],

29/[(0,[29,30])],30/[(7,[30,31])],

31/[(8,[31,32])],32/[]]

The fans are all of width two. Note how each odd numbered wire has exactly

one fanout on it, to the adjacent wire. This network is shown in Figure 13. This

construction is due to Lin & Liu (1999). For even-width inputs, Lin and Liu opted

to place two ones at the end of the sequence of widths: [2,2,..,2,1,1]. The last of

those ones must be at the end of the sequence, but what about other placements for

the other one? The reader might like to consider other possible solutions. A recent

paper, also by Lin, studies this problem, comparing the Lin and Liu construction to

two others (Lin & Hung 2009). We will move on to the much harder question of

how to deal with fanout greater than two, both in the production of DSO networks

and of larger but shallower networks.
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Fig. 13. A Brent–Kung-like network generated using the function bK1. Networks generated

in this way are always both WSO and DSO. Since the waist has increased, but the network

is still WSO, this 32 input, depth 9 network is smaller than the standard construction in

Figure 6, 53 versus 57 operators.

4 Generating Depth Size Optimal (DSO) prefix networks

Our overall task is this: for a given depth and width, find a prefix network with

few operators and low fanout. In this section, we explore the generation of DSO

networks, while retaining control of fanout. In the following section, we attack the

harder question of how to generate small shallow networks when DSO networks do

not exist.

To generate DSO networks, we use the pattern shown in Figure 11, with each

Ti being a serial prefix network. This is the pattern that is encoded in the function

build0; but we use search to find appropriate partitions, rather than designing them

a priori. To do this, we must introduce the notion of a context into which a prefix

network should fit, and then we search for the best network (according to some

measure) that fits in that context.

A context for a width n prefix network is a pair containing an n-list of wire

number/input delay pairs, and a single integer representing the desired maximum

depth.

type Context = (WDels,Int)

width :: Context -> Int

width (cin,_) = length cin

maxd :: Context -> Int

maxd ([],_) = 0

maxd (((_,a):_),o) = max 0 (o-a)

Think of a context as representing a hole into which a prefix network must be

fitted. The first part of the context is the top edge or fringe of the hole, and is

not necessarily flat, in the sense that the delay values may not all be the same.

The second part corresponds to a straight line across the bottom of the diagram,

representing the maximum delay at which any output should be produced. All fans

must fit between these two edges. (It would also be possible to use a list of wire-delay

pairs to indicate maximum depth per output, but we have not found that necessary

for our purposes.) The difference between the output delay and the first element of
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the input delays is a measure of the depth (or waist) available to the network, and

is computed by the function maxd.

To check if a proposed network fits in a context, we can run it with the top fringe

(the WDels part) of the context as input and with wdFan as the fan component, and

compare the delays of the outputs with the required maximum output delay. We

can also extend the correctness checking function with a check that the network fits

in its context.

fits pat (is,o) = and [out <= o | (_,out) <- pat wdFan is]

check :: WPP -> Bool

check (WPat ctx func) = check0 func m && fits func ctx

where l = [1..m]

m = width ctx

A network pattern generated for a given context is wrapped together with the

context in which it was created.1

type APP = forall a. PP a

data WPP = WPat Context APP

getContext :: WPP -> Context

getContext (WPat c p) = c

This could be used to avoid trying to use a pattern in an inappropriate context. In

addition, it allows networks to be passed around and run on different types (which

is necessary because of our use of NSI) without leading to problems because lambda

binding is monomorphic. The type of fits above is now APP -> Context -> Bool.

4.1 Measure functions

Next, we need measure functions, which should take a wrapped pattern and return

an element of the Ord type. Examples are the functions size, which measures the

number of binary operators in a network and maxfo, which returns the maximum

fanout:

size :: WPP -> Int

size = sizeN . getNetsW

maxfo :: WPP -> Int

maxfo = maxfoN . getNetsW

Here, we calculate the nets, taking account of the context, and then take the size

or maximum fanout (see Appendix A for the definitions of sizeN and maxfoN, and

Appendix B for the definition of getNetsW). These particular measure functions

1 Because we now have a forall type inside a constructor, we are now using Rank 2 types. Placing {-#
LANGUAGE Rank2Types #-} at the beginning of ones code file enables the use of Rank 2 types in
Haskell.
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could be calculated more simply, using NSI or a simpler data structure, but we find

it convenient to use Nets, as we also use it for drawing network diagrams.

We have used wire numbers in the Nets datatype, in order to be able to capture

some information about wire length. When prefix networks of the types discussed

here are implemented as circuits, it is the effects of the horizontal wires that are most

dominant (as for a given width and depth, the vertical wires that appear one for

each input (and connect input i to output i) will be of the same length in each case).

Each fan in fact results in a single horizontal wire that joins each of the operators

fed by the wire that is fanned out. The lengths of these wires can vary greatly in

different network topologies, and a good first rule of thumb is to try to keep those

wires as short as possible. The measure function sumspan sums the spans of each

fanout in a network to give a measure of total horizontal wire length.

It is easy to combine measure functions. Two combinations that we use very

often are sizefo, which minimizes first size and then maximum fanout, and fosize,

which minimizes first fanout and then size.

sizefo :: WPP -> (Int,Int)

sizefo wp = (sizeN ns, maxfoN ns)

where ns = getNetsW wp

fosize :: WPP -> (Int,Int)

fosize wp = (maxfoN ns, sizeN ns)

where ns = getNetsW wp

The function try checks whether or not a network pattern p fits in a context,

returning either Nothing or the pattern wrapped in that context:

try :: APP -> Context -> Maybe WPP

try p ctx | fits p ctx = Just (WPat ctx p)

| otherwise = Nothing

Now, we have the programming building blocks for a search. In Section 3.5,

we introduced network descriptions based around the top partition [w0, w1, . . . , wn].

Now, we will explore the effect of varying that partition, moving away from the

restricted forms seen so far. In particular, we will explore the effect of allowing

fanout to be greater than 2. Given a context, we will consider various partitions,

each of which will in turn lead to a new context for the recursive call. Each partition

will either succeed or fail in a given context.

4.2 Designing the search space: choosing partitions

What partitions should we explore for a given context, bearing in mind that

considering all integer partitions of the width of the context will, in general, be too

costly? First, it makes sense to restrict the fanout in the small fans across the bottom

of the resulting network, and for this we will introduce an integer parameter f.

This restriction is introduced both because large fanouts are best avoided in VLSI

circuits and because it conveniently reduces the search space. The last element of

the top partition should then be at most f-1, so that the matching fan is at most
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f; elements other than this one and the first should be at most f. In addition, the

overall depth of the context limits the possible depth (and hence width) of each small

prefix network. Note that the first element of the top partition, w0, does not give rise

to a matching fan, so it could be larger than f without causing increased fanout in

the network. The function parts0 captures these constraints on the partitions:

perms :: Int -> Int -> Int -> [Partition]

perms _ _ 0 = [[]]

perms l f n = [x:ts | x <- [l..f], x <= n, ts <- perms l f (n-x)]

parts0 :: Int -> Context -> [Partition]

parts0 f ctx = [l:rs ++ [r]|

l <- [2..d], r <- [1..rr], rs <- perms 2 ff (n-r-l)]

where

n = width ctx

d = maxd ctx

rr = min (f-1) d

ff = min f d

It is tempting, at this point, to tweak the partition generation by adding further

constraints based on what we know about the network shape. We have found that

it is better to avoid such tweaks as they will anyway be dominated by later, more

sweeping changes aimed at reducing the search space. For now, let us take a quick

look at the scale of the problem:

*Main> length (parts0 4 (zdel 16,5))

277

*Main> length (parts0 4 (zdel 32,6))

136523

*Main> length (parts0 4 (zdel 45,7))

20730338

Next, we make a version of the build0 pattern that does the necessary wrapping

and unwrapping, but is otherwise unchanged.

buildW0 :: Context -> Partition -> WPP -> WPP

buildW0 ctx ws (WPat _ p) = WPat ctx (build0 ws p)

As performance is an issue, and because we have not run into problems with trying

to compose non-matching sub-networks, we have chosen not to check compatibility

of the outside context with the partition or the context of the wrapped network that

is the input. However, these checks could be performed should the need arise.

How should we formulate the search? First, assume the existence of a function,

prefix that for a given a limit on fanout f, measure function and context returns

either Nothing or Just a (wrapped) prefix network with maximum fanout f that

fits in the context. We would call such a function as follows:

dso :: (Ord a) => Int -> (WPP -> a) -> Context -> WPP

dso f mf ctx = fromJust (prefix ctx)
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where

prefix :: Context -> Maybe WPP

prefix ctx = ...

The fromJust function raises an exception if prefix returns Nothing and returns

the solution otherwise. The first cases in the function prefix are easy:

prefix ctx | width ctx == 1 = try wire ctx

prefix ctx | 2^(maxd ctx) < width ctx = Nothing

prefix ctx | fits ser ctx = Just (WPat ctx ser)

wire :: APP

wire _ as = as

If the context contains only a single input, then wiring the input to the output

should work (and fit in the context that expresses constraints on the resulting delay).

If the width of the context is greater than 2d for depth d, then there is no solution

and Nothing is returned. In the next case, a serial network is returned if it fits in the

context. If the context is deeper than that required for the serial network, a serial

network is returned in any case.

For the step, we would like, if possible, to make a suitable network for each of the

candidate partitions, that is each element of parts0 f ctx. So we define a function

called makeNet that, given a partition, returns either Nothing or a (wrapped) network

in which the function prefix has once again been used to deal with the recursive

call in the middle of the sandwich. Using mapMaybe to map makeNet across the

partitions results in a (possibly empty) list of possible networks for that context,

and bestOn mf chooses the best of these according to the measure function mf. The

third case for prefix is

prefix ctx@(is,o) = bestOn mf $ mapMaybe makeNet (parts0 f ctx)

where

makeNet ws = ...

and bestOn is defined as follows:

bestOn :: (Ord a) => (WPP -> a) -> [WPP] -> Maybe WPP

bestOn _ [] = Nothing

bestOn mf as = Just (minimumBy (compareOn mf) as)

compareOn :: (Ord a) => (WPP -> a) -> WPP -> WPP -> Ordering

compareOn f c1 c2 = compare (f c1) (f c2)

Finally, makeNet is defined in the where clause as

makeNet ws = do let js = map (last.(ser wdFan)) $ split ws is

q <- try wire ([last js],o-1)

p <- prefix (init js,o-1)

return $ buildW0 ctx ds p
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Fig. 14. A DSO network of width 20 found by the search embodied in the function dso.

This code calculates the context of the sandwiched recursive call of prefix, checking

as well that the last output of the rightmost serial network also meets its timing

constraint (the call of try wire). (The last output of a serial network is always

produced last; if the last output fits in the hole that is the context, then so will all

other outputs.) The function prefix is called on the calculated context, and if a

network is successfully returned, it is sandwiched (using buildW0) to produce the

successful result for the partition being considered. If either of the calls to try wire

or prefix fails (that is produces Nothing), then the call of makeNet fails for the

given partition. (For readers unfamiliar with Haskell, we are using the Maybe monad

to ease the expression and composition of computations that can fail. Wadler’s

paper provides a good introduction (Wadler 1992) and there are many more recent

tutorials about monads available on the web.)

This very simple approach works well for small examples. For example, drawing

the result of calling the function dso 6 (zdel 20,5) gives the network shown in

Figure 14.

The way in which the prefix function builds up the final solution using solutions

to smaller sub-problems is a form of dynamic programming. It is reminiscent of classic

algorithms such as Dijkstra’s shortest paths algorithm, which exploits the recursive

structure of the problem—often called the optimal substructure in formulations of

dynamic programming (Cormen et al. 2001).

4.3 Refining the search space

Let us now begin the process of adjusting the partition generation to consider fewer

useless partitions. First, note that if a network is sufficiently deep, then fanout 2 will

do. Earlier, we saw the bK0 pattern, which, for depth d, could reach width 2k − 1

for even d and 3k − 1 for odd d, with k = 2�d/2�, see Figure 12. For a given depth,

this width gives us the limit for the construction of a fanout 2 network. It is easy

to calculate these limits, given the depth permitted by the context, and to generate

a partition that results in fanout 2 when the network width is small enough, as

specified by the first equation in parts1:

parts1 :: Int -> Context -> [Partition]

parts1 f ctx

| k2 > n = [l : twos1 (n-l-1) ++ [1] | l <- [2..d]]

| k2 == n = [replicate (fnd2 n) 2]

| k2 < n = [replicate k 2 ++ rs ++ [r]|

r <- reverse [1..maxr], rs <- perms 2 ff (n-r-2*k)]
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Fig. 15. Fanout two network in which all partitions stem from the first equation of parts1.

The top partition is [3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1]. The next (for the recursive

call that applies to the last elements of all but the last (width one) serial network) is

[2,2,2,2,2,2,2,1].

where

maxr = min (f-1) d

ff = min f d

n = width ctx

d = maxd ctx

k = 2^(fnd2 d)

k2 = if even d then 2*k else 3*k

twos1 n = replicate (fnd2 n) 2 ++ [1 | odd n]

fnd2 n = n ‘div‘ 2 -- Floor of n/2

The partitions generated by the first equation start with a number in the range 2

to d; the resulting serial network will not give rise to a matching fan. For larger

widths of this initial serial network, deeper networks will result, as the wider serial

networks use up more of the available waist. The final element of the partition must

be 1, giving matching fanout 2. The definition of twos1 permits the partition ending

in two ones that we saw earlier. Figure 15 shows a 32 input depth 9 network in

which all partitions are generated using this first equation of parts1. The case where

fanouts greater than 2 are needed is covered by the second and third equations.

Here, we begin the partition with a sequence of k 2s, as we assume that the left-hand

part of the network will look look like one of the arrangements shown in Figure 16.

Separating the case for when the input width is exactly twice k avoids having to place

only k-1 2s before the call to perms in the first case. The reduction in the number

of partitions that must be considered for a given width and depth is considerable.

*Main> length (parts1 4 (zdel 16,5))

6

*Main> length (parts1 4 (zdel 32,6))

241

*Main> length (parts1 4 (zdel 45,7))

34729
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Fig. 16. Even when a network uses fanout greater than two, it will have a left-hand part

that uses only fanout two, or possibly one fanout of three at the waist. The arrangement

on the left (which shows only part of the network working on an initial subsequence of the

inputs) shows how the resultant binary trees of operators are arranged for odd depth. For

even depth, we squeeze one of the trees up against the waist. In either case, the top partition

will contain at least k 2s, where k = 2�d/2�, for depth d. The concrete trees shown here are of

depth 3, but a similar pattern applies for deeper trees.

Fig. 17. A depth size optimal network of width 33, depth 6 and with maximum fanout 7.

This allows us to reach wider examples, for example the network shown in Figure 17,

which is identical to the LYD construction for 33 inputs (Lakshmivarahan et al.

1987).

From our earlier analysis of the DSO network construction problem (Sheeran &

Parberry 2006) and a search of the literature, we have concluded that this is the

widest known minimum depth DSO network. The question of whether or not wider

minimum depth DSO prefix networks can be constructed remains open.

4.4 A drastic refinement of the search space

The next step is to consider vastly fewer permutations, by modifying the perms

function to generate only sorted lists. The call of perms in parts1 is replaced by

one of permsUp. The numbers of generated partitions are again greatly reduced.

permsUp :: Int -> Int -> Int -> [[Int]]

permsUp _ _ 0 = [[]]

permsUp l g n = [x:ts | x <- [l..g], x <= n, ts <- permsUp x g (n-x)]

*Main> length (parts1 4 (zdel 32,6))

20

*Main> length (parts1 4 (zdel 45,7))

64

*Main> length (parts1 4 (zdel 64,8))

72
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(a)

(b)

Fig. 18. Two different DSO networks of width 64, depth 8 and fanout 4. Each has size 118.

The measure function used in the search were (a) number of operators (size) and (b) sum

of horizontal wire spans (sumspan) (see Section 4.1). Note how the left hand part of each

network has the arrangement illustrated on the right of Figure 16

(a)

(b)

Fig. 19. Considering only sorted partitions is indeed a restriction. Above is the widest DSO

network found using sorted partitions for fanout 4 and depth 8. It has width 70, but we know

that there are networks of widths 71 and 72. However, those networks require the partition

to be unsorted. The reader might like to try to find the two positions in this network at which

it would have been possible to have three-input rather than two-input serial networks at the

top. The answer is below, and it can be generated by specifying the top partition explicitly.

Alternatively, increasing the fanout to 5 allows the search to find a DSO network of depth 8

and width 72, with sorted top partition.

With so few partitions to choose from, larger examples come into reach, see for

example the width 64, depth 8, fanout 4 networks shown in Figure 18.

Considering only sorted partitions is, however, a major restriction in that it can

cause us, in a few cases, to miss attractive solutions (Figure 19). The function

maxdso given in Appendix B encodes what we know from our own earlier work

on DSO networks. For example, maxdso 4 8 is 72, which indicates that current

known constructions for DSO networks reach width 72 for fanout 4 and depth

8. Playing with this function and comparing with our generated networks tells us

that we sometimes miss a few DSO networks close to the width limits for a given

fanout and depth. In those cases, one can increase the fanout to ensure that the

required width is well away from the limit for the given depth and the new fanout,
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so that the search based method can still find a DSO solution (though perhaps with

fanout higher than absolutely necessary). A second option is to examine the longest

sorted partition achieved, and to manually specify the partition that results when it

is adjusted to reach greater width (and is then unsorted). The required partition can

be explicitly specified in the partition generation function:

parts1 f ctx

| n==72 = [replicate 16 2 ++ [2,2,3,2,2,3,2,2,3,4,4,4,4,3]]

| k2 > n = ...

For wider and deeper examples, it may be necessary to use unsorted partitions, even

in the recursive calls. In that case, one can change the call of permsUp to one that

uses perms to form an initial part of the partition, and permsUp to form the rest.

The use of sorted partitions is necessary if the search is to get beyond 40 or so

inputs.

Measure functions allow the user to customize her DSO networks, as illustrated

in Figure 18. For a given width and depth, though, all DSO networks, no matter

what the partitions used in their generation, will have the same size. So choosing

size as the measure function, as we did in generating Figure 18(a) actually amounts

to finding the first working solution in the search. In cases where we care only

about finding DSO networks quickly, as for example when we are simply trying

to break exisitng records, we can replace the choice of the best option according

to the measure function (the code bestOn mf in the dso function definition) with

just taking the first working (non-Nothing) option, corresponding to the Haskell

function listToMaybe. Because we are in a lazy language, computations that are no

longer necessary to produce the result simply do not take place. Once this change

is made, the order in which one examines potential solutions becomes much more

important. This is the reason why the first case of parts1 contains a reversed list;

we want to consider partitions whose last element is longer first, as we typically

need long last elements when trying to produce wide networks for a given fanout

and depth. This approach, by-passing measure functions, was used to produce some

of the wider DSO networks that we report in Section 6.1. Further discussion of the

results for DSO network generation is postponed to that section.

We are aiming for shallow networks, and in general DSO networks do not exist at

minimum depth. Remember that Snir, who proved the key lower bound, explicitly

only considered depths in the range 2 log2n − 2 to n − 1 for n inputs. Shallower

networks than this are much less well understood, with the main work so far having

been done by Fich in the 1980s (Fich 1982, 1983). Networks that are shallow, but

as close as we can get to DSO are more likely to be of practical interest than

DSO networks. Shallow networks, in general, run faster when made into circuits,

while keeping the network small keeps the power consumption down. We have the

programming tools to explore the design of small shallow prefix networks in a rather

experimental way. The idea of using search can still be used, but we need to further

generalise. It turns out that what is needed is a generalization of the Ladner–Fischer

construction (Ladner & Fischer 1980).
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5 Searching for shallow parallel prefix networks

5.1 The Ladner–Fischer construction in Haskell

Ladner and Fischer (1980) is a wonderful paper that introduces a family of prefix

networks. The authors introduce an additional parameter, the slack, to indicate by

how much the network is allowed to exceed the minimum depth. The construction

described in the paper produces restricted networks, in which the last output is

produced at minimum depth. The base case is independent of the slack parameter

(and of the operator):

ladF :: Int -> PP a

ladF _ _ [a] = [a]

When the slack is zero, indicating a minimum depth network, we use a construction

very similar to Sklansky:

ladF 0 f as = init los ++ ros’

where

(los,ros) = (ladF 1 f las, ladF 0 f ras)

ros’ = f (last los : ros)

(las,ras) = splitAt (cnd2 (length as)) as

Note the left-hand recursive call, with slack one instead of zero; the two recursive calls

are different, unlike in the Sklansky construction. This is a key point, often missed

by those referring to Ladner–Fischer, leading to the wide-spread misconception that

the Ladner–Fischer and Sklansky constructions are identical. With slack one on the

left, we make use of the available depth on the left-hand side, but produce the last

output of the recursive call at minimum depth, so as not to disturb the overall depth

of the network (Figure 7). This construction matches exactly Figure 3 in (Ladner &

Fischer 1980).

The following definition captures the case when the slack is greater than zero

(Figure 4 in Ladner & Fischer 1980):

ladF n f as = build0 (lp (length as)) (ladF (n-1)) f as

where lp 1 = [1,0]

lp 2 = [2,0]

lp n = 2 : lp (n-2)

Figure 7 shows two width 32 networks, for slacks 0 and 1. In the slack 0 network,

the slack 1 recursive call on the left is marked with a dotted box.

Observing the recursive structure of the network description, or indeed copying

the recurrence in (Ladner & Fischer 1980), it is easy to write down a function to

calculate the network size:

ladSize :: Int -> Int -> Int

ladSize k 1 = 0

ladSize 0 n = ladSize 1 (cnd2 n) + ladSize 0 (fnd2 n) + fnd2 n

ladSize k n | even n = ladSize (k-1) (cnd2 n) + n-1

ladSize k n | odd n = ladSize (k-1) (cnd2 n) + n-2
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(a) (b)

Fig. 20. (a) LF0, the minimum depth Ladner–Fischer network, for nine inputs; it has 13

operators and depth 4 (b) A smaller 9-input network (with 12 operators, depth 4) made from

LF18, and one further operator to take care of the last input. This network is DSO. This

illustrates the fact that LF0 does not always give optimal networks.

Fig. 21. The Ladner–Fischer construction for slack 2, width 64. It has size 125 and maximum

fanout 18. Note how it produces its last output at minimum depth. Compare with the fanout

4 DSO network in Figure 18.

*Main> ladSize 0 64

168

*Main> ladSize 2 64

125

Similarly, one can calculate the maximum fanout (in the sense used here) in a

Ladner–Fischer network of a given width and slack (see functions maxlfo and

maxlfo’ in Appendix B). The networks produced by the ladF function correspond

exactly in size and fanout to those predicted by these calculations.

Ladner and Fischer made a particular choice about how to divide up the

network when applying the Sklansky- and Brent–Kung-like patterns, and stated

as an open problem the determination of just how to split the network to optimize

the construction. They were well aware that their choice was not optimal, and

gave the small concrete example shown in Figure 20. On the left is Ladner–Fischer

with zero slack for nine inputs. On the right is a network that adds one extra

input and a single operator to Ladner–Fischer with slack one for eight inputs. The

result is a smaller prefix network than that on the left. Another example in which

Ladner–Fischer makes poor choices is shown in Figure 21.

So it is reasonable to try to improve on the classic Ladner–Fischer construction.

Here, we will experimentally find particular solutions to the open problem.

5.2 Improving on the standard Ladner–Fischer construction using search

In order to try to find better solutions than the choices made by Ladner and Fischer,

we will again use the idea of searching through partitions, as we did when searching

for DSO networks. To encode a new generalization of the Ladner–Fischer pattern,
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Fig. 22. The recursive parallel prefix network construction captured by the build1 function.

There are now two recursive calls rather than the one that we have had so far. The second

one is marked Q and corresponds to the q parameter.

one needs two recursive calls, one sandwiched between the serial networks and fans

as before, and one at the right-hand end of the top row of small prefix networks.

That is, we want the network Tn at the top right of the generalised Brent–Kung

pattern shown in Figure 11 to be a recursive call, rather than just a serial network,

as illustrated in Figure 22. Earlier, we used the functions build0 and buildW0 to

encode the generalised Brent–Kung pattern. Similarly, build1 and buildW1 encode

the more general pattern (Appendix B).

When considering how to build prefix networks using the construction shown

in Figure 22, we could introduce a new integer parameter constraining the width,

wn, of the new recursive call, and thus of the associated fanout Fn. However, after

some experiment with this, we decided to omit that parameter, and to calculate the

maximum allowed width of the upper recursive call, using the maximum fanout

of the Ladner–Fischer construction of the same width and depth as the limit. The

advantage of this approach is that it calculates successively smaller limits in recursive

calls during generation, while a single externally supplied parameter would likely be

much too large in recursive calls. (Should users prefer to manually control the limit,

however, one could easily add an additional parameter to the generation function.)

Our choice means that the interface of the new network generation function is the

same as before. Indeed, a lot of the function remains unchanged:

gen :: (Ord a) => Int -> (WPP -> a) -> Context -> WPP

gen f mf ctx = fromJust (prefix ctx)

where

prefix = memo pm

pm ctx | width ctx == 1 = try wire ctx

pm ctx | 2^(maxd ctx)< width ctx = Nothing

pm ctx | fits ser ctx = Just (WPat ctx ser)

pm ctx@(is,o) = bestOn mf $ mapMaybe makeNet (parts2 f g ctx)

where
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makeNet ds

= do let sis = split ds is

let js = map (last.(ser wdFan)) $ init sis

p <- prefix (js,o-1)

pr <- prefix (last sis,o-1)

return $ buildW1 ctx ds p pr

d = maxd ctx

w = width ctx

mind = alog2 w

slack = d - mind

g = maxlfo slack w

We have taken the opportunity to memoize the prefix function. Typically, dy-

namic programming exploits the fact that the smaller sub-problems are over-

lapping in order to avoid repeated calculations. In the prefix network search,

there are a great many overlapping sub-problems. We have found that memoiza-

tion can pay off for larger input widths. The purely functional memo function

used was provided by Koen Claessen and is available to the reader at URL

http://www.cse.chalmers.se/∼ms/PPSearch/; it is a refinement of Hinze’s approach

to the construction of memo functions (Hinze 2000). Any other memo function

could be substituted for this one.

The cases considered in the new network generation function gen are the same

as in the earlier dso function (width one context, hopeless context, and room for

a serial network being the base cases). What must change are the definition of the

makeNet function, which generates a network for a given partition, and the partition

generation function. The makeNet function now has two recursive calls of prefix,

and it must calculate the new context for each of them.

The new partition generation function parts2 is listed in Appendix B. It is

modelled closely on the earlier function parts1. It has a new parameter g giving

the maximum size of the last element of any generated partition. It differs from

the earlier function only in how it calculates a suitable range of values for the last

element of the partition, in the case when fanouts are used.

How good are the results? First, the call gen 2 sizefo (replicate 9 0,4)

does indeed produce the DSO network shown in Figure 20(b). Comparing the

new networks to Ladner–Fischer, two separate generalisations have been made: the

search permits the small prefix networks across the top to be wider than two, and

is also choosing how wide to make the new recursive call, and so making better

choices than those hard-wired into the Ladner–Fischer construction. Both lead to

improvements, so let us explore their effects. For 64 inputs, depth 7, restricting f to 2,

and using measure function sizefo gives the network shown in Figure 23, with 128

operators, fanout 13, while minimizing fanout first and then size gives fanout 12,

size 129. For comparison, Ladner–Fischer has 137 operators and fanout 17 for the

same width and depth. Allowing f to increase to 3 reduces fanout and size further in

our construction, giving size 126 with fanout 9. This network is shown in Figure 24.

Allowing small fanouts of 4 reduces the size to 125, but increases the fanout to 10.
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Fig. 23. The prefix network of width 64, depth 7 found using dynamic programming and

measure function sizefo, with the widths of the small serial prefix networks across the top

still restricted to 2. It has size 128 and fanout 13. This is already a considerable improvement

on the classic LF construction.

Fig. 24. The prefix network of width 64, depth 7 found using dynamic programming, with the

widths of the small prefix networks across the top now allowed to be 3. This network results

from both measure functions sizefo and fosize. It gives further improvement on the classic

LF construction, as it has size 126 and fanout 9. Classic LF gives size 137 and fanout 17.

To compare the results generated by the gen function and the Ladner–Fischer

construction for a wider range of depths and sizes, it is convenient to write small

Haskell functions to generate the required information, see the functions info and

res in Appendix B. The call res 0 3 sizefo 16 2 9 considers minimum depth

networks produced by gen with small fanout limited to 3 in the range of widths

32–144 at intervals of 16, and gives

[(32,5,(74,17),(74,17)),(48,6,(102,18),(117,25)),

(64,6,(168,33),(168,33)),(80,7,(173,21),(211,41)),

(96,7,(223,35),(262,49)),(112,7,(286,50),(313,57)),

(128,7,(369,65),(369,65)),(144,8,(322,26),(412,73))]

Each element of the list gives width, depth and the results for gen and Ladner–

Fischer, in this case a pair of size and fanout. For input width a power of two, the

results for gen are identical to Ladner–Fischer. We have noted that the results are

also identical for input width one less than a power of two. For other input widths,

search gives results that are smaller and have lower fanout than Ladner–Fischer,

with the differences being largest just above a power of two, and reducing as one

approaches the next power of two, at which the results are identical again.

Interestingly, increasing the small fanout to 4 gives very little improvement, with

a difference in size and fanout between this and the fanout 3 case first observed at

width 96 in these samples.

[(32,5,(74,17),(74,17)),(48,6,(102,18),(117,25)),

(64,6,(168,33),(168,33)),(80,7,(173,21),(211,41)),

(96,7,(223,34),(262,49)),(112,7,(286,50),(313,57)),

(128,7,(369,65),(369,65)),(144,8,(321,28),(412,73))]

The above calculation is done using the memoised version of gen. It takes just over

30 seconds of processing and 8 seconds of garbage collection on one core of a Dell

M1330 laptop with an Intel Core2 Duo 2.2 GHz CPU T7500 and 3.5 GB of RAM.

Without memoization, the calculation takes approximately 430 seconds.
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Increasing the slack to one gives results that improve on Ladner–Fischer for all

input widths that we can reach, including powers of two. Further details are given

in Section 6.

5.3 A new construction: replacing small serial networks by Ladner–Fischer

The degree of improvement that we have achieved over classic Ladner–Fischer is

indeed encouraging. We can go further, however, by questioning the choice to use

serial networks along the top of the partition, when aiming for shallow networks.

Remembering that it is only the last outputs of these small networks that are used

in the following recursive call, it makes sense to consider using restricted networks

that produce that last output at minimum depth, but that save on size by being

deeper for other outputs. We already have such networks in the form of classic

Ladner–Fischer. We define a variant of Ladner–Fischer as follows:

adLadF :: PP a

adLadF f as = ladF (ln2 (length as) - 2) f as

Note how the slack parameter depends on the width of the input. It is chosen to give

the minimum size Ladner–Fischer network for the given width. The new definition

gen1 is very similar to gen, with one occurrence of ser replaced by adLadF. New

versions of the functions build1 and buildW1, now called build2 and buildW2, are

also needed (Appendix B).

Now, in the search for networks that are not minimum depth, we can reduce

fanout further, but sometimes at the expense of size, since we have replaced all the

serial networks by Ladner–Fischer and that is not always a good idea. However, for

minimum depth, we can gain a further improvement, even for width a power of two.

For 64 and 128 inputs, we beat classic Ladner–Fischer by one and five operators

respectively (Figure 25).

This is actually an unexpected and positive result. Ladner–Fischer has often tacitly

been assumed to produce the smallest possible prefix network for width a power

of two and minimum depth. For instance, Fich is sometimes quoted as stating that

Ladner–Fischer gives optimal networks in that case, but actually her statement is

only about the deepest variant, which is very similar to Brent–Kung (Fich 1983),

and indeed Fich goes on to improve on the Ladner–Fischer construction even

for minimum depth and width a power of two. Here, we have concrete examples

supporting the assertion that Ladner–Fischer is not optimal in these cases. The two

networks that we have found for 64 and 128 inputs are previously unknown, as

far as we can ascertain, and are smaller than any known minimum depth networks

for these widths. So we are entering unknown territory, and for a class of networks

(depth d, width 2d) that is of interest in many applications. Let us concentrate on

this class, and see how far we can go. Our Haskell implementation makes it possible

both to experiment with network design and with ways to constrain the search

space. It is easy to experiment, though perhaps not so easy to convey the process

in a paper. For instance, we were surprised to find that it is very useful to generate
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(a)

(b)

(c)

Fig. 25. (a) The 64 input, depth 6, network obtained by allowing small Ladner–Fischer

networks to replace small serial networks. The four input LF network that leads to a saving

of one operator over classic Ladner–Fischer (Figure 7(a)) is marked with a dotted box. (b)

The 128 input, depth 7, network obtained in the same way. This has 364 operators, compared

to 369 for Ladner–Fischer. For these widths, smaller minimum depth prefix networks are not

known. (c) Classic Ladner–Fischer for 128 inputs, minimum depth. Note how the big fans

are still at the same places as in the more complicated construction in (b) just above.

huge network diagrams that are much too large to be printed and to browse them

using xfig.

Examining the 64 and 128 input networks that we have just generated, we note

that none of the small fans has width 3; only 2 and 4 are chosen. Might this be a

pattern? It is easy to replace permsUp by permsUp2, to capture the notion that we

consider only small restricted networks whose widths are powers of two.

permsUp2 :: Int -> Int -> Int -> [Partition]

permsUp2 _ _ 0 = [[]]

permsUp2 l g n

= [x:ts | x <- [l,2*l..g], x <= n, ts <- permsUp2 x g (n-x)]

This allows us to get results for 256 and 512 inputs too, with 773 and 1614 operators

respectively, compared to 792 and 1672 for classic Ladner–Fischer. The important

point, though, is that we can examine the “winning” partitions, and try to spot

a pattern that would allow us to develop and analyse a new prefix construction.

Examining the 64 and 128 input cases (Figure 25), the outermost partitions are

[2,..,2,4,32] and [2,..2,4,4,4,64]. Those found for 256 and 512 inputs are

[2,..,2,4,4,4,4,4,4,4,4,8,128] and [2,..,2,4,4,4,4,4,4,4,4,4,4,4,4,4,

4,4,4,8,16,256]. Now, one can try reversing the order in which the possible

partitions are considered, by replacing the call of the generator (parts3 f g ctx)

by (reverse (parts3 f g ctx)) in the function gen1. Then, the pattern for 256

inputs contains eight 4s and two 8s, while that for 512 inputs has 12 4s, 4 8s and

one 16.

It is also instructive to compare the resulting networks with classic Ladner–Fischer

instances of the same sizes. We note that the large fans occur at exactly the same

points, both when small Ladner–Fischer networks are used along the top, and when

they are not. These division points correspond to one half, one quarter, one eight,
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and so on of the overall network width. After some experimenting with patterns, we

find that a working sequence has at the right-hand end the following sub-sequences:

(2*4), (4*4,1*8), (8*4,2*8), (16*4,4*8,1*16), (32*4,8*8,2*16), for input widths 26, 27

and upwards. The function pat, given in Appendix B, generates the pattern that is

appropriate for 2k inputs, for example:

*Main> pat 8

[4,4,4,4,4,4,4,4,8,8]

Now, for the outer partition of network with 2k inputs, it is easy to make up the

entire partition, as it is just (pat k) ++ [2\^(k-1)], with an appropriate number

of twos appended on the left.

Things become more interesting in recursive calls in which the length of the input

is not exactly a power of two. This can happen in the sandwiched recursive call just

inside the top partition. If the left-hand half of the top partition were all 2s, then

this recursive call would work on a power of two inputs, but this is not the case

because of the patterns of 4, 8 and larger input prefix networks across the top. The

recursive call has fewer inputs, and we must find a way to divide those inputs in

the right place, so that the large fan for the next partition appears in exactly the

right place. For example, for 256 inputs, the top level partition is 40 2s, followed

by [4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 128]. This means that the sandwiched network has only 50

inputs, rather than 64. Those inputs are at wires [2, 4, 6, . . . , 80, 84, 88, . . . , 120, 128]

and the last element of its partition should span those inputs that have wire

number greater than 64, which is the wire on which the big fan should appear.

Calculations about where to put the fans are enabled by numbering each wire at

the top level, and passing those numbers into recursive calls. Knowing which of the

original input wires the recursive call operates upon enables the correct placement

of the fanouts. We write a new partition generation function that given a list of wire

numbers produces a single partition, starting with some twos (introduced by the fill

function, see Appendix B), then the pattern and finally a single number at the correct

half-way division point, corresponding to the second half of the input.

partf :: [Int] -> Partition

partf is = fill lis (pat (alog2 lis) ++ [r])

where

(lis,his) = (length is,head is)

mid = (last is + his - 1) ‘div‘ 2

r = length [ k |k <- is, k > mid]

*Main> partf [1..256]

[2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,

2,2,2,2,2,2,4,4,4,4,4,4,4,4,8,8,128]

*Main> map last $ init (split (partf [1..256]) [1..256])

[2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48

,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80

,84,88,92,96,100,104,108,112,120,128]
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*Main> partf it

[2,2,2,2,2,2,2,2,2,2,2,2,4,4,18]

Thus, we manage to incorporate our two new insights: the pattern of use of small

Ladner–Fischer networks and the placement of the large fans. The result is the

following definition of a new parallel prefix construction:

ppf :: Int -> PP a

ppf k = pp [1..2^k]

pp :: [Int] -> PP a

pp [_] = wire

pp [_,_] = ser

pp is = build2 ss (pp js) (pp (last sis))

where

ss = partf is

sis = split ss is

js = map last \$ init sis

*Main> check0 (ppf 10) (2^10)

True

The first parameter to pp is the list giving wire numbers. At the outer level, this is

the list containing the numbers 1 to 2k . The two base cases of function pp introduce

a single wire or a two-input serial network containing a single operator. For the

step, partf generates a partition ss for the given input list of wires is. From this,

the wires that must be input to the two recursive calls of pp are calculated, and

build2 constructs the final network using the ss partition. Figure 26 shows the new

construction for 256 inputs, generated by the function call ppf 8.

For completeness, Appendix B contains the function ppsize that characterizes the

size of our new construction, following the same recursive pattern (and matching

exactly the results generated from the ppf function above). This is provided for

readers who may be aiming to produce smaller networks of width a power of two

and minimum depth.

We have seen a number of solutions to different parallel prefix network design

problems. In the following sections, we summarize the results first from the point

of view of parallel prefix network design and then from a functional programming

perspective.

6 Results in parallel prefix network generation

With the help of simple functional programming techniques, we have been able to

solve some open problems in prefix network design.

6.1 Search based generation of Depth Size Optimal Networks

We have shown how to generate Depth Size Optimal networks for a given input

width and required depth, while retaining control of fanout. The user may also
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Fig. 26. Our final construction, generated by the function ppf 8, for 256 inputs. It has 773

operators, an improvement on the 792 of the classic Ladner–Fischer construction.

.
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Table 1. Maximum width DSO network generated using search and manual extension of

sorted partitions, for a selection of depths and fanouts

Depth 6 7 8 9 10

Fanout

3 24 38 58 88 136

4 29 46 72 114 179

5 31 50 80 128 203

6 32 52 84 135 217

Table 2. Comparing widths of the Lin and Su (2005) construction SU4 with those generated

using search and manual extension of partitions. In both cases, fanout is limited to 4

Depth SU4 Sheeran

7 30–46 30–46

8 47–72 47–72

9 73–114 73–114

10 115–165 115–179

11 166–250 180–281

control other aspects of the resulting networks using the measure functions. This

has not been achieved before.

The following table lists the widest DSO networks that we have generated using

the dso function for selected depths and maximum fanout. A measure function was

not used (as we want to minimize only size and all networks generated by the dso

function for a given context have the same size). The method can also generate

narrower networks for the same widths and fanouts. When close to these limits,

manual editing of the top partition, guided by the widest network with a sorted

top partition was used (as described in the width 72, fanout 4, depth 8 example in

Section 4.4). These networks are, in all cases, the widest known DSO networks for

the given fanout and depth, see our earlier technical report (Sheeran & Parberry

2006). What is lacking, though, is a suitable theory that either proves that this is as

well as we can do, or indicates that there is further scope for improvement. Such

a theory would be of considerable interest, as it would need to take fanout into

account in a way that earlier theories (such as Snir’s) have not done.

The parallel prefix literature studies fanout four prefix networks in particular, as

these are particularly suitable for VLSI implementation. Our approach allows us to

improve on some of the best results from this form of manual network construction

for medium width networks, as shown in Table 2. The improvements for depths 10

and 11 are substantial. The manual intervention to extend partitions is surprisingly

easy and effective, but it is slightly unsatisfactory because it interferes with the use

of measure functions, replacing decisions guided by them by the user’s choices, at

least for the outermost partition. Right at the limit, there seems to be only one

choice of partition, but for narrower networks, it would be good to be able to

consider a variety of choices and to choose using the measure function, completely
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Table 3. Size/fanout for generated networks (with small fanout 3, slack 0) and classic LF

Width 32 48 64 80 96 112 128 144

Depth 5 6 6 7 7 7 7 8

gen size 74 102 168 173 223 286 369 322

fo 17 18 33 21 35 50 65 26

LF size 74 117 168 211 262 313 369 412

fo 17 25 33 41 49 57 65 73

Table 4. Size/fanout for generated networks and classic LF, with slack 1, that is depth one

greater than minimum. sfo stands for small fanout

Width 32 48 64 80 96 112 128 144 160

Depth 6 7 7 8 8 8 8 9 9

gen size 56 87 126 150 186 226 273 281 318

fo 6 5 9 6 9 13 19 10 11

sfo 4 4 4 5 5 4 4 4 4

LF size 62 97 137 172 212 252 295 330 376

fo 9 13 17 21 25 29 33 37 41

automatically. Automating this step would not be difficult; some form of genetic

algorithm might work well, but this has not been investigated.

Depth Size Optimal networks have been much studied (see e.g. the recent paper by

Lin et al. (2009), which contains a good list of relevant references). Our previous work

on DSO network construction (Sheeran & Parberry 2006) was the first to produce

DSO networks while retaining control of fanout. However, it was a two stage process

that first produced a maximum width DSO network for the given fanout and depth,

and then reduced the width by deleting ‘wires’. The search-based method presented

here retains fine control of fanout, and also produces a DSO network directly for

the given width, depth and fanout. Most approaches to producing DSO networks

either restrict attention to a particular small fanout, most often 2 or 4 (e.g. Lin &

Hung 2009), or tackle the simpler case in which the maximum fanout is the same

as the depth, as in Zhu et al. (2006). Our approach gives the user fine control over

each generated network via the measure function used in its generation, and in some

cases by explicit control of the outermost partition.

6.2 Search based generation of shallow networks: a generalization of Ladner–Fischer

We have shown how to generate small shallow networks, given width and depth, see

Tables 3 for slack 0 and 4 for slack 1. In the latter table, the networks for widths

32, 48 and 80 are DSO. For the remaining widths, the results for slack 2 are shown

in Table 5. Then, all of the generated networks are DSO, and all improve on the

Ladner–Fischer construction in both size and maximum fanout. It should be noted

that we have concentrated here on prefix networks whose input delay profile is flat.

We do have the notion of context, which enables the consideration of other input
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Table 5. Size/fanout for generated networks and classic LF, with slack 2

Width 64 96 112 128 144 160

Depth 8 9 9 9 10 10

gen size 118 181 213 245 276 308

fo 4 4 5 6 4 4

sfo 3 3 4 6 4 4

LF size 125 192 227 264 296 331

fo 9 13 15 17 19 21

delay profiles. However, the simple search described here is designed to work only

for flat outermost delay profiles and for the increasing profiles that tend to appear

in sub-networks when the outermost profile is flat. To deal with profiles that are

increasing and then decreasing, of the sort found on the input to the fast adder in

standard multiplier constructions, it is necessary to complicate the method a little.

6.3 A new parallel prefix network construction for 2d inputs, depth d.

The use of search allowed us to improve on the Ladner–Fischer construction both

for slack zero with width not a power of two, and for slack greater than zero.

Examining those results led us finally to a construction that gives the smallest

known prefix networks for the remaining case: width a power of two and slack zero

(minimum depth).

Fich (1983) proposed a generalization of Ladner–Fischer in which the small prefix

networks are small Ladner–Fischer networks of width 8, also in the second quarter

from the left, where we have placed our wider networks. Fich’s construction is larger

than ours, as can be seen from Figure 6. It is again easy to transliterate Fich’s

recurrence for the size of her construction to Haskell:

fichK :: Int -> Int -> Int

fichK _ 0 = 0

fichK k n | n <= 3 = ladSize k (2^n)

fichK 0 n = fichK 1 (n-1) + fichK 0 (n-1) + 2^(n-1)

fichK 1 n = fichK 1 (n-2) + fichK 0 (n-4) + 27*(2^(n-4))-1

Here, n is the log of the input width, which is 2n, while k is the slack, as in the

Ladner–Fischer construction. The Fich construction produces restricted networks

whose last output is produced at minimum depth. Looking at the resulting sizes

(Table 6), it clearly makes sense to instead use the Ladner–Fischer construction for

slack 0 for n <= 8. This is achieved here simply by adding a new case above that

for fichK 0 n:

fichK 0 n | n <= 8 = ladSize 0 (2^n)

This gives slightly smaller networks.

Fich’s paper also mentions that it is better to remove the restriction to sub-

networks of width eight, and instead to have networks of increasing size; this is



100 M. Sheeran

Table 6. Sizes of minimum depth networks for our new construction (Sheeran),

Ladner–Fischer (1980) (LF) and Fich (1983)

Depth Sheeran LF Fich

6 167 168 174

7 364 369 379

8 773 792 799

9 1,614 1,672 1,658

10 3,327 3,487 3,402

11 6,800 7,206 6,930

12 13,809 14,788 14,044

13 27,922 30,185 28,354

14 56,275 61,356 57,093

15 113,172 124,308 114,740

16 227,221 251,199 230,280

17 455,702 506,578 461,714

18 913,175 1,019,920 925,095

19 1,828,888 2,050,785 1,852,597

20 3,661,337 4,119,280 3,708,669

21 7,327,770 8,267,216 7,422,354

22 14,662,683 16,580,799 14,851,947

23 29,335,580 33,236,622 29,714,342

24 58,685,469 66,594,636 59,443,763

explored in her thesis (Fich 1982). Our construction is a little smaller even than that

presented in Fich’s thesis, and could be viewed as a refinement of it. It gives, as

far as we know, the smallest known depth d parallel prefix networks for 2d inputs.

That we could improve on the best known available results was, we think, due

to the fact that we could fine tune the construction with the help of the Haskell

implementation.

Table 6 also lists network sizes for the three constructions, for depth d networks

of width 2d. Dividing network size by number of inputs, the classic construction

requires approximately 4 operators per input, Fich requires a little under 3.55, and

our construction brings that number below 3.5.

Our work highlights a surprising gap in the theory of prefix networks. Little is

known about small, shallow networks and optimality. Ideally, we would like to find

a result like Snir’s for DSO networks (Snir 1986). It is possible that the kind of

experimentation that our Haskell implementation of prefix networks permits will

contribute to the development of the necessary theory. We encourage our readers

both to contribute to the theory and to push the limits by improving on the concrete

prefix network constructions presented here.

6.4 Comparision with Hinze’s approach to network description

The style of circuit or network description used here and in a number of instances of

the Lava approach to hardware description (Bjesse et al. 1998; Singh 2000; Naylor

2008; Gill et al. 2010) concentrates on the use of functions to describe the networks.
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These functional descriptions look like plain structural circuit descriptions, but are

in fact circuit generators. They are run in order to produce circuit representations

for analysis and implementation. This approach to circuit description seems to

work well in the hands of expert users, leading to novel approaches to synthesis,

see for example (Sheeran 2004). It has also proved surprisingly accessible to many

novice users, in the context of an undergraduate course on hardware description and

verification (Axelsson et al. 2005). The most difficult aspect of this approach is the

construction of the building blocks that are used to permit the analysis of circuits

using non-standard interpretation (NSI). In this paper, that amounts to defining

the Nets data-type and the function netFan that does the necessary gathering of

information. The advantage of the approach is that once one has managed to

define such a building block, one can freely use existing Haskell functions, and new

combinators defined using them, to build circuit descriptions, secure in the knowledge

that simply running the resulting functions will give the required analysis. This is a

lightweight approach that requires little work.

In building the circuit descriptions, we have relied on ordinary Haskell-style

list programming. Although, during the search, the resulting prefix networks are

wrapped with the context used to generate them, we have chosen not to make use

of this information to give greater type safety during network construction, relying

instead on a post hoc correctness check and examination of the generated diagrams.

Our main concern has been speed of generation. We have not had any problems

with mis-matched sizes, and have therefore chosen not to move towards any form

of sized types. It is clear, though, that more careful size checking would benefit

potential users of the code discussed in this paper.

Hinze chose a more direct approach to parallel prefix network description, defining

a DSL for constructing networks from combining nodes, fan nodes and parallel,

sequential and partition combinators (Hinze 2004). This more syntactic approach

means that the computation of properties of the networks can be done without the

kind of trick that we use to enable NSI in our approach. The syntactic approach

lends itself to the kinds of transformation used in Hinze’s paper, and our circuit

descriptions are unwieldy in comparison. Hinze makes much greater use of the

Haskell type system, for instance using classes to capture algebras, and providing size

checking of compositions. Nonetheless, it is the case that a Hinze-style description

captures something resembling a netlist, and not the kind of decorated netlist in

which fans have been assigned a level (as we discussed in Section 3.2). Hinze’s paper

does not make clear how such a ‘nailed down’ netlist or (equivalently) the diagrams

in the paper are produced from the syntactic descriptions. As far as we can judge,

producing the necessary information about delays, so that diagrams are correctly

constructed, will essentially amount to walking over the network description, doing

something very close to evaluation. And to make matters more interesting, Hinze

chose to place operators as late as possible in his diagrams, as opposed to as early

as possible, which was the choice made here. Hinze’s paper does not reveal how the

diagrams were produced. It is to avoid having to write evaluators that we choose

to describe networks and circuits as functions and to play the NSI trick. Our motto

is ‘Why write evaluators when you already have the Haskell evaluator?’. It would
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be possible to incorporate the syntactic approach into the search-based method, but

this has not been tried. Our dilemma is that we wish to have a single high level

description, without explicit phases, but at the same time to exert control over the

details of the ‘nailed down’ netlist. We speculate that Hinze made different choices

because his main concern was to perform reasoning at the higher level.

The use of fan as the main building block is an idea that we have borrowed from

Hinze’s approach. Our build0 combinator is also very similar, but not identical to

one used by Hinze when himself generalizing the Brent–Kung construction (p. 16 of

Hinze 2004). Viewed in our notation, the difference between the two combinators

is in the definition of the shift function that converts the top partition into the

corresponding partition for the matching fans at the bottom of the network. Our

function is:

shift :: Partition -> Partition

shift (a:as) = a-1:init as ++ [last as + 1]

while Hinze’s would be defined in our notation as

shiftH :: Partition -> Partition

shiftH (a:as) = a-1:as ++ [1]

The hard-wiring of a 1 as the last element of the bottom partition restricts the

choice of network shapes that can be described, but was suited to Hinze’s purposes

in describing and reasoning about standard networks. Our more general combinator

has enabled the successful search for new DSO and small, shallow networks.

6.5 The link to VLSI circuits

This paper has concentrated on a more abstract analysis of parallel prefix network

topologies. Our experience (and indeed the received wisdom among colleagues in

VLSI design) is that staying at as high a level of abstraction as possible gives the

greatest possible benefits, even when one is aiming for a non-functional property

such as low power consumption. A reasonable way to proceed towards real circuit

implementations is, thus, to find good topologies using the methods described here

and then to choose among a variety of candidates making use of detailed circuit

layouts and CAD tools capable of accurate performance and power estimations

for the chosen process. We have made a first link between the kinds of network

descriptions given here and the Wired design system, which is a DSL for low-

level hardware design, embedded in Haskell (Axelsson 2008). It proved possible

to perform the kinds of search mentioned here, but using a CAD tool (Cadence

Encounter) that returns power consumption or speed estimates and thus acts as

the measure function. The Nets datatype was used as the interface between the

generation described here and Wired, with the actual VLSI layouts being created

using Wired. This enabled a fine-grained choice between related topologies, but did

not give any unexpected results, rather confirming that the approach is feasible.

Our guess is that making a first high-level analysis in the abstract and then refining

a smaller number of candidates using very fine modelling in this way is a suitable
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approach, but further experiments are needed to confirm this. This view seems to

be in line with related research in the VLSI community. Oklobdzija and coauthors

pioneered the use of dynamic programming and search in VLSI design (Chan et al.

1992; Martel et al. 1995). Liu et al. have used Integer Linear Programming, with

quite fine modelling of wire lengths, capacitance and other physical details, to find

optimal prefix networks. However, the fineness of the modelling seems to have

limited the approach to working on 8-input networks—although the results can

then be used to build hierarchical networks (Liu et al. 2007). We are aware, through

discussions with J. Vuillemin, that search was also used in finding good topologies

for 64-bit adders in Alpha microprocessors at DEC Research Labs in Paris in the

1990s, but unfortunately that work has not been published (Vuillemin 2006).

7 Results: functional programming

We regard this paper as contributing not only new ideas about prefix network

design and exploration, but also a new programming idiom that may have wider

application. The combination of combinators and search, implemented as a simple

form of lazy dynamic programming, is an appealing one. Our emphasis has been

on keeping things simple. The key idea is to describe the shape of the required

construction or data-type and to allow search to fix the small details.

What are the building blocks of the approach? Let us assume a singly recursive

decomposition of the problem. Adding more recursive calls is straightforward. (In

our prefix network examples, we started with a singly recursive decomposition and

moved on to one with two recursive calls.) We distinguish constructions that can

form solutions (call this type A for answer), from other sub-structures used to build

them (call these E for extra). Now, we need

1. A combinator build that composes a smaller recursive instance of the construc-

tion r, plus possibly an additional sub-structure e to make a larger instance,

with the shape of the instance determined by a divisor d of type D, giving

build d r e. The type of build is D → A → E → A. In our example, a divisor

was a partition, which indicated the exact shape of the top-level recursive

decomposition, and the additional sub-network was a single wire on the right

of the network.

2. A notion of context and the ability to check whether a proposed answer a fits

in a context c of type C , which we will write fits a c. The function try checks

whether a sub-structure e fits in a context c. If it does not, Nothing is returned,

otherwise Just e. We also need known solutions for some base case contexts.

These will take the form of pairs of type (C → Bool,Maybe A), containing a

property of a context and the associated result (which for bad contexts might

be Nothing), say (p0, r0) and (p1, r1).

3. A function that takes a context and returns a list (or set) of possible divisors:

divs :: C → [D].

4. Functions that, given a context and a divisor, compute the new contexts for the

recursive call r and for the additional sub-network e. f1, f2 :: C → D → C . We
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gen :: (A→ V )→ C →Maybe A

gen c | p0 c = r0
gen c | p1 c = r1
gen mf c = bestOn mf $ mapMaybe ans (divs c )

where

ans d = do r ← gen mf (f0 c d)

e ← try e1 (f1 c d)

return $ build d r e

Fig. 27. The overall structure of the code to generate either an answer or Nothing for a given

measure function and context, for the combinator build . We have abstracted away from the

wrapping of solutions with their contexts.

also need a proof (formal or otherwise) that d ∈ (divs c0) & fits r c1 & fits e c2

implies fits (build d r e) c0, where c1 = f1 c0 d and c2 = f2 c0 d.

5. A measure function that takes an answer to a value that can be compared;

call this type of values V . Measure functions have type A→ V .

Now, we are in a position to write a pseudo-program to find a solution for a given

context (Figure 27).

It is a little surprising that such a simple approach worked in the case of prefix

networks, when the initial search space is huge. It must also be admitted that our

initial attempts to solve the problem of generating best known prefix networks were

not nearly as simple as the final search-based solution shown here. We have exploited

higher order functions, laziness and the notion of non-standard interpretation to

form this new idiom. We have avoided the need for more sophisticated search

strategies by finding ways to restrict the search space, and accepting less than

optimal results. In some cases, we have examined the generated results when near

the limits imposed by our restrictions, manually extending them, to get around

the restrictions. Similarly, the generated results led finally to a new construction

not requiring search. This interplay between automatic and manual methods is

important in practice (and not something to be avoided). Our instincts tell us that a

good understanding of the search space is always going to be necessary, so that it is

better to concentrate ones intellectual efforts on understanding the problem at the

higher level, so that the resulting generators remain very simple. Note that we have

not needed to think in terms of matrices, recurrences, tabulation and so on, as would

be usual in more traditional dynamic programming approaches. In this, our approach

resembles a simple variant of Algebraic Dynamic Programming (ADP) (Giegerich

et al. 2002). For our purposes so far, we have not needed sophisticated ways to

construct and examine the search space; we have chosen, instead, to refine the

search space manually, resulting in a sequence of partition generation functions.

This manual refinement process has been essential to our success in finding better

networks than those currently known. It would be interesting to develop a library

to support the process. For instance, we used permutation generation functions with

different costs, in the sense that some are only feasible to use on small sub-problems,
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while others are less costly (but risk missing solutions). In some cases, we used cheap

generation on part of the input, and expensive on the remainder, using trial and

error to find the right division. We need a set of combinators for combining such

functions, and giving the user the ability to slide the borders between them, giving

fine control over the cost of search.

8 Future work

This work opens a number of avenues for future research.

8.1 Making the method more systematic and applying it to other domains

To gain a greater understanding of the possibilities provided by the combination of

search and combinators, it will be necessary to develop a framework that makes it

easy to describe the search space and how it is to be restricted. Our first step will

be to pick a second domain to explore while developing the framework, most likely

sorting networks. Having had experience of describing and reasoning about both

sorting networks (Claessen et al. 2001) and median networks (Sheeran 2003), we feel

confident that such networks could also be explored and possibly improved upon

using some of the ideas presented here.

8.2 Prefix networks on FPGA

As prefix networks are so ubiquitous, it would make sense to make a serious study

of their implementation on advanced Field Programmable Gate Arrays (FPGAs).

Such a study appears not to have been done, and this will be our next step. This will

involve finding out which topologies best match the exisiting facilities for speeding

up carry chains on modern FPGAs.

8.3 Higher radix networks

The work described here considers networks made from two-input prefix networks.

Things become even more interesting if one uses larger prefix networks as building

blocks. It would be useful to understand such higher radix algorithms, and to

investigate the resulting trade-offs in VLSI implementations.

8.4 Exploring the use of other programming languages

The approach described here has demonstrated that a functional approach to parallel

prefix network description enables effective exploration of the design space. We have

made use of NSI that runs sub-networks on specialised components, in order to

analyse networks and compute contexts for recursive calls and sub-networks. In

all cases, this has been a form of forward analysis, fitting well into the functional

paradigm. However, there are cases when one would like to push information about

constraints that the context places on outputs backwards through sub-networks.
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Here, we did not need this because we had a single depth constraint on all outputs

of the network, and because our recursive decomposition guaranteed that the

outputs of recursive calls would then have to have depth one less than this value

(because all fans have depth one). But in other examples, we might want to have

the sub-networks that are composed after recursive calls, through which constraints

should be pushed backwards. This leads one to think of relational descriptions, and

indeed of the author’s earlier work on a relational hardware description language

called Ruby (Jones & Sheeran 1990) and of later work by Axelsson on the Wired

system (Axelsson 2008). In addition, the fact that we would like to enrich the forms of

search that we use leads one naturally to think of logic programming languages. For

these reasons, we think that it would be very interesting to explore the development

of the ideas introduced here in a functional logic language such as Curry (Antoy &

Hanus 2010) or in a library supporting logic programming in Haskell (Naylor et al.

2007).

8.5 Search in DSP algorithm development

We have been inspired by the results of the SPIRAL project at CMU, in which

platform-tuned DSP and numerical kernels are generated using a variety of methods

including search (Püschel et al. 2005; Franchetti et al. 2009). We note that the project

to develop the Feldspar DSL for Digital Signal Processing that we are engaged in

with colleagues from Chalmers, Ericsson and ELTE University Budapest (Axelsson

et al. 2010) provides ample opportunities to find, merge or transform data-flow

like networks that form signal processing chains; we believe that search can play an

important role here. This is where we expect the new programming idiom to be most

practically useful. Although it is a longer shot, we are also interested in extending

the parallel prefix search to permit the limiting of the number of operators per level.

From earlier experiments, we know that this then results in the kinds of structures

that arise in loop parallelization. This would possibly be a way to adapt to the fixed

processor resources on a GPU and to implement prefix networks in a pipelined

manner. In that case, the number of inputs to the network would be far greater

than the number of available processors, but the restriction to a fixed number of

operators per level would give an indication of what work needs to be done at each

processor at each phase of the algorithm. This work will be done in the context of

a DSL for GPU programming (Svensson et al. 2010).

8.6 The missing theory

We need both an extended theory of DSO networks that takes proper account of

fanout and an extension of that theory into the realm of small shallow networks.

9 Conclusion

This paper has shown how simple functional programming techniques can be used

to make a rather deep investigation of an important topic in algorithm design—

parallel prefix networks. For those who know about functional programming, it can
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be a tutorial on prefix networks—and there is a need for such a tutorial as the

literature is littered with misconceptions. More importantly, though, we hope that

the paper can convince some readers that functional programming can play the role

of an experimental workbench in research and teaching about an important class

of algorithms. We have improved on the current, published state of the art in the

development of DSO network while retaining control of fanout, in the generation

of small shallow networks that improve on the classic Ladner–Fischer construction

for minimum depth networks of widths not a power of two and for networks of

slack one and two. Finally, we filled in the gap (minimum depth network of width

a power of two) by proposing a new construction that improves on the smallest

known networks. It has been fun to push the limits of prefix network design, and

we hope that readers will contribute new ideas, both theoretical and practical. We

expect the programming idiom that combines combinators and search to have a

broader application; here too, we hope that this paper will be a starting point for

new research. Finally, we would like this paper to remind its readers that even when

solving hard problems, one can get far with simple solutions.
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program generation framework for fast Kernels. In Proceedings of IFIP Working Conference

on Domain Specific Languages (DSL WC). Lecture Notes in Computer Science, vol. 5658.

Springer, pp. 385–410.

Giegerich, R., Meyer, C. & Steffen, P. (2002) Towards a discipline of dynamic programming.

In Informatik bewegt: Informatik 2002–32. Jahrestagung der Gesellschaft für Informatik e.v.

(gi). Lecture Notes in Informatics. Bonner Köllen Verlag, pp. 3–44.
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Appendix A. Generating diagrams of prefix networks: code associated

with the Net data type

nets :: WDels -> [Net]

nets wds = [Net [] w d | (w,d) <- wds ]
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instance Eq Net where

n == m = wire n == wire m && phase n == phase m

instance Ord Net where

n <= m = phase n <= phase m

-- shows only operators (and not fanouts)

-- could be modified to show both

instance Show Net where

show n = show (wire n) ++ "/" ++ show (dots n)

getNets f wds = f netFan (nets wds)

allfansN ns = concat (map fans ns)

nop (_,ws) = length ws-1

fanout (_,ws) = length ws

spanf (_,ws) = last ws - head ws

square x = x*x

cube x = x*x*x

sizeN = sum . map nop . allfansN

maxfoN = maximum . map fanout . allfansN

sumspanN = sum . map spanf . allfansN

Appendix B. Definitions of functions used but not defined in the paper

toLasts :: ([b] -> [b]) -> [[b]] -> [[b]]

toLasts f as = [is++[l] | (is,l) <- zip (map init as) (f (map last as))]

toTail :: ([b] -> [b]) -> [b] -> [b]

toTail f (a:as) = a:f as

toLast :: (t -> t) -> [t] -> [t]

toLast f (a:as) = init (a:as) ++ [f (last (a:as))]

getNetsW :: WPP -> [Net]

getNetsW (WPat (is,_) p) = getNets p is

size :: WPP -> Int

size = sizeN . getNetsW

maxfo :: WPP -> Int

maxfo = maxfoN . getNetsW
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sumspan :: WPP -> Int

sumspan = sumspanN . getNetsW

-- computes the max. fanout *minus one* in a LF network of given slack and

-- width

maxlfo :: Int -> Int -> Int

maxlfo 0 n = fnd2 n

maxlfo k n = maxlfo (k-1) (cnd2 n)

-- computes the max fanout of a LF network of slack k, width n

-- (fanout in our sense, not that used in the LF paper where fanouts from

-- different levels are added)

maxlfo’ k n = 1 + maxlfo k n

-- Transliteration of the recurrence from Sheeran and Parberry 2006 giving

-- the width

-- of the widest known DSO network for a given fanout f and depth d

-- The construction that it captures appears still to be the best known.

maxdso :: Int -> Int -> Int

maxdso f 0 = 1

maxdso f 1 = 2

maxdso f d | f > d = 1 + maxdso f (d-1) + maxdso f (d-2)

maxdso f d | f <= d = f - 1 + sum [maxdso f (d-1-j) |j <- [1..f-1] ++ [f-1]]

build1 :: Partition -> PP a -> PP a -> PP a

build1 ws p q f

= concat . toTail (map f) . split (shift ws) .

concat . toInit (toLasts (p f)) .

toLast (q f) . toInit (map (ser f)) . split ws

buildW1 :: Context -> Partition -> WPP -> WPP -> WPP

buildW1 ctx ws (WPat _ p) (WPat _ q) = WPat ctx (build1 ws p q)

ln2 :: Int -> Int

ln2 1 = 0

ln2 n = 1 + ln2 (n ‘div‘ 2)

alog2 :: Int -> Int

alog2 1 = 0

alog2 n = 1 + alog2 (cnd2 n)

maxdk :: Int -> Context -> Int
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maxdk k (ls,o) = max 0 (o-pk-1)

where

(_,pk) = head (drop (length ls - k) ls)

-- the partition function used with the gen function

parts2 :: Int -> Int -> Context -> [Partition]

parts2 f g ctx

| k2 > n = [ l : rs ++ [1] | l <- [2..d], rs <- twosE (n-l-1) ]

| k2 == n = [replicate (fnd2 n) 2]

| k2 < n = [ replicate k 2 ++ rs ++ [r]|

r <- [minr..maxr], rs <- permsUp 2 ff (n-r-2*k) ]

where

ff = min f d

n = width ctx

d = maxd ctx

k = 2^(fnd2 d)

k2 = if even d then 2*k else 3*k

m = maxdk g ctx

maxr = min g (2^m)

minr = max 1 (n - 2^(d-1))

twosE n = [replicate (fnd2 n) 2 | even n]

gen1 :: (Ord a) => Int -> (WPP -> a) -> Context -> WPP

gen1 f mf ctx = fromJust (prefix ctx)

where

prefix = memo pm -- to turn off memoizationsimply delete memo

pm ctx | width ctx == 1 = try wire ctx

pm ctx | 2^(maxd ctx)< width ctx = Nothing

pm ctx | fits ser ctx = Just (WPat ctx ser)

pm ctx@(is,o) = bestOn mf $ mapMaybe makeNet (parts3 f g ctx)

where

makeNet ds

= do let sis = split ds is

let js = map (last.(adLadF wdFan)) $ init sis

p <- prefix (js,o-1)

pr <- prefix (last sis,o-1)

return $ buildW2 ctx ds p pr

d = maxd ctx

w = width ctx

mind = alog2 w

slack = d - mind

g = maxlfo slack w

parts3 :: Int -> Int -> Context -> [Partition]

parts3 f g ctx

| k2 > n = [ l : rs ++ [1] | l <- [2..d], rs <- twosE (n-l-1) ]

| k2 == n = [replicate (fnd2 n) 2]

| k2 < n = [ replicate k 2 ++ rs ++ [r]|

r <- [minr..g], rs <- permsUp2 2 ff (n-r-2*k) ]

where
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ff = min f (2^(d-1))

n = width ctx

d = maxd ctx

k = div n 8 -- adjusted to produce more 2s to reacher larger widths

k2 = if even d then 2*k else 3*k

minr = max 1 (n - 2^(d-1))

build2 :: Partition -> PP a -> PP a -> PP a

build2 ws p q f

= concat . toTail (map f) . split (shift ws) .

concat . toInit (toLasts (p f)) .

toLast (q f) . toInit (map (adLadF f)) . split ws

buildW2 :: Context -> Partition -> WPP -> WPP -> WPP

buildW2 ctx ws (WPat _ p) (WPat _ q) = WPat ctx (build2 ws p q)

The function info, for given slack, small fanout, measure function and width, constructs both

the Ladner–Fischer and gen networks and records the results of the measure function for

each:

info :: (Ord a) =>

Int -> Int -> (WPP -> a) -> Int

-> (Int, Int, (Int, Int), (Int, Int))

info k f mf i = (i,depth,dp,lf)

where

depth = (alog2 i) + k

ctx = (zdel i,depth)

dp = mf $ gen f mf ctx

lf = mf $ WPat ctx (ladF k)

Now, it is easy to review results for a number of widths.

res k f mf fac n1 n2 = map ((info k f mf).(fac*)) [n1..n2]

pat :: Int -> Partition

pat k | k < 6 = []

pat k = concat [replicate (2^(k-2*j-1)) (2^j) | j <- [2..(k-1) ‘div‘ 2]]

fill :: Int -> Partition -> Partition

fill k as = replicate y 2 ++ as

where y = (k - sum as) ‘div‘ 2

To calculate the size of the final construction for width 2k , use ppsize k.

ppsize k = pps [1..2^k]

pps :: [Int] -> Int

pps [a] = 0

pps [i1,i2] = 1

pps is = sum (map aSize (init ss)) + pps js

+ pps (last sis) + length is - length ss

where

ss = tops is

sis = split ss is

js = map last $ init sis
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-- aSize gives the size of the small LF networks for input

-- width n a power of two (same as BK size)

aSize :: Int -> Int

aSize 2 = 1

aSize 4 = 4

aSize 8 = 11

aSize n = aSizeL (ln2 n)

aSizeL 1 = 1

aSizeL n = 2*(aSizeL (n-1)) + n


