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ABSTRACT 

Cone crushers are used in the mineral, mining, and aggregate industry for fragmentation and 
production of rock materials. Cone crusher control systems are widely used for machine 
protection, wear compensation and, to some extent, increasing production. These systems 
ordinarily focus on the crusher and not the yield of production process. 

In this thesis real-time optimization is explored to the control of eccentric speed and on-line 
CSS adjustment based on information from the process. The objective is to develop theories, 
models, software and hardware that enable real-time optimization of a single crushing and 
screening stage. The main hypothesis is that fixed parameters can never be optimal over time 
because many things in the process vary continuously.  

The eccentric speed in a cone crusher determines the number of times a material is 
compressed and thus the particle size distribution of the product.  The speed of the crusher is 
usually fixed since speed change by changing pulleys is a labor intensive activity. By 
applying a frequency converter to the crusher motor power supply, it is possible to 
continuously adjust the eccentric speed. The cost for frequency converters has decreased 
significantly over the last decade.  

By applying mass-flow sensors to the process, e.g. conveyor-belt scales, the crusher result can 
be monitored and the result can be fed back to an operator or a computer. To analyze data 
from the process and automatically calculate the appropriate value for the Closed Side Setting 
(CSS) and eccentric speed, algorithms have been developed. The goal for the algorithms is to 
maximize the product yield in a given moment. The algorithms are loaded into computer 
systems that can communicate with sensors and crushers.  

The developed algorithms are tested and evolved at full-scale aggregate crushing plants. 
Crushing stage performance increased 3.5% in terms of production yield compared to a fixed 
CSS when the algorithm was implemented in addition to the existing control system. The 
algorithm automatically compensates for changes in the feed material and also decreases the 
need for calibration of the CSS. The crushing stages where the speed algorithm were tested 
increased their performance by between 4.2% and 6.9% compared to a good fixed speed. In 
real life however, the performance was increased by almost 20% since an inappropriate speed 
was selected during installation. As a bonus, on one of the test plants for the dynamic speed, 
the lifetime of the manganese wear parts increased 27% on the evaluated crusher, as a 
consequence of changed crusher dynamics. 

In conclusion, real-time optimization has been demonstrated to be feasible and increases the 
production yield with significantly numbers and should thus be of commercial interest to the 
industry.  

Key words: cone crusher, crushing, real-time optimization, process optimization, CSS, 
eccentric speed.  
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1 INTRODUCTION 

The aims of this chapter are to: 
− Introduce the concept of crushing plants and their importance in a modern society. 
− Describe the operation of a crushing plant.  
− Introduce real-time control of crushing plants. 
− Describe the main challenges associated with crushing plant control. 

1.1 CRUSHED ROCK MATERIAL 

Rock crushers are used in the aggregate, mining, and mineral industries. Cost-effective 
production, including size reduction and size classification, is the primary challenge in these 
industries. Size reduction is achieved using crushers, while classification is achieved by 
screens.  

Aggregates are used in homes and office buildings as well as in transportation infrastructure. 
Due to their low inherent value of about €5-15 per tonne, they are usually manufactured less 
than 40 km from where they are being used. Aggregates can be composed of gravel, crushed 
rock material, or both. Aggregate rock materials are processed by both crushers and screens, 
while sand and gravel sometimes are only screened. In Sweden in year 2008, 78 million 
tonnes of aggregates were produced from crushed rock materials [1], corresponding to 79% of 
all manufactured aggregate products. The remaining 21% of aggregates were mainly 
produced from sand and gravel deposits. However, extraction from natural sand and gravel 
deposits is steadily decreasing, which motivates finding more cost-efficient processing 
methodologies for crushed rock aggregates. In Europe, about three billion tonnes of 
aggregates were produced at about 28000 production sites in year 2007 [4].  

Crushing plants are used as a pre-processing stage before milling and other fine particle 
treatments in the mineral and mining industries. In year 2008, 51 million tonnes of ore and 
bedrock from iron ore mines and non ferrous mines and 9 million tonnes of limestone were 
extracted in Sweden [9]. These tonnages were pre-processed by crushing plants.  

1.2 CRUSHING PLANTS 

Crushing plants consist of single machines or a set of machines that are put together to form a 
process to gradually reduce the size of the processed material. The machines include the 
following:  

• Size reduction machines, e.g. crushers.  
• Separation machines, e.g. screens.  
• Transportation equipment, e.g. trucks and conveyor belts.  
• Storage, e.g. stockpiles or bins.  
• Extra equipment, such as scrubbers and soil mixers (occasionally).  
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Worn parts are replaced regularly by maintenance personnel. Crusher manganese liners wear 
quickly in most cone crushers, except when the feed material is a soft material like limestone. 
A typical wear part change interval for aggregate cone crushers is 100-1000 hours of 
operation. In highly abrasive quartzite crushing, the wear life can be as low as two weeks. 
Wear in cone crushers has been thoroughly investigated by Lindqvist [32]. In Figure 2, a cone 
crusher can be seen during a wear part change.  

 

  
Figure 2. A Sandvik Hydrocone H6000 at NCC Roads’ crushing plant Ramnaslätt during 

assembly after a wear part change. The cone, main shaft and top bearing can be seen in the center 
of the crusher.  

Screen cloths wear out regularly. The cloth consists of either weaved steel wires, punched 
rubber or molded polymer. The wear of crusher mantle liners and screen cloths dramatically 
affects the products and the performance of the crushing process, Svedensten [46]. Changing 
liners in a crusher too late may cause severe mechanical damage. Changing too early, 
however, will cost money in the form of both unutilized parts as well as production loss. 

Loading and unloading rock material is a common task for personnel. The rock material is 
loaded from the muckpile into the plant, or mobile unit, with an excavator or a wheel loader, 
which often, but not always, occurs in combination with a dump truck. After the crushing 
process, the produced material, i.e. the product, lands in either a stockpile or a material bin. If 
it lands in a bin, it is possible to load trucks or train hoppers directly from the bin. An 
example of such an automatic loading system can be seen in Figure 3. More often, however, 
the material has to be handled by an operator-controlled wheel loader when it is loaded onto 
trucks or train hoppers. When the plant is situated near the sea, ships are also used as a means 
of delivery. An example of loading equipment for ships can be seen in Figure 4.  
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Figure 3. Loading and weigh station at the same place. VMC’s Reliance operation, Irwindale, CA, 

USA.  

Depending on the size of the crushing plant, personnel duties can vary greatly. For larger 
plants, the tasks are more specialized, such as maintenance, loading, and process operation, 
while for smaller plants, one person may have several or even all of the mentioned tasks.  

 

 
Figure 4. Loading equipment on the quay that can be used for ships and trucks. Norstone AS’ Tau 

plant, Norway.  
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power draw, additional generation of fine material, and capacity. The raw material parameters 
can vary periodically and stochastically with a long or short time scale.  

Manganese liner wear affects crusher performance. A worn crusher chamber has undergone 
physical changes and has a different profile than that of a new chamber, which affects both 
the capacity of the crusher and the size and shape of the produced particles. Some crushing 
chambers are more sensitive to wear than others. Further, crushers with worn liners can 
behave differently, with some increasing and others losing their capacity as a function of 
wear.  

CSS is the parameter used to adjust many contemporary crushers online. Crushers with a 
hydraulic CSS adjustment can be controlled online in an open-loop configuration as 
previously described. Crushers using a threaded top shell design can also be controlled using 
an open-loop configuration; however, the control is limited by the thread clamping system, 
which cannot be released when material is present in the crushing chamber. Some crushers 
using a threaded top shell design can be adjusted when loaded; however, making adjustments 
when loaded will probably shorten the lifetime of many of the machine parts.  

Cone crushers usually run at a fixed eccentric speed. Frequency converters can potentially 
control the eccentric speed by controlling the frequency of the alternating current to an 
asynchronous motor. However this has historically been too expensive to implement.  Manual 
speed changes, on the other hand, require changing belt pulleys, which is labor intensive.  

Because aggregate crushing is a process industry with a continuous flow of processed rock 
material, the performance of the process is difficult to obtain online. One way to determine 
the effect of a change is to take a belt cut before and after the change. Unfortunately, belt cuts 
stop production and may not accurately represent changes (a typical belt cut only contains 
rock from 0.5 seconds of production). In addition, they are often divided down to a couple of 
kilos before being sieved. Thus, substantial manual work is required before anything can be 
said about the process, and further, by the time the result is ready, the crushing conditions 
may have already changed several times.  

One way to obtain process information is to use mass-flow meters, commonly being a belt 
scale, on the conveyor belts. Unfortunately, traditional belt scales are relatively expensive, on 
the order of € 5000-10000, and are therefore sparsely installed. Consequently, the high cost 
associated with implementing flow meters has hindered the development of process control in 
this kind of process industry.  

Operators are busy and do not have enough time to control an open-loop crusher as 
effectively as well-configured computer software. Such software coupled with adequate 
sensors can facilitate closed-loop control, as depicted in Figure 6, which was originally 
presented by Evertsson [20]. This control configuration also requires models or rules to 
transform user requests into machine setpoints.  

 



 

 

Figure 66. Possible sys

 

tem for closedd-loop processs control for aa single crushing stage. 
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2 OBJECTIVES 

The aims of this chapter are to: 
− Describe the purpose of the research project resulting in this thesis. 
− Formulate the research questions. 

2.1 RESEARCH OUTLINE 

The purpose of this research project is to understand the production process of rock materials 
in which cone crushers are used and to develop knowledge and methods for optimizing the 
operation of these machines in real-time to maximize product yield. Real-time is here 
interpreted as what is possible to adjust during operation with sufficient feedback from the 
process. Real-time optimization will potentially increase the automation in the aggregates, 
mineral, and mining industries and will thus assist operator decision making and increase 
production. Crushing plants are investigated in particular, with the goal of helping producers 
at crushing plants directly select which products they want to produce, which is accomplished 
by real-time optimization of the machines.  

This thesis focuses on optimizing a single crushing and screening stage, see Figure 7. The 
reasons for focusing on a single crusher are that there are currently two real-time adjustable 
parameters and that even by optimizing a single crusher, the output of the crushing plant will 
be directly affected in terms of final products.  

The objective for this thesis is to develop theories, models, software and hardware that enable 
real-time optimization of a single crushing and screening stage. An important part of this 
investigation is to find or develop suitable sensors for this type of process.  

The main hypothesis is that fixed parameters can never be optimal over time because several 
other parameters change continuously.  

 

 
Figure 7. The focus of this thesis is a crusher and screening stage, depicted in the dashed box.  
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2.2 RESEARCH QUESTIONS 

There are five research questions that have been formulated within the scope of this work: 

• Crusher control systems are widely used for wear compensation and machine 
protection (e.g. over load, fatigue life). Is it possible to improve the production process 
by complementing these open-loop systems with feedback from the process and 
product yield and thereby obtain a closed-loop control system?  

• In order to control crushers using information about the product yield, it is necessary 
to monitor the material flows at different positions in the process. Is there a more cost 
effective alternative to expensive belt scales? 

• CSS is the most common control parameter for adjusting the product from cone 
crushers. Is it possible to use other parameters such as eccentric speed for real-time 
optimization?  

• Is it possible to optimize the process with two real-time adjustable parameters at the 
same time? 

• Is it possible for a real-time algorithm to perform the optimization described above? 
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Problem-based research begins by identifying a problem or question that needs to be solved to 
achieve some benefit or improvement. The nature of the problems can, of course, be very 
different, which is why the method is not selected beforehand. The problem in question does 
not necessarily originate from a malfunction, but can, as in this research project, start with an 
assumed potential of increased productivity.  

The problem area in question is observed to identify its nature. This can be done with field 
studies, examining the literature, guiding experiments, or performing interviews, for example.  

Subsequently, appropriate methods are selected and models are developed. During this phase, 
several potential methods and models, in combination with previously reported literature, are 
studied to select the ones most suitable for the problem. The process is iterative, and a new 
method is selected if the previous is found to be insufficient.  

The result of this work is then tested and verified, preferably together with the industry. This 
verification phase is also an iterative process, meaning that further potential improvements 
may lead to a new iteration.  

To assist the previously described steps and to ensure that the result is applicable, 
implementation should begin during the course of research. Implementation leads to product 
and process development, which is a separate challenge and research field unto itself. 
However, doing the opposite, i.e. not considering implementing the results, likely leads to 
unrealistic solutions to the problems and results that are of no practical use.  

This project was conducted in collaboration with aggregate producers, which involved regular 
meetings between project members and industry workers and the utilization of their plants for 
the discussed case studies. The advantage, and challenge, of this arrangement was to design 
test equipment to be handled by the producers themselves, both during the studies and 
afterward.  

One of the most important scientific challenges in working in this type of project is 
interpreting industrial needs. In support of this function, the CRPR group has complemented 
the problem-based research method with a value-based approach. The Value Model [33], 
which originates from value management, is a method that aims to improve the value of 
products and services by focusing on the value created for the customers. The concept of 
value is based on the relationship between satisfying needs and expectations and the resources 
required to achieve them [10]. Value engineering was first used at General Electric during 
World War II with the purpose to use limited resources as effectively as possible. The method 
was later adopted by many other industries.   

In this five years project everything was not set from the beginning. Research is evolutionary 
itself, also in the short perspective in the meaning that the hypotheses that are confirmed are 
also the same as the next generation hypotheses are built upon. Furthermore, those that were 
not confirmed, or perhaps showed to be false, are not the basis for the next step, even though 
it is only from these anomalies new knowledge can be achieved. The fact that the problem-
oriented research method does not accept that a certain method or solution did not work, and 
instead finds a new way to solve the problem makes it suitable for engineering fields. This 
evolutionary development of the research presented in this thesis is best reflected in the 
appended consecutive papers, A-E. 
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4 LITERATURE REVIEW 

The aim of this chapter is to: 
− Provide an overview and introduction to the research performed for optimizing 

crushing plant control and control in similar process industries. 

The amount of research around real-time optimization of crushing plants is very limited. Even 
with a wider focus including many crushing plant simulations the amount of work is sparse. 
Although process control with respect to the produced products is a common practice in many 
other process industries, it is rarely seen in an aggregates context.  

CRUSHING AND CRUSHER PARAMETERS 
Since the 1970’s models of production units and processes in the comminution industry has 
been modeled, e.g. by Whiten [49] from the Julius Kruttschnitt Mineral Research Center 
(JKMRC). Work more specific on cone crusher performance have been published e.g. Briggs 
[19] from JKMRC and Evertsson [20] from Chalmers. Unfortunately, many of these models 
requires both crusher geometry and feed input data and the subsequent calculation is time 
consuming, which make them less useful in a real-time optimization perspective. Sensors 
capable of providing data for use in these systems are rare. However, these models can still be 
used for validation and for understanding.   

Karra [28] tested several parameters on cone crushers in the 1970’s by investigating eccentric 
speed as a parameter setting and found speed had no significant effect on the particle size 
distribution or the capacity. These results are difficult to explain, but could possibly be due to 
effects of other much more significant parameters. The lack of an accurate procedure for long-
term evaluation is another explanation. No references or investigations for dynamic speed 
control have been found. Bearman has investigated how several material parameters affect 
comminution machines, e.g. in [13]. Bearman and Briggs [14] have investigated how several 
time dependant parameters affect the crusher output. They state that an active use of these 
parameters, including a better control system, would help in keeping up performance.  

SIMULATION AND OPTIMIZATION 
Maximum plant output can be obtained by theoretically optimizing gross profit using 
simulation software, and then running the plant according to those optimizations. Such 
simulation software are provided by for example Sandvik (Plant Designer), Metso (Bruno), 
JK Tech (SimMet) and BedRock Software (Aggflow) [40]. The optimization in this kind of 
software is described by Svedensten [46]. Many variables impact plant operation: natural 
variations of rock material properties in the feed, equipment wear, weather, and unscheduled 
stops.  To implement real-time control of a crushing plant, an accurate measurement of the 
process status with these variables in mind is crucial.  
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SENSORS 
For both the aggregate and the mining industry there are several image analysis systems 
entering the market during the recent years. Most of them consist of cameras above the 
conveyor belt. The good thing with this is that almost all of the flow can be investigated, in 
contrast to batch based systems as PartAn [27]. On the other hand systems like PartAn, where 
the material is falling and rotating in front of the sensor, are the only way how to get all the 
fine particles, and at the same time include the shape of the material.   

Moshgbar et al. [38] described a product driven control strategy for cone crushers using wear 
sensors and adaptable control parameters. They used a laser-based aggregate particle size 
monitoring device.  

REAL-TIME OPTIMIZATION 
Impact crushers are controlled by adjusting their feed capacity. Reitemeyer [41] described a 
method by which the feed rate to an impact crusher is controlled by a system using 
information about the material flows as a control input. The throughput of feldspar was 
doubled using this control technique. The same principle of determining the capacity through 
the power draw of lifting conveyor belts was used in this work.  

Milling operations have been more extensively investigated in the mining industry with 
numerous of publications each year due to the high intrinsic economic value of the products. 
At the PT Freeport copper mine, Mills et al. [36] have developed a real-time, adaptive 
optimization system based on continuously calibrated models. The system is described as an 
“optimizer on a higher level”. This system runs on a conventional personal computer and 
delivers setpoints to the existing control system. Further, it also presents a number of non-
measurable variables as estimates to the operator screen. Using this system increased the 
throughput of the mill circuit by 5.7%. 

Moshgbar et al. utilized integrated sensors in the manganese liners for determining wear, 
thereby enabling the ability for dynamical wear compensation [38] and [39]. 

ALGORITHMS 
An algorithm is an effective method for solving a problem with a finite number of steps [2]. It 
is simply a set of rules in how to act or calculate in a deterministic way. In a comminution 
context, it is sometimes seen for solving optimization problems theoretically. For instance 
Svedensten [46] uses Evolutionary Algorithms (EA) for plant optimization, While et al. [48] 
use EA for designing machine and process parameters on a crusher and Lee [30] uses EA for 
theoretical optimization of crushing.  

Evolutionary operation (EVOP), as described in Box and Draper [17], is a method wherein 
the process variations are used for process improvements. The method is not an automated 
method, rather on the contrary; it is used manually in manufacturing and process industries. 
Holmes has successfully optimized a cement plant with an automatic EVOP system without 
any explicit model [25]. The result was that the desired variable increased by 37% at the same 
time as the mixture of raw materials used was changed to a more profitable one.  
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5 PROCESS CHARACTERISTICS 

The aims of this chapter are to: 
− Describe the production units used in crushing plants. Because the cone crusher is a 

very common machine and has a significant impact on the result, the focus will be on 
cone crushers. 

− Describe the different parameters that are investigated for use in real-time 
optimization.  

The parameters to adjust, and thus control, the output of a cone crusher machine are the 
closed side setting (CSS), the eccentric stroke (sometimes called throw), the eccentric speed, 
and the crushing chamber. Other parameters to investigate are the particle size distributions of 
the feed material, and parameters on screens installed upstream in the process. Not all of these 
parameters can currently be adjusted in real-time while the machine is in operation. The two 
parameters that can be adjusted in real-time until today are CSS and the eccentric speed.  

5.1 PRODUCTION UNITS 

CONE CRUSHERS 
The basic principle of a cone crusher is depicted in Figure 9 and described here. A cone 
crusher consists of a circular outer concave, wherein a mantle, shaped like a cone, moves 
eccentrically. The concave and mantle together form the crushing chamber, which is where 
crushing takes place. When the mantle is performing its eccentric motion, approximately at 6 
Hz for a 36” cone crusher, the distance between the mantle and concave increases and 
decreases harmonically. When the mantle-concave distance increases at an arbitrary vertical 
cross-section, the rock particles fall down, and when the mantle-concave distance decreases, 
the rock is compressed and crushed (compression phase). Each piece of rock is crushed 
approximately 10 times on its way through the crusher. Cone crushers are usually operated at 
a fixed eccentric speed. Cone crushers have been thoroughly described by Evertsson [20].  
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Figure 9.  Principle of a cone crusher.  

The distance between the concave and mantle, measured at the narrowest is called the closed 
side setting (CSS). The narrowest distance is normally at the outlet of the crushing chamber. 
The CSS is adjusted and controlled differently depending on the type of cone crusher. In one 
cone crusher design, the main shaft assembly with the supporting cone and mantle is adjusted 
vertically by hydraulics underneath the main shaft, while the concave is fixed. The hydraulic 
system protects the machine from overloading and potential damage from large non-crushable 
objects, such as mill balls, bolts and excavator teeth, by evacuating the oil and thereby 
lowering the mantel rapidly. During normal operation, the hydraulic system keeps the CSS at 
a given position by controlling the vertical position of the mantle. This type is denoted as 
Hydrocone from here on. For instance, most of Sandvik’s cone crushers, Metso’s G-series and 
Thyssen Krupp’s Kubria-series are of this type.  

In a different cone crusher design, the crusher head and its mantle are fixed vertically and 
rotate eccentrically. The concave is fixed in the top shell, which is connected to the crusher 
through a thread with a large diameter. As the mantle and concave are worn, the top shell 
rotates and moves down and thus keeps the CSS at a given number. To protect the machine 
from large non-crushable particles, the top shell also has a hydraulic release system that can 
open the crusher rapidly if needed. This type is denoted as the HP type from here on. For 
instance, Metso’s HP-series and FL Smidth’s Raptor-series are of this type. The two crusher 
types are depicted in Figure 10.  

 

 
 

Figure 10. Crusher types. The Hydrocone crusher (left) has a top bearing, and the angle between the horizontal 
plane and the cone is steeper (~55 degrees), while the angle of the HP type (right) is flatter (~45-50 degrees).  
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size), the number of fine particles, and the amount of feed has a large impact on the product 
and the crusher. The top size affects how deep in the chamber a rock falls and how many 
times it remains in the chamber.  

CHANGE OF WEAR PARTS 
Changing worn parts will affect the performance on all of the production units in a crushing 
plant, but here the focus is on the liners (mantle and concave). With knowledge about how 
well a production unit can perform with changed liners, an alarm signal can be set off to 
indicate that it is time for a replacement, if enough data about the current performance is 
collected. This long term degradation in performance during the lifetime of the liners for flat 
angled crushers is well known and described e.g. for a Symons 7’-crusher by Andersen and 
Napier-Munn [11] and for a base supported crusher with 900 mm head diameter by Bearman 
and Briggs [14]. An example can be seen in Figure 7 in Paper E.  

5.3 PROCESS CONTROL 

From a process control point of view, the most obvious area of improvement at most crushing 
plants is the sparse number of measurement points and thus the lack of process data. The 
measurement points that do exist consist of mass flow meters (belt scales), load sensors 
(ampere meters), level indicators (light beams, radar, ultrasonic sensors), and machine type 
specific parameters. On cone crushers, the latter consists of CSS, hydraulic pressure, and the 
load (power draw or amps).  

Hydrocone crushers, equipped with a crusher control unit which controls the hydraulic pump, 
are operated in one of two possible modes where either the CSS or the hydraulic pressure is 
kept constant. Since this crusher type adjusts for wear automatically the control question is 
limited to selection of control method and its setpoint. Crushers in a mining application, i.e. 
where the purpose is to get as fine product as possible are often operated in the pressure, or 
power, limited mode. This implies that the crusher is operating as hard as the manufacturer 
allows, of strength or fatigue reasons. This mode can also be used in the aggregates industry, 
but there CSS-constant mode is also used. Running the crusher at a constant CSS helps to 
keep the quality of the produced material high. The particle shape is best for sizes around the 
CSS [15].  

Since HP crushers are seldom adjusted when filled with material, they are adjusted, or 
controlled, after a specific period of time or when the power draw drops below a certain limit. 
This results in two disadvantages, which are illustrated in Figure 18. First, while the liners are 
worn they gradually decline in performance, which is the triangle of lost production in the 
illustration. Second, when the liners are to be adjusted the production cost can be significant. 
Even after the feed is running again, it can take several minutes to fill the crushing chamber 
again. Monitoring during the course of this thesis shows that a typical production loss period 
is more than five minutes. How often such adjustment is carried out varies from plant to plant, 
everything between once a week and four times a day is common. If an adjustment is done 
four times a day and takes six minutes on a plant with one shift this is equal to five percent of 
the total available time. If not time, e.g. four times a day, an ampere meter is often used as an 
indicator for liner adjustment.  
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6 SENSORS 

The aim of this chapter is to: 
− Describe sensors suitable for monitoring mass-flows in crushing plants. 
− Introduce the theory of an alternative, cost-effective mass-flow meter. 

To measure is to know. It is hard to measure the output from crushers and other production 
units at crushing plants in real-time. Measuring properties of the machines themselves is 
rather easy; amperes, power, pressure, speed and temperature are commonly measured. Flows 
are more difficult to measure. One might be interested in the flow, the particle size 
distributions, particle shape and material properties, such as strength. Since the focus of this 
thesis is to close the loop from the settings of the machines to the material being produced and 
back to the optimization system, to measure the material in real-time is crucial. In the past this 
has not been possible. Typically, particle size distribution is measured by sieving in a 
laboratory. This is far from real-time. One way to measure particle size distributions in real-
time is to use optical belt sensors, which are described briefly below. In this thesis, the 
measuring method uses material flows from production screens.   

6.1 MASS-FLOW METERS 

The most common way to measure mass-flows in comminution plants is to use conveyor belt 
scales. Conveyor belt scales are typically used at one or several conveyor belts due to 
payment or state regulations. In many production plants, these scales are only installed in a 
few locations due to cost. As previously stated, there is an increasing need for process flow 
information in comminution circuits. Real-time process knowledge drastically increases the 
possibility of process control. In aggregate production, mobile units are becoming more 
common, and consequently, the economic burden of expensive conveyor belt scales is also 
increasing.  Developing a cheaper belt scale would be of significant economic value.  

CONVENTIONAL CONVEYOR BELT SCALES 
A classic conveyor belt scale consists of load cells mounted on a scale frame, as depicted in 
Figure 19. One of the idler frames of the conveyor is mounted on the scale frame, which, in 
turn, is mounted on the conveyor frame. In addition, a speed sensor is installed on the 
conveyor. By combining the signals from the load cells, which measure the mass on a given 
part of the belt, with the speed of the conveyor belt, a measure of the mass-flow is obtained. 
Conveyor belt scales are described in detail by Soederholm [44].  
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Figure 19. A conveyor belt scale. A set of rollers (1) are unmounted from the frame (2).The 

vertical force is measured by a load sensor (4), which enables measures of mass-flows on the belt 
(4).  (Photo M. Evertsson) 

Load cell-based scales are accurate when the belt is fully loaded and well maintained. 
However, the accuracy is poor when the conveyor belt is not fully loaded due to the poor 
linear behavior. In addition, the belt scale requires time-consuming scale calibration and 
precise roller alignment. For aggregate production plants, the typical calibration error is 0.5-
1% when the belt runs with 70 to 90% of its nominal capacity and is 2 to 3% when the range 
of the load is 20 to 100%. The accuracy of a belt scale is also related to the investment as well 
as the maintenance costs [43]. Therefore, plants processing more valuable materials or large 
volumes can invest in more accurate systems, e.g. two scale frames in series.  

MASS-FLOW METERS BASED ON ELECTRICAL POWER 
Many comminution plants have conveyor belts that lift materials from one level to a higher 
level. The energy needed to lift a mass a certain height is equal to the mass multiplied by the 
height and the gravitational constant. Theoretically, the load-dependant part of the conveyor 
energy consumption is equal to this energy. Thus, it is possible to calculate the mass-flow on 
the belt by measuring the power draw of the electrical motors of the conveyor. A belt scale 
that determines the mass-flow by measuring the electric power of the conveyor belt is 
discussed in paper A. The electric power partly originates from adding height, i.e., potential 
energy, to the material on the belt. This, of course, only applies when the conveyor is 
inclined, i.e., does lifting work.  
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Figure 20. The principles of a conveyor belt lifting material a height h. The particles are dropped 
on the belt from a height hdrop, accelerated to speed v, and lifted to a height h.  

The potential energy work for lifting a mass m the height h is given by: 

 potentialW mgh=  (1) 

where g is the acceleration of gravity. The parameters for the conveyor belt are shown in 
Figure 20. When a conveyor belt is lifting material, it converts electrical energy into potential 
energy of the material. In addition, the acceleration of the material and the loading of the belt 
also consume energy, as discussed in Paper A. The power can be computed as: 

 2( 2 sin )material
material drop

dWP m gh v v gh
dt

α= = + +  (2) 

where m is the mass-flow, hdrop is the height from which the material is dropped onto the belt, 
α is the angle of inclination of the conveyor, and v is the speed of the conveyor belt. Morin 
[37] has explained this classic example, but in the formula above the material is being 
dropped from a non negligible height. If the losses, e.g. due to friction, are neglected, this is 
the minimum amount of energy required to lift the material.  

Apart from this power, other losses occur when electrical energy is converted to material 
potential energy. A model comprising the electrical motor, the belt transmission, the gear 
stage, and the belt pulley has been developed for the efficiency, which can be computed as: 

 tot iη η=∏  (3) 

where ηi is the efficiency for the ith drive. Using the efficiencies derived from Gerbert [22], 
the total efficiency of a typical belt conveyor is in the range 0.702 to 0.826. If poorly 
maintained, this average range can adjusts downwards. In Paper A, the efficiency of a well-
conditioned belt, determined by averaging 15 efficiency tests, was found to be 0.758, which is 
in the published range.  

The power that remains after these losses can be expressed as 

 material load totP P η= ⋅  (4) 

where Pload is the load dependant electric power. The total electric power is 

 electrical idle loadP P P= +  (5) 

where Pidle is the idle power. The mass-flow can now be computed as 
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−
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The causes of idle power are not fully understood and need to be investigated further. The 
most likely explanations for idle power are mechanical friction losses, e.g. in rollers and 
bearings, and the dissipative component of the rubber in the belt. For each revolution, the belt 
is bent two to five times (depending on the belt tensioning system). This causes energy loss. 
The dissipation of mechanical power depends on the shear modulus, frequency, and the strain 
rate of the material [29]. The shear modulus for rubber is strongly temperature dependant. 
Gerbert [23] shows examples of the strong relationship between loss module ( E ′′ ) and 
temperature for a typical V-belt rubber. Martins and Mattoso [34] tested used tire rubber and 
found that the loss factor (tan δ) varied from 0 to 0.54 at -100°C and -30°C, respectively, and 
back to 0.08 at 190°C. Thus, if the temperature range for conveyor belts is maintained 
between -30°C to +30°C, conveyor belt power loss decreases with increasing temperature. 
This is also shown in Paper A, where the idle draw of a conveyor belt at the startup was 
evaluated as a function of the outdoor temperature; the correlation was 0.874, and the 
temperature was measured at a distance of 18 km from the belt.  

Carlo Gavazzi WM-12 and 14 power transducers were used to monitor conveyer belt power. 
It is important to use a measurement device that calculates the power as 

 cosP U I ϕ= ⋅ ⋅  (7) 

where U is the voltage, I the current, and cos φ is the power factor. The power factor, often 
labeled on the electrical motor in the range of 0.85 to 0.9, can be as small as 0.35 for low 
power draws.  

LIGHT BEAM SENSOR 
Another sensor used for monitoring the current material flow on a conveyor belt is a light 
beam sensor, which is mounted on a frame positioned around the material. The frame holds a 
laser beam that measures the contour of materials that pass through it. This process requires 
the density of the material to be known, or at least be constant. Such a system is sold by 
Hartle Sensortechnik GmbH [7]. The price is not significantly lower than that of a traditional 
belt scale and thus is not further investigated here. The advantage of a beam sensor system is 
that it can be mounted without affecting the conveyor frame or idling rollers, and it is not 
sensitive to misalignment.  

6.2 IMAGE ANALYSIS 

There are a number of measurement systems that claim to directly monitor particle size 
distributions. Most of these systems use optical sensors. Some systems ([16], [24])  take still 
images of the material, e.g. in a pile, on the ground or on a conveyor belt (it does not matter if 
the belt is moving), as shown in Figure 21. As soon as a material is placed in a static pile, the 
finer particles stratify downward and are hidden by larger, overlaying particles.  Therefore, 
this measurement system struggles to accurately monitor fine particle concentrations due to 
this fine particle stratification effect. However, this problem can be avoided. Sometimes it is 
important to identify the top-size of a material flow, and sometimes it is possible to get 
enough information about the particle size distribution by looking at the coarser end.  
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Implementation is an important part of this thesis, and Scada systems on different levels have 
been used as tools. Scada systems are not direct parts of the research questions, but they are 
crucial parts of real-time optimization. Each part is explained briefly below.  

The systems (HMI and the supervisory computer) used in this thesis can be divided into two 
generations. The first generation was built on a Linux platform with a simple homemade web-
HMI (Papers A-C), whereas the second generation is built on a Windows platform with a full 
industrial HMI package from Iconics (Papers D and E).  

HUMAN MACHINE INTERFACE 
A human machine interface (HMI) is the interface through which the operators control a 
process. On old pulpet systems, the switchboard with its buttons was the HMI, whereas on 
modern computer-based systems, the HMI is made graphically to give a good overview and at 
the same time be intuitive. Graphical software HMIs are flexible, intuitive, easier to copy, and 
can be remotely controlled.  

A web interface was developed by the author for the first generation of SCADA, see Figure 
23. It was developed to facilitate remote control of the system. A remote-controlled Scada 
helps during both the development and the usage of a system. Using this interface, operators 
can see material flows, the status of machines as text and graphs, and changes to the operating 
mode, and they can set limits for the algorithm. The same information can be accessed via the 
Internet by the author from Chalmers in Göteborg. Successful installation of this kind of 
system requires that the onsite operators trust the system. If they are not comfortable with the 
algorithm, they should be able to change limits or manually control the system if necessary.  
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Figure 23.  Human machine interface via a web browser. The crushing plant shown is Jehander 

Ludden’s, wherein the eccentric speed optimization tests were first performed (Paper C).  

The second generation of HMIs were built on a platform called Genesis from Iconics, see 
Figure 24. Using this interface, operators can see material flows, the status of machines as text 
and graphs, and changes to the operating mode, and they can set limits for the algorithm. The 
system uses a Windows-PC and is widely used the industry. Other manufacturers of HMI 
platforms include Citect, Siemens, and Wonderware. Some of the benefits of an HMI 
platform include:  

• Standard of graphical illustration of production  
• Adaptability 
• Connectivity to other devices 
• Plug & play graphical modules 
• Fully supported 

These upsides come with the drawback of less flexibility.  
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Figure 24. Human machine interface for the research implementation at NCC’s aggregates plant, 

Glimmingen (Papers D and E).  

SUPERVISORY COMPUTER 
In a Scada system, a supervisory computer is used to display the HMI, to send control signals 
to the process and to collect data in a database. The process is often controlled and supervised 
by a PLC (see below). However, the PLC often gets its commands from the supervisory 
computer.  

In this thesis, the supervisory computer is also used for executing algorithms. In the first 
generation, the supervisory computer was an industrial PC with Linux. The advantage with 
this was that Linux is very stable and cost effective. This computer had no graphical user 
interface (GUI), but hosted a webpage with which the operator could monitor the process 
from another PC.  

In the second generation of the system, which was developed in this project, a server with a 
Microsoft Windows operating system (OS) was used. In this case, the process was monitored 
from the host computer. The advantage with Windows is that it was easier to maintain.  

All measured data and changes are logged and stored into databases. For example, if the set-
point limit is changed by a user, then this event is stored in the database and is later used to 
determine if a process change was caused by the user or by some phenomena in the machines 
or raw material. In the first generation, the data were loaded into a database using software 
developed in the programming language C. This software also analyzes the data and provides 
new set-points based on an algorithm that will be discussed later. In the second generation, an 
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8 ALGORITHMS FOR REAL-TIME OPTIMIZATION OF 
CRUSHING PLANTS 

The aim of this chapter is to: 
− Introduce the hypothesis behind real-time optimization.   
− Explain why normal control theory in practice can be difficult to apply. 
− Introduce algorithms for selecting set-points of CSS and eccentric speed on cone 

crushers. 
− Explain the differences between the finite state machine and model based algorithms. 

 

The purpose of this thesis is to give set-points to crushing plants to let them perform optimally 
given the rock material and machine equipment. The rock material varies all the time. The 
hypothesis is that it is possible to use this variation and control the plant in a suitable way. 
Earlier chapters have described how the crushing process works, which parameters can be 
used to manipulate them, how to collect data from the process and how to handle this data and 
control the plant with a SCADA system. With this information, a skilled operator would 
definitely increase the yield or performance of the plant. However, in several ways a 
computer can be more effective than an operator: 

• It is hard for an operator to determine what is significant in a signal if it is noisy.   
• An operator cannot get an overview of the entire business, including sales, stocks, 

maintenance, spare part cost, and other factors.  
• Their decisions regarding the process will affect many factors and thus the gross profit 

of the company.  
• It is likely that an operator will increase the deviation of the process, which is not 

desirable from a quality management perspective [12].  
• The retention time is longer for the operators than a computer, i.e. the time between a 

change is introduced until enough information is collected for an operator to draw 
conclusions and act from it.  

For these reasons the author’s wish and aim is to organize many of these decisions and to 
make set-point selections automatically using a computer system. This is defined as real-time 
optimization. A computer is also better than humans at handling large numbers of data 
because a computer is deterministic and can calculate deviations.  

Many contemporary cone crushers are equipped with automatic systems to control the CSS 
and to protect the equipment from over-loading. The settings are determined by the operator 
most of the time. The quality and the size distributions of feed materials normally change with 
time. In addition, wear occurs on both the crusher manganese liners and screen cloths. What is 
the objective of the crushing stage? The answer is to produce the largest possible amount of 
one or several desired products. The quality of the material, e.g. the particle shape, must be 
sufficiently high.  
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8.1 CONTROL SITUATION CHARACTERISTICS 

In many processes, the important control issue is to keep a parameter on a certain value or 
move the process to a certain position when a set-point makes a step change. However, in this 
situation, there is no target set-point as the best possible production yield will be dependant on 
the varying feed and wear situation. The goal for the crushing plant is to maximally produce a 
certain product or to keep the product yield as high as possible. However, the rock material is 
constantly varying, so the product yield also varies. Thus, there is no obvious set-point. Due 
to the fact that the set-points are unknown, classic control theory cannot be used. This is a 
special situation, and it is hard to copy control theories from other engineering areas. 
Therefore, an algorithm is introduced. An algorithm is an effective method for solving a 
problem [2]. The output from the algorithm can be a set-point to the controllable parameters 
on the production units in the process, e.g. CSS or eccentric speed on crushers. In this thesis, 
two types of algorithms have been tested; Finite state machines (FSM) and Evolutionary 
operation (EVOP) with an empirical model.  

 

8.2 FINITE STATE MACHINE ALGORITHM  

Flowcharts are often used to represent algorithms graphically. An FSM algorithm from Paper 
B is shown in Figure 27.  It is assumed that there exists an optimal setting for each parameter 
at every point in time, as depicted by Figure 28. However, it may exist constraints, e.g. 
limited power draw, which make the optimal operating point on the border of the constraint. 
Several factors can vary over time, so a fair comparison between two different settings at 
different times is difficult. When determining the best choice of parameter values, usually 
CSS, several manual, repeated step changes are performed. The performance of the crushing 
plant before and after the change can then be compared under equal conditions. If there is an 
overlying trend, it is important to alter the order of the trials, for instance with so called split-
plot designs, e.g. by Box et al. [18].  
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Figure 27. A flowchart can be used for explaining the algorithm more pedagogically. A finite state machine is 

used in some algorithms in this thesis.  
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Figure 28. The fitness landscape is compared with a ridge, where time is pushing in the direction of the ridge. At 

each moment it is assumed that there is an optimal setting of the studied parameter.  

 

ALGORITHM FOR CLOSED SIDE SETTING  
Paper B describes the development of the first algorithm. The first algorithm, which was 
designed as a naïve pathfinder, found an assumed maximum; however, it was oscillatory 
around a value, which degraded the performance. This can be compared to a PID control 
system with too much gain, i.e. too high P-factor. A finite state machine (FSM) based on a 
Mealy machine [35] was subsequently used as an improved algorithm.  

The FSM was developed manually (in contrast to a computer generated algorithm) to find an 
optimal CSS and stay there for a period of time. The structure of the developed FSM is 
summarized in Figure 27. The developed FSM has seven states, of which two are directly 
transient, i.e. the action connected to the state is performed thereafter a new state is entered.  

The introduction of the FSM also permitted the use of crusher load (hydraulic pressure) when 
computing the next set-point. The pressure was controlled after each state with an exit 
condition. If the pressure was too high, then a state that opens the crusher to reduce the 
pressure is selected. The pressure protection is still performed by the crusher control system, 
but with this feature, a set-point generating too high of a pressure can be avoided before the 
crusher automatically stops operation due to a long time period with too much load.  

The developed algorithm was tested in a 36” Hydrocone crusher equipped with an ASR-C 
control system. The algorithm was written in a script and executed in a computer and 
evaluated the process continuously via belt scales. The goal for the algorithm was to 
maximize a selected product. The output from the algorithm was delivered as a set-point 
value to the crusher.  
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ALGORITHM FOR ECCENTRIC SPEED 
The algorithm for the eccentric speed is a development built upon the previously described 
CSS algorithm. Instead of the crusher control system executing the set-point CSS, the 
frequency converter executes the frequency of speed change of the asynchronous motor 
turning the eccenter. The states for avoiding high pressure were removed. The eccentric speed 
algorithm is thoroughly described in Paper C. 

The developed speed algorithm was implemented and tested on a Metso Nordberg HP300 
(Paper C) and confirmed on a Metso Nordberg HP4 (Paper D). The algorithm was written in a 
script and executed in a computer. It evaluated the process continuously via belt scales. The 
goal for the algorithm was to maximize the yield of a certain product. The output from the 
algorithm was delivered as a set-point value to the frequency converter.  

There is a significant difference between a CSS-controlled and speed-controlled crusher in 
terms of the electrical current behavior (measured in amperes). At the test plant, operators use 
a current meter to determine when they have an acceptable CSS. When they turn the top shell 
part of the crusher with the hydraulic motor to decrease the CSS, the current increases. The 
crusher responds to an increased speed by pulling less current. It is important to inform the 
operator of this fact.  

8.3 MODEL-BASED ALGORITHM  

The idea behind a model-based algorithm is to actively use several parameters to control the 
process. The FSM algorithm above also uses a model, see Figure 28. While working with the 
FSM algorithm in the NCC Glimmingen aggregate plant, a large quantity of data was 
collected and subsequently used for fitting the model.  

The data from the first trials in Glimmingen were used to build a simple model for the 
crushing-stage performance during one stint. A run is the operating time, e.g. between two 
CSS adjustments on a crusher of the HP type. On a Hydrocone crusher, runs are short and 
occur often if operated intermittently. In the best case, a run can last the entire shift (or more, 
if operated over several shifts). The model, which was described in Paper D, resembles a hill 
or a mountain ridge, see Figure 29. It has the mathematical form:  

   (8) 

where  is the crushing-stage output,  is the eccentric speed,  is the time since the last CSS 
adjustment, and  are constants. During later tests, the constant  was shown to be very 
close to zero. This means that the quadratic term in the time since the last liner adjustment is 
almost negligible.  

When the model is tuned and accepted, the algorithm simply follows the top of the ridge. As 
the time since calibration increases, there is always an optimal speed adjustment, which, 
according to Equation 8, is linear. This linear change of eccentric speed was tested in Paper 
D.  
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The main reason why fixed settings are not optimal is that several factors in crushing plants 
vary with time. In addition to the short-term wear period of the crushing chamber discussed 
above, the factors that are beyond operator control are raw-material variation, screen-cloth 
wear, and total crushing-chamber wear over its useful lifetime.  

The developed EVOP algorithm was implemented and tested (Paper E). The algorithm was 
written as a script and executed on a computer. It delivered set-point values to the frequency 
converters based on the different runs in the EVOP. The process was monitored and logged 
continuously via belt scales. After a set of runs, when entering a new phase, new directions 
for the EVOP were taken by the author based on the information from the previous phase and 
a knowledge of the process and its constraints. As stated previously, EVOP is a manual 
method.   
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9 RESULTS AND DISCUSSION 

The aim of this chapter is to: 
− Present and discuss the results from previous chapters.  
− Discuss the work in more general terms.  

POWER DRAW BASED MASS-FLOW METERS 
The power draw based mass-flow meter, described in Chapter 6.1, was tested on an inclined 
conveyor belt with a belt scale mounted on another belt in series. The worst error during a test 
day was 2.33%, with an average error of 1.12%. The coefficient of correlation between the 
power draw based mass-flow meters and the belt scale was 0.998.  

Power-based mass-flow meters have been used in this project since 2006 for measuring flows 
for process control in Fjärås (3 units), Ludden (4 units) and Glimmingen (10 units), 17 units 
altogether. The companies involved in this project have installed these sensors on additional 
belts, a total installation of 62 belts.  

Both the validation of the belt scales in Kållered (Paper A) and the fact that it was possible to 
use them for process monitoring at all other plants in this work, i.e., Fjärås (Paper B), Ludden 
(Paper C) and Glimmingen (Paper D and E), demonstrate that the belt scales do work for this 
purpose. The most common doubt about them is usually related to what might happen if an 
idler gets stuck, i.e., the increased friction between the rubber belt and the idler might increase 
the idle power draw and, because the belt scale cannot differentiate between idle power and 
material power, it might show an increased mass flow on the display. However, for the 
purposes of the belt scales used in this work, such a stuck roller would increase the measured 
flow if this occurred but would then continue to show a too-high mass flow. Thus, the next 
time this flow is used for monitoring a step change of a parameter it will give the correct 
direction again. This works as long as the comparisons are made within a short period of time. 
This also raises the possibility that if the idle power draw is carefully monitored, it could be 
beneficially used for preventive, or even predictive, maintenance. Although classical belt 
scales are negatively affected by the tough environment in a crushing plant, they are usually 
only calibrated once a year, however, many things can happen during this time. Two further 
reflections can be made on the performance of power-based belt scales: they work better on a 
belt with more inclination and they work better on newer or well maintained conveyors.  

REAL-TIME OPTIMIZATION WITH CSS 
The CSS control algorithm was tested on an Allis Chalmers 36” Hydrocone crusher. The 
crusher was operated by alternating between a fixed CSS and an algorithm-controlled CSS to 
determine the effectiveness of the algorithm. Due to large variations, the evaluation took place 
over the entire period of the fall of 2007. The crusher was often limited by pressure rather 
than the CSS setpoints. The reason for this was that the target product was a very fine product 
(2-5 mm) and thus required a large reduction ratio which leads to a high hydroset pressure. In 
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the cases where the desired CSS was achieved (by the algorithm or a constant value), the 
algorithm was 3.5% better on average than the constant CSS. A t-test was performed, 
showing that the algorithm was better under a 3% significance level, meaning that the 
algorithm was better than the constant CSS with 97 % certainty.  

The work on adjusting the CSS on a crusher with a control unit demonstrates that the focus 
must be shifted from the crusher itself to the process as a whole. The fact that the crusher was 
often limited by the pressure means that it did not matter what algorithm was used to set the 
CSS, as it could not be maintained. Therefore, a shift from CSS control to load control should 
be considered, i.e., with the crusher tightening the CSS until the pressure or motor power 
becomes too high. However, this is actually a decision that an algorithm could possibly make.  

REAL-TIME OPTIMIZATION WITH SPEED 
The speed control algorithm was tested on a Metso Nordberg HP300 cone crusher, which was 
operated in a closed-loop configuration during the late fall of 2007. The crushers were 
operated in three different modes: a fixed standard speed of 1500 rpm, a speed corresponding 
to the operator’s choice, and a speed determined by the algorithm. The operators chose which 
mode was used. The algorithm was tested during a full mantle lifetime. Every time the mode 
was switched, a comparison between the prior and the new operating modes was performed. 
The crushing-stage total throughput, which increasing was the plant management’s highest-
priority goal, was increased by 4.2%. A t-test showed the superiority of the crushing operation 
with either the operators’ choice of speed or the algorithm speed over crusher operation at a 
standard speed at a significance level of 0.05%. This means that with 99.95% certainty, the 
operator/algorithm together was better than the standard speed. The same algorithm was also 
tested on a Metso Norberg HP4 cone crusher operated in a closed-loop configuration during 
the fall of 2009. Here, the results, shown in Table 1, were confirmed with the algorithm 
showing a superiority of 5.3% compared to running at the best fixed speed. Compared to the 
OEM-specified speed, the superiority was even higher, at 16.7%. However, the tests with the 
HP4 were not performed on the same statistical grounds as those with the HP300.  

 
Table 1. Results with different modes in Glimmingen. 

 Method: Ridge-model FSM 1380 rpm 1500 rpm

 Results at 7200 seconds 
operation in one stint 

262.5 tph 258.4 tph 245.5 tph 221.5 tph

Comparison: Ridge-model - 1.6% 6.9% 18.5%

FSM  - 5.3% 16.7%

1380 rpm   - 10.8%

 

The results from the two plants with speed control on the HP crusher types demonstrate a 
huge potential. It is strange that frequency converters have not been implemented on a wider 
scale. The reason is probably a combination of several factors, and a lack of process 
monitoring and the cost of frequency converter the two most important. As a conservative 
business, the aggregates industry has not accelerated this development. Some people consider 
frequency converters unreliable. It is understandable, however, that if you cannot measure 
things and the environment is tough, it is probably a good idea to keep things simple.  



 

47 

 

An unexpected result was that the mantle lifetime increased by 27% during the HP300 trials 
in Paper C. Since these trials and because of the achieved improvement, the plant 
management has not allowed any running at a constant speed. The explanation to this result is 
beyond the scope of this thesis but is believed to depend of changed internal dynamics in the 
crushing chamber or a difference in work hardening of the crusher manganese liners.  

 

REAL-TIME OPTIMIZATION WITH TWO VARIABLES 
The model-based algorithm, described in Paper D, follows the top of the modeled “ridge” 
linearly. The operators normally adjust the crushers every two hours. Therefore, a time of 
7200 seconds was chosen as the period for which performances were compared. The results, 
shown in Table 1, were an improvement of 6.9% compared to the best fixed speed. Compared 
to the OEM speed, the improvement was 18.5%. Note that there is no statistical confidence 
associated with these numbers as in Paper C, although the trend was repeatable.  

The EVOP approach, which is tested in Paper E, is intended to change the parameters of the 
linear dynamic algorithm. An economical optimum for the time between CSS adjustments is 
probably between one and two hours. Therefore, a time of 5000 seconds was chosen as the 
period for which performances were compared, regardless of whether or not a run was 
continued for a much longer time; runs of less than 5000 seconds were neglected. The reason 
why 7200 seconds was not chosen, as in Paper D, was that too few of the runs would then be 
taken into account, and EVOP requires several runs with each configuration in a phase. Note 
that these several runs were not performed in consecutive order.  

The EVOP was run in four phases. The results can be seen in detail in Paper E, Table 1. The 
most important to note are that in every phase there was a difference of between 20 and 30% 
between the best and worst runs. After Phase I and II, an increase in performance was 
observed when moving to a slower speed and a lower speed increase. After Phase III, the 
direction was the same, but the best performance was the same as the center point. Then, after 
a change of liners, in Phase IV the speed and speed increase continued to point downwards. 
The actual speeds with the different algorithms are shown in Figure 30. During an entire liner 
lifetime, the difference in performance was more than 100 tph, or 50%.   

 

 
Figure 30. A comparison of the actual speeds in the different phases of the EVOP, the "Ridge" and the FSM. 
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When combining several parameters, it is important to change the parameters in controlled 
combinations. In this work, the level of two parameters was controlled, however, only one 
(speed) was actively and continuously variable. It was not possible to control the other (CSS) 
because of the limitations of the crusher type. The introduction of a model with two variables 
increased the improvement from 5.3% to 6.9%. Because speed and CSS are two different 
parameters that affect the crusher differently, the combination of the two is important.  

ALGORITHMS 
An algorithm is an effective method for solving a problem. In this work, two different kinds 
of algorithms were used. First, the FSM was chosen to optimize one parameter on single 
crushing stages operated in closed circuit. The reason for selecting an FSM was that it is both 
possible to configure manually, as in this thesis with appended papers, but also automatically 
by for instance an evolutionary algorithm (EA), described e.g. by Wahde [47].  

While the FSM successfully optimized one parameter at the time, the EVOP, in contrast, 
could find the correct directions for optimizing the combination of two parameters. The 
EVOP-algorithm clearly pointed towards lower speeds and smaller speed changes. To 
understand this, new adaptations of the models were made from data collected during the 
EVOP tests. The result, as shown in Figure 30, was that all runs were performed at higher 
speeds than the model optimum. Thus, the correct direction for any algorithm was 
downwards. The EVOP algorithm successfully gave the direction for the dynamic optimal 
speed. In comparison with the earlier algorithm, FSM, the EVOP algorithm is less sensitive to 
noise and more stable. However, it cannot react to short-term variations, e.g. changes in raw-
material properties. EVOP is therefore more likely to be suitable for a crusher where the CSS 
can be kept constant. EVOP can be useful for evaluation and parameter testing when building 
new models (incorporating new understanding) of the process.  

GENERALITY 
The models used in this thesis (Papers B, C and D) are created with the general knowledge of 
the process behavior, for instance knowing that a decreased CSS will also decrease the 
capacity, and that the wear of an HP crusher will decrease its performance. However, the 
process models do not include a mechanistic model of the crusher. At this stage, the models 
have been created in order to repeat the most significant behaviors of the process, rather than 
to include too many parameters and thereby risking difficulties in explaining inconsistencies 
from data or the risk of fitting noise to the model.  

Real-time optimization as implemented here is so general that it can probably be applied to a 
VSI crusher so that its rotor speed becomes optimal. The speed of the rotor will in turn affect 
both the reduction and the capacity [42]. Since the crusher, the screen cloths and the feed 
material also change in this crusher type, a similar situation as with the cone crusher will 
arise.  

In this thesis, a single crushing stage at the time has been optimized. From a plant perspective 
this is probably a sub-optimization if no other actions are taken. For example, if the demand 
for material is larger than the possible supply and a real-time optimization algorithm increases 
the production with X percent, then X percent more material can be sold. But if the plant 
already produces what it can sell, real-time optimization will instead result in the possibility 
of the maintenance being planned differently and thus stop hours to be saved. Different parts 
of the plant can have different goals, but they will affect one another. There is thus a risk for 
sub-optimization and therefore a general plant optimization which also takes plant economics 
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into consideration is recommended, described e.g. by Svedensten [46]. Also with a real-time 
perspective there are examples where coordination of the local crushing stages is needed.  

Generally, the operators on the test sites were very positive in their feedback. There is always 
the risk that they might feel watched when introducing more sensors and on-line connections 
as in some of the tests here. However, the overall feeling was nevertheless positive as the 
operators felt that someone actually cared about their work.  
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10 CONCLUSIONS 

The aims of this chapter are to: 
− Present the most important conclusions drawn in this thesis.  
− Answer the research questions stated in Chapter 2. 
− Discuss what has been found important for future work but not researched. 

The purpose of this work was to monitor the material mass flows in crushing plants and to 
tune crusher control parameters to improve process performance. During the course of this 
work, two generations of monitoring and control systems were designed and implemented. 
These systems can communicate with sensors and actuators (for crushers), store data, process 
data, and communicate with users via graphical user interfaces.  

Crushing plants can be very different in their layouts, and thus there is a need for a general 
system that can be adopted to many crushing plants. This work therefore focused on 
developing a new theory and methods to be used as a toolbox for solving different crushing 
plant problems.  

 

10.1 GENERAL 

The intention of this work was to find methods for the real-time optimization of crushing 
plants, rather than maximizing the output of a single plant. To be able to truly optimize a 
crushing plant, several things are required: 

• An understanding of the customers and the market situation to know exactly what 
would be the most beneficial to produce.  

• Models of the equipment and the process.  
• Sensors able to monitor everything important in the process but nothing else.  
• Computers fast enough and equipped with an algorithm to calculate the perfect 

settings in real-time, including all the factors mentioned above.  
 
It cannot be stated that everything mentioned above is in perfect order. However, the author 
does not doubt that that is the direction we are heading. This work does contain some 
elements of each point above, in particular, models of the process as a basis (Papers B, C and 
D), but here the models are not too detailed. At this stage, there might be a risk of fitting the 
models to noise and odd phenomena at singe-crushing plants instead of understanding the 
models. Optimize a plant in steady state either manually or with one of the software programs 
mentioned above would be a good start, and adding the time dynamics as a factor in the future 
will make these simulations even better. However, this does not contradict the practice of 
adjusting the plant in real-time while depending on un-modeled phenomena. Today, these 
phenomena are mainly machine wear and raw material properties. In the future, it may be 
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other factors. The FSM algorithm described above can handle unpredictable things on a short 
time scale (hours), while the EVOP approach, as tested here, is better for optimization when 
the parameters do not change quickly. Additionally, the EVOP approach can be very good for 
evaluation and parameter testing when building new models (incorporating new 
understanding) of the process.  

A recommendation from the author is to run a HP type crusher with a frequency converter and 
an FSM algorithm. For the Hydrocone crushers, the EVOP is probably a good way of 
continuously trying to find the best combination of speed and CSS.  

 

10.2 ANSWERS TO THE RESEARCH QUESTIONS 

Here the answers to the research questions stated in chapter 2.2 are given.  

 

Is it possible to improve the production process by complementing these open-loop systems 
with feedback from the process and product yield and thereby obtain a closed-loop control 
system? 

Yes, it is definitely possible. These results obtained from testing both algorithms show that 
using a system in addition to the machine-specific system can control the crushing process 
with respect to the amount of products produced. In practice, an improvement of 4.2% has 
been demonstrated on an HP crusher with a frequency converter. On a Hydrocone, a ~3.5% 
performance increase has been demonstrated on a crusher equipped with an automatic setting 
regulation system using a closed-loop feedback data input from the process. The control of a 
crushing process with a varying feed is an unusual control problem as there is not a known 
setpoint. The absence of a setpoint value can be solved by using an algorithm that 
continuously improves the process.  

 

In order to control crushers using information about the product yield, it is necessary to 
monitor the material flows at many different positions in the process. Is there a more cost 
effective alternative to expensive belt scales? 

The algorithm tests and the belt scale tests demonstrate that materials flow monitoring can be 
performed with sufficient accuracy by measuring the power draw of the conveyor belt. It is 
possible to accurately monitor materials flows and product yields in the process by measuring 
the electrical power on inclined conveyor belts. This has been demonstrated by comparing 
tests conducted with traditional belt scales as well as in two full-scale process control cases. 
Changes in the process are difficult to observe due to noise, spread, and natural variations. 
Repeated or continuous measurements with statistical analysis are required to accurately 
measure changes in the process.  

 

CSS is the most common control parameter for adjusting the product from cone crushers. Is it 
possible to use other parameters such as eccentric speed for real-time optimization?  

The results from the tests investigating the effect of speed control on a cone crusher clearly 
show that the eccentric speed parameter can be used to control and improve the process. 
Speed is an important machine parameter that, up to now, has not been used for active control 
of cone crushers. It has been demonstrated to have a great impact on the efficiency of cone 
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crushers. It can also be used to compensate for both slow changes in the crushing chamber 
geometry and wear and input material variation and to tune the product particle size 
distribution.  

 

Is it possible to optimize the process with two real-time adjustable parameters at the same 
time? 

Yes, on an HP crusher, the speed can constantly be used to compensate for the lack of CSS 
compensation. The results obtained from tests in which both CSS and speed were taken into 
account show that the total performance space that can be accessed by tuning the parameters 
is about 20% on an HP crusher. Not all crushers are operated in the worst-case scenario, 
making roughly half of this increase possible in practice. Typically, a performance increment 
of 6.9% has been demonstrated.  

 

Is it possible for a real-time algorithm to perform the optimization described above? 

Natural stochastic and systematic variations in the crushing process can definitely be taken 
advantage of and be compensated for in order to improve the production yield in a crushing 
process. A finite state machine (FSM) has proved to be a successful way of creating an 
algorithm capable of selecting setpoints for the CSS and the speed, respectively. An algorithm 
inspired from EVOP can be used for tuning long term optimization with feed-back from the 
process on a continuous basis.   

 

10.3 FUTURE WORK 

Several things have been investigated and put together to achieve real-time optimization in 
this thesis, and subsequently improvements can be done in several areas: 

• The development of improved sensors, e.g. image analysis equipment directly after the 
crusher, would make it easier to optimize crushers with respect to the products, 
because more measurement points on the cumulative particle size distribution will be 
accessible. As an alternative to image analysis, the use of mass-flow meters after 
screens would be much more applicable if they could be placed on horizontal belts to 
a reasonable cost.  

• To improve the models of the process behavior and have a simulation environment 
where the algorithms could be improved automatically would probably be fruitful. 
Especially the FSM algorithm is suitable for such training.  

• Real-time optimization for only one crushing stage (a crusher with consecutive 
screens) has been investigated. A crushing plant often has several consecutive 
crushing stages. In order to avoid a sub-optimization, the entire plant must be 
optimized simultaneously. This applies also when the optimization is performed in 
real-time. To optimize the entire plant also economics, stocks, maintenance and 
scheduling would be necessary to include.  

• The phenomenon with the extended lifetime of the liners in Paper C can have several 
explanations (less long term changes on crushing chamber, changed wear hardening) 
and an investigation why this phenomenon occurs would be interesting.  
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