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Abstract

In order to obtain reliable and realistic results for a human body model in a car
crash simulation, having a suitable constitutive model for muscle tissue with both
passive and active properties, is of great importance.

Skeletal muscles have experimentally shown to have mechanical features including

• Anisotropy of the muscle

• Contraction of the muscle fibers due to external stimuli, known as activation,
which is also length and velocity dependent.

• Non-linear and rate dependent behavior also without activation

A literature study was conducted, and many previous studies describing the active
and passive muscle behavior in context of continuum mechanics were investigated.
Some suitable modeling approaches were selected; then, an explicit FE formulation
based on large deformation was developed, and implemented in a Matlab environ-
ment. The simulation results of the different approaches were assessed, and the most
promising material model was chosen. This model is supposed to be implemented as
a user material routine in LS-DYNA software using Fortran code.

The implemented model used a Hill-type relation for the active muscle behavior.
For the numerical solutions in the FE analysis, the central difference scheme as an
explicit method was mainly focused on.

One of the main problems in the FE analysis was instabilities occurring during the
time iterations which is mainly due to the nearly incompressible material property
of the muscle. In some cases, by assigning appropriate parameters and adjusting
constants this problem was solved. Methods for treating such problems was tested;
for instance, the reduced selective method was implemented in this thesis project,
but satisfying results were not achieved.

Keywords: Constitutive modeling; Active muscle; Finite Element; Continuum model; Vis-
coelastic material; Muscle fiber modeling
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1 Introduction

1.1 Background

Car crashes claim thousands of lives every year, and auto makers are devoting a remarkable
budget to improve their vehicle safety. Since a crash test with a real vehicle is complicated
and expensive, manufacturers try to use crash simulations, instead of some real tests, to
investigate their products’ safety issues. Increasing vehicle safety requirements and tough
regulations in recent years have made it necessary to conduct more detailed and realistic
crash simulations in pre-crash phase as well as crash phase. To study the possible injuries
of the vehicle occupants during a crash simulation, using a human body model (HBM)
with biofidelic behavior, which also includes the muscles, is of importance. As the pre-
crash phase is significantly longer than the crash phase, there is a need to represent the
active behavior of the vehicle occupants in this phase. A short time before a car crash,
drivers usually react to what they see, so that when the crash happens, some muscles are in
activated state (in addition to all muscles that are in various degrees of activation in order
to maintain the driver’s body position). This means that a totally different mechanical
behavior of the muscle should be expected in such cases. To describe the active and passive
behavior of the muscles and include them in the crash simulations, a constitutive model is
required to represent these mechanical behaviors, and meanwhile it should be capable of
being implemented in finite element (FE) formulations, as well as commercial FE softwares
such as LS-DYNA [1].

The aim of this Master’s thesis was to find a constitutive model for the skeletal muscle,
representing both active and passive properties, in a continuum mechanics framework.
To find such constitutive models, a comprehensive literature study was required to be
done in order to investigate different approaches to material modeling, FE formulations
and numerical schemes. After comparing different material models and their behavior in
the Matlab environment, the most satisfying material model should be used to develop a
new user-defined material routine in LS-DYNA, where crash simulations with the HBM is
supposed to be executed.

Since the model is aimed at pre-crash and possibly also in-crash events, rapid deforma-
tions can be expected. This makes it necessary to take into account the rate dependency of
the muscle material. Furthermore, a dynamic formulation should be used due to presence
of inertia forces. In many previous studies of muscle modeling (cf. Section 4.5), the vis-
cous part of the constitutive model was ignored and FE simulations mainly were performed
under quasi-static condition.

1.2 Method

Having found some suitable material models through literature study, a Matlab code was
developed to study the behavior of the constitutive equations, in which a simple symmet-
rically fusiform muscle model composed of 8-node solid elements was used for testing. The
FE formulation used in the Matlab environment was based on the explicit method, which is
suitable for the simulation of fast events. This is the method that is also used by LS-DYNA
which is a commercial FE software frequently used for car crash simulations. The purpose
of simulations with Matlab codes was to provide an environment, where different material
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models and different problem setups were possible to be implemented, as in LS-DYNA it
is not always easy to change all aspects of the simulation.

Many simulations run in Matlab led to unstable results. This was one of the obstacles
in the project, because there was an uncertainty about the cause of instability. Indeed,
there are many factors that results depend on; for example, choosing the parameters and
constants could be crucial as there is usually no reliable source for them, which was due to
the lack of experimental data for the skeletal muscles. Therefore, sometimes parameters
were chosen based on estimations.

1.3 Muscle physiology

According to Fung [2], the units of skeletal muscle are the muscle fibers, each of which is a
single cell provided with many nuclei. These fibers are arranged in bundles of various sizes
within the muscle. Connective tissue fills the spaces between the muscle fibers within a
bundle. Each bundle is surrounded by a stronger connective tissue sheath; and the whole
muscle is again surrounded by an even stronger sheath.

A skeletal muscle fiber is elongated, having a diameter of 10 − 60 µm, and a length
usually of several millimeters to several centimeters; but sometimes the length can reach
30 cm in long muscles. The fibers may stretch from one end of muscle to another, but
often extend only part of the length of the muscle, ending in tendinous or other connective
tissue intersections. Figure 1.1 illustrates the muscle structure.

 

Figure 1.1: Structure of skeletal muscle (taken from Fung [2]).
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The flattened nuclei of muscle fibers lie immediately beneath the cell membrane. The
cytoplasm (the cell substance between the cell membrane and the nucleus) is divided into
myofibrils. Each myofibril is composed of arrays of myofilaments. These are divided
transversely into serially repeating sarcomeres, with the exact length dependent on the
force acting in the muscle and the state of excitation. Two types of myofilaments are
distinguishable in each sarcomere, fine ones, that are actin molecules, and the thick ones,
that are myosin molecules.

 

Figure 1.2: Micro structure of the contractile muscle tissue (taken from Fung [2]).

As can be seen in Figure 1.2 each myosin filament consists of number of molecules and
each molecule consists of a long tail piece and a head. These filaments are called cross-
brigdes and are responsible for the active force generation of the muscle tissue in a process
where the head of the myosin molecule bends when the muscle is activated [2].

1.3.1 Contraction of skeletal muscle bundles

A muscle has many fibers, which are stimulated by motor neurons. Each motor neuron
may innervate many muscle fibers, but all the muscle fibers are not stimulated at the same
time. The total force of contraction of a muscle depends on how many muscle fibers are
stimulated, and partial activation is achieved when only part of the fibers are activated.
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2 Constitutive modeling of muscles

One of the objectives of this thesis is to define a material model in a continuum framework
in such a way that active and passive properties of muscle tissue can be represented. In
the literature, there are different models of muscle tissue that can be used as a base for a
continuum model. Hill’s model is one of the most popular muscle models in this regard.
This model is a whole muscle model with one degree of freedom with force-length and
force-velocity relations. Furthermore, as we are dealing with large deformations, specific
set of formulations is required. Also, fast deformations of the muscle implies that the rate
dependent behavior of the muscle material should be considered.

2.1 Hill’s three-element model

Hill’s model represents the complete muscle behavior with three structural elements. Two
elements are arranged in series: a contractile element, which at rest is freely extensible,
but when activated is capable of shortening, and an elastic element arranged in series
with the contractile element (CE) [2]. To account for the elasticity of the muscle at rest
(i.e. its passive properties), a parallel elastic element is added. The contractile element
is identified with the sliding actin-myosin molecules, and the generation of active tension
with the number of active cross-bridges between them.

Figure 2.1: Hill’s three element model.

2.1.1 Force-length relation

From experiments [3] the active force generated by the muscle has a dependency on the
length of the muscle, and has its maximum value at the optimal muscle length Lopt, which
can be assumed to be the resting length of the muscle [4], but in reality Lopt often varies
a little bit from the resting length. The force-length relation can be expressed as [3]

fL(L) = e
−


(

L
Lopt

−1

)
csh

2

(2.1)

where L is the total muscle length and Csh is a shape factor.
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Figure 2.2: Force-length relation.

2.1.2 Force-velocity relation

It has also been observed in experiments that the active force generated by the muscle
depends on the shortening and lengthening velocity. With increasing shortening velocity
the generated force will be reduced. Also, with increase of lengthening velocity the muscle
force will respond in an asymptotic manner as shown in Figure 2.3. This relation is
presented as the following equation [3]

fv(V ) =



0 ν ≤ −1

1+ν
1− ν

Cshort

−1 < ν ≤ 0

1+ν
Cmvl
Cleng

1+ ν
Cleng

ν > 0

, ν =
V

V0
(2.2)

where ν is the normalized shortening velocity with respect to the maximum shortening
velocity of the muscle V0. For shortening velocities larger than V0 the muscle is unable to
produce any force.
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Figure 2.3: Force-velocity relation.

2.1.3 Total muscle force

The total active force generated in a Hill-based contractile element (CE) can be expressed
as

FCE(L, V ) = a(t)σ0FL(L)FV (V ) (2.3)

where a(t) is a function of time, representing the state of activation, which takes a value
between 0 and 1, and σ0 is the maximum isometric stress of the muscle [5].

Since the force in the contractile element FCE will be the same as the force in the
series element, FSE can be ignored; consequently, the total muscle force in a muscle can be
expressed as the sum of the forces in the contractile element and the passive element (PE)

F = FPE + FCE (2.4)
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Figure 2.4: Schematic force-length relation of the muscle for active, passive and total
muscle force.

2.2 Activation dynamics models

The muscle activation level is mainly governed by the Ca2+ ion concentration in the muscle
tissue. Increased intracellular calcium Ca2+ concentration (600–800 nM) causes contraction
and decreased Ca2+ concentration (100 nM) leads to relaxation of the muscle. The release
of Ca2+ in the cells can be initiated by neural impulses [6]. A mechanochemical approach
was used by St̊alhand et al. [7] to introduce a thermodynamically consistent constitutive
relations based on the chemical state variable driven by Ca2+ concentration.

Guccione et al. [8] also proposed relations for muscle activation dynamics based on
calcium ion concentration and sarcomere length. This model is intended for heart muscle
which its activation and deactivation occurs periodically. Their suggested relation for the
active stress is

σ = σ0
Ca20

Ca20 + ECa250
a(t) (2.5)

where Ca20 and ECa250 are parameters related to the Ca2+ state in the muscle. The fraction
Ca20/(Ca

2
0 + ECa250) captures the stress contribution of FV FL in the Equation 2.3.

As for activation and deactivation functions, a(t) in Equation 2.3, they suggested the
following relation which is related to cyclic excitation of the heart muscle.

a(t) =
1

2
(1− cosω) (2.6)

where ω adjusts the activation-deactivation curve based on the peak stress and zero stress
times. In case of skeletal muscles, this curve depends on the neural excitation.

Another formulation for activation and deactivation of skeletal muscle was introduced
by Martins et al. [9] accounting to the delay between neural excitation and activation of
the muscle. Figure 2.5 shows activation and deactivation curves

ȧ(t) =
1

τrise
(1− a(t))u(t) +

1

τfall
(amin − a(t))(1− u(t)) (2.7)
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Figure 2.5: Activation and deactivation curve of muscle exposed to a neural excitation in
form of a step function.

In the above equation τrise and τfall are activation and deactivation time constants, u(t)
is a function representing the neural excitation ranging from 0 to 1, amin is the minimum
level of activation and a(t) is the activation ranging from amin ≥ 0 to 1.

2.2.1 Huxley model, hypotheses of the cross-bridge theory

The Huxley model describes the contraction of the muscles based on the cross-bridges and
the interaction of actin and myosin filaments. It is assumed that during muscle contraction
a fraction of all cross-bridges is attached, and every attached cross-bridge has its own
dimensionless attachment length ξ. The distribution of attached cross-bridges with respect
to their length is given by a function n(ξ, t) [10] [11].

The active muscle stress depends on the distribution of the attached cross-bridges, and
the cross-bridge force depends linearly on the length of the cross-bridge. The active Cauchy
stress σa generated by all cross-bridges in a sarcomere is expressed as

σa(t) = σ0λ

∫ ∞
−∞

ξn(ξ, t)dξ = caλQ1(t) (2.8)

where Q1 is the first moment of the function n(ξ, t), σ0 is the maximum isometric stress,
and λ is the stretch in the fiber direction.

In a number of studies, a two-state Huxley model has been used. According to this
model, cross-bridges are either attached or detached. According to Oomens et al. [10] [11],
this type of model is suitable for slow events, but not for the rapid events which is the case
with the present study.

2.3 Muscle test cases

To investigate the mechanical properties of the muscles, there are some standard test cases
in which the active properties of muscle tissue is assessed. For the results of the numerical
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model to be validated according to experimental data, it is necessary to impose similar
conditions as in these test cases in the FE simulations. The most common test cases are
isometric, isokinetic and isotonic tests.

2.3.1 Isometric test

In this test the muscle is fixed in both ends. The muscle can be fixed at a reference length,
resting length, or can be fixed in a lengthened or shortened state in which a passive stress
proportional to the stretch will be developed in the muscle. By activation of the muscle,
the total amount of force can be recorded. By performing this test for different values
of stretch, one can obtain a force-length curve of the muscle, similar in shape to that in
Figure 2.2 (cf. Section 2.1.1).

2.3.2 Isokinetic test

To study the force-velocity relation of the muscle, a constant velocity can be applied to
one end of the muscle, and meanwhile the amount of the force in the activated muscle
can be registered. Different shortening and lengthening velocities with activation leads to
different force levels. Using these forces a force-velocity curve can be achieved (cf. Section
2.1.2).

2.3.3 Isotonic test

Applying a constant force to the muscle, eccentric, lengthening muscle while activated, and
concentric, shortening muscle while activated, movements of the muscle can be studied.
This type of test was not focused on much in this project.

2.4 Continuum mechanics and large deformations

Since the muscle is a relatively soft material that will undergo significant deformations, a
framework capable of handling large deformations is needed. In the context of non-linear
continuum mechanics some basic formulations have been provided. The formulations and
notations are taken from Belytschko et al. [12].

2.4.1 Preliminaries, strain and stress measures

Deformation gradient F For an arbitrary displacement of a body with reference coor-
dinate,X , and current configuration x with a mapping function φ between reference
and current configuration we have:

x = φ(X ), F =
∂φ

∂X
=

∂x

∂X
(2.9)

And the Jacobian is defined as follows:

J = det(F ) (2.10)
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Figure 2.6: A general motion of points P and Q from reference to current configuration.

Green’s deformation tensor C

C = F T · F (2.11)

Lagrangian finite strain (Green strain) tensor E

E =
1

2
(F T · F − I ) or E =

1

2
(C − I ) (2.12)

Rate-of-Deformation D This is a rate measure of deformation which is also called
velocity strain. We first define the velocity gradient L by

L =
∂v

∂x
= (∇v )T (2.13)

The rate-of-deformation D is defined as the symmetric part of L :

D =
1

2
(L +L T ) (2.14)

Rate-of-Deformation in terms of Ė

L =
∂v

∂x
=

∂v

∂X
· ∂X
∂x

(2.15)

From the above equation the following expressions can be derived

Ḟ =
∂v

∂X
, F −1 =

∂X

∂x
→ L = Ḟ · F −1 (2.16)

Finally we have

D = F −T · Ė · F −1 (2.17)
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Stress measures In order to formulate the non-linear problem, two kinds of stress mea-
sures have been considered :

• The Cauchy stress, σ , which is defined in the current configuration

• The second Piola-Kirchhoff (PK2) stress tensor, S , which is defined in the
reference configuration

The transformation of the stresses between current and reference configuration can
be defined as follows

Push-forward operation:
σ = J−1F · S · F T (2.18)

Pull-backward operation:
S = JF −1 · σ · F −T (2.19)

2.4.2 Hyper-elasticity

The non-linear elastic behavior of the muscle can be expressed as a constitutive equation
in the context of hyper-elasticity, in which the stresses can be derived from the stored
energy function. The material is called hyper-elastic if the work done by the stresses is
path independent, i.e. it depends only on the initial and final configuration. The elastic
potential energy Ψ can be defined as [13]

Ψ(F (X ),X ) =

∫ t

t0

P (F (X ),X ):Ḟ dt (2.20)

Consequently the Lagrangian constitutive equation is

S (C (X ),X ) = 2
∂Ψ

∂C
=

∂Ψ

∂E
(2.21)

In case of incompressibility where we have the constraint J = 1, the constitutive equa-
tion becomes

S = 2
∂Ψ(C )

∂C
+ γJC −1 (2.22)

Where parameter γ is a scalar that represents hydrostatic pressure in case of pure incom-
pressibility. Introducing the distortional part of energy function Ψ̂, the above equation
becomes

S = 2
∂Ψ̂(C )

∂C
+ pJC −1 (2.23)

• Neo-hookean material

This is a special simple case of the hyperelastic materials with two material param-
eters of λ µ that can be easily determined. In the compressible case the energy
function is as follows
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Ψ =
µ

2
(IC − 3)− µlnJ +

λ

2
(lnJ)2 (2.24)

Where IC is the first invariant of tensor C, and in the case of incompressibility the
above relation simplifies to

Ψ(C ) =
1

2
µ(trC − 3) (2.25)

2.5 Viscoelasticity

The muscle model we are working on, is supposed to be implemented in car crash simula-
tions which means that very fast deformations should be taken into account. This means
that, unlike many previous works, viscous forces will not be possible to ignore. As a result
having a constitutive model based on viscoelastic properties seems to be necessary.

• Maxwell model This simple model is one of the most common rheological models
which is composed of a spring and a viscous dashpot arranged in series as depicted
in Figure 2.7.

Figure 2.7: Maxwell model.

In most cases a generalized form of the Maxwell model is used, in which a group of
single Maxwell elements are gathered in parallel (Figure 2.8). Usually by assigning
desired values to the elasticity or viscosity coefficients different material behaviors of
the model can be achieved. For example, by setting the µ value to infinity in one
of the elements in Figure 2.8 the corresponding element will be changed to a purely
elastic element.

2.5.1 Viscoelastic constitutive model for the implicit method

Based on the internal variables, an alternative choice of viscoelastic constitutive formula-
tion for a transversely isotropic material presented by Kaliske [14] have been introduced
here. This model is developed based on viscoelastic hereditary relation and second Piola-
Kirchhofff stress tensor, and can be implemented in an implicit time integration. This can
be a good basis for the further development of the project for a new implicit formulation.

S (C ,K ) = S 0 +
n∑
j=1

H j (2.26)

A linear rate equation for a generalized Maxwell model, defines the constitutive relation
between the internal viscoelastic stress variables Hj and the elastic stress rate Ṡ0 which
can be expressed as
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Figure 2.8: Generalized Maxwell model.

Ḣ j +
1

τj
H j = Γ jṠ 0 (2.27)

The hereditary integral introducing the time dependency is

H j(C ,K ) =

∫ t

0

Γ j(K )exp

(
−t− t

∗

τj

)
∂S 0(C ,K )

∂t∗
dt∗ (2.28)

Discretizing over time step ∆t we will have

H n+1
j ≈ exp

(
−∆t

τj

)
H n

j + Γ j
1− exp(−(∆t/τj))

(∆t/τj)
[S n+1

0 − S n
0 ] (2.29)

To derive the tangent moduli, derivative of the stress tensor can be computed

A n+1 = 2
∂S n+1

∂C n+1 =

{
I +

n∑
j=1

Γ j(K )
1− exp(−(∆t/τj))

(∆t/τj)

}
A n+1

0 (C ,K ) (2.30)

Where τj, relaxation time, and Γj, a fourth order relaxation tensor are material parameters.
Using this formula an approximate update of the anisotropic viscoelastic stress variables
can be obtained. The relaxation function tensor can be determined using

Γ (t) = I +
n∑
j=1

Γ jexp(−t/τj) (2.31)

and A n+1
0 is nonlinear elastic material tensor.

2.5.2 Hyper-elastic material model - transversely isotropic materials

The muscle structure can be considered as transversely isotropic material in which an
isotropic material is reinforced by fibers with a mean direction, and the material property
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is assumed to remain unchanged transverse to the mean fiber direction n. Freed et al.
[15] developed a constitutive model for soft tissues with dispersed fiber direction, and a
dispersion matrix K for approximation of mean fiber direction was presented. To derive
the constitutive equation, the free energy functions were expressed based on the theory
of invariants, in which five invariants of the C matrix were used to describe the material
with transversely isotropy. Based on the work by Freed et al.[15], Olsson [16] presented the
following formulation, which was used for the constitutive model of muscle in the MatLab
codes (excluding the viscous part). Defining the isochoric-volumetric split by introducing

F̄ = J−1/3F and C̄ = F̄
T
F̄ , the strain energy density can be decoupled as

%0Ψ(C ) = ψ̃(J) + ψ(C̄ ) + ψ̂(K , C̄ ) (2.32)

where ψ̃, ψ and ψ̂ are the volumetric, deviatoric-isotropic and deviatoric-anisotropic strain
energies, respectively. It is noteworthy that the volumetric part of the stored energy
function depends only on J . Besides, this energy function should be strictly convex, and
has a minimum at J = 1 [17].
The functional form used for the dilational strain-energy model is:

ψ̃(J) = κ
1

2
(J − 1)2 (2.33)

where κ is the bulk modulus. For isotropic contribution to the deviatoric strain energy we
have:

2ψ(C̄ ) = µ
1

4
(trC̄ + trC̄

−1 − 6) (2.34)

The anisotropic contribution to the deviatoric strain energy can be obtained from the
following integral as the area under the force-displacement curve

ψ̂(K , C̄ ) =

∫ [tr(K C̄ )]1/2

1

σ(λ)dλ (2.35)

where σ represents the passive fiber stress, and C̄ is the isochoric(deviatoric) part of the
Cauchy-Green deformation tensor. Since it is assumed that we have just a single fiber
direction in the muscle (no fiber splay), the dispersion matrix K can be simplified as K =
n0 ⊗ n0 for the unit fiber direction vector n0 in the reference configuration. Consequently,
the parameter λ, here can be assumed to be the stretch in fiber direction, defined as
λ =

√
tr[KC̄].

Concerning the passive fiber stress, σ, a simple exponential model has been used [16]

σ = C1

(
e
C2
2
(λ2−1) − 1

)
(2.36)

where parameters C1 and C2 are determined through curve fitting with respect to experi-
mental data curves in Figure 2.9.
The stress S can be derived from the free energy function

S = 2
∂ψ

∂C
(2.37)
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and the constitutive equation assigned to capture hyper-elastic and fiber contributions
without taking into account viscous effect is:

S = κJ(J−1)C −1+µJ−2/3DEV

[
1

4
(I − C̄ −2

)

]
+J−2/3[σ(λ)+ε(λ, λ̇)]DEV [K ] (2.38)

where the function ε in this equation defines the active fiber model, and DEV is the
Lagrangian deviatoric operator:

DEV [•] = (•)− 1

3
tr((•)C )C −1 (2.39)

Figure 2.9: Stress-Strain curves in tension of passive skeletal muscle tissue of persons 29
years of age [18].

2.5.3 Constitutive model for viscous part

The constitutive model investigated in Section 2.5.2 was used to express the muscle con-
stitutive model, excluding the viscous part. To add this part, the work by Limbert and
Middleton [19] was studied, from which we used just the viscous contribution of the ma-
terial model. Limbert and Middleton [19] presented in their work a transversely isotropic
visco-hyper-elastic model with strain rate effect based on Helmholtz free energy and vari-
ous invariants of C -tensor. The total free energy function ψ was decomposed additively
to equilibrium (elastic) and non-equilibrium (viscous) parts, ψe and ψv respectively, in a
Lagrangian configuration

ψ[X,C , Ċ ,K ] =

elastic part︷ ︸︸ ︷
ψe[X,C ,K ] +

viscous part︷ ︸︸ ︷
ψv[X,C , Ċ ,K ] (2.40)
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The elastic and viscous second Piola-Kirchhoff stress tensors can be defined as

S e = 2
∂ψe

∂C
, S v = 2

∂ψv

∂Ċ
(2.41)

The free energy functions are defined based on 17 invariants, I1−5 and J1−12. The
suggested relation [19] for viscous contribution to the Helmholtz free energy function is

ψv = ψ(J2, I1, J5, I4) =


η1J2(I1 − 3) ifI4 ≤ 1

η1J2(I1 − 3) + 1
2
η2J5(I4 − 1)2 ifI4 > 1

(2.42)

where η1 and η2 are material parameters, and invariants I1, I4, J2 and J5 are as follows

I1 = trC , I4 = N0 : C , J2 =
1

2
(I : Ċ

2
), J5 = K : Ċ

2
(2.43)

This model is supposed to represent the viscous effect of both bulk material and collagen
fibers, when stretched (uncrimped).

The second Piola-Kirchhoff viscous stress tensor associated with the above viscous
energy function can be derived through taking derivatives with respect to invariants, giving
the following relation:

S v =


2[η1(I1 − 3)Ċ ] ifI4 ≤ 1

2
[
η1(I1 − 3)Ċ + 1

2
η2(I4 − 1)2Υn0Ċ

]
ifI4 > 1

(2.44)

Where Υn0Ċ
is defined as

Υn0Ċ
= n0 ⊗ Ċ · n0 + n0 · Ċ ⊗ n0 (2.45)

2.6 Modeling of muscle fibers

To define the fiber direction in the muscle various methods have been suggested. Böl and
Reese [20] have suggested a simplified model for defining fiber direction using mathematical
relations. For a simple fusiform muscle with r1 and r2 as minimum and maximum radius,
respectively, the muscle fibers are defined by the following curves

Γ(z, α) =

 r(z) cosα
r(z) sinα

z

 (2.46)

The radial locatio of the fiber is determined by the angle α and r(z) is the distance of the
fiber from the z axis, located in the center of the muscle. The muscle length is defined
between z = −h and z = h. r(z) is suggested to be defined by the following relation

r(z) = r2e
−(z2ln(r2/r1)/h2) (2.47)
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Figure 2.10: the cross-section of a fusi-form muscle [20].

2.6.1 Definition of the fiber directions in the code

In the FE formulation for the MatLab code, three approaches for defining the fiber direction
was implemented
• The first method that was tried was defining the directions based on the lines con-

necting the center of each element to the closer end point of the muscle. The simulations
based on this fiber direction showed poor results in most cases. This is mainly due to the
fact that the defined vectors for the elements closer to the end points of the muscle have
directions mostly in transverse direction of the muscle, instead of being along the muscle,
which is unrealistic. One way to improve the results is to define the vector directions
pointing from the element center to a point a little outside of the muscle end, so that the
the vectors become more directed along the muscle at ends.
• The second approach was an element-local definition, in which the fiber direction

vectors were defined according to the lines connecting the center of the two opposite faces
of each solid element. This provides vector direction for each element that somewhat
follows the total shape of the muscle. Also more continuous vector field will be provided.
This can be considered as the most general approach among the ones we have used, which
can be implemented in muscles with different shapes.
• If the muscle structure is very simple and symmetric, a simple fiber direction vector

can be defined based on the line going through both ends of the muscle. The simulations
based on this method gave lower nodal forces. Although this is a rough estimation of the
muscle fibers, in muscles with simple structures it can provide relatively satisfying results.

2.6.2 Fiber dispersion

If there is fiber dispersion in the muscle, a model should be presented in which the fiber
direction can be expressed based on the fiber dispersion data. As mentioned before, Freed
et al.[15] suggested a dispersion (anisotropic material stiffness) tensor, taking care of the
muscle fiber direction. In global coordinate system, the matrix K has been defined as

K = Q κQ T (2.48)

where κ is the local (intrinsic) anisotropic matrix and Q is the an orthogonal transforma-
tion matrix. The matrix κ can be approximated as
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κ =
1

2

 1 + e−2σ
2

0 0

0 f(1− e−2σ2
) 0

0 0 (1− f)(1− e−2σ2
)

 (2.49)

Where σ is a phenomenological parameter similar to standard deviation which shows how
the fiber directions are dispersed. For a 3D splay of muscle fibers f = 1/2 and for 2D case
f = 0 and f = 1.

2.6.3 Localized activation

It should be noted that Equation 2.2 represents the force-velocity relation based on the
total muscle velocity measured at the muscle end. In case of a continuum FE formulation,
this relation can be expressed in terms of stretch rates at the Gauss points, derived from
strain rate. Such a relation can be seen in Figure 2.11

Figure 2.11: Force-Velocity relation (taken from Johansson et al. [21]).

In order to define the force-velocity relation, the local stretch rate of the muscle λ̇
in each Gauss point should be determined. Having the fiber direction vector N0 in the
reference configuration, one can calculate λ̇ using the following relations

λ2 = N T
0C N 0 (2.50)

d(λ2)

dt
= 2λλ̇ = N T

0

dC

dt
N 0 = N T

0

d

dt
(2E +I )N 0 = 2N T

0 Ė N 0 = 2N T
0F

TD F N 0

(2.51)

⇒ λ̇ =
N T

0F
TD F N 0

λ
(2.52)
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3 FE formulation and implementation

For the numerical solution of our problem, a dynamic formulation has mainly been focused
on. There are different methods for solution of such problems, depending on the condition
of the problem, but two main approaches of numerical solutions can be mentioned, namely
the explicit method and the implicit method.

3.1 A simple muscle model

In order to implement the FE formulations, a symmetric fusiform muscle was modeled in
LS-PREPOST. This model was meshed using 96 eight node solid isoparametric elements,
then the model geometry including the node numbering and coordinates were imported to
the MatLab environment. Figure 3.1 illustrates the the model in both environments.

(a) Muscle model in LS-PREPOST.

(b) Muscle model in MatLab.

Figure 3.1: The simple fusiform muscle plotted in (a) LS-PREPOST and (b) MATLAB.

As boundary conditions for the model, the left side of the model was constrained in
all three translational directions using nodal constraint. The right side of the model was
fixed in Y and Z direction, but free in X direction, letting the muscle end to move in the
longitudinal direction.

, Applied Mechanics, Research Report 2010:06 19



3.2 Explicit method, central difference scheme

In case of short and fast events, explicit methods can be convenient; in fact, a short
simulation time ensures that we do not have to run an excessive number of iterations
while still having small time steps; consequently, we can accomplish our analysis within a
reasonable number of iterations with an acceptable accuracy.

The semidiscrete momentum equation can be defined as

M d̈+C ḋ+ f int(d) = f ext (3.1)

where d is the displacement, d̈ and ḋ are acceleration and velocity vectors respectively, M
is the mass matrix and C is the damping matrix.

Central difference scheme: To comply with the LS-DYNA solution approach, this
method, which is one of the most popular methods in computational mechanics among
other methods, was chosen to be used in codes.

A difference formula is called explicit if the equation for the function at each time step
involves only the derivatives at previous time steps [12]. Here, according to Belytschko et
al.[12], the formulations for central difference method have been presented:
For a simulation time 0 ≤ t ≤ tE subdivided into n time steps ∆tn, we can define the
following relations:

∆tn+
1
2 = tn+1 − tn, tn+

1
2 =

1

2
(tn+1 + tn), ∆tn = tn+

1
2 − tn−

1
2 (3.2)

With displacement vector d, velocity vector v and acceleration vector a, the central differ-
ence formula for the velocity is:

ḋn+
1
2 ≡ vn+

1
2 =

dn+1 − dn

tn+1 − tn
=

1

∆tn+
1
2

(dn+1 − dn) (3.3)

This difference formula can be converted to an integration formula by rearranging the
terms as follows:

dn+1 = dn + ∆tn+
1
2vn+

1
2 (3.4)

The velocities can be expressed at the midpoints of the time intervals, called half-steps.
The acceleration and the corresponding integration formula are

d̈n ≡ an =

(
vn+

1
2 − vn− 1

2

tn+
1
2 − tn− 1

2

)
, vn+

1
2 = vn−

1
2 + ∆tnan (3.5)

By substituting (3.3) into (3.5), the acceleration can be expressed directly in terms of
displacement:

d̈n ≡ an =
∆tn−

1
2 (dn+1 − dn)−∆tn+

1
2 (dn − dn−1)

∆tn+
1
2 ∆tn∆tn−

1
2

(3.6)

In this work we have used equal time steps, so the above equation will be reduced to the
following form

d̈n ≡ an =
(dn+1 − 2dn + dn−1)

(∆tn)2
(3.7)
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Next, for the nodal forces fn and mass matrix M , we can express the time integration of
equation of motion at time step n

M an = fn = f ext(dn, tn)− f int(dn, tn) (3.8)

Where f int and f ext are internal and external nodal forces, respectively
By substituting (3.8) into (3.5), the nodal velocities and displacements can be updated

vn+
1
2 = vn−

1
2 + ∆tnM −1fn (3.9)

Having the constitutive equation in terms of D n− 1
2 and E n and external nodal forces,

fn can be determined since the displacements dn are known at each time step n. Con-
sequently, vn+

1
2 can be evaluated, and using this, the displacement dn+1 can be found

by (3.4). It should be noted that update of nodal velocities and displacements requires
solution of no equation if the mass matrix M is diagonal [12].

3.2.1 Implementation and flowchart

The finite element formulation for implementation in Matlab codes have been developed
based on the flowchart for explicit time integration presented by Belytschko et al. [12].
This flowchart provides a solution for a dynamic problem with a damping matrix modeled
by linear viscous force fdamp = Cdampv. The velocity is updated in two steps:

vn = vn−
1
2 + (tn − tn−

1
2 )an, vn+

1
2 = vn + (tn+

1
2 − tn)an (3.10)

The flowchart for explicit time integration is as follows

1. Initial conditions and initialization:
set v0, σ0, and initial values of other material state variables;
d0 = 0, n = 0, t = 0; compute M

2. getforce

3. Compute accelerations an =M −1(fn−C dampvn−
1
2 )

4. Time update: tn+1 = tn∆tn+
1
2 , tn+

1
2 = 1

2
(tn + tn+1)

5. First partial update nodal velocities: vn+
1
2 = vn + (tn+

1
2 − tn)an

6. Enforce velocity boundary conditions

7. Update nodal displacements: dn+1 = dn + ∆tn+
1
2vn+

1
2

8. getforce

9. Compute an+1

10. Second partial update of nodal velocities: vn+1 = vn+
1
2 + (tn+1 − tn+ 1

2
)an+1

11. Update counter: n+ 1→ n

12. Output; if simulation not complete, go to 4.

, Applied Mechanics, Research Report 2010:06 21



Subroutine getforce

1. Initialization: fn = 0, ∆tcrit =∞

2. Compute global external nodal forces fnext

3. Loop over element e

i Gather element nodal displacement and velocities

ii f int,ne = 0

iii Loop over quadrature points ξQ

1 if n = 0, go to 4

2 compute measures of deformation: D n− 1
2 (ξQ),F n(ξQ),E n(ξQ)

3 compute stress σn(ξQ)by constitutive equation

4 f int,ne ← f int,ne +BTσnw̄QJ |ξQ
END quadrature point loop

iv Compute external nodal forces on element, f ext,ne

v fne = f ext,ne − f int,ne

vi Compute ∆tecrit, if ∆tecrit < ∆tcrit then ∆tcrit = ∆tecrit

vii scatter fne to global fn

4. END loop over elements

5. ∆t = α∆tcrit

3.3 Implicit method

The implicit method is more complicated, mainly due to calculation of the tangent mod-
ulus, but if convergence is achieved, it gives more reliable results compared to the explicit
method. This method involves solution of non-linear algebraic equations. Among solution
methods, the most popular and robust method is Newton’s method.

In Belytschko et al.[12] a brief description of this method is provided, which is summa-
rized in the following:

A general one dimensional non-linear algebraic equation based on the equation of mo-
tion, expressed in form of Newmark β-equation is

0 = r =
1

β∆t2
M (dn+1 − d̃n+1)− f ext(dn+1, tn+1) + f int(dn+1) (3.11)

Where r is the residual, β is a Newmark parameter, and d̃n+1 and dn+1 are defined as
follows

dn+1 = d̃n+1 + β∆t2an+1 where d̃n+1 = dn + ∆tvn +
∆t2

2
(1− 2β)an (3.12)

vn+1 = ṽn+1 + γ∆tan+1 where ṽn+1 = vn + (1− γ)∆tan (3.13)
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where γ is also a Newmark parameter.
The iteration number is i: dn+1

i ≡ di is the displacement in iteration i at time step n+ 1
A Taylor expansion of the residual about the current nodal displacement with dropped

higher order derivatives gives the following linearized model:

0 = r(di, t
n+1) +

∂r(di, t
n+1)

∂d
∆d (3.14)

Solving the above equation for incremental displacement gives

∆d = −
(
∂r(di)

∂d

)−1
r(di) (3.15)

To solve a non-linear equation, a sequence of linear models should be solved in an
iterative manner until a convergence is achieved. In each iteration the unknown d value is
updated using

di+1 = di + ∆d (3.16)

In matrix form, the matrix ∂r/∂d is called the system Jacobian matrix or effective
tangent stiffness and denoted by A:

A =
∂r

∂d
(3.17)

So we will have

r + A∆d = 0 (3.18)

Flowchart: The flowchart shows a full Newton algorithm, where the Jacobian matrix
is evaluated and inverted in each iteration. The implicit algorithm begins with applying
initial conditions. To begin each iterative procedure, a starting value of d is needed which
usually the solution from the previous time step is used. The Jacobian is calculated for
the latest state of the body.

1. Initial conditions and initialization of parameters:
set v0 , σ0 ; d0 = 0,t = 0 ; compute M

2. Get f 0 = f(d0, 0)

3. Compute initial accelerations an = M −1fn

4. Estimate next solution: dnew = dn or dnew = d̃n+1

5. Newton iterations for time step n+ 1 :

(a) getforce computes f(dnew, t
n+1)

(b) an+1 = 1/β∆t2(dnew − d̃n+1), vn+1 = ṽn+1 + γ∆tan+1

(c) r = M an+1 − f
(d) Compute Jacobian A(d)

(e) Modify A(d) for essential boundary conditions
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(f) solve linear equations ∆d = −A−1r

(g) dold + ∆d→ dnew

(h) Check convergence criterion; if not met, go to step 5a.

6. Update displacements, counter and time: dn+1 = dnew, n+ 1→ n, t+ ∆t→ t

7. Check energy balance

8. Output; if simulation not complete, go to 4

3.4 Numerical problems

3.4.1 Incompressibility/nearly-incompressibility

The muscle tissue is composed of about 70% water [15] which means that the muscle tissue
can be considered as a nearly-incompressible material. In fact, the bulk modulus of the
material is significantly larger than shear modulus. For an incompressible material the
poisson ratio is 0.5, and materials with poisson ratios greater than 0.4 can be considered to
be nearly-incompressible [22]. In these cases, instabilities or volume locking in the elements
can happen.

3.5 Problem treatments

3.5.1 Reduced-selective method

For a nearly incompressible material like muscle tissue, element locking can happen, which
means that the displacements of some elements are very small, so that very slow or even
no convergence can be obtained.

One solution for this numerical problem is that the volumetric and deviatoric parts
of the stress matrix are separated, and when performing the numerical quadrature, the
pressure (volumetric stress) is under-integrated, while the deviatoric part is fully integrated.

σij = σdevij + σhydδij (3.19)

Where

σhyd =
1

3
σkk = −p, σdevij = σij − σhydδij (3.20)

The expression for selective-reduced integration of the internal forces is [12]

(f intiI )T = f intIi = −Jξ(0)NI,i(0)p(0) +
4∑

Q=1

w̄QJξ(ξQ)NI,j(ξQ)σdevji (ξQ) (3.21)

In the above equations, I is the node number and N is shape function. For more details
see Belytschko et al. [12].
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3.5.2 Two-Field/ Three-Field Formulation

The main problem with incompressible or nearly incompressible problems stems from deter-
mination of pressure field corresponding to volumetric strain. To circumvent this problem,
it is convenient to separate the pressure and consider it as an independent variable [22].

In case of nearly-incompressible problems, sometimes it is appropriate to apply a three-
field approach, where beside pressure field as an independent degree of freedom, an extra
field corresponding to the minor volumetric strain is added. It should be noted that volume-
changing deformations require much higher external work than deviatoric deformations, so
ignoring this part will produce a significant amount of error in the results.

3.5.3 Rayleigh damping

Another mechanism to cope with the unstable simulation results is using a damping matrix
in the equation of motion (see the flowchart for the explicit time integration). The Rayleigh
damping can be computed as

C = αM + βK (3.22)

whereM andK are mass and stiffness matrices, respectively, and α and β are coefficients.
By manipulating these coefficients, the desired amount of damping in the solution can
be achieved. LS-DYNA also uses a similar damping effect in its simulations to control
numerical instabilities.

4 Numerical simulations and results

In this section, the simulation of the isometric tests of the muscle with different conditions
is focused on. The right end of the muscle was rapidly displaced to a pre-determined
length, and after the dynamic response had settled, the isometric force was recorded. By
conducting this test for a range of stretches, the curves of the cross-sectional force with
respect to the muscle stretch were plotted. The simulation was performed for passive, as
well as the total force of the muscle. In the ideal case, the resulting curve is expected to
resemble the curve in Figure 2.4.

4.1 Simulation for passive force

The model was stretched in small intervals without the activation. After achieving sta-
tionary state in each stretch interval, the cross-sectional force in the muscle model was
recorded. As can be seen from the Figure 4.1, the results show good agreement with
expected exponential function defined for the passive force.
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Figure 4.1: Muscle passive force with respect to the stretch in the fiber direction.

4.2 Simulation with element-local definitions

In this simulation, an element-local definition of the fiber direction (cf. Section 2.6.1),
connecting centers of opposing faces of each element, was used. Also, the local stretch rate
was employed as a measurement for evaluation of the FV function. The results are shown
in Figure 4.2.

Figure 4.2: Active force for the model with fibers defined by the line connecting the center
of the opposing faces of each element.

The resulting graph shows some over-estimation of the active force, specially in the
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stretched part of the graph. It was expected that the curve of total force be fitted on the
passive curve in the stretch region of more than 1.5 since there is almost no active force
generated with stretches more than this amount, but we got higher values.

This result can be explained with respect to the model geometry we have used. Being
fusiform, the model has different cross-sectional areas, leading to different amounts of
stiffness. In fact, when a specific amount of the stretch has been applied, the elements
near to the two ends of the muscle will be stretched much more than the elements in the
middle due to their lower stiffness; consequently, the elements in excessive stretch state
will generate little or no active force while their passive response is high. On the other
hand, the elements more to the center can still have very small stretch making them able to
produce almost the maximum of their active force. As a result, the cross-sectional force of
the whole muscle will be higher than the expected values. In reality, it seems that muscles
have varying stiffness with respect to their cross-sectional area such that they are stiffer at
ends to compensate for the reduced area.

4.3 Simulation with modified geometry

Due to the problems with the fusiform geometry, a modified model was used for simulation.
This model has a cylinder-like geometry with a smaller reduction in area at ends (Figure
4.3). Using this model, less variation in the stiffness of the model along the muscle model
is expected.

The other modification was replacement of FL curve with a wider curve (4.1)(Figure
4.4) taken from Böl and Reese [20]. Using this curve, elements will experience less intense
changes around the L0 leading to more stable condition.

fλ(λfiber) =



0 λfiber < 0.4λopt

9(
λfiber
λopt
− 0.4)2 0.6λopt > λfiber ≥ 0.4λopt

1− 4(1− λfiber
λopt

)2 1.4λopt > λfiber ≥ 0.6λopt

9(
λfiber
λopt
− 1.6)2 1.6λopt > λfiber ≥ 1.4λopt

0 λfiber ≥ 1.6λopt

, λopt = 1 (4.1)

The simulation results showing the passive and total forces is illustrated in Figure 4.5
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Figure 4.3: The modified geometry.

Figure 4.4: Comparison between two FL curves; the wider curve is taken from [20].
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Figure 4.5: The results for the modified geometry.

The curves in Figure 4.5 shows improved results. The curve for the total force now fits
the passive curve, but for stretch values between 1.1 and 1.5 we still got higher values than
expected.

4.4 Simulation with global Hill’s formulation

Many attempts to simulate the muscle behavior based on pure continuum modeling with
local definition of the variables led to some numerical errors, as was shown in the examples
in Section 4.2 and 4.3. In order to have more clear comparison, this time the velocity and
displacement of the whole muscle at its right end was measured to be used for evaluation
of the FV and FL functions for the all integration points.
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Figure 4.6: The results for simulation with considering the whole muscle as one Hill’s
element.

As can be seen from Figure 4.6 much better results was achieved. Overall trend of the
curve has a good agreement with the expected curve.
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4.5 Table of papers

In this section, based on the studied literature, a brief summary have been provided in
tabular form where the relevant and useful aspects of each study material have been pointed
out.

Table 4.1: Reviewed continuum muscle models in the literature.

Author and Year Numerical
method

Material model Activation
model

Incompressibility

Almeida and
Spilker, 1997
[23]

Implicit fi-
nite difference
Newton-Raphson

Transversely
isotropic hyper-
elastic

N/A Two field, fully
incompressible

Böl and Reese,
2007 [20]

N/A Neo-Hookean Hill’s model Nearly incom-
pressible

Freed et al., 2005
[15]

Forward Euler in-
tegration

Transversely
isotropic
Mooney ma-
terial

N/A Nearly incom-
pressible

Hedenstierna et
al., 2008 [5]

N/A Visco-
hyperelastic

Hill’s model Nearly incom-
pressible

Ito et al., 2009
[24]

N/A Transversely
isotropic vis-
coelastic

Active part of
the free energy

Single field,
Nearly incom-
pressible

J. M. Guccione
et al., 1993, Part
1,2 [8]

Range Kutta Anisotropic hy-
perelastic

Calcium ion con-
centration

Incompressible

Johansson et al.,
2000 [21]

Newton iterative
method

Hyperelastic Hill’s model Nearly incom-
pressible

Kaliske and
Rothert, 1997
[25]

Newton iterative
method

isotropic vis-
coelastic

N/A N/A

Kaliske, 1999
[14]

Newton iterative
method

Transversely
isotropic vis-
coelastic

N/A Nearly incom-
pressible

Limbert and
Middleton, 2004
[19]

Explicit Fast De-
formation

Transversely
isotropic Visco-
hyperelastic

N/A Two-field, fully
incompressible

Martins et
al.,1998 [9]

Explicit Transversely
isotropic hyper-
elastic

Series element in
Hill’s model

Quasi incom-
pressible

Martins et al.,
2006 [26]

Explicit Transversely
isotropic hyper-
elastic

Hill’s model Two field, fully
incompressible

Ning et al., 2006
[27]

Explicit integra-
tion scheme

Transversely
isotropic vis-
coelastic

N/A Nearly incom-
pressible
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Author, Year Numerical
Method

Material Model Activation
Model

Incompressibility

Olsson, 2009 [16] Explicit Transversely
isotropic Neo-
Hookian mate-
rial

Calcium concen-
tration

Nearly incom-
pressible

Oomens et
al.,2003 [10]

Implicit, quasi-
static

Anisotropic
Neo-Hookian

Huxley
model,two
state

Two field, fully
incompressible

Pena et al., 2007
[28]

Newton iterative
method

Anisotripic vis-
cohyperelastic
Kelvin-Voigt

N/A Two field, fully
incompressible

Pena et al., 2010
[29]

Newton iterative
method

Anisotropic
visco-
hyperelastic

N/A Quasi-
incompressible

Pioletti et al.,
1998 [30]

Explicit Viscoelastic N/A Two field, fully
incompressible

Reese and
Govindjee, 1998
[31]

Newton iterative
method

Finite Deforma-
tion Viscoelas-
ticity

N/A N/A

St̊alhand et al.,
2007

Mechanochemical N/A Calcium ion con-
centration

N/A

Yucesoy et al.,
2002 [32]

Two-domain ap-
proach

anisotropic Length depen-
dency

Incompressible
solid
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5 Discussion

Considering the achieved results in the previous section, by evaluating the FV and FL
using velocity and displacement measured at the muscle end, global Hill’s formulation,
much better results were obtained, and since the Hill’s equation is defined based on the
whole muscle length and velocity, it is more compatible with this simulation approach.
On the other hand, using a ”total continuum” approach, with all variables defined locally,
seems to have some limitations. Over-estimation of the forces and more unstable results
can be mentioned as examples of such problems.

Applying Hill-based relations to each of the elements can also lead to numerical errors
which are more dependent on testing condition. For instance, these kinds of simulations
are sensitive to the manner of application of the initial conditions. In this case consider
the isometric tests of the muscle in which stretch intervals are applied to the muscle end
(cf. Section 4). This stretch intervals should be applied gradually within 150 ms, for
example. In case of fast stretch application, the elements adjacent to the right-hand-side
of the muscle will be stretched too much while the other elements do not have enough time
to respond to this stretch; in other words, the applied displacement do not propagate fast
enough. This makes the elements with excessive stretches generate little active force and
the other elements with little stretches generate almost the maximum of their active force.
Consequently, the activated muscle will get an asymmetric shape with inaccurate amount
of forces.

One of the numerical problems that may arise is related to non-unique equilibrium
points. This problem is demonstrated in figure 5.1.

Figure 5.1: A simple cylindrical model stretched and activated.

This figure shows a simple cylindrical model, stretched by 1.2 and activated. Comparing
the cross-sectional area of the tips with neighboring cross-sections one can notice that the
inner cross-sections have larger areas that implies compressed state of the corresponding
elements. This phenomenon can be explained by considering Figure 2.4. As can be seen
from this figure, for a specific amount of force the muscle can have two amounts of stretch,
one in compressed state and one in stretched state. It is possible for some elements to
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find their equilibrium point in a compressed state despite the fact that the whole muscle
is stretched.

Concerning the geometry dependency of the simulations, having more elaborate model
with varying stiffness seems necessary. To mimic the configuration of a real muscle the
model can be composed of different sections with different material properties. In the
simulations performed in this work, a rigid body was assumed to be interacting with both
ends of the muscle, but to have more realistic model, it is convenient that the tendon tissue
is also taken into account. An elastic material can represent the tendon tissue.
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6 Future Work

Based on the research done so far, and the problems that we encountered during the
analyses, a number of future work have been suggested here to dig into the problem and
improve the results.

Implicit Method: Since the explicit method is more likely to give unstable results,
implicit method can be used as an alternative. Specifically, there are many papers
in which implicit method has been implemented. Although this method is more
computationally demanding, the achieved results will be more reliable, on condition
that the convergence is obtained in each time step.

Other Explicit Methods: For the materials with fast varying stiffness, Runge-Kutta
method may be suitable to be used instead of central difference scheme since in some
cases the accuracy of central difference method can be inadequate [12].

Micro-scale investigation of muscles: In order to establish a continuum model of the
muscle tissue, a local definition of muscle activation mechanism is needed. It is more
convenient to have access to experimental data of the muscle in micro-scale level, or
activation models defined in local fashion.

Generalization of fiber definition: Since the developed material model is supposed to
be implemented for skeletal muscles of different shapes, more effort can be devoted to
the definition of a fiber direction that is mesh independent, and can be implemented
in various shapes of muscles.

Porous media theory: The muscle tissue has characteristics that could be modeled
more efficiently using the porous media theory. When stress is developed in the
muscle, some fluid migration can occur inside the tissue which can be responsible
for the viscosity of the muscle in different directions, so one can try to model this
behavior by a porous material with two phases of solid and fluid.

Handling numerical problems: Due to nearly incompressibility of the muscle mate-
rial, numerical problems such as instabilities and volume locking are usually possible
to occur in the simulations. One of the most common approaches for coping with
such problems is using two-field or three-field methods that can be focused on in the
future.

Experimental Data: In this project there was a need to have a comprehensive set of
experimental data to calibrate the formulations and verify the results. If these data
are provided, more detailed simulations with different test conditions can performed,
and more comparison with experimental data can be done.
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