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ABSTRACT 

 

Aspergillus comprises a genus of multicellular eukaryotic microorganisms containing close to 

200 different species. Among them, the filamentous fungus Aspergillus niger exhibits great 

diversity in its phenotype and it is found, both in marine and terrestrial habitats. A. niger 

produces many metabolites that are valuable commodities, e.g., organic acids, but is also able 

to secrete a wide range of hydrolytic enzymes, while some strains exhibit pathogenicity. 

Although A. niger is a widely used industrial species used for metabolite production, 

relatively little is known about the regulation of its metabolism. We therefore undertook a 

functional genomics approach to produce transcriptome data of high quality trying to uncover 

novel regulatory processes and the transcription factors associated to them. Throughout this 

thesis we worked with several wild type and gene deletion A. niger strains, i.e., the ancestor of 

an industrial glucoamylase producer strain, A. niger BO1; the acidogenic wild type strain 

ATCC 1015 and the industrial enzyme-producing strain CBS 513.88, both strains already 

sequenced. High variation within these two later strains was confirmed with the genomics and 

transcriptomics approaches used in combination with exo-metabolite profiling. Genotypic 

differences were observed to accumulate in metabolic pathways, e.g., essential to production 

of organic acids for A. niger ATCC 1015 and of protein synthesis for CBS 513.88.  

Overall, the studies reported in this thesis illustrate the complexity of the regulatory circuits 

regulating cellular processes. For example, through comparative genomics approaches, we 

exposed the reasons why glycerol metabolism and maltose metabolism are different in closely 

related species. We demonstrated that the two industrially relevant Aspergillus species, A. 

niger and A. oryzae do not possess the same maltose uptake, metabolism and regulatory 

mechanisms. While, the two later studies reported in this thesis were not as focused as the 

previous ones, but more exploratory in terms of looking for novel regulatory roles played by 

the transcription factors studied: AdrA, FacB, CreA and AreB; we think that our results could 

help to improve understanding of the metabolic regulation in A. niger by several 

transcriptional regulators that will lead to better tuning and improvement of production 

processes and wider exploitation of A. niger as a cell factory. 

 

Keywords: Aspergillus spp., A. niger, Transcriptomics, Metabolism, Regulation, 

Transcription Factors 
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1. Introduction 

1.1 Characteristics and applications of Aspergillus niger as a cell factory 

Aspergillus comprises a genus of multicellular eukaryotic microorganisms containing more 

than 185 different species described on a taxonomically basis, i.e., Aspergillus nidulans, A. 

fumigatus, A. flavus, A. oryzae, A. awamori, A. terreus, etc 

(http://www.aspergillus.man.ac.uk) (YU et al. 2005). These ascomycetes are of great 

economical and medical importance as some of them are used for metabolite production, i.e., 

A. terreus which produces lovastatin (ASKENAZI et al. 2003), and others are pathogens such as 

A. fumigatus. Among them, A. niger is one of the preferred hosts for chemical production. 

Fungi have been used in food production since ancient times, and today the diversified 

metabolism of these organisms is exploited for the production of pharmaceuticals, flavours, 

enzymes, and bulk and fine chemicals (HOFMANN et al. 2003). 

Aspergillus niger is an excellent producer of many metabolites that are valuable commodities, 

e.g., citric acid, itaconic acid and gluconic acid. Apart from metabolites, A. niger is able to 

secrete a wide range of enzymes, representing a rich source for the production of enzymes 

that can be used in detergents, food processing and material handling (see Table 1).  

For example, the market for industrial enzymes is estimated to be worth nearly US$ 5 billion 

by 2009, of which filamentous fungi account for roughly half of the production (LUBERTOZZI 

and KEASLING 2009) and in 2008, the global citric acid production reached 1.4 million tonnes, 

increasing annually at 3.5 to 4.0% in demand and consumption (ANASTASSIADIS et al. 2008). 

Of particular interest is that A. niger, like other Aspergillus spp., has the capability to degrade 

a wide range of natural organic substrates including plant materials (BAKER and BENNETT 

2008).  

A. niger is one of the most important species of the genus Aspergillus, which possesses 

asexual reproduction producing black conidia. An important feature of A. niger, is the GRAS 

(Generally Recognized as Safe) status already granted by the Food and Drug Administration 

of the US government (PERRONE et al. 2007). This is a highly desired classification in the 

food industry and moreover, as suggested by Baker and Bennett (BAKER and BENNETT 2008), 

because of the long history in the use of A. niger, the process for production of new products 

from this fungus can therefore be easily approved.  

 

 

http://www.aspergillus.man.ac.uk/�
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Table 1. Commercial enzyme preparations produced by Aspergillus niger for food, feed and 

technology processing, i.e., detergents industry [adapted from AMFEP [Association of 

Manufacturers and Formulators of Enzyme Products, Brussels; (VAN DIJCK 2008)]. 

Enzyme Host organism Donor organism IUB number Application 
    Food Feed Technology 
Aminopeptidase Aspergillus niger None 3.4.11.x Y N N 

Amylase (alpha) Aspergillus niger None 3.2.1.1 Y N N 

Arabinanase Aspergillus niger None 3.2.1.99 Y Y N 

Arabinofuranosidase Aspergillus niger Aspergillus sp. 3.2.1.55 Y N N 

Asparaginase Aspergillus niger Aspergillus sp. 3.5.1.1 Y N N 
Carboxypeptidase 
(serine-type)  Aspergillus niger Aspergillus sp. 3.4.16.x Y N N 

Catalase Aspergillus niger None 1.11.1.6 Y N Y 

Cellulase Aspergillus niger None 3.2.1.4 Y Y N 

Galactosidase (alpha) Aspergillus niger None 3.2.1.22 Y Y N 

Glucanase (beta) Aspergillus niger none 3.2.1.6 Y Y N 
Glucoamylase or 
Amyloglucosidase Aspergillus niger none 3.2.1.3 Y N Y 

Glucose oxidase Aspergillus niger none 1.1.3.4 Y N Y 

Glucosidase (alpha) Aspergillus niger none 3.2.1.20  Y N N 

Hemicellulase Aspergillus niger none - Y Y N 

Inulase Aspergillus niger none 3.2.1.7 Y N N 

Lipase triacylglycerol Aspergillus niger none 3.1.1.3 Y N N 
Mannanase (endo-1.4-
beta) Aspergillus niger none 3.2.1.78 Y Y N 

Pectin lyase Aspergillus niger none 4.2.2.10 Y Y N 
Pectin methylesterase or 
Pectinesterase Aspergillus niger Aspergillus sp. 3.1.1.11 Y Y N 

Phosphatase Aspergillus niger none 3.1.3.2 Y N N 

Phospholipase A Aspergillus niger Aspergillus sp. 3.1.1.4 Y N N 

Phospholipase B Aspergillus niger none 3.1.1.5 Y N N 

Phytase Aspergillus niger none 3.1.3.8 Y N N 
Polygalacturonase or 
Pectinase Aspergillus niger none 3.2.1.15 Y Y Y 

Protease (incl. 
milkclotting enzymes) Aspergillus niger none 3.4.2x.x Y Y N 

Tannase Aspergillus niger none 3.1.1.20 Y Y N 

Transglucosidase Aspergillus niger none 2.4.1.24 N N Y 

Xylanase Aspergillus niger none 3.2.1.8 Y Y N 

Those enzymes which do not have an IUB (International Union of Biochemistry) number (IUPAC-IUB, 1971) 

are enzyme complexes, where the listed activity is the result of the sum of many single active enzyme proteins. 

There is no general IUB number for aminopeptidases. Nevertheless, all these enzymes fall under the 3.4.11.x 

category according to the IUPAC-IUB Commission on Biochemical Nomenclature (CBN). 

Similarly, there is no general IUB number for proteases. But all these enzymes fall under the 3.4.2x category 

IUPAC-IUB Commission on Biochemical Nomenclature (CBN). 
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The main concern of using Aspergillus as a production host, as with many filamentous fungi, 

is the potential production of exometabolites with toxic properties. Consistently, the safety of 

A. niger as production organism has been widely documented (BARBESGAARD et al. 1992; 

SCHUSTER et al. 2002) and metabolites profiles produced by several isolates of this strain used 

in enzyme production have been published (BLUMENTHAL 2004; VAN DIJCK et al. 2003).  

Even though Aspergillus is a genus widely exploited for production of organic acids and 

enzymes, little is known about, e.g., the regulation of its metabolism; therefore Aspergillus 

research is a fertile ground for quantitative and modelling studies of complex cellular 

processes such as signalling and metabolic networks. 

 

1.2 Strain improvement of the industrial production host Aspergillus niger 

So far Aspergillus cell factories have been mainly exploited for the production of endogenous 

metabolites and enzymes, nevertheless, they are also attractive for non endogenous metabolite 

production. For this and other reasons, the fungal community is developing robust 

technologies for genetic manipulation. Since the genome sequencing of the genetic model 

organism A. nidulans (GALAGAN et al. 2005), the pathogens A. fumigatus (NIERMAN et al. 

2005) and A. flavus (YU et al. 2005), the production host A. oryzae (MACHIDA et al. 2005), 

and later A. niger (PEL et al. 2007), and more which will be published soon (Scott Baker, 

personal communication), the genetics and genomics fields have had a tremendous 

development. 

While classical strain improvement has been mainly done through chemical mutagenesis or 

natural mutagenesis caused by selective pressure, it is now feasible to conduct direct gene 

targeting at a specific locus. However, targeted gene modification is usually hampered by the 

low transformation efficiencies naturally achieved in filamentous fungi (MEYER 2008). 

Furthermore, the lack of a sexual cycle in A. niger has hindered the use of genetics for strain 

improvement (MACCABE et al. 1998). Targeting and replacement of gene loci in filamentous 

fungi, as in other organisms, are supported by the cellular machinery that accomplishes 

recombination and DNA repair (BIRD and BRADSHAW 1997). Especially the rate of 

homologous recombination (HR) in a given host determines the efficiencies in knock-out 

approaches using genetic markers that are flanked by homologous sequences of the gene locus 

to be replaced. In filamentous fungi, these homologous sequences are generally larger (several 

hundreds of base pairs) compared to other organisms (KRAPPMANN et al. 2006; MEYER 2008), 

i.e., bacteria and yeast where a minimal length of 30 to 50 bps is sufficient to ensure a high 
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yield of HR (HUA et al. 1997). There are two main mechanisms of DNA repair, by 

homologous recombination and by non-homologous end joining (NHEJ). In filamentous fungi 

repair of DNA damages seems to occur primarily by using the NHEJ machinery, and a DNA 

fragment that is desired to be integrated at a certain position in the genome is therefore often 

integrated ectopically impeding the achievement of the desired phenotype. Recently, 

disruption of some genes involved in the NHEJ pathway, namely ku70 and ku80, enhanced 

the gene targeting efficiency in the yeast Kluyveromyces lactis (KOOISTRA et al. 2004) and in 

the filamentous fungus Neurospora crassa (NINOMIYA et al. 2004). This finding was 

immediately applied to industrially relevant filamentous fungi, for instance, A. oryzae and A. 

sojae (TAKAHASHI et al. 2006) and later to A. niger (MEYER et al. 2007). More recently, 

deletion of DNA ligase IV (LigD), another protein involved in the NHEJ pathway, resulted in 

a targeting efficiency as high as 100% in N. crassa (ISHIBASHI et al. 2006). It has already been 

applied to A. oryzae (MIZUTANI et al. 2008) and it will hopefully be transferred to A. niger 

soon. This technology will allow the engineering of these species by allowing the deletion of 

industrially undesirable traits to further improve productivity and safety. The development of 

recombinant DNA technologies has given the possibility of introducing targeted mutations 

(i.e., over-expressing genes or deletion of undesired ones) instead of the random generation 

and further screening for the desired phenotypes, which is very costly and time consuming. 

One of the most used transformation methods for filamentous fungi is the protoplast mediated 

transformation (PMT) method, developed earlier for S. cerevisiae and adapted for filamentous 

fungi. Nevertheless, this method preferentially produces multicopy integration events (DE 

GROOT et al. 1998). Alternative methods for fungal transformation such as electroporation, 

biolistic transformation and Agrobacterium mediated transformation (AMT) have been 

developed (MICHIELSE et al. 2005; RUIZ-DIEZ 2002). These methods are valuable for fungal 

strains that do not form sufficient amount of protoplasts or for strains where their protoplasts 

do not regenerate. Overall, as discussed by Meyer (MEYER 2008) individual species have to 

be considered independently and the most appropriate method identified and optimized for 

each strain. A schematic representation of the chemical transformation process of Aspergillus 

is shown on Figure 1. 

 

 

 

 



6 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Chemical transformation of Aspergillus. Conidiospores are harvested and 

germinated in a nutrient broth, then subjected to an enzymatic treatment to lyse the cell wall, 

liberating protoplasts, which are incubated with transforming DNA in a medium containing 

CaCl2 and polyethylene glycol (PEG). Plating on selective medium allows regrowth of 

transformants. Since the conidia are uninucleate in most Aspergillus species, a homokaryotic 

strain is readily obtained by reselection of transformants.  Electroporation transformation is a 

similar process, using hydrated instead of fully germinated conidia, while biolistic and 

Agrobacterium methods make use of intact hyphae. Figure taken from (LUBERTOZZI and 

KEASLING 2009). 

 

1.3 Comparative genomics of Aspergillus niger with other close Aspergilli 

Genomics is the process of revealing the entire genetic contents of an organism by high 

throughput sequencing of the DNA and bioinformatics identification of all of the genes (YU et 

al. 2005). Since the publication in 1977 of the first complete genome sequence, that of the 

Bacteriophage fX174, a viral genome with only 5,368 base pairs (bps) (SANGER et al. 1977), 

the field of genomics has been of growing importance to biological studies. Thanks to the up 

to date sequencing technologies and powerful bioinformatics techniques, this field is growing 

rapidly. Genome sequencing of filamentous fungi is generally considered to have started as 

late as February 2001 (GALAGAN et al. 2003) with the publication of a draft version of the 

genome sequence of Neurospora crassa. Nearly three decades have passed since the invention 

of electrophoretic methods for DNA sequencing, often referred to as Sanger sequencing, and 

its cost-effectiveness has mainly been driven down following the introduction of automation 

and the numerous refinements of this technology (SHENDURE et al. 2004). 
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The availability of genome sequence data facilitates research on basic biology, genetic 

regulation and evolution of close related species such as Aspergillus through comparative 

genomic studies. The completion of a ~8x coverage genome sequence of A. niger CBS 

513.88, a strain used in industrial enzyme production, was published in 2007 (PEL et al. 2007) 

(see Table 2). This strain was derived from A. niger NRRL 3122, a classically improved strain 

selected for increased glucoamylase A production (VAN LANEN and SMITH 1968). Although, 

this A. niger genome sequencing initiated a number of new genome based investigations 

(CULLEN 2007; MARTENS-UZUNOVA and SCHAAP 2009; SUN et al. 2007; YUAN et al. 2008a; 

YUAN et al. 2008b), there remains a need for uncovering fundamental differences between 

strains used for different purposes, i.e., citric acid production and enzyme production 

(CULLEN 2007). 

 

Table 2. General genome statistics for the A. niger citric acid producer strain ATCC 1015, the 

A. niger enzyme producer strain CBS 513.88 and for comparison with other Aspergillus spp., 

the A. nidulans FGSC A4 strain and the A. oryzae wild type strain RIB40. Except genome 

sizes and the number of gene models, all values are averages. 

 A. niger ATCC 
1015a 

A. niger CBS 
513.88b 

A.nidulans FGSC 
A4c 

A. oryzae RIB40 

ATCC 42149d  

Gene models 11,200 14,165 9,541 12,074e/14,063f 

Genome size (Mbp) 34.85 33.93 30.07 37.05 

Gene length (bp) 1,696.1 1,572.8 1,868 1,414 

Protein length (aa) 484.3 439.9  448.8 

Exons per gene 3.1 3.6 3.6 2.9 

Exon length (bp) 480.8 370.0  542.8 

Intron length (bp) 93.8 97.2  231.4 

a The genome assembly compiled by Andersen et al. (ANDERSEN et al. 2010). 
b The genome assembly published by Pel et al. (PEL et al. 2007). 
c The genome assembly published by Galagan et al. (GALAGAN et al. 2005). 
d The genome assembly published by Machida et al. (MACHIDA et al. 2005). 
e The genomics data of A. oryzae published by Kobayashi et al. (KOBAYASHI et al. 2007). 
f The genome sequence of A. oryzae revised and extended including EST data supporting new gene models by 

Vongsangnak et al. (VONGSANGNAK et al. 2008). 
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In new comparative genomic studies, gene profiling using microarrays provides a powerful 

tool to detect and profile whole sets of genes transcribed under specific conditions and several 

examples of this approach are being generated at a fast pace, e.g., a recent tri-species 

comparative transcriptomics study conducted by Andersen and coworkers (ANDERSEN et al. 

2008b).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Mechanisms of gene and genome size expansion of A. niger. A) The common 

ancestor of the four Aspergillus species, namely A. niger, A. oryzae, A. nidulans and A. 

fumigatus, is assumed to have smaller genome size than A. niger and A. oryzae and similar to 

A. nidulans and A. fumigatus. Aspergillus niger might have acquired genes by horizontal gene 

transfer during evolution. B) The common ancestor is assumed to have the genome size 

similar to A. niger. The other species might have lost genetic material during evolution. The 

phylogenetic relationship of the species is taken from Pel et al. (PEL et al. 2007). Maximum 

likelihood tree based on concatenation of twenty orthologous proteins. Numbers at nodes are 

bootstrap values. C) The A. niger genome might have expanded by gene duplication followed 

by divergence of one of the duplicated genes as it might also have occurred to A. oryzae. The 

figure was adapted from (MACHIDA et al. 2008b).  

 

Breakthroughs in A. niger genomics may lead to improvement of production processes and its 

wider exploitation as a cell factory. The availability of Aspergillus genomic data marks a new 

era in research for fungal biology. A comparison table of the genome statistics of the 
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acidogenic and the enzyme producer A. niger strains compared to its close relatives A. 

nidulans and A. oryzae is shown in Table 2. 

We can appreciate the differences in genome size which might be due to several reasons such 

as gene loss, gene acquisition, or gene duplication if we consider that all these three 

Aspergillus species diverted from a common ancestor (see Figure 2). According to Galagan et 

al. (GALAGAN et al. 2005), phylogenetic analysis of Aspergilli using the whole genome data 

showed that A. nidulans branched off earlier than A. oryzae and A. fumigatus.  

 

1.4 The phenomenon of glucose repression in Aspergillus species 

Glucose repression is the mechanism by which the presence of glucose represses transcription 

of genes involved in the utilization of other less favored carbon sources, genes encoding 

gluconeogenic and glyoxylate cycle enzymes and genes involved in secondary metabolism. In 

yeast, the main effect of glucose takes place at the transcriptional level (GANCEDO 1998). 

Nevertheless, for a subset of genes regulated by glucose, control is operating on mRNA 

stability instead of (or in addition to) on transcription rates. For example, in yeast, the CYC1 

mRNA half life was shown to decrease from 12 min in derepressed cells to about 2 min when 

glucose was present (ZITOMER et al. 1979). Another example is the case of MAL62 mRNA 

half life, where the decrease was from 25 to 6 min (FEDEROFF et al. 1983). In Aspergillus 

species, glucose has been shown to repress expression of several genes. Table 3 shows a 

classification of carbon sources according to their level of repression over other pathways or 

genes. In Aspergillus species such as A. nidulans, a number of catabolic pathways are affected 

by glucose repression. Examples include utilization pathways for ethanol (FELENBOK and 

KELLY 1996), proline (CUBERO and SCAZZOCCHIO 1994), acetate (KELLY and HYNES 1977), 

arabinan (RUIJTER et al. 1997), xylan (DE VRIES et al. 1999; TAMAYO et al. 2008), pectin (DE 

VRIES et al. 2002a; SOLIS-PEREIRA et al. 1993) and cellulose (LOCKINGTON et al. 2002). 

Enzymes from central carbon metabolism, such as acetyl-CoA synthase (facA) and isocitrate 

dehydrogenase, and glyoxylate cycle enzymes, such as isocitrate lyase (acuD) and malate 

synthase (acuE) (SZEWCZYK et al. 2001), are also affected.   

Perhaps the most studied model system is the ethanol utilization pathway, where glucose 

represses transcription of the specific regulatory gene, alcR; the alcohol dehydrogenase I 

encoding gene, alcA; the aldehyde dehydrogenase encoding gene, aldA; and the genes alcM 

and alcX (FELENBOK and KELLY 1996).  
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In S. cerevisiae, the main components of the glucose signaling and repression cascade have 

been elucidated since long time, being the transcription factor Mig1, one of the key players.  

In Aspergillus spp., the orthologue of Mig1 is known as CreA. CreA is a negatively acting 

regulator of carbon catabolite repression (BAILEY and ARST 1975) and in A. niger, it contains 

427 amino acids. Alignment with the A. nidulans CreA showed ~90% sequence similarity 

(82% identity) at the amino acid level. It contains two zinc-finger DNA-binding motifs of the 

Cys2-His2 class similar to the transcription factor Mig1 in S. cerevisiae which recognizes a 

DNA sequence that is GC-rich, an alanine rich region consisting of 8 residues and an acidic 

region (DRYSDALE et al. 1993). The DNA binding motifs have a consensus hexanucleotide 5’-

CPyGGG-3’ sequence. Several CreA mutants have been constructed in A. nidulans, e.g., 

creA1, creA30, creA204, creA218, creA220, creA221 and creA225 (SHROFF et al. 1996), and 

the mutations essentially fall into two main classes: missense mutations within the zinc-finger 

region, or frameshift or nonsense mutations somewhat after this region. Furthermore, 

transcriptome analysis has been conducted in an A. nidulans CreA mutant using a high-

density oligo array with probes for detection of 3,278 selected genes using the Febit Geniom® 

One array system (MOGENSEN et al. 2006). 

 

Table 3. Carbon sources classification. Adapted from (RUIJTER and VISSER 1997). 

Strong repressors Intermediate repressors Non or de-repressing C sources 

D-glucose, D-xylose, sucrose and 
acetate 

D-mannose, maltose, D-fructose, 
D-mannitol and D-galactose 

Glycerol, melibiose, lactose, L-
arabinose and ethanol 

 

The mechanism(s) regulating mRNA turnover in response to the carbon source remains to be 

worked out, but it is clearly established that CreA does not require the presence of exogenous 

glucose or any glucose-dependent activation process to be active (MATHIEU and FELENBOK 

1994). For instance, CreA exerts a permanent repression of the alc genes under derepressed 

conditions in A. nidulans. Overall it seems that, although some of the general regulatory genes 

involved in carbon catabolite repression in yeasts are conserved in Aspergilli, the detailed 

mechanisms are different. 

 

1.5 Carbon utilization in Aspergillus spp. 

Aspergillus niger is a saprophytic fungus, mainly present in the soil, feeding preferably on 

organic matter such as plant cell wall polysaccharides (cellulose, hemi-cellulose and pectin), 
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and on plant storage polysaccharides (starch and inulin) (COUTINHO et al. 2009). A. niger is 

able to degrade a wide range of sugars such as the monosaccharides glucose, fructose and 

xylose, disaccharides such as sucrose and maltose, trisaccharides such as raffinose and 

maltotriose and a broad range of polysaccharides as it is shown on Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Assimilation of carbon sources in Aspergillus niger. Hexagons represent six carbon 

sugars and pentagons represent five carbon sugars. 

 

There are several known transporters capable of transporting the monosaccharides such as 

glucose, xylose and mannose into the cell for subsequent phosphorylation and conversion into 

mainly biomass and CO2. The characterized high-affinity transporters MstA and MstF, and 

the low affinity transporter MstC (JORGENSEN et al. 2007), as well as a number of putative 

transporters present in the genome of A. niger are responsible of the transport across the cell 

membrane. In contrast, polysaccharides are cleaved extracellularly by means of a broad range 

of extracellular enzymes such as amylase (CARLSEN and NIELSEN 2001), glucoamylase 

(PEDERSEN et al. 2000), galactosidases (SHANKAR and MULIMANI 2007), glucosidases (YUAN 

et al. 2008b), fructofuranosidases (FERNANDEZ et al. 2007), among others.  

 

1.6 Glycolysis and gluconeogenesis 

When a substrate is available as the sole source of carbon and energy, all the cellular 

components must be synthesized from this compound via appropriate metabolic pathways. 

Thus, this requires the organism to have the ability to rearrange the expression of gene-
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encoding enzymes catalyzing the appropriate steps in the pathways according to the substrates 

available. The organism, therefore, induces enzymes specific for the breakdown of the 

particular compound. This section emphasizes on carbon metabolism and the utilization of 

carbon sources metabolized via the TCA cycle and requiring gluconeogenesis. Aspergillus 

species are mainly saprophytes growing in the soil on decaying plant material and capable of 

growing on an extremely diverse variety of carbon sources. A. niger is not an exception to this 

generalization and it is one of the Aspergilli most capable of growing on a wider range of 

carbon sources (DE VRIES 2008). Gluconeogenic substrates are ethanol, acetate and fatty 

acids, all of which result in the production of acetyl-CoA. Ethanol is converted to acetate by 

alcohol dehydrogenase and acetaldehyde dehydrogenase. Acetate generates acetyl-CoA by 

means of the enzyme acetyl-CoA synthetase (Acs1, EC 6.2.1.1). Likewise, fatty acids are 

converted to acetyl-CoA by β-oxidation in peroxisomes (HYNES 2008; HYNES et al. 2008). 

The glyoxylate cycle, comprising the enzymes, isocitrate lyase (ICL, EC 4.1.3.1) and malate 

synthase (MAS, EC 4.1.3.2), is necessary for the net conversion of acetyl-CoA via malate to 

oxaloacetate, which is then used in gluconeogenesis. An overview of the enzymes mentioned 

and its activity for degradation of the carbon sources described is presented on Figure 4. In S. 

cerevisiae, the genes for metabolism of acetyl-CoA by means of acetylCoA synthetase, the 

glyoxylate bypass and gluconeogenesis is controlled by the Zn(II)2Cys6 transcriptional 

regulators Cat8 and Sip4 (GANCEDO 1998). Furthermore, growth on ethanol or acetate is 

dependent on Cat8, Sip4 and Adr1 transcriptional activators and on the protein kinase Snf1 

(sucrose non-fermenting 1) (GANCEDO 1998; YOUNG et al. 2003; YOUNG et al. 2002). Genes 

regulated by Cat8 or Sip4 contain one or more cis-acting elements termed carbon source 

responsive elements (CSRE) in their 5’ regions where these regulatory proteins bind (ROTH et 

al. 2004). Snf1 in S. cerevisiae has diverse regulatory functions; however, in particular it is 

required for growth on fermentable carbon sources. Conserved orthologues are found in 

filamentous fungi, e.g., A. nidulans AN7695.3 (HYNES et al. 2006; HYNES et al. 2008), and by 

blastP comparison in A. oryzae and A. niger, AO090701000767 and JGI54719, respectively. 

Deletion of Snf1 orthologues in other fungi, such as Fusarium oxysporum, has been found to 

affect the utilization of some carbon sources (OSPINA-GIRALDO et al. 2003). A potential 

phosphorylation site was found in orthologues of CreA for some fungi (FLIPPHI and 

FELENBOK 2004). Nevertheless, there is no clear effect described on carbon source requiring 

gluconeogenesis. Consistent with the data from Cochliobolus carbonum (TONUKARI et al. 

2000), mutations in the Snf1 orthologue in F. oxysporum diminished the transcription of 
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genes encoding cell wall-degrading enzymes and reduced its virulence on Arabidopsis 

thaliana and Brassica oleracea (OSPINA-GIRALDO et al. 2003).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Fatty acids catabolism. β-oxidation of fatty acids takes place in the mitochondria 

and in peroxisomes. Fatty acids are metabolized in peroxisomes to yield acetyl-CoA which, 

via the glyoxylate cycle, yields malate for gluconeogenesis. Acetyl-CoA is also transferred to 

the mitochondria via acetyl-carnitine for metabolism via the TCA cycle. Short-chain fatty 

acids can directly enter the mitochondria for β-oxidation. Acetate is converted in the 

cytoplasm to acetyl-CoA and subsequently enters the mitochondria and the peroxisomes for 

metabolism via the glyoxylate cycle and the TCA cycle. Figure adapted from Hynes (HYNES 

2008). 

 

The most important enzymes for gluconeogenesis are phosphoenolpyruvate carboxykinase 

(PEPCK, EC 4.1.1.32), which converts oxaloacetate to phosphoenolpyruvate and fructose-

1,6-biphosphatase (FBP, EC 3.1.3.11), which hydrolyzes fructose-1,6-biphosphate into 

fructose-6-phosphate and phosphate. 

In A. niger, FacB which is the orthologue of Cat8 has not completely been characterized at the 

molecular level and there are no reports of Sip4 orthologues. A comparison of the diverse 

transcriptional regulatory circuits controlling pathways for growth on gluconeogenic carbon 

sources of S. cerevisisae and A. niger is shown on Figure 5. Some of the genes involved in 

fatty acid catabolism, glyoxylate bypass and gluconeogenesis are also regulated by Adr1 in S. 
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cerevisiae (YOUNG et al. 2003). Nevertheless, the presence of an Adr1 orthologue was not 

previously assumed in Aspergillus species until recently described by our group (SALAZAR et 

al. 2009). A recent comparative genomics study has shown that FarA and FarB exist in other 

Aspergilli besides A. nidulans, such as in A. oryzae and A. niger (VONGSANGNAK et al. 2010). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Comparison of transcriptional regulatory circuits controlling pathways for growth 

on gluconeogenic carbon sources of S. cerevisisae and A. niger. *The transcriptional 

regulators FarA, FarB and ScfA have been identified and mutants lacking these regulatory 

proteins have been characterized in A. nidulans. #Orthologues to the S. cerevisiae 

transcriptional regulator Adr1 have been identified in A. nidulans, A. oryzae and A. niger. 

Figure adapted from Hynes in (HYNES 2008). 

  

1.7 Nitrogen regulation 

The Aspergillus niger transcriptional activator AreA is a key regulator of nitrogen 

metabolism. It was cloned and characterized since the late 90’s and it shows an overall 

identity with its orthologues from other fungal species which varies between 32 and 72% 

(MACCABE et al. 1998). Northern analysis indicated the synthesis of multiple transcripts, 

similarly to the A. nidulans orthologue, where the major species lie between 2.95 kb and 3.1 

kb (MACCABE et al. 1998). In A. nidulans, AreA transcription is highly regulated in response 

to nitrogen nutrient quality or availability, differential areA mRNA stability and interaction 

with other co-repressors and co-activators such as NmrA and TamA (WONG et al. 2009). 

AreA contains a C-terminal GATA zinc finger DNA binding domain, whereas AreB, which is 

another regulator of nitrogen metabolism identified in A. nidulans and P. chrysogenum, 
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contains an N-terminal GATA zinc finger DNA binding domain as well as a C-terminal 

leucine zipper domain. It has been suggested that AreB possibly competes with AreA for 

DNA binding (CONLON et al. 2001). In order to investigate the role of AreB in nitrogen 

regulation in A. niger, we analyzed the areB deletion phenotype in different cultivation 

conditions and conducted transcriptome analysis. In A. nidulans, AreB antagonizes AreA 

activation and it has been reported to function in growth, asexual development and conidial 

germination, but not in sexual development (WONG et al. 2009). Over-expression of AreB 

prevents AreA-dependent gene expression and confers severe growth inhibition. Functional 

characterization of the AreB domains has shown that both, the GATA zinc finger DNA-

binding domain and the leucine zipper domain are required for its function. Preliminary 

studies on A. nidulans on different nitrogen sources have shown that AreB has a wide domain 

of action including but not limited to nitrogen regulation (WONG et al. 2009). 

  

1.8 Transcriptional regulation 

Processes such as fungal development, metabolism, stress responses and other responses to 

diverse signals are regulated by a number of proteins known as transcription factors. The 

ability of organisms to regulate gene expression is essential for their development and 

adaptation to environmental changes, which in turn are essential for survival (WARD et al. 

2006). Filamentous fungi, in particular Aspergillus nidulans and Neurospora crassa, have 

been used as model genetic systems to understand numerous processes and mechanisms 

underlying gene regulation (CADDICK 2004; FELENBOK and KELLY 1996; PENALVA and ARST 

2004). It is well established that putative functional links between sets of genes or proteins 

can be pictured on the basis of observed coordinated expression (VONGSANGNAK et al. 2010). 

Thus, this provides a valuable way to dissect the components of specific biological processes, 

therefore making transcriptomics a powerful tool to understand fundamental aspects of gene 

regulation (CADDICK and DOBSON 2008).  

The DNA sequence defines the binding sites for regulatory proteins, the relative proximity 

and arrangement of which combined with the DNA’s physical properties, determine the 

function of a given motif (CADDICK and DOBSON 2008). Genome analysis of regulatory 

processes through comparative genomics searches for highly conserved sequence elements 

and features involved in gene expression, where functional conservation can be found. 

Regulatory proteins interact at specific promoters to either activate or repress transcription. 

Approximately 45 transcription factors have mainly been characterized in A. nidulans, and for 
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many of them, the respective DNA binding motif has also been identified (CADDICK and 

DOBSON 2008; NAKAJIMA et al. 2000; TODD and ANDRIANOPOULOS 1997). The availability of 

the genome sequences has allowed the identification of a large number of genes that 

putatively encode DNA-binding proteins. These can be classified according to distinct classes 

with regards of the PFAM (protein family) domain, resulting in at least 86 different classes 

(CADDICK and DOBSON 2008), where the relative distribution is generally well conserved 

among Aspergilli. The Zn(II)2Cys6 (Zn binuclear cluster) motif is regarded as being fungal 

specific (TODD and ANDRIANOPOULOS 1997) and is proposed to have evolved after the fungi 

diverged from other eukaryotes (CADDICK and DOBSON 2008). It is one of the most important 

classes of transcription factors including regulators of a wide range of biological processes 

such as primary and secondary metabolism, development and drug resistance.  

In general, Zn(II)2Cys6 transcription factors possess a well conserved N-terminal localized 

DNA binding motif (CX2CX6CX5–16CX2CX6–8), followed by a less well defined 

conserved domain known as a fungal specific transcription factor domain. The C-terminal part 

of the Zn(II)2Cys6 transcription factor normally contains the activation domain (YUAN et al. 

2008a). A model for zinc cluster protein DNA recognition proposed by MacPherson et al. 

(MACPHERSON et al. 2006) is shown on Figure 6. 

In the genome of filamentous fungi several putative transcription factors are present. For 

example, in the recently released genome sequence of A. niger CBS 513.88, 296 ORFs were 

identified showing the Zn(II)2Cys6 motif (PEL et al. 2007), and similar numbers are predicted 

from the genomes of A. niger ATCC 1015 and other Aspergillus species such as A. oryzae and 

A. nidulans (PEL et al. 2007). The role of only a few of the transcription factors in the 

filamentous fungus A. niger has been studied in detail (see Table 4). At least three genes 

which effect control across a broad spectrum of metabolic activities (wide domain) have been 

identified. In A. niger, these wide domain regulatory genes have been cloned and 

characterized: creA, the negatively-acting regulator of carbon catabolite repression 

(DRYSDALE et al. 1993); pacC, which regulates gene expression in response to external pH 

(MACCABE et al. 1996; SARKAR et al. 1995) and areA, a positive regulator of nitrogen 

metabolite repression (MACCABE et al. 1998), where the presence of preferred nitrogen 

sources such as ammonium and L-glutamine, leads to repression of activities involved in the 

utilization of other less-favoured nitrogen sources.  
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Table 4. Known regulatory proteins in Aspergillus niger 
Factor Function Binding domain Recognition motif References 

CreA Carbon catabolite 

repression 

C2H2 zinc finger SYGGRG (DRYSDALE et al. 

1993) 

PacC Regulator in response 

to external pH 

C2H2 zinc finger GCCARG (MACCABE et al. 

1996; SARKAR et al. 

1995) 

CpcA Regulator of amino 

acid biosynthesis 

bZip TTGASTCWG (WANKE et al. 1997) 

AreA Positive-acting 

regulator of nitrogen 

metabolite repression 

GATA zinc finger n.d. (MACCABE et al. 

1998) 

FacB Regulator of acetate 

and acetamide 

metabolism 

Zn(II)2Cys6 n.d. (TODD and 

ANDRIANOPOULOS 

1997; TODD et al. 

1997b) 

RlmA Regulator of genes 

induced in response to 

cell wall stress 

MADS-box CTA(T/A)4TAG (DAMVELD et al. 

2005) 

AmyR Regulator of starch 

degrading enzymes 

Zn(II)2Cys6 CGGN8CGG (PETERSEN et al. 

1999; YUAN et al. 

2008a) 

InuR Regulator of 

inulinolytic genes 

Zn(II)2Cys6 CGGN8CGG (YUAN et al. 2008a) 

XlnR Regulator of  

xylanolytic enzymes 

required for xylan 

degradation and 

endoglucanase gene 

expression 

Zn(II)2Cys6 GGCTAAA (VAN PEIJ et al. 1998) 

AraR Regulator of 

arabinose degrading 

enzymes* 

Zn(II)2Cys6 n.d. * (DE VRIES 2009). 

PrtT Regulator of 

extracellular proteases 

Zn(II)2Cys6 n.d. (PUNT et al. 2008) 

Note: DNA-binding regulatory proteins formally characterized in A. niger. Their regulatory role, class of DNA-

binding domain and recognition motif if known are listed. Ambiguous bases in the consensus sequences are 

given as R=A or G, Y=C or T, H=A, C or T, K=G or T, M=A or C, S=G or C, and W=A or T, N=any base. n.d.: 

not determined. Zn(II)2Cys6 is also known as Zinc binuclear cluster according to (CADDICK and DOBSON 2008). 

* ∆AraR mutants were unable to grow on L-arabinose and L-arabitol (de Vries et al., Fungal Genetics 

Conference, Asilomar 2009). AraR might have generated from gene duplication in Aspergilli and is only present 

in Aspergilli and not in other filamentous fungi; according to the authors, AraR is very similar to XlnR. 
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Recently, a global regulator of secondary metabolism, laeA, was identified (BOK and KELLER 

2004). The fact that the predicted laeA gene seems intact in A. oryzae and in A. niger may 

suggest the existence of a global regulatory mechanism of secondary metabolism by other 

transcriptional regulators (MACHIDA et al. 2008a; MACHIDA et al. 2008b). 

A. niger possesses by far, a larger number of putative Zn(II)2Cys6 transcription factors than 

its close relatives A. nidulans, A. oryzae, A. fumigatus, and the more distant ascomycetes 

species N. crassa and S. cerevisiae. A distribution of putative DNA-binding domains in these 

six fungal species is presented by Caddick and Dobson (CADDICK and DOBSON 2008).  

Many of these proteins are involved in regulating metabolism, i.e., XlnR or InuR, being 

responsible for monitoring the presence of specific metabolites and the regulation of the 

corresponding clusters of genes (YUAN et al. 2008a). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Model for zinc cluster protein DNA recognition. Zinc cluster proteins preferentially 

bind to CGG triplets and they can be oriented in three different configurations: inverted, 

everted and direct repeats. The orientation of CGG triplets and the nucleotide spacing 

between the triplets are the two major determinants of DNA-binding specificity 

(MACPHERSON et al. 2006). Zinc cluster proteins can bind as monomers (in green), as 

homodimers (two molecules in purple) and as heterodimers (one molecule in purple and one 

in red). Figure modified from (MACPHERSON et al. 2006). 
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A primary goal is the identification of key regulatory elements within the genome allowing 

for prediction of gene expression. This includes the identification of specific DNA motifs as 

well as the characterization of additional features within the sequence that influences their 

function. Processes established before divergence of species are likely to be conserved 

retaining the regulatory components, e.g., the DNA-binding domains of regulatory proteins, 

such as the GATA factors regulating nitrogen metabolism (SCAZZOCCHIO 2000) or the C2H2 

zinc finger PacC transcription factor orthologues, which are responsible for regulation of the 

response to ambient pH and are conserved across ascomycetes (PENALVA and ARST 2004). In 

contrast, newly evolved regulatory systems are specific to other group of species, therefore 

defining novel functions, whereas other regulatory proteins might have been lost during 

evolution. An example of this, is the existence of some orthologous proteins conserved in 

ascomycetes, but not present in S. cerevisiae such as the secondary metabolism regulator, 

LaeA (BOK and KELLER 2004). 

A major source of underutilized information lies in the promoters and other regulatory 

elements, as they define which parts of the genome are transcribed, its level of expression and 

regulation (CADDICK and DOBSON 2008). There are well-established in-vitro and in-vivo 

methods for determination of specific binding of certain transcription factors to a given DNA 

sequence. Nevertheless, there are various examples where motifs found in-vitro appear not to 

be functionally significant when analyzed in-vivo (GOMEZ and AL. 2003; MATHIEU et al. 

2000; PUNT et al. 1995). Recently, the development of chromatin immunoprecipitation assays 

(ChIP) has been successfully developed for A. nidulans (CADDICK and DOBSON 2008) and the 

combination with intergenic arrays to undertake ChIP on CHIP experiments (HORAK and 

SNYDER 2002) would therefore give a global picture of transcription factor function in 

Aspergilli.  

However, conventional analysis of transcription factors combined with genome data to assign 

putative functions has led to the identification of genes subject to transcription factor 

regulation and the establishment of putative consensus sequences. An example of this is the 

FarA/FarB approach followed by Hynes et al. (2006) for identification of fatty acid 

catabolism regulated genes (HYNES et al. 2006), as well as the CpcA element (Gcn4 

orthologue in S. cerevisiae), which was identified as a conserved sequence upstream of a 

number of genes involved in amino acid transport and metabolism in A. nidulans, A. 

fumigatus and A. oryzae (GALAGAN et al. 2005), and which was consistent with the known 

function of CpcA (HOFFMANN et al. 2001). 
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A fundamental aspect of gene regulation is that different signals are coordinated via specific 

regulatory elements, where the competition or cooperative binding at a given sequence results 

in the appropriate regulatory response. An example is the AlcR regulation of ethanol 

catabolism in A. nidulans (MATHIEU et al. 2000). 

The identification of regulatory motifs in silico is an important component of functional 

genomics. There is a wide range of tools available that apply different bioinformatic 

algorithms for identification of consensus motifs such as RSAT (VAN HELDEN et al. 1998), 

Cosmo (BEMBOM et al. 2007), MEME (http://meme.sdsc.edu/meme/meme.html), Asap 

(MARSTRAND et al. 2008), among others and which run as web-server applications or are 

downloadable as separate applications. The choice of method and interpretation of the results 

is responsibility of the user, but it is generally recommended to use more than one method to 

confirm results.  
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2. Materials and Methods  

2.1 Strains 

The strains used in this project were the A. niger strains BO1, ATCC 1015, ATCC 11414 and 

CBS 513.88. The former is a glucoamylase producer strain obtained from Novozymes 

(PEDERSEN et al. 2000), the second is the A. niger citric acid producer strain sequenced by the 

Joint Genome Institute (JGI) and ATCC 11414 is an improved citric acid producer strain 

derived from ATCC 1015, both obtained from the IBT collection (Biosys, DTU). The later is 

the A. niger strain sequenced by DSM (PEL et al. 2007), ancestor of the industrial protein 

production strains. All organisms were maintained as frozen spore suspensions at -80 °C in 

20% glycerol.  

 

2.2 Cultivation media 

The composition of the batch cultivation medium was the following (in g L-1): 7.3 g 

(NH4)2SO4, 1.5 g KH2PO4, 1.0 g MgSO4.7H2O, 1 g NaCl, 0.1 g CaCl2.2H2O, 0.05 ml L-1  

antifoam 204 (Sigma) and 1 ml L-1 of  trace elements solution. Trace elements solution 

composition (in g L-1): 7.2 g ZnSO4.7H2O, 1.3 g CuSO4.5H2O, 0.3 g NiCl2.6H2O, 3.5 g 

MnCl2.4H2O and 6.9 g FeSO4.7H2O. In the studies where batch cultivations were carried out, 

glucose monohydrate (20 g L-1), xylose (20 g L-1), glycerol (20 g L-1) and maltose 

monohydrate (20 g L-1) were used (ANDERSEN et al. 2008b).  

 

The composition of the continuous cultivations medium was the following (in g L-1): 2.5 g 

(NH4)2SO4, 0.75 g KH2PO4, 1.0 g MgSO4.7H2O, 1 g NaCl, 0.1 g CaCl2.2H2O, 0.05 ml L-1 

antifoam 204 (Sigma) and 1 ml L-1 of trace elements solution.  

In the study where continuous cultivations were conducted, the concentrations of the carbon 

sources used were: glucose monohydrate (4 g L-1), xylose (3.64 g L-1) and glycerol (3.72 g L-

1) giving the same amount of C-mol fed to the bioreactors, 0.121 Cmol L-1.  

 

Complex media composition for A. niger spores propagation (in g L-1): 10 g glucose 

monohydrate, 2 g yeast extract, 3 g tryptone, 0.52 g KCl, 0.52 g MgSO4.7H2O, 1.52 g 

KH2PO4, 20 g agar and 1 ml L-1 of trace elements solution. The trace elements solution used 

in this case contained (in g L-1): 0.4 g CuSO4.5H2O, 0.04 g Na2B4O7.10H2O, 0.8 g 

FeSO4.7H2O, 0.8 g MnSO4.H2O, 0.8 g Na2MoO4.2H2O and 8 g ZnSO4.7H2O.  
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Minimal media composition for A. niger cultivation (in g L-1): 10 g glucose monohydrate, 6 g 

NaNO3, 0.52 g KCl, 0.52 g MgSO4.7H2O, 1.52 g KH2PO4, 15 g agar, 1 ml L-1  vitamins 

solution and 1 ml L-1 trace elements solution. The pH was adjusted to 6.35 with 1M NaOH 

prior to sterilization. Vitamins solution composition (in g L-1): 1 g D-biotin, 1 g pyridoxine, 1 

g thiamine, 1 g riboflavin, 1 g p-aminobenzoic acid (PABA), 1 g nicotinic acid and 20 drops 

of chloroform as preservative. The trace elements solution used in this case contained (in g L-

1): 22 g ZnSO4·7 H2O, 11 g H3BO3, 5 g MnCl2·4 H2O, 5 g FeSO4·7 H2O, 1.7 g CoCl2·6 H2O, 

1.6 g CuSO4·5 H2O, 1.5 g Na2MoO4·2 H2O and 50 g Na4EDTA, pH was adjusted to 6.5 with 

KOH . 

 

Transformation recovery media composition for A. niger (in g L-1): 10 g glucose 

monohydrate, 182.17 g sorbitol, 6 g NaNO3, 0.52 g KCl, 0.52 g MgSO4.7H2O, 1.52 g 

KH2PO4, 8 g agar, 1 ml L-1  vitamins solution and 1 ml L-1 trace elements solution (same as 

described in minimal media composition for A. niger cultivations). The pH was adjusted to 

6.35 with 1M NaOH prior to sterilization. If the transformations were conducted to disrupt the 

pyrG gene, the media was supplemented with 1 g L-1 uridine and 1 g L-1 uracil. Otherwise, 

hygromycin was added as the selection agent after media sterilization to achieve a final 

concentration of 100 µg mL-1. 

 

2.3 Preparation of inoculum 

A. niger BO1, ATCC 1015 and CBS 513.88 fermentations were inoculated with spores 

propagated on complex media plates, incubated for 6-8 days at 30 °C. The same stock of 

spores was used to inoculate all plates. In all cases, A. niger spores were harvested by adding 

10 mL of Tween 80 0.01%, subsequently washed with 0.9% NaCl solution and filtered 

through sterile Miracloth (Calbiochem, San Diego, CA, USA). Spores were resuspended in 

100 mL Tween 80 0.01% and counted. A. niger cultivations were inoculated with a spore 

suspension to obtain a final concentration of 5.7X109 spores L-1.  

 

2.4 Aspergillus niger cultivations 

2.4.1 Batch cultivations 

A. niger batch cultivations were carried out in either 5 L reactors with a working volume of 

4.5 L (custom-designed) or 2.7 L with a working volume of 2 L (DASGIP AG, Jülich 
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Germany). The bioreactors were equipped with two Rushton four-blade disc turbines, pH and 

temperature control. Inlet air was controlled with a mass flowmeter. The concentrations of 

oxygen and carbon dioxide in the exhaust gas from the 5 L bioreactors were monitored with a 

gas analyzer (1311 Fast response Triple gas, Innova combined with multiplexer controller for 

Gas Analysis MUX100, B. Braun Biotech International). The concentrations of oxygen and 

carbon dioxide in the exhaust gas from the 2.7 L bioreactors were monitored with the 

DASGIP automated system. The temperature was maintained at 30°C and the pH was 

controlled by automatic addition of 2 N NaOH. The pH was initially set to 3.0 to prevent 

spore aggregation; when spores started to germinate, the pH was gradually increased to 4.5. 

Similarly, the stirring speed was initially set to 200 rpm and the aeration rate to 0.05 vvm 

(volume of gas per volume of liquid per minute) to prevent loss of hydrophobic spores from 

the medium to the head-space of the reactor. After germination, these parameters were 

increased to 600 rpm and 0.89 vvm and kept steady throughout all the rest of the 

fermentation. 

 

2.4.2 Carbon-limited continuous cultivations  

To determine the physiological characteristics of A. niger ATCC 1015 and to collect samples 

for transcriptome analysis, batch and continuous cultivations were carried out. The inlet 

feeding rate was started in the late exponential phase of the batch cultivations. The dilution 

rate was controlled either at 0.10 h-1 or 0.05 h-1. All cultivations were mass controlled. 

Carbon-limited conditions were assured by measuring the concentration of the liquid effluent 

which was ~0.0 g L-1 in all cases. The cultivations were assumed to be in a physiological 

steady-state when no significant variation in biomass dry weight and CO2 production was 

observed after 3 retention times. To prevent wall growth in the upper part of the bioreactor, its 

top was cooled down to 4 °C. 

 

2.4.2.1 Batch phase of the continuous cultivations  

These fermentations were performed in 2 L Braun bioreactors with a working volume of 1.6 

L. Reactors were equipped with three Rushton four-blade disc turbines, pH and temperature 

control. The temperature was maintained at 30 °C and the pH was controlled by automatic 

addition of 2 N NaOH. The pH was initially set to 3.0 to prevent spores aggregation and only 

when spores started to germinate, the pH was increased to 4.5 and kept constant through the 

cultivation. Likewise, the stirring speed was initially set to 100 rpm and the aeration rate to 
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0.06 vvm (volume of gas per volume of liquid per minute) to prevent pellet formation and loss 

of hydrophobic spores from the medium to the headspace of the reactor. After germination, 

these parameters were increased to 600 rpm and 0.89 vvm and kept steady throughout all the 

rest of the fermentation. The cultivation conditions allowed dispersed filamentous growth of 

the fungus. The concentrations of oxygen and carbon dioxide in the exhaust gas were 

monitored with a gas analyzer.  

 

2.5 Sampling 

For quantification of cell mass and extracellular metabolites, a known volume of cell broth 

was withdrawn from the reactor, filtered and washed. The culture filtrates were frozen at -20 

°C for subsequently sugar and extracellular metabolite quantification. Cell dry weight was 

determined using nitrocellulose filters (pore size 0.45 μm, Gelman Sciences). The filters were 

pre-dried in an oven at 100 °C for 24 h, cooled in a desiccator and subsequently weighed. A 

known volume of cell culture was filtered, washed with distilled water and dried on the filter 

for 24 h in an oven at 100 °C. The filter was cooled in a desiccator and weighed for cell mass 

concentration determination. For gene expression analysis, mycelium was harvested in the 

mid exponential phase or in steady state after three retention times. The cultures were filtered 

through sterile Miracloth and washed with a suitable amount of 0.9% NaCl solution. The 

mycelium was quickly dried by squeezing and subsequently frozen in liquid nitrogen. 

Samples were stored at -80 °C until RNA extraction. 

 

2.6 Aspergillus niger protoplastation method 

A liquid culture of 100 ml of complete media or PDB (potato dextrose broth) was initiated by 

inoculating a suitable amount of A. niger ATCC 1015 spores to achieve a final concentration 

of 106 conidia mL-1. The culture was grown overnight for ~18 h by shaking at 150 rpm and 30 
oC. Mycelium was harvested by filtering the culture through sterile Miracloth and 

subsequently rinsed with sterile water. A protoplastation solution (20 mL) was prepared by 

dissolving the cell wall digesting enzyme Vinoflow FCE (Novozymes, Denmark) in 

protoplasting buffer (0.6M (NH4)2SO4 and 50 mM maleic acid, pH adjusted to 5.5) to achieve 

a final concentration of 60 mg mL-1. Mycelia were added to the protoplastation solution and 

digested by shaking at 30oC and 70 rpm for 3 to 4 hours. The progression of the digestion was 

checked at various intervals by taking small samples and looking at them under the 

microscope (400x magnification). The protoplasts are large round cells that are very sensitive 
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(larger size than conidia). When most or all the mycelia were digested, the culture was filtered 

through sterile Miracloth. The filtrate was centrifuged at 4oC and 800 g for 10 minutes in 

order to pellet the cells and then resuspended in 25 mL of STC solution (1 M sorbitol, 100 

mM Tris-HCl pH 7.5, 10 mM CaCl2.2H2O). The protoplasts were centrifuged again and 

resuspended in less than 1 ml STC in order to have a concentrated solution. The protoplasts 

were counted to get approximately 108 protoplasts mL-1 and diluted to a concentration of at 

least 1.2x107 protoplasts mL-1. Subsequently, a 40% PEG solution (PEG 4000 dissolved in 

STC) was added to the protoplasts solution and mixed gently to a final concentration of 20% 

v/v. Then, dimethyl sulfoxide (DMSO) was added to the protoplasts-PEG solution and mixed 

thoroughly to get a final concentration of 7% v/v. Protoplasts were stored at -80 °C in aliquots 

of 200 µL per tube and 100 µL were used per transformation. 

 

2.7 Aspergillus niger transformation method 

A. niger transformations were conducted with the polyethylene glycol (PEG) transformation 

method using 100 µL protoplasts thawed on ice per transformation experiment. The 

protoplasts were aliquoted into 15 mL falcon screwcap conical tubes. Subsequently, 1 to 10 

µg of DNA dissolved in TE buffer (10 mM Tris-HCl pH 8.0 and 1 mM EDTA pH 8.0) were 

added (10 µL volume at a maximum). The mixture was incubated on ice for 15 min and 1 mL 

40% PEG 4000 dissolved in STC solution was added for subsequent incubation for 15 min at 

room temperature. Then, 8 mL of liquid transformation recovery media were added. Tubes 

were incubated at 70-80 rpm and 30 °C for 1 h. After incubation, the tubes were centrifuged 

at 800 g for 8 min at room temperature using a swinging bucket rotor, supernatant was poured 

off and 12 mL of transformation recovery media at 48 °C containing 0.8% agar was added. 

The selection compound was added in this step. In case of using hygromycin, a final 

concentration of 100 µg mL-1 was used. In case of using 5-fluoroorotic acid (5-FOA), the 

final concentration was 1 or 2 mg mL-1. Then, the transformation mixture was gently mixed 

by inversion and poured into pre-labelled plates and swirled to spread. Plates were left in the 

sterile hood until the agar solidified and subsequently wrapped with microporous tape for 

incubation at 30 °C until colonies were visible (∼3 to 8 days depending on the selection 

compound used). Plates were overlaid on the next day with 8 mL transformation media 

(media containing 1 M sorbitol, 0.8% agar and the required selection compound). The plates 

were incubated until visible colonies grew through the overlay; usually the ones that managed 
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to go through the surface were transformed. If there were none or significantly fewer colonies 

on the no DNA control plate, 12 to 14 well isolated colonies were picked and transferred to 

slants containing the selection compound.  

Subsequently, spores from each of the transformation slants were collected and a liquid 

culture was started for genomic DNA extraction and later screening by polymerase chain 

reaction (PCR). The remaining spore suspension from each of the colonies was stored.  

 

2.8 Aspergillus niger genomic DNA extraction 

Genomic DNA extraction was conducted using the CTAB method where 3 mL of stationary 

cultures were initiated in 15 mL falcon tubes and incubated for approximately 24 h at 30 °C. 

Mycelium was hooked from the media surface and the excess incubation media was dried 

using paper towels. Mycelium was transferred to 1.5 mL vials and frozen in liquid nitrogen 

for subsequent vacuum drying for several hours to overnight. Dried material was transferred 

to new 2 mL screwcap tubes and two 2 mm glass beads were added for subsequent bead 

beating during 1 min at full speed. Immediately, 750 µL CTAB buffer were added (2% 

CTAB, 100 mM Tris-HCl pH 8.0, 20 mM EDTA and 1.4 M NaCl) and tubes were incubated 

at 57 °C for 15 min to 1 h. A phenol/chloroform (P/C) extraction was conducted by adding 

750 µL of P/C. The mixture was centrifuged at 14,000 g for 5 min and the supernatant was 

transferred to new 1.5 mL vials. One volume of 2-propanol was added following 

centrifugation at 6,000 g for 10 min (if centrifugation speed was too low, no pellet was 

formed). The supernatant was removed and the pellet was rinsed with a generous amount of 

70% ethanol. Tubes containing the pelleted DNA were air-dried and the pellet was 

resuspended by adding 50 to 100 µL TE buffer.  

 

2.9 Gene deletions 

The transformation method described previously was used to conduct several gene deletions 

in the A. niger sequenced strain ATCC 1015. The targeted genes were the ones coding for the 

orthologue proteins in yeast Adr1, Cat8 (FacB Aspergillus orthologue), and the Aspergillus 

nidulans orthologue proteins CreA, AreB, and PyrG. The gene (hph) that confers resistance to 

the antibiotic hygromycin was used as a selectable marker. It was amplified from the plasmid 

PCB1003 (CARROLL et al. 1994), obtained from the Fungal Genetics Stock Center 

(http://www.fgsc.net/). The pyrG gene from A. fumigatus, amplified from plasmid pFNO3, 

was used to test the correct disruption of the pyrG gene in the A. niger strain by doing a 

http://www.fgsc.net/�


27 

 

complementation assay. The primers used for construction of the gene deletion cassette 

constructs are shown in Table 5.  

 

Table 5. Primers used to conduct the genetic manipulations. 

Primer name Sequence 
AdrA   

AdrA-F1  CACCGAAGGAAAGGTGGACG 
AdrA-F2  GTCAGAATGGGCGACCAGCA 
AdrA-R3 TGACCTCCACTAGCTCCAGCTCCTAGTAGAGCAGCGACACG 
AdrA-HphF CGTGTCGCTGCTCTACTAGGAGCTGGAGCTAGTGGAGGTCA 
AdrA-HphR GCCCGCGTAAGGAATGAATGCGGTCGGCATCTACTCTATT 
AdrA-F4 AATAGAGTAGATGCCGACCGCATTCATTCCTTACGCGGGC 
AdrA-R5  GCAACAAGTCACCTGCTCTG 
AdrA-R6  ACGGGCATCACTGCTTGCTG 

CreA   
CreA-F1 TTAACACACCGTGCGTGGCC  
CreA-F2  CTGATGGAGACACCCGTTTGC 
CreA-R3 TGACCTCCACTAGCTCCAGC AGCTTGTCCCAAGACCGA 
CreA-HphF TCGGTCTTGGGACAAGCTTCGCTGGAGCTAGTGGAGGTCA 
CreA-HphR GCACAAGTCTATTCGGTCGTAGCCGGTCGGCATCTACTCTATT 
CreA-F4 AATAGAGTAGATGCCGACCGGCTACGACCGAATAGACTTGTGC 
CreA-R5 GTAAGTCCCCATGACTTGCGG  
CreA-R6 CGGAAGTTCGGCATGAGAAGTC 

AreB   
AreB-F1  CGTCGTATACCACTCCCGGA 
AreB-F2  CAGTTCGGTCATTTGTGGCC 
AreB-R3 TGACCTCCACTAGCTCCAGCACAGTAGGATCACGCGAGGA 
AreB-HphF TCCTCGCGTGATCCTACTGTGCTGGAGCTAGTGGAGGTCA 
AreB-HphR GTCCATCGTCCGAACAAAGCCGGTCGGCATCTACTCTATT 
AreB-F4 AATAGAGTAGATGCCGACCGGCTTTGTTCGGACGATGGAC 
AreB-R5  GCTTATTGATTCTCCGCCTCG 
AreB-R6  AGCAGCAGCAAGGCAGTAAG 

FacB   
FacB-F1 CAGCGAGGAGAATGATGCCG 
FacB-F2 TCCGATGCAATACTCCGCCT 
FacB-R3 TGACCTCCACTAGCTCCAGCGTTGGCTGGATGCTTTGGCG 
FacB-HphF CGCCAAAGCATCCAGCCAACGCTGGAGCTAGTGGAGGTCA 
FacB-HphR TAGCTCAGACAGCCAGTCGTCGGTCGGCATCTACTCTATT 
FacB-F4 AATAGAGTAGATGCCGACCGACGACTGGCTGTCTGAGCTA 
FacB-R5 TATCGATCACGCATCGCAGC 
FacB-R6 TCTAGTCTAGCTTTCGGAGC 
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PyrG   
PG-F1 GCAGGGAAAAATACGAGCTCCAATG 
PG-F2 AACCTGGGTGTGGCAACTTCAATGG 
PG-R3B TATGGGCTC ACTTATCTAGAATTGCTTCTGGACAGTGTTGCCAAT 
PG-F3B AGAAGCAATTCTAGATA AGTGAGCCCATATCATCAACTGCAGCA 
PG-R4 CACCCGTCGCCATTTGCTCTACGCA 
PG-R5 AAGCTTATCACCGTCCCTTATCAGC 

hph screen primer TGACCTCCACTAGCTCCAGC 
Nucleotides colored in red indicate sequences present in the hygromycin resistance gene and used for fusing the 

fragments.  

 
 

 

 

 

 

 

 

 

 

 

 

Figure 7. Schematic representation of gene deletion cassette construction. A) A typical 

reaction fuses DNA fragments of a 5’ flanking sequence, a 3’ flanking sequence and a marker 

(M). a) First round PCR: amplification of the components using the specific and chimeric 

primers. b) Second round PCR: the assembly reaction is carried out without using any specific 

primers, as the overhanging chimeric extensions act as primers. The first two cycles are 

shown in detail. c) Third round PCR: amplification of the final product using nested primers 

(primers gene-F2 and gene-R5). B) Location of primers in each gene locus targeted. The 

arrows numbered from 1 to 6 represent the primers used in the forward or reverse direction to 

amplify the up and down flanking regions of the manipulated gene. Primers 3 and 4 carried 

20-25 bases of homologous sequence overlapping with the ends of the selectable marker of 

choice. Primers named gene-markerF and gene-markerR were used to amplify the marker 

used; they contain a ~20 bases tail which sequence is homologous to the sequence of the gene 

to be deleted, which make a total of 40 bases homologous between the marker and the gene. 
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The fragment construction strategy used was the one designed earlier by Yu et al. (YU et al. 

2004) and based on construction of the deletion cassette by PCR. Figure 7 shows the 

schematic representation of the gene deletion cassette construction steps where the upstream 

and downstream flanking sequences of the gene to be deleted were amplified by PCR. The 

location of the primers in each targeted gene locus is depicted on Figure 7, panel B). The 

arrows numbered from 1 to 6 represent the primers used in the forward or reverse direction to 

amplify the upstream and downstream flanking regions of the manipulated gene. Primers 3 

and 4 carried 20-25 bases of homologous sequence overlapping the ends of the selectable 

marker of choice. Primers named gene-markerF and gene-markerR were used to amplify the 

marker; they contain a 20 bases tail which sequence is homologous to the sequence of the 

gene to be deleted. This accounts for a total of 40 bases homologous between the marker and 

the gene, i.e., hph and A. niger ADR1 orthologue.  

 

2.10 PCR screening of transformants 

The genomic DNA extracted from each of the transformants was used to conduct PCR 

screening using the Takara Ex Taq kit according to the manufacturer’s protocol (Takara Bio 

Inc., Shiga, Japan). Primers named gene-F1, e.g., AdrA-F1 and hph screen inner primer were 

used (for primer sequences see Table 5). The gene-F1was located outside the manipulated 

gene locus for each of the targeted genes and the hph screen primer was located inside the hph 

gene sequence, as shown on Figure 7. 

 

2.11 Southern Blot 

Southern blot was conducted to check the correct disruption of the genes. It relies on the 

genomic DNA extraction from each of the pre-screened positive transformants. Those 

transformants which were positive in the PCR screening were subjected to restriction enzyme 

digestion and subsequent transfer of DNA to a membrane for hybridization using the designed 

biotin-labeled probe. Biotin-labeled DNA probes were prepared using the North2South Biotin 

Random Prime labeling Kit from Pierce according to the manufacturer’s protocol (Pierce, 

Rockford, IL, USA). The genomic DNA was extracted using the CTAB method previously 

described and RNAse treated with the RNAse cocktail from Ambion (Ambion, Inc., TX, 

USA) to degrade RNA from the samples. For each strain, approximately 1 µg of genomic 

DNA was restriction enzyme digested using the appropriate restriction enzyme at 37 °C for 2 

h (Fermentas International Inc., Canada). A gel electrophoresis was run including 10 ng 
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BstEIIλ ladder on lane 1, samples (digested DNA from transformants) and controls (digested 

DNA from wild type strain ATCC 1015). Alkaline transfer of DNA to the nylon membrane 

was done using the Turboblotter system developed by Whatman according to their protocol 

(Whatman Schleicher & Schuell, NJ, USA). DNA was fixed to the membrane by drying it in 

an oven at 80 °C for 2 h. Blocking of membrane was done by adding 5-10 mL of church 

buffer (0.5 M NaHPO4 pH 7.2, 7% SDS, 2 mL 0.5 M EDTA pH 8 and 10g BSA) and 

incubated for 1 h at 60 °C. Lambda probe (5-10 ng mL-1) and southern probe (30 ng probe 

mL-1) were added to 1 mL church buffer and denatured for 5-10 min in a boiling bath. 

Subsequently, denatured probes were added to pre-blocked membrane. Southern hybridization 

with biotin-labeled probe was carried out at 60 °C over night and subsequently stringent 

washed. Probe detection was done using the chemiluminescent nucleic acid detection module 

(Pierce, Rockford, IL, USA) and a gel doc imaging system (Bio-Rad Laboratories Inc., CA, 

USA). 

 

2.12 Sugars and extracellular metabolites quantification  

The concentration of sugars and extracellular metabolites in the filtrates were determined 

using high pressure liquid chromatography (HPLC) on an Aminex HPX-87H ion-exclusion 

column (BioRad, Hercules, CA). The column was eluted at 60 °C with 5 mM H2SO4 at a flow 

rate of 0.6 mL min-1. Metabolites were detected with a refractive index detector and an UV 

detector. 

 

2.13 Total RNA extraction 

A. niger total RNA was isolated using the Qiagen RNeasy Mini Kit (QIAGEN Nordic, 

Ballerup, Denmark), according to the protocol for isolation of total RNA from plant and 

fungi. For this purpose, approximately 100 mg of frozen mycelium were placed in a 2 mL 

tube, pre-cooled in liquid nitrogen, containing three RNase-treated steel balls (two balls with a 

diameter of 2 mm and one ball with a diameter of 5 mm). The tubes were subsequently 

shaken in a Mixer Mill, at 5 °C for 10 minutes, until the mycelium was ground to powder and 

thus ready for extraction of total RNA. All samples were inspected for good quality of total 

RNA extracted with a BioAnalyzer (2100 BioAnalyzer, Agilent Technologies Inc., Santa 

Clara, CA, USA). RNA quantification was performed in a spectrophotometer (Amersham 

Pharmacia Biotech, GE Healthcare Bio-Sciences AB, Uppsala, Sweden) and total RNA was 

stored at -80 oC until further processing. 
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2.14 Microarray manufacturing and design 

 Affymetrix arrays were used for the analysis of the transcriptome data of A. nidulans, A. 

oryzae and A. niger (Affymetrix company, Santa Clara, CA, USA). The arrays were packaged 

in an Affymetrix® GeneChip cartridge (49 format), and were processed with GeneChip 

reagents in the GeneChip® Instrument System. The design and selection of probes for 

interrogating gene expression levels based on the genomes of A. nidulans FGSC A4 (BROAD 

DATABASE), A. oryzae RIB40 (DOGAN DATABASE) and A. niger ATCC 1015 (JGI 

DATABASE) was performed by Andersen et al. (ANDERSEN et al. 2008b). The arrays contain a 

maximum of 11 non-overlapping perfect match (PM) probes of 25 oligomers length per gene. 

11,122 probe sets were represented in the microarray for A. niger, 12,039 probe sets plus an 

EST collection (courtesy of Novozymes) for A. oryzae and 10,656 probe sets for A. nidulans.  

 

2.15 Preparation of biotin-labeled cRNA and microarray processing 

Biotin-labeled cRNA was prepared from either 1 µg or 5 µg of total RNA, according to the 

protocol described in the Affymetrix GeneChip Expression Analysis Technical Manual 

(AFFYMETRIX and GENECHIP 2007). All samples were prepared in the same manner 

depending on the study. The cRNA was cleaned before fragmentation using the Qiagen 

RNeasy Mini Kit (protocol for RNA Cleanup), in order to guarantee good-quality cRNA 

samples for subsequent processing. Biotin-labeled cRNA was quantified in a 

spectrophotometer (Amersham Pharmacia Biotech, GE Healthcare Bio-Sciences AB, 

Uppsala, Sweden) and 20 µg were fragmented following the manufacturer recommendations. 

Approximately 15 µg of fragmented cRNA was hybridized to the 3AspergDTU Affymetrix 

GeneChip (ANDERSEN et al. 2008b) following the Affymetrix GeneChip Expression 

Analysis protocol. Arrays were washed and stained using a GeneChip Fluidics Station FS-

400, and scanned on an Agilent GeneArray Scanner 3000. The scanned probe array images 

(.DAT files) were converted into .CEL files using the Affymetrix GeneChip Operating 

Software. 

 

2.16 Transcriptome analysis 

Affymetrix CEL-data files were preprocessed using the statistical language R version 2.7.1 (R 

DEVELOPMENT CORE TEAM 2007) and Bioconductor version 2.2 (GENTLEMAN et al. 2004). 

The probe intensities were normalized for background by using the robust multiarray average 
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method with perfect match (PM) probes only (IRIZARRY et al. 2003). Subsequent 

normalization was performed using the qspline algorithm (WORKMAN et al. 2002). Gene 

expression indexes were calculated from the PM probes with the median polish summary 

method (IRIZARRY et al. 2003). All statistical preprocessing methods were implemented in 

affy package (GENTLEMAN et al. 2004) using R scripts (DUDOIT et al. 2003). Statistical 

analysis was applied to identify differential gene expression levels. Moderated Student’s t-

tests between the different carbon sources for A. niger or the corresponding Aspergillus spp. 

was conducted using limma package (SMYTH 2004). Empirical Bayesian statistics were used 

to moderate the standard errors within each gene and Benjamini-Hochberg’s method to adjust 

for multiple testing (BENJAMINI and HOCHBERG 1995). Unless otherwise stated, a cut-off of 

adjusted p value < 0.05 was used to assess for statistical significance. The Limma package 

was also used to conduct ANalysis Of VAriance (ANOVA) for the comparison of each A. 

niger knock-out strain grown on glucose or glycerol as carbon sources versus the wild type 

strain ATCC 1015 grown under the same conditions, i.e., a typical dataset would be: gene 

deletion mutant_glucose, gene deletion mutant_glycerol, ATCC 1015_glucose and ATCC 

1015_glycerol. 

 

2.17 Protein sequence comparisons 

A cross comparison between the amino acid sequences of the predicted ORFs from each of 

the three Aspergillus genomes, based on DOGAN (DOGAN DATABASE), JGI (JGI DATABASE) 

and BROAD Institute databases (BROAD INSTITUTE DATABASE) using the BLASTP algorithm, 

was applied (ALTSCHUL et al. 1990). The A. oryzae genome sequence (NBRC 100959), A. 

nidulans FGSC A4 version 3.0 and A. niger ATCC 1015 version 1.0 were used. An estimated 

expectation value cut-off of 1E-30 was set to assess for statistical significance. The best hit, 

based on the score, was selected for the case in which the protein query produced more than 

one hit. Bi-directional best hits were found by comparing the lists of best hits for two species 

against each other (i.e. Niger_Oryzae, Oryzae_Niger) and selecting those genes where the 

best hit in the other organism was the same best hit, thus giving a conservative set of 1:1 

homologues for all three pair-wise comparisons. Tri-directional best hits were found by 

comparing the three lists of bi-directional hits (Niger_Oryzae, Nidulans_Oryzae, 

Niger_Nidulans) and selecting the genes that had a 1:1:1-relationship in all comparisons 

between all three species. The full subset of tri-directional homologues is given in Appendix 

6: Supplementary Table 1. 
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2.18 Detection of conserved regulatory elements 

For the publication where conserved motifs were searched (manuscript 2), several 

bioinformatics tools were applied for the detection of conserved regulatory elements. As a 

first step, pattern recognition was conducted in RSAT (Regulatory Sequence Analysis Tools) 

(VAN HELDEN et al. 1998) using the option of oligo-analysis. The method is based on the 

detection of over-represented oligonucleotides. The statistical significance of a site was 

assessed based on pre-computed tables of oligonucleotide frequencies observed in all non-

coding sequences from A. oryzae and A. nidulans genomes, respectively, as these two 

organisms are supported by the application. In the case of A. niger, our own frequency table 

was calculated based on the intergenic regions from scaffold 1 of the A. niger ATCC 1015 

genome sequence for 6, 7 and 8 base pairs (bps) oligonucleotides. Intergenic regions 

containing unknown bases (N’s) were removed from the training set leaving 1214 sequences. 

The motif recognition was computed by running the analysis with a 1000 bps upstream region 

counted from the start codon of each gene or predicted transcription start site in the case of A. 

niger. A subset of 243 promoters, 3 times 81 promoters for each of the species, was analyzed. 

Statistical analysis was conducted to find consensus motifs in the subsets of 81 up-regulated 

conserved genes as well as in the 5 down-regulated conserved genes in the three Aspergilli 

species investigated, A. nidulans, A. niger and A. oryzae. The analysis was done considering a 

different length of consensus patterns, ranging from 6 to 8 bps for each Aspergillus. After 

having a number of probable consensus conserved motifs; these were further inspected using 

R 2.7.1 and Cosmo package (BEMBOM et al. 2007). Default settings were used and the 

program was run for different patterns length. A background Markov model was computed 

using the intergenic regions from scaffold 1 of the A. niger ATCC 1015 genome sequence as 

previously reported (ANDERSEN et al. 2008b). The two component mixture (TCM) model was 

used to search for a conserved motif where the maximum number of sites was increased to 

include all 174 binding sites. Finally, a more refined search for potential transcription factor 

binding sites in the subset sequences was done with the pattern search program Patch using 

TRANSFAC 6.0 public sites (http://www.gene-regulation.de/).  

 

2.19 GO-term enrichment analysis 

GO-term enrichment analysis was conducted with the A. niger ATCC 1015 conserved up-

regulated genes list from manuscript 2 (81 genes) and with the significantly differentially 

expressed genes list (p value < 0.05) using R 2.7.1 (R DEVELOPMENT CORE TEAM 2007) with 

http://www.gene-regulation.de/�
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BioConductor (GENTLEMAN et al. 2004) and the topGO-package v. 1.2.1 with the elim 

algorithm to remove local dependencies between GO terms (ALEXA et al. 2006). GO-term 

assignments were based on automatic annotation of the A. niger ATCC 1015 version 1.0 gene 

models, a cut-off of elim p value < 0.05 was used to assess significance. 

 

2.20 Clustering analysis 

A consensus clustering algorithm was used to identify similar expression profiles of the genes 

which changed expression level. The algorithm was implemented in the MATLAB toolbox 

ClusterLustre (GROTKJAER et al. 2006) and it is available at www.sysbio.se (CVIJOVIC et al. 

2010). Pearson correlation coefficient was used as a similarity metrics for data processing. A 

partitioning clustering method by k-means (POLLARD and VAN DER LAAN 2005) was used to 

account for average expression of the biological replicates under each condition. 
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3. Results and Discussion 

3.1 Genome sequencing of Aspergillus niger 

It is well known that the filamentous fungus Aspergillus niger exhibits a great diversity in its 

phenotype. It is found all over the globe, both as marine and terrestrial strains, produces both 

organic acids and bio-material degrading enzymes in high amounts and has been known to 

exhibit pathogenicity. For these reasons and more, it is of great interest to a number of 

communities ranging from basic research to applied sciences such as biotechnology and 

medicine.  

Although the industrial enzyme-producing A. niger CBS 513.88 was already sequenced and 

published in 2007 (PEL et al. 2007), the diversity of this species still allowed for additional 

exploration. Therefore, a whole genome sequencing project of the acidogenic A. niger wild 

type strain ATCC 1015 was initiated by the Joint Genome Institute (JGI) as an initiative of the 

Department of Energy of the United States and it produced a sequence of very high quality. 

The sequence is available in the Aspergillus niger JGI Genome Portal (http://genome.jgi-

psf.org/Aspni5/Aspni5.home.html). The assembly release version 1.0 of whole genome 

shotgun reads was constructed with the JGI assembler, Jazz, using paired end sequencing 

reads at coverage of 8.9X. The Genome Portal includes an overview of automatic and manual 

annotation, where more than 2,100 gene models have been subjected to manual annotation, 

task conducted by our former fungal research group at DTU. 

According to the ATCC 1015 genome sequence analysis conducted, only 15 gaps were 

present in the sequence, half of the telomeric regions were elucidated and 11,200 protein-

coding genes were predicted. Genome statistics are summarized in Table 6. The finished 

contigs (24 in total, spanning 34.85 Mb) are available from NCBI (acc. no. ACJE00000000).  

The contiguous ATCC 1015 sequence was used to close 186 contig gaps between adjacent 

contigs found in the CBS 513.88 sequence detected by PCR followed by sequencing. This led 

to a number of improved gene models resulting from mergers of terminal truncated genes and 

the inclusion of a number of new genes (see results section in manuscript 1 for details). An 

updated version of the A. niger CBS 513.88 genome sequence can be accessed through EMBL 

under acc. no AM269948-AM270415. However, a difference of 0.8 megabase (Mb) still 

remained, accounting for approximately 2.5% of the full genome.  

The genome sequence analysis as well as transcriptome analysis of the citric acid-producing 

A. niger wild type strain ATCC 1015 and of the enzyme producing strain CBS 513.88 is the 

foundation of manuscript 1 submitted to the journal Genome Res. 
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Table 6. General genome statistics for A. niger ATCC 1015 and A. niger CBS 513.88. Except 

for genome sizes and the number of gene models, all values are reported as averages. 

 

 A. niger ATCC 1015 A. niger CBS 513.88a A. niger CBS 513.88b 

Gene models 11,200 14,165 14,082 

Genome size (Mbp) 34.85 33.93 34.02 

Gene length (bp) 1696.1 1572.8 1589.0 

Transcript length (nt)c 1501.3 1322.5 1330.4 

Protein length (aa) 484.3 439.9 442.5 

Exons per gene 3.1 3.6 3.6 

Exon length (bp) 480.8 370.0 371.6 

Intron length (bp) 93.8 97.2 96.9 

aThe genome assembly published by Pel et al. (2007) (PEL et al. 2007). 
bGenome assembly of A. niger CBS 513.88 after gap closure using sequence information from ATCC 1015. 
cThe high difference in "Gene length (nt)" and "Transcript length (nt)" between the A. niger ATCC 1015 and the 

two versions of the A. niger CBS 513.88 is most likely due to differing definitions of both terms. Since for the A. 

niger CBS 513.88 genome versions no predictions of promotor or terminator sequences are available, the 'Gene 

length' is calculated from START codon to STOP codon. The 'Transcript length' is calculated the same way, but 

without intron sequences. 

 

3.1.1 Comparative genomics of A. niger CBS 513.88 and ATCC 1015 

Based on pair-wise alignments of the corresponding chromosomal arms of the two sequenced 

A. niger strains, CBS 513.88 and ATCC 1015, we can tell that the two strains are largely 

syntenic. Sequence analysis revealed an average of 7.84 single nucleotide polymorphisms per 

kilobase (SNPs/kb) with levels as high as 160 SNPs/kb in hyper variable regions. 

Comparative genomics uncovered several genome rearrangements, a clear case of strain 

specific horizontal gene transfer (HGT) and identified 0.8 megabase of novel sequence.  

In an un-matched region identified in the left arm of chromosome III, in comparison with 

ATCC 1015, the CBS 513.88 genome harbors two additional and identical α-amylase 

encoding genes which are identical to the α-amylase encoding genes AO090023000944 and 

AO090120000196 from A. oryzae RIB40. These findings strongly suggested that the strain 

CBS 513.88 recently acquired these duplicate An12g06930/An05g02100 α-amylase genes 



37 

 

through horizontal gene transfer (HGT) from most likely an A. oryzae strain. The suggested 

directionality of the HGT recombination event was inferred from the fact that the particular α-

amylase gene and immediate five downstream genes are present in the genomes of A. oryzae 

RIB40 and of strain CBS 513.88, but they are not present in the ATCC 1015 genome. 

Supporting our findings, it has been reported that in other black Aspergilli, α-amylase 

encoding genes are > 99 % identical at DNA level to the A. oryzae RIB40 and the A. niger 

CBS 513.88 α-amylases (KORMAN et al. 1990; SHIBUYA et al. 1992) leaving room for 

alternative HGT scenarios. 

 

All this genome sequence analysis forms the foundation of  manuscript 1, where we present 

the genome sequence of the citric acid-producing A. niger wild type strain ATCC 1015, and 

an updated genome sequence for the enzyme producing strain CBS 513.88. In this 

manuscript, the study of the diversity of the A. niger species based on exometabolite profiling 

conducted by our partners in DTU, and new genomic sequences from seven isolates 

confirmed wide variation within the species. A detailed list of alleles was generated, and 

differences in genotype were observed to accumulate in metabolic pathways essential to acid 

production as well as protein synthesis. In this study we present a number of genome-scale 

comparative data-sets which could serve as the foundations for new hypotheses useful in 

studying and optimizing either type of producer-strain. This multi-disciplinary comparative 

analysis identified a number of factors on multiple levels that are indicative of specialization 

as an acidogenic or an enzyme-producing strain. 

 

3.1.2 Characterization and transcription analysis of batch cultures with the two 

sequenced A. niger strains CBS 513.88 and ATCC 1015 show distinct differences in the 

phenotype and transcriptome profile 

In order to evaluate the effect of the differences in genome sequence on the physiology of the 

two A. niger strains, CBS 513.88 and ATCC 1015, a comparative transcriptome analysis was 

performed. The two strains were grown exactly under the same conditions in batch cultures in 

a glucose based minimal medium designed for enzyme production and dispersed filamentous 

growth as reported in Materials and Methods. Samples were harvested for transcriptome and 

metabolite analysis at the mid exponential phase of growth. The transcriptome profiles were 

analyzed using an Affymetrix array based on the genome sequence of ATCC 1015 

(ANDERSEN et al. 2008b). Several characteristics of the cultures physiology were measured 
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and are summarized in Table 7. Glucoamylase A activity was measured and resulted to be 

more than six times higher in cultivations of the glucoamylase producing strain A. niger CBS 

513.88, whereas the citric acid concentration in the culture filtrates was fairly similar. 

 

Table 7. Statistics for batch cultivations of A. niger ATCC 1015 and A. niger CBS 513.88. 

Fermentations were performed in three biological replicates for each strain. Values are 

presented as average±standard deviation. μmax and Ysx are general statistics for the 

fermentations, while the remaining values are specific for the time of sampling for 

transcription analysis. GlaA refers to glucoamylase A.  

 

 ATCC 1015 CBS 513.88 

mRNA sample (h) 24.5±1.2 40.2±4.2 

Biomass (g L-1) 5.0±0.1 4.0±0.5 

μmax (h-1) 0.17±0.01 0.15±0.01 

Glucose (g L-1) 10.0±0.6 9.5±0.4 

Glycerol (g L-1) 0.09±0.02 0.27±0.03 

Ysx  (Cmol/Cmol)a 0.67±0.03 0.55±0.03 

GlaA (U mL-1)b 9.6±3.2 62.8±9.3 

Citric acid (g L-1) 0.10±0.12 0.14±0.03 

a Biomass was converted to Cmol by means of the factor 24.9 g biomass Cmol-1 (NIELSEN et al. 2003)  . 
b One unit of glucoamylase can be assumed to correspond to 25µg of protein (PESL protein assay; Boehringer 

Mannheim, Mannheim, Germany). 

 

Statistical analysis showed 4,784 significantly differentially expressed genes under the cut-off 

imposed (p < 0.05), where 2,431 genes had a higher expression index in A. niger CBS 513.88 

and 2,353 a higher index in A. niger ATCC 1015. To further explore the differences in 

metabolism of the two strains, the significantly differentially expressed genes were examined 

in the context of the metabolic network. An almost equal number of genes were up-regulated 

in each of the two strains. A substantial subset of the metabolic genes was up-regulated in 

CBS 513.88, including central pathways such as glycolysis and the tricarboxylic acid cycle. 

This was rather surprising, since the specific maximum growth rate of ATCC 1015 was higher 

than for CBS 513.88, therefore expecting higher expression levels of genes involved in the 
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production of precursors for biomass and replication machinery for ATCC 1015 and not for 

CBS 513.88. Apparently, the strain with higher glucoamylase productivity at a lower growth 

rate demanded a higher metabolic activity in comparison to the acidogenic strain ATCC 1015. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Significantly regulated genes mapped into the reconstructed A. niger metabolic 

network. Green boxes denote reactions where the corresponding genes are up-regulated in A. 

niger CBS 513.88. Red boxes show up-regulation of genes in ATCC 1015 strain. Blue boxes 

demonstrate that putative iso-enzymes exist that are up-regulated in each of the two strains. 

White boxes/No box indicate no significant change between the strains. The plot is an 

adaptation of a figure from Andersen et al. (ANDERSEN et al. 2008a). Complete metabolic 

map is shown in Supplementary Figure 5 of manuscript 1. 

 

When examining Figure 8 for entire up-regulated pathways in either strain, the biosynthetic 

pathways of threonine, serine, lysine and tryptophan were found up-regulated in the CBS 

513.88 strain. A closer look using a codon usage analysis of the glucoamylase A gene (glaA) 

(details in manuscript 1), revealed that glaA is uncommon in that it has a higher percentage of 

tryptophan codons than 90% of all the predicted genes of A. niger CBS 513.88, and twice as 

high a tryptophan content as the average in the biomass composition measured by Christias et 

al. (CHRISTIAS et al. 1975). Many SNPs were found in the biosynthetic pathway of 

tryptophan, which was an unforeseen coincidence. Additionally, threonine and serine codons 

also have high levels in glaA. The combination of these results suggested that high-yield 

production of enzymes is highly dependent on corresponding increased production of amino 

acids that are over-represented in the product. 
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Other up-regulated pathways in CBS 513.88 strain included purine and pyrimidine 

biosynthesis and chitin biosynthesis. Very few metabolic pathways were generally up-

regulated in ATCC 1015. The few that were up-regulated included most of the sterol 

biosynthesis pathway and the alternative oxidative pathway.  

In order to identify significant trends in the transcriptome profile of the two strains, a GO term 

over-representation analysis was conducted with the up-regulated genes from each strain. The 

analysis showed that up-regulated genes in CBS 513.88 had a number of significant traits 

relevant to high protein production yield, specifically amino acid biosynthesis and tRNA 

aminoacylation activities (see Table 8).  

 

Table 8. Summary of GO term over-representation analysis of the 1000 most up-regulated 

significantly differentially expressed genes found in batch cultivations of A. niger CBS 

513.88. The top ten biological processes GO terms are shown. 
# GO.ID Term Annotated Significant Expected 

1 GO:0006418 tRNA aminoacylation for protein translation  50 21 5.38 

2 GO:0006526 Arginine biosynthetic process  8 6 0.86 

3 GO:0009082 Branched chain family amino acid anabolism  12 7 1.29 

4 GO:0007049 Cell cycle  34 12 3.66 

5 GO:0000059 Protein import into nucleus, docking  10 6 1.08 

6 GO:0009073 Aromatic amino acid family biosynthetic process  19 8 2.04 

7 GO:0016043 Cell organization and biogenesis  220 43 23.67 

8 GO:0009067 Aspartate family amino acid biosynthetic process  9 5 0.97 

9 GO:0050658 RNA transport  3 3 0.32 

10 GO:0015031 Protein transport  107 26 11.51 

 

The same GO term over-representation study in ATCC 1015 strain did not propose terms of a 

similar trend. However, electron transport was the most significantly over-represented 

biological process GO term (see Table 9). Individual examination of the regulated genes 

showed the presence of an alternative oxidase and the mitochondrial proton gradient driven 

ATPase. Up-regulation of genes annotated to have functions in carbohydrate transport and 

transport of organic acids was also seen. 
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An examination of the individual regulated genes to find single genes of special interest, 

showed that regulation of glucoamylase A was significantly up-regulated in CBS 513.88, but 

the fold change was ~3 compared to the more than 6-fold higher glucoamylase activity 

measured in the enzymatic assays of these cultivations.  

 

Table 9. Summary of GO term over-representation analysis including all the statistically 

significant up-regulated genes found in batch cultivations of A. niger ATCC 1015. The top ten 

biological processes GO terms are reported. 
# GO.ID Term Annotated Significant Expected 

1 GO:0006118 Electron transport  599 153 115.07 

2 GO:0006564 L-serine biosynthetic process  18 10 3.46 

3 
GO:0051341 

Regulation of oxidoreductase 
activity 

34 15 6.53 

4 GO:0008643 Carbohydrate transport  101 30 19.4 

5 GO:0009410 Response to xenobiotic stimulus  22 9 4.23 

6 GO:0042221 Response to chemical stimulus  99 27 19.02 

7 GO:0006865 Amino acid transport  87 24 16.71 

8 GO:0015837 Amine transport  87 24 16.71 

9 GO:0015849 Organic acid transport  87 24 16.71 

10 GO:0046942 Carboxylic acid transport  87 24 16.71 

 

 

Differences were seen not only at the transcriptome level, but also at the phenotypic level. 

Morphological differences were observed when growing the two A. niger strains on solid 

media plates. A. niger ATCC 1015 produced dark black conidiophores with long strings of 

connected spores, whereas A. niger CBS 513.88 produced conidiophores with less brown 

spores with a sectorial morphology as seen in Figure 9.  
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Figure 9. Morphological differences of A. niger strains a) ATCC 1015 and b) CBS 513.88 

when grown on solid rich media. Plates were incubated for 6 days at 30 °C. 

 

3.1.3 Gene expression mapping into the A. niger genome identifies secondary metabolite 

cluster activities and reveals a whole-arm inversion in chromosome VI 

Differences in gene expression relative to chromosome positions between the two A. niger 

strains compared, ATCC 1015 and CBS 513.88, were also examined. The log2-ratios of the 

gene expression indices from the transcriptome analysis were mapped to the synteny maps 

constructed (details in results section of Manuscript 1). This allowed the identification of 

chromosome regions with a uniformly higher expression in one of the strains. 

The parts of the genome assembly of ATCC 1015 that did not find hits in the CBS 513.88 

sequence were of special interest, since uniformly higher expression in the ATCC 1015 strain 

of all genes in the entire region suggested that this region was not present in the CBS 513.88 

strain. This was the case for six large regions, including the largest area in the genome not 

found in CBS 513.88 as explained in details in manuscript 1.  

Two putative secondary metabolite clusters were found using the log2-ratios from the 

transcriptome analysis. The cluster on chromosome VIII (including a putative polyketide 

synthase gene, JGI211885), which is nearly identical to an A. fumigatus gene-

AFUA_1G17740) appeared to be unique for the ATCC 1015 strain since this region was not 

found in the genome of the CBS 513.88 strain. The second cluster was present in both 

genomes and located close to the telomeric region on the right arm of chromosome I. This 

cluster was significantly up-regulated in the CBS 513.88 A. niger strain and contained a 

putative non-ribosomal peptide synthase (NRPS) (JGI43555) and a putative transcription 

factor (JGI188323).  

The transcriptome mapping successfully confirmed the inversion of the entire right arm of 

chromosome VI (details in Manuscript 1). The telomeric position effect has been described 

earlier in S. cerevisiae by Gottschling et al. (GOTTSCHLING et al. 1990), and the same 
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philosophy was applied to find out the orientation of chromosome arms in A. niger CBS 

513.88. Thus, if an arm has been inverted, reduced expression should be found at opposite 

ends in ATCC 1015 and CBS 513.88, thereby influencing the log-2 ratios. This was seen on 

the right arm of chromosome VI with the numerical log2-ratios increasing towards the two 

ends. 

 

3.2 Insights into glycerol metabolism and its regulation in Aspergillus 

The findings reported in this section are the foundation of manuscript 2: Uncovering 

transcriptional regulation of glycerol metabolism in Aspergilli through genome-wide gene 

expression data analysis. The driving force for conducting this study was mainly due to the 

fact that glycerol has become of considerable importance in industrial fermentation processes 

as being a major by-product from biodiesel production. Thereby, it represents a cheap carbon 

source for bio-based production of chemicals. Glycerol is a non-fermentable carbon source 

that can be used by many yeast species, including S. cerevisiae and filamentous fungi such as 

A. nidulans, A. oryzae, and A. niger. For this reason, we considered that it would be valuable 

to identify regulatory nodes that control glycerol consumption in industrial relevant Aspergilli 

in order to convert this by-product into other chemicals or proteins of higher added value.  

In the yeast S. cerevisiae and Aspergilli, glycerol degradation occurs via a two steps glycerol 

phosphorylative pathway. In the first step, glycerol is converted to glycerol-3-phosphate by 

glycerol kinase (EC 2.7.1.30), product of the gene GUT1 in S. cerevisiae. Then, glycerol-3-

phosphate crosses the outer mitochondrial membrane, where it is oxidized to glycerone 

phosphate by the inner mitochondrial membrane enzyme, FAD+-dependent glycerol-3-

phosphate dehydrogenase (EC 1.1.99.5), which is encoded by the S. cerevisiae gene GUT2 

(DAVID et al. 2006; RONNOW and KIELLAND-BRANDT 1993). Finally, glycerone phosphate 

enters the cytosol, where it is used either in the glycolytic or in the gluconeogenic pathways. 

To identify the transcriptional regulation of glycerol metabolism in Aspergillus, we analyzed 

data from triplicate batch fermentations of three different Aspergilli (Aspergillus nidulans, 

Aspergillus oryzae and Aspergillus niger) with glucose and glycerol as carbon sources and the 

main facts are reported and discussed in the following subsections. 

 

3.2.1 Fermentation results using three different Aspergillus species with glucose or 

glycerol as carbon source 
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To have a complete dataset of fermentation and transcriptome data in all three Aspergillus 

species, namely, A. oryzae, A. niger and A. nidulans; we collected fermentation data from our 

previous work and conducted new fermentation experiments (details in manuscript 2). 

Fermentations on glycerol with A. oryzae and A. niger were conducted specifically for the 

study. Each Aspergillus species had its own specific cultivation medium and all fermentations 

were run in three biological replicates. A summary of all fermentation results are shown in 

Figure 10, where panel a) Shows the substrate and biomass concentration profiles for each 

Aspergilli, and panel b) Shows the statistics of the physiological characterization data. In the 

case of A. nidulans and A. niger, the growth rates differences on the two carbon sources were 

more prominent. For A. nidulans, the maximum specific growth rate on glucose was double 

that on glycerol; and for A. niger, growth on glycerol was four times slower when compared 

to glucose (see Figure 10 b). The difference in growth rates in the three Aspergillus spp. might 

be due to several reasons, but we hypothesize that it is very likely that glycerol is a favorite 

carbon source for the A. oryzae strain A1560 used in this study (VONGSANGNAK et al. 2008). 

Besides the cultivation conditions, have been optimized for growth on glycerol (Novozymes’s 

fermentation conditions). Culture samples were harvested and processed further for genome-

wide gene expression analysis. 
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b) 

Strain  
 

Carbon 
source  

µmax  Ysx  
Time of 

sampling  
Biomass 

concentration  

(h-1)  (g DW/g  
substrate)  (h)  (g DW/Kg)  

A. nidulans  Glucose  0.23±0.020  0.47±nd ~ 22 6.33±0.40 

 
Glycerol  0.11±0.010  0.42±nd   ns  6.50±0.50  

A. oryzae  Glucose  0.38±0.004  0.54±0.013  ~6 2.50±0.09 

 
Glycerol  0.30±0.004  0.52±0.008  ~8 2.44±0.05 

A. niger  Glucose  0.22±0.015  0.57±0.053  ~21 3.74±0.06 
  Glycerol  0.05±0.007  0.40±0.022  ~36 0.88±0.29 

 

Figure 10. Summary of batch fermentation parameters of A. nidulans, A. oryzae and A. niger 

grown on glucose or glycerol as sole carbon source. a) Fermentation profiles of a 

representative replicate. (♦): Substrate concentration (g/L). (•): Biomass concentration (g 

DW/Kg). All fermentations were performed in three biological replicates. b) Summary of 

batch cultivations statistics. For all cultivations, maximum specific growth rate (µmax), 

biomass yield (Ysx), time of sampling for transcriptome analysis (TA), and biomass 

concentration at the time of sampling for transcriptome analysis (TA) are given. ns: not 

specified. 
 

3.2.2 Protein comparison and transcriptome analysis  

Protein comparisons and cross analysis with gene expression data of all three species resulted 

in the identification of 88 genes having a conserved response across A. nidulans, A. oryzae 

and A. niger. In order to reach this result, first, genes having orthologues in the three species 

were identified using a BLASTP based comparison (ALTSCHUL et al. 1990). Genome-wide 

protein sequences from the three Aspergilli were compared among each other in order to 

obtain tri-directional orthologues. By defining a threshold of E-value of 1E-30, 5,190 

orthologues were found to be conserved in all three Aspergillus species producing the list of 

1:1:1 orthologues shown in Supplementary Table 1 (see Appendix). This set of conserved 

genes (1:1:1 orthologues) was used for further analysis. 

Then, a t-test pair-wise comparison for each Aspergillus spp. on glycerol versus glucose 

identified 904, 1,145 and 3,058 genes as significantly differentially expressed for A. nidulans, 

A. oryzae and A. niger, respectively.  

Subsequently, these three subsets of significant genes in all three species were cross compared 

to the list of 5,190 conserved genes in the three Aspergilli as well as with each other. This 
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resulted in the identification of 88 conserved genes that were differentially expressed in all 

three species (Figure 11). Among them, 81 genes were up-regulated during growth on 

glycerol, 5 genes were down-regulated and 2 genes did not show a clear trend (details in 

manuscript 2). 

 

 

 

 

 

 

  

 

 

 

 

Figure 11. Venn diagram of significantly differentially expressed genes from glycerol versus 

glucose by pair-wise comparison for each Aspergillus species. The colored overlapping 

middle area contains the genes that are significantly differentially expressed and conserved in 

all three Aspergillus species. The numbers on a white background represent the non conserved 

genes in all three Aspergilli, but still differentially expressed in a single species. Adjusted p 

value cut-off < 0.05. 

 

3.2.3 Detection of conserved motifs 

One or more conserved transcriptional regulators were suspected to be up-regulating the 

subset of 81 genes or down-regulating the subset of 5 down-regulated genes within the group 

of 88 genes having a conserved transcriptional response. Therefore, statistical promoter 

analysis was conducted for all three data sets of 81 up-regulated genes on glycerol medium. 

By inspecting the upstream sequences of each Aspergillus up-regulated orthologues dataset, 

accounting for 243 promoters in total (3 X 81 promoters), we found the motif “TGCGGGGA” 

as the most over-represented pattern. The corresponding logo plot is shown in Figure 12. The 

same analysis was conducted with the subset of down-regulated genes, but no consensus cis-

acting regulatory element was found. Based on a literature search, we proposed that the motif 

“TGCGGGGA” is the consensus binding sequence of the transcriptional activator Adr1, 
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which regulates several pathways in S. cerevisiae (YOUNG et al. 2003) and in humans (DAS 

and BAEZ 2008).  

 

 

 

 

 

 

 

 

 

 

Figure 12. Logo plot of the over-represented motif from the 81 promoter regions of A. 

nidulans, A. oryzae and A. niger genes significantly up-regulated on glycerol medium. The 

nucleotides representing the sequence are stacked on top of each other for each position in the 

aligned sequences. The height of each nucleotide is made proportional to its frequency, and 

the nucleotides are sorted so that the most common is on top. The height of the entire stack is 

then adjusted to signify the information content of the sequences at that position (SCHNEIDER 

and STEPHENS 1990). The “x axis” indicates the position of the corresponding nucleotide (A, 

T, C or G). “y axis” represents the information content of the corresponding nucleotide at 

each position in a bits scale, where 2 is the maximum value. 

 

The consensus binding sequence of Adr1 in humans is “GCGGGGA”, and regulates the 

transcription of psen1 (gene encoding presenilin 1) (DAS and BAEZ 2008), a transmembrane 

protein that functions as part of the gamma-secretase protease complex. In S. cerevisiae, Adr1 

is known to regulate several pathways including glycerol metabolism and fatty acid 

metabolism (YOUNG et al. 2003). The consensus binding sequence in S. cerevisiae is 

TTGG(A/G)GA, and according to Cheng et al. (CHENG et al. 1994), only four base pairs are 

essential: GG(A/G)G. From the subset of 81 up-regulated genes, 24 genes had the motif 

TGCGGGGA in all three Aspergillus species and 30 of the total of 72 genes showed it more 

than once in their promoters. In general, the motif was located at an average position of 650 

bps upstream from the start codon. From this subset of 24 up-regulated genes, 5 of them had 

orthologues in S. cerevisiae; ADH2 (YMR303C/alcB in Aspergillus), ALD5 (YER073W/aldA 
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in Aspergillus), ACS2 (YLR153C), CCC1 (YLR220W) and PUT2 (YHR037W). The location 

of the Adr1 promoter binding sites are summarized in Supplementary Table 5 of manuscript 

2. This conserved up-regulatory response in all three Aspergillus spp. suggested that these 

genes could be activated by a common cross species conserved transcription factor, which 

could be the regulatory protein Adr1 as it occurs in S. cerevisiae, responsible for regulation of 

ADH2 and ALD5 (YOUNG et al. 2003) (details in Table 1 of manuscript 2).  

The transcriptome analysis indicated that genes involved in ethanol, glycerol, fatty acid, 

amino acids and formate utilization were putatively regulated by Adr1 in Aspergilli as they 

are in S. cerevisiae and this transcription factor, therefore is likely to be cross species 

conserved among Saccharomyces and distant Ascomycetes. Transcriptome data was further 

used to evaluate the high osmolarity glycerol (HOG) pathway. All the components of this 

pathway present in yeast have orthologues in the three Aspergilli studied and its gene 

expression response suggested that this pathway functions as in S. cerevisiae (details in 

manuscript 2).  

 

3.2.4 Glycerol utilization in A. nidulans, A. oryzae and A. niger 

A closer look at the transcriptome results showed differences on the preference of glycerol 

utilization pathways in each Aspergilli studied. In naturally glycerol utilizing fungi, glycerol 

(GL) can be phosphorylated either into glycerol 3-phosphate (GL3P) and further oxidized by 

the FAD+-dependent glycerol-3-phosphate dehydrogenase into glycerone phosphate (T3P2), 

which then enters glycolysis. In the other pathway, glycerol can be converted through 

NAD+/NADP+ glycerol dehydrogenases into glycerone (GLYN) and further phosphorylated 

by glycerone kinase into T3P2. A simplified scheme of the metabolic pathways leading to or 

from glycerol is illustrated in Figure 13. 

It is likely that both pathways leading to the glycolytic intermediate T3P2 are involved in 

glycerol utilization in Aspergillus species. Nevertheless, according to our transcriptome data, 

the most active pathway in A. oryzae is probably the one using glycerol dehydrogenase and 

glycerone kinase to produce glycerone phosphate. In contrast, in A. niger and A. nidulans, the 

pathway using glycerol kinase and the FAD+ dependent glycerol-3-phosphate dehydrogenase 

is most likely to be the dominant (see Figure 13). 

Another study in A. niger supporting our findings has shown that glycerol accumulated in a 

glycerol kinase mutant (WITTEVEEN et al. 1990; WITTEVEEN and VISSER 1995), which was 



49 

 

able to synthesize glycerol, but not able to catabolize it, suggesting that the activity of this 

pathway is important for glycerol catabolism. 

 

 

 

 

 

 

 

 

 

 

Figure 13. Glycerol utilization pathways in Aspergillus species leading to the production of 

the glycolytic intermediate glycerone phosphate. The abbreviation of metabolites is described 

as follows. GL, glycerol; GLYAL, D-glyceraldehyde; GLYN, glycerone; GL3P, sn-glycerol 

3-phosphate; T3P2, glycerone phosphate. 

 

 

3.3 Transcriptional regulation of maltose uptake in A. oryzae and A. niger  

The findings reported in this section are the base of manuscript 3: Genome-wide analysis of 

maltose utilization and regulation in aspergilli. In this case, the motivation for conducting the 

study was mainly because maltose is one of the most effective inducers used for enzyme 

production in Aspergilli such as for α-amylase production by A. oryzae (CARLSEN and 

NIELSEN 2001; CARLSEN et al. 1996), but also for glucoamylase production in A. niger and 

Aspergillus nidulans (BARTON et al. 1972; KATO et al. 2002). Compared to the yeast 

Saccharomyces cerevisiae little is known about maltose utilization, transport and regulation at 

the molecular level in Aspergilli, and it was therefore interesting to study the mechanisms of 

maltose utilization in A. oryzae and A. niger.  

 

3.3.1 Maltose utilization 

Maltose utilization in S. cerevisiae is under control of three general regulatory mechanisms: 

induction, glucose repression and glucose inactivation (NOVAK et al. 2004). The presence of 

maltose in the environment is necessary for induction of synthesis of maltase and maltose 
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transporter. The metabolism and regulation of maltose requires the presence of the MAL 

regulon. There are several MAL regulons identified in different strains of S. cerevisiae, but the 

MAL6 locus is the most well studied (KLEIN et al. 1996). The gene structure of the MAL6 

locus is composed of a cluster of three genes: MAL61 (MALT) encoding maltose permease, 

MAL62 (MALS) encoding maltase (EC: 3.2.1.20) and MAL63 (MALR), encoding a 

transcriptional activator specifically activating expression of the MALT and MALS genes 

(NEEDLEMAN et al. 1984). As many other processes, expression of both MALT and MALS is 

carbon catabolite repressed by glucose through the transcription factor Mig1 and coordinately 

induced by maltose (KLEIN et al. 1996).  

 

3.3.2 Identification of MAL regulon in Aspergilli 

Using the gene structure of the S. cerevisiae MAL6 locus as a model, we aimed at 

identification of the MAL gene cluster in ten different sequenced Aspergillus genomes by 

using BLASTP (ALTSCHUL et al. 1990) (see Methods from manuscript 3 for details). Five 

different Aspergillus species, specifically, A. oryzae, two strains of A. fumigatus, A. flavus, A. 

clavatus, and A. fischeri showed at least one MAL gene cluster in their genomes as illustrated 

in Figure 14.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. The diagram shows the comparative sequence analysis of MAL gene cluster 

between S. cerevisiae and 10 different Aspergillus species. Values in each rectangle represent 

the shortened ORF name. For individual full name, the shorten ORF is prefixed by “AO090” 
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for A. oryzae RIB40, “An02g” for A. niger CBS 513.88, “JGI” for A. niger ATCC 1015, 

“ANID_” for A. nidulans FGSC A4, “ORF” for A. fumigatus Af293 and A1163, A. clavatus 

NRRL 1 as well as A. fischeri NRRL 181, “AFL2T_” for A. flavus NRRL 3357, “ATET_” for 

A. terreus NIH2624. Complete details are shown in Supplementary File 1 of manuscript 3. 

 

A. oryzae and A. flavus contained at least two MAL gene clusters. Phylogenetic analysis 

suggested that events of gene duplication and horizontal gene transfer may have occurred in 

these strains (see Supplementary file 1 from manuscript 3). In contrast, no MAL cluster was 

found in A. nidulans, A. terreus and two strains of A. niger under the statistical constraints 

imposed. Therefore, it is most likely that these four Aspergillus strains do not have the MAL 

regulon for maltose utilization. In all the sequenced Aspergillus genomes, we were able to 

identify multiple orthologues encoding maltase or α-glucosidase enzymes and maltose 

transporters as shown in Figure 14, but not found to be present in a gene cluster.  

 

3.3.3 Physiological characterization of A. oryzae and A. niger in batch fermentations 

The strains used in these experiments were A. oryzae wild type strain A1560 (an ancestor of 

strains used for commercial α-amylase production) and A. niger wild type strain BO1 (an 

ancestor of strains used for commercial glucoamylase production). Both strains were obtained 

from Novozymes (CARLSEN and NIELSEN 2001; PEDERSEN et al. 2000). 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Biomass and substrate concentration profiles of A. oryzae and A. niger with 

glucose or maltose as carbon sources in batch fermentations.  



52 

 

To evaluate their physiology and harvest samples for global regulatory response analysis 

when adjusting metabolism to the use of glucose or maltose, we grew the two Aspergillus 

species in well-controlled bioreactors to perform reproducible batch fermentations. The 

cultivations were carried out in three biological replicates on defined minimal medium 

(ANDERSEN et al. 2008b; PEDERSEN and NIELSEN 2000) (see Methods from manuscript 3 for 

details). Biomass growth and substrate concentration profiles are shown in Figure 15. In 

comparison to A. niger, A. oryzae grew faster than A. niger in the two carbon sources used. 

Glucose was exhausted in 10 h and maltose in 12 h, at rates of 3.09±0.02 g L-1.h-1 and 

2.46±0.02 g L-1.h-1, respectively. A summary of typical fermentation characterization 

parameters are shown in Table 10.  

 

Table 10. Physiological characterization data. For all batch cultivations, maximum specific 

growth rate (µmax), biomass yield (Ysx), sampling time for transcriptome analysis (TA), and 

biomass concentration at the time of sampling for transcriptome analysis (TA), are given. 

Average values and standard deviations are reported. 

Strain Carbon source  µmax Ysx 
Sampling time 

for TA 
Biomass for 

TA 

    (h-1) (g DW/g Csource) (h) (g DW/Kg) 
A. oryzae Glucose 0.38±0.01 0.51±0.01 6±0 2.50±0.09 

 
Maltose 0.32±0.05 0.49±0.05* 7±0 2.27±0.09 

A. niger Glucose 0.22±0.01 0.57±0.05 21±1 3.74±0.06 
  Maltose 0.31±0.02 0.62±0.02* 24±0 3.55±0.51 

            *Biomass yield was calculated based on glucose (g DW/g glucose) 

 

In A. oryzae fermentations, as shown in Figure 15, glucose accumulated only modestly in the 

media during growth on maltose. In contrast, with A. niger, there was substantial glucose 

accumulation on maltose cultivations, probably due to a very high extracellular glucosidase 

activity expressed by A. niger, which allowed the fungus to grow very fast on this carbon 

source. Besides growth rates and biomass yields of A. oryzae and A. niger, sampling times 

and biomass yields when sampling biomass for gene expression analysis were reported (see 

Table 10). 

 

3.3.4 Transcriptome analysis of maltose metabolism  

We validated the presence or absence of the MAL gene cluster in A. oryzae and A. niger by 

using our custom designed Affymetrix GeneChip for genome-wide expression analysis 
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(ANDERSEN et al. 2008b). To do this, we performed Student’s t-test pair-wise transcriptome 

comparisons of glucose and maltose to examine expression of putative MAL gene clusters in 

A. oryzae and in A. niger (for complete details see manuscript 3). Solely 16 genes were 

significantly differentially expressed in A. oryzae. While, in contrast, for A. niger, no genes 

were statistically differentially expressed. Among the significant up-regulated genes, there 

were genes encoding maltase (AO090103000129 and AO090038000234) and maltose 

permease (AO090103000130 and AO090038000233) in A. oryzae, which are the functionally 

related orthologous genes of MALS and MALT, respectively in S. cerevisiae (see Figure 14 

from section 3.3.2). The two A. oryzae genes orthologous to the S. cerevisiae MALR 

transcription factor, 31 and 5, were also -

binding site in the upstream region of 

MALR in A. oryzae (see details in results section of manuscript 3).

MAL  A. oryzae MALR S. 

cerevisiae .  

A. oryzae has two MAL regulons and each regulon contains one MALR transcriptional 

activator (e.g. 31 or 5). MALR regulator induces maltose 

permeases (MALT) to transport extracellular maltose into the cell. MALR also induces maltase 

(MALS) that hydrolyzes intracellular maltose into glucose which is then channeled through 

glycolysis. Figure 16 a) illustrates the proposed mechanisms for regulation of maltose 

utilization in A. oryzae. In contrast, no MAL gene cluster was identified in A. niger, at least no 

closely homologous to the one existing in S. cerevisiae (see Figure 14). Maltose utilization in 

A. niger do not involve a MAL regulon, but occurs through another regulatory system, e.g., via 

AmyR regulator for glucoamylase (glaA) and/or induction of other glucosidases. Further 

supporting our findings, Yuan and coworkers (YUAN et al. 2008b) using the wild type strain 

N402 (ATCC 9029) did not identify up-regulated components of the MAL regulon when 

comparing gene expression data on xylose versus maltose cultivations. Based on findings in 

the literature (YUAN et al. 2008b) and our findings, we suggest that A. niger utilize maltose by 

means of extracellular hydrolysis by glucoside hydrolases such as glucoamylase followed by 

glucose uptake and metabolism. Figure 16 b) summarizes the mechanism for regulation of 

maltose utilization in A. niger.  
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Figure 16. Mechanism of maltose utilization and regulation in a) A. oryzae and b) A. niger. 

 

3.4 Strain construction 

In order to investigate the role of several transcription factors involved in different regulatory 

pathways, gene knock-out strains were constructed. The A. niger ATCC 1015 strain was 

chosen as genetic background to conduct the genetic manipulations. The constructed gene 

deletion strains were further physiologically characterized for growth on solid media plates 

using different carbon sources as well as in submerged batch cultivations. Samples for 

transcriptome analysis were taken in the mid-exponential phase of growth and analyzed 

accordingly to the methods described. The gene deletion strains were used for conducting the 

studies reported in manuscripts 4 and 5. 

 

3.4.1 AdrA deletion 

In an attempt to identify the existence of Adr1, AdrA in Aspergillus species, i.e., in A. niger 

and to understand its regulatory effect, an A. niger adrA deletion strain was constructed. 

According to our results from transcriptome studies (manuscript 2), Adr1/AdrA regulates 

pathways such as glycerol and fatty acid metabolism, amino acid metabolism, ribosome 

biogenesis and peroxisomal biogenesis. Therefore, deletion of this putative transcription 

factor would result in down-regulation of genes involved in those pathways where it functions 

as an activator. The method used for deleting the ADR1 S. cerevisiae orthologue in A. niger, 

JGI210333, is described in Materials and Methods. 
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Figure 17. Schematic representation of the deletion of A. niger AdrA orthologue. On the left 

hand side, panel a) Genomic region of adrA locus (JGI210333), panel b) Gel electrophoresis. 

Lanes are as follows: 1 Kb DNA ladder (lane 1), PCR product from genomic DNA of wild 

type strain ATCC 1015 amplified with primers AdrA-F1 and AdrA-R3 (lane 2), PCR product 

from genomic DNA of wild type strain ATCC 1015 amplified with primers AdrA-F1 and hph 

screen primer (lane 3), PCR product from genomic DNA of adrA gene deletion mutant 

amplified with primers AdrA-F1 and AdrA-R3 (lane 4) and PCR product from genomic DNA 

of adrA gene deletion mutant amplified with primers AdrA-F1 and hph screen primer (lane 5). 

1 kb DNA GeneRuler (Fermentas AB, Sweden) was used. Gel electrophoresis was carried out 

with 1% agarose gel run for 1 h at 70 V. Fragment sizes are included in Kb. 

 

The transformation efficiency in A. niger is fairly low (MEYER et al. 2007); therefore, a vast 

number of transformants were screened by PCR using the primers AdrA-F1 and hph screen, 

and AdrA-F1 and AdrA-R3 as control reaction (for primers sequences see Table 5). An 

example of PCR screening results is shown in Figure 17. According to the expected band 

sizes, the transformant obtained is a gene deletion mutant, where the gene deletion cassette 

containing the gene conferring hygromycin resistance (hph) has been integrated in the 

targeted locus as shown in lane 5 of Figure 17. 

 

3.4.2 CreA deletion 

CreA is a transcription factor and one of the main components if not, the most important 

protein, involved in the glucose repression signaling cascade. It is the orthologue of Mig1, 

known to be regulating carbon catabolite repression in S. cerevisiae (GANCEDO 1998). 

Previous results from physiological studies as well as transcriptome studies have shown that 

CreA regulates a number of pathways. According to Mogensen et al. (MOGENSEN et al. 2006), 

the regulated genes can be classified in three main groups, namely: group 1: genes used for 

the metabolism of less favourable carbon sources, group 2: genes encoding gluconeogenic and 
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glyoxylate cycle enzymes and group 3: genes involved in secondary metabolism. Deletion of 

this key transcription factor would result in up-regulation of genes involved in those regulated 

pathways where it functions as a repressor. In order to study the effects of deleting this 

transcription factor over glucose repression orthologue components, and to understand its 

regulatory effect in a genome-wide way, an A. niger CreA/JGI206681, knock-out strain was 

constructed. As expected in filamentous fungi, a large number of transformants was screened 

by PCR in order to find potential transformants (see Table 5 for primer sequences). Results 

from PCR screening of transformant 3.2 are shown in Figure 18. This strain showed the 

expected PCR products band sizes after integration of the deletion cassette in the targeted 

locus (see lane 5 from Figure 18) and therefore, was used in further experiments.  

 

 

 

 

 

 

Figure 18. Schematic representation of the deletion of CreA in A. niger ATCC 1015. Panel a) 

Genomic region of creA locus (JGI206681). Panel b) Gel electrophoresis. Lanes are as 

follows: 1 Kb DNA ladder (lane 1), PCR product from genomic DNA of wild type strain 

ATCC 1015 amplified with primers CreA-F1 and CreA-R3 (lane 2), PCR product from 

genomic DNA of wild type strain ATCC 1015 amplified with primers CreA-F1 and hph 

screen primer (lane 3), PCR product from genomic DNA of creA gene deletion mutant 

amplified with primers CreA-F1 and CreA-R3 (lane 4) and PCR product from genomic DNA 

of creA gene deletion mutant amplified with primers CreA-F1 and hph screen primer (lane 5). 

Gel electrophoresis was conducted under the same conditions as above (section 3.4.1).  

 

3.4.3 FacB deletion 

In S. cerevisiae, Cat8 is a transcription factor involved in the regulation of several genes and 

activated during the diauxic shift, which is the transition between fermentative and non-

fermentative metabolism. Cat8 is the orthologue of FacB, known to regulate acetamide and 

acetate metabolism in A. nidulans (TODD et al. 1997a; TODD et al. 1997b). Genomic studies 

have shown that at least 30 genes, encoding proteins involved in gluconeogenesis, ethanol 

utilization and the glyoxylate cycle are regulated by Cat8 (TACHIBANA et al. 2005). In 



57 

 

addition, Cat8 together with the transcription factor Adr1 co-regulate a number of genes in S. 

cerevisiae (YOUNG et al. 2003). 

In an attempt to understand the regulatory role of FacB in A. niger, besides regulation of 

acetate metabolism, an A. niger facB deletion strain was constructed. Transformant 1.2 was a 

successful gene deletion strain, as demonstrated by PCR screening results shown in Figure 19, 

and was used in subsequent experiments. Growth assays confirmed that facB is required for 

growth on acetate as a sole carbon source as reported in the following sections and in 

manuscript 4.  

 

 

 

 

 

 

Figure 19. Schematic representation of the deletion of FacB in A. niger ATCC 1015. Panel a) 

Genomic region of facB locus (JGI139020). Panel b) Gel electrophoresis. Similar gel 

electrophoresis was run for facB gene deletion strain using the corresponding primer pair 

combination. Lane 1 corresponds to the 1 Kb DNA ladder used and lanes 2 and 3 for PCR 

products amplified with genomic DNA from ATCC 1015 wild type strain. Lanes 4 and 5 

corresponds to PCR products amplified with genomic DNA of facB gene deletion mutant. Gel 

electrophoresis was run under the same conditions as above. 

 

3.4.4 AreB deletion 

In order to study the regulatory role of AreB in A. niger, an areB deletion mutant was 

constructed. In A. nidulans, genetic analysis and physiological studies have shown that AreB 

is a GATA type transcriptional regulator involved in regulation of nitrogen metabolism in 

concert with AreA (CONLON et al. 2001). Similarly, in S. cerevisiae, nitrogen metabolism is 

regulated by GATA transcription factors (COFFMAN et al. 1997). In this case, there are two 

negative-acting GATA factors, Dal80 and Gzf3, which function requires a repressive carbon 

source. However, mutations in those two genes showed only minor effects at the level of 

growth phenotype (CONLON et al. 2001). 
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We suspected that deletion of this transcription factor in A. niger would result in up-regulation 

of genes involved in those pathways where it functions as a repressor or show a growth 

defect. 

Transformants were first screened by PCR (see Table 5 for primers sequences) and when 

candidates were found (Figure 20 a), Southern blot hybridization was carried out to confirm 

the correct deletion of the gene (Figure 20 b). As a typical PCR screening example, the results 

from colony 12.1 are shown in Figure 20 a).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Schematic representation of areB gene deletion in A. niger ATCC 1015. a) 

Targeted areB (JGI36739) locus and PCR screening results. Gel electrophoresis lanes are as 

follow: Lane 1: 1 Kb DNA ladder; Lane 2: PCR product from genomic DNA of wild type 

strain ATCC 1015 amplified with primers AreB-F1 and AreB-R3; Lane 3: PCR product from 

genomic DNA of wild type strain ATCC 1015 amplified with primers AreB-F1 and hph 

screen primer; Lane 4: PCR product from genomic DNA of wild type strain ATCC 1015 

amplified with primers AreB-F1 and AreB-R6; Lane 5:PCR product from genomic DNA of 

areB gene deletion mutant amplified with primers AreB-F1 and AreB-R3; Lane 6: PCR 

product from genomic DNA of areB gene deletion mutant amplified with primers AreB-F1 

and hph screen primer and Lane 7: PCR product from genomic DNA of areB gene deletion 

mutant amplified with primers AreB-F1 and AreB-R6. Gel electrophoresis was carried out as 

above. b) Southern blot hybridization. Gel electrophoresis lanes are described as follow: Lane 

1: λ DNA-BstEII digest ladder; Lanes 2 to 6: genomic DNA from transformants 10.1, 10.2, 
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10.3, 12.1 and 12.2, respectively after NdeI restriction enzyme (RE) digestion; Lane 7: 

genomic DNA from A. niger ATCC 1015 strain after NdeI RE digestion. Lanes 8 to 12: 

genomic DNA from transformant 10.1, 10.2, 10.3, 12.1 and 12.2, respectively after HindIII 

RE digestion; Lane 13: genomic DNA from A. niger ATCC 1015 strain after HindIII RE 

digestion. The band sizes of the ladder used and expected fragment sizes after genomic DNA 

RE digestion using the enzymes NdeI and HindIII are included. 

 

Southern blot results with genomic DNA from five different transformants digested with the 

restriction enzymes NdeI, HindIII or SacII are shown (Figure 20 b). All of them, 

transformants 10.1, 10.2, 10.3, 12.1 and 12.2, showed the expected band sizes after RE 

digestion using as probe the full knock-out construct when correct integration of the deletion 

cassette at the targeted locus has occurred.  
 

3.4.5 PyrG deletion  

The fact that many transformation experiments were carried out in order to get the knock-out 

strains, and only a few genes were successfully deleted in the targeted locus, indicates the 

difficulty of conducting gene targeting with A. niger due to many reasons, especially the 

existence of the non-homologous end joining pathway (MEYER 2008). Efforts towards 

engineering this pathway have been made in other Aspergillus species, i.e., A. oryzae and A. 

sojae (TAKAHASHI et al. 2006) as well as in other A. niger strains such as the A. niger N4O2 

strain (MEYER et al. 2007). We aimed at blocking this pathway by disrupting the kusA coding 

gene in the A. niger ATCC 1015 strain. In order to do this, we first constructed a pyrG 

disrupted strain. The transformant was unable to grow without the addition of the growth 

requirements uridine and uracil. Confirmation of the pyrG gene disruption was done by 

amplifying the targeted pyrG locus using the primers PG-F1 and PG-R5 producing a 2 kb 

fragment. The PCR product was purified and digested with the restriction enzymes XbaI or 

KpnI, respectively. KpnI cuts inside the amplified fragment from the wild type strain and 

XbaI cuts only if the pyrG gene has been successfully disrupted due to the design of the 

primers, where an XbaI restriction site was included (details in Figure 21).  

The transformant was checked for correct genetic behavior by doing a complementation 

assay. The plasmids pFNO3 (A. fumigatus pyrG), pRF281 (Neurospora crassa pyr4), and 

pLH1 (Trichoderma reesei pyrG) were used for amplification of the orotidine 5-phosphate 
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decarboxylase encoding gene required for the transformation and recovery of a functional 

pyrimidine biosynthetic pathway (LACROUTE 1968). 

  

 

 

 

 

 

 

 

 

Figure 21. Schematic representation of pyrG deletion. a) Genomic region of the targeted 

pyrG locus. pyrG+ corresponds to the ATCC 1015 pyrG wild type locus, pyrG- corresponds to 

the ATCC 1015 pyrG disrupted locus. b) PCR fragments digested with the RE XbaI or KpnI. 

The gel electrophoresis lanes are described as follows. Ladder: λ DNA-BstEII digest ladder. 

UP: amplified upstream flanking region of pyrG with PG-F1 and PG-R3B. Uncut: amplified 

pyrG fragment with PG-F1 and PG-R5. XbaI: amplified pyrG fragment with PG-F1 and PG-

R5 and digested with the RE XbaI. KpnI: amplified pyrG fragment with PG-F1 and PG-R5 

and digested with the RE KpnI. 

 

Protoplasts and transformation procedures were carried out as described earlier. 

Transformants were able to grow on minimal media plates without the addition of uracil and 

uridine, therefore, confirming the introduction of the pyrG gene in the genome of the A. niger 

ATCC 1015 strain and the correct recovery of pyrimidine biosynthesis (LACROUTE 1968).  

Subsequently, this strain was used for the deletion of the kusA gene. Fragments were 

constructed in order to have a transient KusA disruption mutant as described previously for A. 

nidulans (NIELSEN et al. 2006). This work was continued by Pacific Northwest National 

Laboratory (PNNL) staff in the United States.  

 

3.5 Analysis of transcription factor functions with transcriptomics 

The findings reported in this section are the foundation of manuscript 4: Transcriptome 

profiling of Aspergillus niger AdrA, FacB and CreA mutant genotypes during growth on 

glucose or glycerol as carbon sources, and manuscript 5: Deletion of a fungal regulatory gene 
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of the GATA family: areB in Aspergillus niger. The knowledge gap existing in terms of 

regulatory mechanisms was the driving force for conducting this kind of studies. When trying 

to improve production yields, there are bottlenecks which cannot be overcome by simply 

over-expressing or deleting pathways, mainly because the cell’s metabolism is a highly 

buffered system regulated by a number of transcription factors. Therefore, a more thorough 

knowledge of their regulatory roles is required. Even though A. niger is a widely exploited 

species for production of organic acids and enzymes, relatively little is known about the 

regulation of its metabolism. Thus, we made use of four transcription factor knock-out strains 

and gene expression profiling in order to reveal novel regulatory functions of the transcription 

factors investigated. 

 

3.5.1 Transcriptome profiling of Aspergillus niger adrA, facB and creA gene deletion 

strains during growth on repressing and derepressing conditions 

Glucose repression is a widely known mechanism by which the presence of glucose represses 

transcription of genes involved in the utilization of other less favored carbon sources. A full 

mechanistic explanation of this phenomenon and the other key players involved, besides 

CreA, has not yet been elucidated in Aspergilli.  

Using genome-wide transcription analysis we identified genes either affected directly or 

indirectly by AdrA, FacB and CreA transcription factors during growth on glucose or glycerol 

as carbon sources. In order to do this, we conducted well controlled batch fermentations with 

the corresponding deletion strains (strain construction details given in previous section) and 

collected mycelium used for further transcriptome profiling. Clustering of genes defined for 

each gene deletion strain allowed the identification of genes presumably regulated by each 

transcription factor or, alternatively, indirectly regulated. 

 

3.5.1.1 Physiology of adrA, facB and creA deletion strains 

Physiology of adrA, facB and creA transcription factor deletion strains was evaluated on solid 

media plates (see Figure 22) and in liquid batch cultivations (see Table 11).  

In summary, colony shape and conidiation on glucose was affected in all three deletion strains 

compared to the wild type strain ATCC 1015. As expected, facB deletion mutant could not 

grow on acetate as sole carbon source, but growth was normal on the other carbon sources 

evaluated. Growth of adrA deletion strain was slightly affected on lactose and on L-proline 
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when compared to the ATCC 1015 strain, forming fewer conidia, but not affected at all on 

glycerol. In contrast, creA knock-out morphology was affected on all carbon sources tested. 

In liquid cultivations, morphology of all cultures was filamentous. See manuscript 4 for 

complete results. 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. Growth assay with adrA, facB and creA A. niger deletion strains constructed. 

Strains were grown on different carbon sources and compared to wild type strain ATCC 1015. 

The following carbon sources were added to minimal medium containing 2% agar: glucose 

(10 g L-1), glycerol (10 g L-1), acetate and L-proline (50 mM), and lactose (5 g L-1). Complete 

media contains (10 g L-1 glucose monohydrate, 2 g L-1 yeast extract and 3 g L-1 tryptone). The 

pH was adjusted to 6.35. Plates were incubated for 9 days at 30 °C. 

Table 11. Kinetic parameters and yield coefficients of each strain grown on glucose or 

glycerol. TA: Time of biomass sampling for transcriptome analysis. 

Strain Carbon 
Source 

µmax                    
(h-1) 

Ys/x (g DW/g 
substrate) 

Consumption 
rate (g 

substrate/Lh) 

Time at 
TA (h) 

Biomass 
concentration 

(g DW/Kg) 

ATCC 1015  Glucose 0.202 ± 0.032 0.450 ± 0.068 1.590 ± 0.018 25 5.384 ± 0.802 
(WT) Glycerol 0.056 ± 0.004 0.375 ± 0.009 0.114 ± 0.019 60 1.660 ± 0.248 

Adr1KO Glucose 0.194 ± 0.020 0.545 ± 0.092 1.472 ± 0.118 25 4.340 ± 0.537 
  Glycerol 0.069 ± 0.002 0.592 ± 0.034 0.081 ± 0.001 60 1.295 ± 0.094 

FacBKO Glucose 0.209 ± 0.002 0.507 ± 0.032 1.975 ± 0.095 25 1.300 ± 0.233 
  Glycerol 0.072 ± 0.003 0.707 ±0.021 0.111 ± 0.002 60 1.857 ± 0.554 

CreAKO Glucose 0.203 ± 0.002 0.512 ±0.075 1.704 ± 0.056 25 2.133 ± 0.692 
  Glycerol 0.062 ± 0.004 0.653 ±0.020 0.089 ± 0.012 60 1.376 ± 0.355 
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The maximum specific growth rate on glucose for all mutants was similar to ATCC 1015 

strain. Whereas on glycerol, µmax and yields were considerably higher in all three gene 

deletion mutants than in ATCC 1015 (see Table 11). Even though, biomass concentration at 

the time of sampling for transcriptome analysis (TA) was different for each strain, samples for 

transcriptome analysis were harvested at 25 h for glucose fermentations and at 60 h for 

glycerol fermentations.  

 

3.5.1.2 Transcriptional profiling and identification of patterns by gene clustering 

Gene expression changes were assessed by using moderated Student’s t-test and ANOVA 

statistics. 

T-test pair-wise comparison of adrA deletion mutant compared to ATCC 1015 detected 980 

significant gene expression changes on glycerol, while none on glucose (for complete results 

see manuscript 4). Among those, 386 genes were significantly up-regulated in the adrA 

deletion mutant where we found lipids and acetyl-CoA metabolic processes as well as 

histidine biosynthetic process and ribosome biogenesis over-represented biological process 

GO-terms. 

Three ANOVA analyses, one corresponding to each deletion mutant compared to the wild 

type strain, were run. In each case, we compared the gene expression profiles of each gene 

deletion mutant grown on glucose or glycerol to the transcriptome profiles of the ATCC 1015 

strain under the same conditions. Three main effects were evaluated, one for the genotype 

effect (mutant/wild type), one for the carbon source effect (glucose/glycerol) and one for the 

combined effect or interaction (genotype/carbon source). The complete datasets are given in 

Supplementary Tables S1.1., S1.2., and S1.3 of manuscript 4. The major effect was due to the 

change of carbon source for all three mutants, whereas the genetic effect was the least 

important. Clustering analysis was performed considering the non-overlapping totally 

differentially expressed genes obtained from ANOVA analysis for adrA and creA deletion 

mutants; hence, 3,507 genes and 3,962 genes, respectively.  

ANOVA analysis showed 131 genes affected in response to deletion of adrA and the same 

over-represented biological processes GO-terms, as in case of the t-test pair-wise comparison 

on glycerol, were found. 

Deletion of facB and transcriptome profiling of the strain under repressing (glucose) and 

derepressing (glycerol) conditions showing no significant changes in gene expression on other 

pathways was major evidence supporting the fact that FacB is a regulator specific to acetate 
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and acetamide metabolism, even though the genes relevant to these pathways were not 

affected under this specific comparison (see details in manuscript 4). 

ANOVA analysis of creA deletion mutant identified 1,041 genes as changing expression 

level, and 319 genes were specific to the genetic perturbation (details in results section of 

manuscript 4). Among those 319 differentially expressed genes, we identified several 

glycoside hydrolases and putative transcriptional regulators. Similarly, moderated student’s t-

test pair-wise comparisons of creA deletion mutant versus ATCC 1015 strain were performed 

on glucose and on glycerol. On glucose, 121 genes were identified as having statistically 

significant expression level changes, where 112 genes were up-regulated in the CreA knock-

out strain including methyl isocitrate lyase (JGI196237), alpha amylase (JGI140567), and 

feruloyl esterase (faeB/JGI51478) (DE VRIES et al. 2002b). On glycerol, 1,224 gene 

expression changes were identified. We hypothesize that these facts could be an indication of 

the strong repression caused by glucose by means of other transcriptional regulators besides 

CreA, where deletion of CreA did not alleviate repression of genes caused by glucose. 

Clustering confirmed the complex regulatory effect of AdrA and CreA at the transcriptome 

level, where eight clusters were chosen as displaying interesting patterns (Figure 23). Cluster 

1 (582 genes) from Figure 23 a) showed up-regulated genes in the adrA deletion mutant with 

respect to ATCC 1015 when grown on glycerol, but exhibited similar levels of expression on 

glucose. Over-represented biological processes included amino acid and NAD+ biosynthetic 

and metabolic processes (see Figure 23 a).  

In contrast, for example, cluster 6 (253 genes) grouped genes showing higher transcript levels 

on glucose in the adrA deletion strain compared to ATCC 1015 indicating loss of repression, 

while having higher expression level in ATCC 1015 compared to adrA deletion strain on 

glycerol indicating loss of activation (see Figure 23 a). Biological processes related to 

regulation of transcription and signal transduction as well as DNA and RNA processing were 

over-represented (details in results section of manuscript 4). This cluster contained numerous 

transcription factors or proteins involved in regulatory processes, i.e., the protein kinase TorA 

(JGI53581); an HLH transcription factor, Hpa3 (JGI181931); a putative GATA transcription 

factor, SreP (JGI52040); a negative nitrogen transcriptional regulator, AreB (JGI36739); a 

forkhead family transcription factor (JGI214129); a homeobox transcription factor 

(JGI126405) and a histone transcription regulator 1 (JGI175742). A summary of the pathways 

regulated by AdrA, as indicated by cluster analysis, is shown in Figure 24. 
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Figure 23. Cluster patterns and over-represented biological processes GO-terms using the 

significantly differentially expressed genes obtained by ANOVA analysis. a) adrA deletion 

mutant clustering patterns; b) creA deletion mutant clustering patterns. The “X” axis 

represents the four different conditions investigated: 1) Deletion mutant_Glucose; 2) Deletion 

mutant_Glycerol, 3) Wild type ATCC 1015_Glucose; 4) Wild type ATCC 1015_Glycerol; the 

“Y” axis represents normalized gene expression intensities. 

 

The effect of creA deletion when the strain was grown under “non-repressing conditions” was 

fairly evident indicating probable repression when glycerol was used as a carbon source or 

relief of repression over other transcriptional activators via CreA as shown in cluster 4 (Figure 
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23 b). Here, higher transcript levels of creA deletion mutant compared to ATCC 1015 strain 

were obtained. Up-regulation of genes including those involved in amino acid related 

processes, i.e., amino acid biosynthetic process were identified (Figure 23 b), but also several 

transcription factors, i.e., the acid regulatory protein PacC (JGI47049) (ANDERSEN et al. 2009; 

PENALVA and ARST 2004) and the putative NF-X1 finger transcription factor (JGI191797).  

Cluster 5 also grouped genes that were clearly derepressed by the deletion of creA (Figure 23 

b) and included numerous genes already known to be glucose repressed by CreA, i.e., alpha-

glucosidase B (JGI119858), alpha-galactosidase C (JGI212736), glycosyl hydrolase 

(JGI173507), aldehyde dehydrogenase (JGI196874), the transcriptional activator XlnR 

(JGI48811), but also others likely affected, such as a putative Zn2Cys6 transcription factor 

(JGI188323) and oxaloacetate acetylhydrolase (JGI57241).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. Systems regulated by AdrA, FacB and CreA transcription factors in A. niger. 

 

Similarly, cluster 6 grouped derepressed genes on glucose, where processes such as regulation 

of cellular and metabolic processes were the most enriched. Among those genes we found at 

least 16 putative or annotated transcription factors as well as proteins involved in regulatory 

processes including the protein kinase TorA (JGI53581), the pH-response regulator protein 

PalI (JGI52449) (ARST et al. 1994), the putative PrnA transcription factor (JGI208882), 

which was earlier established not to be either self-regulated or significantly affected by carbon 

and/or nitrogen metabolite repression in A. nidulans (CAZELLE et al. 1998), the acetate 
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metabolism regulator FacB (JGI139020), the MADS-box transcription factor RlmA 

(JGI51606) (DAMVELD et al. 2005) and the nitrogen regulatory protein AreA (JGI53926). 

Similarly to AdrA, a summary of the pathways regulated by CreA are shown in Figure 24. 

The expression profiles obtained confirmed that regulation of metabolism, i.e., carbon 

catabolite repression is not a simple on/off process dependent on the presence of only a few 

key transcription factors, such as CreA or AdrA, but a more complex regulatory system. 

Overall, these results suggest that regulation of glycoside hydrolases is not solely dependent 

on CreA transcriptional regulation, because we would expect up-regulation of these enzymes 

in the creA knock-out strain, as suggested by de Vries et al. (DE VRIES et al. 1999). In 

contrast, we still found down-regulated glycoside hydrolases on glucose in the creA deletion 

mutant suggesting that CreA is not the only regulator involved, but a more complex and tight 

regulatory system is functioning, where other transcription factors such as the transcriptional 

activators XlnR (TAMAYO et al. 2008), AraR, recently characterized by de Vries et al. (DE 

VRIES 2009), and others act in concert with CreA to regulate several pathways. In contrast, 

FacB is a substantially less broad regulator which regulates specific pathways such as 

aldehyde and acetamide metabolism and does not seem to regulate any other pathways.  

One important feature found in this study was the large number of putative and annotated 

regulatory proteins identified as changing expression level in response to the deletion of the 

transcription factors AdrA or CreA. To our knowledge, it has not been reported that TorA is 

up-regulated during growth on glycerol compared to glucose in A. niger, while the opposite 

occurring in the adrA and creA deletion strains, and in the later case, no transcript level 

changes were reasonably detected on glycerol (see results section in manuscript 4). Our 

results could indicate crosstalk between different regulatory pathways in A. niger as occurs in 

other organisms such as S. cerevisiae. On the other hand, it seems that the TOR pathway plays 

only a minor role in regulation of nitrogen metabolism in Aspergillus spp. (FITZGIBBON et al. 

2005), where AreA is the key regulator, giving room for a role on other regulatory processes.  
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3.5.2 An insight into the role of AreB in carbon and nitrogen assimilation and 

metabolism  

In the presence of preferred nitrogen sources, such as ammonium or glutamine, AreA 

mediated regulation leads to repression of activities involved in the utilization of other less-

favored nitrogen sources (MACCABE et al. 1998). AreB, is another GATA type regulator of 

nitrogen metabolism identified in A. nidulans (CONLON et al. 2001) and in Penicillium 

chrysogenum (HAAS et al. 1997). Studies on A. nidulans demonstrated that the transcription 

factor AreB has a wide action domain including, but not restricted to, nitrogen regulation.  

Possibly, AreB competes with AreA for DNA binding (CONLON et al. 2001). In order to 

investigate the role of AreB in nitrogen and possibly in carbon regulation in A. niger, we 

analyzed the areB deletion phenotype in different cultivation conditions and conducted 

transcriptome analysis to further expand on our knowledge about regulation of metabolism. 

 

3.5.2.1 Deletion of the Aspergillus niger nitrogen regulatoy gene areB reveals 

pleiotrophic phenotypes 

Growth assays on agar plates and in shake flask cultivations using the areB deletion mutant 

and ATCC 1015 wild type strain demonstrated that nitrogen and carbon source utilization was 

affected in the deletion mutant (see results section in manuscript 5). Nitrogen source 

utilization was tested using minimal medium and several nitrogen sources, including: alanine, 

ammonium, arginine, glutamine, L-proline and nitrate with either glucose or glycerol as 

carbon source. A replicate with L-proline as both carbon and nitrogen source was also 

included. There were a number of clear growth differences between the two strains. In 

general, areB gene deletion mutant accumulated more biomass with ammonium, nitrate, and 

glutamine as nitrogen sources with glucose or glycerol as carbon sources (see complete details 

in results section of manuscript 5). In contrast, ATCC 1015 A. niger strain had increased 

growth on alanine and L-proline with glucose when compared to glycerol. Whereas, on 

glycerol plus alanine, the growth of areB deletion strain was better than in ATCC 1015 strain.  

Fermentation profiles based on average values are shown in Figure 25. Glucose was 

consumed at similar specific consumption rates at the time of sample harvest for 

transcriptome analysis, while on glycerol; the specific consumption rate was considerably 

higher in the areB deletion mutant. As shown in Figure 25, areB deletion mutant µmax on 

glycerol was approximately 57% higher compared to ATCC 1015 µmax. Overall, deletion of 

AreB caused a substantial growth effect. In shake flask cultivations and confirmed in batch 
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fermentations, areB deletion strain was able to accumulate more biomass on both glucose and 

glycerol when using ammonia as a nitrogen source. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25. Physiological characterization in batch fermentations. Substrate consumption and 

biomass growth profiles for A. niger areB gene deletion mutant and the wild type strain 

ATCC 1015 are shown. Dashed lines indicate the time, where samples for transcriptome 

profiling were harvested. Kinetic parameters and yield coefficients of each strain grown on 

glucose or glycerol are reported. a Due to the time-wise dependency of specific substrate 

consumption rates, these were calculated using the biomass and substrate concentrations 

measured at the time of sample harvest for transcriptome analysis and the closest previous 

values, where qs=(∆S/∆x)/∆t; S=substrate, x=biomass and t=time. 

 

Based on this finding, we suspected that AreB could act as a repressor of growth related 

genes, such as those involved in amino acid metabolism and other biosynthetic genes. To 

investigate the possibility, the transcriptomes of both strains, AreBKO and ATCC 1015 strain, 

were compared following growth on glucose or glycerol as carbon source and ammonium as 

nitrogen source.  
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3.5.2.2 Transcriptional profiling of areB deletion mutant and identification of patterns 

by gene clustering 

In our analysis, we first did data quality assessment and two microarrays of doubtful quality 

were discarded (details in results section in manuscript 5). Two statistical analyses were run, 

ANOVA analysis (Figure 26 a) and moderated Student’s t-test pair-wise comparison on each 

carbon source.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26. a) Statistically significant differentially expressed genes identified by ANOVA 

analysis for the areB gene deletion strain compared to the ATCC 1015 wild type strain grown 

on glycerol or glucose. Three main effects were evaluated: 1) gene deletion effect 

(mutant/wild type), 2) interaction effect (genotype/carbon source) and 3) carbon source effect 

(glucose/glycerol). The “X” axis represents the affected genes under each effect. The “Y” axis 

represents the number of transcripts identified as changing expression level under a statistical 

cut-off of adjusted p value < 0.05. b) Clustering patterns using all non-overlapping 

differentially expressed genes captured by ANOVA analysis. The “X” axis represents the four 

different conditions investigated: 1) areB deletion strain_Glucose; 2) areB deletion 

strain_Glycerol, 3) ATCC 1015_Glucose; 4) ATCC 1015_Glycerol; the “Y” axis represents 
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normalized gene expression intensities. Over-represented biological process GO-terms are 

included for each cluster. 

 

ANOVA identified 278 genes changing expression level due to areB deletion. Complete 

differentially expressed genes list is shown in Supplementary File 3 from manuscript 5. Genes 

included glycosyl hydrolases, glycosyl transferases, acetyl transferases and proline oxidases. 

GO-term enrichment analysis showed as top biological processes GO-terms: polysaccharide 

catabolic process and glutamine family amino acid catabolic process, GO-term associated to 

the chemical reactions and pathways resulting in the breakdown of amino acids of the 

glutamine family, comprising arginine, glutamate, glutamine and proline. 

Further clustering analysis considering all the non-overlapping 3,077 genes changing 

expression level and captured by the ANOVA analysis showed that AreA, TorA, and PalI 

were affected in their expression levels (found in cluster 6, Figure 26 b). 

For example, clusters 5 and 6 from Figure 26 b) grouped genes that showed a certain level of 

derepressed phenotype. They contained up-regulated genes in the areB gene deletion strain 

compared to ATCC 1015 strain when grown on glycerol (cluster 5) or on glucose (cluster 6). 

Over-represented biological processes GO-terms with genes from cluster 5 included 

glutamine biosynthetic process, proline metabolic process, glycyl-tRNA aminoacylation and 

several other regulation related GO-terms (see Figure 26 b). Therefore, clustered genes 

included regulatory proteins such as XlnR/JGI48811 (VAN PEIJ et al. 1998) and 

PacC/JGI47049 (PENALVA and ARST 2004). Similarly, cluster 6 grouped several regulatory 

proteins or key proteins involved in signaling cascades including AreA/JGI53926, 

PalI/Rim9/JGI52449, Hpa3/JGI181931, TorA/JGI53581, RlmA/JGI51606 (DAMVELD et al. 

2005) and putative C6 transcription factors (JGI184609 and JGI131636). Not surprisingly, 

biological processes related to regulation of transcription were over-represented, i.e., 

regulation of gene expression (Figure 26 b). 

 

Moderated Student’s t-test statistics of areB gene deletion mutant compared to ATCC 1015 

strain on glycerol, detected 569 significant gene expression changes using an adjusted p value 

< 0.05 as a cut-off to assess significance. Among them, 316 genes were up-regulated and 

included proline (JGI178560) and GABA permeases (JGI197679), neutral amino acid 

permease (JGI191223), epoxide hydrolase (JGI51646), ubiquinol oxidase (JGI47967) and a 

wide range of genes encoding putative dehydrogenases, hydrolases, oxidases and permeases.  
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Figure 27. Selected up-regulated metabolic pathways identified after mapping the 569 

significant differentially expressed genes obtained by t-test pair-wise comparison of areB 

deletion mutant and ATCC 1015 strain on glycerol into the A. niger metabolic map. Red 

boxes refer to statistically significant up-regulated genes involved in the enzymatic reactions 

depicted. 

 

Figure 27 shows a relevant subset of up-regulated metabolic pathways found after mapping 

the 569 significant genes into the A. niger metabolic map (ANDERSEN et al. 2008a). The 

branched amino acids biosysnthesis (valine, leucine and isoleucine); alanine, aspartate and 

proline conversions as well as biosynthesis of lanosterol, zymosterol and ergosterol pathways 

were up-regulated. The complete metabolic map is shown in Supplementary File 7 of 

manuscript 5. 

Transcriptome analysis provides a valuable tool for determining components of specific 

biological processes, making this a powerful tool for understanding fundamental aspects of 

gene regulation (CADDICK and DOBSON 2008). Building on previous work in A. nidulans and 

other fungal species, we believe that our global transcriptional analysis pinpointed new 

regulatory roles for AreB in addition to its role in nitrogen utilization. By analogy with the 

action of S. cerevisiae Dal80 and Nil2, AreB has been proposed to function negatively by 
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competing with AreA for binding to the promoters of AreA-regulated genes (CONLON et al. 

2001) such as nitrate and formamide utilization genes (FRASER et al. 2001), or even to the 

gabA gene, encoding the major GABA permease (DAVIS et al. 1996). Consistent with this 

suggestion, we found several up-regulated GABA permeases in the A. niger areB gene 

deletion mutant, e.g., JGI197679, JGI178560 and JGI190162 (see results section in 

manuscript 5). Similar to A. nidulans, areB is not an essential gene in A. niger (WONG et al. 

2009), as shown by the viability of these fungi following complete deletion of the areB gene. 

In contrast, loss of function nreB mutants, areB homologue in P. chrysogenum, could not be 

isolated (HAAS et al. 1997). A role of A. niger AreB in conidiation is also suspected as 

supported by sparser conidia formation observed on nitrate with both glucose and glycerol as 

carbon source in the areB gene deletion mutant compared to the reference strain (solid media 

growth test) and by the down-regulation of a gene (JGI46001) coding for a protein similar to 

the conidiation-specific protein Con-10 (ROBERTS et al. 1988) detected in the transcriptome 

analysis. 

To investigate several scenarios, the availability of the A. niger areB deletion mutant will 

facilitate the molecular analysis of nitrogen metabolism in this organism despite its lesser 

genetic amenability compared to other filamentous fungi. 
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4. Conclusions 

It is widely known that processes like fungal development, metabolism, stress responses and 

other responses to diverse signals are regulated by a number of transcription factors in all 

living organisms. Within this area, this thesis recapitulates the work carried out with 

filamentous fungi, and specifically, with Aspergillus niger in this search for novel regulatory 

mechanisms and the transcription factors associated to them. To do this, we applied a 

functional genomics approach, where we made use of three very basic steps: construction of 

gene deletion strains, physiological characterization and transcriptome profiling. Filamentous 

fungi, in particular Aspergillus nidulans and Neurospora crassa, have been traditionally used 

as model genetic systems to understand numerous processes and mechanisms underlying gene 

regulation and it is well established that functional links between sets of genes or proteins can 

be postulated on the basis of observed coordinated gene expression. Furthermore, it has been 

proposed that transcriptomics provides a valuable way to dissect components of specific 

biological processes, making this a powerful tool for understanding fundamental aspects of 

gene regulation.  

Currrently, approximately 45 transcription factors have been characterized in A. nidulans, 

however, as discussed earlier throughout the thesis, this number is substantially lesser in A. 

niger. In A. niger, at least three genes exert control across a broad spectrum of metabolic 

activities, known as wide domain regulatory genes, and they have been cloned and 

characterized since the early 90’s: creA, the negatively-acting regulator of carbon catabolite 

repression; pacC, regulator in response to external pH; and areA, a positive regulator of 

nitrogen metabolite repression. However, as shown in the functional annotation of the 

recently published genome sequence of A. niger CBS 513.88 and in the A. niger ATCC 1015 

JGI genome portal site, there is a vast number of genes encoding putative DNA-binding 

proteins, identified through their automatic gene modeling pipelines and conserved domain 

analysis, but a detailed characterization of their functions is still awaiting. The studies 

reported in this thesis illustrate the complexity of the regulatory circuits regulating cellular 

processes.  

Using genome-wide transcriptome profiling of several A. niger strains, from wild type strains, 

protein producers to gene deletion mutants, we could dig more into the reasons, for example: 

that are indicative of specialization as an acidogenic or an enzyme-producing strain, where the 

most plausible explanation for the observed differences was evolution of the strains when 
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exposed to different environments (manuscript 1) or, like in manuscripts 2 and 3, the reasons 

why glycerol metabolism and maltose metabolism are different in so closely related species, 

where, i.e., through comparative genomics approaches, we showed that A. niger and A. 

nidulans have the same preferred glycerol consumption metabolic pathway, while A. oryzae 

prefers another route for glycerol conversion into the glycolytic intermediate glycerone 

phosphate (manuscript 2). We also demonstrated that the two industrially relevant 

Aspergillus species, A. niger and A. oryzae does not have the same maltose uptake, 

metabolism and regulatory mechanisms (manuscript 3). In contrast, manuscripts 4 and 5 

were not as focused as the previous manuscripts, but more exploratory in terms of looking for 

novel regulatory roles played by the transcription factors studied: AdrA, FacB and CreA 

(manuscript 4) and AreB (manuscript 5). 

As shown in manuscript 1, the transcriptome comparison of the two A. niger sequenced 

strains, ATCC 1015 and CBS 513.88, revealed up-regulation of the electron transport chain 

components, specifically the alternative oxidative pathway in ATCC 1015, while the enzyme 

producer CBS 513.88 showed significant up-regulation of amino acids biosynthesis genes 

with over-representation in glucoamylase A, tRNA-synthases and protein transporters. As 

demonstrated by the gene expression profiling the genetic diversity between both A. niger 

strains compared, ATCC 1015 and CBS 513.88, was observed to accumulate in metabolic 

pathways essential to acid production as well as protein synthesis. This multi-disciplinary 

comparative analysis, where we contributed with the physiological characterization and 

transcriptome profiling of the strains, identified a number of factors on multiple levels that are 

indicative of specialization as an acidogenic or an enzyme-producing strain.  

Specialization and evolution of strains is not only seen within a single species, but also in 

different species, such as in different Aspergilli. For example, when studying carbon 

metabolism with a simple substrate like glycerol, which is catabolized by a wide range of 

microorganisms including Aspergillus species, pathway preferences were also seen 

(manuscript 2). To identify the transcriptional regulation of glycerol metabolism in 

Aspergillus, we analyzed data from triplicate batch fermentations of three different Aspergilli 

(A. nidulans, A. oryzae and A. niger) with glucose and glycerol as carbon sources. Protein 

comparisons and cross analysis with gene expression data helped us to identify 88 genes with 

a conserved transcription response across the three species. Through promoter analysis with 

the up-regulated genes we detected over-representation of the motif 5’-TGCGGGGA-3’ in 

their upstream regions. This putatively conserved binding site found is similar to the binding 
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site of Adr1 in the yeast S. cerevisiae and it also exists in humans. However, as discussed 

within the thesis, their regulatory role is quite different. Our transcriptome analysis indicated 

that genes involved in ethanol, glycerol, fatty acid, amino acids and formate utilization were 

likely to be regulated by Adr1 in Aspergilli, which could be a sign that this transcription 

factor is cross species conserved among Saccharomyces and more distant Ascomycetes, such 

as Aspergillus spp.  

The maltose utilization and regulation study (manuscript 3), is one more example of using 

our group previously designed Aspergillus GeneChip for validation of the MAL gene cluster 

presence in the A. oryzae genome and the absence of MAL gene cluster in the A. niger 

genome, where we identified two MAL clusters in A. oryzae, but no MAL cluster in A. niger. 

In order to utilize maltose, A. niger requires a different regulatory system that involves the 

AmyR regulator for glucoamylase (glaA) induction. Through comparative genomics analysis, 

we also found at least one MAL cluster in other Aspergilli, e.g., as in the case of A. clavatus, 

A. fumigatus and A. fischeri as well as three MAL clusters in A. flavus. We believe that, 

although the amount of knowledge on maltose transport and metabolism is far from being 

complete in Aspergillus spp., our study helps to understand the sugar preference in industrial 

fermentation processes as discussed thoroughly in manuscript 3. 

One important feature found in the study reported in manuscript 4, was the large number of 

putative and annotated regulatory proteins identified as changing expression level in response 

to the deletion of the transcription factors AdrA or CreA, such as the key regulator to pH 

response PacC and the protein kinase TorA. Our results, as occurs in other organisms such as 

in S. cerevisiae, could indicate crosstalk between different regulatory pathways in A. niger. 

For example, it seems that the TOR pathway plays only a minor role in regulation of nitrogen 

metabolism in Aspergillus spp., where AreA is the key regulator, giving room for a role on 

other regulatory processes.  

In manuscript 4, clustering of genes defined for each gene deletion strain allowed the 

identification of genes presumably regulated by each transcription factor investigated, 

namely, AdrA, FacB and CreA or, alternatively, indirectly regulated. However, the major 

effect observed was due to the change of carbon source for all three mutants, while the genetic 

effect was the least important. The deletion of facB and its transcriptome profiling under the 

conditions explored, showing no significant changes in gene expression on other pathways, 

was major evidence supporting the fact that FacB is a regulator specific to acetate and 

acetamide metabolism, albeit the genes relevant to these pathways were not affected under 
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this specific comparison. In contrast, in the creA deletion mutant, among the differentially 

expressed genes we found several glycoside hydrolases and putative transcriptional 

regulators. The expression profiles obtained confirmed that regulation of carbon metabolism, 

i.e., carbon catabolite repression is not a simple on/off process dependent on the presence of 

only a few key transcription factors, such as CreA, but a more complex regulatory system. 

Overall, these results suggest that regulation of glycoside hydrolases is not solely dependent 

on CreA transcriptional regulation, because we would have expected up-regulation of these 

enzymes in the creA knock-out strain, as suggested by other authors. On the contrary, we still 

found several glycoside hydrolases down-regulated on glucose in the creA deletion mutant 

suggesting that CreA is not the only regulator involved, but a more complex and tight 

regulatory system is functioning, where other transcription factors such as the transcriptional 

activators XlnR or AraR and others act in concert with CreA to regulate several pathways. 

Combining the construction of an areB deletion mutant in A. niger ATCC 1015 with a global 

transcriptome comparison of the mutant and wild type ATCC 1015 strain, we searched for 

novel regulatory functions of AreB in the overall metabolism of A. niger (manuscript 5).  

Until now, it was not clear whether areB had an essential function, if it had a clear role in 

nitrogen and carbon metabolisms in Aspergillus or whether this function was conserved 

across filamentous fungi. To answer these questions, we deleted the areB gene in A. niger and 

investigated carbon-regulated gene expression in this strain and conducted physiological 

characterization using different nitrogen sources. Comparison to the recently obtained results 

of a deletion mutant in A. nidulans were extremely helpful, where it was demonstrated that 

AreB is a negative regulator of nitrogen metabolic genes in nitrogen limitation and starvation 

conditions rather than under nitrogen-repressing conditions. In contrast to A. nidulans, A. 

niger growth in liquid cultures was enhanced in the areB deletion mutant under N-sufficient 

conditions (ammonium) when both glucose or glycerol were used as carbon source and also in 

the presence of N-limited conditions (alanine) on glycerol, but not with glucose; and with 

nitrate on glucose, but not with glycerol. Therefore, it seems that in A. niger, AreB negatively 

affects AreA activation under both nitrogen-repressing and nitrogen-limiting conditions, and 

that there is a crosstalk of nitrogen and carbon metabolism pathways which is not completely 

understood. From transcriptome data using ammonium as nitrogen source, elevated areA gene 

expression was observed in the areB deletion strain, indicating that AreB in A. niger has a 

role in nitrogen regulation to negatively modulate AreA activity, as it is proposed to occur in 
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A. nidulans. In S. cerevisiae, a similar situation occurs, producing a highly responsive, but 

equally highly buffered control circuit. 

By gene clustering of gene-expression profiles together with GO-term enrichment analysis 

and metabolic pathway mapping, we could confirm the effect of AreB on nitrogen metabolic 

pathways such as those related to amino acid biosynthetic pathways, but also on other 

pathways such as ergosterol, zymosterol and lanosterol biosynthesis and on nitrogen catabolic 

genes such as the GABA shunt and its probable influence on other transcription factors such 

as CreC, PacC, RlmA and Hpa3 or other proteins involved in response to pH, e.g., PalI, or 

other signaling cascades such as TorA,. Our results indicate that A. niger AreB is a 

component in control of carbon and nitrogen metabolism. Improved understanding of the 

metabolic regulation by AreB and other transcription regulators will lead to improvement of 

production processes and wider exploitation of A. niger as a cell factory. 
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6. Appendix 

Supplementary Table 1. Example of results of a BLASTP analysis identifying conserved 

genes in A. nidulans, A. oryzae and A. niger. Full subset of tri-directional homologues of A. 

nidulans, A. oryzae and A. niger is shown in Supplementary Table 1 of manuscript 2. 

Broad A. nidulans FGSC A4 v. 3.0 NITE A. oryzae RIB40 JGI A. niger ATCC 1015 v. 1.0 

AN2410.3 AO090023000114 36654 

AN10156.3 AO090038000268 177486 

AN4484.3 AO090120000236 48323 

AN2977.3 AO090005001430 52427 

AN8900.3 AO090010000102 189135 

AN1385.3 AO090005001633 208491 

AN4504.3 AO090120000260 209490 

AN0443.3 AO090003000888 206203 

AN6383.3 AO090023000194 47798 

AN4119.3 AO090038000031 189552 

AN5701.3 AO090005000086 57195 

AN6300.3 AO090026000422 46970 

AN2829.3 AO090005000316 48084 

AN6177.3 AO090011000884 42502 

AN6190.3 AO090026000477 175222 

AN1270.3 AO090038000435 208354 

AN8807.3 AO090020000581 48479 

AN8214.3 AO090102000556 50058 

AN5206.3 AO090005001561 53444 

AN0454.3 AO090003000907 55462 

AN6234.3 AO090103000169 191350 

AN10137.3 AO090005001058 170927 

AN5481.3 AO090003000456 175926 

AN4182.3 AO090003000133 47895 

AN6487.3 AO090701000002 53364 

AN6414.3 AO090005000174 54811 

AN8566.3 AO090038000040 192151 

AN2155.3 AO090012000208 53510 

AN5882.3 AO090026000519 36811 

AN8181.3 AO090102000509 188502 

AN5875.3 AO090026000510 55540 

AN9064.3 AO090038000631 203198 

AN1124.3 AO090038000251 208202 

AN1565.3 AO090005000568 48778 

AN8253.3 AO090102000602 50038 

AN0953.3 AO090005001061 35701 

AN9265.3 AO090023000383 54510 

AN1704.3 AO090001000359 57045 
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AN6057.3 AO090011000712 183349 

AN10182.3 AO090005001590 208447 

AN2299.3 AO090009000649 214063 

AN3905.3 AO090001000529 47998 

AN3152.3 AO090012000768 37268 

AN0918.3 AO090005001117 51702 

AN10185.3 AO090005001636 52839 

AN6115.3 AO090011000817 54016 

Continues on next page     
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