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Target Tracking in Complex Scenarios
Daniel Svensson

Department of Signals and Systems

Chalmers University of Technology

Abstract

This thesis is concerned with three important components in target track-
ing, namely multiple-model filtering, data association and sensor resolution
modeling. For multiple-model filtering, the preferred method has long been
the Interacting Multiple Model (IMM) filter, which relies on the assumption
that immediate model shifts have the highest probability. In this thesis, an
alternative switching model is proposed, which forces the models to persist
for at least a model-specific time, yielding a less complex problem in terms
of model hypotheses. Further, a state estimation algorithm is derived, which
is close to optimal under the model assumption. The proposed filter, called
the Switch-Time Conditioned IMM (STC-IMM) filter, is shown to provide
better performance than the IMM filter in benchmark scenarios.

Traditional tracking algorithms are designed to estimate the states of the
targets, while trying to maintain their identities. In this thesis, it is shown
how these algorithms can be adjusted to problems where target identity
is not relevant. More specifically, the Joint Probabilistic Data Association
(JPDA) filter is considered, and two adjustments of it are presented, called
the Set JPDA (SJPDA) and the Kullback-Leibler Set JPDA (KLSJPDA)
filters. These filters both enable more accurate Gaussian approximations, and
provide more accurate state estimates than the JPDA filter when evaluated
with a metric that disregards identity. Another approach to the problem
is to use Finite Set Statistics (FISST). In the thesis, the results of the first
performance comparison of the most prominent FISST-based and traditional
filters are presented and discussed.

In the development of most tracking algorithms, it is assumed that the
targets are always resolved by the sensor. However, when the targets are
closely spaced in relation to the sensor resolution, this assumption is not
valid, and may lead to decreased tracking performance. This thesis presents
a multi-target sensor resolution model, for an arbitrary but known number
of targets, which takes resolution effects into account. It is further shown
how the model is incorporated into a Bayesian tracking framework, and two
alternative JPDA-like filters are presented.

Keywords: Target tracking, state estimation, multiple-model filtering, ran-
dom finite sets, performance evaluation, sensor models, radar.
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Sammanfattning

I den här avhandlingen behandlas tre viktiga delar av ett m̊alföljningssystem,
nämligen filtrering med multipla modeller, dataassociation, och modellering
av sensorupplösning. Den vanligaste metoden att hantera multipla modeller
är att använda det s̊a kallade IMM-fitret, där IMM st̊ar för “Interacting
multiple model”. IMM-filtret baseras p̊a antagandet att sannolikheten är
störst att byten mellan modeller sker omedelbart. I den här avhandlingen
föresl̊as istället ett alternativt modellbyteskriterie, vilket tvingar en modell
att vara aktiv en viss minsta modellspecifika tid. Genom den här modellen
f̊as ett mindre komplext problem sett till antalet modellhypoteser, och för det
problemet härleds ett följefilter, vilket är nästan optimalt för fall d̊a modellen
stämmer väl överens med verkligheten.

Traditionella följefilter har tagits fram för att hantera följeproblem där
m̊alidentitet är av vikt. Även om det i m̊anga fall är viktigt med m̊al-ID, s̊a
finns det ocks̊a ett flertal applikationer där det inte är relevant. I avhandlin-
gen visas det hur de traditionella algoritmerna kan anpassas för följeproblem
där m̊al-ID inte är av intresse. Mer specifikt studeras JPDA-filtret, och tv̊a
justeringar av filtret, som vi kallar “Kullback-Leibler Set JPDA” (KLSJPDA)
och “Set JPDA” (SJPDA), presenteras. Med b̊ada dessa filter möjliggörs
noggrannare Gaussapproximationer och mer precisa skattningar, vilket visas
av utvärderingar p̊a simulerade data. För justeringen utnyttjas sambandet
mellan traditionella metoder och “Finite set statistics” (FISST), som är en
alternativ metod att hantera följning utan m̊alidentitet, vilken rymmer ett
flertal filter. I avhandlingen presenteras vidare en utvärderingsstudie av pre-
standan hos de tv̊a mest sofistikerade följefiltren inom respektive familj av
algoritmer. För utvärderingen används ett prestandam̊att, “Mean Optimal
Subpattern Assignment” (MOSPA), som inte tar hänsyn till m̊alidentitet.
Detta m̊att ligger även till grund för utvecklingen och analysen av de tidi-
gare nämnda filtren SJPDA och KLSJPDA.

I de allra flesta fall d̊a följefilter utvecklas och används s̊a antas det att
alla m̊al alltid är upplösta. För fall där m̊al befinner sig nära varandra i
förh̊allande till sensorupplösningen s̊a är detta ett antagande som stämmer
d̊aligt överens med verkligheten, och som kan leda till d̊aliga prestanda. För
att r̊ada bot p̊a detta presenteras i den här avhandlingen en upplösningsmodell
för multipla m̊al (av känt antal), vilken tar hänsyn till upplösningsproblematik.
Vi beskriver även hur modellen kan användas i ett Bayesianskt följeramverk,
samt visar hur tv̊a JPDA-filter kan tas fram baserat p̊a detta.

Nyckelord: Målföljning, tillst̊andsskattning, filtrering med multipla mod-
eller, random finite sets, prestandautvärdering, sensormodeller, radar.
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Chapter 1
Introduction

T
arget tracking is an ever-increasing field of research with a wide spec-
trum of applications. In the early dawn of the research area, the main
driving force was military applications, such as the detection and es-

timation of the positions, speeds and directions of incoming aircraft, using
ground-based radar systems. However, as the field has developed and ma-
tured, the methods have spread to disparate domains, such as bio-medicine,
finance, automotive safety, and air traffic control. The foundation of tracking
is to recursively estimate an unknown quantity over time, be it the temper-
ature in a room, the value of a share on the stock market, the positions of
aircraft circling around an airport, or the movement of a cell in a blood ves-
sel. In the traditional setting, the quantities of interest are the positions and
speeds of objects (called targets), which are often referred to as states.

A first step to perform tracking is to make a prediction of the future value
of the state. To do so, a model that describes the evolution of the quantities
of interest is required. Such a model is referred to as a process model, or, in
the case of target tracking, a motion model. Through the motion model, we
can predict the future value of the state, given knowledge of its current value.
We can also express the uncertainties in that prediction. For example, if the
problem is to track a car on a road, a model for its dynamics can be that
it moves with slowly varying speed along the road. By knowing the current
position, speed and direction of the car, the motion model can be used to
predict its future position. Of course, the longer the prediction horizon, the
more uncertain the prediction will be, and this should also be reflected in
the motion model. An example of this is seen in weather forecasting, where
the uncertainties in the predictions increase with the number of days; the
prediction for the coming day is rather certain, while a prediction five days
ahead is very uncertain.
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Chapter 1. Introduction

When the time has been reached to which a prediction was made, we
would like to update the predicted value using additional information. In
a tracking system, such a source of information is some type of sensor—
traditionally a radar, but other popular sensors are cameras and laser sen-
sors. To benefit from the information provided by one or several sensors,
the relation between the quantity of interest and the output of the sensors
must be modeled, i.e., we need to define a sensor model, often called a mea-
surement model. In the simplest case, the measurement is equal to the true
value of the quantity, while a more realistic model is to model the measure-
ment as the true value plus noise, where the noise component is introduced
to incorporate errors in the model as well as potential impreciseness of the
sensor. Apart from the accuracy and model uncertainties, it can also be the
case that all targets are not always detectable, or that they are so closely
spaced that they appear as one object . For accurate modeling of the sensor
measurements, such aspects must also be considered and accounted for.

The title of this thesis is “Target Tracking in Complex Scenarios”. In the
following, we discuss different examples of complex scenarios. We also discuss
in what way this thesis contributes to some of these research problems. In
the ideal tracking scenario, the targets are widely separated, they are always
detectable by the sensor, and there are no false, or spurious, detections (due
to, e.g., receiver noise, or unwanted signal returns from the ground, or the
surrounding environment, called clutter). For such scenarios, the solution
to the tracking problem is straightforward, and readily given by standard
methods. However, in many practical systems, this ideal situation rarely oc-
curs. Instead, the targets are not always detected, false alarms are reported,
and the targets are intermittently closely spaced, or even occluded. Further,
unwanted signal returns from uninteresting objects (for example wind power
mills) may be received, and intentional jamming signals could be transmit-
ted by an adversary. Then, the scenario is more complex, and the tracking
algorithms must rely on more sophisticated methods. It can also be so that
the targets themselves are complex: either by having a complex structure
such that the signal returns from them are hard to model, or by having dy-
namics which are difficult to model, or which are not accurately described
by a single model. The research projects within which the work supporting
this thesis has been carried out consider target tracking in complex scenarios
using airborne radar. The problem is then to detect and track targets on
the ground, using measurements from radar systems mounted on aircraft—a
problem referred to as ground target tracking.

The process of predicting the future states of the targets, and to update
those predictions using sensor measurements, is called filtering. In many
applications, the prediction can be performed using a single motion model.

4



Often, a simple model is used; for example a model that describes the speed
as constant, with small perturbations. However, if the target has two dis-
tinctively different modes of operation, which is swaps between, a description
of the movement by a single model might not yield the accuracy in the esti-
mation that the user requires. For example, an aircraft normally flies either
straight ahead, or performs a maneuver, and a vehicle could either travel on-
road or off-road. A better approach is then to model the dynamics by two
motion models. The incorporation of several motion or measurement models
into the filtering is referred to as multiple model filtering. In Paper I, a new
model structure for multiple model filtering is proposed, which is claimed to
be a better description of the behavior of many targets. A multiple model
filter based on that model structure is also presented.

To account for information provided by a sensor, the relation between
the target states and the measurements must be described. Often, an as-
signment procedure is carried out, where the measurements are classified
as target-generated or false, and where an association of target-generated
measurements to targets is performed. This procedure is referred to as data
association. When targets are widely separated, the problem is straight-
forward, but when the targets are closely spaced, it becomes difficult. Also,
when the detection probability is lower than one, and when the sensor reports
false measurements, the data association problem requires more advanced al-
gorithms. Within ground target tracking, this occurs, e.g., when a convoy
of targets are tracked. In Paper III, two prominent, and conceptually differ-
ent, data association algorithms are evaluated on a ground target tracking
scenario, and conclusions are drawn regarding their behavior.

Another issue of closely-spaced targets is sensor resolution, where the
resolution describes the ability of a sensor to discriminate between targets
that are near each other. When designing a sensor system, such as a radar
system, the resolution capability is often chosen to match the size of the
objects of interest, in order to receive as much signal energy as possible
from each target. However, if the sizes of the targets are different, resolution
problems can occur. For example, targets that are smaller than the resolution
cell can become unresolvable by the sensor, and only provide a single joint
measurement, while targets that are larger than the resolution cell can span
over several cells and hence yield several detections. These problems are
common in ground target tracking, since vehicles on the ground (car, trucks,
boats and trains) have widely different sizes. In Paper IV, the problem
of limited sensor resolution is considered, and a modeling framework for
considering resolution limitations in a tracking filter is proposed. Among the
subjects considered in this thesis, the resolution modeling is the one which
has received the least attention in the literature, although it is generally
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Chapter 1. Introduction

accepted as an important problem.

In target tracking, there are in principle two philosophically different
directions. In the traditional approach, the problem is to estimate where each
target is, whereas another approach is to consider the problem of estimating
where there are targets, disregarding their identities (labels). For example,
the user could be interested in determining in which areas there are objects,
but not be interested in which one is which, and where each specific target was
previously. In collision avoidance systems, for example, there is no interest in
which car (or boat) is which, the only interest is in avoiding all vehicles. In
Paper II, it is shown that there is a link between the two conceptually different
approaches, and it is shown how the methods developed for the tracking
problem with target identity can be adjusted to the label-free problem.

1.1 Research Project and Support

The research that has led up to the writing of this thesis has mainly been per-
formed within two consecutive research projects which are part of the Swedish
research program “Nationella flygtekniska forskningsprogrammet” (NFFP)—
a program financed by Vinnova (The Swedish Governmental Agency for In-
novation Systems). The first project, called “Ground target tracking using
airborne radar systems”, was part of the program NFFP4, and it was a
joint project between the Signal Processing Group at Chalmers University of
Technology, and Electronic Defence Systems, Saab AB. The second project,
called “Target tracking in complex scenarios for airborne radar systems”, is
part of the ongoing program NFFP5. This project is a collaboration between
the two aforementioned parties, and Saab Bofors Dynamics AB.

The material presented in Paper IV is the result of a research visit by
the author of this thesis to the Fraunhofer-FKIE institute in Wachtberg,
Germany. For additional support of that visit, scholarships were granted by
the German Academic Exchange Service, and Bernt Järmarks stiftelse.

1.2 Outline of the Thesis

This thesis is divided into two parts: in the first part, the theoretical back-
ground of the thesis work is presented, with the purpose of introducing the
topic and of preparing the reader for its second part. In that second part,
the contributions of the author to the field of target tracking and sensor
modeling are presented in the form of four appended papers.

The first part of the thesis is structured as follows. In Chapter 2, the
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1.2 Outline of the Thesis

concepts of single and multiple model filtering are introduced, and two com-
monly used filters are presented. Chapter 3 considers data association under
two conceptually different tracking settings, namely tracking with or without
interest in the identity of the targets. For each setting, the most commonly
used algorithms are presented and discussed. In Chapter 4, radar measure-
ment modeling is considered. In particular, the general measurement prin-
ciple, and the notions of accuracy and resolution are described. Finally, in
Chapter 5, the contributions of this thesis are presented and summarized, and
future work and directions within the area of target tracking are discussed.
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Chapter 2
Multiple Model Filtering

A
tracking algorithm generally consists of at least two parts: filtering
and data association. In this chapter, the filtering part is consid-
ered, while the next chapter is devoted to data association and, to

some extent, track handling. By using data collected over the course of time,
filtering is about recursively estimating an unknown quantity, be it the tem-
perature in a room, the value of a share on the stock market, or the position
of a vehicle on a road. The filtering is made up of two steps: prediction and
measurement update. In the prediction step, the future state of the unknown
quantity is predicted, given knowledge about the current state, and in the
update step, measurements are utilized to improve upon that prediction.

In target tracking, the unknown quantities are the target states, where a
state is, e.g., the position and speed of an object. The task of a filter is then
to estimate those states, using information from the received measurements.
To simplify the description, we here present filtering for a single target. The
extension to multiple targets, however, is straightforward if the number of
targets, and how they relate to the received measurements, are known.

2.1 Single Model Filtering

We start by considering the single-model filtering problem. First the prob-
lem formulation is stated, then the conceptual solution to the problem is
discussed, and finally the Kalman filter is introduced, which is the optimal
single-model filter under certain assumptions.
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Chapter 2. Multiple Model Filtering

2.1.1 Problem Formulation

The unknown state of the target under consideration is denoted xk, where
sub-index k indicates the current discrete time index. Most real-world pro-
cesses are continuous in time, where the continuous time instant tk corre-
sponds to discrete time index k. The measurements of a sensor, however, are
almost always produced at certain discrete moments in time. Although the
filtering can be performed in continuous time, it is most commonly done in
discrete time, which is the description used in this chapter.

At a certain time tk, we would like to estimate xk with as high accuracy
as possible. We thus seek an estimate, x̂k|k, which is close to the true state
in some sense. In a Bayesian setting [1], the estimate is derived from the
posterior probability density function (pdf)

p
(
xk

∣∣Zk
)
,

where Zk represents a sequence of measurements from time 1 to time k. A
measurement need not be a scalar value, but can be a vector of measures, e.g.,
positions, velocities and accelerations in several dimensions. The sequence
of measurements is then an ordered set

Zk = {z1, . . . , zk} (2.1)

of measurement vectors zk.
If the posterior pdf is known, we can extract estimates of the target state.

A popular estimate is the minimum mean-square error (MMSE) estimate,
which is given by

x̂MMSE
k = E

{
xk

∣∣Zk
}
=

∫
xk p

(
xk

∣∣Zk
)
dxk, (2.2)

where E denotes expectation. The objective of filtering is to calculate the
posterior pdf p

(
xk

∣∣Zk
)
, or an approximation of it, and to extract an estimate,

x̂k|k, from that density.

2.1.2 Conceptual Solution

As we discussed in the previous section, filtering for a single target includes
the exact or approximate calculation of the posterior pdf p

(
xk

∣∣Zk
)
. In this

section, we first describe the exact calculation of the density, and then present
the Kalman filter, which under certain assumptions provides a closed-form
solution to the single-model filtering problem.

10



2.1 Single Model Filtering

We start by splitting the measurement set into two parts, giving

p
(
xk

∣∣Zk
)
= p
(
xk

∣∣zk,Zk−1
)
. (2.3)

Bayes’ rule [1] is then used to rewrite the posterior pdf as

p
(
xk

∣∣Zk
)
=

p
(
zk
∣∣xk,Z

k−1
)
p
(
xk|Zk−1

)

p
(
zk
∣∣Zk−1

) . (2.4)

Given the target state xk, the density of the measurement vector does not
depend on previous measurements, so

p
(
xk

∣∣Zk
)
=

p
(
zk
∣∣xk

)
p
(
xk|Zk−1

)

p
(
zk
∣∣Zk−1

) . (2.5)

A filter that calculates the posterior density of a single target according to
equation (2.5) is called a single-target Bayes filter.

As given by (2.5), the posterior density is proportional to the product
of a likelihood, p

(
zk
∣∣xk

)
, and a prior, p

(
xk|Zk−1

)
. The likelihood describes

how likely the state vector xk is, given that we have made the observation
zk, and is often thought of as a function of xk. In target tracking, p

(
zk
∣∣xk

)

is referred to as the measurement model, or sensor model. Further, the prior
is found by marginalizing over the previous state, xk−1,

p
(
xk

∣∣Zk−1
)
=

∫
p
(
xk,xk−1

∣∣Zk−1
)
dxk−1

=

∫
p
(
xk

∣∣xk−1,Z
k−1
)
p
(
xk−1

∣∣Zk−1
)
dxk−1. (2.6)

Assuming that the target dynamics fulfill the Markov property [2], i.e.,

p
(
xk

∣∣xk−1,Z
k−1
)
= p
(
xk

∣∣xk−1

)
, (2.7)

we get the Chapman-Kolmogorov equation

p
(
xk

∣∣Zk−1
)
=

∫
p
(
xk

∣∣xk−1

)
p
(
xk−1

∣∣Zk−1
)
dxk−1. (2.8)

The integral in (2.8) propagates the posterior density p
(
xk−1

∣∣Zk−1
)
at time

k−1 through the pdf p
(
xk

∣∣xk−1

)
, which is called the motion model or process

model. The resulting density, p
(
xk

∣∣Zk−1
)
, is often referred to as the predicted

density.
Using Equations (2.5) and (2.8), we have a way of expressing the pos-

terior density at time k, p
(
xk

∣∣Zk
)
, as a function of the previous posterior,
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Chapter 2. Multiple Model Filtering

p
(
xk−1

∣∣Zk−1
)
, the motion model, p

(
xk

∣∣xk−1

)
, and the measurement model,

p
(
zk
∣∣xk

)
. If the filtering process is initiated with a prior density p

(
x0

)
on the

initial target state x0, the equations can be used to first calculate p
(
x1

∣∣Z1
)
,

then p
(
x2

∣∣Z2
)
, and so on. We thus have a recursive way of calculating the

posterior pdf whenever a new measurement is received.
An alternative way of describing the motion and measurement models is

the system of equations

xk = fk−1

(
xk−1,vk−1

)
(2.9)

zk = hk

(
xk,wk

)
, (2.10)

where fk−1 and hk are possibly non-linear functions, vk−1 is a process noise
realization and wk is a measurement noise realization. Knowing the motion
and measurement models is then equivalent to knowing the functions fk−1, hk

and the joint density functions of vk−1 and wk. We next use this formulation
to approach the problem.

The Kalman Filter

If both the motion model in (2.9) and measurement model in (2.10) are linear,
with additive Gaussian noise, it can be shown that the posterior pdf is also
Gaussian, provided that the prior p

(
x0

)
is Gaussian. A closed-form solution

to the filtering problem is then possible, and that solution is given by the
Kalman filter [3]. For linear models, the Kalman filter recursively calculates
the first two moments of the posterior state vector xk

∣∣Zk, viz. the mean and
the covariance matrix. Since the first two moments completely characterize
a Gaussian pdf, the output of the Kalman filter gives a complete description
of p

(
xk

∣∣Zk
)
. Also, if we as estimator use that mean value, the Kalman filter

is the optimal estimator in the mean square error (MSE) sense, since the
posterior mean is the MMSE estimator (cf. (2.2)). If the models are linear,
but non-Gaussian, the Kalman filter is still the linear MMSE estimator, and
it is hence often used also for such models.

In the linear-Gaussian case, the motion and measurement models are
described by (cf. (2.9)–(2.10))

xk = Fk−1xk−1 + vk−1 (2.11)

zk = Hkxk +wk, (2.12)

where vk−1 and wk are independently distributed as

vk−1 ∼ N
(
0,Qk−1

)
(2.13)

wk ∼ N
(
0,Rk

)
, (2.14)
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2.1 Single Model Filtering

in which Qk−1 is the process noise covariance matrix, and Rk is the mea-
surement noise covariance matrix. Furthermore, Fk−1 is called the system
matrix, and Hk the observation matrix.

The Kalman filter operates recursively with a prediction step and a mea-
surement update step, in the same manner as the single-target Bayes fil-
ter in (2.5). In the prediction step, the Kalman filter produces an esti-
mate, x̂k|k−1, of xk using data up to k − 1. It also describes the accu-
racy of that estimate through the covariance matrix Pk|k−1. In the mea-
surement update step, the prediction estimate x̂k|k−1 is corrected using in-
formation from the measurement zk, yielding the posterior estimate x̂k|k,
and covariance matrix Pk|k. The Kalman filter represents the posterior pdf
as p

(
xk

∣∣Zk
) ∼= N

(
xk; x̂k|k,Pk|k

)
, where the representation is exact for the

linear-Gaussian case.
The prediction step of the Kalman filter is governed by the following

equations:

x̂k|k−1 = Fk−1x̂k−1|k−1 (2.15)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk−1. (2.16)

Further, the update step is described by

z̃k = zk −Hkx̂k|k−1 (2.17)

Sk = HkPk|k−1H
T
k +Rk (2.18)

Kk = Pk|k−1H
T
kS

−1
k (2.19)

x̂k|k = x̂k|k−1 +Kkz̃k (2.20)

Pk|k =
(
I−KkHk

)
Pk|k−1. (2.21)

The vector z̃k is called the innovation, and it denotes the difference between
the received measurement zk and the predicted measurement Hkx̂k|k−1. The
matrix Sk is the covariance matrix of the innovation, hence called the innova-
tion covariance matrix. Finally, Kk is the Kalman gain, and it is the optimal
weighting matrix of the information from the prediction step and the new
measurement.

The Kalman filter can only operate on linear models. To handle non-
linear models, two extensions to the Kalman filter have been proposed, called
the Extended Kalman Filter (EKF) [4] and the Unscented Kalman Filter
(UKF) [5]. Other filtering methods, possible to use for general models, are
particle filters [6–8], and grid-based methods [8]. With these approaches the
probability density function is approximated, which is different to the EKF,
for example, in which the state space model is approximated.
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Chapter 2. Multiple Model Filtering

2.2 Filtering with Multiple Models

In some situations, the motion of a target cannot be accurately captured by
a single model. Consider for example tracking of an aircraft which typically
flies either straight ahead or performs a maneuver. Since the aircraft flies at
high speed, the difference in position of the aircraft if it flies straight ahead,
compared to if it performs a maneuver, is large. Moreover, if the aircraft
has been in the same type of movement for some time, the movement will
probably remain for a while longer. It would then be beneficial to describe
the motion by two motion models, where a well performing filter mainly relies
on the model that describes the current motion the best. Correspondingly,
there are similar scenarios where the measurements are better described by
multiple measurement models. In situations where there is a dependence
over time regarding the nature of the motion or the measurements, a better
description that uses multiple models would enable more accurate modeling
and thus filtering. This is the foundation of multiple model filtering.

A general multiple-model filtering setting is governed by the hybrid sys-
tem

xk = fk−1

(
xk−1, mk,vk−1

)
(2.22)

zk = hk

(
xk, mk,wk

)
. (2.23)

In (2.22)–(2.23), the variable mk describes which motion model and which
measurement model that is active in the time interval

(
k − 1, k

]
. The total

number of models is M . The assumption is hence that only one of the models
can be active during each time interval. The model variable, mk, is also called
the regime variable. To complete the hybrid system, a model that describes
the transitions of the regime variable is required. A common choice is a
first-order Markov chain model [9], as described in the next section.

2.2.1 Markov-Based Model Switching

A common model for the regime variable mk in the hybrid system (2.22)–
(2.23) is an M-state first-order Markov chain, with transition probabilities

πij,k = Pr{mk = j
∣∣mk−1 = i},

(
i, j
)
∈ {1, 2, . . . ,M} . (2.24)

The hybrid system is then referred to as a Jump Markov System. A homo-
geneous chain is often assumed, for which πij,k = πij.

An important family of jump Markov systems is the jump Markov linear
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2.2 Filtering with Multiple Models

system (JMLS), described by

xk = Fk−1

(
mk

)
xk−1 + vk−1

(
mk

)
(2.25)

zk = Hk

(
mk

)
xk +wk

(
mk

)
. (2.26)

Even though the models are linear, the overall system is non-linear unless we
know the active model mk.

To describe the posterior distribution p
(
xk

∣∣Zk
)
, we marginalize over all

possible sequences of models, or regimes. A sequence of regimes can be
represented as a path through a model hypothesis tree; see Fig. 2.1 for a
two-model example. We first define the regime history

Ml
k =

{
ml

1, . . . , m
l
k

}
, l = 1, . . . ,Mk, (2.27)

where ml
k is the active model between k − 1 and k, for the lth path through

the hypothesis tree. At each time step, each branch in the hypothesis tree
is split into M branches, representing a transition to each of the M models.
Therefore, the number of possible paths through the tree at time k is Mk.
Conditioning on Ml

k, the posterior density p
(
xk

∣∣Ml
k,Z

k
)
of xk is Gaussian,

and is calculated by a Kalman filter. The posterior density is hence given by
the Gaussian mixture

p
(
xk

∣∣Zk
)
=

Mk∑

l=1

p
(
xk

∣∣Ml
k,Z

k
)
Pr{Ml

k

∣∣Zk}. (2.28)

Further, the regime sequence probability

Pr{Ml
k

∣∣Zk} = Pr{Ml
k

∣∣zk,Zk−1}
∝ p
(
zk
∣∣Ml

k,Z
k−1
)
Pr
{
Ml

k

∣∣Zk−1
}

= p
(
zk
∣∣Ml

k,Z
k−1
)
Pr
{
mk,Ml

k−1

∣∣Zk−1
}

= p
(
zk
∣∣Ml

k,Z
k−1
)
Pr
{
ml

k

∣∣Ml
k−1,Z

k−1
}

× Pr
{
Ml

k−1

∣∣Zk−1
}
. (2.29)

Under the Markovian assumption,

Pr
{
ml

k

∣∣Ml
k−1,Z

k−1
}
= Pr

{
ml

k

∣∣ml
k−1

}
= πml

k−1m
l
k

(2.30)

is the transition probability between model ml
k−1 and ml

k, assuming that
the transition probabilities are independent of the target state xk−1. The
conceptual filtering solution to JMLSs, as presented here, is not feasible in
practice, since the number of regime histories grow exponentially with time.
We thus need to consider sub-optimal solutions.
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M1
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M2M2 M2 M2

M2

M2 M2 M2 M2 M2 M2 M2 M2

M1 = Model 1

M2 = Model 2

Figure 2.1: Model hypothesis tree for two-model jump-Markov systems. In
the figure, it is assumed that model 1 is valid at the first time
instant.

Two possible approaches for reducing the number of regime sequences are
pruning and merging, where pruning resembles removal of low-probability
regime sequences, and merging is equivalent to the unification of several
regime sequences into one. A sub-optimal pruning algorithm for JMLS is the
Multiple Model Pruning (MMP) algorithm [10], while a popular sub-optimal
merging algorithm is the Interacting Multiple Model (IMM) filter [11–13],
described in the following.

The IMM Filter

The IMM filter produces a sub-optimal solution for a JMLS, which uses
merging to reduce the number of branches in the model hypothesis tree. At
each time instant, the filter approximates the posterior density by a Gaussian
mixture, with only one Gaussian pdf connected to each model. As a basis
for understanding the IMM filter, a block diagram describing one iteration
of the algorithm is presented in Fig. 2.2. As seen in the figure, the filter is
built up by a bank of M model-matched Kalman filters, where M is equal
to three in the example.

At time k− 1, the filter approximates the posterior density with a Gaus-
sian mixture,

p
(
xk−1

∣∣Zk−1
) ∼=

M∑

i=1

wi
k−1N

(
xk−1; x̂

i
k−1|k−1,P

i
k−1|k−1

)
, (2.31)

where the weight wi
k−1 describes the probability that model i is active,

wi
k−1 = Pr

{
mk−1 = i

∣∣Zk−1
}
, (2.32)
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Moment

matching

Model-1-matched

Kalman filter

Moment

matching

Moment

matching

Model-2-matched

Kalman filter

Model-3-matched

Kalman filter

Figure 2.2: One iteration of the three-model IMM filter.

and the mean value x̂i
k−1|k−1 is an estimate of the target state, given that

model i was active in the last time interval. Further, the output from the
filter is the weighted estimate

x̂k−1|k−1 =

M∑

i=1

wi
k−1x̂

i
k−1|k−1, (2.33)

and the weighted covariance matrix

Pk−1|k−1 =
M∑

i=1

wi
k−1

[
Pi

k−1|k−1

+
(
x̂k−1|k−1 − x̂i

k−1|k−1

)(
x̂k−1|k−1 − x̂i

k−1|k−1

)T
]
, (2.34)

which are also the posterior mean and the posterior covariance matrix, re-
spectively.

In the first step of the filter, the possible model switches of the system are
considered. As seen in Fig. 2.2, for each model j, the input to its moment-
matching block is a Gaussian mixture whose components depend on the
mixture components at time k − 1. The weights of the mixture, µ

i|j
k−1, are

called the mixing probabilities, and are defined as

µ
i|j
k−1 = Pr

{
mk−1 = i

∣∣mk = j,Zk−1
}
. (2.35)

Using Bayes’ formula, this is rewritten as

µ
i|j
k−1 =

πijw
i
k−1∑M

i=1 πijwi
k−1

=
πijw

i
k−1

w∗j
k−1

. (2.36)
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In (2.36), πij is the transition probability between models i and j, wi
k−1 is the

probability of model i before mixing, and w∗j
k−1 is the probability of model j

after mixing.
To limit the complexity of the filter, the input to the model-matched

Kalman filters are single Gaussians that approximate the Gaussian mixtures
from the switching step. The first two moments of these Gaussians, x̂

(j)
k−1|k−1

and P
(j)
k−1|k−1, are found by moment matching,

x̂
(j)
k−1|k−1 =

M∑

i=1

µ
i|j
k−1x̂

i
k−1|k−1 (2.37)

P
(j)
k−1|k−1 =

M∑

i=1

µ
i|j
k−1

[
Pi

k−1|k−1 +

(
x̂i
k−1|k−1 − x̂

(j)
k−1|k−1

)(
x̂i
k−1|k−1 − x̂

(j)
k−1|k−1

)T
]
. (2.38)

After the model-matched filters have been applied, the output from the filter
matched to model j is the posterior state vector estimate x̂j

k|k, covariance

matrix Pj
k|k, and weight wj

k, where the latter is calculated as

wj
k =

Λj
kw

∗j
k−1∑M

i=1 Λ
i
kw

∗i
k−1

. (2.39)

In (2.39), Λj
k is the model-conditioned likelihood function,

Λj
k = p

(
zk
∣∣mk = j,Zk−1

)
= N

(
z̃jk; 0,S

j
k

)
, (2.40)

where z̃jk and Sj
k are the innovation and the innovation covariance matrix,

respectively, obtained by the model-matched Kalman filter.

2.2.2 Semi-Markov-Based Model Switching

In a discrete-time first-order Markov model, the transition probability πij

depends only on the current state, and not on previous states. Further, the
transition probability does not depend on for how long the current state has
been active. The time spent in a model before a transition away from the
model is called sojourn time [14], or holding time [15]. To have a transition
probability that depends on this time, we extend the state vector to also
include the sojourn time Tk

xk =
[
xT
k Tk

]T
. (2.41)
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2.2 Filtering with Multiple Models

The extended state vector xk now includes the target-related components
such as, for example, position and velocity, the mode variable mk, and the
sojourn time Tk. By also having a model for the sojourn-time dependent
transition probability,

πij

(
Tk−1

)
= Pr{mk = j

∣∣mk−1 = i, Tk−1}, (2.42)

a switching system that depends on the holding time can be defined. Such a
system is called a semi-Markov system.

There have been several algorithms that incorporate semi-Markov switch-
ing, and solve the conceptual problem in a sub-optimal manner. These are
the sojourn-time dependent Markov (STDM) IMM algorithm [16, 17], the
computationally less complex semi-Markov IMM (SM-IMM) algorithm [18],
and the latest change moment testing (LCMT) algorithm [19].
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Chapter 3
Data Association

I
n the previous chapter, we discussed the filtering part of a tracking algo-
rithm, and concluded that additional problems need to be solved before
filtering can take place. To update the predicted target states, we want

to use information from the measurements received at the current instance of
time. To do so, we need to find out which measurements that are generated by
targets, and which are spurious. We then need to assign the former measure-
ments to the corresponding targets. These two steps constitute the problem
of data association. Ideally, each target gives rise to exactly one measure-
ment, and there are no spurious measurements. However, for a number of
reasons, the ideal scenario rarely occurs. First, all targets are not always de-
tected, due to, e.g., power limitations and terrain obscuration. Second, false
measurements arise due to receiver noise and signal reflections from uninter-
esting objects, or from the ground and surrounding terrain, called clutter.
Third, the resolution capability of the sensor can be such that all targets
are not always resolved, leading to fewer true detections than the number of
targets; or, the size of a target is large compared to the resolution and hence
may give rise to several detections. In this chapter, the data association
problem for the first two problems are considered, while the background of
the radar resolution issue is the topic of the next chapter.

To the tracking problem there are two accepted, and philosophically dif-
ferent, approaches: either, the interest lies in estimating where each individ-
ual target is, or in estimating where there are targets. Although seemingly
identical, these two approaches are different and must be treated differently.
The first, traditional, approach is to give each target an identity label, and
to track the targets while trying to maintain the identities. In situations
of targets being closely spaced, this is a delicate and intricate problem that
may not be solvable. When target identities are not relevant to the user, the
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Chapter 3. Data Association

approach to the tracking problem is different. One way to describe it is to use
a random finite set description of the targets, which inherently has the or-
derless (label-free) property. In this chapter, these two approaches of target
tracking are introduced, and the most common data association algorithms
within each approach are described.

3.1 Tracking with Target Identity

In this section, we discuss the traditional approach to target tracking, viz. to
assign each track an identity label, and to perform filtering and data associ-
ation while trying to maintain the knowledge of which target is which. First,
we present the conceptual solution to the problem, and then discuss practi-
cable algorithms that approximate the optimal approach. The track labeling
problem is also discussed in short.

3.1.1 Conceptual Data Association Solution

We start by shortly discussing one conceptual solution to the data association
problem. If we let each possible assignment of measurements to targets
represent a hypothesis, the set of hypotheses at a certain time can be ordered
in a hypothesis tree. That is, at each time instant there might be several
candidate measurements for each target. Each branch through the tree then
represents a sequence of assignments, where only one sequence can be true.
A branch also represents a sequence of state vectors, where the computation
of the states relies on the specific data association being made. An example
of a hypothesis tree for a single target is shown in Fig. 3.1. In the figure,
the target was associated with detection 3 at time 1, with detections 0 or 1
at time 2, and so on. Here, an association with detection 0 means that the
target was not detected.

To express the conceptual solution, we make three assumptions. First,
we assume that a target generates at most one measurement. Second, we
assume that the number of targets, M , is fixed and known. That is, we
know that there are M targets present all the time. Through this simpli-
fying assumption the problems of track initiation and deletion are avoided.
Third, we assume that the target motion is described by a single motion
model p(xk|xk−1), and that the measurement process is captured by a single
measurement model p(zk|xk). The underlying assumption is that the targets
move independently of each other and that their respective measurements are
conditionally independent. All the target state vectors and all measurements
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Figure 3.1: Example of a data association hypothesis tree for a single-target
scenario. Left: predicted target states at time k obtained from
the four track hypotheses at time k − 1, the validation gate of
each hypothesis (described later) and the received measurements
at time k (marked with detection numbers). Right: the track
hypothesis tree; the four possible hypotheses at time k − 1 are
marked with diamond, square, star and circle, and their respec-
tive state predictions are seen in the left figure.

are stacked

Xk =
[
x
(1)
k , . . . ,x

(M)
k

]
(3.1)

Zk =
[
z
(1)
k , . . . , z

(mk)
k

]
, (3.2)

where mk is the number of measurements received at time k. Further, the
history of received measurements are gathered in a set, Zk (cf. (2.1)). The
problem at hand is then to express the density p(Xk

∣∣Zk), i.e., the posterior
density of the targets, given data up to the current time.

In order to express the probability density function of Xk, we need to
know which assignments that have been made during the course of time. We

therefore introduce the assignment vector rlk =
[
rlk(1) rlk(2) · · · rlk(M)

]T
with the property that

rlk(i) =

{
j if detection j ∈ Zk is associated with target i
0 if target i did not generate a detection.

(3.3)

Here i = 1, . . . ,M . We next construct a history of assignment vectors

Rl
k =

[
rl1, r

l
2, . . . , r

l
k

]
, (3.4)

23



Chapter 3. Data Association

which represents the lth path through a global hypothesis tree, where global
indicates that the tree describes the associations of all targets. Conditioned
on the assignment matrix Rl

k, and assuming linear and Gaussian models,
the posterior density p(Xk

∣∣Zk,Rl
k) is Gaussian and can be obtained using a

Kalman filter. The true posterior density p(Xk

∣∣Zk) is then the sum over all
probability-weighted assignment-conditioned densities,

p(Xk

∣∣Zk) =
∑

l

Pr{Rl
k

∣∣Zk}p(Xk

∣∣Zk,Rl
k). (3.5)

Since the number of assignment vectors grows exponentially with time, the
conceptual solution is infeasible in practice. We are hence interested in sim-
plifications that make data association practical.

Roughly speaking, there are three common ways of performing data as-
sociation in practice:

1) Associating a single measurement to each target at each time step.

2) Assigning a weighted sum of measurements to each target at each time
step.

3) Deferring the decision to a later time step, and aggregating all possible
association hypotheses until that later time, where the best decision in
retrospect is made.

The first two methods are referred to as single-hypothesis methods, while
the latter describes the family of multiple-hypothesis methods. In the fol-
lowing, the main algorithms of the respective class of association schemes are
described.

3.1.2 Nearest Neighbor Data Association

The simplest way to perform data association is to associate one measure-
ment to each target at each time step, in the best possible manner. In this
way, the single most likely measurement-to-target association hypothesis is
propagated in time. In the hypothesis tree perspective, this is represented
by a single branch running through the tree. The assignment made at a
certain time might not at all be the best assignment in retrospect, which is
one drawback with single-hypothesis methods.

The two most common single-hypothesis methods are the nearest neigh-
bor (NN) [20] and the global nearest neighbor (GNN) [20] algorithms. The
NN algorithm is the simplest of the two, and it finds the nearest neighboring
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3.1 Tracking with Target Identity

measurement of each target, under a specific distance measure. The measure-
ment assigned to a target is then used for updating its predicted state. The
nearest neighbor algorithm performs a local optimization in that it operates
target by target. This can lead to several targets being associated with the
same measurement, which might lead to poor tracking performance, due to
track losses.

A global version of the NN algorithm is the GNN scheme. Instead of
performing an optimization for each target, it searches for the best global
association, considering all targets and measurements simultaneously. The
global nearest neighbor problem can be formulated as a convex optimization
problem and hence be solved using an efficient optimization algorithm, for
example the Auction algorithm [21].

Although being superior to NN, the GNN algorithm still makes a hard
decision on the associations, which under difficult scenarios with closely-
spaced targets and a high number of false measurements can be a too crude
approximation of the posterior density and hence perform poorly. Another
property of data association algorithms that make hard decisions is that they
suffer from the track repulsion effect [22] in dense target scenarios.

3.1.3 Probabilistic Data Association

Instead of associating the instantaneously single best measurement to each
target, a second possibility is to use a weighted sum of the available mea-
surements. Again, this can be done on a target-by-target basis, or by consid-
ering the global association problem. An algorithm for the local assignment
problem is the probabilistic data association (PDA) algorithm [23], while
the global problem is solved by the Joint Probabilistic Data Association
(JPDA) algorithm [24]. These algorithms are multi-hypothesis per time step,
in that several assignment hypotheses are considered per target, but single-
hypothesis between time instances, due to the merging of all hypotheses per
target into one. Hence, in the hypothesis tree perspective, this corresponds
to a branching followed by an immediate merging of the branches into one.
We here describe the JPDA algorithm in more detail, since it is an important
component in both Paper II and Paper IV.

We start with the marginalization of the posterior density

p
(
Xk

∣∣Zk
)
=
∑

h∈H
p
(
Xk, h

∣∣Zk
)
, (3.6)

where h is a data association hypothesis in the set of all data association
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hypotheses H at time k. The posterior density can be rewritten as

p
(
Xk

∣∣Zk
)
=
∑

h∈H

p
(
Zk

∣∣Xk, h,Z
k−1
)
p
(
Xk

∣∣Zk−1
)

p
(
Zk

∣∣Zk−1
) Pr

{
h
∣∣Zk−1

}
. (3.7)

By assuming linear and Gaussian models, and a Gaussian prior density
p
(
Xk

∣∣Zk−1
)
(given by the JPDA approximation at time index k − 1), the

above density is a Gaussian mixture,

p
(
Xk

∣∣Zk
)
=

NH∑

h=1

βhN
(
xk; x̂

h
k|k,P

h
k|k
)
, (3.8)

where NH is the total number of hypotheses, and βh is the mixture weight,
defined below.

The JPDA filter performs the following steps:

1. Formulate all global data association hypotheses, H, which describe
possible origins of Zk.

2. For each data association hypothesis h ∈ H, update the predicted den-
sity for each target i with the assigned measurement j using a Kalman
filter. The output of the filter is the mean value x̂i,h

k|k and covariance

matrix Pi,h
k|k.

3. Calculate the weight βh of each mixture component h.

4. Use moment matching to approximate the Gaussian mixture by a single
Gaussian.

The mixture weights βh are given by

βh =
β̄h∑NH
h=1 β̄h

, (3.9)

β̄h = Pc(Mc)
(Mk −Mt)!

MK !

1∣∣FoV
∣∣Mc

∏

Sh
u

(
1− PD

)
·
∏

{i,j}∈Sh
a

PD gij, (3.10)

where Pc(Mc) is the probability of receiving Mc clutter detections, Mk is
the total number of detections, and Mt is the number of target-generated
detections. Further, a constant detection probability, PD, is assumed, Sh

u is
the set of unassigned targets, and Sh

a is a set including the pairs of detected
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3.1 Tracking with Target Identity

targets, i, and their assigned measurements, zjk. Additionally,

νij = zjk −Hkx
(i)
k|k−1, d2ij = νT

ijS
−1
k ν ij (3.11)

gij = N
(
νij ; 0,Sk

)
=

1
∣∣2πSk

∣∣1/2 e
−

d2ij
2 . (3.12)

As described above, the first three steps of the JPDA algorithm describe
the calculation of the components in the Gaussian mixture (3.8), while the
final step is to approximate that Gaussian mixture density for each target
with a single Gaussian. This is done by second-order moment matching, i.e.,

p
(
x
(i)
k

∣∣Zk
) ∼= N

(
x
(i)
k ; x̂i

k|k,P
i
k|k
)
, (3.13)

where1

x̂i
k|k =

NH∑

h=1

βhx̂
i,h
k|k (3.14)

Pi
k|k =

NH∑

h=1

βh

{
Pi,h

k|k +
(
x̂i
k|k − x̂i,h

k|k
)(
x̂i
k|k − x̂i,h

k|k
)T}

(3.15)

are the mean and covariance matrix of the single Gaussian.
The JPDA algorithm is often described in an alternative, but equivalent,

fashion [20], where the computation of the state estimates includes the cal-
culation of a weighted measurement residual, which is used in an ordinary
Kalman filter update.

Both the PDA and the JPDA filter have a tendency to merge tracks when
the targets are closely spaced. This is referred to as the track coalescence
effect [25]. In Paper II, an adjusted version of the JPDA filter is presented,
which does not experience track coalescence. Another adjustment of the
JPDA filter to avoid track coalescence is the JPDA* algorithm [26].

3.1.4 Multi-Hypothesis Tracking

The two previously discussed approaches to data association are either to as-
sign the (globally) best measurement to each target, or to assign a weighted
sum of measurements to each target, where a weight depends on the proba-
bility of the corresponding data association hypothesis. A third alternative
is to wait with the assignment, and instead keep several data association

1Although the sums in (3.14) and (3.15) can be done as written, in practice there would
be a step of marginalization over the single-target association events.
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Chapter 3. Data Association

hypotheses, and aggregate them over time. Then, a hypothesis describes a
possible sequence of assignments for each target. This is the foundation of
Multi-Hypothesis Tracking (MHT) [20]. MHT is not a single algorithm, but
a family of algorithms that maintain multiple data association hypotheses.

Multi-hypothesis tracking is a deferred decision logic in the sense that the
data association at a time k is not set until at a later time step k+N (N > 0),
at which time the availability of more data increases the probability that the
true hypothesis at time k is retained. In each time step, MHT forms a set
of plausible association hypotheses. Over time, the hypotheses will build
up a hypothesis tree for each target, in the same way as for the conceptual
solution to data association in Section 3.1.1. This makes MHT different to
the single-hypothesis algorithms, as it propagates more than one hypothesis
in time. Since the hypothesis tree grows with time, a reduction of branches
is performed by discarding the least likely, or least probable, hypotheses at
each time step. The original formulation of MHT was given in [27], and
since then many different formulations of MHT has been given, e.g., in [20,
28–35]. Compared to a conventional single-hypothesis tracking algorithm,
MHT can handle 10-100 times higher false-alarm densities [20]. MHT is also
better suited than conventional algorithms when the target density is high.
If the MHT algorithm is probability-based, another advantage with MHT is
that the algorithm can tell the user how certain it is about the existence of
currently presented tracks.

There are two fundamentally different approaches to MHT. The first one
is hypothesis-oriented MHT, which is the one described in the original MHT
formulation [27]. The second one is track-oriented, and it is described, e.g.,
in [20,28–31]. We will give a short introduction to both approaches, starting
with track-oriented MHT.

Track-Oriented MHT

In the track-oriented approach, as the name implies, we work on a per-
track perspective. In our description, a track constitutes the description of
a possible target, and each track is represented by a hypothesis tree. A
branch running through the tree from top to bottom is referred to as a
track hypothesis. In other descriptions, e.g., in [20] a track is a sequence of
detections associated to a target, i.e., what we call a track hypothesis.

At each time step, all n possible associations of measurements to a certain
track hypothesis are used to create n new branches of that track hypothesis.
Consider the example in Fig. 3.1, where we have a single-target scenario, for
which the target is described by a single validated track. To the left in the
figure, we have plotted the track hypotheses predictions at time k, for each of
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Figure 3.2: Example of N -scan pruning (N = 2) for a single-target scenario.
To the left we have the hypothesis tree before N -scan pruning,
and to the right we have the corresponding tree after pruning.
The best track hypothesis (in terms of track score or probability)
at time k is marked with a circle. All track hypotheses with the
same root node N = 2 steps back (detection 1) are to be kept,
whereas the rest are pruned. In the example, the hypotheses
which have detection 0 as root node N = 2 steps back are thus
removed.

the four track hypotheses at time k−1, and the gate of each such hypothesis.
In the figure, we have also plotted the five received measurements at time
k. To the right, the hypothesis tree is depicted, where the marked nodes of
the tree represent the four hypotheses at k − 1. Each hypothesis prediction
is associated with all measurements within its gate. For each association, a
new branch of the tree is created. The numbers next to the branches declare
the measurement number. Recall that the number 0 branches represent the
hypothesis that the target is not detected at time k.

Since the number of hypotheses grows exponentially over time, the num-
ber of hypotheses must be reduced to obtain a practicable approach. This can
be done by merging similar branches together, or by pruning low-probability
branches, or by performing both merging and pruning. One way of perform-
ing pruning is N -scan pruning [36], which is illustrated in Fig. 3.2. The
pruning is either based on track hypothesis probability or likelihood.

In the multi-target case, the track-oriented MHT is more complicated,
since we also need to consider possible conflicts between targets, where a
conflict occurs if two tracks are associated with the same detection. To treat
conflicts, the concept of a global hypothesis is introduced. Consider the
two-target example of Fig. 3.3. A few of the conflicts between the hypothe-
sis trees are marked with circles, and the globally possible data association

29



Chapter 3. Data Association

1

0 1

0 0 01 2 2 5 4

0 1 0 2

2

0 2

0 2 5

0

0 2

1

0 1 4

H1

H2

3

H3

Figure 3.3: Example of hypothesis trees for a two-target scenario. Each track
represents one target. Three of the global hypotheses are marked
as H1 to H3, and some conflicts are marked with circles.

hypotheses are the ones where there are no conflicts between the targets.
Those hypotheses are referred to as feasible global hypotheses. In Fig. 3.3,
three of the feasible global hypotheses are marked with arrows. As seen, a
global hypothesis contains one track hypothesis from each track. Note that
missed-detection hypotheses are never in conflict. If there are L tracks, a
global hypothesis Hk is described as

Hk = {h1i1k , h2i2k , . . . , hLiLk
} , (3.16)

where hlijk represents the track hypothesis ij of hypothesis tree l, under the
global hypothesis k.

Just as for the single-target case, the hypothesis trees need to be reduced
for the algorithm to be feasible. The N -scan pruning approach is applicable
also to the multi-target case, where the global hypotheses are used instead of
the local ones. The pruning algorithm then finds the best global hypothesis,
H∗, and prunes the hypothesis trees according to that hypothesis.

Hypothesis-Oriented MHT

The original MHT formulation [27] was hypothesis-oriented. This means that
it works directly on the feasible global hypotheses. So at time k, the set of
global hypotheses from time k−1 are expanded to consider the measurements
received at time k. Each global hypothesis from the previous time instant
is hence expanded into a set of global hypotheses, which are feasible with
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3.1 Tracking with Target Identity

respect to conflicts between the targets that are part of the hypothesis. Just
as for track-oriented MHT, pruning is used to reduce the number of global
hypotheses.

According to [20], a problem with the original MHT formulation is that a
lot of low-probability hypotheses are created, and then immediately discarded
due to their low probability. This wastes computational resources. However,
the problem is relieved in [32] through the use of an extended version of
Murty’s method [37].

3.1.5 Track Handling

In the following description, a track constitutes a description of the states
of a target over time. Ideally, there is a one-to-one correspondence between
a target and a track, but due to, e.g., clutter and missed detections, it is
not always the case in practice. The track handling of a tracking filter has
the role of initiating, validating and deleting tracks. A simple way of track
validation is the M/N validation rule, which states that if a track has been
assigned to a measurement in M of the last N time steps, it is considered
to represent a target. A way of determining the quality of a track is the
concept of track score [20]. The track score is essentially a hypothesis test,
with hypotheses:

H0: The track is due to clutter.

H1: The track represents a target.

The track score (TS) is the quotient of the probability of the true track
hypothesis, given data Zk, to the false-track hypothesis probability

TS(k) =
Pr
{
H1|Zk

}

Pr {H0|Zk} =
p
(
Zk|H1

)
Pr{H1}

p
(
Zk|H0

)
Pr{H0}

, (3.17)

where Pr{Hi} is the a-priori probability of hypothesis Hi, i=0, 1. Assuming
independent measurements from scan to scan, the track score can be written
on a recursive form

TS(k) =
p
(
Zk|H1

)

p
(
Zk|H0

)TS(k − 1). (3.18)

Often the logarithm of the track score is used, which makes the score update
a simple summation. The track score can be used as input to a Sequential
Probability Ratio Test (SPRT) [38], which compares the track score to an
upper and a lower threshold. If the score is above the upper threshold,
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the track is validated, whereas if the score of a track falls below the lower
threshold it is declared false and the track is deleted. When the score is in
between the thresholds, it is tentative.

Gating

If the clutter level is high, and the number of targets is large, there will be
many possible data associations for each track. Several of these associations
may be very unlikely, especially if the surveillance area is large. Since those
unlikely events will not affect the description of the posterior density, they can
be removed. One method for avoiding the calculation of unlikely hypotheses
is gating. With gating, an acceptability region is formed around each track
estimate, where measurements that fall within the region are considered,
whereas measurements outside the region are ignored. The gate size is often
selected to include the true target-generated detection with some probability.
Except for being a method to reduce complexity, gating also makes sure
that an unlikely detection is not associated to a target, when the target
is not detected. The gating procedure is illustrated in Fig. 3.1. For more
information, see [20].

3.2 Tracking Without Target Identity

In this section, we consider the problem of target tracking without target
identity. That is, we seek to estimate where there are targets, but are not
interested in which one is which. Examples of applications where such prob-
lems arise are collision avoidance in automotive systems, radar cueing, and
threat neutralization. The conceptual solution to this problem can be ap-
proached by means of Finite Set Statistics (FISST) [39–41] by Mahler, which
provide a way to extend the single-target single-sensor Bayes statistics to the
multi-target multi-sensor realm. Apart from describing the conceptual solu-
tion, we provide an overview of multiple target tracking and data association
without target identity, using FISST-based methods. Note, however, that
in the practical algorithms that are based on FISST, target labeling can be
performed in retrospect using an over-head labeling algorithm [42, 43]. In
Paper II, the relation between FISST and ordinary statistics is utilized to
improve traditional target tracking filters, such as JPDA, to the problem of
tracking targets without identity.

Before turning to the practical algorithms, we first describe the notion of
random finite sets, the problem formulation, and its conceptual solution.
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3.2 Tracking Without Target Identity

3.2.1 Random Finite Sets

A random finite set (RFS) is a generalization of a random matrix. To connect

to tracking, say that we have three targets with state vectors x
(1)
k , x

(2)
k and

x
(3)
k , which are all unknown and stochastic. That is, we know the number of

targets, but not their states. If the state vectors are of the same dimension,
they can be collected in a matrix Xk, as described in (3.1). The matrix is
random, and it has a probability density function which is given by p

(
Xk

)
.

Assume now that we do not know how many targets there are in the scene,
but we still want to be able to say something about the number of targets
and their respective states. One way of doing this is to describe the targets
by a random finite set (RFS). The formal definition of an RFS Ξk is [40]

Definition An RFS Ξk is a random variable that draws its instantiations
Ξk = Xk from the hyperspace F(X ) of all finite subsets Xk of some
underlying space X .

In target tracking it is most common that X = Rn, where n is the dimension
of the state vector xk. Possible outcomes of the RFS are then

Xk =





∅ if no target is present
{xk} if there is one target with state vector xk present{

x
(1)
k ,x

(2)
k

}
if there are two targets with states x

(1)
k and x

(2)
k ,

and so on. In the following, we will refer to the outcome Xk as the RFS.
Note that the set is without ordering, which means that, for two targets,

Xk =
{
x
(1)
k ,x

(2)
k

}
=
{
x
(2)
k ,x

(1)
k

}
.

Just as for random vectors and matrices, there exists a probability density
function p

(
Xk

)
of an RFS, Xk. Due to the inherent orderless property of

RFSs, its relation to the joint pdf of ordered target vectors is

p
({

x
(1)
k , . . . ,x

(n)
k

} ∣∣∣n
)
= n!p

(
x
(1)
k , . . . ,x

(n)
k

)
, (3.19)

since the n elements of the RFS can be permuted in n! ways. The number
of elements of a set is called cardinality, and is written

∣∣Xk

∣∣. For an RFS,
the cardinality is a discrete random variable. An RFS is hence described by
its cardinality distribution, and the distribution of its elements.
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3.2.2 Problem Formulation for Tracking Without Tar-
get Identity

The general multi-target multi-sensor tracking problem in the FISST frame-
work is to estimate the target RFS, given all data up to the current time,
where the RFSs are defined as follows.

Xk is the target RFS, namely the set of all targets present at time k (if
any),

Zk is the measurement history RFS, i.e., the set of all measurements from
time 1 to time k.

We thus seek to calculate p
(
Xk|Zk

)
, analogously to the single-target case.

3.2.3 Conceptual Solution: The Multi-Target Bayes

Filter

For a single target, the solution to the tracking problem is given by the
single-target Bayes filter, see (2.5). For multiple targets, FISST enables the
derivation of an analogous multi-target expression. By rewriting the multi-
target posterior pdf using Bayes’ rule,

p
(
Xk|Zk

)
=

p
(
Zk|Xk, Z1:k−1

)
p
(
Xk|Z1:k−1

)

p
(
Zk|Z1:k−1

) , (3.20)

we obtain a recursive method for evaluating the density, given the multi-
target likelihood p

(
Zk|Xk, Z1:k−1

)
(multi-target measurement model) and the

multi-target prior p
(
Xk|Z1:k−1

)
. Similar to the Chapman-Kolmogorov equa-

tion (cf. (2.8)) for the single-target Bayes filter, we have [40]

p
(
Xk|Z1:k−1

)
=

∫
p
(
Xk|Xk−1, Z1:k−1

)
p
(
Xk−1|Z1:k−1

)
δXk−1

=

∫
p
(
Xk|Xk−1

)
p
(
Xk−1|Z1:k−1

)
δXk−1 (3.21)

where the integral is a set integral [40]. As described in [40], the multi-target
Bayes filter is mathematically and practically intractable in general, since an-
alytical expressions are difficult to find, and set integrals are computationally
very heavy. Since none of the work in this thesis uses set integration, the con-
cept is not further discussed. In (3.21), the multi-target density p

(
Xk|Xk−1

)

is the multi-target analog of the single-target motion model [40], which is
assumed to fulfill the Markov property of a random process [2].
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3.2 Tracking Without Target Identity

The single-target Bayes filter is computationally heavy, except for some
special cases such as linear Gaussian models, which leads to the Kalman filter.
The multi-target Bayes filter is even more computationally cumbersome, due
to the set integrals, whereby reasonable approximations have to be made in
order to obtain practical filters.

3.2.4 Probability Hypothesis Density

The Kalman filter recursively estimates the posterior expected value and
covariance matrix of a state vector xk

∣∣Zk. To find a corresponding multi-
target filter for tracking without target identity is not straightforward. The
first problem one faces is the question of what the expected value of a random
finite setXk is. The purpose of this section is to shortly answer that question.

Since addition of sets is undefined, the expected value of an RFS cannot be
defined equivalently to its vector counterpart. Instead, an indirect expected
value is defined through a transformation Xk 7→ TXk

, which maps the RFS
Xk into vectors TXk

in a vector space [40]. The mapping should preserve the
set-theoretic structure in that unions be transformed into sums. According
to [40], it is common practice in the point process literature [44] to choose

TXk
= δXk

(xk), (3.22)

where

δXk
(xk) ,

{
0 if Xk = ∅∑

w∈Xk
δw(xk) otherwise.

(3.23)

For each element xk in Xk, the transformation thus puts a Dirac point mass
in that point xk of the single-target state space. The indirect multi-target
expected value vk|k(xk) of the RFS Xk|Zk, given by the expected value of
δXk

(xk), is thus

vk|k(xk) , E [δXk
(xk)] =

∫
δXk

(xk)p
(
Xk|Zk

)
dXk. (3.24)

As we see, the first-order statistical moment of the RFS Xk is a function on
the single-target state space. Actually, it is an intensity function, with the
property that vk|k(xk)dxk gives the expected number of targets in a small
area dxk. The function is called the probability hypothesis density (PHD). It
is also referred to as the target intensity function. The concept of a PHD
was, according to [45], first discussed in some unpublished work [46], [47].
The proof that the PHD is indeed a first-order statistical moment was first
given in [45].
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An intuitive understanding of the PHD can be given by the following
property of the intensity function. Consider an area S in the single-target
state-space. The expected value of the number of targets in the RFS Xk,
which reside within the area, is

E [|Xk ∩ S|] =
∫

S
vk|k(xk)dxk. (3.25)

All tracking algorithms based on FISST assume that the random finite
sets are of a certain type. In the following subsections we will introduce these
types, and their implications.

Poisson RFS

A Poisson distribution is completely determined by its expected value (the
variance being equal to the expected value). In the same sense, a Poisson
RFS is completely characterized by its intensity function v(x). An RFS X
is a Poisson RFS if its cardinality distribution Pr{

∣∣X
∣∣ = n} is a Poisson

distribution with expected value N̂ =
∫
v(x)dx, and if its elements are inde-

pendent and identically distributed [40], according to the probability density
p
(
x
)
= v
(
x
)
/N̂ .

Cluster RFS

A cluster RFS is a generalization of the Poisson RFS [40]. An RFS X is a
cluster RFS if its elements, for finite cardinality, are independent and iden-
tically distributed according to v

(
x
)
/N̂ . In difference to the Poisson RFS,

the cardinality distribution is arbitrary. Assuming independent targets with
identical distribution is not always a good approach, which is a weakness of
some of the FISST-based filters.

3.2.5 The Probability Hypothesis Density Filter

The PHD, as seen in (3.24), is the first-order moment of a random finite set,
corresponding to the expected value of a stochastic vector. Indeed, if an RFS
Xk contains only one target vector xk, its PHD vk|k(xk) is the probability
density function p(xk|Zk) of that vector. Under the assumption that the main
part of the information regarding the RFS is given by its first-order moment,
a recursive filter for estimating the PHD would be of practical value. This
is the foundation for the PHD filter [48], which is discussed here. Relating
to the single-target problem, the PHD filter is the multi-target analog of
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3.2 Tracking Without Target Identity

fixed-gain filters, such as the (α-β-γ) filter [49], which propagate the first-
order moment of a state vector xk in time. Just as the Kalman filter, the
PHD filter has a prediction and a measurement update step. We will not
derive the filter here, nor state the filter equations, but will only discuss its
assumptions, and some of their implications. For filter equations of the PHD
filter, see for example [48, 50].

The PHD filter was originally intended for cluster tracking and group-
target tracking applications, but has shown to be of practical interest beyond
these areas [51].

Assumptions

The PHD filter resides on the following assumptions:

1. Each target evolves and generates measurements independently of the
other targets.

2. Clutter is Poisson distributed and independent of target-generated mea-
surements.

3. The predicted multi-target RFS is a Poisson RFS.

The first two assumptions are standard for tracking applications, whereas
the last one is PHD-specific. That the predicted RFS is a Poisson RFS
implies that the cardinality of the set at prediction is Poisson distributed and
that the targets are independent and identically distributed at prediction.
According to [48], it is a reasonable assumption if interactions between targets
are negligible. However, it leads to the problem that the cardinality estimate
drops quickly if some targets are not detected for a number of time steps,
which is called the missed-detection problem [52].

To model increasing and decreasing number of targets, the PHD filter
has two steps called target birth and target death. In the PHD filter setting,
target birth appears in two different forms: either by spontaneous birth or by
spawning from a target at the previous time instant. Further, disappearance
of targets from the visibility region of the sensor is modeled by a death
process. With a certain probability, given by the death process, a target
vanishes, or dies, at the next time step.

Although expressions for the PHD filter exist, they are not closed form
in general. Numerical integrations are possible, but usually intractable. Two
practicable implementations of the filter are particle filtering [53], and a
Gaussian-mixture approximation [54].

Appealing properties of the PHD filter are that it avoids all explicit multi-
target to multi-detection assignments, that its complexity is linear in both
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number of targets and number of measurements, and that it is easy to im-
plement. The main drawback with the PHD filter is the assumption that the
target RFS is Poisson, which is unintuitive and leads to peculiar behavior of
the filter; see for example [52].

3.2.6 The Cardinalized Probability Hypothesis Den-
sity Filter

A drawback with the PHD filter is that it represents a target RFS with
only its first-order moment. In principle, one would instead want a Kalman-
filter equivalent for multi-target problems, which requires a description of
the second-order moment of an RFS. Theoretically, according to [51], it is
indeed possible to find such a filter, but it is claimed not to be practically
implementable. Instead, to improve upon the PHD filter in practice, a better
description of the cardinality distribution is a feasible approach. In [51, 55]
such an approach is devised, where not only the first-order statistical moment
of the multi-target RFS is propagated, but also its full cardinality distribution
Pr{nk|Zk}, where nk is the cardinality of the set. The method is called
the Cardinalized Probability Hypothesis Density (CPHD) filter. With the
improved cardinality representation, the CPHD filter provides lower-variance
estimates of the number of targets.

The CPHD filter rests on the following assumptions:

1. Each target evolves and generates measurements independently of the
other targets.

2. Clutter is a cluster RFS, and independent of the object generated RFSs.

3. Predicted and posterior target RFSs are approximated as cluster RFSs.

4. The birth RFSs are cluster RFSs, and independent of the surviving
target RFSs.

If we compare the above assumptions to those of the PHD filter in Sec-
tion 3.2.5, we see that the Poisson RFS assumptions on target, clutter and
birth RFSs have been exchanged for cluster RFSs. Through this, the Poisson
distribution of the number of elements in a set is exchangeable for an arbi-
trary probability mass function. For the target RFS we are then allowed to
propagate the full cardinality distribution Pr{nk|Zk} in time, to provide bet-
ter (lower-variance) estimates of target cardinality. However, the assumption
that the targets are identically distributed is still present. Often, for clutter
and birth processes, the Poisson RFS assumption is used also in the CPHD
setting.
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3.2 Tracking Without Target Identity

The original CPHD derivation uses FISST [51], but the filter has also
been derived in two different ways using ordinary statistics, in [56] and [57].
Different formats of the prediction and measurement update equations are
found in [51, 56, 58].

Two practical implementations of the CPHD filter have been proposed.
The first one is a sequential Monte Carlo approach [40]—a particle filter—and
the second a Gaussian-mixture filter, called GM-CPHD [58, 59], which pro-
vides a closed-form solution to the problem under linear-Gaussian conditions.
Ground target tracking using GM-CPHD, together with road information, is
described in [60].

The output of the CPHD filter is an estimate of the cardinality of the
target RFS, as well as the state vectors of those targets without ordering.
There are several possible cardinality estimates to choose from, where the
most commonly used one is the maximum a posteriori (MAP) estimate

NMAP
k|k = argmax

nk

Pr{nk|Zk}. (3.26)

The MAP approach gives stable estimates, which are integer, and it can be
directly used for extracting the state vectors.

In the state vector output, we want to find the state vectors that corre-
spond to the expected number of targets. For the continuous CPHD, target
concentrations are seen as peaks in the intensity function. In the Gaussian
mixture case, these peaks are located in the centers of the largest mixture
components. The state vector estimates are hence the state vectors corre-
sponding to the NMAP

k|k mixture components with largest weights. In particle
filter implementations, state vector extraction is more complicated, and has
to rely on an efficient clustering of particles into an appropriate number of
clusters, e.g., the cardinality MAP estimate [58]. In dense target situations,
where no natural clustering can be done, the state estimates will be unreli-
able. Thus, the avoidance of clustering is a major benefit of the Gaussian
mixture CPHD.

In Fig. 3.4, we give an example of how the intensity function vk|k(xk)
may look in practice. The scenario is a ground target tracking scenario with
nine vehicles moving closely together. Simulated measurements are provided
by an airborne radar measuring range, azimuth and elevation. The mea-
surement model is non-linear, so tracking is performed using the GMCPHD
filter together with an Extended Kalman Filter (EKF). At a certain time,
the filter provides an estimate of the intensity function expressed by the pos-
terior Gaussian mixture. The posterior intensity function vk|k(xk) is here
described by 52 Gaussian components. In the example, the MAP estimate
of the cardinality is 8 targets.

39



Chapter 3. Data Association

Figure 3.4: Example of a PHD surface (intensity function) for a ground tar-
get tracking scenario, with an airborne radar approaching the
targets. The number of targets in the scene is 9 and the CPHD
MAP estimate at the current time is 8. The intensity function
is a sum of 52 mixture components. The sensor has good range
accuracy, but poorer angular accuracy. Thus, the mixture com-
ponents are narrow in the range direction. The PHD surface is
plotted in the (x, y) plane. The scale on the x- and y axes are in
meters, where the coordinate system is centered around the mid
point of the scenario.

The complexity of the CPHD filter is linear in number of targets, but of
higher complexity in number of measurements, depending on how the filter
is implemented. For a straightforward implementation, the filter is cubical
in the number of measurements. For more information, see [58]. Just as
for all FISST-based filters, the labeling of targets cannot be performed in
the standard CPHD filter. However, for the GMPHD filter, the labeling
scheme proposed in [61] is applicable. Each mixture component then has its
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own label. When mixture components are merged, the component with the
largest weigh determines the label of the merged component.

The CPHD filter solves the missed-detection problem [52] of the PHD
filter. However, in [62] a different missed-detection problem for CPHD was
observed, called spooky action at a distance.

3.3 Performance Measures of Multi-Target Fil-

ters

To be able to assess the performance of a filter, a measure of performance
is essential. For single-target scenarios, or scenarios with known number
of targets, the root-mean square error (RMSE) is a standard measure of
performance. If the true state at time k is xtrue

k , and if we from a Monte
Carlo simulation of a filter obtain N estimates x̂l

k, l = 1, . . . , N of the state
at time k, the accuracy of the estimates is given by the RMSE

eRMSE(k) =

√√√√ 1

N

N∑

l=1

(
x̂l
k − xtrue

k

)T (
x̂l
k − xtrue

k

)
. (3.27)

For multi-target tracking algorithms, however, there is no standard perfor-
mance measure. The problem can be illustrated with an example. Say that
we have a one-dimensional problem, and that we apply two different track-
ing filters on the problem. The true position of the only target is xtrue = 10.
Say further that Filter 1 tells us that there are two targets, one with state
x̂
(1)
f1

= 1 and the other one with state x̂
(2)
f1

= 9.9, and that Filter 2 tells us

that there is only one target, with state x̂
(1)
f2

= 4. Which of the filters then
produce the best estimate at the current time? One of the estimates of filter
1 is very close to the truth, but the cardinality is wrong. Filter 2 has the
correct cardinality, but a poor estimate of the position. Issues of this kind
makes multi-target performance measures tricky. Often, a set of measures
are required to capture strengths and weaknesses of different algorithms.

A first attempt to construct a single performance measure for multi-target
scenarios was given in [63], with a Wasserstein-based [64] measure of perfor-
mance. Criticism towards the measure is found in [65, 66], where a new
performance measure, called Optimal Subpattern Assignment (OSPA), is in-
troduced. The OSPA measure is also based on the Wasserstein distance, and
the measure is an update of the measure in [63]. The OSPA measure tries
to capture the quality of both the cardinality and the state estimation. Let
X be the set of true target states and X̂ be the set of target estimates, with
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cardinalities n and m, respectively. The OSPA measure d̄
(c)
p is then defined

as

d̄(c)p (X̂,X) =

(
1

n

(
min
π∈Πn

m∑

i=1

d(c)(xi, x̂π(i))
p + cp(n−m)

))1/p

, (3.28)

if m ≤ n and d̄
(c)
p (X̂,X) = d̄

(c)
p (X, X̂) otherwise. In (3.28), d(c)(x, x̂) ,

min(c, d(x, x̂)) is the distance d between x and x̂, clamped at c. Further,

Πn is the set of all possible permutations of X̂, and p is the order of the
measure (often p = 1 or p = 2 are used). The benefit of the measure is that
is captures the quality of both the cardinality estimate and the estimate of
the state vectors of a multi-target filter. The drawback of the measure is
that it is not as comprehensible as a simple RMSE measure.

To evaluate the performance of a tracking filter, we average over all state
vectors, which gives us a definition of the mean OSPA (MOSPA) measure

MOSPA(c)
p (X̂) , Ep(X|Zk){d̃(c)p }, (3.29)

which was first introduced in [67]. An optimal estimator, in the MOSPA
sense, is an estimator which minimizes the MOSPA distance. Such an es-
timator is referred to as a minimum MOSPA (MMOSPA) estimator2. In
Papers II, III and IV, MOSPA is used for the performance evaluations. Fur-
ther, in [67], the calculation of MMOSPA estimates for known number of
targets is described.

2Note that the relation between OSPA, MOSPA and MMOSPA is analogous to the
relation between the common acronyms SE, MSE and MMSE.
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Chapter 4
Radar Measurement Modeling

A
s described in Chapters 2 and 3, the purpose of a tracking algorithm
is to recursively estimate quantities of interest, using information
provided by one or several sensors. The quantities are often the

kinematic states of objects, e.g., vehicles, whereas a sensor is a device that
measures a physical quantity, and converts it into a signal that can be in-
terpreted by a user or an instrument. An example of a sensor is a mercury
thermometer, in which the temperature is measured by observing the expan-
sion and contraction of a liquid. Two important features of a sensor are its
accuracy and resolution, where the accuracy determine the trustworthiness
of a measurement and the resolution is the smallest change the sensor can
detect in the quantity it is measuring.

In target tracking, sensors that provide measurements of the range, di-
rection and possibly speed of an object are preferred, since those are the
states one is often interested in estimating. For short-distance applications,
cameras are popular, while long-distance applications call for sensors that
are less sensitive to light conditions and optical obstructions, such as clouds,
and which are accurate at those distances. One sensor that fulfills those re-
quirements is radar, which is the reason that it has been the most popular
sensor in target tracking since its invention in the early 20th century. As seen
in the previous chapters, the information from the sensor is incorporated in a
Bayesian tracking framework through a sensor model. The model describes
the density of a measurement, given the state of a target, and it provides in-
formation on the properties of the measurements; for example their accuracy.
In this chapter, the basic measurement principles of radar are described, with
the purpose of introducing the reader to the resolution modeling in Paper
IV.
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Figure 4.1: Basic principle of radar.

4.1 Basic Measurement Principles

In this section, the basic measurement principles of a detection radar [68] are
described. More detailed descriptions are available in [68–71], and a good
introductory textbook is [72]. The detection radars used in target tracking
present measurements of one or several of the following properties: range,
azimiuth angle, elevation angle and Doppler frequency (range rate). The
accuracy and resolution in each of those dimensions are presented further
on.

In its simplest form, as illustrated in Fig. 4.1, a pulsed radar transmits a
single pulse and then awaits its response from a distant object. The radar
then detects the received pulse, and measures the time, τ , it took for the
pulse to travel to the target and back. The distance, or range, to the object
is then estimated as

R =
cτ

2
, (4.1)

where c is the speed of light. The detection procedure is often carried out
by a matched filter followed by a threshold detector, where the impulse re-
sponse of a matched filter is the time-reversed and conjugated version of the
transmitted pulse [70].

A pulsed radar often transmits pulses at regular intervals, and by ob-
serving the phase shift between pulses from the same object, the radar can
estimate the Doppler shift of the target, and hence its speed. The funda-
mental relation between the radial speed, Ṙ, and the Doppler shift, fd, is

fd = −2Ṙ

λ
, (4.2)

where λ is the wavelength of the transmitted signal.
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The azimuthal direction ϕ and the elevation angle θ to an object is de-
termined either by the look direction of the radar, or by direction of arrival
methods, such as monopulse [73], in which several antenna receive elements
are used to determine the angular direction of an incoming electromagnetic
wave.

The time interval between pulses is called pulse repetition interval (PRI),
and its reciprocal is called pulse repetition frequency (PRF). Pulsed radar are
classified by the PRF, and are divided into three groups: low PRF (LPRF),
medium PRF (MPRF) and high PRF (HPRF). Each group has its strengths
and weaknesses, and the selection of PRF depends on the application.

4.1.1 Radar Equation

The ability of a radar to detect the presence of an object mostly depends on
the signal-to-noise ratio (SNR), where the signal part is the received radar
reflection from an object, and where the noise is due to reflections from
nature (called clutter) and thermal noise energy from the receiver and from
external background noise. The SNR level in the radar is given by the radar
equation, which is available in different forms, and where one form is

SNR
(
R, θ, ϕ

)
=

EtGt(θ, ϕ)Ae(θ, ϕ)ρRCS

(4π)2R4kT0CBLp
. (4.3)

In (4.3), the parameters are defined as

Et : energy in the transmitted signal waveform [Ws]

Gt(θ, ϕ) : antenna gain of the transmitting antenna in (θ, ϕ) direction [ ]

Ae(θ, ϕ) : effective receiving antenna aperture in (θ, ϕ) direction [m2]

ρ : pulse-compression ratio (≤ 1) [ ]

RCS : radar cross section of the reflecting object [m2]

kT0CB : noise energy [Ws]

Lp : additional propagation losses [ ].

The SNR has great impact on the tracking performance, since it determines
the quality of the measurements being delivered to the tracking filter. It
also determines how often the radar will see the different targets, which
thus affects the update rate of a track. More directly, the SNR is used
together with a detection probability curve [20] to determine the probability
of detection, PD, of the radar, under a given SNR (and given target signal
fluctuation models, e.g., the family of Swerling models [74]).
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4.1.2 Ambiguity

Consider the case of a pulsed radar transmitting a pulse every 1/PRF sec-
onds. For the return from an object to be received in the interval between
two pulse transmissions, the distance to the object cannot be larger than

Rmax =
c

2PRF
. (4.4)

If the distance to an object is larger than Rmax, the system will not know if
the reflection is from the first or the second pulse. We then have an ambiguity
in range. To have unambiguous detection in the range dimension, we must
hence have a PRF which is small—an LPRF system. However, in the Doppler
domain, the ambiguousness is the opposite. In the Doppler processing, the
radar performs a fast Fourier transform at a pulse-to-pulse basis, to find the
Doppler shift of an object (at a certain range). The Doppler sample speed
is thus equal to the PRF. Since the radar works with complex samples, the
Nyquist theorem states that folding will occur at the complex Nyquist rate.
Thus, the maximum unambiguous Doppler is

fmax = PRF. (4.5)

Therefore, to operate with unambiguous Doppler requires a system with a
large PRF—a HPRF system. However, as seen above, a high PRF leads to
range ambiguities. We thus have to make a trade-off between these ambi-
guities when designing a system. The ambiguity criterion in Doppler can
be transformed into a range rate criterion, yielding the following maximum
unambiguous relative speed of an object:

v0 + vmax =
PRFλ

2
. (4.6)

In (4.6), v0 is the speed of the sensor platform.
From the above description, we see that unambiguity in range leads to

ambiguity in Doppler, and vice versa. Indeed, the definitions of the LPRF,
MPRF and HPRF is actually such that an LPRF waveform is unambiguous
in range, a HPRF waveform is unambiguous in Doppler, and an MPRF wave-
form is ambiguous in both dimensions. For more details of the applications
of each type of waveform, and their advantages and disadvantages, see [70].

4.2 Accuracy

The accuracy of a radar sensor describes the precision with which the radar
can detect an object in each measurement dimension. To specify the accu-
racy, a lower bound on the mean-square error is often provided, which states
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the lowest possible variance of the error in the parameter of interest. Since
many different lower bounds exist, the accuracy of a sensor is not speci-
fied by a single value, but depend on the bound and its tightness. Often,
the Cramér-Rao bound [75] is used, but regardless of which bound that is
used, the expressions have similar dependencies on, e.g., SNR and waveform
characteristics.

In [71], the Cramér-Rao bound for time-of-arrival measurements of a
radar is specified as

στ ≥ 1

β
√
2E/N0

, (4.7)

where στ is the standard deviation of the time-of-arrival error, and
√
2E/N0

is the SNR after matched filtering. Converted to range measurements, the
accuracy in range is determined by

σR ≥ c

2

1

β
√
2E/N0

, (4.8)

where

β2 =

∫ +∞
−∞ (2πf)2

∣∣S(f)
∣∣2df

∫ +∞
−∞

∣∣S(f)
∣∣2df

=
1

E

∫ +∞

−∞
(2πf)2

∣∣S(f)
∣∣2df (4.9)

is the square of the effective bandwidth, or root mean square (RMS) band-
width, of the waveform, and S(f) is the Fourier transform of the transmitted
signal s(t). From (4.8), we see that the range accuracy is inversely propor-
tional to the SNR and to the bandwidth. In [76], a tighter bound for time-of-
arrival estimation is described, and the specific expression for a trapezoidal
pulse-shape is derived.

By considering the connection between the spatial (angle) and spectral
(frequency) domains, the angular accuracy of a radar is, according to [71],
determined by

σθ ≥
1

γ(θ)
√

2E/N0

, (4.10)

where

γ(θ)2 =

∫∞
−∞(2πθ/λ)2

∣∣A(θ)
∣∣2dθ

∫ +∞
−∞

∣∣A(θ)
∣∣2dθ

(4.11)
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is the squared effective aperture width of the antenna. In (4.11), A(θ) is
the aperture illumination function, which describe the distribution of the
current across the aperture (in the θ direction). For the angular accuracy in
ϕ, the same equations as above are used, but with the aperture illumination
A(ϕ) in the ϕ dimension instead. The accuracy in angle is hence inversely
proportional to the SNR and the aperture width of the antenna, where a
wide aperture gives a narrow main lobe.

For the Doppler measurements, it has been shown that the accuracy is
given by [77]

σfd ≥ 1

α
√
2E/N0

, (4.12)

where

α2 =

∫ +∞
−∞ (2πt)2s2(t)dt
∫ +∞
−∞ s2(t)dt

(4.13)

is the squared effective time duration of the transmit signal s(t).
From the description in this section, we conclude that a high SNR ac-

counts for more accurate measurements in all dimensions, and that the accu-
racy is further dependent on the waveform and antenna designs. Just as was
observed in the ambiguity discussion, the range and the Doppler dimensions
are connected also regarding accuracy. From (4.8) it is concluded that the
range accuracy is inversely proportional to the bandwidth of the transmitted
waveform, whereas the Doppler (and hence range rate) accuracy, according
to (4.12), is inversely proportional to the effective time duration of the sig-
nal. Thus, for a simple pulse, high accuracy in both range and Doppler is
not possible, since a long pulse corresponds to a small bandwidth. However,
by using modulation techniques, it is possible to increase the bandwidth
and thus obtain accuracy in both dimensions [71,72]. Another consideration
when designing a radar system is the measurement time. If high Doppler
accuracy is required, a long pulse is necessary, which means that the search
speed of the radar must be low. If a large area is to be covered, this will
then affect the rate at which we can obtain measurements from the different
targets, which in turn will affect the tracking performance.

4.3 Resolution

The concept of resolution determines how closely spaced two targets can be
while still being distinguishable as two objects by the sensor. For range reso-
lution, and the case of the transmit signal being a simple constant-frequency
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Transmitter

Receiver Target 1

Antenna

Target 2

Received signal

From target 1

From target 2

Transmitted signal

Figure 4.2: Ilustration of the range resolution for a simple pulse. For the two
targets to be distinguishable by the radar, the time τ2 must be
larger than τ1 + τp.

pulse of length τp, an illustration of the resolution concept is given in Fig. 4.2.
For the two point reflectors to be distinguishable by the sensor, they must
be separated with a distance

∆R =
cτp
2
, (4.14)

as the figure illustrates. This quantity, ∆R, is referred to as the range res-
olution of the radar. For more advances waveforms, the resolution does not
simply depend on the pulse length, but actually depend on the bandwidth
of the waveform, according to [68]

∆R =
c

2B
, (4.15)

where B is the bandwidth of the baseband waveform, normally defined by the
3dB bandwidth. Note that, for a simple pulse, a reasonable approximation
for the 3dB bandwidth is B ≈ 1/τp, which gives the expression in (4.14).

For the angular measurements in both azimuth and elevation, the reso-
lution capability of the sensor depends on the antenna pattern [78]. For two
closely spaced targets to produce two peaks in the received signal spectrum,
they cannot be closer than the 3dB beamwidth of the mainlobe. Thus, the
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angular resolution is

∆θ = θ3dB (4.16)

∆φ = φ3dB, (4.17)

where θ3dB and φ3dB are the 3dB beamwidths in the respective dimension.
Note, however, that even though two targets are further apart than the
angular resolution of the sensor, they may still not be resolvable, due to
their radar cross sections being different—the electromagnetically smaller
object might then drown in the reflection from the larger target.

In the Doppler domain, the resolution depends on the waveform of the
transmitted pulse, and more specifically its spectrum. For a simple pulse of
duration τp, the spectrum has a sinc shape, where the 3dB width of the main
peak is f3dB = 1/τp. Thus, similar to the angular resolution, the resolution
in Doppler is given by

∆fd = f3dB =
1

τp
. (4.18)

Noteably, by comparing with (4.14), good Doppler resolution is given by hav-
ing a long observation time, i.e., a long pulse, whereas good range resolution
is given by having a short pulse. The requirements are hence the opposite
in range and Doppler. However, by modulating the pulse, a long pulse with
large bandwidth can be created, whereby good resolutions in both dimensions
are possible. This is the foundation for pulse compression [70]. Through the
relation between Doppler frequency and range rate, the resolution in range
rate is finally given by

∆Ṙ =
∆fd · λ

2
=

λ

2τp
. (4.19)

The resolution properties of a waveform can be described through its
ambiguity function [79], which describes the output of the matched filter as
a function of the time delay and Doppler shift. It thus provides a description
of how well the filter is matched to the received signal. By analyzing the
ambiguity function, the expressions for resolution presented above can be
found. However, for more precise analysis of the resolution capabilities, the
signal-to-noise levels must be considered. A more rigorous analysis of the
optimum range resolution in the presence of noise is given in [80].

When designing a radar system, the resolution, or resolution cell, is often
chosen to match the size of the targets of interest. This is done in order to
maximize the energy from the targets, to provide as high SNR as possible.
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As long as all targets are of the same size, no resolution problems will occur,
since the resolution is matched to the target size. However, when there
are targets of different sizes, this approach is not possible. Then, if the
resolution cell is matched to the largest targets, limited resolution problems
may occur where several targets appear as one. On the other hand, if the
cells are matched to the smallest targets, the larger targets (in this case
called extended objects) will span over several resolution cells, and thus give
rise to several measurements. In Paper IV, resolution problems of the first
kind are discussed, and a resolution model is proposed which accounts for
limited-resolution effects.
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Chapter 5
Contributions and Future Work

I
n this chapter, the contributions of the thesis are summarized and a
discussion of possible future work within the research area is held. The
contributions take the form of four appended papers, which consider three

different issues within targets tracking, namely multiple model filtering, data
association and sensor resolution modeling. After the presentation of the
contributions, an overview is given of possible directions of future work within
the research area.

5.1 Publications

The thesis is based on the following publications:

Paper I A New Multiple Model Filter with Switch Time Conditions
The most common multiple model filter in target tracking is the Interacting
Multiple Model (IMM) filter, which finds a sub-optimal solution to jump-
Markov linear systems (JMLSs). An implicit assumption of JMLSs is that
immediate model transitions have the highest probability. In this article, we
argue that this model-shift property does not capture the typical nature of
maneuvering targets, namely that changes in target dynamics usually per-
sist for some time. We hence propose an adjusted switch time assumption
that forces the dynamic models to remain fixed for a specified time. This
is equivalent to replacing the Markov chain with a specific first-order semi-
Markov chain. The modified filtering problem has lower complexity, and
we derive a state estimation algorithm, called the Switch-Time Conditioned
IMM (STC-IMM), which is close to optimal in many scenarios. Further, a
deeper discussion of the relation between the proposed method and other
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semi-Markov multiple-model methods is presented. A three-model version
of the STC-IMM filter is compared with a three-model IMM filter on six
benchmark problems for airborne target tracking. Results show an increase
in performance for all six problems of the benchmark.

Paper II Set JPDA Algorithm for Multi-Target Tracking
In the development of data association and target tracking algorithms, the
considered goal function has traditionally been the mean square error (MSE).
Implicitly, this choice of goal function has a constraint that each target has
an associated identity, or label. For many applications, this is in agreement
with what the user wants, for example in surveillance systems where the
long-term movement of specific targets are of interest. However, in other ap-
plications, such as radar cueing and collision avoidance, there is no interest
in which target is which—the only interest is in where there are targets. To
then use the MSE as cost function enforces an unnecessary constraint on the
problem. A better choice is to use a measure which disregards target iden-
tity, and only considers the ability of the algorithm to estimate where there
are targets. One such metric is the Mean Optimal Subpattern Assignment
(MOSPA) metric, which we consider in this article. In this paper, we show
how the traditional algorithms, which have been developed for the tracking
problem with identity, can be adjusted to perform better when the identity is
not of interest. More specifically, we propose an adjusted version of the Joint
Probabilistic Data Association (JPDA) algorithm to this problem. When
target identity is not an issue, the problem can be posed as the estimation
of the random finite set (RFS) of the targets’ states, through the calculation
of the corresponding RFS density. However, the calculation of RFS densities
is not tractable in general. The approach of this paper is instead to use
the fact that many ordered (labeled) densities correspond to the same RFS
density, and that the problem can be formulated as the finding of the best
ordered density within the family of densities that correspond to the same
RFS density. By this method, two extensions of the JPDA filter are pre-
sented: one by which optimal Gaussian approximations (which is used in the
moment-matching step of the algorithm) in the Kullback-Leibler sense are
found, and one which seeks to find both accurate Gaussian approximations,
and better estimates. By evaluating the two filters, called Kullback-Leibler
Set JPDA (KLSJPDA) and Set JPDA (SJPDA), on scenarios with closely-
spaced targets—where the ordinary JPDA filter has problems—the benefits
of the set-based approaches are showed. The results are compared with
the JPDA filter and with the more complex Gaussian-Mixture Cardinalized
Probability Hypothesis Density (GM-CPHD) filter, and they show that the
set-based JPDA filters perform substantially better than JPDA, and almost
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as well as the GM-CPHD filter.
Preliminary results have been published in [81].

Paper III Performance Evaluation of MHT and CPHD in a Ground
Target Tracking Scenario

Comparisons between multi-target tracking algorithms are not common in
the literature. In this paper, we evaluate two conceptually different track-
ing algorithms, namely a Multiple Hypothesis Tracking (MHT) algorithm
and the recently-developed Gaussian-Mixture Cardinalized Probability Hy-
pothesis Density (GM-CPHD) filter. As a reference, a conventional Single-
Hypothesis Tracking (SHT) algorithm is applied to the scenario. To the
best of our knowledge, a comparison between MHT and GM-CPHD has
not been published before. The problem under consideration is tracking of
nine densely spaced ground targets, using simulated measurements from an
airborne radar. During parts of the scenario, up to two targets are not de-
tectable by the radar, due to obscuration by a mountain. The scenario is
challenging, which is indicated by the fact that SHT does not perform nearly
as well as MHT and CPHD. Differences between the MHT and CPHD al-
gorithms are pointed out and discussed. For example, GM-CPHD is more
responsive to changes in the number of targets, whereas MHT is less respon-
sive, but produces a more stable output.

Paper IV Multitarget Sensor Resolution Model and Joint Probabilistic
Data Association

Traditionally, the design of target tracking algorithms has been performed
under the assumption that all targets are always resolved by the sensor. How-
ever, when targets are closely spaced, this assumption does not hold, and it
may lead to a degradation of the tracking performance due to an incorrect
description of the data. In this paper, we present a framework for handling
sensor resolution effects, and we propose a complete multitarget sensor res-
olution model that can be incorporated into traditional Bayesian tracking
filters. Further, we derive the exact form of the posterior probability density
function, and propose two alternative ways of approximating that density by
a single Gaussian. The approaches can be viewed as two extensions of the
Joint Probabilistic Data Association (JPDA) filter to resolution problems.
The filters including a resolution model are evaluated on simulated radar
data from a sensor with limited resolution, and the results are compared
with the standard JPDA filter. As a measure of performance, the Mean Op-
timal Subpattern Assignment (MOSPA) measure is used. The results show
increased tracking performance for the filters with a resolution model.
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Preliminary results have been published in [82, 83].

5.2 Future Work

This thesis considers target tracking in complex scenarios. More specifi-
cally, it provides contributions within three areas of target tracking: mul-
tiple model filtering, data association and sensor resolution modeling. The
common denominator between three of the appended papers (the fourth one
being the performance evaluation) is that they identify weaknesses with ex-
isting methods for a range of problems, and propose alternative models or
model structures that provide better descriptions of the data or the target
dynamics. For the multiple model filtering work, the weakness is that it is
not always reasonable that immediate model shifts are the most probable.
Further, for the data association problem, it is noted that the traditional
tracking algorithms can be improved when target identity is not of interest.
Finally, the sensor resolution paper discusses the problem of limited resolu-
tion which, despite its recognized importance, has not been studied for more
than two closely-spaced targets. Although the papers take a step forward in
each direction, future work is needed within all these areas of research, and
suggestions and discussions of such future work are presented here.

For the multiple-model filtering research, the area is rather well devel-
oped, and there is no clear view of what the next step is within that field.
For the specific filter being presented in Paper I, however, there are more
studies that would be interesting to pursue. First of all, evaluations of the
filter performance on a wider set of scenarios where switch-time conditions
are expected to be advantageous would be rewarding. Furthermore, the com-
putational complexity of the filter and its correlation to the filter performance
is a research study well worth considering. In Paper I, an approximation pro-
cedure referred to as early merging is proposed, and is expected to work well
in many scenarios, due to the fast decay of the effect of prior information on
the posterior density. However, a more rigorous study of when the approxi-
mation yields lower computational burden, while still performing better than
a filter without switch-time conditions, is required.

The second paper of this thesis opens up an entirely new research area,
and there are thus many potential research problems within that area. In
Paper II, an adjustment of the traditional JPDA filter is presented. How-
ever, the conceptual method for improving any classic assignment algorithm
is also presented in the paper. Natural future work is thus to consider more
advanced data association algorithms, and to adjust them to the problem
of target tracking without target identity. Since the most advanced algo-
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rithm within the family of traditional algorithms is the MHT algorithm, an
adjustment of that algorithm using the set-based methods of Paper II is an
excellent proposal for future work. Further, the research so far has consid-
ered the number of targets to be known. In practice, that is rarely the case,
and the extension to unknown number of targets is hence of utmost interest
and importance.

Although being developed for the label-free problem, the SJDPA algo-
rithm has the ability to state which target is which due to its foundation
being the ordinary JPDA algorithm. However, in contrast to JPDA, the
SJPDA algorithm can be developed to present the probability that a cer-
tain track belongs to a certain target. Let us try to understand why this
may be valuable: if two targets are widely separated, the probability that
one track belongs to target one, and the other to target two is 100%. But,
when the targets move closer together, such that they share measurements
in their respective validation gate, the tracks can no longer with certainty
describe the one or the other target. Nevertheless, since the permutations
of the SJPDA algorithm provide information on the amount of probability
mass being shifted, it is possible to state the probability of a certain label-
ing. To develop such a procedure would widen the use of the SJPDA filter
to problems where target identity is in fact important.

In Paper IV, a multi-target sensor resolution model is presented, and it
is, to the best of the authors’ knowledge, the first attempt at modeling the
resolution limitations of a sensor for the case of more than two closely-spaced
objects. There are hence many interesting research studies to perform in this
area. One obvious continuation is to evaluate the resolution model on a wider
set of scenarios, and also on real sensor data. Further, the implications need
to be studied of the two alternative approaches to extend the JPDA filter to
account for resolution limitations. More specifically, it is of interest to study
the approximation accuracies of the posterior density for the two approaches,
and their relative performance. An establishment of a lower bound on the
estimation error under resolution problems is also an interesting subject for
future work.

Just as the SJPDA algorithm, the sensor resolution model is developed
for the situation when the number of targets is known. To extend the resolu-
tion model to unknown number of targets would be interesting, for example
together with an MHT solution. An incorporation of a resolution model in
FISST-based algorithms, such as the PHD and CPHD filters, is also a good
candidate for future research. Since the JPDA filter, as most data association
algorithms making soft decisions, experiences the problem of tracks being co-
alesced if they are close together, that is also a risk with the JPDA filters
including a resolution model. Thus, to incorporate the resolution model into

57



Chapter 5. Contributions and Future Work

a filter without track coalescence, such as the SJPDA paper, could be of high
value.
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A New Multiple Model Filter with Switch
Time Conditions

Daniel Svensson∗ and Lennart Svensson†‡

Abstract

The interacting multiple model filter has long been the method
of choice for performing target tracking using multiple motion mod-
els. The filter finds a sub-optimal solution to a problem that has
the implicit assumption that immediate model shifts have the high-
est probability. When the sampling rate of the underlying continuous
process is high compared to the target dynamics, this is not a rea-
sonable assumption. Instead, changes in dynamics persist for some
time. In this paper we propose an alternative switching model, which
forces the dynamic models to persist for at least a model-specific time.
The model is semi-Markov in nature, with a sojourn time probability
mass function that is zero for a model-specific number of time steps,
and then follows a geometrical distribution. Through this assumption
a less complex problem in terms of model hypotheses arises, and to
that problem we derive a state estimation algorithm that is close to
optimal when the model assumptions are valid. Three other semi-
Markov-based multiple-model filters are discussed and compared to in
a qualitative sense. We also derive a new aircraft motion model for
start and termination of turns. Finally, the proposed filter is evaluated
on a benchmark scenario for tracking, and the results show a perfor-
mance increase compared to IMM for the trajectories considered.
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ple models, semi-Markov processes, state estimation, target tracking.

1 Introduction

This article is concerned with multiple-model estimation in a tracking frame-
work. The main focus is on multiple motion models, which are incorporated
to enable a good description of target dynamics. There are two main parts
of the multiple-model framework, viz. the motion models themselves and
the model for transition between dynamic models. In this article, which is
an extension of a previous paper [1], we propose a new model structure for
transitions between models, and for that structure we derive a close to op-
timal state estimation algorithm. We also present a new motion model for
start and termination of turns.

The classical approach to multiple-model filtering is the jump Markov sys-
tem (JMS), where target dynamics are captured by multiple motion models,
and where the transition between those models is described by a first-order
Markov chain. In the optimal solution to the problem, an exponentially
growing number of model hypotheses need to be considered, which is infea-
sible in general. Sub-optimal solutions are found by pruning and/or merg-
ing branches of the hypothesis tree. Common merging algorithms are the
Interacting Multiple Model (IMM) filter [2–4] and the Generalized Pseudo-
Bayesian (GPB) algorithm [5–7]. An example of a pruning algorithm is the
Multiple-Model Pruning (MMP) [8] algorithm.

In the Markovian assumption of JMS, it is implicitly assumed that im-
mediate model shifts have the highest probability. The reason is that the
duration time of a model, called sojourn time, has a probability mass func-
tion (pmf) that is geometrical for discrete-time Markov chains. In many
scenarios, this is not in agreement with the actual target dynamics, in rela-
tion to the sampling rate of the underlying continuous-time process. Since
the sampling rate is normally set equal to the measurement rate of the sen-
sor, the Markovian assumption is not valid if the measurement rate is high
compared to the target dynamics. Many typical radar systems have a time
between measurements of around one to two seconds. If we want to use such
a radar system to track aircraft with straight-ahead or turning motion, or
off-road vehicles with stay-on-road or drive off-road motion, those maneuvers
will often last for several seconds, which makes the Markovian assumption
invalid. That targets rarely have the assumed property is well known, and
it is stated in the survey article [9] that the geometrical distribution is ”not
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consistent with the duration of practical target motions”.
To incorporate the sojourn-time dependence of target motion, the state

vector can be augmented with the time spent in the model since the last
model shift. By doing so, while keeping the Markovian property that the
history of states does not affect the transition from the current to the next
state, a semi-Markov chain [10] for state transition emerges. Classic work on
discrete semi-Markov problems are, e.g., [11, 12]. Just as for jump-Markov
systems, sub-optimal solutions are required to solve the jump semi-Markov
problem. The natural first step is to adapt the IMM algorithm to semi-
Markov chains, which has been performed in two similar ways. In [13]
and [14] a sojourn-time dependent Markov IMM (STDM-IMM) algorithm
is introduced, and in [15] a computationally less complex algorithm, called
semi-Markov IMM (SM-IMM), is presented. These algorithms have the ad-
vantage of considering general sojourn time distributions, but to do so an
immediate merging approximation is used, which limits the capability of in-
corporating the sojourn-time dependence. The algorithms are further based
on an unfounded assumption, that generally does not hold for this class of
problems, as is discussed in Section 3.2.2 below.

Another solution to jump semi-Markov state estimation is given in [16].
The algorithm is called latest change moment testing (LCMT), and is based
on a change detection methodology. To reduce the number of hypotheses, the
algorithm uses a sliding window pruning approach, where the length of the
window determines the number of model shift hypotheses to consider. The
algorithm also uses merging to further reduce the hypothesis tree. Positive
aspects with LCMT is that it is a better approximation than SM-IMM and
that it provides a maximum a posteriori (MAP) estimate of the time of
the latest model change. Drawbacks include the increased computational
complexity and the crude merging approximation.

When the measurement rate is high compared to the target dynamics, the
probability of fast transitions is low. For problems of this kind, the approach
of the current article is to approximate the small transition probabilities
as zero, which makes the filtering problem simpler. The primary contribu-
tions of the article are twofold. First, we propose a new model structure for
switching between multiple motion models. The structure has a switch time
condition that forces the dynamic models to remain fixed for some time. In
the sojourn time pmf, this is represented by an initial set of zeroes. To main-
tain a simple model, the zeroes are followed by a geometrical distribution.
Since immediate transitions have zero probability, the problem is of less com-
plexity than the traditional JMS problem in terms of number of model shift
hypotheses. The second contribution of the article is the derivation of a close
to optimal state estimation algorithm, for the considered family of problems.
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Since the filter is derived for a specific model structure, it enables more ac-
curate state estimation than the other semi-Markov-based algorithms, for
problems captured by the new switching model. The proposed filter is eval-
uated on a benchmark tracking scenario [17] and compared to IMM. The
analysis is a robustness analysis, in the sense that it is a comparison of two
conceptually different filters applied to a problem that does not completely
agree with any of the two filter assumptions. Results show a performance
increase with the new filter for all six trajectories of the benchmark.

The article is structured as follows. In Section II, the state estimation
problem is formulated. In Section III, classic state estimation methods and
assumptions are discussed. The new approach is presented in Sections IV-V.
Section VI is a short introduction to selection of design parameters for the
new filter. In Section VII motion models for the considered benchmark sce-
nario are discussed, and in section VIII the simulation results are presented.
Section IX concludes the article.

2 Problem formulation

This article is about recursively approximating the posterior probability den-
sity function (pdf) p

(
zk
∣∣Y1:k

)
using multiple motion models. The vector zk

is the state vector of a target at time index k and Y1:k = {y1 y2 · · ·yk} is the
set of all measurement vectors up to the current time instant k. The state
vector is described by the partition

zk =
[
xT
k mk eTk

]T
. (1)

The first two elements of the state vector are common to all multiple-model
state estimation algorithms. The vector xk represents the target’s coordi-
nates at time k and is called the target vector. The coordinates of the
target is in a multi-dimensional coordinate system, which for example may
contain position and velocity in Cartesian coordinates. The model variable
mk ∈ {1, 2, . . . ,M} contains information on the currently active model, of the
M possible ones. The third, possibly empty, element ek of the state vector
contains extra states that are required by some state estimation algorithms,
like the one presented in this article.

Motion models describe the evolution of the state vector over time. To
capture the behavior of real targets, multiple motion models are often needed.
The state estimation algorithm presented in this paper is applicable to both
nonlinear and linear models. A general, nonlinear, motion model is described
by

xk+1 = f (xk, mk,vk(mk)) , (2)
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where f is a nonlinear (prediction) function and vk(mk) is a realization of
the model-dependent process noise, which has some assumed distribution.
The corresponding linear motion model is written as

xk+1 = A(mk)xk +B(mk)vk(mk). (3)

To complete the multiple motion model, we need a switching model that
describes the evolution of mk over time. The switching model is described
by the transition probabilities πij(k) from model i to model j at transition
times k.

The target vector xk is related to the measurement vector yk through the
measurement model. For the nonlinear case it is defined as

yk = h (xk,wk) , (4)

where h is a nonlinear function and wk is measurement noise with some
assumed distribution. In the linear case, the corresponding model is given
by

yk = Cxk +Dwk. (5)

The model parameter mk is omitted in these measurement model descrip-
tions, since treatment of multiple measurement models is not the focus of
this article. Finally, vk and wk are white and independent.

3 Classical state estimation methods and as-

sumptions

3.1 Markov-based methods

When target dynamics are modeled with a multiple-model approach, it is
most commonly done with the jump Markov system assumption. This means
that the target dynamics is described by a set of motion models, and that
the dynamics at a given time instant is captured by one of those models.
Furthermore, the active model can change over time, and this model shift is
described by a first-order Markov chain. The transition probability of the
chain at time index k is defined as

πij(k) = P{mk+1 = j
∣∣mk = i}. (6)

By the Markovian assumption, the following holds true for the model switch-
ing

P{mk+1=j
∣∣mk= i, Tk=s} = P{mk+1 = j

∣∣mk = i}, (7)

∀s ∈ Z+,
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Figure 1: Model hypothesis tree for two-model jump-Markov systems, where
it is assumed that model M1 is valid at time k.

where Tk represents the duration of model i at time k. Thus, there is a
memoryless property of the dynamics, which implies that the probability
of having a model shift at a certain time is independent of the time when
the current model became active. The Markovian assumption also implies
that the sojourn time is exponentially distributed for continuous-time models
and geometrically distributed for discrete-time models. Due to this implicit
assumption, immediate transitions are assumed to have the highest probabil-
ity, which is a non-intuitive property for most targets. We will discuss more
about these properties and their validity for maneuvering targets further on.

3.1.1 Conceptual solution

Consider the model hypothesis tree in Fig. 1. At time instant k, each path
through the hypothesis tree represents a plausible sequence of models (called
regimes), denoted

rl1:k =
{
rl1, r

l
2, . . . , r

l
k

}
, l = 1, 2, . . . , Rk. (8)

The value of rli determines the active model in the time interval [i, i+ 1), of
the lth regime, and the variable Rk contains the total number of regimes at
time k. For an M-model scenario, the number of regimes grows as Mk. In the
conceptual solution to the problem, all these hypotheses must be considered.
That is, the posterior density takes the form of a mixture1

p(xk

∣∣Y1:k) =

Rk∑

l=1

p(xk

∣∣rl1:k,Y1:k)P{rl1:k
∣∣Y1:k}. (9)

Due to the rapid increase in number of hypotheses, sub-optimal solutions
are required. The main tools for the common sub-optimal solutions are

1A Gaussian mixture for linear Gaussian models.
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pruning and merging, where pruning resembles the removal of low-probability
branches, and merging is a unification of similar branches into a single one.

3.1.2 IMM and its approximations

By far the most popular sub-optimal solution to the Markovian switching
problem is the Interacting Multiple Model (IMM) filter [2–4]. At each time
instant, the filter approximates the posterior density by a Gaussian mixture,
with one Gaussian pdf connected to each model. To understand the approx-
imations of the filter, again consider the model hypothesis tree of Fig. 1. To
reduce the number of hypotheses, the approach of the IMM filter is to merge
all branches that belong to the same model at each time instant. Thus, the
filter has a bank of M model-matched filters, where M is equal to the num-
ber of models. At each time instant, the input to each filter is a Gaussian
approximation of a mixture of the M model-matched filter pdfs of the previ-
ous time instant. The mixing probability depends on the model probability
at the previous time and the transition probability matrix Π of the Markov
chain. Since the proposed filter has similarities to IMM, the IMM equations
are described for reference.

The probability of model i at time k − 1 is defined as

wi
k−1 = P{mk−1 = i

∣∣Y1:k−1}, (10)

and the mixing probability for model j, given transition from model i, as

µ
i|j
k−1 = P{mk−1 = i

∣∣mk = j,Y1:k−1}. (11)

Using Bayes’ formula, this is rewritten as

µ
i|j
k−1 =

πijw
i
k−1∑M

i=1 πijw
i
k−1

=
πijw

i
k−1

w∗j
(k−1)

, (12)

where πij is the transition probability, defined in (6), M is the number of
models, and w∗j

(k−1) is the weight of model j after mixing. The input to each
model-matched filter j is hence a Gaussian approximation represented by its
mean x

(j)
k−1|k−1 and covariance matrix P

(j)
k−1|k−1, given by

x
(j)
k−1|k−1 =

M∑

i=1

µ
i|j
k−1x̂

i
k−1|k−1 (13)

P
(j)
k−1|k−1 =

M∑

i=1

µ
i|j
k−1

[
Pi

k−1|k−1

+
(
x̂i
k−1|k−1−x

(j)
k−1|k−1

)(
x̂i
k−1|k−1−x

(j)
k−1|k−1

)T]
. (14)
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After the model-matched filters have been applied, the output of each filter

is the posterior density p(xk

∣∣Y1:k, mk = j) = N
(
xk; x

j
k|k,P

j
k|k

)
and the

respective model probability is updated as

wj
k = P{mk = j

∣∣Y1:k} =
Λj

kw
∗j
(k−1)∑M

i=1 Λ
i
kw

∗i
(k−1)

, (15)

where Λj
k is the model-conditioned likelihood function,

Λj
k = p

(
yk

∣∣Y1:k−1, mk = j
)
= N

(
νj
k; 0,S

j
k

)
. (16)

In (16), νj
k and Sj

k are the innovation and the innovation covariance matrix,
respectively, obtained by the jth model-matched filter. Finally, the posterior
density is approximated by a Gaussian approximation of the mixture

p
(
xk

∣∣Y1:k

) ∼=
M∑

i=1

wi
k p
(
xk

∣∣mk = i,Y1:k

)
. (17)

3.2 Semi-Markov methods

With the semi-Markov methodology, the Markov chain of the model transi-
tions is replaced with a semi-Markov chain [10], for which the transition prob-
abilities depend on the sojourn time. For exponential/geometrical sojourn-
time assumptions, the semi-Markov chain reduces to an ordinary Markov
chain. The transition probability from state i to j at time k for a discrete-
time semi-Markov chain is defined as

πTk
ij (k) = P{mk+1 = j

∣∣mk = i, Tk} (18)

where Tk represents how long model i has been active since the last model
shift. Defining the sojourn time τi(k) of model i at time k as

τi(k) = tj − ti, (19)

where ti is the time of transition to model i and where tj is the time of
transition from model i to model j, for the current period of model i, it
holds that Tk = τi(k) when the shift to model j occurs. At the time of
transition, a semi-Markov chain behaves in a Markovian manner, meaning
that the history of states does not affect the transition probability to any
new state — only the current state plays a role in that sense. To describe
the sojourn time dependence, the state vector includes Tk as an extra state,
i.e., ek = ek = Tk in (1).
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3.2.1 Conceptual solution

In the optimal solution to the semi-Markov switching multiple-model prob-
lem, we are interested in describing the posterior density p

(
xk

∣∣Y1:k

)
. The

expression for this density is a mixture of densities, equivalent to the concep-
tual solution of Markov-based methods in (9). The difference between the
solutions for Markov and semi-Markov systems lies in the calculation of the
regime history probability P

{
rl1:k
∣∣Y1:k

}
(for each regime history l), which is

a consequence of the transition probabilities being sojourn-time dependent
for semi-Markov chains. As the number of hypotheses, or regime histories,
grows exponentially over time, the conceptual solution is in general infeasible.

3.2.2 Sub-optimal solutions

Several attempts have been made to approximate the posterior pdf in semi-
Markov switching problems. In [13] and [14] the sojourn-time dependent
Markov (STDM) IMM algorithm was presented, and in [15] a computation-
ally less complex algorithm was described, called semi-Markov IMM (SM-
IMM). Since the latter algorithm requires less computations with the same
performance [15], we focus on that one (both algorithms are based on similar
ideas).

Just as for IMM, the SM-IMM algorithm requires M model-matched
filters. The difference is that the transition probabilities are sojourn-time
dependent and that they change over time. The filter requires knowledge of
the model-dependent sojourn-time pmf P

{
τi(k)

∣∣Transition from model j
}
,

i, j ∈ {1, . . . ,M} , i 6=j, which can have arbitrary form. At each time instant,
the sojourn time of each model is estimated in a recursive manner, and the
transition probabilities at time k are then calculated from prior knowledge
(the sojourn time pmf) and the likelihood of the sojourn time, given model
and data up to the current time. In order to obtain the expressions for
calculating the transition probabilities, the following assumption is made

p(xk

∣∣mk,Y1:k, Tk) = p(xk

∣∣mk,Y1:k), (20)

i.e., that xk is conditionally independent of the sojourn time, given the active
model at time k and the measurements up to time k. This assumption is
only valid if the system is Markovian, i.e., if model changes follow a Markov
chain. For semi-Markov chains it is hence not true, so the SM-IMM approach
is only valid if the system is close to Markov. Further, (20) implies that

P
{
Tk

∣∣mk,Y1:k

}
= P

{
Tk

∣∣mk,Y1:k−1

}
, (21)
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that is that the latest measurement does not affect the probability that model
mk has been valid for Tk seconds, which is non-intuitive. Actually, in the
derivation of the STDM-IMM algorithm, (21) is erroneously reasoned to
always hold true — a statement proven false in [18].

The advantage with the SM-IMM algorithm is that it can handle arbitrary
sojourn-time distributions. The disadvantages with the approach are that it
is a rather crude approximation, due to the immediate merging of posterior
densities conditioned on different sojourn times, and that it is based on the
above unfounded assumption. A further important difficulty is that it is not
clear how to select the sojourn-time dependent transition probabilities πTk

ij .
Another solution to jump semi-Markov state estimation is given in [16].

The algorithm is called latest change moment testing (LCMT), and is based
on a change detection methodology. The algorithm was argued for in [18],
where a comparative study with STDM-IMM showed significantly better
performance in a scenario with semi-Markov switching, at the cost of higher
computational burden. The output of the estimation filter is first the MMSE
estimate of the state vector and its covariance matrix, and secondly the MAP
estimate of the time of the latest model change.

In the LCMT setting, a hypothesis is the time of the latest model change.
An example of a hypothesis is hence that the latest shift to model j occurred
at time k − 2, and that the model has been valid thereafter. The algorithm
has a deferred decision logic of v time steps, which means that a hypothesis is
not ruled out until v time steps have passed. That is, if v = 3 the hypothesis
that there was a shift to model j at time k − 3, is kept at least until time
k. In order to reduce the number of hypotheses, a sliding window pruning
approach is used. Only the best hypothesis v steps back in time is kept,
which implies that M hypotheses are pruned in each iteration.

At each time instant of the LCMT algorithm, M new hypotheses are
spawned, where each hypothesis represents a sudden change of models to
model j ∈ {1, 2, . . . ,M}. Since M hypotheses are pruned at each time
instant, the total number

J = Mv + 1 (22)

of filters are kept constant. Each new hypothesis is a merging of J hypotheses,
since transition occurs from each of the hypotheses at the previous time. The
transition probabilities are model and sojourn-time dependent. For each
hypothesis, a model-matched filter is run.

The benefits with the algorithm are that it can handle general sojourn-
time pmfs in a less approximate way than the semi-Markov IMM algorithms,
and that a MAP estimate of the latest model change is given, which is of
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Figure 2: Illustration of the proposed probability mass function of the model
sojourn time, P

{
τi(k)

∣∣Transition from model j
}
. The pmf is zero up to the

model-dependent time T0β
ij, and then follows a geometrical distribution.

interest in some applications regarding detection of failure. The drawback
is the need for more hypothesis-matched filters, and the difficulty to select
the sojourn-time dependent transition probabilities. The LCMT algorithm,
as well as the other semi-Markov algorithms, is directed towards the general
semi-Markov problem. In this article, however, we propose a new model
structure, which is less general but that is applicable to a wide set of prob-
lems. For that model structure, the referred semi-Markov algorithms all
provide a worse approximation than the proposed filter.

4 The new approach

In situations where the target dynamics are low compared to the sampling
rate of the underlying continuous-time process, the probability of early tran-
sitions is low. The jump-Markov methods, presented in the previous sec-
tion, are then limited by the assumption that immediate transitions have the
highest probability. The referred semi-Markov methods, on the other hand,
have the possibility of incorporating general distributions. However, in order
to do so, they introduce limiting merging approximations. In this section
we propose a new model structure with sojourn-time conditioned switching.
Through this model a less complex problem in terms of model hypotheses
arises, and to that problem we derive a state estimation algorithm, called
the switch-time-conditioned IMM (STC-IMM) filter, which is close to opti-
mal when the model assumptions are valid.

4.1 Model structure

The idea with the proposed model structure is to have a switch time condition
that forces the models to remain fixed for some time. In the sojourn time
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Figure 3: Model hypothesis tree for a two-model case with β12 = 2 and
β21 = 3. Here it is assumed that model 1 is valid at time k, and has been so
for more than β12 time steps. At time step k + 8 there are 20 branches in
the tree. With the jump Markov approach, the number of branches would
be 256, which is an indication of the much slower tree growth yielded by
the approach of this paper. The merging approximations introduced by the
proposed algorithm are also marked, where nodes to merge are enframed by
a square, a circle or a diamond. Dashed branches represent hypotheses that
vanish when nodes are merged. For the proposed algorithm, the number of
modes would be reduced from 20 to 7 (cf. (27)) in this scenario.

pmf, this is represented by an initial set of zeroes, as illustrated in Fig. 2. For
transition from model j to model i, the number of zeroes is βij. By studying
the accompanying model hypothesis tree, illustrated in Fig. 3, we see that
the tree growth is slower than for jump-Markov systems (cf. Fig. 1). From
a model hypothesis point of view, we hence obtain a less complex problem,
which at the same time is more realistic in situations where the sampling
rate is high compared to the dynamics. The new model structure introduces
a reasonable approximation if the true pmf has close to zero probability of
transition for the first βij time instants. As was shown in [1], the depth can
be kept small in many situations, since the gain in having a filter depth is
most significant for small βij . For simplicity, after the initial set of zeroes, the
pmf is assumed to follow a geometrical distribution, which is parameterized
by the model-specific mean survival time τ ijS .
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4.2 Conceptual solution

Consider the model hypothesis tree of Fig. 3. In the optimal solution of
the state estimation, we must consider all hypotheses of the tree, i.e., in the
description of the posterior pdf p

(
xk|Y1:k

)
, we must add the contributions

from each and every branch of the tree. In the same way as for the Markov
methods, we define a regime as

rl1:k =
{
rl1, r

l
2, . . . , r

l
k

}
, l = 1, 2, . . . , Sk, (23)

where Sk is the total number of regimes at time k. In general we have that
(cf. (8))

Sk ≤ Rk (24)

where equality holds only for the special case of βij = 0; i, j ∈
{
1, . . . ,M

}
.

The posterior density at time k is the mixture

p
(
xk

∣∣Y1:k

)
=

Sk∑

l=1

p
(
xk

∣∣rl1:k,Y1:k

)
P
{
rl1:k
∣∣Y1:k

}
. (25)

Since Sk is smaller than Rk in all cases considered here, the upper limit
of the summation grows more slowly than for the jump-Markov systems,
which means that larger tree depths can be considered. However, the number
of regimes is ever growing even for this model structure, so a sub-optimal
solution is required.

4.3 Sub-optimal solution: the STC-IMM filter

Again consider Fig. 3. As we can see, several branches of the tree have equal
regime histories for the last consecutive time steps. This means that if a
model-matched filter is run for each regime, several filters have performed
state prediction using the same process model, and measurement update with
the same measurements2, for the last consecutive time steps. From Kalman
filter theory it is known that the influence of prior information decays ex-
ponentially with time. Thus, the posterior densities of the model-matched
filters with equal regimes for the last time steps are similar. A good approx-
imation is hence to merge these similar branches of the tree. Consequently,
we introduce the following approximation

p(xk

∣∣Y1:k, mk, Tk > T0β
ij)

∼= p(xk

∣∣Y1:k, mk, Tk = T0β
ij), (26)

2Note that data association problems are not considered in this article.
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i.e., knowledge regarding the active model more than βij time steps back is
uninformative, given that we know that the current model, mk, has been
active ever since. The merging time of the new filter is thus set to the
time instant before model shifts are first possible, i.e., at time instant βij.
The merged nodes of the hypothesis tree are marked in Fig. 3. Only one
filter and one probability weight are required for each merged node, due to
the geometrical distribution in the tail of the sojourn time pmf. According
to [19], a typical rule of thumb is that merging can be performed, with
negligible effect on filter performance, when the model-matched filters have
been updated with the same measurements for at least the last three time
steps. Thus, according to this rule, any value of βij larger than two implies
that the merging approximation is reasonable, which means that a close to
optimal solution is obtained.

The proposed multiple-model state estimation filter is built up by a set of
model-matched filters. These are not only associated with a motion model,
but also to the time spent in each model and the model from which the
transition occurred. In Fig. 4, an example of the mode set for model 1 in a
three-model STC-IMM filter is shown. The top three white circles represent
the hypotheses that the transition to model 1 was from model 2, and that
model 1 has been valid for 1, 2 and β12 = 3 time steps, respectively. The bot-
tom four white circles represent transition from model 3 and the hypotheses
that model 1 has been valid for 1 to β13 = 4 time steps, respectively. These
hypotheses are called static modes. Transition from the model is only pos-
sible from the transition mode, which is the black circle in Fig. 4. Each
model thus comprises a set of static modes and one transition mode. The
total number of modes (model-matched filters) are hence

N = M +

M∑

i=1

M∑

j=1
j 6=i

βij, (27)

where M is the number of models as well as the number of transition modes.

4.3.1 State estimation algorithm

The STC-IMM filter has four algorithmic steps: transition mode mixing,
mode transfer, filtering and MMSE estimation. The notation used to describe
the algorithm is the following. For model i ∈ {1, . . . ,M}, the static modes
are represented by slij , l = 1, . . . , βij, j 6= i, and the transition mode by

Ti. The mode weights are denoted w
slij
k for the static modes and wTi

k for the
transition modes. The rightmost static modes (white circles) in Fig. 4 are
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Figure 4: Illustration of the mode set for model 1 in a three-model STC-IMM
filter with β12 = 3 and β13 = 4. The white circles represent static modes,
and the black circle the transition mode of the model. The arrows indicate
transitions that occur at each iteration, and the number or variable (π) close
to the arrow represent the probabilities with which they occur.

called the highest-order static modes, and are represented by sβ
ij

ij . A pseudo
code algorithm description is found in Table 1. Note that the table contains
additional features of the algorithm, which are described in Section 5. In the
following, we describe the algorithmic steps in more detail.

Step I: Transition mode merging

The first step of the algorithm is the realization of the approximation de-

scribed in (26). It is the merging of the highest-order static modes, sβ
ij

ij , and
the transition mode, Ti, of each model i, represented by the rightmost white
circles and the black circle in Fig. 4, respectively. The merging is performed
in an IMM fashion, where the weighted sum of M Gaussian pdfs are ap-
proximated by a single Gaussian pdf. The result is used to approximate the
posterior density of the transition mode.

In the equations that follow, each mode is represented by a Gaussian pdf,
and we assume that all βij 6= 0, i.e., that we have a full collection of static
modes3. For the transition mode, Ti, of model i, the posterior density at time
k is described by the mean value x̂Ti

k|k and the covariance matrix PTi

k|k. The

highest-order static modes sβ
ij

ij of model i are described by the mean values

x̂
sβ

ij

ij

k|k and covariance matrices P
sβ

ij

ij

k|k for j = 1, . . . ,M ; j 6= i. The transition

3In situations where βij = 0 for transition to model i from some models j, there are
no static modes for those transitions. In the merging, the (non-existing) highest-order
static modes are replaced by the corresponding transition modes of models j. Note that
if βij = 0, ∀i, j, the STC-IMM filter is equivalent to the IMM filter.
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Table 1: STC-IMM algorithm description

I: Transition mode mixing

for each model i ∈ M , do

if βij 6= 0, j = 1, . . . ,M ; j 6= i

mix highest-order static modes (with w
sβ

ij

ij

k > γ) with transi-

tion mode (if wTi
k > γ), see (28)–(31)

else

mix transition mode with highest-order static modes (for
βij 6= 0), and with transition mode of model j (if βij = 0)
(and use only the modes with weights > γ)

II: Mode transfer

for each model i ∈ M , do

transfer probability mass from transition mode Ti to first-order
static modes s1ji of models j 6= i (with transition probability πij),

transfer probability mass from each static mode slij in the mode

sets of model i to the one step higher order static mode sl+1
ij ,

l = 1, . . . , βij − 1 (with transition probability 1)

III: Filtering

for each static and transition mode, do

if mode weight w
slij
k > γ

/
wTi
k > γ

perform filtering using linear or nonlinear filter (Kalman filter,
EKF, UKF, ...)

else

set w
slij
k = 0

/
wTi
k = 0, and perform no filtering

IV: MMSE estimation

Compute x̂MMSE, see (32)
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mode merging is thus described by (cf. (13)–(14))

x
(Ti)
k|k = µTi

k x̂Ti

k|k +
M∑

j=1
j 6=i

µ
j|i
k x̂

sβ
ij

ij

k|k (28)

P
(Ti)
k|k = µTi

k

[
PTi

k|k +
(
x̂Ti

k|k − x
(Ti)
k|k

)(
x̂Ti

k|k − x
(Ti)
k|k

)T ]

+

M∑

j=1
j 6=i

µ
j|i
k

[
P

sβ
ij

ij

k|k +

(
x̂
sβ

ij

ij

k|k − x
(Ti)
k|k

)

×
(
x̂
sβ

ij

ij

k|k − x
(Ti)
k|k

)T ]
, (29)

where (Ti) denotes the transition mode after mixing. The mode mixing
probability µTi

k for the transition mode is

µTi
k =

πiiw
Ti
k

πiiw
Ti
k +

∑M
j=1
j 6=i

1 · wsβ
ij

ij

k

, (30)

and the mixing probability µ
j|i
k for the highest-order static modes is

µ
j|i
k =

1 · w̄sβ
ij

ij

k

πiiw
Ti
k +

∑M
j=1
j 6=i

1 · wsβ
ij

ij

k

. (31)

Step II: Mode transfer

The second algorithmic step of the STC-IMM filter is to transfer mode prob-
ability mass. As illustrated in Fig. 4, the mode transfer is between static
modes of the mode set (with probability 1) and between the transition modes
of each model i and the first static mode of the other models j 6= i (with
probability πij).

Step III: Filtering

Step three of the algorithm is the filtering step. The filtering is performed
with an ordinary linear or nonlinear model-matched filter, e.g., a Kalman or

an Extended Kalman filter. After filtering, the mode probabilities w
slij
k+1 and

wTi
k+1 are updated according to Bayes’ rule (cf. (15)), where the normalization

is with respect to all modes of the filter.
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Step IV: MMSE estimation

After filtering, the final step is to produce the output of the STC-IMM filter,
viz. the MMSE estimate of the target vector xk. The estimate is given as
the weighted sum

x̂k|k =
M∑

i=1


wTi

k x̂Ti

k|k +
M∑

j=1
j 6=i

βij∑

l=1

w
slij
k x̂

slij
k|k


 . (32)

4.3.2 Comparison with LCMT

Applied to the new model structure, there are some differences between the
STC-IMM and the LCMT algorithms. First of all, the STC-IMM algorithm
is specifically designed for the proposed model structure, even though it is
possible to adapt it to a general pmf, if immediate merging is used (see
Section 5.2). Besides that, there are two main differences between the two
algorithms, where the first one concerns the spawning of new hypotheses.
In the proposed algorithm, there is one hypothesis for each model, i.e., one
hypothesis for transition from model 1 to model j, one from model 2 to
model j, and so on. For LCMT all these hypotheses are merged into one,
which degrades performance. An appealing characteristic of the new filter
is that the depth of a model can be different depending from which model
the transition occurs. This can not be incorporated in LCMT, due to its
merging rule. The LCMT algorithm is hence not as flexible as the presented
algorithm.

5 Further simplifications and their implica-

tions

To further reduce the computational complexity of the proposed STC-IMM
algorithm, approximations are needed. In this section we present two possi-
ble approximations that reduce the complexity significantly. Their effect on
the state estimation accuracy and further relations to previous sojourn-time
dependent algorithms are also discussed.

5.1 Pruning

Experience has shown that during large parts of operation, several of the
filter modes have probabilities very close to zero. In the MMSE estimate

88



of the state vector (see (32)), these filter modes will have a small impact.
Hence, by pruning these low-probability branches of the model hypothesis
tree, the computational complexity can be reduced, with slight impact on
filter performance. The reduction in complexity comes mainly from the fact
that model-matched Kalman filters do not have to be run for these modes.
In the proposed filter, we introduce a threshold, γ. If a mode probability is
below this threshold, we consider it to have no influence on the state vector
estimate, and it can thus be pruned. In the filter algorithm, as described in
step III of Table 1, pruning is implemented by setting the mode probability
to zero, and omitting the model-matched filtering.

The pruning threshold also affects the merging in step I of the algorithm,
see Table 1. For a two-model case, if either the transition mode or the highest-
order static mode have weight below the threshold, then no mixing is needed,
which decreases the computational burden. If the number of models is larger
than two, the mixing is instead between a lower number of modes, when
some of the mixing modes are pruned.

5.2 Early Merging

The merging introduced in the proposed algorithm was motivated by the fact
that the posterior density, after having performed model-matched filtering
for βij time steps, is similar to the posterior density after having performed
model-matched filtering for βij + 1 time steps. To further reduce the com-
putational burden, a natural variation of this approximation is to perform
merging at an earlier stage than at the transition mode of each model. How-
ever, to preserve the depth of the filter, each mode is still assigned its own
probability weight. We let W ij denote how many of the βij static modes that
are to be represented by their own posterior density. The modes of higher or-
der than W ij are all represented by the pdf of the transition mode, but with
individual weights. The early merging mixing probabilities are described by
(cf. (30)–(31))

µ̃Ti

k =
πiiw

Ti
k +

∑M
j=1
j 6=i

∑βij

l=W ij+1w
slij
k

πiiw
Ti
k +

∑M
j=1
j 6=i

∑βij

l=W ij+1w
slij
k +

∑M
j=1
j 6=i

ωij
k

, (33)

ωij
k =

{
wW ij

k , W ij > 0

πjiw
Tj

k , W ij = 0
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µ̃
j|i
k =

∑M
j=1
j 6=i

ωij
k

πiiw
Ti
k +

∑M
j=1
j 6=i

∑βij

l=W ij+1w
slij
k +

∑M
j=1
j 6=i

ωij
k

. (34)

If the merging time is drawn to its limit, i.e., ifW ij = 0, i, j ∈ {1, . . . ,M},
then only M posterior densities and M model-matched filters are needed,
just as for IMM. Still, there are N mode weights (cf. (27)) in total, so the
sojourn-time dependence can still be treated, although in a more approximate
fashion. Assume that we want to run the SM-IMM filter for the assumed
type of sojourn-time pmf. That filter then needs M model-matched filters.
Due to the property of the geometrical distribution at the end part of the
assumed pmf, the conditional probability of the sojourn times p

{
Tk

∣∣mk,Y1:k

}

would only need to consider sojourn times up to βij + 1 time steps. Both
the proposed and the SM-IMM filters would therefore need to store the same
amount of data, and perform similar calculations for merging. However, the
SM-IMM algorithm uses the undeclared assumption (cf. [15]) of conditionally
independent sojourn times. This assumption is not present in the proposed
algorithm, which indicates that SM-IMM is similar, but not equal, to the
W ij = 0, i, j ∈ {1, . . . ,M} version of the presented algorithm.

6 Selecting design parameters

The proposed system model includes several design parameters such as so-
journ time conditions, βij, the transition probabilities, πij, and the model-set,
f , h. In this section we suggest off-line methods to select suitable values for
βij, πij and the process model noise parameters. The described methods are
used in the filter evaluation. The reader is referred to [20] for an overview
on model-set design.

6.1 Optimizing minimum sojourn times and transition
probabilities using Monte Carlo simulation

A straightforward approach to find the best βij is to use Monte Carlo (MC)
simulations. To do this, reference or validation data is needed. On the vali-
dation data, the filter is run with a set of βij variables and with a transition
probability matrix, Π, and the total MSE is calculated. This is then repeated
for different sets of βij and different transition probability matrices, and the
best set of parameters are the ones that minimize the MSE. In the search for
the best parameters, a simple grid search can be used, provided the number
of models is not too large.
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6.2 Optimizing motion model parameters based on
MCMC samples

For a chosen process model, it is of interest to find the optimal process noise
parameters (noise standard deviations). The process noise has the role of
describing modeling uncertainties and model errors. Assume that we have
some reference data with true states over time, which is to be represented by
a motion model. The optimal estimate of the model parameter vector θ, in
the MMSE sense, would hence be the MMSE estimate,

θ̂MMSE = E
{
θ
∣∣X1:k

}
, (35)

where X1:k = {x1 x2 . . .xk} is the set of all state vectors up to the current
time k. With the Markov chain Monte Carlo (MCMC) approach, this esti-
mate is approximately found by sampling the posterior distribution p(θ

∣∣X1:k),
using for example the Metropolis-Hastings algorithm [21], which yields sam-
ples θ(m), m ∈

{
1, 2, . . . , NMC

}
, where NMC is the number of samples. The

parameter vector estimate is then given by the Monte Carlo approximation
of the MMSE estimate,

θ̂MCMC =
1

NMC

NMC∑

m=1

θ(m). (36)

Asymptotically, the MMSE and MCMC estimates are identical.

7 Motion models for benchmark scenario

To assess different tracking algorithms and be able to compare them, a set
of reference, or benchmark, problems are most valuable. For aircraft track-
ing, much effort has been put into constructing such scenarios. In the first
benchmark scenario [22], a problem for tracking maneuvering targets was
presented, involving beam pointing control of a phased array radar. In [17]
(with an initial version in [23]), the first benchmark was extended to include
the real-world aspects of false alarms and electronic counter-measures. A fur-
ther extension, commonly referred to as the fourth benchmark, is presented
in [24], where the key problems are to track highly maneuvering targets,
closely spaced targets and targets in the presence of sea-surface-induced mul-
tipath. As the focus of this article is on state estimation, and not on the full
tracking problem, we are mainly interested in benchmark trajectories. Since
the authors of the second benchmark distribute the computer simulation code
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and the trajectory files (in MATLAB format), we use those trajectories4 for
evaluation.

The benchmark scenario considers aircraft tracking. A distinguishing
property of aircraft is that they fly straight ahead for long periods of time —
a property that is especially pronounced for commercial airliners. A model
within the multiple-model framework that captures this type of motion is
hence natural. When a target does not perform a maneuver, it is referred
to as being in non-maneuver motion. A common model for non-maneuver is
the (nearly) constant velocity (CV) model, which is governed by (cf. (3))

xCV
k = [x y ẋ ẏ]T (37)

ACV =

[
I2×2 T0I2×2

02×2 I2×2

]
(38)

BCV =

[
T 2
0 /2I2×2

T0I2×2

]
(39)

QCV = BCV

[
σ2
vx 0
0 σ2

vy

] (
BCV

)T
(40)

where σ2
vx and σ2

vy are the acceleration noise variances in the x- and y direc-

tions, respectively, QCV is the covariance matrix of the noise vector vCV, and
T0 is the measurement interval.

A second distinguishing part of an aircraft’s dynamics is its turns. While
the motion in non-maneuver is uncorrelated between tracking directions, the
motion during a coordinated turn is highly correlated [19]. For such types
of maneuvers, several coordinated turn models have been developed. In
benchmark scenario studies, coordinated turn models for horizontal turns
are common. These models are mainly of two types, where the difference
between them lies in the state vector. The common element of the state
vectors is the turn rate parameter, ω, which is introduced in order to neatly
treat the (nearly) constant turn rate of a coordinated turn. A definition
of turn rate is found in [19]. Often the 3D turn rate is replaced with the
simplified horizontal-plane turn rate, obtained by letting the vertical velocity
and acceleration be zero. For horizontal turn models with velocity states, the
state vector is the same as for the CV model, but with ω as extra state. The
corresponding non-linear motion model is found in [19, 25].

For a coordinated turn, it is often assumed that the speed is nearly con-
stant. By letting speed be a part of the state vector, this nearly constant
speed assumption can be handled, since perturbations in speed can be in-
flicted through a dedicated noise component for speed. Following the pro-

4These trajectories are almost identical to those of the first benchmark.
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posal in [26], a nearly constant speed horizontal turn model is derived for the
state vector (HTS stands for nearly constant speed horizontal turn model)

xHTS = [x y v ϕ ω]T , (41)

where ϕ is heading angle, defined in a target-oriented coordinate system.
Described as

xHTS[k + 1] = fHTS
(
xHTS[k]

)
+ vHTS[k + 1], (42)

where vHTS[k + 1] ∼ N (0,QHTS), the HTS motion model is governed by

fHTS
(
xHTS

)
=




x+ 2v
ω
sin(ωT0

2
) cos(ϕ+ ωT0

2
)

y + 2v
ω
sin(ωT0

2
) sin(ϕ+ ωT0

2
)

v
ϕ+ ωT0

ω




(43)

QHT =




02×1 02×1 02×1 02×1 02×1

0 0 T0σ
2
v̇ 0 0

0 0 0 1
3
T 3
0 σ

2
ω̇

1
2
T 2
0 σ

2
ω̇

0 0 0 1
2
T 2
0 σ

2
ω̇ T0σ

2
ω̇


 . (44)

For military aircraft with high agility, the start and end of turns are
not smooth as for commercial airliners, but are instead often more abrupt.
When a turn is initiated, the acceleration in latitudinal (cross-velocity) di-
rection is rapidly increased. For such maneuvers it is advantageous to have a
separate model, that aids the turn model in start and termination of turns.
Since acceleration changes are the core of this maneuver, the model is well
suited to have acceleration as a state variable, with an associated jerk process
noise that describes its perturbations. Hence, a third-order process model in
target-centered coordinates for start/termination of turns would be a useful
tool for agile maneuvers. We have developed a new start/termination model
with these properties. The following state vector is used for the model (CAL
stands for constant acceleration model in local coordinate system)

xCAL
k = [x y v ϕ ẍl ÿl]T . (45)

The states ẍl and ÿl represent acceleration in the target velocity and cross-
velocity directions, respectively. Using the discretized linearization approach5

5This approach is also used to find the matrix for the covariance update step of the
EKF filter.
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[27], the non-linear process model describing the constant-acceleration move-
ment in this coordinate system is

xCAL[k + 1] ∼= xCAL[k] +GfCAL
(
xCAL[k]

)

+GBv[k + 1] (46)

G =

(
q−1∑

i=0

(
∇fCAL

(
xCAL[k]

)T)i T i+1
0

(i+ 1)!

)
(47)

B =

[
04×2

I2×2

]
(48)

where G is a 6× 6 matrix, v[k + 1] ∼ N (0,QCAL), and where

∇fCAL =




∂f1
∂x1

∂f2
∂x1

· · · ∂fn
∂x1

...
...

. . .
...

∂f1
∂xn

∂f2
∂xn

· · · ∂fn
∂xn


 (49)

is the gradient of the (n-dimensional) non-linear function fCAL, which is the
continuous-time process model function, given by

fCAL
(
xCAL

)
=
[
vcos(ϕ) vsin(ϕ) ẍl ÿl/v 0 0

]T
. (50)

Finally, the covariance matrix is

QCAL = G̃QG̃T , (51)

where

G̃ = GB =




T 3
0 /6 cos(ϕ) −T 3

0 /6 sin(ϕ)
T 3
0 /6 sin(ϕ) T 3

0 /6 cos(ϕ)
T 2
0 /2 0

−
(
T 3
0 ÿ

l
) /

(6v2) T 2
0

/
(2v)

T0 0
0 T0




(52)

Q =

[
σ2
ẍl 0
0 σ2

ÿl

]
. (53)

The elements σ2
ẍl and σ2

ÿl of the covariance matrix are the along-velocity
and cross-velocity jerk noise variances, respectively. Since the jerk noise
effect on the position states (x and y) depend on the heading angle ϕ, the
covariance matrix becomes geometry dependent (through G̃), in contrast to
the previously described models.
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7.1 Model selection

For the three benchmark scenarios, there have been several solutions, most
of which have included an IMM filter with a set of motion models. A solution
to the first benchmark is given in [28]. To the second benchmark, IMM-based
solutions are presented in [29, 30] and [31] (with an initial version in [32]).
In [33] (with an initial version in [34]) an IMM/MHT solution is given, and
in [35] an IMM-based solution to the fourth benchmark is presented. All
the solutions to the first two benchmark scenarios use three models for the
IMM filter, with the same properties, viz. one model for non-maneuver, one
model for turns (maneuver) and one model for start and end of turns. For
non-maneuver, a standard CV model with small process noise is used. For
maneuver, the solutions differ in that they either use a turn model (3D turn
model in [29] and 2D horizontal turn models in [30], [33]) or a CV model with
a large process noise ( [28] and [31]). For the start/end of turns [28], [31]
and [33] use a CA model with large process noise, [29] a CA model with
acceleration parallel to velocity only and [30] a general Singer model.

With the same argumentation as in the above papers, we have chosen a
CV model for non-maneuver. For maneuver (turns), we use the previously
described CT model (HTS). Finally, for start/end of turns we use the new CA
model in local coordinates with acceleration parallel to the velocity vector.
All filters operate in a horizontal plane, which means that we assume that
altitude is tracked separately, just as in those benchmark solutions where
horizontal turn models are used. One may direct some criticism towards
treating altitude separately, but actually [30] shows that a horizontal turn
model combined with an altitude tracker performed better overall than a full
3D turn model for the second benchmark.

The covariance and state mixing require that the state vectors and covari-
ance matrices of the different models are first transformed to the state space
of the model. Hence, six different transformation matrices are needed for
the covariance matrices and six transformation functions are needed for the
state vectors. Furthermore, the presentation requires a common coordinate
system, which in our case is the 4-state Cartesian coordinates (x, y, ẋ, ẏ)
(the CV model coordinates). The transformation matrices are calculated as

FC1→C2 = ∇xC1

(
xC2
)
, (54)

for transformation from model C1 to model C2, where C1 and C2 are any of
the CV, CAL or CT models, and where the gradient is with respect to xC1.
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Table 2: Optimal transition probability matrices for STC-IMM and IMM.
Models 1 to 3 are the CV, CT and CAL models, respectively.

STC-IMM IMM

0.965 0.03 0.005 0.96 0.02 0.02
0.09 0.85 0.06 0.01 0.98 0.01
0.08 0.4 0.52 0.15 0.45 0.4

Table 3: Optimal depths of the STC-IMM filter.

β21 β31 β12 β32 β13 β23

6 6 8 8 0 0

8 Results

8.1 Parameter optimization results

The parameters βij and the transition probability matrix Π were optimized
jointly over the six benchmark trajectories, such that the best overall param-
eter set was found. This approach was chosen since optimization to each and
every trajectory is not a feasible approach in practise. To find the optimal
parameters, a line search method was used where only some of the parame-
ters were varied in each run to limit the computational complexity. For each
optimization step, 10 Monte Carlo runs were used. For the STC-IMM algo-
rithm, the number of variables to optimize was 9, while it was 6 for IMM. To
further reduce the complexity, the depth of each model was set equal regard-
less of from which model transition occurs. That is, β12 = β13 for model 1,
and equivalently for the two other models. Finally, the cost function of the
optimization was the mean-squared error (MSE).

The results are summarized in Tables 2 and 3. Model 1 to 3 corresponds
to the CV, CT and CAL models, respectively. As we can see, the depths of
the proposed filter for the start/end of turns model is zero, which is what
we expect, since it only has the purpose of kick-starting or ending turns.
Since some of the trajectories have short non-maneuver segments, the depth
of non-maneuver is shorter than for maneuver, which was not expected prior
to the optimization.

For the process noise parameters of the CV and CT models, an MCMC
approach was taken to approximately evaluate the MMSE estimate of the
parameter vector, jointly over the six trajectories. The joint likelihood func-
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Table 4: Optimal process noise parameters.

σvx σvy σv̇ σω̇ σẍl σÿl

1.34 1.21 5.61 0.021 0 29.3

tion of each model is the multiplication of all one-step prediction functions
of the same model. As prior, a non-informative Jeffrey’s prior was used. For
the start/end of turns model, the jerk standard deviation σ2

ÿl in the cross-
velocity direction was estimated as the mean value over the 32 cross-velocity
jerks that occur for the 6 trajectories. The along-velocity jerk was set to
0. Table 4 summarizes the optimization results for the six parameters. The
difference in σvx and σvy has to do with the geometry of the trajectories.

8.2 Filtering performance on benchmark problems

The six benchmark trajectories regarding X and Y position are shown in
Fig. 5. Note that some short-period agile maneuvers are not seen in the
figures. The first target is a large aircraft (like a military cargo aircraft) and
the second one represents a smaller, more maneuverable one (like a Learjet).
Target three and four represent medium bombers with high speed and good
maneuverability. Finally, target five and six represent fighter/attack aircraft
with high speed and agility.

In the evaluation of filter performance for the proposed filter and IMM,
the jointly optimal parameters of section 8.1 were used. The performance
measure was the root mean-squared error (RMSE) in position, after mea-
surement update. However, also the one-step prediction error was calculated
(called pRMSE), since it is often more interesting to know the size of this
error, due to its close connection to data association. In the evaluation of
the filters, 1000 Monte Carlo runs were used for each trajectory and the total
performance measure is the mean value of the average position error. Mea-
surements were presented to the filter as position in X and Y coordinates,
where the measurement covariance matrix R is diagonal with σ2

r as non-zero
elements, for σr = 100m.

In Tables 5 and 6 the RMSE after measurement update and for predic-
tion, respectively, are presented for the two filters, as well as the relative
performance increase with the proposed filter. As we can see, the proposed
filter performs better than IMM for all trajectories. The overall performance
gain is 9.3% for prediction and 7.4% after measurement update. The largest
gain is for the high performance commercial aircraft, which is not surprising
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Figure 5: The six benchmark trajectories.
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Table 5: Mean RMSE for proposed filter and IMM after measurement up-
date, for the six trajectories and the average over all trajectories.

New filter IMM Gain new
mean RMSE [m] mean RMSE [m] contra IMM (MSE)

Traj. 1 70.01 73.44 9.13%
Traj. 2 71.94 77.00 12.7%
Traj. 3 86.90 89.37 5.45%
Traj. 4 82.13 85.55 7.85%
Traj. 5 103.0 104.6 2.87%
Traj. 6 100.3 106.4 9.42%
Overall 86.65 90.06 7.43%

Table 6: Mean prediction RMSE for proposed filter and IMM, for the six
trajectories and the average over all trajectories.

New filter IMM Gain new
mean pRMSE [m] mean pRMSE [m] contra IMM (MSE)

Traj. 1 90.43 94.87 9.14%
Traj. 2 97.48 103.8 11.7%
Traj. 3 116.5 120.7 6.88%
Traj. 4 109.8 116.8 11.6%
Traj. 5 145.8 151.7 7.65%
Traj. 6 147.6 155.9 10.4%
Overall 119.9 126.6 9.4%

since it is in non-maneuver and maneuver for long periods of time — agreeing
well with the model assumption. The same holds for the large aircraft (tra-
jectory 1). A bit unexpected, however, is the fact that the performance gain
is close to 10% for the second fighter/attack aircraft, which implies that even
agile targets agree well with the assumptions of this article, if the maneuvers
are not too short in time. The performance increase is lower for trajectory
5, since the target it resembles performs several quick and short-lasting ma-
neuvers, which does not agree well with the proposed filter assumptions.

In Figures 6-7, the mean position errors after measurement update as
a function of time are presented for the six trajectories — both for IMM
and the proposed filter. We see from the figures that the performance gain
comes mainly from the non-maneuver parts of the trajectories (which is seen
in the figures as the parts of low RMSE), which is in agreement with the
study in [1]. The filter performance improvement with the new approach is
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hence larger when the non-maneuver segments are longer. As we can see
from Fig. 6, the filter performance gain with the new approach for trajectory
2 is the largest, since the second non-maneuver segment lasts for so long;
compare for example with the second non-maneuver segment of trajectory
1 in Fig. 6. In the maneuver sequences, the IMM performs better on some
segments, which is explained by the fact that the parameter optimization
has the overall MSE as objective function. Since the performance gain comes
mainly from non-maneuver segments, the best parameters are the ones which
maximize performance in non-maneuver, while still allowing for good tracking
in maneuver.

Apart from filter performance, it is also of interest to study the average
filter model probabilities of the trajectories over time. We study them only
for trajectories 2 and 5, to see if there is any difference, for example in the
probability of the start/end of maneuver model. In Figures 8-9, these two
average model probability sequences are given for IMM and STC-IMM. From
the figures we see a difference between the two filters. While the probability
of the CA model (start/end of turns) is at a constant low level for IMM in
trajectory two, it is very close to zero at non-maneuver for the proposed filter,
while the probability increases in the beginning of a maneuver. So the model
works more as expected together with the proposed filter. The reason for the
probability not going to zero immediately is that the transition probability
from the maneuver to the CA model is 0.06, which is quite large. But one
sees that the probability decreases after the initiation of a turn, and then
again increases at the termination of the turn. For the agile target (Fig. 9),
the same tendencies are seen, even though the CA model is active for two of
the turn initiations of the IMM filter. It thus seems as if the IMM filter does
not take advantage of the start/end of turns model in the same way as does
the STC-IMM filter.

Another conclusion that is drawn by observing the model probabilities is
that the proposed filter is faster in detecting the transition from maneuver
to non-maneuver. It is seen in the figures as a more rapid increase in non-
maneuver model probability after a maneuver.

9 Conclusions

In this article we present a new multiple model filter which utilizes the prop-
erty that target dynamics often persist for some time. By taking this inertial
property into account, the performance compared to a conventional multiple-
model filter is improved. The assumption made in the article is that model
sojourn times have a mass function that is zero up to a model-specific time,
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Figure 6: Mean RMS error as a function of time for trajectory 1 [top], tra-
jectory 2 [middle], and trajectory 3 [bottom].
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Figure 7: Mean RMS error as a function of time for trajectory 4 [top], tra-
jectory 5 [middle], and trajectory 6 [bottom].
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Figure 8: Average model probability for IMM [top] and STC-IMM [bottom]
as a function of time for trajectory 2 (high performance commercial aircraft).
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Figure 9: Average model probability for IMM [top] and STC-IMM [bottom]
as a function of time for trajectory 6 (fighter/attack aircraft).
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and then follows a geometrical distribution. The mass function is thus de-
scribed by only two parameters.

The proposed filter is evaluated on six benchmark scenarios for tracking.
The results show that the proposed filter performs better than IMM for all
six trajectories of the benchmark. The trajectories do not agree with either
the assumptions of the article or the IMM assumptions. However, there are
inertial properties in the trajectories, which means that dynamics persist
for some time before changes occur. This is utilized by the proposed filter.
When the target is in non-maneuver mode, the maneuver model does not
affect the non-maneuver model, because of the filter depth. Hence, the high-
probability non-maneuver pdf is more accurately described by the proposed
algorithm than by IMM. This improved description enhances performance.
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Abstract

In this article we show that when targets are closely spaced, tra-
ditional tracking algorithms can be adjusted to perform better under
a performance measure that disregards identity. More specifically,
we propose an adjusted version of the Joint Probabilistic Data As-
sociation (JPDA) filter, which we call the Set JPDA (SJPDA) filter.
Through examples and theory we motivate the new approach, and
show its possibilities. To decrease the computational requirements, we
further show that the SJPDA filter can be formulated as a continuous
optimization problem which is fairly easy to handle. Optimal approx-
imations are also discussed, and an algorithm, KLSJPDA, which pro-
vides optimal Gaussian approximations in the Kullback-Leibler sense
is derived. Finally, we evaluate the SJPDA filter on two scenarios with
closely spaced targets, and compare the performance in terms of the
mean Optimal Subpattern Assignment (MOSPA) measure with the
JPDA filter, and also with the Gaussian-mixture CPHD filter. The
results show that the SJPDA filter performs substantially better than
the JPDA filter, and almost as well as the more complex GM-CPHD
filter.
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1 Introduction

Traditional target tracking algorithms are designed to track targets over time,
and discriminate between them by labeling them at each time instant. Ex-
amples of such algorithms are the Probabilistic Data Association (PDA) and
Joint PDA (JPDA) filters [1,2], and the Multiple Hypothesis Tracking (MHT)
algorithm [3–6]. In many applications, such as those in which evidence of
target type is being accumulated, the identity (labeling) of the targets is of
great importance; but in other cases where one might say that ”a threat is a
threat”, it is not. In this article we show that by not considering target iden-
tity, the traditional algorithms can be significantly improved both in terms
of density approximations and of estimation accuracy, when evaluated with
a metric that disregards target identity.

For the traditional algorithms, the aim is to minimize the Mean Square
Error (MSE) between target states and corresponding track estimates. When
target identity is not of interest, minimization under such a measure subjects
itself to an unnecessary constraint. Instead we need a measure which only
describes how good an estimate is in determining where the targets are,
regardless of which is which. In this article, we propose the use of the Optimal
Subpattern Assignment (OSPA) metric [7]. More specifically, we study the
Mean OSPA (MOSPA). The tracking problem can thus be formulated as the
minimization of the MOSPA which, as we will see, is significantly different
from the problem of minimizing the MSE.

A framework suitable for the description of tracking without target iden-
tity is Finite Set Statistics (FISST) [8]. Within that framework, the aim
is to track an unordered, or unlabeled, set of targets, described as a Ran-
dom Finite Set (RFS). Two popular algorithms have been derived within
FISST, namely the Probability Hypothesis Density (PHD) and the Cardi-
nalized PHD (CPHD) filters [9–12]. We notice two drawbacks with FISST-
based techniques. First, it is difficult to find an analytical expression for
the posterior density of the RFS. Therefore, the standard technique of cal-
culating and approximating the posterior density is not applicable. Instead,
the filters operate on a first-order approximation of the density of unordered
targets, referred to as the intensity function. Second, the first-order approxi-
mation has the effect that all targets be assumed independent and identically
distributed. Due to these drawbacks, we believe that it is relevant to search
for alternative approaches. In the current article, one such alternative is sug-
gested, where the advantages of FISST methods and those of classic recursive
filtering are combined, and where it is shown how traditional algorithms can
be improved for the problem of minimizing MOSPA.

The approach that we propose relies on the fact that there is a relation
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between an ordered density and the density of a random finite set, here called
the unordered density, or set density. In fact, there is an infinite number of
ordered densities that correspond to the same set density. We refer to a set
of such ordered densities as an RFS family. Since optimal MOSPA estimates
can be derived from the set density, any ordered density in the correspond-
ing RFS family can be used without losing optimality. We thus have a
previously unrecognized possibility of switching ordered densities within tra-
ditional tracking filters, to obtain better approximations and performance,
when target identity is irrelevant. This is useful since the different densities
in the RFS family are more or less suitable to use in practice.

Most tracking algorithms rely on Gaussian approximations. That is, the
posterior density is often described as a Gaussian mixture, where the num-
ber of mixture components is controlled. In the JPDA filter, which is the
filter that we specifically consider in this article, the posterior density is ap-
proximated by a single Gaussian in each iteration. By combining traditional
methods and FISST techniques, we show that this Gaussian approximation
can be made more accurate, when target identity is not of interest. The
approach is to utilize the possibility of switching from the original Gaussian
mixture, to another density in the same RFS family that can be better ap-
proximated as Gaussian. We further show that there is an optimal way, in
Kullback-Leibler sense, of making that density switch. From this, we de-
velop a refined JPDA algorithm for optimal approximations, which we call
Kullback-Leibler Set JPDA (KLSJPDA). The drawback with the algorithm
is its computational demand. We thus also develop a more computationally
efficient algorithm, called the Set JPDA (SJPDA). The SJPDA algorithm,
which is also based on density switches, optimizes MOSPA performance un-
der the constraint of remaining within the family of Gaussian mixtures, and
this generally also leads to a density which is better approximated as Gaus-
sian. Through examples and theory we discuss the reason for that. The
details about the optimization criterion for the SJPDA algorithm, and its
relation to optimal MOSPA estimates, are found in [13]. Throughout the
article, we make the assumption that the number of targets is known.

The article is outlined as follows. In Section II, the problem formulation
is stated. Section III concerns two conceptual solutions to the formulated
problem, based on traditional approaches and FISST, respectively. In Sec-
tion IV, a conceptual solution based on the new approach is presented. We
also discuss how and why traditional tracking methods can be improved
when MOSPA is the target cost function. Section V considers optimal Gaus-
sian approximations in the Kullback-Leibler sense, and the derivation of the
KLSJPDA algorithm. In Section VI, the SJPDA filter is derived, and the op-
timization step is formulated as a continuous optimization problem. Section
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VII regards evaluations of the proposed KLSJPDA and SJPDA algorithms.
For the SJDPA algorithm, we see that the tracking performance in terms
of MOSPA is better than that of the JPDA filter, and almost as good as
that of the more complex Gaussian mixture CPHD filter [12]. We also see
that the track loss probability is dramatically decreased, which leads to a
much longer track life. For the KLSJPDA algorithm we observe similar per-
formance as the SJPDA filter, but the computational complexity is much
larger. In Section VIII the article is concluded.

2 Problem formulation

2.1 Target modeling assumptions

In this article we study the problem of tracking an arbitrary, but known and
fixed, number of targets. Further, we are not interested in the identities of
the targets. To reflect this, we are using a different cost function from the
standard formulation, in which MSE is used.

To formulate the problem, we introduce the vector of ordered (labeled)
target states

Xk =
[(
x
(1)
k

)T (
x
(2)
k

)T
. . .

(
x
(n)
k

)T]T
, (1)

where x
(i)
k is the state vector of target number i at time k, and where n is

the number of targets in the scene. We further introduce the collection of
measurements Zk,

Zk =
{
Z1,Z2, . . . ,Zk

}
, (2)

up to the current time step k, where Zk is a matrix of measurement vectors
at time k.

For the general case, the process model is governed by

xk = fk−1 (xk−1,vk−1) , (3)

where fk−1 is a nonlinear (prediction) function and vk−1 is a realization of the
process noise, which has some assumed distribution. As seen, we sometimes
omit the superscript on the state vectors, and write xk instead of x

(i)
k . The

corresponding linear-Gaussian motion model is written as

xk = Fk−1xk−1 + vk−1, (4)

where vk−1 ∼ N
(
0,Qk−1

)
.
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The general measurement model is given by

zk = hk (xk,wk) (5)

and the corresponding linear-Gaussian model by

zk = Hkxk +wk, (6)

where wk ∼ N
(
0,Rk

)
is measurement noise. The measurement set Zk does

not only include target-generated measurements, but also spurious measure-
ments due to false alarms and clutter. If we let mk be the number of target-
generated measurements (smaller than, or equal to, n), and ck be the number
of clutter measurements at time k, the measurement set is given by

Zk =
{
z
(1)
k , . . . , z

(mk)
k , z

c,(1)
k , . . . , z

c,(ck)
k

}
. (7)

The target-generated measurements, z
(1)
k , . . . , z

(mk)
k , are governed by (5) or (6),

and the clutter measurements, z
c,(1)
k , . . . , z

c,(ck)
k , follow a density function

which is target-state independent.

2.2 MOSPA measure and optimal estimates

The ubiquitous measure in the literature is the squared error (SE)

SE
(
X̂k,

[
x
(1)
k , . . . ,x

(nk)
k

])

=
((

x̂
(1)
k − x

(1)
k

)2
+ · · ·+

(
x̂
(nk)
k − x

(nk)
k

)2)
. (8)

To evaluate the measure, we need estimates of the states of target 1, 2, and
so on, i.e., of the labeled targets. Since this paper is about describing where
there are targets, rather than where a target with a certain label is, the
squared error is not a good measure. We note for example in the two-target
case, that if the identities of the targets have been mixed up, the squared
error can be very large, even though there might be two accurate tracks
available, i.e., even though x̂

(1)
k ≈ x

(2)
k and x̂

(2)
k ≈ x

(1)
k . Therefore, we seek a

measure that can capture the quality of an algorithm to estimate the set of
targets.

Several multi-target performance measures have been proposed in the
literature. An ad-hoc optimal assignment-based approach, with arbitrary
cost function, was given in [14], while the first rigorous theory of multi-
object distances was given in [15]. The measure, which is based on the
optimal assignment approach, is called the Optimal Mass Transfer (OMAT)
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metric. When the number of targets is known, the OMAT metric is identical
to the optimal assignment procedure. OMAT has a number of weaknesses,
discussed in [7]. Apart from not being a metric, the major weaknesses appear
when the number of targets is not known and the estimated number is not
always equal to the true number. As a remedy, a new measure called the
Optimal Subpattern Assignment (OSPA) metric, was proposed in [7]. Since
OSPA both is a true metric and an intuitively appealing measure which
has received much attention of late, we use it as the basis measure for the
problem.

Let X be the set of true target states and X̂ be the set of target estimates,
in our case both with n elements. The OSPA measure d̃

(c)
p is then defined as

d̃(c)p (X̂,X) =

(
1

n

(
min
π∈Πn

n∑

i=1

d(c)(x(i), x̂π(i))p

))1/p

. (9)

Here, d(c)(x, x̂) , min(c, d(x, x̂)) is the distance d between x and x̂, cut-off at

c. Further, Πn is the set of all possible permutations of X̂. The notation x̂π(i)

describes the ith permutation (re-ordering) of the vector x̂. In this article,
we let d be the Euclidean distance, and we use a quadratic measure (p = 2).
In practice, the measure performs an optimal assignment of target estimates
to true target states, possibly clamped at c.1

To describe the performance of an estimator, and to have a measure for
which we can define an optimal algorithm, we average over all state vectors,
which gives us a definition of the mean OSPA (MOSPA) measure

MOSPA(c)
p (X̂) , Ep(X|Zk){d̃(c)p }. (10)

An optimal estimator, in the MOSPA sense, is an estimator which minimizes
the MOSPA measure. Such an estimator is referred to as a minimum MOSPA
(MMOSPA) estimator2.

2.3 Motivation of the problem and the MOSPA mea-

sure

The problem that we study in this paper is the problem of estimating the
unordered set of targets, for which the MMOSPA estimator is optimal. We

1For c = ∞, the above measure d̃
(c)
p is equal to the OMAT metric. A consequence of

this relation, using results from [15], is that the OSPA measure for known target numbers,
and c = ∞, reduces to the optimal assignment approach, presented earlier.

2Note that the relation between OSPA, MOSPA and MMOSPA is analogous to the
relation between the common acronyms SE, MSE and MMSE.
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here give three examples of when minimizing MOSPA provides a solution
which is more reasonable than what is obtained when minimizing the Mean
Square Error (MSE), using an ordered density.

The first application is in radar cueing, i.e., for the problem of steering
a radar sensor to areas of high target existence probability. In such cases,
there is no interest in which target is which, but the question of where there
are targets is very important. The risk with using an ordered density for this
application is that if there is an uncertainty in the labeling of the targets,
the posterior density will be multimodal. Then, there is a high probability
that the mean value is in an area of low target existence probability. Steering
the main lobe of the sensor to such an area is thus prone to low probability
of true-target returns. By disregarding ordering, the posterior density can
be made less multimodal, and the steering of the main lobe can then with
higher probability be directed to an area where targets are likely to be.

A second example is in the automotive industry: In collision avoidance
systems, it is not of interest to know which car is which—the only interest
is to avoid all cars. Finally, when tracking extended objects using radar
measurements, those objects are often described by a set of reflectors. The
problem of interest is then to track that set of reflectors, and not try to
distinguish which reflector is which.

3 Conceptual solutions and the JPDA ap-

proximation

For the case of target tracking, there are two well-studied optimal, or con-
ceptual, solutions, and these will be discussed in this section. By presenting
these conceptual solutions, we believe that it is easier to understand the
new approach of this paper, which is based on a third conceptual solution
introduced in Section 4.

The basis of both conventional solutions is first to calculate an optimal
description of the joint target density, and then to derive MMOSPA estimates
from the optimal description. In the description of the first conceptual solu-
tion, we also describe the data association problem, and how it is solved in the
conventional frameworks. At the end, we describe the JPDA approximation
to the first conceptual solution.

3.1 Conceptual solution I – ordered densities

The first conceptual solution is to use the traditional approach of first calcu-
lating the ordered posterior density p

(
x
(1)
k , . . . ,x

(nk)
k

∣∣Zk
)
, and then to derive
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MMOSPA state estimates from it. For the conventional problem of mini-
mizing MSE, the traditional approach is the foundation for methods such as
JPDA and MHT. The first conceptual solution to the considered problem is
presented in Table 1.

Table 1: Conceptual solution I – ordered densities

1) Compute the ordered density p
(
x
(1)
k , . . . ,x

(n)
k

∣∣Zk
)

recursively.
2) Derive MMOSPA state estimates from the ordered density.

For an ordered density with known number of targets, n, the state vectors
of the targets can be stacked in a long vector Xk as shown in (1). To compute
MMOSPA estimates, we seek to calculate the posterior density p

(
Xk

∣∣Zk
)
.

By marginalizing over all global data association hypotheses, H, the density
is given by

p
(
Xk

∣∣Zk
)
=
∑

h∈H
p
(
Xk

∣∣h,Zk
)
Pr
{
h
∣∣Zk
}

(11)

where the densities p
(
Xk

∣∣h,Zk
)
are easy to express. A global data association

hypothesis, h, determines which measurements are clutter and which are
target-generated, and in the latter case their target of origin. If the process
and measurement models are linear and Gaussian, the posterior density is a
Gaussian mixture, with increasingly many components over time. Thus, the
optimal data association solution is practically infeasible, and sub-optimal
solutions are required. One such solution is given by the JPDA filter, which
we describe in Section 3.3.

Apart from being computationally infeasible, there is also a second diffi-
culty with the conceptual solution, namely that it is not obvious how esti-
mates with low MOSPA should be derived from the ordered density. As we
show in Example 1 in Section 4.2, the posterior mean, which is normally the
estimate used in the traditional problem of minimizing MSE, might not at
all be a suitable estimate in MOSPA sense.

3.2 Conceptual solution II – unordered densities

The second conceptual solution relies on the fact that to compute MMOSPA
estimates, it is sufficient to know the unordered posterior density p

(
{x(1)

k , . . . ,x
(n)
k }
∣∣Zk
)
,

since the labeling of the targets has no influence on the MOSPA measure.
An optimal solution utilizing the sufficiency of the unordered density is given
in Table 2.
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Table 2: Conceptual solution II – unordered densities

1) Compute the unordered density p
(
{x(1)

k , . . . ,x
(n)
k }

∣∣Zk
)

recursively.
2) Derive MMOSPA state estimates from the unordered density.

The second conceptual solution has the same two difficulties as the first
one, viz. that approximations are necessary to keep complexity at a constant
level and that derivation of MMOSPA estimates from an unordered density
is a research topic in itself.

Step one of the second conceptual solution (cf. Table 2) is the foundation
of the family of PHD/CPHD algorithms [9–12] with the Gaussian-mixture
CPHD filter [12] as perhaps the most prominent one.

3.3 JPDA approximation

The JPDA filter is an approximative solution to the data association problem,
described in the spirit of the first conceptual solution. The approach of the
filter is to recursively approximate the multi-modal posterior density in (11)
by a single Gaussian. The posterior density can be rewritten as

p
(
Xk

∣∣Zk
)
=
∑

h∈H

p
(
Zk

∣∣Xk, h,Z
k−1
)
p
(
Xk

∣∣Zk−1
)

p
(
Zk

∣∣Zk−1
)

× Pr
{
h
∣∣Zk−1

}
. (12)

Assuming linear and Gaussian models, and a Gaussian prior density p
(
Xk

∣∣Zk−1
)

(given by the JPDA approximation at time index k − 1), the above density
is a Gaussian mixture.

The JPDA filter performs the following steps:

1. Formulate all global data association hypotheses, H, which describe
possible origins of Zk.

2. For each data association hypothesis h ∈ H, update the predicted den-
sity for each target i with the assigned measurement j as a Kalman
filter update. The output of the filter is the mean value xi,h

k|k and co-

variance matrix Pi,h
k|k (cf. (18)–(19)).

3. Calculate the weight βh of each mixture component h.
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4. Use moment matching to approximate the Gaussian mixture by a single
Gaussian, see (17).

The mixture weights βh are given by

βh =
β̄h∑NH
h=1 β̄h

(13)

β̄h =
∏

Sh
0

λ ·
∏

Sh
u

(
1− PD

)
·
∏

{i,j}∈Sh
a

PD gij, (14)

where a constant detection probability is assumed, Sh
0 is the set of unassigned

measurements, Sh
u is the set of unassigned targets, and Sh

a is a set including
the pairs of detected targets, i, and their assigned measurements, j. Further,

gij = N
(
νij ; 0,Sk

)
=

1
∣∣2πSk

∣∣1/2 e
−

d2ij
2 (15)

d2ij = νT
ijS

−1
k νij , ν ij = zjk −Hkx

(i)
k|k−1. (16)

As described above, the first three steps of the JPDA algorithm describe
the calculation of the components in the Gaussian mixture, while the final
step is to approximate that Gaussian mixture density for each target with a
single Gaussian. This is done by moment matching, i.e.,

p
(
x
(i)
k

∣∣Zk
) ∼= N

(
x
(i)
k ;xi

k|k,P
i
k|k
)

(17)

where3

xi
k|k =

NH∑

h=1

βhx
i,h
k|k (18)

Pt
k|k =

NH∑

h=1

βh

{
Pi,h

k|k +
(
xi
k|k − xi,h

k|k
)(
xi
k|k − xi,h

k|k
)T}

(19)

and where NH is the total number of hypotheses.
The JPDA algorithm is often described in an alternative, but equivalent,

fashion [5], where the computation of the state estimates includes the cal-
culation of a weighted measurement residual which is used in an ordinary
Kalman filter update.

3Although the sums in (18) and (19) can be done as written, in practice there would
be a step of marginalization over the single-target association events.
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4 Conceptual solution III – ordered densities

with switching

4.1 The RFS family

In this section we discuss the relationship between ordered and unordered
densities, and the effects and possibilities of that relationship. Further, we
introduce a new, third, conceptual solution to the problem of interest, and
illustrate its properties using simple examples.

The first two conceptual solutions included the calculation of the ordered,
and unordered, posterior densities of the joint target states, respectively. A
key insight, upon which we capitalize, is that there is a relation between
these densities. For n targets, the relation is the following

p({x(1)
k , . . . ,x

(n)
k } = {α1, . . . ,αn})

=
n!∑

i=1

p(x
(1)
k = αmi

1
, . . . ,x

(n)
k = αmi

n
), (20)

where [α1, . . . ,αn] is a point in the joint target state space, and mi
j , for

j = 1, . . . , n, is index j in permutation number i. To go from an ordered
density to a set density, we thus sum over all possible permutations of the
state vector. For instance, when n = 2 a natural choice is to set m1

1 = 1,
m1

2 = 2 and m2
1 = 2 and m2

2 = 1. One important consequence of this relation
is described in the following proposition.

Proposition 1 For n > 1, the mapping from densities of ordered state vec-
tors, pi(x

(1)
k , . . . ,x

(n)
k ), to RFS densities, p({x(1)

k , . . . ,x
(n)
k }), is many-to-one.

Since many ordered densities correspond to the same unordered density, and
since the RFS density is sufficient to derive optimal estimates, it is fair to
say that the ordered density contains more information than necessary. For
all densities which correspond to the same unordered density, we make the
following definition:

Definition 1 When two labeled densities, p1(x
(1)
k , . . . ,x

(n)
k ) and p2(x

(1)
k , . . . ,x

(n)
k ),

correspond to the same RFS density, we say that they belong to the same RFS
family.

So, using (20), we obtain the same RFS density regardless if p1(x
(1)
k , . . . ,x

(n)
k )

or p2(x
(1)
k , . . . ,x

(n)
k ) is used. In Fig. 1, two labeled densities in the same RFS
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family are shown, together with the RFS density. Obviously, even though
the ordered densities belong to the same RFS family, their shape, expected
values and covariance matrices can be very different.
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Figure 1: Marginalized posterior densities before [top left] and after [top
right] switching the indexes under H2, and the RFS density [bottom]. In our
opinion, a Gaussian approximation is much more appropriate in the middle
figure than in the left one. The symmetry line is dash-dotted and the pluses
indicate expected values of the Gaussian mixture components. The RFS
density is inherently symmetric and is not affected by label switches in the
ordered densities.

The MMOSPA estimate can be calculated from the RFS density, but also
from the ordered densities. Since Proposition 1 tells us that several ordered
densities correspond to the same RFS density, all these densities should result
in the same MMOSPA estimates. This assumes, of course, that the estimates
are computed using optimal algorithms. To find the optimal estimates, we
can first calculate the RFS density and then find the MMOSPA estimate
from it using optimal algorithms. All ordered densities which correspond to
the same RFS density must hence yield the same MMOSPA estimate. We
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summarize this in a proposition.

Proposition 2 All ordered densities within an RFS family yield the same
MMOSPA estimate. Further, that MMOSPA estimate is equal to the MMO-
SPA estimate obtained from the corresponding unordered density.

So if we have the RFS family at a certain time, we can use any of the densities
in the family to find the MMOSPA estimate, or we can use the corresponding
RFS density. But what happens when we update the ordered densities with
the same data? Will they still correspond to the same RFS family? With
the following proposition, and its proof, we show that it is actually so.

Proposition 3 Suppose p1(x
(1)
k ,x

(2)
k , . . . ,x

(n)
k ) and p2(x

(1)
k ,x

(2)
k , . . . ,x

(n)
k ) are

two labeled densities within the same RFS family4. When these densities are
updated using the same set of measurements, Zk, the updated densities still
belong to the same RFS family.

Proof of proposition 3 The key to this result is the fact that given the
state vector, the likelihood is the same for all terms in (20), i.e., for all
permutations of the target positions. Intuitively, this means that once the in-
formation about the target identities is lost, it can not be recovered from future
data. Consequently, after the Bayesian update we get p1({x(1)

k , . . . ,x
(n)
k } =

{α1, . . . ,αn}
∣∣Zk)

=

n!∑

i=1

[
p(Zk

∣∣x(1)
k = αmi

1
, . . . ,x

(n)
k = αmi

n
)

p(Zk)

× p1(x
(1)
k = αmi

1
, . . . ,x

(n)
k = α

m
(i)
n
)

]
(21)

=
p(Zk

∣∣x(1)
k = α1, . . . ,x

(n)
k = αn)

p(Zk)

×
n!∑

i=1

p1(x
(1)
k = αmi

1
, . . . ,x

(n)
k = αmi

n
) (22)

= p2({x(1)
k , . . . ,x

(n)
k } = {α1, . . . ,αn}

∣∣Zk), (23)

4We also assume that all targets have identical properties conditioned on the state
vector, i.e., that the measurement equations are the same, independent of the target
number. If this is not so, we have no business using the unordered densities in the first
place.
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where the last equality is due to p1(x
(1)
k ,x

(2)
k , . . . ,x

(n)
k ) and p2(x

(1)
k ,x

(2)
k , . . . ,x

(n)
k )

being part of the same RFS family.

As we can see, all labeled densities that correspond to the same RFS
density, 1

n!

∑n!
i=1 p(x

1
k = αmi

1
, . . . ,xn

k = αmi
n
) before measurement update,

still belong to the same (only updated) RFS density, p({x1
k = α1, . . . ,x

n
k =

αn}
∣∣Zk), after the measurement update.
To phrase this differently, all densities that belong to the same RFS fam-

ily should result in the same MMOSPA estimates, both now and for all
future times, i.e., also when new data is available. We can therefore replace
our density at hand with any other density within the RFS family, without
influencing the estimates5. We conclude our findings in a theorem.

Theorem 1 In a recursive filtering framework, at each time instant we have
the possibility of switching between ordered densities in the RFS family with-
out affecting current or future MMOSPA estimates.

From Theorem 1, we see that there is a previously unrecognized possibility
of switching densities at any time in a filtering framework, without affecting
the optimal performance. Based on this, we can describe a third conceptual
solution (see Table 3) to the problem of this paper—a conceptual solution
that utilizes the possibility of switching densities within the RFS family.

Table 3: Conceptual solution III – ordered densities with switching

1) Compute the ordered density p
(
x
(1)
k , . . . ,x

(nk)
k

∣∣Zk
)
recursively.

2) Replace p
(
x
(1)
k , . . . ,x

(nk)
k

∣∣Zk
)
with another ordered density

which corresponds to the same RFS density.
3) Derive MMOSPA state estimates from the ordered density.

This conceptual solution provides us with new possibilities and tools for
designing novel suboptimal algorithms with better performance. As a switch
within the RFS family does not affect the estimates, we could for instance
make a change to a density which is more accurately approximated with a
Gaussian density. The relevance of that is obvious, considering for example
the JPDA filter, which relies heavily on Gaussian approximations. Since

5It is important, to go between (21) and (22), as with other steps in our development,
that the targets be truly exchangeable and indistinguishable. For example, if target 1 has
a different RCS than target 2, then this cannot be claimed.
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computational complexity must be kept at a constant level, all practical
algorithms need approximations, and Gaussian approximations are common.
In the RFS family, there may be a density which much more resembles a
Gaussian density. An example of that is seen in Fig. 1. By switching to that
density, a more accurate Gaussian approximation is possible.

In practice, the posterior mean is often used as estimate also when the cost
function is not the squared error. With the same reasoning as above, there
may thus also exist densities within the RFS family whose expected value is
closer to the optimal estimate, than the expected value of the original density.
In fact, in [13] it is shown that there is a density in the RFS family whose
mean value is the MMOSPA estimate. In Section 4.2, we study an example
which shows that a density switch can lead to both improved approximations
and to improved state estimates when the posterior mean is the estimator.

4.2 An example of the use of an RFS family

By considering an example, we here illustrate and discuss the potential ben-
efits of density switches, both in terms of accuracy of the Gaussian approxi-
mations and the accuracy of the state estimates, when the posterior mean is
used as estimate.

Example 1: Consider a scenario where we have two Gaussian distributed
targets. The example is illustrated in Fig. 1. The probability of detection is
one for both targets, and we have received two detections. We represent the
two possible data associations by the hypotheses H1 and H2. Now, suppose
that calculations yield the numbers6,

Pr{H1} = 0.3, xk|H1 ∼ N
([

3
−0.5

]
,

[
1 0
0 1

])
(24)

Pr{H2} = 0.7, xk|H2 ∼ N
([

−0.2
2.7

]
,

[
1 0
0 1

])
. (25)

We realize that the two sets {x1
k = β1, x

2
k = β2} and {x1

k = β2, x
2
k = β1}

represent the same set of targets. We may therefore move density from one
such labeled point to the other, without changing the RFS density. One way
to do this is by switching the indexes under H2,

Pr{H1} = 0.3, xk|H1 ∼ N
([

3
−0.5

]
,

[
1 0
0 1

])
(26)

Pr{H2} = 0.7, xk|H2 ∼ N
([

2.7
−0.2

]
,

[
1 0
0 1

])
. (27)

6All probabilities and densities are conditioned on data, but this is omitted for nota-
tional convenience.
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The densities p1(xk), given by (24)–(25), and p2(xk), given by (26)–(27), thus
correspond to the same RFS density

p({x1
k, x

2
k}) = p1(xk)+p1(πxk) = p2(xk)+p2(πxk), (28)

where the matrix π is a permutation matrix, defined as

π =

[
0 1
1 0

]
. (29)

Since the ordered densities p1 and p2 belong to the same RFS family, they
should, ideally, render the same estimates. As illustrated in Fig. 1, the
suggested switch leads to a simpler problem, since the marginalized densities
of x

(1)
k and x

(2)
k can be approximated by a Gaussian density more accurately.

The dash-dotted line in Fig. 1 is a symmetry line. When probability mass
is moved from one labeled point to another, the movement is through this
line to the mirror point. Of course, the example is selected to highlight the
advantages with a switch, and one can easily construct situations when it is
better not to switch indices. Still, the example illustrates a general technique
that can be employed by most tracking algorithms that use merging.

To further improve the understanding of the concepts in Example 1, we
stress the relation to the RFS densities. Let p̃1(x

(1)
k , x

(2)
k ) and p̃2(x

(1)
k , x

(2)
k )

denote the Gaussian approximations of p1(x
(1)
k , x

(2)
k ) and p2(x

(1)
k , x

(2)
k ), respec-

tively. Both p1(x
(1)
k , x

(2)
k ) and p2(x

(1)
k , x

(2)
k ) correspond to the same RFS den-

sity, i.e., p1({x(1)
k , x

(2)
k }) = p2({x(1)

k , x
(2)
k }) (cf. (28)). As the approximation

p̃2(x
(1)
k , x

(2)
k ) ≈ p2(x1, x

(2)
k ) is fairly accurate, it follows that p̃2({x(1)

k , x
(2)
k }) ≈

p2({x(1)
k , x

(2)
k }) = p1({x(1)

k , x
(2)
k }). However, it is likely that the approxima-

tion p̃1({x(1)
k , x

(2)
k }) ≈ p1({x(1)

k , x
(2)
k }) is less accurate. Hence, by switching

densities we will make approximations that better preserve the information
about the desired RFS density, p1({x(1)

k , x
(2)
k }).

It is not obvious how to compute MMOSPA estimates from a given RFS
density. Instead, the proposed algorithms in Sections 5 and 6 use the MMSE
estimates, i.e., the posterior means, of a density of ordered targets. The idea
is to select a density within the RFS family such that the MMSE estimates are
close to the MMOSPA estimates. For the considered example, we illustrate
the importance that the choice of density has on the posterior means and the
MOSPA performance, by studying the MMSE state vector estimates before
and after the index switch. In the original indexation, the posterior means
are

x̂
(1)
k = 0.76, x̂

(2)
k = 1.74 (30)
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whereas the posterior means after the switch are

x̂
(1)
k = 2.79, x̂

(2)
k = −0.29. (31)

The latter posterior means are probably close to the optimal estimates since,
under both hypotheses, one target is fairly close to 2.79 whereas the other
target is reasonably close to −0.29. Hence, although the initial objective
was to improve the Gaussian approximation, the density switch also seems
to yield MMSE estimates which are closer to the MMOSPA estimates.

For more results on the connection between accurate Gaussian approxi-
mations and improved estimates, we refer to Section 6.

5 Optimal approximations in the Kullback-

Leibler sense

In this section, we present a way of switching densities within the RFS fam-
ily such that the new density can be most accurately approximated with a
Gaussian density, in the Kullback-Leibler sense. Note that the description is
only made for a two-target case, but the results can be generalized.

In what follows, we assume that the posterior density is a Gaussian mix-
ture, denoted

p(x) =

NH∑

h=1

βhN (x;µh,Ph). (32)

For the two-target case, we make the following definition of the RFS family,
Ap, of p(x) (cf. (28))

Ap , {f : f(x) + f(πx) = p(x) + p(πx)} . (33)

Here, x is the stacked vector of the state vectors x(1) and x(2) of the two
targets, and π is a permutation matrix (cf. (29)).

Depending on the choice of density f(x), the Gaussian approximation
may be more or less accurate. Our objective here is to

1. find a density f(x) that enables the most accurate Gaussian approxi-
mations; and then to

2. find the Gaussian density N (x; x̄,R) that best approximates f(x).
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As a measure for how accurate a density approximation is, we will use the
Kullback-Leibler divergence [16]. Of course, our interest in f(x) is only as a
means to obtain N (x; x̄,R), which means that one could imagine a technique
that does not involve f(x). The mathematical definition of the problem that
we would like to solve is

{x̄,R} = argmin
x̄,R

{
min

f(x)∈Ap

KL [f(x)||N (x; x̄,R)]

}
, (34)

where

KL [f(x)||N (x; x̄,R)]
△
=

∫
f(x) log

f(x)

N (x; x̄,R)
dx, (35)

and where KL denotes Kullback-Leibler divergence. In the standard pro-
cedure (used in for instance PDA and JPDA) one would use f(x) = p(x)
and only optimize over x̄ and R, for which the optimal solution is given by
moment matching. By also optimizing over f(x) we believe that the approx-
imation errors will decrease significantly compared to JPDA, and slightly
compared to the algorithm that we present in Section 6.

To design an algorithm that can search for x̄ and R, the following results
are very useful.

Theorem 2 The solution to

{x̄,R} = argmin
x̄,R

KL [f(x)||N (x; x̄,R)] (36)

is given by moment matching,

x̄ = Ef(x) {x} (37)

R = Covf(x) {x} . (38)

Furthermore, the density f(x) ∈ Ap that minimizes KL [f(x)||N (x; x̄,R)] is

f(x) = (p(x) + p(πx)) · N (x; x̄,R)

N (x; x̄,R) +N (πx; x̄,R)
. (39)

Proof of Theorem 2 The results in Eq. (37) and (38) are well known, see
e.g. [17]. For (39), see [18].

Based on the above theorem, we propose an iterative optimization algorithm.
The algorithm is illustrated in Fig. 2, where the initial density is p(x).

1. Initiate with i = 1 and let x̄0 and R0 be the first two moments of p(x).
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2. Set

fi(x) = (p(x) + p(πx))

N (x; x̄i−1,Ri−1)

N (x; x̄i−1,Ri−1) +N (πx; x̄i−1,Ri−1)
. (40)

3. Compute

x̄i = Efi(x) {x} (41)

Ri = Covfi(x) {x} . (42)

4. If x̄i ≈ x̄i−1 and Ri ≈ Ri−1 we stop. Otherwise, set i = i + 1 and go
back to 2.

The algorithm is essentially straightforward. However, to implement it we
need the ability to calculate expected values with respect to the densities
fi(x), i = 1, 2, . . . .

RFS family

Family of
Gaussian
densities

Start density

Best
approximation

Figure 2: Illustration of the iterative optimization algorithm which finds
the best Gaussian approximation of the RFS family, in the Kullback-Leibler
sense. The curves represent the functional spaces of densities within the RFS
family (below), and the Gaussian densities (above).

It appears complicated to find analytical expressions for the expected
values in (41) and (42) and we therefore suggest a numerical method based
on importance sampling. As importance density we use

q(x) =
1

2

(
p(x) + p(πx)

)
. (43)
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The expected values can be reformulated as

x̄i = Efi(x) {x} = Eq(x)

{
x
fi(x)

q(x)

}
(44)

Ri = Efi(x)

{
(x− x̄i)(x− x̄i)

T
}

(45)

= Eq(x)

{
(x− x̄i)(x− x̄i)

T fi(x)

q(x)

}
, (46)

and for the selected importance density it is easy to evaluate the ratio

fi(x)

q(x)
= 2

N (x; x̄i−1,Ri−1)

N (x; x̄i−1,Ri−1) +N (πx; x̄i−1,Ri−1)
. (47)

Based on i.i.d. samples x1,x2, . . . ,xN ∼ q(x), we can approximate the de-
sired entities as

x̄i ≈
N∑

n=1

xnwn (48)

Ri ≈
N∑

n=1

(xn − x̄i)(xn − x̄i)
Twn, (49)

where

wn =
fi(xn)/q(xn)∑N
r=1 fi(xr)/q(xr)

. (50)

In (49), we replace x̄i with the approximated value from (48). A beneficial
property with the suggested importance function is that since the RFS family
is preserved we can use the same samples x1, . . . ,xN for all iterations i =
1, 2, . . . .

In this section, we have presented the optimal approach of performing
density switches within the RFS family, such that the final density can
most accurately be approximated with a Gaussian density. We have also
presented a numerical approach of computing the required expected values.
Since the presented algorithm is computationally demanding, we are inter-
ested in a sub-optimal approach, which still has the properties of enabling
better Gaussian approximations than the JPDA algorithm, and which also
presents better estimates than JPDA in MOSPA sense. The development of
such an approach is the topic of the following section.
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6 Set JPDA algorithm

In this section, we derive a sub-optimal approach to the third conceptual so-
lution, called the Set JPDA (SJPDA) algorithm. The filter utilizes the fact
that several ordered densities correspond to the same set density, which pro-
vides the possibility to switch between those ordered densities. The criterion
that we try to minimize with our switch of densities is optimal in terms of
the MOSPA estimates. Still, we argue that it in most cases also gives better
density approximations than the JPDA algorithm.

The Set JPDA algorithm is a modification of the classic JPDA filter.
The difference is that once the posterior density is described as a weighted
sum of Gaussian densities, we allow ourself to switch that density for another
ordered density in the same RFS family. On a high level, the SJDA algorithm
works as follows:

1) Formulate the set of global measurement hypotheses, H, and calculate
conditional densities of all targets as well as the probabilities of all
hypotheses. Approximate the targets as independent.

2) Reorder the target indexes under the different hypotheses with the ob-
jective to make the marginalized densities resemble Gaussian densities
(by minimization in one’s favorite sense, see Sections 6.1 and 6.2 for
details).

3) Approximate the marginalized posterior densities of all targets as in-
dependent Gaussian. Then go back to 1.

A block diagram description of the SJPDA filter is shown in Fig. 3. As
seen in the figure, the difference between SJPDA and JPDA lies in the switch-
ing block. If that block is removed, we obtain the JPDA filter.

The key aspect of the SJPDA filter is the switching of densities. To ob-
tain a filter with good performance, and which enables accurate Gaussian
approximations, the switching criterion is very important. In the follow-
ing two sections, we propose a goal function, and formulate the problem
of minimizing that function (while remaining within the family of Gaussian
mixtures) as a continuous optimization problem.

6.1 Goal function proposal and motivation

For the considered problem, the labeled density is a Gaussian mixture. In
this section, we propose and motivate a goal function for the optimization
problem of finding the best switching of such densities in the SJPDA filter.
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Update Switch
Gaussian

approximation

Prediction

Figure 3: SJPDA block diagram.

Generally speaking, a Gaussian mixture can be accurately approximated
by a single Gaussian density as long as the Gaussian mixture is not too
distinctly multimodal. In the SJPDA filter, we wish to adjust the indexation
within each global hypothesis, in order to find a labeled density which is less
multimodal. The goal function that we propose is hence a function which
measures the multi-modality of the density. The proposed goal function is

n∑

i=1

tr{Pi
k}, (51)

for which Pi
k is given in (19). In the following, we motivate that goal

function, basically by arguing that through minimizing of the function, we
will obtain both better approximations and better estimates than what we
would obtain using the JPDA filter.

In [13], the problem of minimizing MOSPA is considered in more detail.
An important result from the paper is that the problem of minimizing the sum
of the trace of the posterior covariances is equal to the problem of minimizing
MOSPA, given that the expected value is used as estimate and that we search
in the entire RFS family (not restricting the search to Gaussian mixtures in
the RFS family). Thus, the switching criterion that we use is optimal for the
estimation problem.

The second advantage with the cost function is that it enables better
Gaussian approximations. The reason for this is that by minimizing the trace
of the covariance matrices, we make the posterior density less multimodal.
We therefore argue that the Gaussian approximations in the SJPDA filter are
at least as accurate as the JPDA filter approximations, where equality holds
if no switches are made. However, for the density approximations, there are
no optimality results. That is, one cannot show that the approximations
are optimal, for example in a Kullback-Leibler sense, by using the proposed
goal function. Instead, for optimal approximations, we refer to the algorithm
given in Section 5.
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6.2 SJPDA as a continuous optimization problem

In [19], the switching problem of SJPDA was formulated as a discrete opti-
mization problem, for which a brute force solution can be implemented easily.
In this section, we instead show how the problem can be reformulated as a
continuous optimization problem, for which fast solvers can be applied.

We start by assuming that the posterior density is described by a Gaus-
sian mixture, as in (32). To give the problem a continuous formulation, we
introduce the variable φi,h which represent the weight of the Gaussian com-
ponent after permutation. In this way, we can have a linear combination
of the original component and the permuted component. For the discrete
problem, φi,h is either 0 or βh. In the continuous formulation of the problem,
the posterior after switching is given by

q(x) =

n!∑

i=1

NH∑

h=1

φi,hN (x; πiµh, πiPhπ
T
i ), (52)

where πi is permutation matrix number i, and where n! is the total num-
ber of possible permutations. The new weights have to fulfill the following
constraints

n!∑

i=1

φi,h =βh ∀h (53)

φi,h ≥0 ∀i, h. (54)

Note that the densities N (x;µh,Ph) and N (x; πiµh, πiPhπ
T
i ) lie in the same

RFS family for all permutation matrices πi.

To conveniently express the goal function in the above parameters, we
introduce the notations

φ =
[
φ1,1 . . . φn!,1 φ1,2 . . . φn!,2 . . . φn!,NH

]T
(55)

V =
[
π1µ1 . . . πn!µ1 π1µ2 . . . πn!µ2

. . . πn!µNH

]
, (56)

such that

x̄ ,
n!∑

i=1

NH∑

h=1

πiµhφi,h = Vφ. (57)
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We wish to minimize

tr
{
Covq(x) {x}

}

=

n!∑

i=1

NH∑

h=1

φi,h

{
(πiµh−x̄)T (πiµh−x̄)+tr{πiPhπ

T
i }
}

(58)

=

{
n!∑

i=1

NH∑

h=1

φi,hµ
T
hµh

}
− x̄T x̄+

NH∑

h=1

tr{Ph}
n!∑

i=1

φi,h (59)

=

{
NH∑

h=1

βhµ
T
hµh

}
− φTVTVφ+

NH∑

h=1

tr{Ph}βh, (60)

where −φTVTVφ is the only part that depends on φ, subject to the con-
straints presented in (53) and (54). To summarize, we have the optimization
problem

min
φ

s.t.




φi,h ≥ 0 ∀i, h∑n!

i=1 φi,h = βh ∀h

−φTVTVφ. (61)

The problem is non-convex. The goal function is concave, and it is to
be minimized over a convex region, which has the implication that the op-
timal point is along the border of the constraints. We also note that since
the optimal solution is on the border of the constraints, the permutations
either occur or not, i.e., there will be no partial permutations in the optimal
point. A benefit with the continuous formulation is that it enables the use of
commercial optimization solvers, which scale well with increasing number of
targets and hypotheses. To use an optimization solver, we need knowledge
regarding existence of local minima, and how they can be avoided.

It can be analytically shown that there are no local minima for the case of
scalar state vectors and two targets. But when the dimensionality of the state
vector increases, there will in some situations exist local minimum points in
which an optimization algorithm can be trapped. It is thus important to
select a suitable starting point for the algorithm. Through empirical studies,
we have seen that it is only in a small region around the minimum point that
the negative gradient points in the direction of the local minimum. Therefore,
only starting points in a small region around potential local minima should be
avoided. For the problems considered in this article, we have found a suitable
set of starting points which almost always lead the selected optimization
algorithm to the global minimum.

For more details on the characteristics of the optimization problem, see [18].
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6.3 Algorithm description

The SJPDA algorithm has five steps which are executed for each time index
k. In the following, we describe each of those five steps in more detail, and
summarize the algorithm in Table 4.

The algorithm description starts at time k, at which we have available a
set of measurements, Zk, and predicted states xi

k|k−1 and covariance matrices

Pi
k|k−1 for each target i. Note that steps I, II and V are identical to the

JPDA algorithm (one version of it). Note also that we assume linear and
Gaussian process and measurement models in the description, although the
SJPDA algorithm can be easily extended to handle nonlinear models using,
for example, an extended Kalman filter (EKF).

Step I: Data hypothesis extraction

The first step of the SJPDA algorithm is to formulate all possible global
data association hypotheses, H. A hypothesis is possible if it describes the
origin of each measurement in Zk (target-generated or false), and if the total
number of target-originated measurements is at most n.

Step II: Data update

The second step of the algorithm is to update the predicted state vectors and
covariance matrices, and to calculate the mixture weights, βh. For a certain
target i, the updated state and covariance matrix under hypothesis h are
given by

xi,h
k|k = xi

k|k−1 +Ki
k

(
Hkx

i
k|k−1 − zi,hk

)
(62)

Pi,h
k|k =

(
I−KkHk

)
Pi

k|k−1, (63)

where zi,hk is the measurement associated to target i under hypothesis h. If

no measurement is associated, we use zi,hk = 0. An expression for the mixture
weights is given in (13).

Step III: Optimization

Step three of the SJPDA algorithm is the main step, namely to find the
optimal permutation of state vectors under the data association hypotheses.
We find the optimum solution, φ∗, to (61) by applying an optimization solver
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Table 4: SJPDA algorithm description

I: Data hypothesis extraction

formulate all NH global data association hypotheses

II: Data update

for each data association hypothesis h = 1, 2, . . . , NH, do

for each target i = 1, . . . , n, do

update the expected value and covariance matrix of the pre-
dicted state vector x̂i

k according to (62)–(63)

calculate the mixture weight βh according to (13)

III: Optimization

solve the problem defined in (61) using an optimization solver

a suitable pair of starting points is given in (64)–(65), and a useful
third initiation point is to perform a 70% permutation under the N
(e.g. 10) largest hypotheses

IV: Permutation and update

compute the expected value and covariance matrix of the joint state
vector Xk after data update, optimal permutation and Gaussian ap-
proximation, according to (68)–(69)

V: Prediction

for each target i = 1, 2, . . . , Nt, do

predict the state vector and covariance matrix of target i, accord-
ing to (70)–(71).

with different initiation points. A suitable pair of starting points for the two-
target problem is

φstart,1 =
[
0.7β1 0.3β1 . . . 0.7βNh

0.3βNh

]T
(64)

φstart,2 =
[
0.7β1 0.3β1 0.3β2 0.7β2

. . . 0.7βNh
0.3βNh

]T
. (65)
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Step IV: Permutation and update

After the optimal solution φ∗ has been found, we permute the state vectors
according to that solution. The permutation does not have to be done ex-
plicitly, since we are only interested in the Gaussian approximation of the
permuted posterior density. To express the mean and covariance after per-
mutation, we describe the calculation in the joint state vector Xk. Before
permutation, the expected value and covariance matrix of that vector is

Xh
k|k =

[(
x1,h
k|k
)T (

x2,h
k|k
)T

. . .
(
xn,h
k|k
)T]T

(66)

Ph
k|k = diag

{
P1,h

k|k,P
2,h
k|k, . . . ,P

n,h
k|k
}
. (67)

After permutation, the expected value and covariance matrix are given by

Xk|k = Vφ∗ (68)

Pk|k =
Nh∑

h=1

n!∑

j=1

φ∗(i(h, j)
)[
ΠjP

h
k|kΠj

+
(
ΠjX

h
k|k −Xk|k

)(
ΠjX

h
k|k −Xk|k

)T]
, (69)

where the function i(h, j) gives the index in φ∗ which corresponds to per-
mutation i and hypothesis h. We approximate the targets as independent,
which implies that the posterior covariance matrix Pi

k for target i (the indices
are irrelevant) is the corresponding block in the matrix Pk|k.

Step V: Prediction

The final step of the SJPDA algorithm is to let k → k − 1, and predict the
state and covariance matrices of the set of targets to the next time step k. For
linear models, that prediction is done using the ordinary Kalman prediction
equations

xi
k|k−1 = Fkx

i
k−1|k−1 (70)

Pi
k|k−1 = FkP

i
k−1|k−1F

T
k +Qk. (71)

In Fig. 4, the densities of the joint state vector (with two targets and
scalar states) is illustrated for different steps in the JPDA and SJPDA al-
gorithms. In the example, the predicted density is a Gaussian, given by the
top figure. The second row of densities show the density after measurement
update and optimal permutations (for SJPDA). From the figures, we see
that the SJPDA density can be described much more accurately by a Gaus-
sian density. The last row shows the Gaussian approximations of the JPDA
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and SJPDA posterior densities. It is clear that the covariance matrix of the
SJPDA approximation is smaller.
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Figure 4: One-step iteration of the JPDA, SJPDA and KLSJPDA filters. The
prior density is a Gaussian, there are two targets, the detection probability is
0.7, and two target-originated measurements are received. Posterior density
[top left], posterior density after SJPDA optimization [middle left], posterior
density after KLSJPDA optimization [bottom left], JPDA approximation
[top right], SJPDA approximation [middle right], KLSJPDA approximation
[bottom right]. The dashed contours in the right-column figures represent the
densities that are approximated. Clearly, both the SJPDA and KLSJPDA
posterior densities are better approximated by a Gaussian density than the
original posterior density.

7 Evaluations

Two different tracking scenarios are considered for evaluation of the SJPDA
algorithm, and comparison with JPDA and a Gaussian-mixture CPHD filter
with known target number. The first scenario, for which also the KLSJPDA
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algorithm is evaluated, is tracking of two targets, whose trajectories are as
illustrated in Fig. 5. The parameters used in the evaluation are l = 10 m,
d1 = 0.5 m, d2 = 30 m, ϕ = π/3, and v = 1 m/s. The second scenario,
illustrated in Fig. 8, is also a two-target example, but in that scenario the
two targets move around a hexagonal shape. The aim of that scenario is to
evaluate how fast the JPDA and SJPDA algorithms lose track in a challenging
scenario. In both scenarios, a sensor collects measurements at even time
intervals of T0 = 1 second.

l

1
d

2
d

j

v

v

Figure 5: Illustration of the scenario for the first evaluation.

In the filtering algorithms, a nearly constant velocity model is assumed
(see (4) for a general description), which is governed by the system matrix

Fk−1 =

[
I2×2 T0I2×2

02×2 I2×2

]
, (72)

where I2×2 is a 2 × 2 identity matrix, and 02×2 is a 2 × 2 matrix of zeroes,
and by the process noise vk−1 which is zero-mean Gaussian with covariance
matrix

Q = q0

[
T 3
0 I2×2/3 T 2

0 I2×2/2
T 2
0 I2×2/2 T0I2×2

]
, (73)

where q0 is a tuning parameter. In the simulations, the best tuning parameter
is selected for each filter, where the parameter which yields the lowest average
MOSPA is used. Further, the measurement model is assumed linear and
Gaussian (cf. (6)) with observation matrix

Hk =

[
1 0 0 0
0 1 0 0

]
, (74)

which means that the sensor delivers position measurements. The Gaussian
measurement noise wk is zero-mean, with covariance matrix

Rk =

[
σ2
x 0
0 σ2

y

]
, (75)
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where we have used σx = σy = 0.2m.
Fig. 6 shows an example of the JPDA and SJPDA output for d1 = 0.5m,

λ = 0.01, and PD = 1. In the figure we see the track coalescence tendency of
the JPDA filter, which makes it hard for the filter to detect the separation
of the tracks. This leads to high MOSPA after the track separation, and it
also leads to a high risk of losing tracks. In Fig. 7, the MOSPA performance
over 100 Monte Carlo runs is shown for detection probabilities of 1 and 0.85,
respectively. The clutter intensity in the simulations is 0.02 m−2.
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Figure 6: Output of JPDA [top] and SJPDA [bottom] for one sequence of
measurements.

The figures show that the average OSPA performance of the SJPDA filter
is better than for the JPDA filter for almost the entire scenario, and the
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Figure 7: Evaluation of JPDA (green), SJPDA (red), KLSJPDA with 10 000
samples (blue), and GM-CPHD (black) on the two-target scenario for detec-
tion probabilities Pd = 1 [top] and Pd = 0.85 [bottom].

figures also show that the difference between the filters are very large at the
time when the tracks separate. This is due to the track coalescence of the
JPDA filter. Note that the filters are run with different process noises, where
the noise level has been selected to yield the best average MOSPA. When the
filters are run with the same process noise, the SJPDA filter always gives an
average OSPA which is lower than, or equal to, that of the JPDA filter. For
the KLSJPDA algorithm, the performance is similar to that of the SJPDA
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filter, whereas its computational complexity is much higher. We thus suggest
that the SJPDA filter be used.

When compared to GM-CPHD, we see that both the SJPDA and the
KLSJPDA filters for large detection probabilities performs on average equally
well as GM-CPHD (for unity detection probability actually slightly better),
and almost as well for lower detection probabilities. The results are rather
surprising since the GM-CPHD is a more complex algorithm. For the GM-
CPHD algorithm, the best process noise parameter q0 in the aforementioned
set is used, and the filter also uses pruning (threshold 0.0001) and merging
(threshold U = 1, cf. [12]). We note that the somewhat similar JPDA* [20]
was compared to the SJPDA in [21]; in fact the JPDA* performs well, but
the SJPDA is notably superior.
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Figure 8: Example of filter output of the JPDA (crosses) and SJPDA (circles)
algorithms for the track life evaluation scenario (for PD = 1). In the plot,
the output for the first 101 time steps is presented, which is the time it takes
for the two targets to make one loop around the path. In the evaluations,
the full trajectories make ten loops around the hexagonal path.

For the second scenario, the average track life and average track loss for
JPDA and SJPDA are summarized in Table 5, for four different values of
detection probability. In the evaluation, the best process noise parameter
in the set q0 = {0.05, 0.1, 0.2, 0.3, 0.4} has been used, and otherwise the
same parameter values as before. A track is considered lost if the covariance
matrix elements corresponding to the uncertainty in the x or y dimensions
have surpassed 225m2, the estimate of a track is further away than 50 meters
from the true value, or if there has been only two measurements in the gate
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of a track for the last five scans. The selected process noise is such that
the average track life is maximized. The trajectories that the two targets
travel along are illustrated in Fig. 8, where example outputs of the JPDA
and SJPDA filters are included. The angle ϕ (cf. Fig. 5) is π/3, and the
targets travel at a maximum 10 laps around the circuits, which correspond
to 1010 seconds, or almost 17 minutes. From the table we see that the
SJPDA filter has much longer average track life than the JPDA filter, due to
its avoidance of track coalescence and better description of where there are
targets. The lower track-loss probabilities of the SJPDA filter are evident for
all four detection probabilities, but the improvement compared to the JPDA
filter is better the higher the detection probability.

Table 5: Average track lives and average track loss probabilities for the JPDA
and SJPDA algorithms, for different detection probabilities, PD.

JPDA SJPDA Improvement
SJPDA vs. JPDA

PD = 1
Length 97s 993s 924%
Loss 100% 3% 97%

PD = 0.95
Length 128s 734s 473%
Loss 100% 53% 47%

PD = 0.9
Length 152s 456s 200%
Loss 100% 88% 12%

PD = 0.85
Length 142s 251s 77%
Loss 100% 100% 0%

8 Conclusions

In this article we have shown how traditional tracking algorithms can be
improved when target identity is not of interest. The presented approach uses
the relation between the density of ordered (labeled) targets, and the density
of unordered (the set of) targets. More specifically, there is an infinite number
of ordered densities which correspond to the same unordered density, and by
switching between those densities we can obtain densities which have better
characteristics. In order to reflect the fact that target identity is irrelevant,
we use the Mean Optimal Subpattern Assignment (MOSPA) metric instead
of the Mean Squared Error (MSE).
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In the first part of the article, we discuss how the new problem of minimiz-
ing MOSPA differs from the classic tracking problem, and show that there is
substantial room for improvements of the traditional algorithms when eval-
uated according to MOSPA.

In the second part of the article we study the Joint Probabilistic Data As-
sociation (JPDA) filter and how it can be adjusted to the considered problem.
First, we describe how optimal Gaussian approximations in Kullback-Leibler
sense can be found. From this, we develop a new filter called the Kullback-
Leibler Set JPDA (KLSJPDA) filter. Since the filter is computationally
intensive, we propose another approach which operates on a goal function
which leads to both good Gaussian approximations and low MOSPA. The
minimization of that goal function can be formulated as a continuous opti-
mization problem. From this, we develop another adjustment of the JPDA
filter called the Set JPDA (SJPDA) filter.

In the final part of the paper, the SJPDA and KLSJPDA filters are
evaluated on two simulation examples and compared to the JPDA and the
Gaussian-mixture Cardinalized Probability Hypothesis Density (GM-CPHD)
filters. The results show that the SJPDA and KLSJPDA filters have similar
performance and that they perform substantially better than JPDA in terms
of MOSPA. However, due to its lower complexity, we prefer the SJPDA filter.
The results also show that the SJPDA filter has a much longer average track
length than JPDA for the considered scenario. Further, it is seen that the
SJPDA filter performs almost as good as the more complex GM-CPHD filter,
and that it even performs slightly better for a unity detection probability.
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Abstract

Performance evaluations of multi-target tracking algorithms are
often limited to consider comparisons within the same algorithm fam-
ily. In this paper, we evaluate two conceptually different multi-target
tracking algorithms, namely a multiple-hypothesis tracking (MHT)
algorithm and the Gaussian mixture cardinalized probability hypoth-
esis density (GM-CPHD) filter. As a reference, we also compare the
results to a conventional single-hypothesis tracking algorithm. The
performance is assessed using the root-mean square error of the esti-
mated number of targets, and the recently published Optimal Subpat-
tern Assignment (OSPA) measure. The scenario under consideration
is tracking of nine closely spaced ground targets, using simulated mea-
surements from an airborne radar. The results indicate that the sce-
nario is challenging, since the conventional algorithm does not perform
nearly as well as MHT and GM-CPHD. By observing the estimation
of the number of targets, as well as of the target states, we draw con-
clusions regarding the behavior of MHT and GM-CPHD. The main
differences between the algorithms are pointed out and discussed. For
example, GM-CPHD is more responsive to changes in the number of
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targets, whereas MHT is less responsive, but produces a more stable
output.

Keywords: Multi-target tracking, MHT, CPHD, performance evalua-

tion, OSPA, ground target tracking.

1 Introduction

This paper is concerned with performance evaluation and comparison be-
tween three different multi-target tracking algorithms, applied to a ground
target tracking scenario with closely spaced targets. The reason for per-
forming the evaluation is that comparisons between multi-target tracking
algorithms are few in the literature. Especially, there is a lack of compar-
isons between the Cardinalized Probability Hypothesis Density (CPHD) filter
and traditional tracking algorithms. In this paper we evaluate three differ-
ent types of algorithms. The first algorithm in the evaluation is a conven-
tional Single-Hypothesis Tracking (SHT) algorithm, which uses the extended
Kalman filter (EKF) [1] for filtering, Global Nearest Neighbor (GNN) [2] us-
ing the Auction algorithm [3] for data association, and track score for man-
agement of tracks [2]. The SHT algorithm is used as a reference. The main
focus is on comparing a track-oriented Multiple Hypothesis Tracking (MHT)
algorithm [2, 4, 5] and the recently developed Gaussian Mixture Cardinal-
ized Probability Hypothesis Density (GM-CPHD) filter [6–9]. The reason
for evaluating these two algorithms is that they are generally accepted as
the high-end alternatives of their respective class of algorithms. To the best
of our knowledge, no evaluation study of GM-CPHD and MHT has been
published before. In the paper, we use the terms GM-CPHD and CPHD
interchangeably, where both refer to GM-CPHD.

Standard SHT algorithms find and propagate only the instantaneously
best data association hypothesis over time. If the association is ambiguous,
it is not at all certain that this hypothesis corresponds to the true association.
The family of MHT algorithms on the other hand, form and propagate a set
of alternative association hypotheses. When more data is received, the least
likely hypotheses can be discarded, while the true hypothesis is hopefully
retained and presented to the user. The original formulation of MHT is
given in [4]. In the performance evaluation of this paper, a track-oriented
MHT [5,10] is used, for which the global hypotheses are reformed in each time
step from the updated tracks. Efficient implementations of track-oriented
MHT are described in [5, 11, 12].

The CPHD algorithm is a random finite set (RFS) approach to multi-
target tracking, which has received a lot of attention in the recent years [6,8,
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9,13]. The algorithm treats the number of targets, and their respective states,
as random variables. The CPHD filter recursively propagates an intensity
function, defined on the single-target state space. The intensity function
has the property that the integral of the function over a volume, gives the
expected number of targets within that volume [14]. In the Gaussian mixture
version of the algorithm, the intensity function is approximated with a sum
of weighted Gaussian probability density functions (pdfs). In conjunction
with the intensity function, the CPHD algorithm also propagates a so-called
cardinality mass function, which gives the distribution of the total number
of targets in the scene. The mass function is of arbitrary shape, which makes
the CPHD filter different from its predecessor—the probability hypothesis
density (PHD) filter [14, 15]. For PHD, Gaussian Mixture PHD (GM-PHD)
[16] and MHT, there have been a few performance evaluations, e.g., in [17]
and [18].

To assess the performance of the tracking algorithms, we use two different
measures. The first is the root-mean square error (RMSE) of the cardinality
estimates. The RMSE of cardinality gives a measure of how well the algo-
rithms estimate the number of targets. In conjunction to the measure, we
also plot the Monte Carlo average of the cardinality estimates over time for
each filter, to see the difference between how the filters respond to changes
in the number of targets. The second measure that we use is the recently
developed Optimal Subpattern Assignment (OSPA) measure [19, 20], which
is based on the Wasserstein metric for multi-target tracking [21]. The OSPA
measure tries to capture the quality of both the cardinality and the state
estimation.

The scenario considered in the evaluation concerns tracking of nine targets
on the ground, using simulated measurements from an airborne radar. The
targets are closely spaced, and their trajectories cross. In the middle part of
the scenario, a small mountain obscures up to two targets from the sensor.
During that period of time, not all targets are detectable. The scenario has
been designed to be challenging for any multi-target tracking algorithm.

In the performance evaluation, some observations are made. First, the
standard SHT algorithm performs worse than the more advanced MHT and
GM-CPHD algorithms, which indicates that the considered scenario is indeed
challenging. Secondly, the OSPA overall performance is approximately equal
for the MHT and CPHD approaches, with a slight advantage for CPHD. We
note three differences between the behavior of MHT and GM-CPHD:

1) The output of MHT is more stable than the CPHD output, due to the
slower response of MHT to new and vanishing targets, which has to do
with how tracks are initiated and deleted. The standard deviation of
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the estimate of the number of targets is overall lower for MHT than for
CPHD.

2) The CPHD filter has a faster response to vanishing targets, than MHT.
This is due to the CPHD modeling of vanishing targets by a death
model. In MHT, there is no such model; instead, target tracks are
removed when their quality is deemed too low. Whether the fast re-
sponse is beneficial or not, is a matter of application. If a target is
just temporarily undetectable, a fast response has the drawback of lost
track continuity.

3) The response to increasing numbers of targets is faster in CPHD, than
in MHT. The reason is that the probability calculation in the considered
MHT approach is started only for tracks with 3 detections or more.
There is hence normally a delayed presentation of new targets of three
time steps.

2 Scenario and Problem Formulation

The scenario considered in this paper is the tracking of nine ground targets,
using simulated measurements given by an airborne radar. The tracking is
challenging due to several reasons:

1) The targets are closely spaced, and their trajectories cross at numerous
times.

2) Due to terrain masking, all targets are not visible to the sensor during
the entire scenario.

3) Since the sensor is far off in the beginning of the scenario, the SNR is
low, which gives an initially low detection probability PD.

4) On top of target-generated detections, the sensor also reports spurious
detections due to clutter.

In Figure 1, we plot the trajectories of the nine targets. As we see, the targets
are close together during a large part of the scenario, and their trajectories
cross.

The state vector xk of a target has six components

xk = [xk yk zk ẋk ẏk żk]
T , (1)
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Figure 1: Trajectories of the nine targets in the considered ground target
tracking scenario. The distances between grid points are 200 m and 500 m
in the x and y dimensions, respectively. The dashed ellipses illustrate the
sensor accuracy for a few instances of time. As the sensor approaches the
group of targets, the accuracy improves.

namely position and speed in three dimensions. The motion model used is a
nearly constant-velocity model

xk = Fk−1xk−1 + vk−1, (2)

with system matrix

Fk−1 =

[
I3×3 T0I3×3

03×3 I3×3

]
. (3)

In (3), Im×m is an m × m identity matrix, and 0m×n a m × n matrix of
zeroes. The process noise vk−1 is zero-mean Gaussian with covariance matrix
Qk−1 = Q, where

Q=




q0T
3
0 /3I2×2 02×1 q0T

2
0 /2I2×2 02×1

01×2 qzT
3
0 /3 01×2 qzT

2
0 /2

q0T
2
0 /2I2×2 02×1 q0T0I2×2 02×1

01×2 qzT
2
0 /2 01×2 qzT0


 . (4)

In (4), q0 = 3 and qz = 0.01. The uncertainty is lower in the z dimension,
since we know that the targets are moving on the ground. In the scenario,
all nine targets move with a constant speed of 5 m/s, and they move both
on roads and in the terrain. The targets have randomly varying radar cross
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sections. The target trajectories are not generated according to the motion
model. Instead, they have been manually created using a map-based tool
which includes 3D elevation and terrain type databases.

Measurements are provided by a radar sensor, which measures range and
angle, according to

zk = [rk ϕk θk]
T , (5)

where rk is range, ϕk azimuth and θk elevation. The time between measure-
ments is T0 = 3 s. The measurement model

zk = hk (xk) +wk (6)

is thus non-linear, with the measurement function

hk (xk) =




√
x2
k + y2k + z2k

arctan (yk/xk)

arctan
(
zk/
√
x2
k + y2k

)


 . (7)

The measurement noise wk is independent of the process noise vk−1, and is
zero-mean Gaussian with covariance matrix

Rk =




σ2
r 0 0
0 σ2

ϕ 0
0 0 σ2

θ


 . (8)

The measurement accuracies (standard deviations) are σr = 5 m, σϕ =
0.003 rad and σθ = 0.003 rad. The accuracy in range is much better than
the angular accuracy, as illustrated in Figure 1. The platform carrying the
sensor flies at an altitude of 5 km, and its range to the targets varies from
approximately 60 km to 6 km. In Figure 2, the movement of the sensor
platform over time is shown. The figure also includes the positions of the
nine targets over time, as well as the mountain which obscures up to two
targets from the sensor. The target visibility from the platform position is
calculated using the terrain and elevation databases.

The clutter measurements are assumed independent from scan to scan,
and spatially uniform in the x-y plane (cf. Figure 2). The density of clut-
ter is 0.1/km2, which is reasonable in the considered application with large
surveillance volume. Sensitivity analysis, with varying clutter densities, is
left for future work.

Since the measurement model is non-linear, we need a non-linear filtering
algorithm. In this paper, we use the Extended Kalman Filter (EKF) [1].
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Figure 2: Illustration of the ground target tracking scenario. The line starting
from the lower left corner represents the movement of the sensor platform
over time. The black area in the upper right corner represent the trajectories
of the nine targets. To the left of the group of targets, a mountain is located,
which is marked with altitude lines. The two thick circles on the sensor
platform trajectory represent the start and end position of the sensor, for
which 1− 2 of the targets are obscured by the mountain.

The problem under consideration is the tracking of multiple targets. We
are hence interested in a recursive estimation of both the number of targets
and their respective state vectors. At each time step k, we thus seek an
estimate N̂k|k of the number of targets, given the sequence of measurements,

described by the ordered set Z1:k = {z1, . . . , zk}. For the N̂k|k targets, we

want to express the pdfs p
(
x
(i)
k

∣∣Z1:k

)
for i = 1, . . . , N̂k|k.

2.1 Performance Measures

In order to assess the multi-target tracking algorithms, we need one or more
performance measures. In this paper, we use two different measures of per-
formance. The first one is a measure of the cardinality estimation, i.e., how
well the algorithms estimate the number of targets. The name comes from
set theory, where the cardinality of a set is the number of elements in the
set. The cardinality measure used is the root-mean square error (RMSE)

eRMSE
card (k) =

√√√√ 1

M

M∑

l=1

(
N̂ l

k|k −N true
k

)2
, (9)
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where M is the number of Monte Carlo simulations, N̂ l
k|k is the estimate

of cardinality at time k for the lth iteration, and N true
k is the true number

of targets at time index k. In the scenario considered in this paper, the
true number of targets could either mean the actual number of targets in the
scenario, or the number of visible targets at time k, depending on the desired
behavior of the tracking algorithm. We will primarily consider the number
of visible targets in the evaluation.

On top of the cardinality performance, we also need a measure on how
well the algorithms estimate the target states. Since the number of targets
is not known, it is not straight-forward to devise such a measure. We use the
recently published Optimal Subpattern Assignment (OSPA) measure [19,20].
The OSPA measure tries to capture the quality of both the cardinality and
the state estimation. Let Y be the set of true target states and X be the
set of target estimates, with cardinalities n and m, respectively. The OSPA
measure d̄

(c)
p is then defined as

d̄(c)p (X,Y)

=

(
1

n

(
min
π∈Πn

m∑

i=1

d(c)(xi,yπ(i))
p + cp(n−m)

))1/p

, (10)

ifm ≤ n and d̄
(c)
p (X,Y) = d̄

(c)
p (Y,X) otherwise. Here, d(c)(x,y) , min(c, d(x,y))

is the distance d between x and y, cut-off at c. Further, Πn is the set of all
possible permutations of Y. In this article, we let d be the Euclidean dis-
tance. In practice, the measure performs an optimal assignment of target
estimates to true target states. A performance evaluation of PHD and MHT
using the Wasserstein distance is found in [17].

3 Tracking Algorithms

In this paper, we compare three multi-target tracking algorithms. The first
one is a multiple hypothesis tracking (MHT) algorithm, with probability-
based pruning combined with N -scan pruning [2]. The second one is the
recently published Gaussian Mixture Cardinalized Probability Hypothesis
Density (GM-CPHD) filter [6–9]. The third one is a conventional single-
hypothesis tracking (SHT) algorithm.

3.1 MHT

The MHT algorithm in the evaluation is a track-oriented algorithm derived
for general radar target tracking. In the algorithm, hypothesis control is made
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purely with pruning, which utilizes a combination of low probability prun-
ing of tracks and N-scan pruning. Probabilities are computed approximately
by generating the K-best global hypotheses in local neighborhoods of each
target, using methods from [22]. In a track-oriented fashion, the hypothesis
generation is carried out every new data frame, given track incompatibility
tables. The probability calculation was designed such that, at a maximum,
the computation time is roughly a millisecond per target in arbitrary scenar-
ios, and given 20 track hypotheses per target. In practice, the time used for
probability calculation is small compared to that of the prediction, gating
and hypothesis spawning steps of the algorithm. In standard radar scenar-
ios, the side-effects of the approximations can be ignored. However, in the
scenario considered in this paper, the performance may suffer somewhat due
to the high target density, which results in many incompatibilities between
tracks, and consequently a challenging data association problem. In the per-
formance evaluations based on Monte Carlo simulation, see Figure 3 to 6,
the downgrade due to the approximation is estimated to be less than, say,
10%.

The initiation step in the algorithm was designed for high clutter den-
sity scenarios, and the probability calculation is started only for tracks with
3 detections or more. A consequence of this is a delayed presentation of
new targets in comparison to the CPHD filter, see Section 4 for a discus-
sion. Probability of target existence is also calculated for every potential
target that has entered the probability calculation, and only targets with
high probability of existence are presented.

In contrast to the CPHD filter, the MHT-algorithm lacks a model for
target death, or the event that a target becomes invisible to the sensor. In
the scenario, two targets disappear. To MHT, these targets still exist and
the tracks are removed only after a while when their quality is considered
poor. The CPHD estimates the number of visible targets, and therefore
reacts faster to changes in the number of visible targets. If this is good or
bad is probably a matter of choice. The issue is discussed further in Section
4.

A major difference between MHT and CPHD is that MHT produces track-
valued estimates, whereas the standard CPHD filter produces state-valued
estimates, where the trajectories are restored in retrospect. This might have
an effect on track continuity, which is often essential to the user, i.e., the
ability to tell how a target has moved from that it became visible until it
leaves the scenario. In the quantitative performance comparisons herein,
track continuity is not evaluated.
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3.2 CPHD

The CPHD algorithm is a philosophically different approach to multi-target
tracking, compared to, e.g., MHT. It models targets as a random finite set
(RFS). The tracking problem is to calculate the conditional density of the
target RFSXk, conditioned on the set Z1:k of measurements up to time k. To
that tracking problem, the CPHD algorithm provides an approximate solu-
tion. The algorithm recursively estimates the so-called probability hypothesis
density (phd), or intensity function, which is the first-order statistical mo-
ment of the RFS Xk [23]. The phd describes the intensity of targets in the
target state-space, and it has the property that the integral of the phd over
a region in the state-space, gives the expected number of targets within that
region. That is, if vk|k (xk) is the posterior intensity function at time k,

∫

S
vk|k (xk) dxk = E {|Xk ∩ S|} (11)

describes the expected number of targets in the region S of the single-target
state-space. In (11),

∣∣ ·
∣∣ is the cardinality of a set, and Xk is the target

posterior RFS at time k.

To be able to provide a good estimate on the cardinality ofXk, the CPHD
filter also propagates the full cardinality distribution Pr

{
nk

∣∣Z1:k

}
in time.

From the cardinality distribution, a MAP estimate of the number of targets
is given by

NMAP
k|k = argmax

nk

Pr{nk|Z1:k}. (12)

The CPHD algorithm rests on the following assumptions:

• Each target evolves and generates measurements independently of the
others.

• Clutter is a cluster RFS, defined below, and independent of the target-
generated RFS.

• Predicted and posterior target RFSs are approximated as cluster RFSs.

• The birth RFS is a cluster RFS, and it is independent of the surviving
target RFS.

A cluster RFS is an RFS with independent and identically distributed el-
ements, and where the number of elements in the set is described by an
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arbitrary cardinality distribution. CPHD thus assumes that targets are in-
dependent and identically distributed. If the cardinality distribution is Pois-
son, the cluster RFS is called a Poisson RFS. It is common to model clutter
as a Poisson RFS, and it is also the approach of this paper.

New targets in the scene are modeled by a birth process. Target disap-
pearance from the scene is modeled by a death process, where targets vanish
with a certain probability. The CPHD filter has so far only been implemented
using a Gaussian mixture approach, presented in [7, 8], where the intensity
function is approximated by a weighted sum of Gaussian components. It is
also the implementation used in this paper. In GM-CPHD, a common choice
is to represent births with a large Gaussian component in the middle of the
field of view, and with a small weight corresponding to the probability of the
appearance of a new target. In the death model of GM-CPHD, each mixture
component survives between time steps with a survival probability, PS. The
filter operates in real time on the considered ground target tracking scenario.

4 Results

In this section, we present and discuss the results obtained when applying the
SHT, MHT and CPHD algorithms on a ground target tracking scenario with
9 targets. The parameter setup for the tracking algorithms is as follows. For
MHT, a constant detection probability Pd = 0.8 is assumed throughout the
scenario. The algorithm is not sensitive to this selection. There are further
parameters, such as the intensity of new targets and the clutter density, and
these parameters have been tuned for the scenario. For CPHD, Jmax = 80
is the maximum number of mixture components after pruning and merging.
Further, the detection probability Pd = 0.85 and the survival probability
PS = 0.91. Different detection and survival probabilities have been tested,
and the selection is of some importance. For merging, U = 4 is the statistical
distance threshold, and for the pruning, mixture components with weight
less than 0.001 are removed. The birth model is represented by a Gaussian
component centered in the scenario, with a weight wbirth = 0.001, which also
is the probability of a new target emerging. The birth component has a
covariance matrix, whose 1-σ ellipse covers the field of view of the sensor, in
Cartesian coordinates. For SHT, track score parameters, such as false alarm
rate and probability of true track deletion, have been tuned for the scenario.
The SHT is, however, not very sensitive to the setup used.

The results are given as three quantities. The first one is the average
cardinality estimate of the three algorithms, which is shown in Figures 3
and 4. The second quantity is the average cardinality error compared to the
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true visible number of targets, given in Figure 5. Finally, the average OSPA
performance measure of MHT, CPHD and SHT is presented in Figure 6. For
OSPA, p = 2 and c = 300 m. The results are based on 100 Monte Carlo
simulations.

We start by discussing the cardinality estimation of the tracking algo-
rithms. In Figure 3, we see the average cardinality estimates over time. The
result from time step 40 and onward is given in Figure 4. For CPHD, the
MAP estimate in (12) is used. For SHT and MHT, the cardinality is the
number of presented target tracks. A track is presented if its probability of
existence supersedes a preset threshold. By observing Figures 3 and 4, we
can draw some conclusions. First, the MHT algorithm is slower in adapting
to an increase in cardinality. Initially, the number of targets is 0, and the
presented number of targets is not equal to 9 until after some 50 seconds,
which corresponds to approximately 15 time steps. The CPHD algorithm,
on the other hand, is fast in adapting to changes in cardinality. In the early
part of the scenario, CPHD quickly estimates the number of targets to 7.
The estimate is then slowly increasing to 9. In the end part of the scenario,
we note that the change in the cardinality estimate is almost immediate. We
also notice that MHT has a fairly fast response to the changes in number
of visible targets at time instances 250 and 300 seconds of the scenario, at
which the obscured targets are again visible.
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Figure 3: True number of targets, and average cardinality estimates of SHT,
MHT and CPHD for a ground target tracking scenario with 9 targets. The
dashed lines represent the standard deviation of the estimates. For a period
of time, 1− 2 targets are obscured by a mountain and are not detectable by
the airborne sensor.
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Figure 4: True number of targets, and average cardinality estimates of SHT,
MHT and CPHD for a ground target tracking scenario with 9 targets. The
results from time step 40 and forward is presented. The dashed, dash-dotted
and dotted lines represent the standard deviation of the estimates of the re-
spective algorithm. The number of visible targets is reduced when a moun-
tain obscures 1− 2 targets from the airborne sensor.

The second thing we observe in Figures 3 and 4 is that the MHT algorithm
provides a stable estimate of cardinality, once the cardinality estimate is equal
to the true cardinality. This has to do with the probability calculation in the
algorithm, where a track needs to have been associated with three detections,
before the probability calculation is initiated. This initiation procedure saves
computational power, and it also provides a robust algorithm, which does not
start up low-quality tracks. On the other hand, it introduces a lag of three
time steps, which is noticed in Figure 4 at times following cardinality changes.
It is also seen that the standard deviations of the MHT cardinality estimate
is lower than for CPHD, which is a result of the robust procedure.

A third observation from Figures 3 and 4 is the behavior of the MHT and
CPHD algorithms, when two of the targets become obscured by a mountain,
i.e., when the true visible number of targets decrease. The CPHD algorithm
is responsive to this cardinality decrease, while the MHT algorithm is slower
to respond. The reason for this is due to the death process of the CPHD
algorithm, which models the possibility of target disappearance. The MHT
algorithm, on the other hand, does not have such a death model. Instead,
targets are removed if their likelihood have decreased below some threshold.
The MHT thus becomes slower in reducing the cardinality, but on the other
hand keeps the tracking continuity over shorter periods of target invisibility.
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No method is uniformly better than the other, but depends on the application
and what behavior that is preferred. A positive aspect of a slower response
to a cardinality decrease, is if it is short-term, i.e., if the target is only
intermittently undetectable. A less responsive algorithm then allows for track
continuity, by not removing the target track. Another approach would be to
introduce a death model in MHT, to allow for a fast response to cardinality
reductions, and then to have a track-connection algorithm, which connects
target tracks that appear to stem from the same target. Development of such
a procedure is left for future work.

In Figure 5, we plot the cardinality error over time, where the error is in
relation to the true number of visible targets. We notice that the SHT and
MHT algorithms are slow at the startup of the scenario, but that they after
25 seconds give more accurate cardinality estimates than CPHD. Notably,
between time 100 and 145 seconds of the scenario, MHT provides a stable
and accurate estimate of the number of targets. Then, at each cardinality
change, there is a period of higher RMSE for MHT, due to the slow response.
This is a bias error of the cardinality estimate. For CPHD, after the filter
has tuned in on the correct number of targets, the filter provides cardinality
estimates that are less fluctuating, compared to the number of visible targets.

0 50 100 150 200 250 300 350
0

1

2

3

4

5

6

7

8

9

Time (s)

R
M

S
E

 o
f c

ar
di

na
lit

y

 

 

CPHD vs true visible
MHT vs true visible
SHT vs true visible

Figure 5: RMSE of cardinality estimation error of CPHD, MHT and SHT
for a ground target tracking scenario with 7− 9 visible targets.

The overall performance of the filters, including both the cardinality esti-
mation and the state estimation, is evaluated by the OSPA measure. A low
value indicates good performance. In Figure 6, the average OSPA distance
is plotted over time. Some conclusions can be drawn. First, we observe
that the measure captures the cardinality estimation performance, since the
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OSPA measure increases when the cardinality estimate becomes less accu-
rate as compared to the true number. From the point of view of the OSPA
measure, it is worse to produce an incorrect cardinality estimate when the
measurement accuracy is high, compared to when it is low. This is noticed
by studying the OSPA measure at times 50 and 250. At time 50, the MHT
algorithm has a cardinality RMSE, which is approximately one unit less than
that of CPHD. In contrast, at time 250, the CPHD RMSE of cardinality is
approximately one unit less than is the MHT RMSE. The OSPA differences
between the filters are, however, not of the same order at these two time
instants. The only difference in the scenario between the early and the late
part is that the measurement accuracy is higher in the end, due to the sensor
being closer to the targets.
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Figure 6: Performance of CPHD, MHT and SHT for a ground target tracking
scenario, with 7−9 visible targets. The measure of performance is the OSPA
measure, with c = 300 m and p = 2.

Another property that can be noticed in Figure 6, is that the MHT perfor-
mance is more stable than the CPHD output, which is concluded by studying
the variation of the measure over time. This is due to the track initiation and
deletion procedures of MHT. When the cardinality estimates of the CPHD
and MHT filters are equal, their OSPA measures are also approximately
equal, so the output states are of the same quality for the respective fil-
ters. However, if the merging threshold of CPHD is reduced, e.g., to U = 1,
the OSPA for CPHD is slightly higher than for MHT, at times when the
cardinality estimates are equal. CPHD thus benefits from merging mixture
components which are close together. In Figure 6, we also see that the width
of the peaks in the OSPA for MHT are wider when the cardinality is de-
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creased, than when it is increased. MHT is thus quite responsive to new
targets appearing (or re-appearing), but slower at responding to vanishing
targets. Introducing a death model for targets would increase the responsive-
ness of the algorithm. Also, it is not always the case that a fast response to
vanishing targets is requested by the user; instead, having slower response,
with the gain of increased track continuity could be more attractive.

In the parameter setup of CPHD, the parameters have been selected to
yield a fast response to both increasing and decreasing number of targets.
The parameters could instead have been adopted to yield a slower response
to a decreasing number of targets, e.g., by lowering the survival probability
PS, which would give a behavior more similar to MHT. Which behavior that
is best is a matter of application.

5 Conclusions

In this paper, we have evaluated the multiple hypothesis tracking (MHT) and
the cardinalized probability hypothesis density (CPHD) filters in a ground
target tracking scenario with an airborne radar sensor. As reference, we have
also evaluated a conventional single-hypothesis tracking (SHT) filter for the
same scenario. To assess the performance, two measures have been used: the
root-mean square error of the cardinality estimates, and the OSPA measure
introduced in [19, 20]. The number of targets in the scenario is 9. The
targets are close together, and their trajectories cross at numerous times.
For a period of time, up to two of the targets are not visible to the radar
sensor, due to obscuration by a mountain. It is hence a challenging scenario.

In the evaluation, we conclude that the MHT and CPHD filters perform
approximately equally well overall, but that the filters have two properties
which make them different. The first one regards how the number of targets
are estimated. In CPHD, a maximum a posteriori estimate is derived from
the cardinality distribution. In MHT, on the other hand, the estimate is
equal to the number of presented targets, where a target is presented if its
probability of existence supersedes a threshold. The second property relates
to how the MHT and CPHD filters respond to increasing and decreasing
number of targets. The CPHD filter is more responsive to such changes
than MHT. For increasing number of targets, it is due to the track initiation
procedure of MHT, which requires three detections or more for a track in
order to start the probability calculation. For decreasing number of targets,
the difference lies in how the filters model vanishing targets. In CPHD, there
is a death model that states that a target vanishes with a certain probability,
which makes the filter quick at adapting to reductions in the number of
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visible targets. In MHT, targets are removed of their likelihood falls below
a threshold. This makes the algorithm less responsive to decreases in the
number of visible targets. On the other hand, it yields a robust method,
which produces more stable outputs and which can keep track continuity
over short periods of target invisibility. The MHT produces estimates of
the number of targets which overall have lower standard deviation than the
CPHD estimates, which is a result of the slow response. Introducing a death
model for MHT could be a way to make the algorithm more responsive to
vanishing targets, if desired.

A third, interesting measure in the comparison would have been that of
computational burden. Currently, such a comparison is not possible, since
the algorithms are implemented in different frameworks, with different pos-
sibilities of optimization in the compilation. However, they both enable real-
time operation.
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Abstract

In the design of target tracking algorithms, the aspect of sensor
resolution is rarely considered. Instead, it is usually assumed that
all targets are always resolved, and that the only uncertainties in the
data association are which targets that are detected, and which mea-
surement each detected target gave rise to. However, in situations
where the targets are closely spaced in relation to the sensor resolu-
tion, this assumption is not valid, and may lead to degraded track-
ing performance due to an incorrect description of the data. In this
paper, we present a framework for handling sensor resolution effects
for an arbitrary, but known, number of targets. We propose a com-
plete multitarget sensor resolution model that can be incorporated
into traditional Bayesian tracking filters. Further, the exact form of
the posterior probability density function is derived, and two alterna-
tive ways of approximating that exact posterior density with a Joint
Probabilistic Data Association (JPDA) filter are proposed. Evalua-
tions of the resulting filters on simulated radar data show significantly
increased tracking performance compared to the JPDA filter without
a resolution model.
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1 Introduction

Traditionally, the aspect of sensor resolution has not been considered in the
design of target tracking algorithms [1]. Instead, it has been assumed that
the targets are always resolved, and that the data association problem only
regards the assignment of measurements to single targets. In many situa-
tions, that assumption is reasonable, but there are important cases when the
resolution limitations of the sensor cannot be ignored [2]. Such cases arise
when targets are temporarily closely spaced in relation to the resolution of
the sensor, e.g., when tracking aircraft in formation, or in convoy tracking for
ground surveillance. For such applications, ignoring the limited resolution of
the sensors may lead to an incorrect interpretation of the data, which results
in degraded performance, in particular due to premature deletion of tracks.

To account for resolution in a tracking algorithm, the resolution phenom-
ena must be modeled. One way of modeling them is to express the capability
of the sensor to resolve individual targets in a group by a resolution proba-
bility, and to have a model for the merged measurement that arises when the
targets are unresolved. Two approaches have been proposed in the literature
which follow this line of modeling. In [3], a grid-based resolution model for
two targets is proposed, where the resolution probability is zero if the targets
are within the same resolution cell, and one otherwise. The integration into
the Joint Probabilistic Data Association (JPDA) filter [4] is also described,
and in [5] the model is further extended to a Multiple Hypothesis Tracking
(MHT) framework [1, 6–8]. Even though a fixed grid often is a good ap-
proximation of the signal processing procedure, the capability of a sensor to
resolve targets generally depends on their positions relative to the sensor.
Hence, in [9], a simple, but qualitatively correct, resolution model that take
relative positions into account is proposed. Further, its incorporation into
an MHT filter is also presented. However, just as the model in [3], the ap-
proach is restricted to only consider two targets. An alternative approach
to the tracking of closely spaced objects is to treat them as a group. For an
overview on group target tracking, see [10].

In this article, we consider the modeling of limited sensor resolution for
an arbitrary, but known, number of targets. It is hence the first approach
to consider resolution problems for more than two closely-spaced targets.
The main contribution of the article is a framework for handling resolution
limitations, which can be easily incorporated into a Bayesian tracking setting.
The framework relies on a graph description of a resolution event, and on
modeling the resolution probability as independent between target pairs.
To complete the framework and to attain a multitarget resolution model, a
model for the resolution probability for two targets and a group measurement
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model for an arbitrary number of targets are needed; for example, the models
in [3] or [9]. Preliminary results have previously been published in [11, 12].

The outline of the article as follows. In Section II, the problem formula-
tion is stated. The proposal of a framework for sensor resolution modeling is
given in Section III, together with the graph description of a resolution event.
To complete the framework, specific measurement and resolution models for
radar sensors are suggested in Section IV. In Section V, the exact calculation
of the posterior pdf under both resolution and data association conflicts is
described, while a Gaussian-mixture approximation is presented in Section
VI. In Section VII, two alternative approaches of incorporating the resolu-
tion model into the JPDA filter are presented, and in Section VIII those
approaches are evaluated on simulated radar data. In the evaluation, the
tracking performance is compared to that of the JPDA filter without a res-
olution model. The results show improved performance for all considered
setups. Finally, in Section IX, conclusions are drawn.

2 Problem formulation

The general problem considered in this article is tracking of a known number
of targets under resolution limitations and unknown data associations. To
this problem there are several subproblems. First, to model the probability
that a group of targets is unresolved; second, to model the corresponding
merged group measurement; and third, to find how these models can be
incorporated into a general tracking framework.

The kinematic states of the N targets are represented by a joint state
vector

xk =
[(
x
(1)
k

)T (
x
(2)
k

)T
. . .

(
x
(N)
k

)T ]T
, (1)

where x
(i)
k is the state of target i. At each time instant, tk, a sensor produces

measurements Zk which contain information regarding the kinematic states
xk. The collection of measurements from discrete time index 1 to index k is
represented by

Zk =
{
Z1,Z2, . . . ,Zk

}
. (2)

The goal of a tracking filter is to recursively calculate the posterior density
p
(
xk

∣∣Zk
)
, from which optimal state estimates can be derived. To be able to

calculate the density, models for the sensor measurements and for the motion
of the targets are necessary. Additionally, when limited sensor resolution is
considered, a model that describes that phenomenon is also needed. In the
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following, the considered process and measurement models are presented,
while radar resolution models are proposed and discussed in Sections 3 and
4.

2.1 Process model

The process model, often called the motion model, describes the dynamics
of the targets. Given the state xk−1 at time index k− 1, the model describes
the evolution of the state up to time index k. For the general case,

xk = fk−1(xk−1,vk−1), (3)

where fk−1 is the system function describing the transition from time k − 1
to time k, and vk−1 is a process noise that describes the uncertainties in
the prediction. For Gauss-Markov systems, which we mainly consider in this
article, it holds that

xk = Fk−1xk−1 + vk, (4)

where Fk−1 is the multi-target system matrix at time k−1, and vk is Gaussian
distributed with zero mean and covariance matrix Qk.

2.2 Sensor model

The sensor model describes the relation between the received measurements
and the target states. The measurements received at a certain time index
include both target-generated detections and spurious measurements that
are due to false alarms and clutter (henceforth subsumed as clutter).

The joint measurement vector at time k is given by

Zk =
[(
z
(1)
k

)T (
z
(2)
k

)T
. . .

(
z
(Mk)
k

)T]T
. (5)

The heritage of the data is unknown, which means that it is not known
which Mc measurements are clutter and which Mt measurements are target-
generated. Additionally, it is not known which target or targets gave rise to
each of the true detections.

The uncertainty in the discrimination between clutter and target-generated
measurements is mathematically described as

Zk =
(
Πp ⊗ INz×Nz

)
[
Zc

k

Zt
k

]
, (6)
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where Zc
k and Zt

k are ordered vectors of clutter- and target-originated mea-
surements, respectively, Nz is the dimension of the single-measurement space,
and ⊗ denotes the Kronecker product. Further, Πp is an Mk-dimensional
random permutation matrix which models the uncertainty with respect to
which measurements are generated by targets.

The uncertainty in the association between target-generated measure-
ments and true targets, and the model for the corresponding target-generated
measurements, are here described as

Zt
k =

(
Ck ⊗ INz×Nz

)
hk(xk) +wk, (7)

where Ck is an unknown Mt × N -dimensional matrix which determines the
contribution of each target on each target-generated measurement. When
sensor resolution problems are not present, a measurement can only origi-
nate from a single target. In that case, Ck has at most one single non-zero
element per row (a one), which determines the originating target of that mea-
surement. However, for situations with resolution limitations, several targets
can be perceived as one by the sensor, and thus give rise to a joint/merged
measurement. Then, theCk matrix will have several non-zero elements in the
corresponding row, where the size of each element describes the contribution
from each target to that measurement. The multi-target observation func-
tion hk transforms the joint state vector xk to the measurement space, and
the noise process wk is assumed Gaussian with zero mean and block-diagonal
covariance matrix Rk. For linear measurement models, the target-generated
measurements are given by

Zt
k =

(
Ck ⊗ INz×Nz

)
H̃xk +wk, (8)

where

H̃ = diag
{
H, · · · ,H︸ ︷︷ ︸

N times

}
, (9)

and where H is the single-target observation matrix. The measurement noise
wk is assumed independent of the process noise vk.

For the measurement model to be complete, we also need to model the
properties of the clutter measurements. We here assume a spatially homoge-
neous Possion process. A single clutter measurement, zck, is hence distributed
as

zck ∼ Uniform
(
FoV

)
, (10)
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where FoV is the field-of-view of the sensor, while the total number of clutter
detections, Nc, is distributed according to

Nc ∼ Poisson
(
λ ·
∣∣FoV

∣∣), (11)

in which λ is the clutter intensity and
∣∣FoV

∣∣ the volume of the FoV. The
algorithms described in this article, however, are not restricted to Poisson-
distributed clutter.

3 Sensor resolution modeling framework for

arbitrary target numbers

To be able to track targets under resolution limitations with high accuracy,
we wish to create a model that

1. represents the probability that a group of targets is unresolved in a
qualitatively correct way,

2. provides a reasonable description of the properties of a measurement
from an unresolved group, and

3. is mathematically tractable and possible to incorporate in a Bayesian
tracking framework.

In this section, we propose a novel framework for sensor resolution mod-
eling for arbitrary, but known, number of targets, which fulfills the three
requirements above. To complete the framework, models for the resolution
probability of two targets and a measurement model for a group target are
required. In Section 4, two such models for radar sensors are presented.

We start by defining a group target.

Definition 1 When two or more targets lead to a single (joint/merged) de-
tection, they are called a group target.

The probability that a group target appears is large when the targets are
closely spaced compared to the resolution capability of the sensor. Note
that the definition is on a per-scan basis, so that groups can be formed and
dissolved from scan to scan.

At a certain time instant, there are many different possibilities regarding
which targets form an unresolved group and which are resolved. This is
similar to the classic data association problem, where there are many different
explanations regarding measurement-to-target associations. We thus make
the following definition of a resolution event:

176



Definition 2 A resolution event describes which targets form unresolved
groups and which are resolved.

So at a given time instant, many resolution events are possible, and we need
a resolution model to provide information regarding the probabilities of those
events.

Example 1 Say that there are five targets present in the scene. An example
of a resolution event, R, is then: R =

{
{1, 2}, {3}, {4, 5}

}
, meaning that

targets 1 and 2 form an unresolved group, target 3 is resolved and targets 4
and 5 form an unresolved group.

3.1 Resolution probabilities

To model a resolution event, we propose the use of a graph representation,
where each node in the graph represents a target, and where an edge between
nodes represent the event that those two targets are mutually unresolved. A
group is then unresolved if there exists a walk through the corresponding
target nodes. With this approach, a resolution event (cf. Definition 2) may
correspond to several resolution graphs. For an example of a resolution
graph, see Fig. 1. In this example, only one graph can be generated from the
resolution event.

The edges of a resolution graph describes the pairwise interactions be-
tween the targets. For the calculation of the probability of a resolution
graph, we make the following assumption:

Assumption 1 The edge probabilities of a resolution graph are independent.
That is, knowing that two targets are mutually unresolved provides no infor-
mation regarding the probability that another pair of targets is unresolved.

1

2

3

Figure 1: Illustration of a graph, G1, which describes the resolution event
that target one is resolved, while targets two and three form an unresolved
group.
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For the calculation of the resolution graph probability we introduce the
probability, Pu, according to the following definition.

Definition 3 The probability that the pair of targets with states x
(i)
k and

x
(j)
k are mutually unresolved is given by Pu

(
x
(i)
k ,x

(j)
k

)
. Correspondingly, the

probability that they are resolved is given by 1− Pu

(
x
(i)
k ,x

(j)
k

)
.

The probability of the graph G1, given by Fig. 1, is thus given by

Pr
{
G1
∣∣xk

}
= Pu

(
x
(2)
k ,x

(3)
k

)(
1− Pu

(
x
(1)
k ,x

(2)
k

))

×
(
1− Pu

(
x
(1)
k ,x

(3)
k

))
. (12)

Example 2 Consider the resolution event R =
{
{1, 2, 3}

}
that the three

targets present are all unresolved. There are exactly four graphs, G1 to G4,
leading to this event, as illustrated in Fig. 2. The probability of the resolution
event is then

Pr
{
R
∣∣xk

}
= Pr

{
G1
∣∣xk

}
+ Pr

{
G2
∣∣xk

}

+ Pr
{
G3
∣∣xk

}
+ Pr

{
G4
∣∣xk

}
,

where the respective graph probabilities are calculated similarly to the graph
probability in (12).

1

2

3

1

1 1

2

2 2

3

3 3

Figure 2: Illustration of the four graphs that lead to the resolution event R,
which describes the event that a group of three targets is unresolved.

From a resolution event, all possible resolution graphs that could be gen-
erated from the event are not always feasible, since some of them represent
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cases which are not physically reasonable. An example of such a case is
shown in Fig. 3. To circumvent generation of such events, a graph node can
only be connected to its nearest neighbors in each measurement dimension,
assuming that the resolution is independent between dimensions.

Definition 4 A resolution graph where connections (edges) only exist be-
tween the nearest neighboring nodes in each measurement dimension is called
feasible. Further, a graph which does not fulfill this is termed unfeasible.

1 2 3 4

Figure 3: Example of an unfeasible graph. In the graph, the targets 1 and 4
are connected even though they are not nearest neighbors in either the z1 or
the z2 dimension, which makes the graph unfeasible.

In Fig. 2 all graphs are feasible since connections only exist to the nearest
neighbors in the measurement directions (being the horizontal and vertical
axes). In Fig. 3, however, the graph is unfeasible since there exists a link
between nodes 1 and 4, which are not the nearest neighbors in the z1 dimen-
sion. That link thus results in the contradictory event that targets 1 and 4
are unresolved, while the more closely spaced targets 2 and 3 (in the same
dimension) are resolved.

To find an expression for a general graph, G, we let Se be the set of
pairwise targets that are connected with an edge in the graph, and S0 be the
set of pairwise targets that are not connected. Then,

Pr
{
G
∣∣xk

}
=
∏

Se

Pu(Se)
∏

S0

(
1− Pu(S0)

)
. (13)

Note that S0 and Se are given by G, and Pu is a function of the multi-target
state xk. Further, we define the product over an empty set as one.

The procedure of obtaining all feasible graphs and their respective prob-
abilities at a given time index is as follows:

1. Find all resolution events, R.

2. For each resolution event, generate all feasible resolution graphs, G.
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3. Calculate the probability of each feasible graph using the resolution
probabilities, Pu (see (12) for an example).

3.2 Graph likelihood

Apart from the probability of a graph, we would also like to describe the
measurement model for a given graph G, expressed as p

(
Zk

∣∣G,d,xk

)
. We call

this model the graph likelihood. The data association vector d is included in
the model since the distribution of the measurements depend on their origin.
The vector is defined as

d ,
[
d1 d2 . . . dMk

]T
, (14)

where dj > 0 if measurement j is assigned to the single target or group target
dj, and dj = 0 if the measurement is due to clutter.

Conditioned on the data association, it is known which of the measure-
ments in Zk are target-generated and which originate from clutter. That is,
the vectors Zc

k (containing Mc observations) and Zt
k (containing Mt obser-

vations) are known, and their distributions are given by p
(
Zc

k

∣∣G,d,xk

)
and

p
(
Zt

k

∣∣G,d,xk

)
. From the assumption of spatially uniform clutter, the first

density is

p
(
Zc

k

∣∣G,d,xk

)
=

1∣∣FoV
∣∣Mc

. (15)

Further, given the data association vector d and the graph G, the target-
generated measurements are distributed as

p
(
Zt

k

∣∣G,d,xk

)
=

Mt∏

i=1

p
(
z
t,(i)
k

∣∣d,G,xk

)
, (16)

where p
(
z
t,(i)
k

∣∣d,G,xk

)
is the group measurement model (see Section 4.2 for

one alternative). In (16), it is assumed that the measurements are indepen-
dent, conditioned on their associations. Finally, the graph likelihood is given
by

p
(
Zk

∣∣G,d,xk

)
=

1∣∣FoV
∣∣Mc

Mt∏

i=1

p
(
z
t,(i)
k

∣∣d,G,xk

)
, (17)

where Mc and Mt are known, given d.
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4 Models for pair-wise resolution probabili-

ties and group measurements

In Section 3, a novel model structure was presented for handling sensor res-
olution modeling for an arbitrary, but known, number of targets. The model
structure relies on a graph representation of a resolution event, where each
resolution graph describes the pairwise interactions between the targets, un-
der the resolution event.

The fundamental unit of the graph probabilities is the resolution proba-
bility Pu

(
x
(i)
k ,x

(j)
k

)
, which states the probability that two targets with states

x
(i)
k and x

(j)
k are unresolved. To complete the resolution model we hence need

a model for the probability Pu. Here, we consider radar sensors, and use
the two-target resolution model by Koch and van Keuk [9], presented in
Section 4.1. It should be noted that the proposed resolution framework of
this article is not restricted to radar sensors, and that the described radar
resolution model does not rely on the use of the two-target model in [9] as a
basis for the resolution probability, but that it is used due to its appealing
properties.

The resolution modeling framework also includes the graph likelihood
p
(
Zk

∣∣G,d,xk

)
. The general expression for the likelihood is given in (17). To

complete that likelihood, a group measurement model is needed, which pro-
vides an explicit expression of the target measurement density p

(
z
t,(i)
k

∣∣G,d,xk

)
,

conditioned on a graph, an association vector and a joint target state vec-
tor. In this article, we use a simple group measurement model which is
presented in Section 4.2. However, the proposed resolution model does not
hinge on that group measurement model, meaning that other group mea-
surement models are possible to use instead.

4.1 Two-target resolution model

For a certain pair of targets x
(i)
k , x

(j)
k in a set S in (13), the probability that

they are unresolved is, according to [9],

Pu(x
(i)
k ,x

(j)
k ) = e−(∆ri,j)T (Ru,Nres )

−1∆ri,j , (18)

where Nres is the dimension of the measurement space (2 for range and az-
imuth), ∆ri,j is a vector with the distances between the predicted positions
of targets i and j in the measurement space, and Ru,Nres is given by

Ru,Nres =
1

(
2 ln(2)

)Nres/2
diag

{
α2
1, . . . , α

2
Nres

}
. (19)
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The parameters α1 to αNres in (19) describe the resolution capability of the
sensor in the respective measurement dimensions. Note that the diagonal
structure of Ru,Nres implies that the resolution in one dimension is indepen-
dent of the resolutions in the other dimensions.

The probability Pu(x
(i)
k ,x

(j)
k ) can also be written as a scaled multivariate

Gaussian

Pu(x
(i)
k ,x

(j)
k ) =

∣∣2πRu,Nres

∣∣1/2N
(
0;∆ri,j,Ru,Nres

)
. (20)

Depending on the measurement model, the relation between ∆ri,j and the
states x

(i)
k and x

(j)
k is either linear or non-linear.

4.2 Group measurement model

For an explicit expression of the graph likelihood p
(
Zk

∣∣G,d,xk

)
, we need a

group measurement model which describes the properties of a merged mea-
surement from an unresolved group. The assumed model states that a group
measurement can be described as a measurement of the center of gravity in
the measurement dimension. That is, for an unresolved group of ng targets
(possibly one), whose state vectors are gathered in the joint vector xg

k, their

group measurement z
t,(j)
k is described by

z
t,(j)
k = h

ng

k

(
xg
k

)
+ u

g,ng

k , (21)

where h
ng

k

(
xg
k

)
provides the arithmetic mean of the group targets in the

measurement dimension. For linear measurement models,

z
t,(j)
k = Hngx

g
k + u

g,ng

k , (22)

where

Hng =
1

ng
[H, · · · ,H]︸ ︷︷ ︸

ng times

. (23)

The vector u
g,ng

k ∼ N
(
0,R

ng

k

)
models the measurement spread from an ng-

target group, which depends on the number of targets in the group and
the measurement noise. Typically, the spread increases with the number of
targets ng, due to the radar target glint phenomenon.

Other group measurement models have been presented in the literature.
A model for two targets, using amplitude information, is given in [3], and is
simplified in [13], while a measurement model for automotive applications is
proposed in [14].
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5 Calculation of the posterior probability den-

sity function

In this section we describe the exact calculation of the posterior probability
density function (pdf) p

(
xk

∣∣Zk
)
under unknown resolution and data associa-

tion events. We start by describing the general calculation of the density, and
then describe how the different parts of the general expression are obtained.

To express the posterior density, we marginalize over the feasible reso-
lution graphs, G, and the set of data association hypotheses D(G) for each
graph. By also using Bayes’ rule and the Markov property, we obtain

p
(
xk

∣∣Zk
)
=
∑

G

∑

d∈D(G)
p
(
xk,G,d

∣∣Zk
)

(24)

=
∑

G

∑

d∈D(G)

p
(
Zk

∣∣G,d,xk

)
p
(
xk,G,d

∣∣Zk−1
)

p
(
Zk

∣∣Zk−1
) (25)

=
∑

G
Pr
{
G
∣∣xk

}

×
∑

d∈D(G)
Pr
{
d
∣∣G,xk

}p
(
Zk

∣∣G,d,xk

)
p
(
xk

∣∣Zk−1
)

p
(
Zk

∣∣Zk−1
) (26)

where p
(
xk

∣∣Zk−1
)
is the predicted density of the target states, p

(
Zk

∣∣G,d,xk

)

is the graph likelihood (see (17)), Pr
{
d
∣∣G,xk

}
is the probability of a data

association hypothesis d, and Pr
{
G
∣∣xk

}
is the graph probability, given by

the resolution model (see (13) for a general expression).

As seen in (26), the calculation of the posterior density includes a mea-
surement update, given by the second sum, and a resolution model update,
given by the total expression. In the following sections, these calculations are
described in more detail. Note that the discussion here does not make any
assumptions on the models. For calculation under Gaussian assumptions,
see Section 6.
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5.1 Calculation of the predicted density

Given the prior density p
(
xk−1

∣∣Zk−1
)
, we calculate the predicted density

p
(
xk

∣∣Zk−1
)
by means of marginalization over the previous state xk−1,

p
(
xk

∣∣Zk−1
)
=

∫
p
(
xk,xk−1

∣∣Zk−1
)
dxk−1 (27)

=

∫
p
(
xk

∣∣xk−1,Z
k−1
)
p
(
xk−1

∣∣Zk−1
)
dxk−1 (28)

=

∫
p
(
xk

∣∣xk−1

)
p
(
xk−1

∣∣Zk−1
)
dxk−1, (29)

where we in the final step assume that the prediction process has the Markov
property. In the prediction step, the prior density is propagated through the
process model p

(
xk

∣∣xk−1

)
.

5.2 Measurement update

The measurement update includes the calculation of the data association
probabilities under a resolution graph and the received data set, and the
update of the predicted density function with the measurement likelihood.
We start with the data association hypotheses.

5.2.1 Data association probabilities

We here state an expression for the conditional data association hypothesis
probability Pr

{
d
∣∣G,xk

}
in (26). Using the definition of the data association

vector d in (14),

Pr
{
d
∣∣G,xk

}
= Pc(Mc)

(
Mk −Mt

)
!

Mk!

×
∏

{j:d(j)=0}

(
1− P j

D

) ∏

{j:d(j)>0}
P j
D, (30)

where {j : d(j) = 0} is the set of clutter detections, {j : d(j) > 0} is the set
of target-generated measurements, and Pc(Mc) is the probability of receiving
Mc clutter measurements, which is given by the Poisson mass function with
parameter λ · |FoV|. Further, the detection probability P j

D for measurement
index j is the group detection probability, which can be modeled to attain
different values for different number of targets in the group. Thus, we here
assume that the detection probability only depends on the number of targets
in the group, and not on their states.
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5.2.2 Density update

The second part of the measurement update is to refine the predicted density
p
(
xk

∣∣Zk−1
)
with information from the current measurements, Zk, under the

graph, G and data association d ∈ D(G). That is, we seek an expression for
the product p

(
Zk

∣∣G,d,xk

)
p
(
xk

∣∣Zk−1
)
, ignoring the scaling p

(
Zk

∣∣Zk−1
)
.

A general measurement model, under the assumption of uniformly dis-
tributed clutter in the measurement space, is given by (17). Using that
model, the density product is

p
(
Zk

∣∣G,d,xk

)
p
(
xk

∣∣Zk−1
)

=
1∣∣FoV
∣∣Mc

Mt∏

i=1

p
(
z
t,(i)
k

∣∣G,d,xk

)
p
(
xk

∣∣Zk−1
)
. (31)

The calculation of the measurement-updated pdf depends on the mea-
surement model p

(
Zk

∣∣G,d,xk

)
. If it is linear and Gaussian, the first two

moments of the updated density is calculated by the Kalman filter [15],
for each target group. For non-linear models, the Extended Kalman filter
(EKF) [16] or the Unscented Kalman filter (UKF) [17] can be used. More
details about explicit expressions under Gaussian assumptions are found in
Section 6. The calculation also depends on the predicted density p

(
xk

∣∣Zk−1
)
.

5.3 Update with the resolution model

As seen in (26), the update with the measurement model gives an increase
in the number of density components, for each graph. In the update with
the resolution model, each such component is multiplied with the graph
probability. For a certain graph G and data association hypothesis d we
thus make the update

Pr
{
G
∣∣xk

} 1∣∣FoV
∣∣Mc

Mt∏

i=1

p
(
z
t,(i)
k

∣∣G,d,xk

)
p
(
xk

∣∣Zk−1
)

=
∏

Se

Pu(Se)
∏

S0

(
1− Pu(S0)

)

× 1∣∣FoV
∣∣Mc

Mt∏

i=1

p
(
z
t,(i)
k

∣∣G,d,xk

)
p
(
xk

∣∣Zk−1
)
. (32)

Due to the 1 − Pu factors, the resolution update further increases the
number of density mixture components. To get a clearer insight into the
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update calculations needed, we study the update in more detail, focusing on

∏

Se

Pu(Se)
∏

S0

(
1− Pu(S0)

)
=
∏

Se

Pu(Se)
(
1− Pu(S0(1)

)

×
(
1− Pu(S0(2)

)
× · · · ×

(
1− Pu(S0(|S0|)

)
. (33)

In (33), |S0| is the cardinality of the set S0, i.e., the number of resolved pairs
in the graph G. The (1− Pu) factors can be split up, leading to

∏

Se

Pu(Se)
∏

S0

(
1− Pu(S0)

)
=
∏

Se

Pu(Se)

×
(
1−

|S0|∑

j=1

Pu(S0(j)) +

|S0|∑

j=1

|S0|∑

l=1
l 6=j

Pu(S0(j))Pu(S0(l))

− . . .+

|S0|∑

j=1

|S0|∑

l=1
l 6=j

· · ·
|S0|∏

w=1

Pu(S0(w))

)
. (34)

As seen in (18), the resolution probabilities Pu(S0(j)) depend on the state
vector xk. Hence, the multiplication of the measurement-updated density
with a resolution probability does not only scale the density, but also affects
its shape. The multiplication can thus be seen as a density update. Hence, for
each term in (34), we can perform an update of the measurement-updated
density. Each update can either be performed sequentially or in a single
step, as described further in Section 6. The set of components generated by
a resolution update, for a graph G and data associaiton hypothesis d, are
gathered in the set U(G).

6 Gaussian mixture approximation

In this section, we seek to find a Gaussian-mixture expression of the posterior
density p

(
xk

∣∣Zk
)
. For the sake of convenience, we assume that the prior

density p
(
xk−1

∣∣Zk−1
)
is a single Gaussian, i.e.,

p
(
xk−1

∣∣Zk−1
)
= N

(
xk−1; x̂k−1|k−1,Pk−1|k−1

)
. (35)

The calculation will concern linear process and measurement models (cf. (3),
(4), (21), and (22)) with Gaussian noise. The generalization to general mod-
els can be performed by linearization, similar to the EKF, or by approxi-
mations with the Unscented Transform [17]. For the probability that two
targets are unresolved, Pu, we use the model in (20).
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6.1 Prediction step

The prediction is given by (cf. (29))

p
(
xk

∣∣Zk−1
)
=

∫
p
(
xk

∣∣xk−1

)
p
(
xk−1

∣∣Zk−1
)
dxk−1 (36)

= N
(
xk; x̂k|k−1,Pk|k−1

)
, (37)

where

x̂k|k−1 = Fk−1x̂k−1|k−1 (38)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk (39)

describe the predicted mean value and covariance matrix, respectively.

6.2 Measurement update

In the measurement update step, the predicted density, p
(
xk

∣∣Zk−1
)
, is up-

dated with information from the current measurement set, Zk. The update
relies on the single-target and group-target measurement models. A gen-
eral expression for the measurement update is given by (31). By assuming
that target groups are independent, the predicted density can be split into a
product,

p
(
xk

∣∣Zk−1
)
=

Ng∏

j=1

p
(
x
gj
k

∣∣Zk−1
)
, (40)

where gj is the group index and Ng is the number of groups. Note that the
group size, here, can be equal to one.

The measurement update step thus involves the calculation of

p
(
Zk

∣∣G,d,xk

)
p
(
xk

∣∣Zk−1
)

=
1∣∣FoV
∣∣Mc

Mt∏

i=1

p
(
z
t,(i)
k

∣∣G,d,xk

) Ng∏

j=1

p
(
x
gj
k

∣∣Zk−1
)
. (41)

Due to the independence assumption, the update can be performed group by
group. We will describe the expressions for one such update,

p
(
z
t,(i)
k

∣∣G,d,xk

)
p
(
x
gj
k

∣∣Zk−1
)
,
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of group gj with its associated measurement z
t,(i)
k . Using the group measure-

ment model in (22), the update is given by

p
(
z
t,(i)
k

∣∣G,d,xk

)
p
(
x
gj
k

∣∣Zk−1
)

= N
(
z
t,(i)
k ;Hngj

x
gj
k ,R

ngj

k

)
N
(
x
gj
k ; x̂

gj
k|k−1,P

gj
k|k−1

)
. (42)

By using the following property of a Gaussian product

N
(
x; x̂,P

)
N
(
z;Hx,R

)
= N

(
x;µ,Σ

)
N
(
z; ẑ,S

)
, (43)

where

ẑ = Hx̂ (44)

S = HPHT +R (45)

µ = x̂ +K
(
z−Hx̂

)
(46)

Σ =
(
I−KH

)
P (47)

K = PHTS−1, (48)

we obtain

N
(
z
t,(i)
k ;Hngj

x
gj
k ,R

ngj

k

)
N
(
x
gj
k ; x̂

gj
k|k−1,P

gj
k|k−1

)

= N
(
z
t,(i)
k ; ẑ

gj
k ,S

gj
)
N
(
x
gj
k ; x̂

gj
k|k,P

gj
k|k
)
, (49)

where the mean values and covariance matrices are given by identification
from (43)–(48).

The update can also be performed in a single step. For that we utilize
the multi-target measurement model in (8). Thereby,

p
(
Zk

∣∣G,d,xk

)
p
(
xk

∣∣Zk−1
)

= N
(
Zk; H̆xk,R⊗ IMt×Mt

)
N
(
xk; x̂k|k−1,Pk|k−1

)
(50)

= N
(
Zk; H̆x̂k|k−1,S

G,d)N
(
xk; x̂k|k,Pk|k

)
, (51)

where

H̆ = CG,d
k ⊗ INz×NzH̃ (52)

describes the relation between target states and the joint measurement vec-
tor, in which CG,d

k represents the current resolution and data association
events. By identification from (43)–(48),

ẐG,d
k = H̆x̂k|k−1 (53)

SG,d = H̆Pk|k−1H̆
T (54)

KG,d = Pk|k−1H̆
T (SG,d)−1 (55)

x̂k|k = x̂k|k−1 +KG,d(Zk − H̆x̂k|k−1

)
. (56)
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6.3 Sequential update with the resolution model

As seen in (32) and (34), the resolution model update involves the calcula-
tion of the product between a measurement-updated density and a sum of
products. The update can be performed summand by summand, producing a
density mixture. For each summand, the updated density is multiplied with
a product of Pu factors. This calculation can either be carried out sequen-
tially, factor by factor, or in a single step. Here we describe the sequential
update.

Let us start with a single Pu factor, Pu

(
x
(i)
k ,x

(j)
k

)
. From (51), the updated

density is described by a product of two Gaussian densities, where only one
depends on xk. The resolution model update is thus

Pu

(
x
(i)
k ,x

(j)
k

)
N
(
xk; x̂k|k,Pk|k

)

=
∣∣2πRu,Nres

∣∣1/2N
(
0;∆ri,j,Ru,Nres

)
N
(
xk; x̂k|k,Pk|k

)
, (57)

where

∆ri,j = H
(
x
(i)
k − x

(j)
k

)
. (58)

To describe the product of Gaussians, we would like to express the resolution
model Gaussian as a function of the joint target state vector Xk. To do so,
we use the Kronecker delta

δk,i ,
{
1 if k = i

0 otherwise,
(59)

the 1×N vector

π(i,j) ,
[
δ1,i − δ1,j, . . . , δN,i − δN,j

]
(60)

and the matrix

Π(i,j) = π(i,j) ⊗ INz . (61)

Then,

∆ri,j = Π(i,j)H̃xk, (62)

where H̃ is defined in (9).
The update with one Pu factor is hence

Pu

(
x
(i)
k ,x

(j)
k

)
N
(
xk; x̂k|k,Pk|k

)
=
∣∣2πRu,Nres

∣∣1/2 (63)

×N
(
0;Π(i,j)H̃xk,Ru,Nres

)
N
(
xk; x̂k|k,Pk|k

)
(64)
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when the measurement model is linear. This can be re-written according to
the Gaussian product formula as

N
(
0;Π(i,j)H̃xk,Ru,Nres

)
N
(
xk; x̂k|k,Pk|k

)

= N
(
0;Π(i,j)H̃x̂k|k,S

i,j
)
N
(
xk; x̂

i,j
k|k,P

i,j
k|k
)
, (65)

where x̂i,j
k|k and Pi,j

k|k describe the expected value and the covariance matrix of
the target states given measurement update under hypothesis d, for graph G,
and resolution model update for the unresolved target pair (i, j). The exact
form of Si,j, x̂i,j

k|k and Pi,j
k|k are given by identification from (43)–(48). As seen

in the update equation, the ’negative information’ from a missed detection
due to resolution limitations is hence incorporated in the tracking framework
as a measured ’0’ of the separation of the target pair.

When the summands in (34) involves several Pu factors, similar calcula-
tions as in (64) are performed sequentially, factor by factor. That is, if we

have a second factor Pu

(
x
(l)
k ,x

(m)
k

)
, we perform a similar calculation of

Pu

(
x
(l)
k ,x

(m)
k

)
N
(
xk; x̂

i,j
k|k,P

i,j
k|k
)
,

and so on. In general (cf. (34)),

|S0|∏

w=1

Pu(S0(w)N
(
xk; x̂k|k,Pk|k

)
=
∣∣2πRu,Nres

∣∣|S0|/2

×
|S0|∏

w=1

N
(
0;Π(w)H̃x̂w−1

k|k ,Sw
k|k
)
N
(
xk; x̂

S0

k|k,P
S0

k|k
)
, (66)

where x̂w−1 is the state estimate after the update with resolution pair w −
1. Further, Sw depends on the previous covariance Pw−1

k|k (cf. (45)), where

we define x̂0
k|k , x̂k|k, and where x̂S0

k|k and PS0

k|k are the state estimate and
covariance matrix after the sequence of updates, for the set S0.

6.4 One-step update with the resolution model

Instead of making a sequential resolution update, as in the previous section,
we can make a single update for each summand in (34). To do so, we first
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note that the product of Pu factors (cf. (34)) can be written as

|S0|∏

w=1

Pu(S0(w)) = e−(∆ri,j)T (Ru,Nres )
−1∆ri,j (67)

=

|S0|∏

w=1

e−(Π(i,j)H̃xk)
T (Ru,Nres )

−1Π(i,j)H̃xk (68)

= e−
1
2

∑|S0|
w=1(Π

(i,j)H̃xk)
T (Ru,Nres )

−1Π(i,j)H̃xk (69)

= e−
1
2
xT
k

{∑|S0|
w=1(Π

(i,j)H̃)T (Ru,Nres )
−1Π(i,j)H̃

}
xk (70)

= e−
1
2
xT
k R̃−1

u xk . (71)

By using the Kronecker product,

R̃−1
u ,

|S0|∑

w=1

(Π(i,j)H̃)T (Ru,Nres)
−1Π(i,j)H̃ (72)

=

|S0|∑

w=1

H̃T
{(

π(i,j))Tπ(i,j)
)
⊗R−1

u,Nres

}
H̃. (73)

The matrices H̃ and Ru,Nres do not depend on i and j and can hence be
moved out of the summation. So, by defining

G ,
|S0|∑

w=1

(
π(i,j))Tπ(i,j)

)
, (74)

we get

R̃−1
u = H̃T

(
G⊗R−1

u,Nres

)
H̃. (75)

Since G is positive semi-definite, it has a matrix square root, D, and we can
thus write

G = DTD. (76)

Then, repeatedly using the Kronecker product rule [18]
(
A⊗B

)(
C⊗D

)
=
(
AC

)
⊗
(
BD

)
, (77)

we have

G⊗R−1
u,Nres

=
(
DTD

)
⊗R−1

u,Nres
(78)

=
(
DT ⊗R−1

u,Nres

)(
D⊗ INresr

)
(79)

=
(
DT ⊗ INres

)(
IN ⊗R−1

u,Nres

)(
D⊗ INres

)
. (80)
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Since

DT ⊗ INres = DT ⊗ ITNres
=
(
D⊗ INres

)T
, (81)

the matrix R̃−1
u can be written as

R̃−1
u = H̃T

(
D⊗ INres

)T (
IN ⊗R−1

u,Nres

)(
D⊗ INres

)
H̃. (82)

So, through

xT
k R̃

−1
u xk = xT

k H̃
T
(
D⊗ INres

)T

×
(
IN ⊗R−1

u,Nres

)(
D⊗ INres

)
H̃xk (83)

=
(
(D⊗ INres)H̃xk

)T (
IN ⊗R−1

u,Nres

)(
(D⊗ INres)H̃x

)
, (84)

the probability in (71) is described. By further using that

(
IN ⊗R−1

u,Nres

)
=
(
IN ⊗Ru,Nres

)−1
(85)

the product of Pu factors can be written as a scaled Gaussian density

|S0|∏

w=1

Pu(S0(w) =
∣∣2πIN ⊗Ru,Nres

∣∣N
(
0; (D⊗ INres)H̃xk, IN ⊗Ru,Nres

)
. (86)

Using the description in (86), the update of the measurement-updated den-
sity with one of the summation terms in (34) can be performed in a single
Gaussian-product step (the updated density, is for example given by (51))

N
(
0; (D⊗ INres)H̃xk, IN ⊗Ru,Nres

)
N
(
xk; x̂k|k,Pk|k

)

= N
(
0; (D⊗ INres)H̃x̂k|k,S

u
)
N
(
xk; x̂

u
k|k,P

u
k|k
)
, (87)

where

Su =
(
(D⊗ INres)H̃

)T
Pk|k

(
(D⊗ INres)H̃

)

+ IN ⊗Ru,Nres (88)

Ku = Pk|k
(
(D⊗ INres)H̃

)T
(Su)−1 (89)

x̂k|k = xk|k +Ku
(
0−

(
D⊗ INres

)
H̃x̂k|k

)
(90)

Pu
k|k =

(
I−Ku

(
D⊗ INres

)
H̃
)
Pk|k. (91)

The one-step update described here is performed for each term in the sums
over

∣∣S0

∣∣ in (34). The resolution model update is then finalized by the update
with the product of Pu(Se) factors, which can also be performed in a single
calculation for each term.
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6.5 Summary

The update with measurement and resolution models can be performed in
four different ways:

1. Sequential measurement and resolution updates.

2. Sequential measurement update and one-step resolution update.

3. One-step measurement update and sequential resolution update.

4. One-step measurement and resolution updates.

The advantage with the one-step updates is that they keep the form of the
Gaussian mixture throughout the updates, since no assumption about in-
dependence between target groups is necessary. The drawback, however, is
that the calculations require high-dimensional matrix operations. Then, the
sequential update is a further approximation which makes it faster but leads
to the effect that the order matters and that the graph feasibility might not
be preserved.

7 Joint Probabilistic Data Association filter-

ing using the resolution model

In Section 6, the calculation of the posterior density was described under
Gaussian assumptions. If the prior density is Gaussian, the posterior density
is a Gaussian mixture, where the number of components depend on

• the number of resolution graphs, G,

• the number of open links in the graphs, yielding
(
1−Pu

)
factors which

doubles the number of components, and

• the number of data association hypotheses
∣∣D(G)

∣∣ for each graph.

Since processing of the full Gaussian mixture is infeasible, due to mem-
ory and processing limitations, approximations are necessary. For the data
association problem, a common algorithm is the Joint Probabilistic Data
Association (JPDA) filter [4]. The approach of the filter is to, at each time
step, approximate a Gaussian mixture with a single Gaussian, using moment
matching. We here describe how that algorithm can be extended to the case
of resolution limitations. For the extension, two alternatives are proposed:
either to calculate the full Gaussian mixture, and to approximate that with a
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single Gaussian, or to perform a two-step approximation, which is less com-
putationally intensive. The two approaches are described in the following
two sections.

7.1 JPDA approximation of the full Gaussian mixture

The most accurate moment-matching approximation is given by calculating
the full Gaussian mixture in (95), and then approximate that with a single
Gaussian. A pseudo-code description of such a procedure is found in Ta-
ble 1, and in the following we discuss the different steps in more detail. The
algorithmic description starts with the predicted density p

(
xk

∣∣Zk−1
)
.

Step I: Generate all feasible graphs

The first step is to generate all feasible graphs, G, which is done by first
forming the set of possible resolution events, R (cf., for example, Example 1),
and then generating the feasible resolution graphs for each event.

Step II: Data association hypotheses formulation

For each generated resolution graph, the set of data association hypothe-
ses, D(G) is formulated. The set of data association hypotheses includes all
combinations of group target-to-measurement assignments1, including missed
detections.

Step III: Measurement and resolution model update

The third step is divided into three sub-steps. All operations in step III are
performed for each data association hypothesis formulated in Step II.

In Step III-a), the data association hypothesis probability is calculated
according to (30).

Step III-b) is to update the predicted density function N
(
xk; x̂k|k,Pk|k

)

with the measurement likelihood under the current resolution and data as-
sociation hypotheses. The update can either be performed sequentially, as
described in (41) and (42), or in a single calculation, given by (51). After the
measurement update, we obtain the scaled Gaussian density cG,dN

(
xk; x̂

G,d
k|k ,P

G,d
k|k
)

with proportionality weight (using (51))

cG,d = Pr
{
d
∣∣G,xk

}
N
(
Zk; H̆x̂k|k−1,S

G,d). (92)

1Note that several graphs lead to the same data association hypothesis. Thus, in the
measurement update, only a single update is needed for those graphs. The resolution
update with the graph probabilities, however, must be performed for each graph.
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Table 1: Complete Gaussian mixture JPDA filter with resolution model

I: Generate all feasible graphs, G.

II : For each graph, formulate all data association hypotheses, D(G).
III: For each data association hypothesis, d ∈ D(G):
III-a) Calculate Pr

{
d
∣∣G,xk

}
according to (30).

III-b) Perform measurement update according to (41) and (42), or

by (51). This yields a scaled Gaussian cG,dN
(
xk; x̂

G,d
k|k ,P

G,d
k|k
)

with weight given by (92).

III-c) Update with resolution model according to (32), (34), and
either (64)–(66), or by (86) and (87). The result is a sum

of scaled Gaussians
∑

u∈U(G) c
G,u,dN

(
xk; x̂

G,u,d
k|k ,PG,u,d) with

weights given by (93) .

IV: Approximate the Gaussian mixture in (95) using moment matching, accord-
ing to (94), and (96)–(98).

In Step III-c), the resolution update is performed for each data association
hypothesis. The general update is described in (32). As seen in (34), the
resolution update results in a sum of products. For each summation term,
the calculation can either be performed sequentially, as given by (64), (65)
and (66), or in a single step, described by (86) and (87). After the update, we
obtain a sum of scaled Gaussians

∑
u∈U(G) c

G,u,dN
(
xk; x̂

G,u,d
k|k ,PG,u,d), where

the weight is given by

cG,u,d = Pr
{
d
∣∣G,xk

}
N
(
Zk; H̆x̂k|k−1,S

G,d)

×
∣∣2πIN ⊗Ru,Nres

∣∣N
(
0; (Du ⊗ INres)H̃x̂k|k,S

u
)
. (93)

In (93), Du represent the current resolution event (cf. (74) and (76)).

Step IV: Moment matching

The final step of the full Gaussian mixture JPDA algorithm with resolution
modeling is the moment matching approximation. First, the weight compo-
nents are normalized,

c̄G,u,d =
cG,u,d∑

G
∑

u∈U(G)
∑

d∈D(G) c
G,u,d . (94)
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If the prior density is Gaussian, the end result after resolution and measure-
ment updates is a density mixture of the form

p
(
xk

∣∣Zk
)
=
∑

G

∑

u∈U(G)

∑

d∈D(G)
c̄G,u,dN

(
xk; x̂

G,u,d
k|k ,PG,u,d

k|k
)
. (95)

The final step of the first version of JPDA algorithm is to approximate this
Gaussian mixture density with a single Gaussian. The best way of making
that approximation, in the Kullback-Leibler sense, is to perform second-order
moment matching. We thus make the approximation

p
(
xk

∣∣Zk
)
≈ N

(
xk; x̂

A1

k|k,P
A1

k|k
)
, (96)

where

x̂A1

k|k =
∑

G

∑

u∈U(G)

∑

d∈D(G)
c̄G,u,dx̂G,u,d

k|k (97)

PA1

k|k =
∑

G

∑

u∈U(G)

∑

d∈D(G)
c̄G,u,d

{
PG,u,d

k|k

+
(
x̂G,u,d
k|k − x̂A1

k|k
)(
x̂G,u,d
k|k − x̂A1

k|k
)T}

. (98)

7.2 Two-step JPDA approximation

When the number of targets is large and the clutter level high, the number
of Gaussian components to calculate in each iteration can be large. Then, a
less computationally demanding method is advantageous. We here present
such a method, where instead of approximating the full Gaussian mixture,
we perform a two-step procedure including two Gaussian approximations.

In Table 2, the two-step JPDA filter is described. In the following, we
describe some of the steps in more detail. Since Step I to III-b) are the same
as for the algorithm in Table 1, we start with Step IV.

Step IV: Moment matching over data association hypotheses

After the measurement update step for graph G and data association hypoth-
esis d, we obtain a scaled Gaussian cG,dN

(
xk; x̂

G,d
k|k ,P

G,d
k|k
)
with weight given

by (92). After having performed measurement updates for all data associa-
tion hypotheses, we have a Gaussian mixture. Step IV of the two-step JPDA
filter is to approximate this Gaussian mixture with a single Gaussian, using
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moment matching2, i.e.,
∑

d∈D(G)
c̄G,dN

(
xk; x̂

G,d
k|k ,P

G,d
k|k
)
≈ N

(
xk; x̂

G
k|k,P

G
k|k
)
, (99)

where

c̄G,d =
cG,d∑

d∈D(G) c
G,d (100)

x̂G
k|k =

∑

d∈D(G)
c̄G,dx̂G,d

k|k (101)

P̂G
k|k =

∑

d∈D(G)
c̄G,d
{
P̂G

k|k

+
(
x̂G,d
k|k − x̂G

k|k
)(
x̂G,d
k|k − x̂G

k|k
)T}

. (102)

Step V: resolution update for each graph

After the moment matching in Step IV, we have a single Gaussian for each
graph. In Step V, the resolution model update is performed under each
graph. This gives a Gaussian mixture

∑

u∈U(G)

∑

d∈D(G)
c̄G,uN

(
xk; x̂

G,u
k|k ,P

V ,u
k|k
)
,

with weights

c̄G,u =
cG,u∑

u∈U(G)
∑

d∈D(G) c
G,u , (103)

cG,u =
∣∣2πRu,Nres

∣∣N
(
0; (Du ⊗ INres)H̃x̂G,u

k|k ,S
G,u), (104)

where SG,u is given by (88), inserting PG
k|k instead of Pk|k.

Step VI: Gaussian approximation of posterior density

For each graph, G, Step V provides a Gaussian mixture. The posterior density
is hence approximated by

p
(
xk

∣∣Zk
)
≈
∑

G

∑

u∈U(G)
c̄G,uN

(
xk; x̂

G,u
k|k ,P

G,u
k|k
)
. (105)

2In fact, this the standard JPDA approximation performed for each resolution graph.
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Table 2: Two-step JPDA filter with resolution model

I: Generate all feasible graphs, G.

II : For each graph, formulate all data association hypotheses, D(G)
III: For each data association hypothesis, d ∈ D(G)
III-a) Calculate Pr

{
d
∣∣G,xk

}
according to (30)

III-b) Update the predicted density with information from measure-
ments, according to (41) and (42), or by (51). This yields

a scaled Gaussian cG,dN
(
xk; x̂

G,d
k|k ,P

G,d
k|k
)
with weight given

by (92).

IV: Perform moment matching over the data association hypotheses, as
described in (99)–(102). This gives a single Gaussian N

(
xk; x̂

G
k|k,P

G
k|k
)
.

V: For each graph, perform an update with the resolution model. This
yields a Gaussian mixture,

∑
u∈U(G)

∑
d∈D(G) c

G,uN
(
xk; x̂

G,u
k|k ,P

G,u
k|k
)
,

with weights given by (103), and mean value and covariance matrix
by (101) and (102).

VI: Approximate the Gaussian mixture in (105) with a single Gaussian, as de-
scribed in (106)–(108).
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The final step of the algorithm is to make a second moment matching, to
approximate the posterior density as a single Gaussian, according to

p
(
xk

∣∣Zk
)
≈ N

(
xk; x̂

A2

k|k,P
A2

k|k
)
, (106)

where

x̂A2

k|k =
∑

G

∑

u∈U(G)
c̄G,ux̂G,u

k|k (107)

PA2

k|k =
∑

G

∑

u∈U(G)
c̄G,u
{
PG,u

k|k

+
(
x̂G,u
k|k − x̂A2

k|k
)(
x̂G,u
k|k − x̂A2

k|k
)T}

. (108)

8 Simulations

In this section, we evaluate the JPDA filter with the proposed resolution
model, and compare the results to those of the JPDA filter without a reso-
lution model. The considered tracking scenario includes three targets whose
trajectories are shown in Fig. 4. The targets move with a constant speed of
5 m/s, and their separation is 60 m in the middle part of the scenario.

x [m]

y
[m

]

0

0

100

200

200

300

400 600
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−300

Figure 4: Trajectories for the three-target scenario. The separation between
the targets is 60 m in the middle, and the targets move from left to right.

As state vector, we use x =
[
x y ẋ ẏ

]
. For prediction of future states

in the filters, a (nearly) constant velocity model is used, with system matrix
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(cf. (4)) F = diag{F̃, F̃, F̃}, where

F̃ =




1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1


 , (109)

and where T is the time between measurements. Further, the process noise
covariance matrix is Q = diag{Q̃, Q̃, Q̃}, where

Q̃ = q0




T 3/3 0 T 2/2 0

0 T 3/3 0 T 2/2

T 2/2 0 T 0

0 T 2/2 0 T


 , (110)

and q0 = 0.2, which is the parameter value that gives the best average per-
formance for this scenario.

At regular time intervals, T , of one second, a sensor, which is located at
(−10000,−10000), provides measurements of the range R and azimuth angle
ϕ to the targets. The accuracy of the measurements depends on whether
the targets are resolved or not, as discussed in Section 4. More specifically,
the range errors are assumed to be constant as the number of targets in an
unresolved group increases, while the azimuth errors are assumed to increase
due to radar target glint. The target-number dependent measurement noise
covariance matrix is thus

Rng =

[(
σR

)2
0

0
(
σ
ng
ϕ

)2

]
, (111)

where σ
ng
ϕ = ng · 0.1π/180. Further, the resolution capability of the radar

sensor is given by the parameters (cf. (19)) αR equal to 60 m and αϕ equal to
0.3π/180. With these parameters, averaged over 100 trials for the 200 time
steps of the scenario, all three targets are resolved 79.7 times (time steps),
two targets are unresolved 70.7 times and all three targets form a group
target 49.6 times.

The detection probability PD of the sensor is assumed equal for all group
sizes. In the evaluations, we test detection probabilities of 0.999 and 0.95.
On top of target-generated measurements, the sensor also reports spurious
measurements due to clutter. We evaluate the results for two different clutter
levels: low clutter, with 1 false measurement per scan on average (and rarely
more than 4), and moderate clutter, with 4 false measurements per scan on
average (and rarely more than 8).

200



In Figs. 5 and 6, examples of trajectory estimates from the JPDA filter
with and without the resolution model are shown, for the case of no clutter
and a detection probability of 0.999. By comparing the figures, it is seen
that the filter which takes resolution limitations into account produces more
stable, and well-separated, tracks.
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Figure 5: Example of the output of the standard JPDA filter for the case of no
clutter and a detection probability of 0.999, but with resolution limitations
expressed by αR = 60 m and αϕ = 0.3◦. The dots represent the sensor
measurements converted to Cartesian coordinates.

As a measure of performance, we use the Mean Optimal Subpattern As-
signment (MOSPA) measure [19]. The measure does not consider target
identity, but finds the best permutation of the targets at each time instant,
which minimizes the sum of distances between estimate and truth. Since
our interest lies in describing data, and since the radar data comes without
labeling, the MOSPA is a natural performance measure to choose. As basis
measure, we use the Euclidean distance. We further use the first-order MO-
SPA measure (p = 1, see [19]), which means that the unit of the MOSPA
distance is meters. As cut-off value we use c = 300 m.

For the performance evaluations, we first consider the case of a detection
probability of 0.999. In Fig. 7, the MOSPA performance over 100 Monte
Carlo runs is presented for the low-clutter case for the JPDA filter with-
out resolution model, and for the full Gaussian mixture JPDA filter with a
resolution model. As a reference, the performance of the JPDA filter when
the sensor has perfect resolution is also shown. As seen, when the targets
are closely spaced and the resolution limitations have effect, the JPDA fil-
ter without resolution model performs worse than the JPDA filter with a
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Figure 6: Example of the output of the full Gaussian mixture JPDA filter
with a resolution model, for the case of no clutter and a detection probability
of 0.999, but with resolution limitations expressed by αR = 60 m and αϕ =
0.3◦. The dots represent the sensor measurements converted to Cartesian
coordinates.

resolution model, which provides evidence that the resolution model indeed
accounts for a better description of the data.

In Fig. 8, the MOSPA results for the moderate clutter level are shown.
There, it is seen that the JPDA filter performs significantly worse than with
the lower clutter level, whereas the performance of the JPDA filter with a
resolution model, performs almost as well. The reason for the significantly
worse performance of the JPDA filter is that a large number of track losses
occur (where tracks are attracted to clutter detections, and move away from
the true trajectory). For the JPDA filter with a resolution model, on the
other hand, the attraction of the clutter detections is weaker due to the filter
considering the events that the targets are not resolved.

The final evaluation regards a lower detection probability of 0.95, and a
moderate clutter level. The results for this setup are shown in Fig. 9. By
comparing this figure with the results shown in Fig. 8, it is seen that the
performance of the JPDA filter is somewhat better with the lower detection
probability than with the higher one. The reason for this is that the weights
of the data association hypotheses under which clutter detections are assigned
to the tracks are lower when the detection probability is lower, and we thus
obtain more stable tracks. Still, the performance is significantly improved by
using the proposed sensor resolution model.
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Figure 7: MOSPA performance for the JPDA filters averaged over 100 Monte-
Carlo runs for a detection probability of 0.999 and one clutter measurement
on average. Green: without resolution model, blue: with a resolution model,
and red: with perfect resolution.
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Figure 8: MOSPA performance for the JPDA filters averaged over 100 Monte-
Carlo runs for a detection probability of 0.999 and four clutter measurements
on average. Green: without resolution model, blue: with a resolution model,
and red: with perfect resolution.
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Figure 9: MOSPA performance for the JPDA filters averaged over 100 Monte-
Carlo runs for a detection probability of 0.95 and four clutter measurement
on average. Green: without resolution model, blue: with a resolution model,
and red: with perfect resolution.

9 Conclusion

In this article, we consider the modeling of limited sensor resolution for an
arbitrary, but known, number of targets. The main contribution is a frame-
work for handling resolution limitations, which can be easily incorporated
into traditional Bayesian tracking filters. The framework relies on a graph
description of a resolution event, and on modeling the resolution probability
as independent between target pairs. To complete the framework and to
attain a multitarget resolution model, a model for the resolution probability
for two targets and a group measurement model for an arbitrary number of
targets are needed. By suggesting two such models, the exact calculation of
the posterior probability density function under both data association and
resolution conflicts is described. Under linear and Gaussian assumptions, the
posterior density is a Gaussian mixture, and the components of that mixture
are also derived in the paper. Further, two alternative approximations of
the density mixture by a single Gaussian are proposed, which both can be
considered as extensions of the Joint Probabilistic Data Association (JPDA)
filter taking resolution problems into account. Finally, the JPDA filters with
and without a resolution model are evaluated on a three-target tracking sce-
nario with simulated radar data. The results show significantly improved
tracking performance of the resolution filters for all considered setups.
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