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The aim with this work was to develop 
methods of modifying the surface of colloidal 
silica, to develop new applications, as well as 
to improve some existing applications. 
Aqueous silica sols have been used in a variety
of applications over the years and there are an 
increasing number of applications for these 
kinds of materials, many of them 
environmentally driven. To give some 
examples; the development of waterborne low 
VOC coatings has lead to the need of silane 
modified colloidal silica that can enhance
coating properties, being used as pigments 
dispersants and also fulfil the demands on 
shelf-life of such coating formulations. Lead-
acid batteries with solid electrolyte are gaining 
new markets with the development of 
telecommunication and solar energy where 
such batteries are used as power 
sources/storage. The handling and working 
environment are significantly improved by 
using silica sols instead of fumed silica as a 
gelling agent for the acid.

Another example where the “green drive” has given opportunities for colloidal silica dispersions 
is in the construction field. The recycling of old concrete, increasing amounts of e.g., limestone 
fillers in concrete, and also the use of the cement kilns as incinerators for waste are producing 
cements of poorer quality, paving the way for concretes which are susceptible for bleeding,
segregation and slow strength development. Addition of colloidal silica may remedy these 
shortcomings.
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Epoxy silane-modified colloidal silica particle. The particle size of the silica core is 7 nm. 
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Abstract 
 

Methods of modifying the surface of the particles of colloidal silica were developed and the 
effects of surface modification on the properties of colloidal silica were studied. 
 
Gamma-glycidoxypropyltrimethoxysilane (GPTMS) readily reacts with water to yield a 
hydrolysed silane that reacts readily with the silica surface. The epoxy functional groups were not 
affected during the hydrolysis but subsequent reaction with the silica surface opened the epoxy 
rings. The presence of silane groups on the particle surface was established by Si-NMR. About 
1.5 GPTMS groups per nm2 silica surface were needed to affect significantly the properties of 
colloidal silica. Modification of conventional silica sols improves the stability toward gelling by 
electrolytes, allows the preparation of mixtures of various lattices with silica sols that are stable 
toward gelling, increases the hardness of latex coatings, and improves the properties of 
pigmented coatings. 
 
Methods were developed for making white composite pigments consisting of a silica core with a 
titania shell. A necessary step was the aluminate modification of the silica particles. With 1.5 
aluminosilicate sites per nm2 of core surface, well-dispersed composite particles having cores of 
uniform size in the range of 300 to 500 nm with a titania coating, the thickness of which 
corresponded to from 150 to 400 wt-% of titania based on the weight of the core, were prepared. 
 
In a third type of modification colloidal silica was prepared with a high degree of structure, i.e. 
the silica particles having linear dimensions rather than being perfect spheres and being stabilised 
with amines. Such sols are very effective anionic components in dual retention aids in 
papermaking. Highly structured silica sols but being stabilised with sodium can be used to make 
solid electrolytes in lead-acid batteries with improved properties compared with conventional 
electrolytes. 
 
Colloidal silica of different sizes can be used to improve the properties of concrete mixtures. 
Modifying colloidal silica to yield sols of wide particle size distributions provides a means to 
make concrete with improved properties. The small particle fraction of the sol will increase of the 
early strength while the large particle fraction will increase the ultimate mechanical properties. 
 
 
 
 
 
 
Keywords: Surface modification, silica sol, colloidal silica, applications, silane, titania, aqueous 
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1. Introduction 
 
When Charles C. Payne of the Nalco Chemical Company in the USA was asked, “Where has 
colloidal silica been used?” he answered that a more pertinent question is, “Where has it not been 
used?” .The uses of colloidal silica in industry and academic research are too many to be 
enumerated here but some will be briefly mentioned. 

Dilute silica sols were prepared and studied over 75 years ago. Their uses as binders in catalyst 
preparation, as glazes on ceramics, as coatings on concrete and plaster of Paris, in treatment of 
paper and textiles, and many other applications were investigated (Griessbach, 1933). These early 
silica sols contained less than 10 % by weight of silica, were not very stable and did not have 
reproducible properties. In 1955, Iler predicted that colloidal silica would not be accepted for 
wide commercial use before these shortcomings were remedied (Iler, 1955). Good stability at 
high concentrations of silica was probably the most serious weakness of early silica sols. 

Product development work in several industrial laboratories resulted in the production of 
concentrated silica sols of high stability and very reproducible properties (Iler, 1979). The use of 
colloidal silica could now be expanded to previously inaccessible applications. Colloidal silica is 
widely used as binder in shell investment casting. Refractory binders can be bonded with 
colloidal silica to give insulators that have excellent high-temperature resistance. Small amounts 
of colloidal silica increase the coefficient of friction of surfaces. Carpets and other surfaces 
coated with colloidal silica resist soiling because the colloidal silica occupies the site that would 
most likely retain visible soil. The strength and adhesion of latex-based adhesives and paints can 
be enhanced by the addition of colloidal silica. Beverages, such as wine, beer, or fruit juices can 
be clarified using colloidal silica as an aid to flocculation and coagulant for proteins.   
Fairly recent and important developed applications of colloidal silica, which have been studied in 
the present work, are the use of colloidal silica to make high quality concrete, as retention aid in 
papermaking, as polishing agents for silicon wafers, to provide solid electrolytes in lead-acid 
batteries and as components in high quality coatings.   
The coagulation-dispersion behaviour of aqueous silica sols is central to many applications where 
they are used. Aqueous silica sols are of particular interest in colloidal science because their 
coagulation-dispersion behaviour is said to be “anomalous”; i.e. their stability in terms of 
electrolyte-pH control does not follow the pattern followed by almost all other oxide and latex 
colloidal materials. This characteristic of silica sols has been used by scientists to develop highly 
concentrated silica sols of remarkable stability.   
There are still applications where many of the properties of colloidal silica could be put to good 
use but cannot, or only with difficulty, because even the outstanding stability of modern silica 
sols is not high enough. It has, for instance, been found that colloidal silica is an excellent 
dispersant of pigments but the stability of silica particles in the high solids environment of 
pigment paste may pose a problem, which may be aggravated by the presence of electrolytes in 
the system. Low temperatures are another environment in which the stability of conventional 
silica sols is poor. 
One objective of this investigation is therefore to change the nature of the silica particles by 
chemical modification of their surface. In one approach, stability of colloidal silica toward gelling 
under exacting conditions of solids content, temperature and electrolyte content was shown to be 
improved by reacting the particle surface with organofunctional silanes. The structure and 
reactions of organofunctional silanes are described in section 3.  Procedures for modifying the 
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surface of silica particles that were developed in this work are detailed in section 4.1. The effects 
of silane modification on the performance of colloidal silica in silica paint, as dispersant in 
pigment pastes and as an additive in 2-k and curable lacquers are shown in section 5.1. 
In another approach, described in section 4.2, the surface of the particles of colloidal silica was 
modified by reacting it with sodium aluminate to create negatively charged aluminosilicate sites 
on the surface. The particles of colloidal silica modified in this manner can readily be coated with 
metal oxides (e.g., titanium dioxide). In section 5.2.4 some of the light scattering properties of 
such materials are briefly discussed. 
Another objective is to describe and explain the use of conventional colloidal silica in some 
important and fairly recently developed applications as an agent to improve the properties of 
concrete (section 5.2.1), as retention aid in the paper making process (section 5.2.2), and as a 
means to provide solid electrolytes in lead-acid batteries (section 5.2.3). 
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2. Colloidal silica 
  
Aqueous colloidal silica dispersions, silica sols, have been commercially available since the early 
1930s when a 10 wt-% silica sol was produced and sold by I.G. Farben. However, they did not 
find a broader use until the 1950s when these dispersions could be made at higher solid 
concentrations (e.g., 30 wt-% because of the development in the ion exchange technology that led 
to reduced levels of destabilising ions/impurities and hence improved colloidal stability) (Iler, 
1979; Payne, 1994). The number of uses for colloidal silica as well as the number of different 
silica sol products has increased since. Today, colloidal silica dispersions are commercially 
available in a variety of different kinds of products: anionic and cationic and with different types 
of surface modifications (e.g., aluminate modification and silylated).  Commercial silica sols are 
fluid, with the viscosity typically less than 35 mPas, and stable toward gelling and settling in the 
pH range between 8 and about 10. They have been stabilized, or brought into this pH range, by 
adding an alkali (e.g., NaOH, KOH, LiOH, or NH3) to the sol. The silica particles are negatively 
charged and charge neutrality is brought about by the presence of positively charged counter ions, 
such as Na+, K+, Li+

, and NH4
+. There are also available commercial silica sols consisting of 

positively charged particles, which have been stabilized at pH of about 4 by adsorption of 
polycations of, for instance, aluminium onto the surface of the particles. Most commercial silica 
sols are quite monodisperse and consist of dense, discrete spheres with a range of diameters 
between about 5 nm and 100 nm. The maximum concentration depends on particle size and is 15 
% by weight for 5 nm particles, 30 % by weight for 8 nm particles and at least 50 % by weight 
for 100 nm particles. There are also commercial sols that have deliberately been made 
polydisperse or where the particles are not discrete spheres but instead chains of linked spheres. 
The appearance of silica sols depends on particle size, particle size distribution, and 
concentration. They look milky if the particle size is large and the concentration is high, 
opalescent if the size is intermediate or clear, and almost colourless when the diameter of the 
particles is in the smallest size range. 
 
Colloidal silica dispersions are used in an extensive range of industrial applications covering the 
most different applications areas, including flocculation applications such as beverage fining and 
retention aids in papermaking, as a binder in high-temperature applications such as foundry 
production, ceramics, and catalyts (Dahar and Te, 2009; Bradzil, George and Rosen, 2009; May, 
Vogel, Siegert, Gaudschun and Quandt, 2009), and recently in fuel cells applications (Larsen, 
Olsen and Jensen, 2009), as an additive in cementitious applications (Otterstedt and Greenwood, 
paper V), as an abrasive in wafer polishing (WP) and chemical mechanical planarization (CMP) 
(Ahn, Yoon, Baek and Kim, 2004; Matijevic´ and Babu, 2008; Yang, Oh, Lee, Song, and Kim, 
2010), as solid state electrochemical devices (Collinson, Zambrano, Wang and Taussig, 1999), 
and as a gelling agent when sealing hard-rock tunnels (Funehag and Fransson, 2006; Funehag and 
Gustafson, 2008; Butrón, Gustafson, Fransson and Funehag, 2010) or solidifying electrolyte in 
lead-acid batteries (Lambert, Greenwood and Reed, 2002). Furthermore, silica sols are used in a 
vast number of coating applications to improve mechanical properties as well as anti-blocking, 
adhesion, and wetting properties just to mention a few. 
The nature of the silica surface, the specific surface area, and degree of aggregation are important 
parameters regardless of application area. 
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The surface of a silica sol is fully hydroxylated with a maximal amount of silanol groups. The 
number of silanol surface groups was determined by Zhuralev to be about 4.6 OH per nm2 where 
the measured silanol numbers were ranging from 4.3 up to 5.8 OH per nm2 silica surface 
(Zhuralev, 1993). However, in Zhuralev’s study the silica samples were dried and one may 
expect an even higher silanol number for a silica surface that has never been subject for drying or 
at least to be in the upper end of this range. The silanol groups may also be of different types: 
single isolated silanol groups, geminal (silanediol groups) and vicinal types. The silanol groups 
have a big impact on the surface charge of the silica particles and hence the stability of the silica 
sol. In addition, they will act as reactive groups enabling chemical grafting of the silica surface or 
playing an important role in the formation of siloxane bridges between the silica particles during 
aggregation/gellation processes.   
 
Surface area - high 
Colloidal silica dispersions having a high specific surface area (m2/g), i.e. small particle size, 
have many surface groups that can participate in numerous bonds and reactions, as well as 
bearing a high electric charge per kg product. Such products are particularly useful in 
applications of where binder, reactant, and flocculating properties are desirable. The specific 
surface area for these kinds of products is typically in the range of 200 m2/g and upwards. 
 
Surface area - low 
Colloidal silica dispersions of larger particles with a lower specific surface area are typically used 
in polishing applications, such as an abrasive, where a coarser particle offers a higher removal 
rate, such as a surface modifier in, for example, anti-skid coatings on paper substrates where 
enrichment on the substrate surface is favourable or as a carrier/core for metal oxides in 
composite pigments, catalysts, etc. 
 
Aggregation-structured colloidal silica dispersions 
Non-aggregated silica dispersions are preferably used in coating applications in order to enhance 
properties such as cross-linking density. The effect on hardness and Young’s modulus in coatings 
are highly dependent on the size of the silica particle and aggregation will increase the size of the 
silica material and hence significantly decrease the effect on the mechanical properties from the 
particles (Douce, Boilot, Biteau, Scodellaro and Jimenez, 2004). Further, gloss and haze may be 
compromised if aggregation occurs in the system. The absence of aggregated particles is vital in 
the polishing field since aggregates may cause scratches and other surface defects.  
 
Structured or aggregated silica dispersions are beneficial in applications where flocculation and 
gellation is desirable. The degree of aggregation is normally characterised by the S-value, which 
is a measure of the silica (as per cent) in the disperse phase (Iler and Dalton, 1956). Silica sols 
used in flocculation applications (e.g., as a retention aid in papermaking) typically has an S-value 
of 15-35 % (Andersson, Larsson and Lindgren, 1997). In gellation applications, such as 
solidification of sulphuric acid in lead-acid batteries a typical S-value could be in the range of 30-
50 % (Greenwood, Lagnemo and Reed, 2010). 
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Aluminate modification of the silica surface. 
Modification of the silica surface with sodium aluminate gives a fix negative surface charge that 
is not pH dependant and gives a surface with a higher charge (pH range 3-9) relative to non-
modified silica (Iler, 1979). Furthermore, such surface modification lowers the solubility of the 
silica surface (Iler, 1973) and therefore reduces the Ostwald ripening and hence can be used to 
stabilise colloidal silica dispersions of high specific surface area. Aluminate modified silica sols 
with a high specific surface area above 500 m2/g and surface charge are used in the papermaking 
area (Johansson and Larsson, 1994), whereas aluminate modified silica sols of lower surface area 
may be used in wine clarification where the modification (Bohm, Genth, Schober, and Simons, 
1977) gives a high surface charge at pH 3.5 - 4 (i.e. the pH of wine). In addition to this, aluminate 
modified silica sols have been found to work well in cementitious applications (e.g., concrete), 
where strength is enhanced and flowability (Greenwood, Bergqvist and Skarp, 2004) is not 
compromised relative to non-modified sols. 
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3. Silanes 
 
Silanes are a group of chemicals that has been around for more than 50 years. They are widely 
used as coupling agents because of their bi-functional nature (Osterholtz and Pohl, 1992). One 
organofunctional group, Y, and three hydrolysable groups, X (see Figure 1).  
 

 
 
Figure 1: Structure of silane. 
 
There are a number of different hydrolysable groups but the two main groups are chlorosilanes 
and alkoxysilanes and the most common groups of those are the trialkoxysilanes, Y-R-Si(OR’)3. 
By hydrolysis in water, the X group is converted to the reactive silanol form, which ultimately 
condenses to a siloxane bonds. Both reaction rates are strongly dependent on pH, but the under 
right conditions the hydrolyse step is relatively fast (several minutes); however, the condensation 
reaction is much slower (several hours).  
 

 
 
Figure 2: Hydrolysis of silane. 
 
In order to be suitable for silylation of the surface of an aqueous silica sol, one can expect that the 
silane should be possible to hydrolyse in water, i.e. sufficient solubility and that such hydrolysed 
silane should be stable enough to avoid self-condensation. The first condition eliminates silane 
with a too hydrophobic functional group (e.g., long carbon chain). The latter condition normally 
eliminates the use of chlorosilanes and aminosilanes since these kinds of silanes dramatically 
affect the pH (due to the release of HCl and alkali, respectively) and hence increase the rate of 
condensation reactions dramatically (Osterholtz and Pohl, 1992).  
  
In this respect, functional tri-alkoxy silanes are a preferred type of silane, especially epoxy-
silanes with the focus on gamma-glycidoxypropyl-trimetoxysilane (Silquest A-187) because of 
its easiness in preparing stable pre-hydrolysed aqueous solutions of high concentrations in the 
epoxy-functional group. Pre-hydrolysed solutions of Silquest A-187 are stable for at least a 
couple of weeks if the pH of the solution is in the range of about 4-7. Condensations reactions are 
at a minimum under these conditions (see Figure 3). 
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Figure 3: pD - Rate Profile for Combined Hydronium- and Hydroxide-Catalyzed 
Hydrolysis and Condensation of Silquest A-187 (gamma-glycidoxypropyltrimethoxysilane) 
and Its Triol in D2O (Plueddemann, 1991). Courtesy of Alain Lejeune, Momentive. 
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4. Modification of the silica surface 
 
4.1. Silylation of the silica surface (paper I) 
The reaction between a hydrolysed silane (e.g., gamma-glycidoxypropyltrialkoxysilane) and the 
silanol groups of the silica particles is a condensation reaction.  
Y-R-Si(OH)3 + (HO)X-silica particle ⇒Y-R(OH)3-x-silica particle + xH2O  (1) 
 
Based on steric reasons, it is unlikely that all three alkoxy groups will react with the silica 
surface. The reaction is fast in the alkaline pH region (Osterholtz and Pohl, 1992) and can 
therefore be conveniently carried out at the pH of the sodium-stabilised sol, which is about pH 
10. For uniform coverage of the particle surface, it is essential that the silane is present in 
monomeric form and not as large oligomers or cyclic species (Peeters, 2000). Under moderate 
conditions of rate of addition of silane and temperature, however, self-condensation and 
precipitation will not occur. An aqueous silica sol has about 4.6 silanol groups per nm2 surface 
(Zhuralev, 1993), but considering that each silane may react with three surface groups, fewer 
silane molecules per nm2 will be required to react fully with the silica surface. Silylation of the 
silica surface will reduce the number of silanol groups and hence make silylated sols more stable 
toward gelling through formation of siloxane bonds between particles. 
The shape of the curves in Figure 4 indicates that at least two types of reaction take place during 
the silylation of the silica surface as suggested by the following reaction schemes: 
 
silica-O-+ HO-Si(OH)2-R ⇒ silica-O-Si(OH)2-R+ OH-      (2) 
silica-OH+ HO-Si(OH)2-R ⇒ silica-O-Si(OH)2-R+ H2O      (3) 
 
During the first 5 min of silane addition, pH increased rapidly from 10.1 to almost 10.4 (scheme 
2), whereas there was a more gradual increase to 10.6 during the next 135 min (scheme 3), after 
which time the pH remained constant. In reaction 2 the hydrolysed silane reacted rapidly with the 
negatively charged sites of the silica surface releasing hydroxyl ions, which raised the pH and  
created more charged sites on the surface (Iler, 1979). In the slower reaction (reaction 3), 
probably catalysed by hydroxyl ions, the hydrolysed silane condensed with surface silanol 
groups.   

Figure 4: Specific surface area (blue) and pH (red) versus time for a 7 nm silica sol which at 
the end of the experiment will have 0.6 molecules GPTMS per nm2 silica surface as a 
function of time. 
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Continuous silane addition 
With a higher degree of silylation of the silica surface, which is the preferred route for a surface 
modification corresponding to 1.4 and 1.7 molecules of GPTMS per nm2 silica surface (now 
commercial products under the names of Bindzil® CC30, dp: 7 nm, and Bindzil® CC40, dp: 12 
nm, respectively), there is a reduction of about 85% of the surface charge as measured by 
Polybrene titration (Table V, in paper I). This observation is well in line with reported data on 
zeta potential.  Blute, Pugh, van de Pas, and Callaghan (2007) found that Bindzil® CC30 had a 
very low zeta potential (below -10 mV) in the pH range of 2-6 and significantly lower than that 
of the non-modified silica sol (Bindzil® 40/220) in the pH range of 6-11. Blute et al. also found 
that the low surface charge remained unchanged over time. 
 
The pre-hydrolysed silane was continuously added to the colloidal silica at a reaction temperature 
of 60 °C, a rate of about 1.4 molecules GPTMS per nm2 silica surface and hour and under good 
agitation. The comparison between the 29Si NMR spectra (Figures 3 and 4 in paper I) reveals a 
significant reduction in the ratio of silanol groups to bulk siloxane units (Q3/Q4) for a silica sol 
silylated with 1.4 molecules GPTMS per nm2 silica surface relative to a non-silylated sol with a 
particle size of 7nm. This reduced ratio indicates a covalent bond between the silane and the 
silica surface. The 29Si NMR spectra were de-convoluted and gave a ratio Q3/Q4 of 0.240 for the 
non-modified silica sol and 0.140 for the silylated silica sol. The change in the Q3/Q4 ratio, 
indicating a reduction of Q3 groups by 42%, corresponded fairly well to the drop in specific 
surface area by 38% (from 369 m2/g for the unmodified sol to 227 m2/g for the silylated sol).  
 
The epoxy-functional group and silane solubility of the silylated silica sol 
13C NMR confirmed that the alkaline conditions (pH of about 10) during the condensation 
reaction transformed the functional epoxy group of the silane to a diol group (Figure 5). This 
finding is consistent with reports that ring opening can take place under alkaline conditions 
(Riegel et al., 1998).  
 
Further, measurement of the content of free silane monomer by HPLC gave a monomer content 
of 2600 ppm at pH 10.9 for a silica sol with a particle size of 7 nm and silylated with 1.4 
molecules GPTMS per nm2 silica surface. In contrast, soluble silica, as measured by the 
ammonium heptamolybdate method, was found to be 960 ppm. On the other hand, when the pH 
of the sol was adjusted to about 8 by cation exchange, the monomer content was only about 280 
ppm, indicating silane solubility increases at alkaline pH. In the latter case the soluble silica was 
found to be 87 ppm, close to the theoretical value of a flat silica surface at room temperature. No 
free silane dimers or oligomers were detected by the HPLC analysis of the silane-modified silica 
sols. This finding strongly indicates that nearly all of the added silane had reacted with the silica 
surface because the total amount of added silane corresponds to 53 600 ppm of silane in the 
silylated sol.  
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Figure 5: 13C HR/MAS NMR spectrum of 7 nm silica sol silylated with 1.4 GPTMS per nm2 
silica surface (Bindzil® CC30). 
 
Effect of rate of addition and amount of silane on sol stability 
Lower rates of addition, typically about 0.6 silane molecules per nm2 added for a 2 h period at 
room temperature, result in clear stable sols. Even rates of addition as high as 1.4 molecules per 
nm2 particle surface area and hour at 60 °C result in clear stable sols. At very high rates of 
addition (e.g., 4.4 molecules per nm2 surface of the sol and hour at 70 ºC), precipitation of the sol, 
self-condensing of the silane, or both occurred. 
 
4.2. Titania Coating of the silica surface (paper II) 
Titanium dioxide (TiO2) is the principal white pigment because of its scattering power, which is 
superior to that of any other white pigment. It occurs in nature in the crystalline form rutile, 
anatase, and brookite. Rutile and anatase are manufactured in large quantities and are primarily 
used as pigments but also as catalysts and in the production of ceramics. 
 
Two processes, the sulphate process and the chloride process, are used to make TiO2 (Braun, 
Baidin and Marganski, 1992). The major objection against the sulphate process has been the 
amount of by-product gypsum it produces. The chloride process is considered a more 
environmentally friendly method of producing TiO2. In general, however, the environmental 
impact of TiO2 production is mostly a factor of the raw materials used, the effluent treatment 
processes, and the degree of by-product development a particular plant has.  
 
The scattering of light by TiO2 particles varies with particle size and reaches a maximum when 
the particle size is about one-half of the scattered wavelengths of light that are in the 250 to 300 
nm size range (Forrest, 2001). For maximum scattering efficiency, commercial TiO2 pigment 
should therefore be milled to a particle size narrowly distributed around a value in the 250 to 300 
nm size range, which is normally not done (Forrest, 2001). Further, the pigment particles should 
be well dispersed and not aggregated in order to give optimal light scattering performance 
(Auger, Barrera, and Stout, 2003). From environmental considerations, it is of interest to use raw 
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material as little as possible, which is available in limited supply and negatively affects the 
environment when it is refined to TiO2. Recently, there have been several papers discussing 
monodisperse nano-composites obtained by the deposition of titania onto silica cores (Li and 
Dong; Ryu, Kim, and Koo, 2003; Choi, Park, and Singh, 2005; Kalele et al., 2005). However, the 
titania source has been expensive titaniumalkoxides and/or the amount of titania coated onto the 
silica core has been relatively low. 
 
Therefore, an objective of the present investigation was to develop methods for coating silica 
core particles with TiO2 in an effort to obtain composite particles with well-defined and carefully 
controlled ratios between particle diameters and thickness of titania coating.  
 
Because the isoelectric point of silica is between pH 1.7 and 2.0, silica sols have a low surface 
charge at pH below 7 (Iler, 1979). If, however, negatively charged aluminosilicate sites are 
generated on the surface by heating the sols with sodium aluminate, the surface will remain 
negative at pH down to about 2. It is reasonable to assume that positively charged subcolloids or 
polycations of titania, existing only in quite acidic solutions, would adsorb more readily onto a 
negatively charged aluminate-modified silica surface than on an almost neutral, unmodified silica 
surface. To test this hypothesis silica particles with a diameter of 300 nm were heated with a 
sodium aluminate solution under conditions such that the silica surface contained 0, 0.6, or 1.5 
aluminosilicate ions per nm2 (sol 1A, 1B and 1C in Table 1). (For sample preparation and 
experimental methods, see also paper II.) Table 1 shows that the particles containing 1.5 
aluminosilicate sites per nm2 had the highest charge at pH 2.0 as determined from electrophoretic 
mobility measurements. Care had to be taken to measure the charge very soon after the pH of the 
sol had been adjusted to 2.0 because at this pH aluminium will begin to dissolve out from the 
particle surface. The table also shows that after charge reversal, accomplished by adding the 
silica sols to a solution of titanium tetrachloride of a pH below 1.5, the silica sol (2C) containing 
the high amount of aluminium per nm2 again had the highest charge but now positive, indicating 
that this surface adsorbed more positively charged titania species than the other silica sols, i.e. 2A 
and 2B, with 0 or 0.6 Al per nm2. Adjusting the pH of the dispersion of charge-reversed sol to 1.5 
(from about 1.4) and heating at 75 °C for about 10 min increased the charge on all three types of 
sol particle, but somewhat more for the particles containing most aluminium (3C). The titanium 
concentration in the aqueous phase of this silica sol was lower than in the other silica sols, 
indicating that particle surfaces having a high surface concentration of negative sites adsorb 
titania species more effectively compared with 4A-C.  
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Table 1: Electrophoretic mobility at pH 2.0 (m2*V-1*s-1*108). 
Step Silica sol (A)

 
not modified 
 

Silica sol (B) 
 
mod.0.6 Al nm-2

Silica sol (C) 
 
mod.1.5 Al nm-2 

 
1. Before charge  
 
    reversal   
 

  0.7 - 1.2   - 3.1 

2. After charge  
 
    reversal 
 

  2.1 2.6   4.3 

3. After pH adjustment     
    
 and heating to 75 °C 
 

  2.5 2.8   4.6 

4. Concentration TiO2  

  
   (ppm) in the super- 
    
    natants of the sols  
    
    from point 3 in this table. 

  880 638   230 

Sol A from step 1 is noted by 1A, and so on in the text. 
 
Figures 6-8 show that after coating the charge-reversed sol with titania, adding titanium chloride 
at a rate of 0.2 mmol TiO2/(h * m2) and in an amount corresponding to 233% titania based on the 
weight of silica while maintaining the pH at 1.5, the best result was obtained with the sol 
containing silica core particles with 1.5 Al-sites per nm2 surface. The particles are discrete and 
appear to be uniformly coated with a layer of titania (Figure 8). The particles with 0.6 Al-sites per 
nm2 surface seem to be somewhat less uniformly coated and somewhat aggregated (Figure 7). If 
no alumina is present on the particle surface, not all the added titania is deposited on the core 
particles but form secondary titania particles in the dispersion, which aggregate with themselves 
and with partially coated core particles (Figure 6).  
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Figure 6: SEM micrograph of a silica core with a particle diameter of 300 nm (not 
aluminate-modified core surface) coated at pH 1.5 with 233 % titania based on the weight 
of silica. 
 

 
 
Figure 7: SEM micrograph of a silica core with a particle diameter of 300 nm (aluminate-
modified core surface) 0.6 Al per nm2 coated at pH 1.5 with 233 % titania based on the 
weight of silica. 
 

 
 
Figure 8: SEM micrograph of a silica core with a particle diameter of 300 nm (aluminate-
modified core surface) 1.5 Al per nm2 coated at pH 1.5 with 233 % titania based on the 
weight of silica. 
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Coating of silica cores with titania has been suggested to take place by heterogeneous nucleation 
on the core surface (Hsu, Yu, and Matijevic´, 1993). The following mechanism for the reaction 
has been proposed and assumed that step five was the rate-determining step and that the rate of 
reaction increases rapidly with increasing pH (Matijevic´, Budnik, and Meites, 1977). 
 
Ti4+ + pOH- → Ti(OH)p

(4-p)+ ,                               (4) 
        +6                                                                                                      
 
                                                          
2 Ti(OH)p

(4-p)+ →  (2p-2)OH-  +               (≡E)          (5)  
  
 
 
E → H2O + ≡Ti - O - Ti ≡     (≡ F)                              (6) 
E + F → TiO2 crystals                                                (7) 
 
pH has been recognised (and also agitation) as an important parameter in the process of coating 
silica cores with titania (Kohlschütter, Getrost, Hörl, Reich, and Rößler, 1970). Following their 
lead, the effect of pH on the quality of titania coating on silica cores was investigated. Because 
the iep of titania is about 5.5 to 6.0, it follows that the positive charge on titania particles 
decreases with increasing pH (Barringer and Bowen, 1985). Aggregation that is due to 
diminishing electrostatic repulsion between the particles could therefore occur if coating takes 
place at pH values approaching the iep from the acid side. On the other hand, it has been reported 
that uniform coating of silica cores with titania is favoured by low ionic strength (Hsu et al., 
1993), which speaks against low pH where the ionic strength is high. Moreover, the solubility of 
titania increases with decreasing pH (Look and Zukoski, 1992), an event that could lead to 
substantial losses of titania through the ultrafiltration membrane used in the coating procedure. 
Obviously, one must find a pH at which the uniformity of the coating is maximised whereas 
losses of titania and aggregation are minimised. Thus, coating 300 nm aluminium silicate 
modified silica sols, 3C, using an addition rate of titanium chloride of 0.2 mmol h-1 m-2 and in an 
amount corresponding to 233 % titania based on the weight of silica, yielded a more dispersed 
system at pH 2.0 (Figure 9) than that at pH 1.5 (Figure 8). The concentrations of titania in the 
aqueous phase at pH 1.5 and 2.0 were 178 and 130 ppm, respectively, suggesting that the losses 
of titania at pH 1.5 were about 50 % higher than at pH 2.0, although at both pH values the losses 
were negligible (less than 0.4 % of the titania was lost through the microfiltration membrane at 
pH 1.5). A higher chloride concentration (e.g., solutions acidified with HCl) has been reported to 
yield a grainier surface of TiO2 particles. The particles in Figure 8 are grainier than the particles 
in Figure 9 (pH 2.0), a finding in accord with those of Look and Zukoski (1992).  

OH 
\  /    \  / 
Ti     Ti 
/ \    /  \ 

OH
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Figure 9: SEM micrograph of a silica core with a particle diameter of 300 nm (aluminate-
modified core surface) 1.5 Al per nm2 coated at pH 2.0 with 233 % titania based on the 
weight of silica.
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5. Applications of colloidal silica 
 
5.1. Applications of silane modified colloidal silica  
 
5.1.1. Silicate paint (paper III) 
Silicate paint is a traditional inorganic concrete paint using potassium silicate as a binder for 
inorganic fillers (e.g., clays and pigments such as titania and iron oxides). However, the solubility 
of the silicate binder of the paint in water is at first relatively high because of the high alkali 
content of the paint, but this problem is reduced over time by the reaction of the paint with 
calcium-rich surfaces (e.g., concrete surfaces) and the creation of insoluble calcium silicate 
species. Silicate mineral paints have several advantages (such as high durability because of their 
inorganic composition, scrub resistance, high vapour water permeability, resistant to mould and 
fungal growth because of their high alkalinity, odourless, non flammable, free of solvents and 
biocides, and environmentally friendly). Their major drawbacks are high water absorption and 
low flexibility. 
 
One way of reducing the solubility of the dried silicate paint binder in water and hence improve 
the weather resistance of the paint is to add a conventional silica sol to the potassium silicate 
binder, which increases the molar ratio of silica to the alkali of the binder. Conventional silica 
sols are currently being used in combination with potassium silicates as binders in wholly 
inorganic silicate paints (Heiberger and Schläffer, 2001; Rademacher, Pantke, and Wilhelm, 
2008). 
 
Adding conventional silica sols to the potassium silicate binders, however, reduces the stability 
towards gelling and the film-forming properties of the binder. These drawbacks can be minimised 
by using silane-modified colloidal silica. Table 2 shows that stability toward gelling is 
significantly improved by silane modification. 
 
Table 2: Viscosity for silicate-silica sol mixtures. 
No.  Molar ratio:

SiO2/K2O 
Silica sol :  
Non-surface modified, dp: 7 nm 

Silica sol:  
 Silane modified dp: 7 nm 

Viscosity 
(mPas), 1 week

Viscosity (mPas), 
2 weeks  

Viscosity (mPas), 
1 week 

Viscosity 
(mPas), 2 weeks

1 5.0 1287 Gel 19 131 
2 6.0 14 Gel 6.6 10 
3 7.0 6.7 Gel 4.2 5.1 
4 8.0 4.8 Gel 3.5 3.8 
5 9.0 4.0 Gel 2.9 3.0 
6 10.0 3.7 Gel 2.8 2.9 
7 11.0 3.3 31  2.6 2.8 
8 12.0 3.1 13 2.5 2.5 
 
 
The film forming properties of silicate binders deteriorate with increasing ratio.  When a silica sol 
has been used to increase the ratio of the binder, silane-modified sol, in comparison with a 
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conventional sol, yields somewhat improved film-forming properties. Poorer film-forming 
properties at higher ratios may be rectified to some extent by the addition of a wetting agent* 
(Table 3 and paper III).  
 
Table 3: Film properties for silicate-silica sol mixtures. 
No. Molar Ratio: 

SiO2/K2O 
Colloidal silica - 
Silane modified 

Colloidal silica non- 
surface modified 

1 5.0 Film Film 
2 6.0 Film Film 
3 7.0 Film Film 
4 8.0 Film No film* 
5 9.0 Cracks* No film* 
6 10.0 No film* No film 
7 11.0 No film No film 
8 12.0 No film No film 
*: Film was formed when wetting agent was added. 
The water resistance is normally improved when the molar ratio SiO2/K2O is increased (i.e. lower 
alkali content). As shown in Table 3, at a given molar ratio, silane-modified colloidal silica 
improves the water resistance relative to non-modified colloidal silica.  
 
Table 4: Water resistance of film from silicate-colloidal silica mixes. 
No. Molar Ratio: 

SiO2/K2O 
Colloidal silica - 
Silane modified 

Colloidal silica non- 
surface modified 

1 5.0 0 0 
2 6.0 0 0 
3 7.0 1-2 1 
4 8.0 2 --- 
5 9.0 --- --- 
6 10.0 --- --- 
7 11.0 --- --- 
8 12.0 --- --- 
----: No film   0: Film “dissolved”. 1: Severe impact on the film.  
2: Some impact on the film  3: No impact on the film. 
 
Another property that can be enhanced by using silane-modified colloidal silica in silicate paint is 
dirt pick-up resistance. Recent findings (De Lame, Clayes, Greenwood, and Lagnemo, 2009) 
indicate that a dramatic improvement, from 0.39 to 0.95, in dirt pick-up resistance could be 
achieved when replacing 2/3 of the potassium silicate binder with silane modified colloidal silica, 
Bindzil® CC30, on dry base, as indicated by Figure 10 below. In addition, De Lame et al., (2009) 
found that stress forces during drying were significantly lower for paint formulations containing 
silane modified silica sols. 
        



18 
 

 
 
Figure 10: Surface aspects for the different systems after dirt pickup (De Lame et al., 2009). 
 

5.1.2. Pigment dispersant (paper III) 
The surfactant effects of silica sols are well known and thus may be used as a dispersing agent in 
the manufacture of certain organic copolymers (Iler, 1979) 

More recently, colloidal silica has been shown to be an excellent dispersant for TiO2 pigments 
(Bolt, 1999). Silica sol is added to the pigment slurry to coat the surfaces of the TiO2 particles 
with discrete particles of silica. In applications of this kind the silica particles are introduced into 
a system of high solids content and the stability toward gelling of the silica particles may be low. 
The problem of stability may be aggravated by the presence of electrolytes in the system. In 
contrast to conventional colloidal silica, silanes modified silica sols give good pigment spacing 
and have high dispersing power even in systems of high solid content, as indicated by Figure 11.  

 
 

Figure 11. TEM Micrograph: Titania pigment dispersed by 5 nm silane modified silica sol 
(pigment paste number 1, see paper III). 
 
Using silane-modified colloidal silica as a dispersant, pigments pastes containing 75 % by weight 
TiO2 could be prepared with improved stability and fluidity as compared with using conventional 
silica sols as dispersing aids.  
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In general, all things being equal, the stability of colloidal silica decreases with increasing 
specific surface area, i.e. decreasing particle size, which is also the case when silica sols are used 
as dispersing agents in pigment pastes. It is, however, desirable to use small particles rather than 
larger ones as dispersants for pigments because they cover the surface of the big pigment 
particles more efficiently (Hansen and Matijevic, 1980). For paste and film preparation, see paper 
III.  
 
The stabilising effect of silane-modified silica sols as dispersants in TiO2 pastes is twofold. On 
the one hand, compared with conventional silica, silane-modified silica significantly improves the 
stability toward gelling of the sol, even in environments of high solids content. On the other, 
good dispersion of the pigment requires that there are enough silica particles present to cover the 
surface of the TiO2 particles with a surface coverage exceeding a certain critical value. Tables 5 
and 6 show that stable pigments pastes require that the silane modifications of the silica 
dispersants correspond to at least 1 molecule of GPTMS/nm2 particle surface. Specifically, the 
stable pastes number 1, 2, 4, 13, and 15 show that the degree of surface modification of the silica 
sols is at least 1 molecule of GPTMS/nm2 and that the surface coverage of titania particles with 
silica particles exceeds 100 %. 
 
Table 5: Dispersant used for and notes about the pigments pastes. 

*: Paste No 12 had a titania content of 78 %.

Paste 
No. 

Sol particle size and degree of silane 
modification (GPTMS/nm2 surface) 

Paste stability 

1  5 nm, 2.0 Stable low viscous paste after 9 days 

2  5 nm, 1.0 Stable for 1 day, thereafter thixotropic 

3  4 nm, 0.7 Gels after 1 day 

4  4 nm, 1.4 Stable for 1 day, thereafter thixotropic 

5 5 nm, no silane Gels during paste preparation 

6 7 nm, no silane Gels during paste preparation 

7 7 nm, 1.4 Gels during paste preparation 

8 12 nm, no silane Gels during paste preparation 

9 12 nm, 1.7 Gels during paste preparation 

10 Dispex 40 N, 0.53 % on TiO2 (reference) Thixotropic after 1 day, phase 
separated after 9 days 

11  5 nm, 2.0 Thixotropic paste after 3 h 

12*  5 nm, 2.0 Gels during paste preparation 

13  5 nm, 2.0 Stable low viscous paste after 6 days 

14 12 nm, no silane Gels during paste preparations 

15 12 nm, 1.7 Stable low viscous, fluid after 26 days.
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Although the stability of the pastes treated with silane-modified silicas improved significantly, all 
the pastes studied in Table 6 were found to settle with time. After 7.5 months, they had all formed 
sludge at the bottom.  

However, the sludges containing silane-modified silicas in required amounts could readily be re-
dispersed. The other pastes, including paste number 10 containing Dispex N40 with a surface 
coverage of 165 %, were much more difficult to re-disperse.  
 

 Table 6: Silica Surface coverage of titania pigments particles of 300 nm particle size. 

*: Assuming1.2 monomers/nm2 titania pigment for full surface coverage corresponding to an 
adsorption of 0.7 mg Dispex N40 per m2 of pigment surface (Boisvert, Persello, Foissy, Castaing, 
and Carbane, 2000; Boisvert, Persello, Castaing, and Carbane, 2001) 

 

 

 

 

Paste 
No. 

Number of silica 
particles needed for full 
surface coverage of one 
pigment particle, Nmax 

Weight per cent 
silica dispersant 
needed for full 
TiO2 pigment 
coverage 

Weight per cent 
added of silica 
dispersant based 
on TiO2 

Pigment surface 
coverage in per 
cent of full mono-
layer coverage 

1 13492 3.19 4.47 141 

2 13492 3.19 4.47 141 

3 20943 2.54 4.47 176 

4 20943 2.54 4.47 176 

5 13942 3.19 4.47 141 

6 6973 4.53 4.47 99 

7 6973 4.53 4.47 99 

8 661 17.3 4.47 26 

9 661 17.3 4.47 26 

10 ----- 0.32* 0.53 165 

11 13492 3.19 1.49 47 

12 13492 3.19 3.83 120 

13 13492 3.19 4.47 141 

14 661 17.3 20.0 116 

15 661 17.3 20.0 116 
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Pigments particles must be well dispersed and not aggregated to give optimal light-scattering 
performance (Auger et al., 2003). For maximum scattering efficiency, commercial TiO2 pigments 
should therefore be milled to a particle size narrowly distributed around a value in the range 250 
to 300 nm (Forrest, 2001). Silane-modified colloidal silica as a dispersing agent can enhance 
pigment efficiency compared with the conventional polyacrylate-based dispersing agent Dispex 
N40.  Figure 12 shows that sample paste number 1(blue), dispersed with 5 nm silica particles and 
modified with 2 molecules of GPTMS/nm2 particle surface, scattered light much more efficiently 
than the reference paste number 10 (red) containing 0.53 % Dispex N40 based on titania – the 
dosage recommended by the supplier. The relative enhancing effect on the reflectance is about 
50-60% and constant over the range of solids contents. Thus, a 10 % silica dispersed paste 
scatters light as effectively as a 15 % Dispex N40 dispersed paste and a 35 % silica dispersed 
paste reflects light as effectively as a 50 % Dispex N40 dispersed paste.  
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Figure 12: Reflectance (%) versus titania content, λ: 300 nm - 700 nm. Coatings based on 
pigments pastes number 1 and 10. 
 
For a given degree of silane modification, the improvement in pigment efficiency increases with 
decreasing particle size down to about 5 nm, corresponding to a specific surface area of 500 m2/g. 
Figure 13 shows that 4 nm particles with a specific surface area of 750 m2/g scattered light 
somewhat less efficiently over most of the range of solids contents but at 40% solids and above 
the reflectance dropped sharply, probably because of aggregation that is caused by the very small 
particle size.  

For a given particle size, and independent of particle size, the stability of the pastes to 
aggregation, and as a consequence also the reflectance, increases with increasing degree of silane 
modification, reaching a plateau at between 1 and  2 GPTMS/nm2. 
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Figure 13: Reflectance (%) versus titania content, λ: 300 nm - 700 nm. Coatings based on 
pigments pastes number 1 and 4. 
 
Degree of dispersing energy and level of dispersant 
Water is by far the most common dispersing medium in titania pigments pastes. Titania powder is 
added to water containing a dispersing agent and the slurry that results is agitated by powerful 
dispersers. Using a conventional dispersing agent, such as Dispex N40, considerable input of 
energy is required to bring about complete dispersion of the titania, i.e. a paste in which each 
titania particle of about 300 nm is surrounded by dispersant molecules and completely separated 
from the other titania particles in the paste. A minimum amount of energy is required to obtain a 
completely dispersed paste. 
 
With silane-modified colloidal silica as a dispersing agent, however, much less energy is needed 
to obtain a completely dispersed paste. It is well known that silanes (e.g., gamma-
glycidoxypropyltrimethoxysilane) readily react with the OH groups on the surface of titania 
particles. Therefore, we speculate that the reason for silane-modified colloidal silica being more 
effective dispersants for titania pigments is that the silica particles adhere more strongly to the 
titania surfaces than conventional dispersants, which are hydrogen-bonded to the surface of the 
pigments. In addition to forming hydrogen bonds with the titania surfaces, the silica particles may 
form chemical bonds with the surfaces when silane molecules, chemically attached to the silica 
surfaces, react with hydroxyl groups on the titania surfaces. 

In a well dispersed titania pigment paste with high titania content the optimal average size of a 
spacer/extender component of the particles is about 5-30 nm depending on the titania content 
(Braun, 1988). The particles constantly bump into each other but are prevented from associating 
or aggregating by the steric stabilisation provided by the dispersant. 
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Silane-modified silica sols provide much more effective steric stabilisation than conventional 
dispersing agents (such as Dispex N40) because the silica particles are much larger than the 
dispersant molecules, i.e. they are much larger “spacers”. 

For a given particle size, say 5 nm, silane-modified sols can be prepared with 20-25 % higher 
solid contents compared with unmodified particles, indicating that silane modification weakens 
interactions between the silica particles (see paper I). It is therefore to be expected, and we have 
shown it to be the case in this investigation, that for a given solids content, pastes dispersed with 
silane-modified sols have less tendency to settle and form hard sludges than pastes dispersed with 
dispersing agents such as Dispex N40. 

Moreover, 5 nm silica particles modified with 1 to 2 GPTMS/nm2 may be the optimum 
dispersing agent for titania pigments. With larger particles, stable pastes cannot be prepared with 
the highest solids contents because the pigment particles will be less densely packed. With 
smaller particles, the stability toward aggregation and settling will be compromised. 

 
5.1.3. 2-k and curable lacquers (paper IV) 
In the past, there have been numerous investigations on the use of silica nano-particles in resin-
based systems. Water-free systems of silane modified colloidal silica particles have been found to 
enhance mechanical properties of coatings (Vu, La Ferté and Eranian, 2005; Chisholm and 
Resue, 2003). Silane modified fumed silica has been used to enhance coating properties (Bauer et 
al, 2004) and organosols have been used to improve scratch resistance in clear coatings by 
surface enrichment (Anderson et al, 2002). Aqueous colloidal silica has been used in co-
polymerisation of resins (Percy et al, 2000) and co-polymerised colloidal silica resin hybrids are 
also used to enhance a variety of coating properties, including hardness, anti-blocking, and 
reduced dirt-pickup (Leuniger, Tiarks, Wagner, and Wiese, 2006). Silica particles made from 
TEOS have recently been investigated in co-polymerisation of hybrid coatings where hardness 
and adhesion properties were found to be improved (Yeh, Weng, Liao, and Mau, 2006). Non-
surface modified colloidal silica has been tested as nano-filler in latex coatings with encouraging 
results concerning mechanical properties (Oberdisse, 2002).  In addition silane modified silica 
sols have been used in polymerisation of styrene and acrylic polymers, (Schmid, Tonnar, and 
Armes, 2008; Schmid, Armes, Carlos, and Galembeck, 2009; Schmid, Scherl, Armes, Carlos, and 
Galembeck, 2009). However, there have been very few studies done on the use silane modified 
water-based colloidal silica used in formulations of waterborne coatings.  
 
Recently, there has been great interest in such particles in waterborne lacquers since they often 
provide benefits such as anti-blocking and “anfeuerung” in acrylic emulsion-based wood 
coatings. It is also very desirable to improve mechanical properties, such as hardness and 
abrasion resistance, in coatings without affecting appearance (e.g., gloss and haze) in a negative 
way. To this end, highly cross-linked systems such as two-pack or 2-k, systems are often 
required. Addition of colloidal silica dispersions to waterborne lacquers provides coatings with 
excellent mechanical properties.  
 
It has been reported in the literature that colloidal silica in water-based wood coatings comprising 
colloidal silica, organosilane, and latex emulsion can penetrate into the wood substrate (De Lame, 
2005). As indicated in Figure 14, that the addition of epoxysilane-modified 7 nm silica particles 
to waterborne one-pack coating formulations containing acrylic binders enhance and complement 
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the wood grain structure by “anfeuerung”, giving an appearance similar to solvent-based coating 
systems. This valuable aesthetic effect can be expected to be present also with waterborne two-
pack coating systems based on acrylic binders to which silica particles have added, combined 
with the excellent mechanical properties characteristic of such systems. 
 

 

 
Figure 14: 1-pack water-based lacquer formulated on acrylic resin without (left) and with 
(right) 20% SiO2 addition of epoxy-silane modified colloidal silica. 
 
Concentrated epoxysilane-modified colloidal silica in the form of aqueous sols is one of most 
readily available sources of nano-particles for the coating area. Such sols are characterised by 
high solids content, least 30 % by weight of silica depending on particle size, which ranges from 
about 5 nm to 100 nm. Compared with conventional silica sols, silane modified colloidal silica 
has greater stability toward aggregation and gelling, both as is and in latex-based coating 
formulations.  
 
Finally, from an environmental point of view, it is advantageous to use colloidal silica in latex-
based coating formulations. This is because less resin will be needed in that it is partially replaced 
by silica, with accompanying lower amounts of VOC. Softer resins can be used since silica 
addition will improve their mechanical properties to the level of those of harder resins obviating 
the use of potentially hazardous film-forming agents such as NMP or glycol ethers. Addition of 
silane modified silica sol into two-pack coating formulations, product weights are given in 
grammes, are exemplified by Tables 7 and 8. For additional details, see paper IV.  
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Table 7: Two-pack coating formulation based on Bindzil® CC30 and Setalux 6510. 
Formulation A    Reference 10 % SiO2   20 % SiO2 
C1 Setalux 6510     100   100   100 
Solvesso 100      2.14   2.14   2.14 
Butyl acetate      5.19   5.19  5.19 
Butyl glycol acetate     4.66   4.6   4.6 
TINSTAB BL 277 (1% ds Solvesso 100) 1.00   1.00   1.00 
Bindzil® CC30     0   14.48   14.48 
 
C2 Rhodocoat X EZ-D401    43.17   43.17   43.17 
 
Table 8: Two-pack coating formulation based on Bindzil® CC30 and Setalux 6510. 
Formulation B    Reference 10 % SiO2   20 % SiO2 
C1 Setalux 6511     100   100   100 
Butylglycol      1.96   1.96   1.96 
Butyl acetate      2.83   2.83   2.83 
Butyl glycol acetate     0.84   0.84   0.84 
TINSTAB BL 277 (1% ds Solvesso 100) 1.00   1.00   1.00 
Bindzil® CC30    0   16.21   32.42 
 
C2 Rhodocoat X EZ-D401    48.09   48.09   48.09 
 
There is little or no change in gloss or even an increase in gloss upon silica addition, indicating 
good compatibility of the silica with the resin for formulations A and B as can be seen in Table 9. 
 
Table 9: Gloss 20° /Haze index (Gloss 60° - Gloss 20°) in gloss units, GU 
Formulation  Reference  10% SiO2  20% SiO2 
No A   127/57  130/56   112/8 
No B   108/60  99.2/57  129/50 
 
There is no proportionality between the amount of added inorganic particles and the property 
response. To achieve good improvement in hardness it is important to have good 
interaction/cross-linking between the resin and the silica particle as well as to build a structure, 
such as a skeleton, of silica in the resin matrix. In such cases it is possible to significantly 
improve the mechanical properties even at low silica additions as indicated in Figures 15 and 16. 
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Figure 15: Formulation A. Persoz hardness in function of coating composition and 
drying time at ambient temperature. 
 

 
 
Figure 16: Formulation B.  Persoz hardness in function of coating composition and 
drying time at ambient temperature. 
 
Although it is quite dependant on the type of resin, the effect of silica on abrasion resistance is 
not clear. For formulation A, there is improvement at 10 % but some deterioration at 20 % 
addition of silica. For formulation B, the reverse is true. Basically, one would like to say that 
abrasion resistance increases as the energy required to tear the resin apart, i.e. the energy at break, 
increases. There are, however, many other factors, including surface enrichment of the filler 
particles, the effect of the filler particles on the friction coefficient, and clustering of the particles 
to large aggregates in the resin that affect abrasion resistance in a major way.  
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Table 10: Taber Abrasion resistance – weight loss mg (ASTM D4060). The test was 
performed after 30 days of drying at ambient temperature. An abrasive wheel, CS17, under 
1 kg load was used. 
Formulation Reference 10 % SiO2 addition 20 % SiO2 addition 

Number of revolutions Number of revolutions Number of revolutions
100 500 1000 100 500 1000 100 500 1000 

No A 3 33 60 2 17 37 3 33 64 
No B 3 37 83 2 40 88 3 33 68 

 
Silica structure in the resin matrix – Effect on hardness and abrasion resistance. 
Transmission electron microscopy has been used to visualise the structure of the inorganic part 
embedded in the organic matrix. In Figures 17 and 18, the structure of the inorganic part 
embedded in Setalux 6510 (formulation A) varnish with 10 and 20 wt-%, SiO2 based on dry resin 
of Bindzil® CC30, respectively, are displayed. In Figures 19 to 20, the Setalux 6511 (formulation 
B) varnish with 10 and 20 wt-% SiO2 based on dry resin of Bindzil® CC30 are presented.  The 
resin – air interface cannot be seen in the pictures but it extends in from about the midpoint of the 
upper edge to the lower left corner in Figure 17; from below the midpoint of the left edge of the 
picture to somewhat to the right of the lower edge in Figure 18; and from well to the right of the 
midpoint of the upper edge in Figure 19 to about the midpoint of the left edge of the picture. No 
interface can be seen in Figure 20.  
 
Formulation A  
Figures 17 and 18 show that the particles are not accumulated at the resin-air interface. They are 
moderately aggregated and the aggregates are somewhat larger at 20 % addition of silica than at 
10 % addition. The Perzos hardness increases with increased addition of silica, whereas there is a 
significant improvement of the abrasion resistance only at 10 % addition of silica, whereas 20 % 
addition affects the abrasion resistance only in a minor way.  

 
 
Figure 17: Formulation A with 10% SiO2.  
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Figure 18: Formulation A with 20% SiO2. 
 
Formulation B 
Setalux 6511, like the resin, Setalux 6510, in formulation A is an acrylic polyol and the silica 
particles are not accumulated or enriched at the binder-air interface. However, in contrast to the 
situation with first resin, Figures 19-20 show that the silica particles have clustered around 
droplets, most likely of the polyisocyanate hardener, perhaps preventing them from reacting 
effectively with the binder. There is no enhancement of the abrasion resistance at 10 % and only 
modest improvement at 20 % silica addition on resin, as might be expected from poor interaction 
between the silica and resin. On the other hand, the effect of the silica particles on the Persoz 
hardness, small or non-existent at 10 %, is quite large at 20 % addition of silica. The increase in 
hardness of the resin by the larger aggregates of silica particles at 20 % silica addition may 
therefore be analogous to the observation that aggregation of nano-particles leads to increase in 
Young’s modulus, especially by creating some occluded volumes in the matrix which augment 
the effective fraction of nano-filler (Reynaud, 2000).  
 

 
 
Figure 19: Formulation B with 10% SiO2. 
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Figure 20: Formulation B with 20% SiO2. 
 
5.2. Applications of conventional colloidal silica 
 
5.2.1. Cementitious applications (paper V) 
Already in ancient times, it was known that the reaction between calcium oxide, also called lime 
or quicklime, and water could yield a binder in building construction. The Etruscans, for instance, 
added water to lime to form calcium hydroxide, or slaked lime, which they mixed with sand and 
stone into what today would be called a primitive concrete. The Romans discovered a way to 
improve cement making by burning a mixture of volcanic ash, which essentially consisted of 
silica and lime. The many impressive constructions that have lasted to our own time testify to the 
durability of their cement. 

 
However, the Roman cement technology fell into oblivion and high quality cement became 
available first in 1824 when the Englishman, Joseph Aspdin, invented Portland cement, or 
modern cement. Modern cement is made by grinding a mixture of limestone and clays, with a 
weight ratio of about 80 to 20, and several other minor components with water to a slurry. This 
slurry is passed down a rotating kiln and first loses water and then carbon dioxide as the 
temperature gradually increases downward the kiln. In the last temperature zone, where the 
temperature is 1200 to 1500 °C, the material sinters and melts to clinker. After cooling, the 
clinker is ground, together with a small amount of gypsum, which controls the reactivity of the 
cement with water, into a fine powder (Cotterill, 1985). The specific surface area of the particles, 
normally measured by air permeability (Keyes, 1946), e.g., on a Blaine apparatus, which is 
inversely proportional to particle size, determines the rate of reaction when water is added to the 
powder. The different grades of commercial cement powder are usually given designations that 
indicate how rapidly the cement paste becomes rigid and gains strength. Table 11 shows the 
composition and specific surface area of three common grades of Swedish cement. 
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Table 11: Composition and specific surface area of three Swedish cements (courtesy of 
Euroc Research AB).  

Compound OPC Sl OPC Sk SRPC D 
CaO     ( % ) 62.2 64.3 54.6 
SiO2     ( % ) 20.0 19.8 21.6 
Al2O3   ( % ) 4.53 5.21 3.46 
Fe2O3  ( % ) 2.23 3.04 4.75 
K2O    ( % ) 1.42 1.30 0.75 
MgO    ( % ) 3.37 1.45 1.02 
Na2O   ( % )  0.11 0.06 
Blaine   ( m2/kg ) 363 400 323 
Manufacturer: Sl=Slite, Sk=Skövde, D=Degerhamn  
OPC: Ordinary Portland Cement 
 SRPC: Sulphate Resistant Portland Cement 
 
The metals oxides in Table 11 are not present as such in cement powder but instead as four major 
compounds: alite, 3CaO*SiO2, 50-70 % by weight; belite, 2CaO*SiO2, 15-30 % by weight; 
aluminate, 3CaO*Al2O3, 5 -10 % by weight; and ferrite, 4CaO*Al2O3*Fe2O3, 5-15 % by weight 
(Taylor, 1997). Small amounts, a fraction of a percent usually, of free lime, magnesium oxide, 
sodium sulphate, and potassium sulphate are also present. These trace compounds can influence 
the final properties of the material (e.g., concrete) to a much higher degree, and sometimes in a 
negative way, than their abundance in the cement powder might suggest. Gypsum, which is 
added when the clinker is ground to a powder, is present in amounts between 2 and 5 % by 
weight. 
 
Modern cement (e.g., Portland cement, OPC) contains more components and is a much better 
binder than the primitive cement. Another important difference between Portland cement and the 
primitive cement is that the former will set and harden under water. Cement paste, i.e. a slurry of 
cement powder and water is usually mixed with sand or stone when it is used in building 
construction. The term sand refers to particles smaller than 2 mm and the term stone refers to 
particles larger than 2 mm. A mixture of inorganic materials, which may include sand and stone 
and having a particle size distribution ranging from about 0.01 mm to 100 mm, is called an 
aggregate (Bergqvist and Sandra, 1999). Mortar is a mixture of cement paste and sand. If 
aggregate is added to cement paste, the mixture is called concrete. The weight ratio of cement 
paste to aggregate in concrete is usually in the range up to 1:6. Concrete may contain additives, 
such as setting and hardening additives, usually called accelerators, or workability additives, 
usually called superplasticiser. The worldwide production of cement amounts to about 2.5 billion 
metric tons per annum (Komiyama and Kraines, 2008). 
 
Silica in cement 
For reasons of utilising waste materials and decreasing overall energy consumption, certain 
inorganic materials, called mineral additives, such as fly ash and ground granulated blast furnace 
slag are added to the cement paste. Mineral additives take part in the hydration reaction and 
thereby make a substantial contribution to the hydration product. For reasons of obtaining 
durability and strength above the normal range, silica in the form of silica fume or colloidal silica 
is being used. Cement containing mineral additives is often called composite cement. 
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Silica fume in cement 
Silica fume is a by-product, in the form of a very finely particulate powder, of the production of 
silica or silica alloys in an electric furnace. High-quality silica fume consists of spherical 
particles, which have a density of about 2200 kg/m3 and a BET specific surface area of about 18 
m2/g and an average particle size from about 300 nm to 400 nm (Papadakis, 1999). The chemical 
composition of silica fume is shown in Table 13. 
 
Table 13: Chemical composition of silica fume. Adapted from Rahhal, Cabrera, Talero, and 
Delgado, 2007. 
Compound %,weight Compound %,weight 

SiO2 92 MgO 0 

Al2O3 0.7 K2O 0 

Fe2O3 0.4 Na2O 0 

CaO 0 SO3 0.1 

 
Silica fume, like other mineral additives, has pozzolanic activity, i.e. it reacts with Ca(OH)2, 
formed during the hydration of alite and belite, (see Table 57.2 in paper V) and produces more 
calcium-silicate aquagel, the actual binder material in cement. However, being made in high heat, 
the surface of the silica fume particles contains very few hydroxyl groups, or silanol groups, 
which are necessary for reaction with water and calcium hydroxide. It will therefore take some 
time before the particle surface has become re-hydroxylated in the warm, highly alkaline 
environment of the cement paste and the pozzolanic activity of silica fume typically reaches a 
high value first in the period 7-14 days after mixing. 

The fine particles of silica fume fill spaces between clinker grains, producing a denser paste. It 
also densifies the interfacial transition zone between cement paste and aggregate, which increases 
strength and lowers permeability. Papadakis, (1999) investigated the effect of adding between 5 
and 15 % by weight of silica fume to concrete and found that the compressive strength increased 
by 10 % at 5 % addition and by 20 % at 15 % addition. 

 
Colloidal silica in cement 
In contrast to silica fume, or micro silica, the surface of the particles of colloidal silica is fully 
hydroxylated and contains 4.6 OH silanol groups per nm2. This fact, together with the much 
higher specific surface area, makes the pozzolanic activity of colloidal silica much higher than 
that of silica fume (Campillo, Dolado, and Porro, 2003). Wagner and Hauck (1994) mixed 15 nm 
colloidal silica with cement paste and noted a significant increase compared with a reference 
paste without colloidal silica of the early strength, i.e. the early strength development during the 
first 1-7 days. In fact, others (Skarp and Sarkar, 2001) pointed out that ultrafine silica particles 
will harden the cement paste very fast because most of the available water is consumed in the 
early stage of gel formation, which is due to the very high pozzolanic activity of colloidal silica. 
The resulting high early strength, however, is gained at the expense of low final strength as 
caused by the pore structure created during the very rapid early gel formation. On the other hand, 
they claim that this problem that is caused by excessively high pozzolanic activity of colloidal 
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silica has been solved and they report that small amounts of colloidal silica added to the concrete 
mixture, 0.15-0.20 % silica based on the weight of the cement, significantly increased the final 
strength, reduced the chloride ion permeability, and increased the sulphate resistance of the 
concrete. The properties of the colloidal silicas used are given in Table 14. Accelerating effects, 
especially in early hydration, in cement upon addition of small amounts of colloidal silica have 
also been confirmed by others (Björnström Martinelli, Matic, Börjesson, and Panas, 2004) where 
the silica particles are believed to act as nucleation sites for the C-S-H gel. 
 
Table 14: Physical Properties of Colloidal Silica. (Skarp and Sarkar, 2001). 
Product Sp. Surface 

Area, m2/g 
Solids, % Average Particle 

Size, nm 

A 400 24 35 

B 80 50 45 

Had the sols contained spherical particles of uniform size the particle sizes of sols A and B would 
have been 7 nm and 34 nm, respectively. Instead, the average particle sizes are considerably 
higher, more so for A than for B, indicating that the sols are polydisperse, sol A being the most 
polydisperse and containing the smallest particles. The cement pastes, with or without colloidal 
silica, had a water to cement ratio of 0.35 and contained sulphonated naftalene formaldehyde 
resin (NSF) superplasticiser. The colloidal silica was added to the concrete mixture after the 
superplasticiser in order to minimise premature gelling. The compressive strengths of the 
concrete samples are listed in Table 15. 
 
Table 15: Effect of Colloidal Silica on the Compressive Strength (psi) of Concrete. Adapted 
from Skarp and Sarkar, 2001. 
Type Silica SiO2, % 1 Day % Increase 7 Days 28 Days % Increase 
-(Sample1)) - 4,300 - 6,840 8,680 - 
A(Sample2) 0.15 5,300 23 8,010 9,680 12 
B(Sample3) 0.15 5,580 30 8,030 9,840 13 
B(Sample4) 0.20 4,470 4 8,280 9,970 15 
 
Addition of colloidal silica increases the 1 day strength by up to 30 % and the 28 days strength by 
up to 15 %. Colloidal silica of type B may be somewhat more effective than type A, although the 
increase of the 1 day strength is only 4 % at 0.20 % of type B as compared with 30 % at only 0.15 
% of the same type of silica sol. Obviously, judicious choice of the average particle size and the 
particle size of silica sols make it possible to fine-tune the pozzolanic activity of the silica so that 
significant increases of both the early stage strength and the final strength of the concrete can be 
accomplished. Tables 16 and 17 show that the addition of colloidal silica to a concrete mixture 
substantially reduces chloride ion permeability and enhances sulphate resistance. 
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Table 16: Effect of Colloidal Silica on the Chloride Ion Permeability of Concrete (28 days). 
Adapted from Skarp and Sarkar, 2001. 
Silica, % 0 0.1 0.15 0.20 

Chloride ion 
permeability, 
coulomb 

 
3600 

 
3200 

 
2400 

 
1700 
 

 
Table 17: Effect of Colloidal Silica on the Sulphate Resistance of Concrete. Adapted from 
Skarp and Sarkar, 2001. 
Weeks Control 

% expansion 
Sol A, 0.13 % SiO2, 
% expansion 

Sol B, 0.13 % SiO2 
% expansion 

4 0.01 < 0.01 < 0.01 
8 0.021 <0.01 < 0.01 
12 0.036 0.015 0.014 
16 0.050 0.017 0.016 

 
Greenwood, Bergqvist, and Skarp, (2003) showed that the smaller particles in the sol provided 
most of the sulphate resistance, whereas the larger particles provided the chloride resistance, but 
the two particle size regions appeared to interact and gave rise to a significant synergism. 
 
The availability of modern workability additives (e.g., superplasticiser such as polycarboxylates) 
has made it possible to develop highly fluid concrete, HFC, which does not bleed or segregate in 
use. Self-compacting concrete, SCC, (in the USA: self-consolidating concrete) is a particular type 
of HFC, which achieves significant benefits and advantages in many types of construction. Thus, 
by using SCC, it is possible to fill the mould completely and uniformly, even moulds of difficult 
and complicated shapes. There is no need to vibrate the material to eliminate voids and holes 
formed when conventional, often sluggish concrete is poured into the form. Moreover, the quality 
of the concrete surface is often very good, minimising the need for expensive and time-
consuming after treatment. 
 
Skarp and Sarkar (2001), however, pointed out that poor stability, i.e. bleeding or segregation and 
loss of workability are two main concerns when working with SCC. A concrete mixture is said to 
be workable if it can be maintained in fluid form until the casting moment. The term workability 
time is defined as the time the concrete mixture remains workable. They attribute the instability 
to deficiencies in mix design and the loss of workability to incompatibility between the cement 
and the superplasticiser. 
 
Greenwood, Bergqvist, and Skarp, (2002) showed that small amounts (0.2 % by weight of SiO2) 
of colloidal silica of small particle size, corresponding to a specific surface area of 900 m2/g, 
significantly increased the workability time of concrete mixtures containing polycarboxylates as 
superplasticiser. It required much larger amounts of colloidal silica of larger particle size, 
corresponding to a specific surface area of 80 m2/g, 1.25 % by weight of SiO2, or of fumed silica, 
10 % by weight of SiO2, to achieve the same results. In contrast to the control that contained no 
silica, the concrete mixtures containing either colloidal or fumed silica showed no bleeding. 
These findings indicating the high activity for colloidal silica relative (e.g., silica fume) have 
been confirmed by others (Collepardi, Ogoumah Olagot, Skarp, and Troli, 2002; Thomas, 
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Jennings, and Chen, 2009). Additionally, silica sols have been found to offset some of the 
retarding effects of the cement reactions from the addition of polycarboxylate superplasticiser, 
(Björnström and Panas, 2007). 
 
Improved concrete through modified silica sols 
Aluminium-modified sols, compared with unmodified sols of the same specific surface area, as 
additives in concrete mixture containing polycarboxylates as superplasticiser achieved not only 
increased workability time but also improved strength (Greenwood, Bergqvist, and Skarp, 2004).  
 
5.2.2. Paper-making (paper V) 
Different paper machines have various configurations at the wet end of the machine (Figure 21 
shows a schematic representative setup). In the mixing chest fibres and paper chemicals are 
mixed to an aqueous slurry (the furnish) containing about 0.5-2 % fibre. Some of the chemicals 
may be added at a later stage, e.g., to the machine chest or before, or into a pump. From the head 
box, the furnish is filtered on a wire screen, where the fibres adhere weakly to one another. When 
more water is removed from the mat formed on the screen by suction, the sheet becomes 
stronger, but is still relatively weak. When the sheet is dried, it becomes still stronger, and 
becomes the material known as paper. Modern paper machines produce an endless paper sheet, 
up to 10 m wide, at a speed of over 20 m/s, i.e. one hectare (more than two acres) every 50 sec. 
The machine is more than l00 m long and produces about 250,000 metric tons per year. 

 

 

 

 

 

 

Figure 21. The wet end of a paper machine. (Otterstedt and Brandreth, 1998). Courtesy of 
Plenum Press.  
 
Environmental and economic pressures have reduced water usage in paper production in the last 
30-40 years from 80-90 m3 per metric ton to less than 10 m3 per metric ton. During the past 
decade, many efforts have been made to reduce the use of water even more, with the ultimate 
objective of achieving a paper mill that is 100 % closed. 
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The problem 
The achievement of a closed or nearly closed paper mill with respect to water usage is intimately 
related to the retention of fibre fines and chemicals and other additives in the furnish on the wire. 
Poor retention will cause the fines and other small particles to go through the wire with the water 
and make reuse of the backwater difficult or impossible (see Figure 21). The nature of the 
problem is further illustrated in Figure 22, showing the dimensions in the wet end,  
 

 

 

 

 

 

 

 

Figure 22. Dimensions in the wet end of the papermaking process (Otterstedt and 
Brandreth, 1998). Courtesy of Plenum Press. 

 

and Figure 23, which .compares the size of the holes in the wire with the sizes of the cellulose 
fibres, fines, filler particles, and the various chemical additives present in the furnish. 

 

 

 

 

 

 

 

 

 

Figure 23. Small particles on the wire in the papermaking process (Otterstedt and 
Brandreth, 1998). Courtesy of Plenum Press.  
 
The difficulty in retention is further aggravated by the fact that all the particles of the furnish are 
negatively charged and therefore have no bonding to each other to form aggregates large enough 
not to pass through the holes of the wire. The obvious solution to the problem is to put particles 
or additives of opposite charge into the system to cause agglomeration of the paper components 
to larger clumps that cannot go through the wire. This is accomplished by retention aids. 
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Retention, retention mechanisms and retention aids. 
The term retention refers to the holding back of the components of the stock during dewatering. 
The fibres are retained on the wire while fillers, fines, and additives of colloidal size may be 
washed through the mat formed on the screen. Retention is accomplished by a combination of 
mechanical means, i.e. filtration in conjunction with the physico-chemical mechanism of 
agglomeration or flocculation. 
Mechanical retention during sheet formation on the wire may be considered a filtration process. 
The fibres in the stock, which are 500-4000 μm long and 20-100 μm thick, are captured on the 
wire and form a three-dimensional network consisting of 2-100 layers of fibres on the wire. As 
the layers form, they capture progressively smaller fibres and other colloidal particles in the stock 
suspension, making the pore structure gradually finer with the largest pores on the wire side and 
the finest on the top side. Mechanical retention is least efficient in the beginning of the sheet 
formation and, although it becomes more effective as more layers form, it cannot retain a 
satisfactorily high proportion of the finest components of the stock. The losses for newsprint are 
typically about 50 %. 

By adding special chemicals (retention aids) to the stock, the fines and other colloidal 
components can be made to flocculate or aggregate into agglomerates too large to go through the 
wire. Retention aids may consist of either one component or two components. They can act by 
changing the electrostatic repulsion forces between colloidal particles or affect the stability of 
colloids by adsorbing on two or more particles causing them to form larger aggregates. 
Although good retention is most likely attained by the joint action of more than one mechanism 
and a given retention aid may act by several mechanisms, it is still useful to distinguish between 
some principal types of aggregation mechanisms.  
There are no sharp distinctions between the terms coagulation and flocculation, but here 
coagulation denotes aggregation by the action of low molecular weight electrolytes, whereas 
flocculation implies aggregation brought about by polymers, which can be natural or synthetic. 
 
In high-speed modern paper machines the floc is subjected to high shear, which may tear the floc 
apart. The trend toward reduced water usage in the production of paper increases the amounts of 
soluble anionic wood polymers and electrolytes in the stock, which will also affect the retention 
on the wire. 
 
Dual retention aid systems 
Cationic natural and synthetic polymers have long been used to improve retention of fines and 
fillers on the wire of paper machines. Such polymers, i.e. cationic starch or cationic 
polyacrylamide, produce a high degree of flocculation in the furnish. This floc, however, is not 
very strong and is easily broken and re-dispersed by hydraulic shear. Furthermore, when long-
chain polymers are used, chain rupture and rearrangement of the polymer fragments on the 
particle surfaces may occur. Nevertheless, single-component retention aids improve the first-pass 
retention though not to the same degree as dual retention aid systems. 
 
Such systems have been used in the paper industry for many years. Component one, a cationic 
polymer, usually of the patching type, is first added to the furnish, followed by the addition of the 
second component, an anionic polymer of the bridging type. Figure 24 schematically compares 
single-component and dual retention aid systems. The application of retention aids has been 
optimised in the sense that the retention maximum in the figure corresponds to a zeta potential of 
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zero value, i.e. the charges on the positive components in the system exactly balance the charges 
on the negative component, which may be difficult to accomplish in an actual situation. When an 
optimal amount of cationic component, in this case cationic starch, in the single-component 
system is added, the furnish system has no charge and flocculation and retention are maximised. 
In the dual system cationic starch has to be present in the furnish in order to reach zero-potential 
after the given amount of the second component, an anionic polymer, has been added. Thus, the 
maximum in flocculation and retention is not only higher than for the single-component system 
but it also occurs at larger dosages of cationic starch, which is beneficial since starch is not only a 
retention aid but is also an additive that increases the dry strength of paper. 

  

 
 

Figure 24. Single-component and dual retention aid systems (Andersson and Larsson, 
1984). Courtesy of Arbor Publications.  
 
In the past 10-15 years a special kind of dual retention aid, a micro particle-containing flocculant 
system, often referred to as micro-particulate retention/dewatering aid, was developed. A 
commonly used commercial system, the Compozil@ system, comprises colloidal silica in 
combination with cationic starch or cationic synthetic polymers (Andersson and Larsson, 1984; 
Andersson and Lindgren, 1996). In this system the cationic polymer is added first and the 
extensive flocs then formed are broken down and partially re-dispersed by high-shear forces. The 
anionic micro-particles are added just before the paper is formed and cause final flocculation of 
the furnish. A dual retention system, having colloidal silica as the anionic component, has the 
following characteristics (Lindström, Hallgren, and Hedborg, 1989): 
- strong, reversible flocculation 
- more effective dewatering in the wire and press sections  
- formation on the wire yields sheets of higher porosity and permeability. 
 
The Compozil@ system was recently studied by Andersson and Lindgren (1996). They used a 
Britt Dynamic Drainage Jar to investigate the retention effects of combinations of various types 
of anionic colloidal silica (ACS) with either cationic starch or polyacrylamides of different 
charge density. The furnish consisted of a 60/40 mixture of fully bleached birch and pine sulphate 
pulps with 30 % (based on total solids) chalk as the filler. The solids content was 0.5 % and the 
pH of the furnish 8.1. The polyacrylamides had charge densities from 2 - 25 % cationicity, 
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corresponding to between 0.25 and 3.0 meq/g, and a molecular weight of 5xl06. The cationic 
starch had a degree of cationic substitution of 0.4, corresponding to 0.25 meq/g. 
The anionic colloidal silica used in this study was either monodisperse colloidal silica with a 
particle size of about 4 nm or structured colloidal silica, consisting of linear aggregates of about 4 
nm particles. Structured colloidal silica is, like monodisperse colloidal silica, characterised by its 
specific surface area and charge density, which decreases with pH but can be maintained high 
even at pH as low as 3 and 4 by aluminising the colloidal silica with sodium aluminate, but also 
by some other properties. One such property is the S-value, which is defined as the percentage of 
silica in the dispersed phase and can be obtained from viscosity measurements (Iler and Dalton, 
1956). A high S-value indicates well-dispersed, non-aggregated colloidal particles, whereas a low 
value suggests that the primary particles have formed micro-aggregates, perhaps linear structures 
containing up to 7-8 primary particles. Another property is the average size of the micro-
aggregates, A, as determined by dynamic light scattering (DLS). Other ones are the length, L, and 
the width, W, of the micro-aggregates as determined by DLS and viscosity measurements. From 
their results, Andersson and Lindgren concluded that for both the cationic starch-ACS and 
CPAM-ACS systems the main flocculation mechanisms were electrostatic interactions (e.g., 
charge neutralisation and bridging). 

Andersson and Lindgren also used their data to construct a model for the system CPAM-ACS 
shown in Figure 25 for a constant dosage of CPAM. Each curve shows the predicted retention for 
an ACS with a constant S-value. As expected, maximum retention increases with increasing 
structure or degree of micro-aggregation of the ACS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25. Retention model for the CPAM-ACS system, (Andersson and Lindgren, 1996). 
Courtesy of Arbor publication. 
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Improved retention through modified silica sols 
Relatively recently, Paul Fish (2005) made an exposé over the development of the silica nano-
particles used in the retention application from the early 1980s to the present. In that overview the 
first generation of silica sols used as retention aids was a 5 nm non-surface modified silica sol, 
second generation, silica sol was aluminate modified followed by third generation that was based 
on a smaller silica sol of about 3 nm that was aluminate modified with a degree of structure. In 
the latest generations of silica nano-particles for this application the surface area and structure 
have been optimised to boost performance. 
Greenwood, Linsten, and Johansson-Vestin, (2002) showed that chemical modification of ACS, 
comprising stabilisation of structured colloidal silica by amines instead of by NaOH, which is the 
most common method, not only improved the retention but also the dewatering on the wire of the 
paper machine. They found that quaternary amines gave the best results, followed by tertiary and 
secondary amines. In addition to these findings, silica sols with high surface could be made at 
significantly higher solid content at a given specific surface area, i.e. a higher “wet surface area” 
than was possible before. The wet surface area is the surface area on product base: the specific 
surface area x solid content. The wet surface area was increased from about 100-110 m2/g for a 
conventional silica sol to about 200-250 m2/g by stabilising the silica particles with amines. The 
effect was dramatic: on a dry silica base dosage could be reduced by more than 50 % (see Table 
18). Taking into account that these products in addition could be supplied at significantly higher 
silica content, the potential reduction in product dosage is big. One explanation could be that the 
quaternary ammonium ions are strongly adsorbed and cause coagulation at neutral pH at small 
concentrations while the free base can act as a stabiliser at pH 9-10, being adsorbed onto the 
silica surface and thus providing steric stabilisation (Iler, 1979). The effect could be expected to 
be less pronounced for tertiary and lower amines. 
 
Additionally, the use of oxidation of mercapto group from silane as a mean of creating silica sols 
with highly charged sulphonic acid surface groups has been found to improve dewatering 
properties significantly (Meisner et al., 2005). Highly structured silica nano-particles by 
combining high specific surface area, low S-value, and high axel ratio (above 10) has recently 
been reported to be a very efficient flocculent (Persson, Hansson, Pal, Lindahl, and Carlén, 
2008). Other microparticles, such as highly structured aluminosilicates, have found a new interest 
in the field (Lee and Hubbe, 2008; Lee and Hubbe, 2009). 
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Table 18: Dewatering of fine paper furnish (Greenwood, Linsten, and Johansson-Vestin, 
2002). 
Silica-based sol (silica content, specific surface area and 
structure – S-value, modification/stabilisation)   

Drainage time (sec)  at SiO2 
dosage of 

 0.25 kg/t  0.5 kg/t  1.0 kg/t 
Ref. 1  8 % SiO2, 900 m2/g,S: 25 %, aluminate 12.20 10.40  8.76 
Ref. 2 10 % SiO2, 880 m2/g,S: 36 % 11.60  9.83 8.28 
No. 1  9 % SiO2, 820 m2/g,S: 20 %, choline-OH 9.11 7.19  5.74 

2 5 % SiO2, 1330 m2/g,S: 28 %, choline-OH 8.65  6.79  5.76 
3 9 % SiO2, 850 m2/g,S: 20 %, TMA-OH 9.34  7.30 6.30 

 4  13 % SiO2, 1140 m2/g,S: 27 %, TMA-OH 8.82  6.97  5.86 
5 8 % SiO2, 930 m2/g,S: 21%, TEA-OH  - 7.74 - 
6 8 % SiO2, 820 m2/g,S: 24 %, TPA-OH - 8.98 - 
7  8 % SiO2, 795 m2/g,S: 15 %, triethanolamine 10.3 8.77 6.66 
8  9 % SiO2, 800 m2/g,S: 25 %, triethylamine 10.3 8.31 7.02 
9  9 % SiO2, 860 m2/g,S: 26 %, dimethylethanolamine 9.90 8.80 7.90 

10  9 % SiO2, 875 m2/g,S: 22 %, diethanolamine 10.00  8.21 7.07 
11  9 % SiO2, 880 m2/g,S: 22 %, diethylamine 10.00 8.04 7.28
12  9 % SiO2, 885 m2/g,S: 25 %, diisopropylamine 9.87 7.97 6.85 
13  9 % SiO2, 880 m2/g,S: 25 %, pyrrolidine 9.60  7.85 6.30 
14  9 % SiO2, 855 m2/g,S: 30 %, dipropylamine 10.70  8.80 7.80 
15  9 % SiO2, 870 m2/g,S: 24 %, ethanolamine 10.70  8.80  7.51 
16  9 % SiO2, 880 m2/g,S: 24 %, cyclohexylamine 10.30  8.13  6.75 
17  9 % SiO2, 850 m2/g,S: 28 %,methoxyethylamine 10.50  8.80  7.70 
18  9 % SiO2, 875 m2/g,S: 26 %, AEEA 10.60  9.20  8.20 

Choline hydroxide: Trimethylethanolammoniumhydroxide 
AEEA: aminoethylethanolamine 
 
5.2.3. Lead-acid batteries (paper V) 
Lead-acid batteries are one of the most common types of batteries. Most lead-acid batteries are 
flooded, i.e. they have a liquid electrolyte such as in standard car batteries, but a significant and 
growing number have a solid electrolyte. Some of the advantages of a solid electrolyte in lead-
acid batteries are little or no spill or splashing of highly corrosive sulphuric acid in case of 
accidents, no leakage if the battery is placed sideways or even upside-down and longer life time 
because there is no accumulation of precipitated lead sulphate at the bottom of the battery, which 
may cause discharge.   
 
The electrochemical process in a lead-acid battery is well known (Garche, 1990); 
 
Negative electrode (charging): 
PbSO4 + 2H+ + 2e- → Pb + H2SO4       (8) 
 
Positive electrode (charging): 
PbSO4 + H2O → PbO + H2SO4         (9a) 
PbO + H2O  → PbO2 + 2H+ + 2e-       (9b) 
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There are two methods of immobilising the electrolyte, i.e. making a solid electrolyte, in valve-
regulated lead-acid (VRLA) batteries. The first method involves AGM-VRLA batteries, where 
the electrolyte is immobilised by being absorbed in absorptive glass-fibre mats placed between 
the electrodes. This type of battery can produce high starting currents and be rapidly recharged. 
Such batteries can be used in, e.g., uninterrupted power supply systems (UPS). VRLA batteries 
must be carefully managed in order to prevent ever increasing charge current and temperature 
rise effects, i.e. thermal runaway. AGM-VRLA batteries, as opposed to their GEL-VRLA 
counterparts, are much more susceptible to this potentially catastrophic phenomenon (Lambert et 
al, 2002; Wagner 2007). 
 
The second method involves GEL-VRLA batteries, where the electrolyte is immobilised by being 
absorbed within the very fine pores of a silica gel, which can be made from different silica 
materials. GEL-VRLA batteries have long life span, good cycling characteristics, and relatively 
low current. Moreover, they are used in applications such as telecommunication and solar energy 
devices, as well as motive power applications (e.g., golf cars, wheel chairs, and loading trucks) 
(Lambert et al., 2002). GEL-VRLA batteries are predicted to be used as a second battery in cars 
to supply steady, non-surging power to the increasing number of electronic components in 
modern cars. Wagner (2007) points out that two of the key benefits of a gel battery are its very 
long service life, up to 15-18 years at room temperature, and its high reliability even under severe 
circumstances (e.g., high temperatures or deep discharges as well as long storage at room 
temperature without any charging). 
 
Electrochemical processes that take place in a battery during charging are well known (Garche, 
1990) Since the electrolyte is solid and ion mobility is very limited, the oxygen cycle (Bagshaw 
1990) is important in lead-acid batteries with gelled electrolyte (Hardman, 1988). In fact, the 
gelled battery will not work optimally until the gel has hardened and cracked sufficiently (micro- 
cracks) to allow oxygen transportation in the battery (Mrha, 1989). 
 
Positive electrode 
Oxygen cycle (charging) 
2H2O → O2 + 4H+ + 4e-         (10) 
 
Negative electrode 
Oxygen cycle (charging) 
2Pb + O2 → 2PbO           (11) 
2PbO + 2H2SO4 → 2PbSO4 + 2H2O        (12) 
2PbSO4 + 4H+ + 4e- → 2Pb + 2H2SO4         (13) 

O2 + 4H+ + 4e- → 2H2O     
 
Silica gels can be made from different starting materials, typically from fumed silica or silica 
sols. Judging from the patent literature, fumed silica traditionally appears to be the most common 
starting material for making silica gels for GEL-VRLA batteries. However, in the past several 
years, some very promising work has been reported on making silica gels for batteries from 
colloidal silica in the form of silica sols. Fumed silica is dusty powder with low density and 
hence puts high demands on the handling and filling procedures, including vacuum filling 
equipment of the battery (immediate viscosity increases because of the thickening effect of the 
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rod-like silica) in contrast to colloidal silica. Colloidal silica tends to replace fumed silica during 
recent years (Toniazzo, 2006). 
 
Gelling of silica sols 
At the ACS National Meeting in Washington, D.C. in 1990, Paul Yates gave a talk on the 
“Kinetics of Gel Formation of Silica Sols”. He described that the gellation of silica sols is 
kinetically quite different from that of soluble silicates, although the same factors are important, 
i.e. silica concentration, pH, salt content, temperature, and the particle size of the sols. 
Expressions were derived for the quantitative prediction of the gel times for colloidal silica 
dispersions over a wide range of these variables. The following is a summary of Yates 
presentation. It is very difficult to study a gel in detail of concentrated sulphuric acid. A typical 
sulphuric acid concentration in a gelled lead-acid battery is 38 wt-% (or about 5 M). This will 
destroy most equipment such as SEM/TEM and viscometers. Empirical based methods for 
characterising the gellation process of silica sols under conditions similar or close to those in a 
lead-acid battery are therefore of most importance. 
 
Types of Gel 
There are three types of silica gel, of which the first results from neutralising dilute aqueous 
solutions of a silicate and is formed by the polymerisation of silicic acid. The polysilicate ions 
extend as a three-dimensional cross-linked network throughout the solution. The second type 
results from the collision of preformed colloidal silica particles to form three-dimensional chains 
of such particles, bonded at their junction points with siloxane bonds (Figure 26). The third type 
is a hybrid of the first two with polysilicic acid chains joining preformed colloidal silica particles. 
Hybrid gels are formed by neutralisation of mixtures of silicates and colloidal silica sols. 
 

 
 
 
Figure 26. Structure of collision gel (Yates, 1990). 
 
  
Common Features in Gel Formation 
Although the quantitative kinetic expressions for each of the three types of gel are different, they 
respond qualitatively in a similar way to most of the important variables. For all types or gel, gel 
times become shorter at higher temperatures, at higher silica concentrations, and in the presence 
of increasing concentrations of neutral salts. 
 
The effect of pH is complex. Starting with strongly acid (low pH) systems, gel times initially 
decrease rapidly as the OH concentration is increased, then pass through a minimum, and finally, 
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increase rapidly as the pH continues to increase. For all types of gel, the effect salts in decreasing 
gel times are much more pronounced on the basic side than on the acid side, and the location of 
the minimum in the gel time versus pH curve is a very sensitive function of the neutral salt 
content and even of the specific salt employed. 
 
The Central Mechanism in Gel Formation 
The similarities described exist because the central polymerisation mechanism is essentially the 
same for all types of gel. This mechanism also shows the key role played by the hydroxyl ion. 
 
The First Role of Hydroxyl Ions - As a Catalyst 
A silicon atom in silicic acid or at a surface normally has a coordination number of 4. The 
coordination number can be momentarily expanded by adsorption of a hydroxyl ion 
simultaneously with adsorption of a sixth group, such as a silanol group belonging to another 
silicic acid molecule or colloidal particle. This transition complex is unstable and water 
condenses out between the two silanol groups to form a permanent siloxane bond. The 
coordination number drops back to 4 and the hydroxyl ion is desorbed, regenerating it to continue 
its catalytic role elsewhere in the solution. 
 
The Second Role of Hydroxyl Ions - Charge Repulsion 
If the only role played by hydroxyl ions were a catalytic one, gel times would continuously 
decrease as the pH increased. The observed minimums in gel times and their rapid increase at 
high pH show that the hydroxyl ion plays a dual role in the mechanism of formation of silica gels. 
 
The conditions of gellation of sols in a very strong acidic environment (such as in sulphuric acid) 
differ, significantly from the ones present under Yate’s investigation.  At pH below 2, silica sols 
are positively charged and the role of hydroxyl ion is taken over by the proton (Brinker, 1994) as 
indicated by the formulas below. In addition, the negatively charged sulphate ion will take over 
the role of sodium as the ion to “balance” the positive charge of the particles. 
 
Gellation of silica above pH 2 
≡SiOH + OH- → ≡SiO- + H2O        (14) 
≡SiO- + HOSi≡ → ≡Si-O-≡Si + OH-        (15) 
 
Gellation of silica below pH 2 
≡SiOH + H+ → ≡SiOH2

+           (16) 
≡SiOH2

+ + HOSi≡ → ≡Si-O-≡Si + H2O + H+       (17) 
 
Kinetics of Collision Gels 
Gels formed by the collision of colloidal silica particles in solutions containing only traces of 
silicate ions have entirely different kinetics than the other two types of gel. Under comparable 
conditions, gel times are 100 to several thousand times as long. The quantitative response to 
variables (e.g., concentration, salt content, pH, and the surface area silica) is also quite different. 
The equation derived (Yates, 1990) for gels prepared from deionised “Ludox HS” mixtures of 
varying concentrations, pH values, and salt contents is given below as Equation 18. 
 
log t = 5.85-pH-log(Φ/(1-2.58Φ)) + (1.333-1.482Φ)(0.032-0.l183log c) x (pH-2.34)2. (18) 
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Where 
t = gel time in minutes, Φ = volume fraction of silica, and c = salt concentration. This equation 
reproduced the gel times of 39 gels from solutions containing 10, 20, 30, and 40 wt % SiO2 at pH 
values of 3.5, 5.0, 6.0, 7.0, and 8.5, and salt concentrations of .01 N, .03 N, 0.1 N, and 0.3 N, with 
an average error of 0.11 units in the log gel time value. This is within the probable experimental 
reproducibility of these data. 
Figure 27 shows the ability of this equation to reproduce gel times at a constant (0.1 normal) salt 
concentration over a range of pH and silica concentrations. The solid lines were calculated from 
Equation 18. 

 

 

 
 
Figure 27.Effect of silica concentration on the gel time of collision gels at 0.1 normal salt 
concentration (Yates, 1990). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 28. Gel time versus silica content for Ludox HS at different pH values at 0.1 normal 
salt concentration (based on Figure 27). 
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However, in highly acidic sulphuric acid the picture is a bit different. In 38 wt-% sulphuric acid 
the gel times (at 20°C) in minutes are shown in Figure 29. In Figure 29, the relation between the 
gel times and the silica contents is significantly more pronounced than in Figure 28 (the slopes 
are steeper) and the impact of electrolyte concentration in equation 18 is relatively small. Similar 
experiments at a 50 wt- % sulphuric acid concentration for one of the silica sols (11 nm in size) 
revealed that it gelled about 5 times faster under otherwise similar conditions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 29. Gel time versus silica content for silica sols of different particle sizes in 38 wt-% 
sulphuric acid. 
 
Obviously, equation 18 is at best only heuristically useful at very acidic conditions. At these 
conditions, the various terms in the equation would be the same, but the actual values of the 
constants would have to be re-calculated in order to make the equation fit experimental data more 
closely. 
 
Improved battery performance by modified silica sols 
Silica sols with a high specific surface of 750 m2/g (dp: 4 nm) and a high degree of structure (a S-
value below 50) have been found to be very suitable for this application, combining an efficient 
silica usage with a reasonable fast gel time (Greenwood et al., 2010) as indicated in Figure 30. 
Gel structure has been found to play a vital role for battery performance as confirmed by others 
(Chen, Chen, Shu, and Finlow, 2008) working with the degree of dispersion for fumed silica. 
 
As indicated, gel strength is the second important parameter of the silica in a gel battery. Because 
of the severe conditions in the gelled acid, gel strength is measured by a special method: a lead 
bullet (diameter 4.4 mm and weight of 0.50 g) is dropped from the height of 23 cm on a 24 hours 
old gel. The impact in mm is measured and an impact of 2 mm or less is normally considered to 
give a gel of sufficient strength. Using fumed silica, this typically requires a silica load of about 
5-6 % in the gel to obtain a gel with sufficient strength.  
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Figure 30. Gel strength versus silica content for silica sols of different particle sizes in 38 wt- 
% sulphuric acid. 
 
Sielemann, Niepraschk, and Nemec-Losert (1997) compared solid electrolytes consisting of 
collision gels made either from silica sols with a specific surface area between 100 to 500 m2/g or 
from fumed silica in lead-acid batteries. The solid electrolyte made from the silica sol was 
prepared directly in the battery container, whereas the one made from fumed silica had to be 
made in a separate step. The fumed silica, in the form of a very light, fluffy powder, was mixed 
with the sulphuric acid and the other components of the solid electrolyte in a special vessel. The 
slow-gelling mixture was then poured into the battery container where it eventually solidified. 
The performances of lead-acid batteries containing the two types of solid electrolyte were very 
similar, perhaps with a slight edge for the silica sol battery since it had a somewhat higher 
discharge current.   
 
Lambert et al. (2002) carried out a comparative study of solid electrolytes made from silica sol 
and fumed silica and suggested the following advantages for electrolytes made with silica sol: 
• Simplified handling and mixing of the electrolyte 
• No liquid separates from the gel after solidification 
• High silica concentration in gelling additive 
• Increased residual gel strength 
• Controlled gel time 
• Less impurities (e.g., iron and chloride) 
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5.2.4 Titania coated colloidal silica (paper VI) 
The advancement of high technology composite particles (e.g., new titania-silica pigments) could 
be used in, for instance, inks and coatings to optimise particle size and light scattering 
performance. The pigment size distribution should be monodisperse and of optimal size in that a 
conventional titania pigment is about 300 nm. In practise, most pigments are distributed around 
200-400 nm (Nelson, 2008). Titania is one of the most important photocatalysts (Kalele, 2005) 
and using a silica core can enhance the performance further (Lee et al., 2008). Titania particles 
have recently been reported to reduce NOx emissions in traffic when used on surface treatment of 
pavements (Murata, Kamitani, Tawara, Obata, and Yamada, 2002; Hellman, 2009). Composite 
particles may enhance performance further since particle size and titania efficiency may be 
controlled.  
 
Another application area for white composite pigments of titania-silica can be white ink 
applications in which settling is a severe problem and limitation because of, high particle density 
and large particle size, for using pure titania pigments. 
 
Vargas, Greenwood, Otterstedt, and Niklasson (2000), (paper VI in this thesis), studied the 
performance of commercial TiO2 pigments and TiO2 coated SiO2 particles (as described in 4.2) 
hosted in a copolymer of ethylene and vinyl acetate. Spectrophotometric measurements were 
used to calculate solar (Rsol) and luminous (Rlum) reflectances of films containing commercial 
rutile pigments and composite anatase pigments. The reflectance was reported as a function of 
F*h, where F is the pigment weight fraction and h denotes the film thickness. At low F*h, the 
reflectance increases rapidly but levels off to a constant value for F*h > 15 µm. The composite 
anatase pigments are less scattering than the commercial rutile pigments but the difference is not 
large and becomes even smaller at high F*h. As expected, the reflectance increases with the 
thickness of the TiO2 coating on the SiO2 core. The highest solar reflectances were close to 0.7 
for the composite pigments and between 0.75 and 0.8 for the rutile pigments. 
The main reason for the difference in scattering power between the two types of pigment is the 
lower refractive index of anatase (2.52 and 2.74 for rutile). Fresnel’s equation, R= (n1 – n2)2/(n1 + 
n2)2 gives that the  scattering power of the two phases of TiO2 in polymer films, where n2 is 1.38 
for the polymer (Vargas, 1997), has been compared and it was found that rutile scatters light 
about 30 % more efficiently than anatase. In addition, any aggregation is detrimental for light 
scattering efficiency and any change in pigment particle size (from optimal) dramatically reduces 
the efficiency (Nelson and Yulin, 2008). 
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6. Outlook 
 
The future is very bright for aqueous silica sols. Colloidal silica dispersions are inorganic 
materials made from sand, soda, and water as raw material all readily available. Each year there 
are one or several new applications or developments of these exiting silica nano-particles, in 
many cases driven by environmental reasons/legislations. Though the debate over the risks from 
nano-materials has been intense during recent years, nothing has been found until now indicating 
that these materials should be harmful to health or environment in contrast to such materials as 
e.g., carbon nanotubes. 
 
The largest potentials for silica sols are likely to be in high value applications where relatively 
small amounts of materials are needed: for example, in coatings, WP/CMP, lead acid batteries or 
flocculation applications, as well as in special construction applications such as oil well 
cementing. To cite Charles C. Payne (1994); “Colloidal silica will continue to be a versatile 
product with an applicability limited only by the imagination of the researcher”.  
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Aqueous Silane Modified Silica Sols: Theory and Preparation 

 

ABSTRACT 

Purpose – The objectives of this work were to study methods of reacting the surface of the 

particles of silica sols with silanes, primarily gamma-glycidoxypropyltrimethoxysilane 

(GPTMS) and study some basic properties of the modified sols and the nature and structure 

of the silane groups attached to the particle surface. 

Design/methodology/approach - The surface of the silica particles was modified by 

reacting the silica sols with aqueous solutions of silanes, chiefly GPTMS. The presence 

and structure of silane groups on the particle surface were established by Si-NMR and 

C-NMR, respectively. 

Findings - Several silanes were studied but silica sols could be readily modified only 

with GPTMS and glycidoxypropylmethoxydiethoxysilane (GPMDES), most readily if 

the silanes were pre-hydrolysed in water. Higher degrees of silylation were preferably 

done by continuous addition of silane. Lower degrees of modification can be achieved at 

room temperature by the stepwise addition of the silane solution. The silylation of the 

silica surface with GPTMS significantly reduces the number of charged surface groups 

and silanol groups. GPTMS binds covalently to the silica surface and the epoxy ring 

opens and transforms into a diol. Silica sols modified with GPTMS and GPMDES are 

stable toward aggregation. 

Research limitations/implications – Only organo-reactive silanes were studied.  
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Originality/value – This is the first work to study the modification by silanes of silica 

aquasols with high concentrations of silica. The silane modification can extend the use of 

silica to areas of applications previously inaccessible to silica sols. 

Practical implications - Stable, high-performing, surface-modified silica sols for use in 

waterborne lacquers, resin polymerisation, as inorganic pigments dispersants and in 

emulsion stabilisation.  

Keywords –  Silane,  Surface Modification, Silica Sol, Colloidal Silica, Aqueous  

Paper type –  Research paper 
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INTRODUCTION 

 

Concentrated colloidal silica in the form of aqueous sols is one of the cheapest and most 

readily available sources of nanoparticles. Such sols are characterised by high-solids 

content (up to at least 50% by weight of silica, which depends on particle size ranging 

from about 5 nm to 100 nm) in combination with remarkable stability toward gelling. 

Because they are colloidal particles in water, water-based silica sols are often sensitive to 

salt (Hunter, 1995) and aggregation at high silica concentrations or when exposed to 

freezing temperatures (Iler, 1979).  

 

In many applications, especially coating applications, water-based silica sols have not 

reached their full potential because of two important drawbacks: decreased water 

resistance and problems of stability. First, because silica sols have a surface that is fully 

hydroxylated (Iler, 1979), they normally decrease water resistance of a coating when 

incorporated into the same. This problem can be overcome by the addition of a hardener 

to the system. Second, and more important, severe long-term stability problems of the 

coating composition often occur when incorporated into polymer latices. Silica sols 

adsorb neutral surfactants by hydrogen bonding onto their sol surface (Hasan and 

Huang, 1997) and probably destabilising the coating composition by stripping the latex 

emulsion of stabilising surfactants.  This is one of the main reasons why conventional 

silica sols are used in, e.g., latex emulsions for making packaging films (Steiner, 1977) 

and photo films that do not require long-term stability of the lacquer, but not in clear 
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coatings (such as in furniture or parquet lacquers) in which the coating composition 

requires a shelf-life of at least one year.  

Silane grafting of dry silica powder has been done for many years, such as in the 

treatment of silica in the production of rubber tires.  Studies of surface adsorption of 

gamma-glycidoxypropyltrimethoxysilane (GPTMS) on colloidal silica have been done in 

alcohol-based systems in the past (Daniels and Francis, 1998; Daniels et al, 1999). 

Furthermore, silane-modified silica particles in mainly alcohol-based systems have been 

reported to be used as fillers in hard-coat systems for polycarbonate (Wu et al, 2008). 

Recently, silane modifications of aqueous silica sols with poor stability for use in sol-gel 

coating have been reported (Na et al, 2008). In addition, water-free systems of silane-

modified colloidal silica particles have been found to enhance mechanical properties of 

coatings (Vu, La Ferté and Eranian, 2005; Chisholm and Resue, 2003). Organosols have 

been used to improve scratch resistance in clear coatings by surface enrichment 

(Anderson et al, 2002) in solvent-borne clear coatings. Until now, very little has been 

reported on the basic properties or the nature of stable aqueous silane-modified silica 

sols. One of the reasons for the lack of research may be that silanes are normally not 

stable in the presence of water. Water promotes hydrolysis and condensation reactions, 

making surface modification of aqueous colloidal silica much more complicated than in 

solvent-borne systems. 

 

Although colloidal silica is an especially preferred nano material in clear coatings and 

resins since it combines a high solid concentration (30-40 % by weight), at small particle 

sizes of 7 to 12 nm in combination with a low refractive index of 1.45 for SiO2, poor 

stability toward gelling may be a problem in some applications. Other properties, 
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including performance in clear coatings (Greenwood, 2008), pigment dispersant 

(Greenwood, 2010), emulsion polymerisation (Scmid, Tonnar and Armes, 2008; Schmid, 

Armes,  Carlos and Galembeck, 2009; Schmid, Scherl, Armes, Carlos and Galembeck, 

2009) and foam and emulsion stabilisation (Whitby, Djerdjev, Beattie and Warr, 2006; 

Blute, Pugh, van de Pas and Callaghan (2009a, 2009b), have recently been reported for 

these kinds of modified aqueous silica sols.  

 

In industrial use trialkoxysilanes, RSi(ORl)3, are most common. They hydrolyse stepwise 

in water to give the corresponding silanols, which ultimately condense to siloxanes. 

Both reaction rates strongly depend on pH, but under optimal conditions  

RSi(OMe)3 + 3H2O                RSi(OH)3 + 3 MeOH               (1) 

Hydrolysis (1) is relatively fast (several minutes), whereas the condensation reaction is 

much slower (several hours); both reactions are strongly pH dependant. Higher 

alkoxysilanes hydrolyse very slowly in water because they are strongly hydrophobic, 

but even in a homogeneous solution in water-miscible solvents they hydrolyse more 

slowly than the lower alkoxysilanes. Gamma-glycidoxypropyltrialkoxysilane is the 

preferred silane in this study because it reacts readily with water and the rate of 

hydrolysis is fast at both alkaline and acidic pH (Brinker and Scherer, 1990). The rate of 

hydrolysis is relatively slow in the pH region of 6-8.5. The chain length of the alkoxy 

group determines the rate of hydrolysis (Osterholtz and Pohl, 1992): trimethoxysilane 

hydrolysis is faster than triethoxysilane. When fully hydrolysed, GPTMS will have 

released three moles of methanol for each mole of silane as indicated above.  

Before reaction with, for instance, an inorganic surface, silanes are often pre-hydrolysed 

by mixing them in water with a silane: water mol ratio of about 10:1, which, in the case 
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of gamma-glycidoxypropyltrialkoxysilane, corresponds to a weight ratio of about 1:1. 

The solution of pre-hydrolysed silane will have a pH of about 7 and will be stable 

toward self-condensation for at least 2 weeks. 

 

The reaction between a hydrolysed silane (e.g., gamma-glycidoxypropyltrialkoxysilane) 

and the silanol groups of the silica particles is a condensation reaction.  

Y-R-Si(OH)3 + (HO)X-silica particle→ Y-R(OH)3-x-silica particle + xH2O  (2) 

The reaction is fast in the alkaline pH region (Osterholtz and Pohl, 1992) and can 

therefore be conveniently carried out at the pH of the sodium-stabilised sol, which is 

about pH 10. For uniform coverage of the particle surface, it is essential that the silane is 

present in monomeric form and not as large oligomers or cyclic species (Peeters, 2000). 

Under moderate conditions of rate of addition of silane and temperature, self-

condensation and precipitation will not occur, however. An aqueous silica sol has about 

4.6 silanol groups per nm2 surface (Zhuralev, 1993), but considering that each silane 

may react with three surface groups, fewer silane molecules per nm2 will be 

required to react fully with the silica surface. Silylation of the silica surface will 

reduce the number of silanol groups and hence make silylated sols more stable toward 

gelling through formation of siloxane bonds between particles.  

 

Epoxy functional groups are stable during hydrolysis and condensation reactions (Gao, 

Zhao, Ou, Qi and Wang, 1996) but are believed to react/open up at elevated 

temperatures during the curing process of coatings containing, for instance, GPTMS 
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(Gao et al, 1996; Schottner, 2001). Cross-linking with other particles or molecules will 

cause an increase in viscosity or turbidity and is thus easy to detect.  

 

EXPERIMENTAL 

 

Materials used in the experiments 

Colloidal silica dispersions - silica sols.  

The following commercial silica sols (pH ranged from 9 to 11), supplied by Eka 

Chemicals AB (Akzo Nobel), were used.  

Bindzil® 15/750 with a specific surface area of 750 m2/g: particle size 4 nm and a silica 

content of 15 % by weight. 

Bindzil® 15/500 with a specific surface area of 500 m2/g: particle size 5 nm and a silica 

content of 15 % by weight. 

Bindzil® 30/360 with a specific surface area of 360 m2/g: particle size 7 nm and a silica 

content of 30 % by weight. 

Bindzil® 40/220 with a specific surface area of 220 m2/g: particle size 12 nm and a silica 

content of 40 % by weight. 

Bindzil® 305/220 with a specific surface area of 220 m2/g: particle size 12 nm and a silica 

content of 30 % by weight. The surface is modified with sodium aluminate. 

 

Silanes 

Silquest® A-187: GPTMS, MW: 236 g/mole, 

Silquest® Wetlink 78: gamma-glycidoxypropyl metoxydietohoxy silane (GPMDES), MW: 

255 g/mole, 
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 Silquest® A-1106:  aqueous amino alkyl silicone solution; MW: proprietary information 

of supplier,  

Silquest® Y-9669 N: N-phenyl-gamma-aminopropyl trimethoxysilane, MW: 255 g/mole 

and   

Coatosil® 1770: beta-(3,4 epoxycyclohexyl) ethyl trietoxysilane, MW: 288 g/mole, were 

used, which were kindly supplied free of charge by Momentive Performance Materials. 

 

Preparation of pre-hydrolysed silane 

In a typical preparation 1000 g of silane were added to 1000 g of de-ionised water in a 3 

L beaker with moderate agitation, corresponding to a water:silane molar ratio of 13:1. 

Agitation for 1 h resulted in a transparent solution with pH from 5 to 7.  

Silanes are generally poorly soluble in water and hydrolysis is therefore facilitated by 

using a heel of hydrolysed silane, which contains up to about 20 % by weight of a lower 

aliphatic alcohol. Therefore, 50 to 70 g of hydrolysed GPTMS were placed in a 3 L 

beaker. 1000 g of silane were added in about 20 sec to the heel and 1000 g of de-ionised 

water were then added in about 20 sec with moderate agitation. After a few minutes, a 

transparent solution was obtained, indicating that hydrolysis had taken place. 

 

Preparation of silane-modified sols 

In one procedure the undiluted silane was rapidly added over a period of a few minutes 

to the undiluted sol with good agitation and, for comparison, with poor stirring at 25 0C. 

In another study a pre-hydrolysed 1:1 weight mixture of silane in water was added to 

the undiluted sol with good agitation. In a preferred method a pre-hydrolysed 1:1 

weight mixture of silane in water was added to 5000 g of the undiluted sol (e.g., Bindzil® 
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30/360) with good agitation and a controlled rate of addition. Three addition rates and 

two reaction temperatures were used: 600 g/h and 2000 g/h at 60 0C and 1500 g/h at 70 

0C. The silica sols were concentrated by vacuum evaporation at 60 ºC in a 20 L 

evaporator for about 2 h. Typically, a 7 nm sol and a 5 nm sol, both silylated with 

GPTMS, could be concentrated to 40 and 26 wt-% SiO2-content, respectively, with good 

stability as shown in Table I. (Take in Table I.) 

 

Stability toward gelling 

The stability behaviour of the sols was tested as stability toward gelling upon addition 

of salt solution (salt stability) measured as gel time. The gel time is defined as the time to 

obtain a rigid gel, i.e. the beaker containing the gel can be tilted 90 º without inversion of 

the gel. 

 

Stability under freezing conditions 

A sample of 100 ml sol was put in a freezer for 24 h at –20 ºC (deep-frozen) and then 

allowed to stand for 16 h in room temperature (to thaw) before evaluation. The 

procedure was repeated once. The samples were evaluated visually. 

 

Characterisation of the silica sols 

The silica sols were characterised by measuring pH, specific surface area by Sears’ 

titration (Sears, 1956), viscosity with a Brookfield Viscometer and alcohol content by 

HPLC, Shimadzu Class 10 LC AD VP series equipped with a La Chrome L-7490 detector 

from Merck. The silica content was determined by XRF on a PaNalytical Magix PW 2450 

instrument. 29Si-MAS NMR spectra were obtained on a 400 MHz Varian NMR System 
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(Direct Drive™ ) operating with a 6 mm HX Chemagnetics (HX DR mode) and 13C-NMR 

spectra on a Bruker 500 MHz Ultrashield Advance III system equipped with a ATM/TCI 

probe. Particle charges were measured by cationic polyelectrolyte titration (Morgan, 

Forster and Evison, 1990) on a Mütek Particle Charge Detector. The sample 

concentration was 5 g per litre, titrated with a Polybrene solution of 4 g per litre in 

concentration. Levels of soluble (or monomeric) silica were determined using the 

ammonium heptamolybdate method (Iler, 1979). 

 

 

RESULTS AND DISCUSSION 

 

Of the five silanes evaluated, only silylation with the two glycidoxysilanes -- GPTMS 

and GPMDES -- resulted in stable sols. N-phenyl-gamma-aminopropyl 

trimethoxysilane, beta-(3,4 epoxycyclohexyl) ethyl trietoxysilane and the aqueous amino 

alkyl silicone solution caused rapid reaction (green and brown colour), precipitation of 

the sols, or both. Not only did GPTMS dissolve more readily in water than GPMDES but 

it also seemed to react more promptly with the silica surface. One reason for the 

differences may be that GPTMS hydrolyses much faster in water than GPMDES. 

 

Pre-hydrolysed silane simplified the silane modification process significantly since such 

silane will more readily adsorb and react with the silica surface, which would reduce the 

level of free silane and associated self-cross-linking.  

 

Pre-hydrolysis of silane 
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At pH 10 and dilute conditions, GPTMS hydrolyses rapidly (about 100 min) and 

becomes fully hydrolysed in water as indicated by the formation of 3 moles methanol 

per mole silane, whereas the time of hydrolysis was considerably longer at pH 7 (Table 

II). High silane concentrations (e.g., 50 wt-% silane in a water mixture) speed up 

hydrolysis. After about 30 min, the silane is fully hydrolysed, even at neutral pH. Table 

II shows that more than 3 moles methanol (3.2-3.3) are formed per mole silane and that 

the initial methanol content should be about 0.2-0.3 mole per mole GPTMS under 

diluted conditions. This “extra” methanol probably originates as an “impurity” in the 

silane starting material, GPTMS. Regrettably, a small heel of pre-hydrolysed silane did 

not further reduce the preparation time for a fully hydrolysed solution of GPTMS as 

shown in Table II, although transparency indicated faster reactions. The rate of 

hydrolysis depends on the solubility of the silane in water. The addition of pre-

hydrolysed silane to the silane/water mixture was expected to increase the solubility 

somewhat and thus reduce the time of hydrolysis. On the other hand, the fast hydrolysis 

reaction may have made such time differences too small to detect. The use of heel, 

however, did give a clearer solution of hydrolysed silane as indicated by the lower 

turbidity values. During the preparation, the temperature increased from 20 ºC to 30 ºC, 

indicating an exothermic reaction. These results are consistent with the findings of de 

Buyl and Kretschmer (2008), who have done work on dilute GPTMS at pH 5.6.  (Take in 

Table II.) 

 

Self-condensation reaction of the hydrolysed silane 

Self-condensation, which can cause gelling of hydrolysed silane solutions, proceeds very 

slowly in the acid region but fast at alkaline pH (Brinker and Scherer, 1990). For reasons 
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of stability, hydrolysed silane solution should be kept at a pH below 7, preferably in the 

range from 4 to 6. This range is low enough to avoid self-condensation but not low 

enough to promote opening of the epoxy ring (de Buyl and Kretschmer, 2008) and 

reaction of the diol groups of the opened ring with silanol groups of the hydrolysed 

silane (Horr and Reynolds, 1997). 29Si NMR studies revealed that the stability of the pre-

hydrolysed silane (at neutral pH) appeared to be good, at least for the first couple of 

weeks (Table III), indicating a high amount of dimers (T1). The amount of oligomeric 

content had increased significantly (T2 and T3) in the solution that was aged for 5 

months. During hydrolysis of the silane, the epoxy functional group is not affected as 

depicted in Figure 1. (Take in Table III.) (Take in Figure 1.) 

 

Condensation reaction of (non-pre-hydrolysed) silane with the silica surface 

at room temperature 

When the silane is added to the sol over a short time (1 – 2 min) and in higher doses (2 – 

10 g of silane to 100 g sol), corresponding to about 0.6 – 2.5 silane molecules per nm2 of 

particle surface area, the sols turned opaque. The higher the amount of silane, the faster 

the sol turned opaque, taking about 10 min for the highest dosage. Good agitation 

reduced the degree of opaqueness for a given amount of silane added to the sol at a 

given temperature. Self-condensation of the silane molecules before they have time to 

react with the silica surface is the most likely reason for the appearance of opacity.  

 

Condensation reaction of pre-hydrolysed silane with the silica surface 

Batch–wise silane addition – low degree of modification  
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The course of the reaction between the silica sol and a particular silane was studied by 

measuring the specific surface area and pH value during the addition of silane.   

Table III and Figure 2 show changes in pH and specific surface area during the course of 

silylation of a 7 nm sol (Bindzil 30/360), with pre-hydrolysed GPTMS to yield 0.6 

molecules of silane per nm2 silica surface. The silane addition was completed in a few 

seconds under good agitation at room temperature.  

(Take in Table IV.) 

 In the Sears’ titration method for determining the specific surface area (originally based 

on BET) of aqueous silica sols the adsorption of hydroxyl ions on the silanol groups of 

the particle surface is measured in the pH range 4 – 9 in a nearly saturated salt solution. 

This solution permits the surface charge density to approach a maximum 1.26 negatively 

charged OH groups per nm2 surface area at pH 9.0 (Sears, 1956). The silanol number, i.e. 

the number of OH groups per nm2 of silica particle surface, has been determined to be 

4.6 for silica sols (Zhuralev, 1993). Accordingly, the number of silanol groups present in 

a given silica sol is directly proportional to its specific surface area. If, for any reason 

(e.g., reacting the silica surface with silanes), the number of silanol groups in the system 

decreases, this reduction will show up as a decrease in the specific surface area as 

measured by Sears’ titration. A degree of silylation of 0.6 molecules of GPTMS per nm2 

particle surface corresponds to one molecule of GPTMS per eight silanol groups. The 

reduction in the specific surface area from 376 m2/g to 280 m2/g after the completed 

addition of silane corresponds to a decrease in the silanol number by 1.2 units, i.e. from 

4.6 to 3.4 silanol groups per nm2 silica surface, indicating that each molecule of GPTMS 

reacts with 2.0 silanol groups. Fully hydrolysed GPTMS contains three hydroxyl groups, 

of which two may react with one silanol group each, leaving one unreacted OH group 
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on each GPTMS molecule. A less likely possibility is that each GPTMS molecule reacts 

with three silanol groups but that a small fraction of the fully hydrolysed GPMTS 

molecules in the pre-hydrolysed silane undergoes self-condensation to siloxanes. Self-

condensation is low because the pre-hydrolysed GPTMS remains a clear, stable solution 

for months provided the methanol produced during the hydrolysis is not removed from 

the system. Once it is removed, however, the pre-hydrolysed silane will turn turbid and 

gel within 24 h. The shape of the curves in Figure 2 indicates that at least two types of 

reaction take place during the silylation of the silica surface as suggested by the 

following reaction schemes: 

silica-O-+ HO-Si(OH)2-R⇒ silica-O-Si(OH)2-R+ OH-     

 (3) 

silica-OH+ HO-Si(OH)2-R⇒ silica-O-Si(OH)2-R+ H2O     (4) 

During the first 5 min of silane addition, pH increased rapidly from 10.1 to almost 10.4 

(scheme 3), whereas there was a more gradual increase to 10.6 during the next 135 min 

(scheme 4), after which time the pH remained constant. In reaction 3 the hydrolysed 

silane reacted rapidly with the negatively charged sites of the silica surface releasing 

hydroxyl ions, which raised the pH and created more charged sites on the surface (Iler, 

1979). In the slower reaction (reaction 4), probably catalysed by hydroxyl ions, the 

hydrolysed silane condensed with surface silanol groups.  (Take in Figure 2.) 

 

Continuous addition of silane – high degree of modification 

With a higher degree of silylation of the silica surface, this is the preferred route as for a 

surface modification corresponding to 1.4 and 1.7 molecules of GPTMS per nm2 silica 

surface (now commercial products under the names of Bindzil®CC30, dp: 7 nm, and 
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Bindzil® CC40, dp: 12 nm, respectively), there is a reduction of about 85% of the surface 

charge as measured by Polybrene titration (Table V). This observation is well in line 

with reported data on zeta potential.  Blute et al found that Bindzil® CC30 had a very 

low zeta potential (below -10 mV) in the pH range of 2-6 and significantly lower than 

that of the non-modified silica sol (Bindzil® 40/220) in the pH range of 6-11 (Blute, Pugh, 

van de Pas and Callaghan, 2007). The authors also found that the low surface charge 

remained unchanged over time. (Take in Table V.) 

 

The pre-hydrolysed silane was continuously added to the colloidal silica at a reaction 

temperature of 60 °C, a rate of about 1.4 molecules GPTMS per nm2 silica surface and 

hour and under good agitation. The comparison between the 29Si NMR spectra in 

Figures 3 and 4 reveals a significant reduction in the ratio of silanol groups to bulk 

siloxane units (Q3/Q4) for silica sol, silylated with 1.4 molecules GPTMS per nm2 silica 

surface relative to non-silylated sol with a particle size of 7nm. This reduced ratio 

indicates a covalent bond between the silane and the silica surface. The 29Si NMR spectra 

in Figures 3 and 4 were de-convoluted and gave a ratio Q3/Q4 of 0.240 for the non-

modified silica sol, whereas the ratio of Q3/Q4 for the silylated silica sol was 0.140. The 

change in the Q3/Q4 ratio, indicating a reduction of Q3 groups by 42%, corresponded 

fairly well to the drop in specific surface area by 38%, from 369 m2/g for the unmodified 

sol to 227 m2/g for the silylated sol. (Take in Figure 3.) (Take in Figure 4.) 

 

The epoxy functional group and silane solubility of the silylated silica sol 

13C NMR confirmed that the alkaline conditions (pH of about 10) during the 

condensation reaction transformed the functional epoxy group of the silane to a diol 
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group (Figure 5). This finding is consistent with reports that ring opening can take place 

under alkaline conditions (Riegel, Blittersdorf, Kiefer, Hofacker, Müller and Schottner, 

1998). (Take in Figure 5.) 

 

Further, measurement of the content of free silane monomer by HPLC gave a monomer 

content of 2600 ppm at pH 10.9 for a silica sol with a particle size of 7 nm and silylated 

with 1.4 molecules GPTMS per nm2 silica surface. In contrast, soluble silica, as measured 

by the ammonium heptamolybdate method, was found to be 960 ppm. On the other 

hand, when the pH of the sol was adjusted to about 8 by cation exchange, the monomer 

content was only about 280 ppm, indicating silane solubility increases at alkaline pH. In 

the latter case the soluble silica was found to be 87 ppm, close to the theoretical value of 

a flat silica surface at room temperature. No free silane dimers or oligomers were 

detected by the HPLC analysis of the silane-modified silica sols. This finding strongly 

indicates that all of the added silane had reacted with the silica surface because the total 

amount of added silane corresponds to 53 600 ppm of silane in the silylated sol.  

 

Effect of rate of addition and amount of silane on sol stability 

Lower rates of addition, typically about 0.6 silane molecules per nm2 added for a 2 h 

period at room temperature, result in clear stable sols. Even rates of addition as high as 

1.4 molecules per nm2 particle surface area and hour at 60 0C result in clear stable sols. 

At very high rates of addition (e.g., 4.4 molecules per nm2 surface of the sol and hour at 

70 ºC), precipitation of the sol, self-condensing of the silane, or both occurred. 

 

Viscosity and silica content of silylated sols  
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Normally, stability of unmodified silica sols is achieved by strong electrostatic repulsion 

between the particles at pH above 8. Silylation of the particle surface provides steric 

hindrance as a complement to electrostatic repulsion for stabilising silica sols. The 

results in Figure 6 show that steric stabilisation, or a combination of steric and ionic 

stabilisation, was more effective than ionic repulsion alone. (Take in Figure 6) 

 

Concentrations of conventional sols and sols silylated with GPMTS were increased 

stepwise by vacuum evaporation. The viscosities of the sols in each step were measured 

immediately and after 4 months. The results, which are summarised in Table I, show 

that silylation substantially improved the stability of silica sols. In fact, the 

improvements in stability and the subsequent increases in solids content were so large, 

in particular for very small particle sols, that the use of such sols (e.g., 5 nm sols) can be 

expanded into new areas of applications where the unmodified sols could not be used 

because of the low solids content. 

 

Stability toward gelling upon salt addition 

Like other colloidal systems, silica sols are sensitive to the presence of electrolytes. 

Addition of, e.g., sodium chloride will cause the silica sol to gel by compression of the 

electrostatic double layer around the silica particles. It may be expected that sterically 

stabilised colloids are less sensitive to electrolytes than electrostatically stabilised 

colloids. Table VI shows that the increase in stability toward gelling, expressed as gel 

time, of silane-modified sols was dramatic when compared with non-modified sols, 

even at a relatively moderate addition of GPTMS. To obtain maximal stability the 

addition level should be in the order of 1.4 molecules per nm2 sol surface. The reason for 
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the stability increase is probably a combination of steric stabilisation of the sol and a 

reduced number of reactive surface groups as previously mentioned. Moreover, the 

silane-modified silica surface has probably lower silica solubility, causing the 

coalescence of silica particles to take place at a much slower rate. (Take in Table VI.) 

 

Stability toward gelling/precipitation under freezing conditions 

Freeze stability is something that normally is not possible to achieve for sodium-

stabilised and aluminate-modified water-based sols. The freezing point can be lowered 

by the addition of alcohol (e.g., ethylene glycol). However, if the sol freezes to a solid 

body, it will normally coagulate and be irreversibly aggregated (Iler, 1979). The results 

from the freezing tests, as given in Table VII, show that the sols with a high degree of 

silane modification can be frozen and then thawed with no apparent changes in 

properties, even when the procedure was repeated. When frozen, reference samples of 

non-treated sol are irreversibly aggregated/precipitated. Sols with a smaller amount of 

silane added (e.g., about 0.6 molecules per nm2 surface area) or sols with a very high 

specific surface area in combination with structure/aggregation have somewhat reduced 

freeze stability. The improved stability under freezing conditions is probably a function 

of improved steric hindrance that prevents particles from coming to close, in 

combination with a less reactive surface that does not create siloxane bridges very easily 

with other silica particles. The improved stability is also a strong indication that the 

silane is covalent, and not hydrogen-bonded to the silica surface. (Take in Table VII.) 

 

CONCLUSIONS 
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1. Full hydrolysis of GPTMS can be achieved with practical rates at a high concentration 

(50 wt-%), at room temperature and at neutral pH. Pre-hydrolysed silane solutions will 

be stable for several weeks toward condensation reactions.  

2.  Silane surface modification of the silica sols could only be achieved with GPTMS and 

GPMDES and with the silanes preferably pre-hydrolysed in water.  

3. The epoxy functional groups of the silanes are not affected during hydrolysis. 

4. Higher degrees of silylation, about 1.4 silane molecules per nm2 silica surface or more, 

are preferably done with continuous addition of silane solution at a rate of about 1.4 – 

1.7 silane molecules per nm2 silica surface and hour at 60 °C. Lower degrees of silane 

modification, about 0.6 molecules per nm2 silica surface, can be achieved at room 

temperature by stepwise addition of the silane solution.  

5. The silylation of the silica surface with GPTMS significantly reduces the number of 

charged surface groups and silanol groups. 

6. During the silylation reaction, GPTMS binds covalently to the silica surface and the 

epoxy ring opens and transforms into a diol. 

7. Silica sols modified with GPTMS and GPMDES are very stable toward aggregation by 

salts and exhibit good stability under freezing conditions. They also show improved 

long-term stability at high silica concentrations compared with corresponding non-

silylated sols. 
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Epoxy silane modified colloidal silica particle. The particle size of the silica core is 7 nm.  
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Tables 

 
 

Table I. Maximal SiO2 content (weight-%) of conventional and silylated silica sols.  

 
Maximum SiO2 content is defined as the SiO2 content at which the viscosity increase is less 

than 1 cP (20 °C) during a period of 4 months. 
*: Aluminate-modified sols  
 
 

Table II.  Hydrolysis rate in water. Mole methanol per mole GPTMS formed at room 
temperature.  

Time 
(minutes) 

3 –wt % GPTMS, 
Water pH 10.6 

3 –wt % GPTMS, 
Water pH 7 

50 –wt % GPTMS, 
Water pH 7 

50 –wt % GPTMS, 
Water pH 7, heel 

2 0.30 0.21 1.15 1.16 

30 1.74 0.28 2.82 2.78 

60 2.59 0.35 2.86 2.84 

90 2.97 0.45 2.90 2.88 

120 3.12 0.58 2.89 2.89 

 

Table III.  29Si HR/MAS NMR spectrum of GPTMS, 50  % by weight hydrolysed silane 
solution, neutral pH. 

 3-week-old solution 5-month-old solution 

T1 35.02 % 4.33 % 

T2 54.61 % 51.41 % 

T3 10.36 % 44.26 % 

 
 

Table IV. The course of silylation of a silica sol of particle size 7 nm with 0.6 molecules of 
silane per nm2 silica surface. 

Particle 
size (nm) 

Without silane 
modification 

With silane 
modification 

Increase of 
solids 
content, % 

Silane per 
nm2 surface 
area 

Weight ratio 
Silane/Colloid. 
Silica 

4 16 20 25 1.4 0.40 

5 22 26 18 2.0 0.40 

7 32 40 25 1.4 0.20 

12* 40 47 18 0.6 0.05 

No. Time (minutes)  Specific surface 
area(m2/g) 

pH 

1.  Before silane addition 376 10.10 

2. 0 361 10.10 

3 2 ---- 10.15 

4. 3 ---- 10.25 

5. 4 ---- 10.30 

6. 5 ---- 10.35 
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Table V. Particle charge as meq/g for conventional and silylated silica sols 

 
 
 
 

Table VI. Gel time versus NaCl concentration for silica sols of different particles sizes, dp 
(nm), and degree of silylation, sd,  as GPTMS/nm2 surface. 

Silica sol No (as by Table 9) Added 
NaCl conc.  
(weight-%) 
in sol 

1 
dp: 7 
sd: 0 

2 
dp: 7 
sd: 0.6 

3 
dp: 7 
sd: 1.4 

4 
dp: 4 
sd: 0 

5 
dp: 4 
sd: 1.4 

1.33 56 min ---- > 3 m 26 min > 3 m 

1.67 18 min ---- > 3 m 5 min > 3 m 

2.00 6 min 126 h > 3 m 2 min > 3 m 

2.33 2 min 83 h > 3 m 1 min > 3 m 

8.33 ---- ---- 29 d ---- 72 h 

12.50 ---- ---- 42 h ---- 2 h 

m: months, d: days, h: hours and min: minutes 

 
 
 
 

Table VII. Stability under freezing conditions, silica sols of particle size of 7 nm 

No Silica Sol  
Degree of silylation: 
(GPTMS/nm2 surface) 

Observation cycle 1 Observation cycle 2 

7. 20 344 10.40 

8. 40 336 10.45 

9. 60 329 10.50 

10. 80 315 10.55 

11. 100 301 10.60 

12. 120 298 10.60 

13. 140 288 10.60 

14. 160 280 ----- 

15. 180 285 ----- 

16. 200 284 ----- 

Colloidal silica, size (nm) Charge 
meq/g 

pH Silane per nm2 
surface area 

SiO2-content 
(weight-%) 

7 nm, non-silylated (Bindzil® 30/360) 577 9.2 0 30 

7 nm, silylated (Bindzil® CC30) 93 8.5 1.4 30 

12 nm, non-silylated (Bindzil® 
40/220) 

334 8.9 0 40 

12 nm, silylated (Bindzil® CC40) 52 8.2 1.7 40 
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1 0 White precipitates – no 
sol 

White precipitates – no 
sol 

2 0.6 Very few small flakes/ 
some precipitates.  

Very few small flakes/ 
some precipitates.  

3 1.4 Clear, low viscous Clear, low viscous 
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Figures  

 
Figure 1: 13C suspended-state NMR spectra under MAS condition with HPDEC of 

GPTMS 50 weight-% hydrolysed silane solution three weeks old (neutral pH).  
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Figure 2: Specific surface area and pH versus time during silylation of surface of a 7 

nm silica sol, with 0.6 molecules of GPTMS per nm2 silica. 
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Figure 3: 29Si-MAS NMR, 7 nm silica sol silylated with 1.4 GPTMS per nm2 silica 

surface (Bindzil® CC30).   
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Figure 4: 29Si-MAS NMR, 7 nm silica sol not silylated (Bindzil® 30/360). 
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Figure 5: 13C HR/MAS NMR spectrum of 7 nm silica sol, silylated with 1.4 GPTMS per 

nm2 silica surface (Bindzil® CC30). 
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Figure 6: Viscosity initially and after 4 months versus silica content for conventional 
and modified 7 nm sols silylated with 1.4 GPTMS per nm2 silica surface. 
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Abstract
Purpose – The purpose of this paper is to develop methods to produce white composite pigments consisting of a silica core with a titania shell.
Design/methodology/approach – Silica cores were coated with titanium dioxide (TiO2) via forced hydrolysis of a solution prepared from titanium
tetrachloride (TiCl4). The morphology, surface charge and particle size of obtained composite particles were studied.
Findings – Dispersions of well-dispersed composite particles, having silica cores of uniform size in the range from 300 to 500 nm with a homogeneous
titania coating are obtained. The coating thickness corresponded to 150-400 per cent by weight of titania based on the core. Modification of the silica
core by incorporation of 1.5 aluminosilicate sites per square nanometre of core surface proves to be favourable in achieving a homogeneous coating on
the silica core. Deposition of such titania coating is also favoured by agitating the dispersion well, keeping electrolyte content low, maintaining pH at
2.0 and the temperature at 758C during the coating process.
Research limitations/implications – Only TiCl4 is used as titania source. In addition, only silica cores obtained by Stöber synthesis are used while
commercially available silica solutions made from sodium silicate are not used.
Practical implications – The process offers a method of producing a white composite pigment with a narrow particle size distribution in order to
maximise light scattering as well as using a core with lower density than the shell. This kind of particle would be of interest for coating applications and
white inorganic inks.
Originality/value – The developed method provides a straightforward process to produce well-defined composite particles.

Keywords Minerals, Silicates, Light, Surface mount technology, Composite materials, Coatings

Paper type Research paper

Introduction

Titanium dioxide (TiO2) is the principal white pigment because

of its scatteringpower,which is superior to that of anyotherwhite

pigment. It occurs in nature in the crystalline form rutile, anatase

and brookite. Rutile and anatase are manufactured in large

quantities and are primarily used as pigments but also as catalysts

and in the production of ceramics.
Two processes, the sulphate process and the chloride process,

are used tomakeTiO2 (Braun et al., 1992). Themajor objection

against the sulphate process has been the amount of by-product

gypsum itproduces.The chlorideprocess is considered as amore

environmentally friendly method of producing TiO2. In general,

however, the environmental impact of TiO2 production is

mostly a factor of the raw materials used, the effluent treatment

processes and the degree of by-product development a

particular plant has.
The scattering of light by TiO2 particles varies with particle

size and reaches a maximum when the particle size is about

one-half of the scattered wavelengths of light that are in the

250-300 nm size range (Forrest, 2001). For maximum

scattering efficiency, commercial TiO2 pigment should

therefore be milled to a particle size narrowly distributed

around a value in the 250-300 nm size range, which is

normally not done (Forrest, 2001). Furthermore, the pigment

particles should be well dispersed and not aggregated in order

to give optimal light scattering performance (Auger et al.,

2003). From environmental considerations, it is of interest to

use raw material as little as possible, which are available in

limited supply and negatively affect the environment when

they are refined to TiO2. Recently, there have been several

papers discussing monodisperse nano-composites obtained by

the deposition of titania onto silica cores (Li and Dong, 2003;

Ryu et al., 2003; Choi et al., 2005). However, the titania

source has been expensive titaniumalkoxides and the amount

of titania coated onto the silica core has been relatively low.
Therefore, an objective of the present investigation was to

develop methods for coating silica core particles with TiO2 in

an effort to obtain composite particles with well-defined and
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carefully controlled ratios between particle diameters and

thickness of titania coating.

Experimental

Materials

Tetraethyl ortosilicate (TEOS), technical grade: minimum

98wt%, from Hüls Sverige AB. Titanium tetrachloride

(TiCl4), technical grade: minimum 99.8wt%, from Tioxide

Ltd Sodium silicate ratio: 3.3, technical grade with a dry

content of 36.0wt%, from Akzo-Nobel. Sodium aluminate,

NaAlO2, purum, containing 55wt% Al2O3 from KEBO LAB

AB. All other chemicals were of pro analar grade.

Preparation of titania-coated particles
Silica core particles
Uniform silica core particles of well-defined mean diameters

in the range from 0.3 to 0.5mm were prepared by hydrolysis

of TEOS in an aqueous medium containing ammonia as a

catalyst (Stöber et al., 1968). The reaction temperature was

varied to give different mean particle diameters. The obtained

water-based silica solution had a concentration of SiO2 of

about 5wt%.

Aluminosilicate sites
Sodium aluminate was used to introduce aluminosilicate sites

onto the surface of the silica cores (Iler, 1976). A solution of

sodium aluminate was prepared by dissolving 11.66 g sodium

aluminate powder in 24.82 g water under heating and stirring.

While stirring vigorously, various amounts of sodium

aluminate solution were slowly added to the silica solutions

(the cores), from the previous section, in order to provide 0.6

and 1.5 aluminosilicate sites per nm2 of silica surface (Table I).

The solutions were heated at 908C for 2 h whereby aluminate

ions were exchanged into the silica surface. The initial pH

of the silica solutions was about 8.5 and the pH increased by

0.1 to 0.2 units during aluminate modification.

Charge reversal
Unmodified and aluminosilicate modified silica solutions were

charge-reversed by adding the silica solutions (the cores) to a

freshly made solution of TiCl4 under stirring at room

temperature. One litre of silica solution, from the previous

section, was added to approximately 20ml of a TiCl4
solution. The amount of TiCl4 used corresponded to a TiO2/

SiO2 weight ratio of 0.03.

The TiCl4 solution was prepared by dissolving 150 g TiCl4 in
114ml concentrated hydrochloric acid (12mol/dm3). After
diluting the solution with distilled water to 1,000ml a clear
solution of 0.79mol/dm3 in TiCl4 and 1.37mol/dm3 in HCl
was obtained. After charge reversal, the solid content of the
charge-reversed silica solution was adjusted to 4 per cent SiO2

by dilution with distilled water.

Titania coating of the silica core

The charge-reversed silica cores were pH-adjusted to pH 1.5 or
2.0 and the temperature was raised to 758C, over a period of
approximately 10min. A freshly made solution of TiCl4 was
added at a rate of 0.2mmol TiO2/m

2 of core surface area and
hour.The solutionofTiCl4used in the experimentswas the same
as that used in the earlier section. The pHwas maintained at pH
1.5 or 2.0 by continuously adding a solution of 3.75mol/dm3

NaOH. The ionic strength was kept low by continuous
ultrafiltration of the solutions during the coating process
through a fluoropolypropylene membrane, with a cut-off of
100,000g/mol in minilab ten units from DOWDenmark A/S to
give a more uniform coating (Iler, 1976). The operation was
performedat a constant volumebyaddingwater, thepHofwhich
had been adjusted to either 1.5 or 2.0.

Dispersal of the titania-coated silica cores

The solutions of titania-coated silica cores were charge-reversed
by adding the solutions to a solution of 3.3 molar ratio sodium
silicate, containing 3.0 per cent SiO2 by weight under stirring at
room temperature. The amount of sodium silicate corresponds
to a SiO2/TiO2-coated core weight ratio of 0.03. The pH was
always higher than 9.0 during the charge reversal and was
afterwards adjusted to pH 9.5. Using ultrafiltration as described
above, the solutions (coated cores) were concentrated and
washedwithwaterofpH9.5andcontaining150ppmSiO2.They
were further concentrated to solids contents above 25per cent by
weight using vacuum evaporation.

Material characterisation

The size of the solution particles was determined by dynamic
light scattering (Brookhaven BI-90 particle sizer). Scanning
electron microscopy (JEOL JSM-5200) was used to
determine the particle size distribution and to study the
surface of the particles. The electrophoretic mobility of the
particles was measured at pH 2.0 in 10mM HCl and at all
other pH values in 10mM NaCl, using a Zetasizer IIc Partilce
Electrophoresis Analyser (Malvern Instruments Inc.,
Southborough, Massachusetts, USA). The concentrations of
titania and silica in the permeates and supernatant liquids were
determined spectroscopically by measuring the absorbance at
410nm of complexes between titania and hydrogen peroxide
(Charlot, 1964) and between silica and ammonium
heptamolybdate (Iler, 1979), respectively, using a Shimadzu
UV-160A, spectrophotometer. A SiemensD5000powderX-ray
diffractometer was used for the X-ray diffractionmeasurements.

Results and discussion

Coating of the silica core with titania
The effect of the incorporation of aluminosilicate sites onto the silica
surface
Because the isoelectric point of silica is between pH1.7 and 2.0,
silica solutions have a low surface charge at pH below 7
(Iler, 1979). If, however, negatively charged aluminosilicate
sites are generated on the surface by heating the solutions with

Table I Electrophoretic mobility at pH 2.0 (m2 V21 s21 £ 108)

Step

Silica sol

(A) not

modified

Silica sol

(B) modified

(0.6 Al nm22)

Silica sol (C)

modified

(1.5 Al nm22)

1 Before charge reversal 0.7 21.2 23.1

2 After charge reversal 2.1 2.6 4.3

3 After pH-adjustment and

heating to 758C 2.5 2.8 4.6

4 TiO2 concentration (ppm)

in the super-natants

of the sols from point

3 in this table 880 638 230

Note: Sol A from step 1 will be noted by 1 A and so on in the text
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sodium aluminate, the surface will remain negative at pH

down to about 2 (Iler, 1979). It is reasonable to assume that
positively charged subcolloids or polycations of titania,

existing only in quite acidic solutions, would adsorb more
readily onto a negatively charged aluminate-modified silica

surface than on an almost neutral, unmodified silica surface.
To test this hypothesis silica particles with a diameter of 300 nm

were heatedwith a sodium aluminate solution under conditions
such that the silica surface contained 0, 0.6 or 1.5

aluminosilicate ions per nm2 (solution 1 A, 1 B and 1 C) in
Table I. Table I shows that the particles containing 1.5

aluminosilicate sites/nm2 had the highest charge at pH 2.0
as determined from electrophoretic mobility measurements.
Care had to be taken to measure the charge very soon after

the pH of the solution had been adjusted to 2.0 because at
this pH aluminium will begin to dissolution out from the

particle surface. (It takes only about 3-4 min for the
aluminate-modified particles to lose their charge at pH 2.)

The table also shows that after charge reversal, accomplished
by adding the silica solutions to a solution of TiCl4 of a pH

below 1.5, the silica solution (2 C) containing the high
amount of aluminium per nm2 again had the highest charge but

now positive, indicating that this surface adsorbed more
positively charged titania species than the other silica

solutions, i.e. 2 A and 2 B, with 0 or 0.6 Al/nm2. Adjusting
the pH of the dispersion of charge-reversed solution to 1.5

(from about 1.4) and heating at 758C for about 10 min
increased the charge on all three types of solution particle, but
somewhat more for the particles containing most aluminium

(3 C). The titanium concentration in the aqueous phase of this
silica solution was lower than in the other silica solutions

indicating that particle surfaces having a high surface
concentration of negative sites adsorb titania species more

effectively compared with 4 A-C.
Figures 1-3 show that after coating the charge-reversed

solution with titania, adding titanium chloride at a rate of
0.2mmol TiO2 h21 m22 and in an amount corresponding to

233 per cent titania, based on the weight of silica while

maintaining the pH at 1.5, the best result was obtained with

the solution containing silica core particles with 1.5 Al-sites/

nm2 surface. The particles are discrete and appear to be

uniformly coated with a layer of titania (Figure 3). The

particles with 0.6 Al-sites/nm2 surface seem to be somewhat

less uniformly coated and also somewhat aggregated

(Figure 2). If no alumina is present on the particle surface,

not all the added titania is deposited on the core particles but

form secondary titania particles in the dispersion, which

aggregate with themselves and with partially coated core

particles (Figure 1).

The effect of the pH in the coating stage
Coating of silica cores with titania has been suggested to take

place by heterogeneous nucleation on the core surface (Hsu

et al., 1993). The following mechanism for the reaction has

Figure 1 SEM micrograph, silica core with a particle diameter of
300 nm, not aluminate-modified core surface, coated at pH 1.5 with 233
per cent titania based on the weight of silica

Figure 2 SEM micrograph, silica core with a particle diameter of
300 nm, aluminate-modified core surface 0.6 Al/nm2, coated at pH 1.5
with 233 per cent titania based on the weight of silica

Figure 3 SEM micrograph, silica core with a particle diameter of
300 nm, aluminate-modified core surface 1.5 Al/nm2, coated at pH 1.5
with 233 per cent titania based on the weight of silica
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been proposed and assumed that step 2 was the rate

determining step and that the rate of reaction increases
rapidly with increasing pH (Matijević et al., 1977):

Ti4þ þ pOH2 ¼ TiðOHÞð42pÞþ
p ð1Þ

OH

2 Ti(OH)p
(4-p)+ ⇔ (2p-2)OH-  +   Ti         Ti    (≡ E)

OH

ð2Þ

E, H2Oþ ; Ti2O2Ti ; ð; FÞ ð3Þ

Eþ F, TiO2 crystals ð4Þ

pH has been recognised (and also agitation, see next section) as
an important parameter in the process of coating silica coreswith
titania (Kohlschütter et al., 1970). Following their lead, the effect
of pH on the quality of titania coating on silica cores was
investigated. Because the iep of titania is about 5.5-6.0 it follows

that the positive charge on titania particles decreases with
increasing pH (Barringer and Bowen, 1985). Aggregation that is

due to diminishing electrostatic repulsion between the particles
could therefore occur if coating takes place at pH values

approaching the iep from the acid side. On the other hand, it has
been reported that uniform coating of silica cores with titania is

favoured by low ionic strength (Hsu et al., 1993), which speaks
against low pH where the ionic strength is high. Moreover, the
solubility of titania increases with decreasing pH (Look and

Zukoski, 1992), an event that could lead to substantial losses of
titania through the ultrafiltration membrane used in the coating

procedure. Obviously, one must find a pH at which the
uniformity of the coating is maximised whereas losses of titania

and aggregation are minimised. Thus, coating 300 nm
aluminium silicate modified silica solutions, 3 C, using an

addition rate of titaniumchlorideof 0.2mmolh21m22 and inan
amount corresponding to 233 per cent titania based on the

weight of silica, yielded a more dispersed system at pH 2.0
(Figure 4) than that at pH 1.5 (Figure 3). The concentrations of

titania in the aqueous phase at pH 1.5 and 2.0 were 178 and 130

ppm, respectively, suggesting that the losses of titania at pH 1.5

were about 50 per cent higher than at pH 2.0, although at both

pH values the losses were negligible (less than 0.4 per cent of the

titaniawas lost through themicrofiltrationmembrane atpH1.5).

A higher chloride concentration (e.g. solutions acidified with

HCl) has been reported to yield a grainier surface of TiO2

particles. The particles in Figure 3 are grainier than the particles

in Figure 4 (pH 2.0), a finding in accord with those of Look and

Zukoski (1992).

The effect of agitation
Agitation is a common, and often necessary, means of

maintaining a colloidal system in a highly dispersed state

during its formation or while it is being modified, such as in the

caseof coatingacolloidaldispersionof silicacoreswith titania.To

investigate the importance of agitation on the degree of

dispersion 300nm aluminosilicate modified silica cores, 3 C,

were coated at pH2.0 at758Cwith400per centTiO2 at a coating

rate of 0.2mmolTiO2m
22 h21 with no other agitation than that

provided by the circulation pump of the ultrafiltration unit and

with moderate additional agitation provided by a mechanical

stirrer. Figure 5 shows that the titania-coated silica cores made

with no extra agitation were quite aggregated whereas even

moderate stirring considerably improved the state of dispersion

(Figure 6).

The coating thickness
In the previous section, the effect of the pH in the coating stage,

the effect of the ionic strengthof the titania coatingwasdiscussed.

A high ionic strength, such as, at low pH or high salt

concentrations, is detrimental to the uniformity of the coating

and to the high degree of dispersion of the colloidal particles

(Figure 7, Hsu et al., 1993). By using ultrafiltration to wash out

salts, it is possible to achieve uniformly coated silica cores

(Figure 8) with up to 400 per cent titania based on the weight of

silica and at solids contents of at least 8 per cent by weight

(Figures 6 and 9).

Figure 4 SEM micrograph, silica core with a particle diameter of
300 nm, aluminate-modified core surface 1.5 Al/nm2, coated at pH 2.0
with 233 per cent titania based on the weight of silica

Figure 5 SEM micrograph, silica core with a particle diameter of
300 nm, aluminate-modified core surface 1.5 Al/nm2, coated at pH 2.0
with 400 per cent titania based on the weight of silica

Note: No agitation during the coating process
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The dispersion of the titania particles
To obtain an optimal scattering efficiency it is vital that the

titania coated silica particles are well dispersed.

Measurements of the hydrodynamic diameter of the titania-

coated cores dispersed in sodium silicate solution, being

negatively charged, and comparing it with the theoretical

diameter (Table II) indicated that the titania-coated silica

particles were well dispersed when considering that dynamic

light scattering depends strongly on particle size. If only a

smaller amount of the particles were twins, they would give a

substantial contribution to light scattering and therefore give a

larger mean particle diameter.

Light scattering in pigmented coatings
The measurements and the four-flux model used to calculate

reflectances of commercial TiO2 pigments and TiO2 coated

SiO2 particles hosted in a copolymer of ethylene and vinyl

acetate have been described elsewhere (Vargas et al., 2000).

Conclusions

. It is possible to produce a well-dispersed composite titania-

silica particle of desired size and titania/silica ratio by coating

a silica core via forced hydrolysis of the TiCl4 solution.
. To obtain a homogeneous titania coating it is important

that the silica surface is aluminate-modified, in an amount

corresponding to about 1.5 aluminosilicate sites per nm2

silica surface.
. The aluminate-modified silica solution should be charge-

reversed before the coating process starts.
. It is also important to perform the coating under such

conditions that the electrolyte content is kept low (e.g. by

continues wash-out by ultra-filtration) and to keep the pH

Figure 6 SEM micrograph, silica core with a particle diameter of
300 nm, aluminate-modified core surface 1.5 Al/nm2, coated at pH 2.0
with 400 per cent titania based on the weight of silica

Note: Moderate agitation during the coating process

Figure 7 SEM micrograph, titania coating at pH 1.0, 233 wt% TiO2

based on SiO2, core diameter: 300 nm

Figure 8 SEM micrograph, titania coating at pH 2.0, 233 wt% TiO2

based on SiO2, core diameter: 300 nm

Figure 9 SEM micrograph, titania coating at pH 2.0, 400 wt% TiO2

based on SiO2, core diameter: 300 nm
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in the region of 2.0 to obtain a uniform titania coating of
the silica core.

. Good agitation is needed to prevent agglomeration of
particles during the coating process.
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Table II Measured diameter, theoretical diameter and the surface
charge expressed as the electrophoretic mobility at pH 9.5

Core diameter

(nm), amount

titania wt%

based on the

core

(%)

Electrophoretic

mobility

(108m2 V21 s21)

Measured

particle

diameter

(nm)

Theoretical

particle

diameter

(nm)

300, 150 24.29 540 360

300, 325 24.21 556 410

300, 400 24.05 608 430

407, 81.8 23.98 659 450

407, 170 23.98 655 490

407, 233 24.05 630 520

500, 81.8 23.27 695 560

500, 138 23.12 660 590

Notes: dptheoretical¼dpcoreð1þamount titania on the core£r SiO2
=r TiO2

Þ1=3;
rr TiO2

(anatase) ¼ 3.9 g/cm3 (Forrest, 2001); rr SiO2
(Stöber sols) ¼

1.8 g/cm3 (Coen and Kruif, 1988)
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Modified silica sols: Titania dispersants and co-binders 

for silicate paints 

Peter Greenwood1 

Eka Chemicals AB (a business unit within AkzoNobel), S-44580 Bohus, Sweden 

 

Abstract 

Purpose - The purpose was to investigate epoxysilane modified silica sols as surfactant-free 

inorganic pigments dispersants and as co-binders/reinforcing agents for silicate paints. 

Design/methodology/approach - The performance of epoxysilane-modified silica sols as 

dispersants for titania was studied using a polyacrylate-based dispersant as reference.  

Furthermore, the effect of the addition of silica sols, with or without silane modification, to 

potassium silicate on binder properties was investigated. 

Findings - Significant improvements were obtained in stability towards settling in water-

based titania pigments pastes and in light scattering efficiency (as much as 50%) for the 

optimal size of the silica particle of 5 nm.  The number of silane molecules per nm2 silica 

particle surface must exceed a critical value of at least 1 molecule of epoxysilane per nm2 

particle surface.  Additionally, improved stability towards gelling, water resistance and film-

forming properties of sol-silicate binder mixes were achieved for epoxysilane modified silica 

sols. 

Research limitations/implications - Only epoxy silane modified silica sols were studied 

in this report.  Titania pigment was examined but other important pigments (e.g., iron 

oxides) remain to be studied.  In addition, only sol-silicate mixes were investigated and not 

fully formulated silicate paints. 

Originality/value - The present method provides an easy route to obtain stable 

surfactant-free inorganic pigments pastes, as well as makes stable high ratio sol-silicate 

mixes/paints. 

Practical implications - A method that produces stable, high-performing, surfactant-free 

inorganic pigments pastes.  Furthermore, stable high ratio sol-silicate binders can be 

obtained with improved water resistance and film properties for use in silicate paints. 

                                                 
1 E-mail: peter.greenwood@akzonobel.com 



 2 

Keywords - Titania, Pigment, Dispersion, Silica, Colloids, Paint 

Paper type - Research paper 

 

Introduction 

R.K. Iler lists numerous well-established uses of silica sol in his definitive book on The 

Chemistry of Silica (Iler, 1979), some of which are: catalyst bases and adsorbents, stiffening 

and binding agents in precision casting moulds, anti-sticking, anti-blocking and antistatic 

effects on polymer films, antisoiling agents which provide an ultra smooth, oleophobic 

surface on porous materials, such as in painted surfaces, by filling micropores to exclude dirt 

particles, reinforcing agents in latex-based coatings, and many others.  Otterstedt and 

Greenwood describe in detail some specific, more recent applications of colloidal silica, 

including the production of cement, lead-acid batteries, paper, and industrial coatings and 

polishing (Otterstedt and Greenwood, 2005).  In most of these applications conventional 

silica sols work very well but in some (e.g., as additives to polymer latices and inorganic 

binders) there are sometimes problems with long-term stability towards gelling.  In such 

cases, the particles of colloidal silica  are combined with complicated surfactant systems 

(such as in polymer latices), exposed to high concentrations of electrolyte (such as alkali 

silicates in inorganic binders) or find themselves exposed to very high solids contents when 

they are used as dispersants in pigments pastes. 

Non-surface modified silica sols have been used as dispersants of pigments for many 

years in applications where the use of surfactants is undesirable.  Such applications are 

typically coating applications in which a foaming problem may occur as well as a decrease 

in the chemical resistance of a coating that is caused by high loads of surfactants.  Until now, 

the drawback of using conventional silica sols as pigments dispersants has been 

aggregation/gellation of the systems and hence a drop in performance.  This decrease in 

performance occurs because the stability of the colloidal systems has not been sufficient. 

Silane modification may improve the stability of colloidal silica in many applications.  

In a recent study I reported the effect on the properties of the particles of colloidal silica by 

reacting their silanol groups with various commercially available organo-reactive silanes.  In 

another study I reported the effect of silane modification of the surface silica particles on the 

stability of colloidal systems when such particles are used as reinforcing fillers in latex 
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polymer binders, especially as water-based, two-pack coating formulations (Greenwood, 

(2008). 

In this investigation we will study the effect of silane modification of silica sols on the 

stability of colloidal systems when such sols are used as reinforcing fillers in alkali-silicate-

based inorganic binders and as dispersants for inorganic pigments. 

Experimental 

Materials used in the experiments 

Colloidal silica dispersions - silica sols 

The following commercial silica sols (pH ranged from 9 to 11), supplied by Eka Chemicals 

AB (Akzo Nobel), were used: 

Bindzil® 15/750 with a specific surface area of 750 m2/g; particle size 4 nm and a silica 

content of 15 % by weight. 

Bindzil® 15/500 with a specific surface area of 500 m2/g; particle size 5 nm and a silica 

content of 15 % by weight. 

Bindzil® 257/360 with a specific surface area of 360 m2/g; particle size 7 nm and a silica 

content of 25 % by weight; the surface is modified with sodium aluminate. 

Bindzil® 30/360 with a specific surface area of 360 m2/g; particle size 7 nm and a silica 

content of 30 % by weight. 

Bindzil® 40/220 with a specific surface area of 220 m2/g; particle size 12 nm and a silica 

content of 40 % by weight. 

Potassium silicate 

The potassium silicate used had a silica content of 23.8 % by weight and a K2O content of 

11.1 % by weight corresponding to a molar ratio of SiO2/K2O of 3.36 (supplied by Askania 

AB). 

Silane 

Silquest® A-187: gamma-glycidoxypropyl trimetoxy silane (GPTMS), MW: 236 g/mole was 

used, which was kindly supplied free of charge by former General Electric Silicones (now 

Momentive). 

Resin 
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Setalux® 6774, kindly supplied free of charge by Nuplex Resins. 

Pigment 

The titania pigment, supplied by Univar, was highly milled and surface treated with Al2O3 

and ZrO2 titania pigment, Tiona 595. 

Pigment Dispersant 

Dispex N40, Sodium polyacrylate (NaPA, Ciba Specialty Chemicals, Switzerland) of average 

molecular weight of 3500 g/mole was used as reference. 

Preparation of materials 

Preparation of pre-hydrolysed silane 

In a typical preparation 1000 g of silane were added to 1000 g of de-ionised water in a 3 L 

beaker with moderate agitation, corresponding to a water/silane molar ratio of 13:1. 

Silanes are generally poorly soluble in water and hydrolysis is therefore facilitated by 

using a heel of hydrolysed silane, which contains up to about 20 % by weight of a lower 

aliphatic alcohol.  Therefore, 50 to 70 g of hydrolysed silane were placed in a 3 L beaker.  

1000 g silane was first added for about 20 seconds to the heel and then 1000 g of de-ionised 

water were added for about 20 seconds with moderate agitation.  After about 1 hour, a clear 

solution was obtained, indicating complete hydrolysis. 

Preparation of silane modified sols 

As described previously, the calculated amount of the hydrolysed silane solution in water 

was added to 5000 g of undiluted silica sol (e.g., Bindzil® 30/360) with good agitation and a 

controlled rate of addition.  The addition rate and reaction temperature were 600 g/h and 60 

°C, respectively. 

Characterisation of the sols 

The silica sols were characterised by measuring pH, specific surface area by titration (Sears, 

1956), viscosity at Brookfield Viscometer, and silica content by XRF. (Table I) 

(Take in Table I) 

Mixtures of silica sols and soluble silicate 

Preparation of mixtures of silica sols and potassium silicate  
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Silica sols were diluted with water before blending them with the potassium silicate solution 

under stirring in order to adjust overall silica content to 20 % by weight (see formulations in 

Table II). 

(Take in Table II) 

Stability of silica sol- silicate solution mixtures 

The stability was measured as viscosity using a Brookfield Viscometer at 20 °C.  A sample 

was considered to have gelled if the viscosity was higher than 2000 mPas. 

The water resistance of sol-silicate films 

The water resistance was evaluated after 24 hours on 24 hour old films that had been dried 

at room temperature.  Films with a wet film thickness of 200 microns were cast on glass 

plates with a film applicator for evaluation of film properties and water resistance.  The 

water resistance was measured by visual inspection after 24 hours. 

The scale was 0: Film “dissolved”; 1: Severe impact on the film; 2: Some impact on the film; 

3: No impact on the film. 

Pigments dispersants 

Colloidal silica dispersions – silica sols 

The silica sols used are as described in table I but their silica content was adjusted to 13.4 % 

by weight (unless otherwise stated) before they were used as pigment dispersants. 

Preparation of pigments pastes. 

300 g of titanium dioxide were added under moderate agitation for about 20 sec to 100 g of 

diluted silica sol to yield a 75 % pigment paste unless otherwise stated (Table III).  The 

pigment was dispersed for 10 min at 1400 rpm with a 40 mm diameter dissolver turbine to 

render a well-dispersed pigment paste. 

(Take in Table III) 

Coating composition series 

The pastes were incorporated into a resin emulsion to form coating compositions for optical 

evaluations.  The coating compositions contained 5, 10, 20, 30, 40, and 50 % titania pigment 

on weight base in the dried coating (Table IV).  Each coating series had a serial number 

corresponding to the number of the pigment paste, as given in Table III.  Films were cast by 

using a film applicator with a 100 microns opening.  A non-pigmented coating was cast as a 
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control.  Each coating composition contained 50 g of resin emulsion (equal to 22 g of dry 

resin). 

(Take in Table IV) 

Evaluation of pigmented films. 

Optical measurements were carried out for wavelengths in the visible range (from 300 nm - 

700 nm).  The reflectance spectrum of the pigmented coatings was measured by a Beckman 

Acta 5240 spectrophotometer equipped with an integrating sphere and using barium 

sulphate as the reflectance reference. 

Coating compositions made from resin and pigment pastes number 1, 2, 3, 4, 10, 11, 

and 13 were evaluated.  Pigment pastes number 5, 6, 7, 8, 9 and 12 were not stable.  Pigments 

pastes number 14 and 15 were not prepared in conjunction with the other samples and were 

therefore not evaluated regarding their light-scattering properties. 

Results and discussion 

Potassium silicate – silica sol inorganic paint binders 

Silicate paint is a traditional inorganic concrete paint using potassium silicate as a binder for 

inorganic fillers, e.g. clays, and pigments such as titania and iron oxides.  However, the 

solubility of the silicate binder of the paint in water is at first relatively high because of the 

high alkali content of the paint, but this problem is reduced over time by the reaction of the 

paint with calcium-rich surfaces (e.g., concrete surfaces) and the creation of insoluble 

calcium silicate species. 

One way of reducing the solubility of the dried silicate paint binder in water and 

hence improve the weather resistance of the paint, is to add a conventional silica sol to the 

potassium silicate binder, which increases the molar ratio of silica to the alkali of the binder. 

Conventional silica sols are currently being used in combination with potassium 

silicates as binders in wholly inorganic silicate paints (Heiberger and Schläffer, 2001). 

Stability of silica sols in silicate solutions: Viscosity for silicate-silica sol mixtures 

Adding conventional silica sols to the potassium silicate binders, however, reduces the 

stability towards gelling and the film-forming properties of the binder. 

These drawbacks can be minimised by using silane-modified colloidal silica.  Table V 

shows that stability towards gelling is significantly improved by silane modification. 
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(Take in Table V) 

Film properties  

The film forming properties of silicate binders deteriorate with increasing ratio.  When a 

silica sol has been used to increase the ratio of the binder, silane-modified sol, in comparison 

with a conventional sol, yields somewhat improved film-forming properties.  Poorer film-

forming properties at higher ratios may be rectified to some extent by the addition of a 

wetting agent (Table VI).  (This problem can be reduced further in fully formulated silicate 

paint with a high load of inorganic pigments and fillers.) 

(Take in Table VI) 

Water resistance of films 

The water resistance is normally improved when the molar ratio SiO2/K2O is increased (i.e. 

lower alkali content).  As shown in Table VII, at a given molar ratio, silane-modified 

colloidal silica improves the water resistance relative to non-modified colloidal silica. 

(Take in Table VII) 

Dispersant of titania pigments  

The surfactant effects of silica sols are well known and thus may be used as a dispersing 

agent in the manufacture of certain organic copolymers (Iler, 1979) 

More recently, colloidal silica has been shown to be an excellent dispersant for TiO2 

pigments (Bolt, 1999).  Silica sol is added to the pigment slurry to coat the surfaces of the 

TiO2 particles with discrete particles of silica.  In applications of this kind the silica particles 

are introduced into a system of high solids content and the stability toward gelling of the 

silica particles may be low.  The problem of stability may be aggravated by the presence of 

electrolytes in the system.  In contrast to conventional colloidal silica, silanes modified silica 

sols give good pigment spacing and have high dispersing power even in systems of high 

solid content, as indicated by Figure 1. 

(Take in Figure 1) 

Stability of pigments pastes 

Using silane-modified colloidal silica as dispersant, pigments pastes containing 75 % by 

weight TiO2 could be prepared with improved stability and fluidity as compared to using 

conventional silica sols as dispersing aids. 
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In general, with all other things being equal, the stability of colloidal silica decreases 

with increasing specific surface area, i.e. decreasing particle size, which is also the case when 

silica sols are used as dispersing agents in pigment pastes.  It is, however, desirable to use 

small particles rather than larger ones as dispersants for pigments because they cover the 

surface of the big pigment particles more efficiently (Matijevic and Hansen, 1980). 

The stabilising effect of silane-modified silica sols as dispersants in TiO2 pastes is 

twofold.  On the one hand, compared with conventional silica, silane-modified silica 

significantly improves the stability towards gelling of the sol, even in environments of high 

solids content.  On the other, good dispersion of the pigment requires enough silica particles 

present to cover the surface of the TiO2 particles with a surface coverage exceeding a certain 

critical value.  Tables VIII and IX show that stable pigments pastes require that the silane 

modifications of the silica dispersants corresponds to at least 1 molecule of GPTMS/nm2 

particle surface.  Specifically, the stable pastes number 1, 2, 4, 13, and 15 show that the 

degree of surface modification of the silica sols is at least 1 molecule of GPTMS/nm2 and 

that the surface coverage of titania particles with silica particles exceeds 100 %. 

Although the stability of the pastes treated with silane-modified silicas improved 

significantly, all the pastes studied in Table IX were found to settle with time.  After 7.5 

months, they had all formed sludge at the bottom. 

The sludges containing silane-modified silicas in required amounts could, however, 

readily be re-dispersed.  The other pastes, including paste number 10 containing Dispex N40 

with a surface coverage of 165 %, were much more difficult to re-disperse. 

(Take in Tables VIII and IX) 

Light-scattering efficiency of the pigmented resin films  

Pigment particles must be well dispersed and not aggregated to give optimal light-scattering 

performance (Auger et al., 2003).  For maximum scattering efficiency, commercial TiO2 

pigments should therefore be milled to a particle size narrowly distributed around a value 

in the range 250 to 300 nm (Forrest, 2001).  Silane-modified colloidal silica as a dispersing 

agent can enhance pigment efficiency compared to the conventional polyacrylate-based 

dispersing agent Dispex N40.  Figure 2 shows that sample paste number 1 (blue), dispersed 

with 5 nm silica particles and modified with 2 molecules of GPTMS/nm2 particle surface, 

scattered light much more efficiently than the reference paste number 10 (red), containing 

0.53 % Dispex N40 based on titania – the dosage recommended by the supplier.  The relative 
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enhancing effect on the reflectance is about 50-60% and constant over the range of solids 

contents.  Thus, a 10 % silica dispersed paste scatters light as effectively as a 15 % Dispex 

N40 dispersed paste and a 35 % silica dispersed paste reflects light as effectively as a 50 % 

Dispex N40 dispersed paste. 

(Take in Figure 2) 

For a given degree of silane modification, the improvement in pigment efficiency 

increases with decreasing particle size down to about 5 nm, corresponding to a specific 

surface area of 500 m2/g.  Figure 3 shows that 4 nm particles, with a specific surface area of 

750 m2/g, scattered light somewhat less efficiently over most of the range of solids contents 

but at 40% solids and above the reflectance dropped sharply, probably because of 

aggregation that is caused by the very small particle size. 

For a given particle size, and independent of particle size, the stability of the pastes to 

aggregation, and as a consequence also the reflectance, increases with increasing degree of 

silane modification, reaching a plateau at between 1 and 2 GPTMS/nm2. 

(Take in Figure 3)  

Degree of dispersing energy and level of dispersant 

Water is by far the most common dispersing medium in titania pigments pastes.  Titania 

powder is added to water containing a dispersing agent and the slurry that results is 

agitated by powerful dispersers.  Using a conventional dispersing agent, such as Dispex 

N40, it requires considerable input of energy to bring about complete dispersion of the 

titania, i.e. a paste in which each titania particle of about 300 nm is surrounded by dispersant 

molecules and completely separated from the other titania particles in the paste.  A 

minimum amount of energy is required to obtain a completely dispersed paste. 

With silane-modified colloidal silica as a dispersing agent, however, much less energy 

is needed to obtain a completely dispersed paste.  It is well known that silanes (e.g., gamma-

glycidoxypropyltrimethoxysilane) readily react with the OH groups on the surface of titania 

particles.  Therefore, we speculate that the reason for silane-modified colloidal silica being 

more effective dispersants for titania pigments is that the silica particles adhere more 

strongly to the titania surfaces than conventional dispersants, which are hydrogen-bonded 

to the pigments surfaces.  In addition to forming hydrogen bonds with the titania surfaces, 

the silica particles may form chemical bonds with the surfaces when silane molecules, 

chemically attached to the silica surfaces, react with hydroxyl groups on the titania surfaces. 
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In a well dispersed titania pigment paste with high titania content the optimal average 

size of a spacer/extender component of the particles is about 5-30 nm depending on the 

titania content (Braun, 1988).  The particles constantly bump into each other but are 

prevented from associating or aggregating by the steric stabilisation provided by the 

dispersant. 

Silane-modified silica sols provide much more effective steric stabilisation than 

conventional dispersing agents (such as Dispex N40) because the silica particles are much 

larger than the dispersant molecules, i.e. they are much larger “spacers”. 

For a given particle size, say 5 nm, silane-modified sols can be prepared with 20-25 % 

higher solid contents compared with unmodified particles, indicating that silane 

modification weakens interactions between the silica particles (Greenwood and Gevert, 

2009).  It is therefore to be expected, and we have shown it to be the case in this 

investigation, that for a given solids content, pastes dispersed with silane-modified sols have 

less tendency to settle and form hard sludges than pastes dispersed with dispersing agents 

such as Dispex N40. 

Moreover, 5 nm silica particles modified with 1 to 2 GPTMS/nm2 may be the optimum 

dispersing agent for titania pigments.  With larger particles, stable pastes cannot be 

prepared with the highest solids contents because the pigment particles will be less densely 

packed.  With smaller particles, the stability towards aggregation and settling will be 

compromised. 

Conclusions 

1. It is possible to obtain stable silica sol-potassium silicate mixes using silane modified silica 

sols in molar ratio, SiO2:K2O of 5-12. 

2. Films from such mixes have improved film properties and better water resistance. 

3. Silane modified silica sols are excellent pigments dispersants for titania pigments, giving 

stable pigments pastes. 

4. Optimal particle size of the silica used as dispersants is about 5 nm. 

5. A certain degree of silane modification of from 1 to 2 GPTMS/nm2 is required for optimal 

performance as pigments dispersants. 

6. A surface coverage of the pigments particles of 120-140 % of the theoretical calculated 

level is required, depending on the particle size of the silica sol. 
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Table I  Description of colloidal silica dispersions used in the application evaluations 

*: Aluminate modified sol 

Silica 

sol No. 

Dp (nm), based on 

specific surface area 

before modification 

SiO2 content  

(wt-%) 

Modification degree: 

(GPTMS/nm2 surface) 

1 4 15 0.7 

2 4 15 1.4 

3 5 15 0 

4 5 15 1.0 

5 5 15 2.0 

6 7 30 0 

7 7 25* 0 

8 7 30 1.4 

9 7 30 0 

10 12 40 1.7 
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Table II  Formulations 

 

No. Silica sol (g) Waterglass (g) Water (g) Molar ratio 

SiO2/K2O 

1 10.72 28.50 10.78 5.0 

2 14.35 23.52 12.13 6.0 

3 16.96 20.16 12.88 7.0 

4 18.91 17.64 13.45 8.0 

5 20.44 15.68 13.88 9.0 

6 21.65 14.11 14.24 10.0 

7 22.65 12.83 14.52 11.0 

8 23.48 11.76 14.76 12.0 
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Table III  Experimental pigments pastes 

Paste 

No. 

Silica sol 

No., as 

given in 

Table I 

Sol particle size and 

degree of silane 

modification 

(GPTMS/nm2 surface) 

Note 

1 5  5 nm, 2.0  

2 4  5 nm, 1.0  

3 1  4 nm, 0.7  

4 2  4 nm, 1.4  

5 3 5 nm, no silane  

6 7 7 nm, no silane Aluminate modified sol 

7 8 7 nm, 1.4  

8 9 12 nm, no silane  

9 10 12 nm , 1.7  

10 ----- Dispex 40 N, 0.53 % on TiO2 Reference 

11 5  5 nm, 2.0 Silica content reduced by 2/3 to 4.46 

% 

12 5  5 nm, 2.0 350 g TiO2 in paste 

13 5  5 nm, 2.0 Dispersion for 20 min at 2000 rpm. 

14 9 12 nm, no silane Non-diluted silica sol, 200 g TiO2  

15 10 12 nm, 1.7 Non-diluted silica sol, 200 g TiO2  
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Table IV  Pastes used in coatings series 

No. Wt-% TiO2 TiO2(g) Paste (g) 

A 5 1.16 1.54 

B 10 2.44 3.26 

C 20 5.50 7.33 

D 30 9.43 12.57 

E 40 14.67 19.56 

F 50 22.00 29.33 
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Table V  Viscosity of silicate-silica sol mixtures 

Silica sol non- surface 

modified, dp: 7 nm, (sol No. 6 

in Table I) 

Silica sol- Silane modified dp: 

7 nm, (sol No. 8 in Table I) 

No.  Molar ratio: 

SiO2/K2O 

Viscosity 

(mPas), 1 

week 

Viscosity 

(mPas), 2 

weeks  

Viscosity 

(mPas), 1 week 

Viscosity 

(mPas), 2 

weeks  

1 5.0 1287 Gel 19 131 

2 6.0 14 Gel 6.6 10 

3 7.0 6.7 Gel 4.2 5.1 

4 8.0 4.8 Gel 3.5 3.8 

5 9.0 4.0 Gel 2.9 3.0 

6 10.0 3.7 Gel 2.8 2.9 

7 11.0 3.3 31  2.6 2.8 

8 12.0 3.1 13 2.5 2.5 
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Table VI  Film properties for silicate-silica sol mixtures 

No. Molar Ratio: 

SiO2/K2O 

Colloidal silica - 

Silane modified 

Colloidal silica non- 

surface modified 

1 5.0 Film Film 

2 6.0 Film Film 

3 7.0 Film Film 

4 8.0 Film No film* 

5 9.0 Cracks* No film* 

6 10.0 No film* No film 

7 11.0 No film No film 

8 12.0 No film No film 

*: Addition of wetting agent to the formulation may give film-forming compositions 
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Table VII  Water resistance of film from silicate-colloidal silica mixes 

No. Molar Ratio: 

SiO2/K2O 

Colloidal silica - 

Silane modified 

Colloidal silica non- 

surface modified 

1 5.0 0 0 

2 6.0 0 0 

3 7.0 1-2 1 

4 8.0 2 --- 

5 9.0 --- --- 

6 10.0 --- --- 

7 11.0 --- --- 

8 12.0 --- --- 

----: No film 
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Table VIII  Dispersant used for and notes about the pigments pastes 

Paste 

No. 

Silica sol 

number 

as given 

in Table I. 

Sol particle size and 

degree of silane 

modification; 

 (GPTMS/nm2 

surface) 

Paste stability 

1 5  5 nm, 2.0 Stable low viscous paste after 9 days 

2 4  5 nm, 1.0 Stable for 1 day, thereafter thixotropic 

3 1  4 nm, 0.7 Gels after 1 day 

4 2  4 nm, 1.4 Stable for 1 day, thereafter thixotropic 

5 3 5 nm, no silane Gels during pigment paste preparation 

6 7 7 nm, no silane Gels during pigment paste preparation 

7 8 7 nm, 1.4 Gels during pigment paste preparation 

8 9 12 nm, no silane Gels during pigment paste preparation 

9 10 12 nm, 1.7 Gels during pigment paste preparation 

10 ----- Dispex 40 N, 0.53 % on  

TiO2 (reference) 

Thixotropic after 1 day, phase 

separated after 9 days 

11 5  5 nm, 2.0 Thixotropic paste after 3 h 

12 5  5 nm, 2.0 Gels during pigment paste preparation 

13 5  5 nm, 2.0 Stable low viscous paste after 6 days 

14 9 12 nm, no silane Gels during pigment paste preparations 

15 10 12 nm, 1.7 Stable low viscous, fluid after 26 days. 



 21 

Table IX  Silica surface coverage of titania pigments particles of 300 nm particle size 

Paste 

No. 

Number of silica 

particles needed for 

full surface coverage 

of one pigment 

particle, Nmax 

Weight per cent 

silica dispersant 

need for full 

TiO2 pigment 

coverage 

Weight per 

cent added of 

silica 

dispersant 

based on TiO2 

Pigment surface 

coverage in per 

cent of full 

mono-layer 

coverage 

1 13492 3.19 4.47 141 

2 13492 3.19 4.47 141 

3 20943 2.54 4.47 176 

4 20943 2.54 4.47 176 

5 13942 3.19 4.47 141 

6 6973 4.53 4.47 99 

7 6973 4.53 4.47 99 

8 661 17.3 4.47 26 

9 661 17.3 4.47 26 

10 ----- 0.32* 0.53 165 

11 13492 3.19 1.49 47 

12 13492 3.19 3.83 120 

13 13492 3.19 4.47 141 

14 661 17.3 20.0 116 

15 661 17.3 20.0 116 

*: Assuming1.2 monomers/nm2 titania pigment for full surface coverage corresponding to an 

adsorption of 0.7 mg Dispex N40 per m2 of pigment surface (Boisvert et al., 2000; Boisvert 

et al., 2001) 

Nmax= 2π[ (a1+a2)/a2]
2/√3 
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weight ratio: Nmax x (ρSiO2/ρTiO2) x (a2/a1)
3 

ρSiO2= 2.2 kg/dm3 an, ρTiO2= 4.3 kg/dm3 

a1= 150 nm (radius of titania pigment particle of 300 nm size) 

a2= radius of dispersant particle 
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Figure 1  TEM Micrograph: Titania pigment dispersed by 5 nm silane modified silica sol; 

pigment paste number 1 
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Figure 2  Reflectance (%) versus titania content, λ: 300 nm - 700 nm.  Coatings based on 

pigments pastes number 1 and 10 
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Figure 3  Reflectance (%) versus titania content, λ: 300 nm - 700 nm.  Coatings based on 

pigments pastes number 1 and 4 
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Dilute silica sols were prepared and studied over 70 years

ago. Their uses as binders in catalyst preparation, as glazes

on ceramics, as coatings on concrete and plaster of Paris,

as agents for treating paper and textiles, and several

other applications were investigated [1]. These early

silica sols contained less than 10% by weight of silica,

were fairly unstable and did not have reproducible proper-

ties. Iler [2] predicted that colloidal silica would not be

accepted for wide commercial use before these short-

comings were remedied.

Product development work in several industrial

laboratories resulted in the production of concentrated

silica sols of high stability and very reproducible

properties. Iler [3] describes numerous applications of

such sols.

Otterstedt and Brandreth [4] discusses functions

that can be achieved by using colloidal silica in various

applications. Most of these functions depend on the

presence of a high specific surface area of a special chemi-

cal nature.

Here we will focus our attention on the use of colloidal

silica to make high quality concrete, as retention aid

in paper making, as polishing agents for silicon wafers,

to provide solid electrolytes in lead-acid batteries and
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as components in high quality coatings because these

applications are very large, relatively new and/or fast

growing.

COLLOIDAL SILICA IN CEMENT

AND CONCRETE

CEMENT

The following outline of cement is an adapted extract from

Rodney Cotterill’s fascinating odyssey into the material

world [5].

What Is Cement and Concrete?

Already in ancient times it was known that the reaction

between calcium oxide, also called lime or quicklime,

and water could yield a binder in building construction.

The Etruscans, for instance, added water to lime to form

calcium hydroxide, or slaked lime, which they mixed

with sand and stone into what today would be called a

primitive concrete. The Romans discovered a way to

improve cement making by burning a mixture of volcanic

ash, which essentially consisted of silica, and lime. The

many impressive constructions that have lasted to our

days testify to the durability of their cement.

However, the Roman cement technology fell into obliv-

ion and high quality cement became available first in 1824

when an Englishman Joseph Aspdin invented Portland

cement, or modern cement. Modern cement is made by

grinding a mixture of limestone and clays, with a weight

ratio of about 80 to 20, and several other minor components

with water to a slurry. This slurry is passed down a rotating

kiln and first loses water and then carbon dioxide as the

temperature gradually increases downward the kiln. In the

last temperature zone, where the temperature is 1200–

15008C, the material sinters and melts to clinker. After

cooling, the clinker is ground, together with a small

amount of gypsum, which controls the reactivity of the

cement with water, into a fine powder. The specific

surface area of the particles, which is inversely proportional

to particle size, determines the rate of reaction when water is

added to the powder. The different grades of commercial

cement powder are usually given designations that indicate

how rapidly the cement paste becomes rigid and gains

strength. Table 57.1 shows the composition and specific

surface area of three common grades of Swedish cement.

The metals oxides in Table 57.1 are not present as such

in cement powder but instead as four different major

compounds, alite, 3CaO�SiO2, 40–65% by weight,

belite, 2CaO�SiO2, 10–25% by weight, aluminate,

3CaO�Al2O3, up to 10% by weight, and ferrite, 4CaO�

Al2O3, also up to 10% by weight. There are also present

small amounts, a fraction of a percent usually, of free

lime, magnesium oxide, sodium sulfate and potassium

sulfate. These trace compounds can influence the final

properties of the material, for example, concrete, to a

much higher degree, and sometimes in a negative way,

than their abundance in the cement powder might

suggest. Gypsum, which is added when the clinker is

ground to a powder, is present in amounts between 2 and

5% by weight.

Modern cement, for example, Portland cement, contains

more components and is a much better binder than

primitive cement. Another important difference between

Portland cement and primitive cement is that the former

will set and harden under water. Cement paste, that is, a

slurry of cement powder and water is usually mixed with

sand or stone when it is used in building construction. The

term sand refers to particles smaller than 2 mm and the

term stone refers to particles larger than 2 mm. A mixture

of inorganic materials, which may include sand and stone,

and having a particle size distribution in the range from

about 0.01 to 100 mm, is called an aggregate [6]. Mortar is

a mixture of cement paste and sand. If aggregate is added

to cement paste, the mixture is called concrete. The weight

ratio of cement paste to aggregate in concrete is usually in

the range up to 1:6. Concrete may contain additives such

as setting and hardening additives, usually called accelera-

tors, or workability additives, usually called superplastici-

zers. The worldwide production of cement amounts to

about 1.5 billion metric tons.

Hydration of Cement

What happens when water reacts with the different

components of the cement powder is a central question

in cement science. In order to answer this complicated

question scientists have studied the rates of reaction and

heat liberation when water has been added to the different

compounds separately.

TABLE 57.1
Composition and Specific Surface Area of Swedish

Cements

Compound OPC Sl OPC Sk SRCP D

Cao (%) 62.2 64.3 54.6

SiO2 (%) 20.0 19.8 21.6

Al2O3 (%) 4.53 5.21 3.46

Fe2O3 (%) 2.23 3.04 4.75

K2O (%) 1.42 1.30 0.75

MgO (%) 3.37 1.45 1.02

Na2O (%) 0.11 0.06

Blaine (m2/kg) 363 400 323

Manufacturer: Sl ¼ Slite, Sk ¼ Skövde, D ¼ Degerhamn.

Note: Courtesy Euroc Research AB.
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Alite reacts with water to form calcium silicate hydrate

and calcium hydroxide, which is also known as portlan-

dite. The hardened paste has high strength when the reac-

tion is completed, and because alite is the most abundant

compound in cement, it also makes the dominant contri-

bution to the mechanical properties of the final product.

The hydration reaction proceeds at an appreciable rate a

few hours after the addition of water and lasts up to

about 20 days. The reaction of alite with water is acceler-

ated by aluminate and gypsum.

Belite reacts with water at a slower rate than alite but

the end product is the same. It takes about 2 days for the

hardening process to get started and about a year to be

completed. The mechanical strength of fully hydrated

belite is similar to that of hydrated alite.

The hydration of the aluminate phase is very fast and it

is essentially over within the first few hours. The contri-

bution of the final product to the mechanical strength of

the hardened cement paste is fairly low. It is also suscep-

tible to attack by sulfate ions, which leads to expansion

and weakening of the final product.

The final product of the reaction of ferrite with water is

not known but its contribution to the ultimate strength of

the paste is modest. Like alite and belite it is not attacked

by dissolved sulfates.

The main features of the hydration reaction of the

main components in cement are shown in Table 57.2.

In the hydration reaction alite absorbs about 40% by

weight of water, of which 24% is chemically bound, and

releases 500 J/g. For belite, 21% by weight of water is

chemically absorbed, only 250 J of heat per gram are

released, and less than half the amount of slaked lime is

formed compared with the reaction of alite with water.

Hydration of the aluminate phase is the reaction, which

consumes most water, up to twice its own weight of

water can absorbed in the final product, and releases

most heat, 900 J/gram.

When water is added to the mixture of cement powder

and aggregate the reaction of the main components, as

well as some others, which will be discussed subsequently,

will get under way. Although the hydration process is not

understood down to the finest detail, much insight and under-

standing has been gained by the advent of modern analytical

equipment, for example, the scanning electron microscope.

The initial hydration, lasting a few minutes, involves the

alite-water and aluminate-water reactions and rapidly leads

to formation of a hydrous gel of colloidal silica and

alumina particles at the interface between the water and

the cement grains. The gel envelops the cement particles

and the doubly charged calcium ions diffuse rapidly out of

the gel and into the surrounding water, where the calcium

ion concentration is controlled by the precipitation of crys-

tals of calcium hydroxide. Removing calcium ions from

the originally homogeneous gel, resulting in a gel, which

essentially is a silica gel, leads to a build up of osmotic

pressure, which periodically causes rupture of the water–

gel interface. When this happens, the calcium hydroxide

and silica components are brought together, and a precipitate

of calcium silicate is formed in a shape similar to a volcano

crater. Repeated rupturing of the water–gel interface at the

craters leads to the formation of hollow needle-shaped pro-

jections, known as fibrils, sticking out from the cement

grains like the burs of a burdock. The fibrils can lock together

by a Velcro-like mechanism, forming a strong bond between

the cement particles.

Gypsum is an important extra factor in the hydration

process. Although a minor component of the cement

powder, present in an amount corresponding to between

2 and 5% of the total weight, it effectively regulates the

activity of the aluminate phase. A few minutes after the

addition of water, needle-shaped crystals of ettringite,

3CaO�Al2O3
�3CaSO4

�3H2O, appear at the surface of the

aluminate particles, slowing down the aluminate-water

reaction. The alite-water reaction proceeds at its slower

TABLE 57.2
Hydration Reactions

Chemically bound
water weight %

Heat of hydration
joules/ga

Ca(OH)2 formed
weight %

2(3CaO�SiO2)þ 6H2O ¼ 3CaO�2SiO2þ 3Ca(OH)2

Alite aquagel of Ca-silicate

24 500 48.7

2(2CaO�SiO2)þ 4H2O ¼ 3CaO�2SiO2 þCa(OH)2

Belite aquagel of Ca-silicate

21 250 21.5

3CaO�Al2O3 þ6H2O ¼ 3CaO�Al2O3�6H2O

Aluminate aquagel of Ca-aluminate

40 900 —

Typical values for fully hydrated Portland cement 25 400 15–25

aHeats of hydration after 28 days.
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rate, as does the belite-water reaction with its still slower

rate, producing calcium-silicate hydrate fibrils. Even-

tually, the ferrite-water reaction gets started, producing

final products, the structures of which are still unknown.

In addition to the crystals of ettringite, plate-shaped crys-

tals of monosulfate are also formed. After about 5 hr the

cement paste is set into an open three-dimensional

network, filled with colloidal particles. At this point the

strength is quite low but the paste is mechanically stable.

The hardening process now begins and lasts up to about

a month. The hydration products increase in amount and

the fibrils, which are either amorphous or fine-grain

crystalline, increase in length. The number and size of

the calcium sulfate crystals increase. As these reactions

proceed, more and more of the available volume becomes

filled, and ultimately there is a considerable amount of

interaction and bonding between the individual structures,

i.e., the various hydration products and the aggregate

particles.

Flaws in Cement

Cement and concrete are ceramics and are therefore brittle,

which is a consequence of their hardness, but not weak

materials. On the contrary, they are very strong materials

for example modern concrete, which in this case means

a concrete containing superplasticizers and having low

water to cement ratio, for example, 0.3, has a compressive

strength of up to 100 MPa per square meter. However,

defects, for example, in the form of holes or gaps

between particles, will seriously weaken the material.

Applied stresses will concentrate at the tip of a flaw and

will wedge and propagate it right through the ceramic

material. In order to estimate the effect of flaws on the

mechanical properties of materials [7] studied the distri-

bution of stress in a large plate with a defect in the form

of an elliptical hole of length, L, and radius of curvature,

r, at the narrow end. He calculated that the stress, which

was uniformly applied to the material, far from the hole,

was increased by a factor of 2(L/r)0.5 near the narrow

end of the hole. The compressive strength of hardened

cement made from a paste containing too much water –

for example, a water-cement ratio of 0.7 instead of a

more suitable value of about 0.4 – may well drop to

about 10 MPa per square meter, due to a cement structure

containing many pores. A reduction of the compressive

strength by a factor of 10, because stress at the narrow

end of the pores has increased by the same factor, would

for instance correspond to elliptical holes of length 5 mm

and radius of curvature of 0.2 mm. Holes of that size

and roughly that shape can be seen in incorrectly made

concrete [8].

A necessary condition for concrete to obtain its ulti-

mate strength is thus that it is able to form the densest poss-

ible structure, that is, a structure as free from pores as

possible, during the hardening process. Now, there are

several reasons why the structure of hardened cement

may deviate from this ideal structure. Too much water in

the cement paste is one. A water-cement ratio of about

0.4 corresponds to the minimum amount of water required

to react with the individual components of the paste and

keep the paste workable, which corresponds to a paste con-

taining conventional flow additives, plasticizers or water

reducers. With so called superplasticizers, the water-

cement-ratio can be reduced to about 0.3. However,

more water in the paste makes it easier to handle and

some builders may be tempted to add extra water so as

to make their job easier, but this extra water is not used

up in the hydration reactions, and this leads to a rather

porous solid with a strength below the ultimate. Reactions

that are accompanied by an increase in volume are detri-

mental. Any expansion that occurs when the solidification

processes of the other components are underway can open

small cracks, which can seriously weaken the hardened

cement. The aluminate phase reacts vigorously with

water under strong heat evolution and expansion.

Gypsum moderates the activity of the aluminate phase

and is a critical component in modern cement. Moreover,

the aluminate phase is susceptible to attack by sulfates,

which interact with it and causes expansion. The minor

tageous influence, and modern cement standards specify a

maximum content of these compounds. The reactions of

the free oxides of calcium and magnesium with water to

hydroxides are accompanied by an increase in volume.

The other two minor components in cement, sodium

sulfate and potassium sulfate, accelerate the hydration

reaction and promote rapid setting of the paste. Early con-

gealing is inconsistent with high ultimate strength.

SILICA IN CEMENT

For reasons of utilizing waste materials and decreasing

overall energy consumption certain inorganic materials,

called mineral additives, such as fly ash and ground granu-

lated blast furnace slag are added to the cement paste.

Mineral additives take part in the hydration reaction and

thereby make a substantial contribution to the hydration

product. For reasons of obtaining durability and strength

above the normal range, silica in the form of silica fume

or colloidal silica is being used. Cement containing

mineral additives is often called composite cement.

Silica Fume

Silica fume is a by-product, in the form of a very finely

particulate powder, of the production of silica or silica

alloys in an electric furnace. High-quality silica fume

consists of spherical particles, which have a density of

2200 kg m23 and a BET specific surface area of

15–25 m2 g21, corresponding to an average particle size
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from about 100 to 200 nm [9]. The chemical composition

of silica fume is shown in Table 57.3.

Silica fume, like other mineral additives, has pozzola-

nic activity, that is, it reacts with Ca(OH)2, formed

during the hydration of alite and belite (see the first two

equations, and produces more calcium-

silicate aquagel, the actual binder material in cement.

However, being made in high heat, the surface of the

silica fume particles contains very few hydroxyl groups,

or silanol groups, which are necessary for reaction with

water and calcium hydroxide. It will therefore take some

time before the particle surface has become rehydroxy-

lated in the warm, highly alkaline environment of the

cement paste and the pozzolanic activity of silica fume

typically reaches a high value first in the period 7–14

days after mixing.

The fine particles of silica fume fill spaces between

clinker grains, producing a denser paste. It also densifies

the interfacial transition zone between cement paste and

aggregate, which increases the strength and lowers the per-

meability. Papadakis [10] investigated the effect of adding

between 5 and 15% by weight of silica fume to concrete

and found that the compressive strength increased by

10% at 5% addition and by 20% at 15% addition.

Colloidal Silica

Iler [11] defines colloidal silica as stable dispersions or

sols of discrete particles of amorphous silica in water,

called aquasols or hydrosols, or in an organic solvent,

then called organosols. Commercial silica sols are fluid,

the viscosity is less than 35 mPas, and stable toward

gelling and settling in the pH range between 8 and 10.

They have been stabilized, or brought into this pH range,

by adding an alkali, for example NaOH, KOH, LiOH, or

NH4OH, to the sol. The silica particles are negatively

charged and charge neutrality is brought about by the pre-

sence of positively charged counter ions, for example,

Naþ, Kþ, Liþ, and NH4
þ. There are also available commer-

cial silica sols consisting of positively charged particles,

which have been stabilized at pH of about 2 by adsorption

of polycations of for instance aluminium onto the surface

of the particles. Most commercial silica sols are quite

monodisperse and consist of dense, discrete spheres with

a range of diameters between about 5 and 100 nm. The

maximum concentration depends on particle size and is

15% by weight for 5 nm particles, 30% by weight for

8 nm particles and at least 50% for 100 nm particles.

There are also commercial sols that have deliberately

been made polydisperse or where the particles are not dis-

crete spheres but instead chains of linked spheres. The

appearance of silica sols depends on particle size, particle

size distribution and concentration. They look milky if

the particle size is large and the concentration is high,

opalescent if the size is intermediate or clear and almost

colorless when the diameter of the particles is in the

smallest size range.

In contrast to silica fume, the surface of the particles of

colloidal silica is fully hydroxylated and contains 4.6 OH

silanol groups per nm2 [12]. This fact, together with the

much higher specific surface area, makes the pozzolanic

activity of colloidal silica much higher than that of silica

fume. Wagner and Hauk [13] mixed 15 nm colloidal

silica with cement paste and noted a 36% increase, com-

pared with a reference paste without colloidal silica, of

the early strength, that is the early strength development

during the first 1–7 days. In fact, Skarp and Sarkar [14]

pointed out that ultrafine silica particles will harden the

cement paste very fast because most of the available

water is consumed in the early stage of gel formation,

due to the very high pozzolanic activity of colloidal

silica. The resulting high early strength, however, is

gained at the expense of low final strength, caused by

the pore structure created during the very rapid early gel

formation. On the other hand, they claim that this

problem, caused by excessively high pozzolanic activity

of colloidal silica, has been solved and they report that

small amounts of colloidal silica added to the concrete

mixture, 0.15–0.20% silica based on the weight of

the concrete mixture, significantly increased the final

strength, reduced the chloride ion permeability and

increased the sulfate resistance of the concrete. The prop-

erties of the colloidal silicas used are shown in Table 57.4.

Had the sols contained spherical particles of uniform

size the particle sizes of sols A and B would have

TABLE 57.4
Physical Properties of Colloidal Silica

Product
Sp. Surface area

(m2/g)
Solids
(%)

Particle size
(nm)

A 400 24 35

B 80 50 45

Source: From reference [14].

TABLE 57.3
Chemical Composition of Silica Fume

Compound % Weight Compound % Weight

SiO2 94–98 K2O 0.2–0.7

Al2O3 0.1–0.4 Na2O 0.1–0.4

Fe2O3 0.02–0.15 C 0.2–1.3

MgO 0.3–0.9 S 0.1–0.3

CaO 0.08–0.3

Source: Adapted from reference [9].
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been 7 and 34 nm, respectively. Instead the average par-

ticle sizes are considerably higher, more so for A than

for B, indicating that the sols are polydisperse, sol A

being the most polydisperse and also containing the smal-

lest particles.

The cement pastes, with or without colloidal silica,

had a water to cement ratio of 0.35 and contained sulfo-

nated naftalene formaldehyde resin (NSF) superplastici-

zer. The colloidal silica was added to the concrete

mixture after the superplasticizer so as to minimize prema-

ture gelling. The compressive strength of the concrete

samples are shown in Table 57.5.

Addition of colloidal silica increases the 1-day

strength by up to 30% and the 28-day strength by up to

15%. Colloidal silica of type B may be somewhat more

effective than type A, although the increase of the 1 day

strength is only 4% at 0.20% of type B, as compared to

30% at only 0.15% of the same type of silica sol.

Obviously, judicious choice of the average particle size

and the particle size of silica sols makes it possible to

fine-tune the pozzolanic activity of the silica so that sig-

nificant increases of both the early stage strength and the

final strength of the concrete can be accomplished.

Tables 57.6 and 57.7 show that addition of colloidal

silica to a concrete mixture will substantially reduce chlor-

ide ion permeability and enhance sulfate resistance.

Greenwood et al. [15] showed that the smaller par-

ticles in the sol provided most of the sulfate resistance

whereas the larger particles provided the chloride resist-

ance, but the two particle size regions appeared to interact

and gave rise to significant synergism.

The availability of modern workability additives, e.g.,

superplasticizers such as polycarboxylates, has made it poss-

ible to develop highly fluid concrete, HFC, which does not

bleed or segregate in use. Self-compacting concrete, SCC,

(in the U.S.: self-consolidating concrete) is a particular

type of HFC, which achieves significant benefits and advan-

tages in many types of constructions. Thus, by using SCC it

is possible to fill the mould completely and uniformly, even

moulds of difficult and complicated shapes. There is no need

to vibrate the material so as to eliminate voids and holes

formed when conventional, often sluggish concrete is

poured into the form. Moreover, the quality of the concrete

surface is often very good, minimizing the need for expens-

ive and time-consuming after-treatment.

Skarp et al. [14], however, pointed out that poor stab-

ility, that is bleeding or segregation, and loss of workability

are two main concerns when working with SCC. A concrete

mixture is said to be workable if it can be maintained in

fluid form until the casting moment. The term workability

time is defined as the time the concrete mixture remains

workable. They attribute the instability to deficiencies in

mix design and the loss of workability to incompatability

between the cement and the superplasticizer.

Greenwood et al. [16] showed that small amounts,

0.2% by weight of SiO2, of colloidal silica of small particle

size, corresponding to a specific surface area of

900 m2 g21, significantly increased the workability time

TABLE 57.5
Effect of Colloidal Silica on the Compressive Strength (psi) of Concrete

Type silica SiO2, % 1 Day % Increase 7 Days 28 Days % Increase

-(Sample1) — 4.300 — 6.840 8.680 —

A(Sample2) 0.15 5.300 23 8.010 9.680 12

B(Sample3) 0.15 5.580 30 8.030 9.840 13

B(Sample4) 0.20 4.470 4 8.280 9.970 15

Source: Adapted from Skarp and Sarkar [14].

TABLE 57.6
Effect of Colloidal Silica on the Chloride Ion

Permeability of Concrete

Silica, % 0 0.1 0.15 0.20

Chloride ion permeability, coulomb 3600 3200 2400 1700

Source: Adapted from reference [14].

TABLE 57.7
Effect of Colloidal Silica on the Sulfate Resistance of

Concrete

Weeks
Control

% expansion
Sol A, 0.13% SiO2,

% expansion
Sol B, 0.13% SiO2

% expansion

4 0.01 ,0.01 ,0.01

8 0.021 ,0.01 ,0.01

12 0.036 0.015 0.014

16 0.050 0.017 0.016

Source: Adapted from reference [14].
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of concrete mixtures containing polycarboxylates as

superplasticizers. It required much larger amounts of col-

loidal silica of larger particle size, corresponding to a

specific surface area of 80 m2 g21, 1.25% by weight of

SiO2, or of fumed silica, 10% by weight of SiO2, to

achieve the same results. In contrast to the control, con-

taining no silica, the concrete mixtures containing either

colloidal or fumed silica showed no bleeding.

Aluminum-modified sols, compared with unmodified

sols of the same specific surface area, as additives in con-

crete mixture containing polycarboxylates as superplasti-

cizers achieved not only increased workability time but

also improved strength, Greenwood et al. [17].

COLLOIDAL SILICA AS RETENTION

AID IN PAPER MAKING

Colloidal silica was introduced as retention aid in paper

making less than 25 years ago. The home page of Compo-

zilw states that in year 2000, 347 paper machines all over

the world with a combined production of 26.3 million

metric tons of paper and paper board used colloidal

silica as retention aid, which probably makes it the

largest application of colloidal silica today. Otterstedt

and Brandreth [18] described the use of colloidal silica

as retention aid in paper making and compared it with

other types of retention aids. This section is a substantially

abbreviated version of their work, but supplemented with

the most recent developments of colloidal silica as reten-

tion aid in paper making.

The word paper is derived from papyrus, a sheet made

in ancient times by pressing together very thin strips of an

Egyptian reed, cyperus papyrus. The modern material,

paper) consists of sheet materials that are comprised of

bonded, flexible, cellulose fibers which, while very

short) 0.5–4 mm, are about 100 times as long as they

are wide. Small particle fillers or pigments, in the form

of clays or other inorganic materials are used to improve

the properties of paper, that is, opacity, brightness and

printability, or to improve the economics of the papermak-

ing process. In this chapter we will focus on the use of

small particles as process aids to improve retention and

dewatering on paper machines.

FILLERS

Mineral fillers in the form of small particles are used in paper

for various reasons. There has always been the economic

incentive to substitute low-cost fillers and extenders for

some high-cost fibers in paper, but there is also the incentive

to improve several of the properties of paper. The use of

fillers increases opacity and brightness of the paper and

also improves printability by making printing ink absorption

more uniform, gives higher gloss after calendering and leads

to better “feel” and dimensional stability.

The disadvantages of using fillers in paper are reduced

mechanical strength, caused by the filler particles interfer-

ing with the hydrogen bonding between the cellulose

fibers, heavier paper, greater wear on the wire of the

paper machine, and higher content of fine material in the

circulating water system.

Pigments, which are also small particles of inorganic

materials, are used to improve the optical properties of

paper and are usually more expensive than cellulose fibers.

Pigments are also often made synthetically, whereas most

fillers are ground minerals. The most common types of

fillers are kaolin or clay, the most important filler,

(Al2O3�2 SiO2�2 H2O), talc (3MgO�H2O), calcium

carbonate (CaCO3), gypsum (CaSO4�2H2O) and mica

(3Al2O3�K2O�6 SiO2�2 H2O).

PAPER-MAKING

Different paper machines have various configurations at the

wet end of the machine, but Figure 57.1 shows schemati-

cally a representative setup. In the mixing chest fibers

and paper chemicals are mixed to an aqueous slurry, the

furnish, containing about 0.5–2% fiber. Some of the chemi-

cals may be added at a later stage, for example, to the machine

chest or before, or into a pump. From the head box, the furnish

is filtered on a wire screen, where the fibers adhere weakly to

one another. When more water is removed from the mat

formed on the screen by suction, the sheet becomes stronger,

but is still relatively weak. When the sheet is dried it becomes

still stronger, and becomes the material known as paper.

Modern paper machines produce an endless paper sheet, up

to 10 m wide, at a speed of over 20 m/sec, that is, one

hectare (more than two acres) every 50 sec. The machine is

Mixing Chest Machine Chest

Machine ChestChest

Fan Pump

Wire

Head Box Press
Section

Drying
Section

FIGURE 57.1 The wet end of a paper machine. From Otterstedt and Brandreth, [18]. Courtesy Plenum Press.
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more than 100 m long and produces about 250,000 metric tons

per year.

Environmental and economic pressures have reduced

water usage in paper production in the last 30–40 yr

from 80 to 90 m3 per metric ton to less than 10 m3/ton.

During the last decade many efforts have been made to

reduce the use of water even more with the ultimate objec-

tive of achieving a paper mill that is 100% closed.

THE PROBLEM

The achievement of a closed or nearly closed paper mill with

respect to water usage is intimately related to the retention of

fiber fines and chemicals and other additives in the furnish on

the wire. Poor retention will cause the fines and other small

particles to go through the wire with the water and make

reuse of the back water difficult or impossible; see

by Figure 57.2, showing the dimensions in the wet end, and

Figure 57.3, which compares the size of the holes in the

wire with the sizes of the cellulose fibers, fines, filler particles

and the various chemical additives present in the furnish.

The difficulty in retention is further aggravated by the fact

that all the particles of the furnish are negatively charged and

therefore have no bonding to each other to form aggregates

large enough not to pass through the holes of the wire.

The obvious solution to the problem is therefore to put

into the system particles or additives of opposite charge to

cause agglomeration of the paper components to larger

clumps that cannot go thorough the wire. This is accom-

plished by so-called retention aids.

RETENTION, RETENTION MECHANISMS

AND RETENTION AIDS

The term retention refers to the holding back of the com-

ponents of the stock during dewatering. The fibers are

retained on the wire whereas fillers, fines, and additives

of colloidal size may be washed through the mat formed

on the screen. Retention is accomplished by a combination

of mechanical means, i.e., filtration, and the physico-

chemical mechanism of agglomeration or flocculation.

Mechanical retention during sheet formation on the

wire may be considered a filtration process. The fibers in

the stock, which are 500–4000 mm long and 20–

100 mm thick, are captured on the wire and form a three-

dimensional network consisting of 2–100 layers of fibers

on the wire. As the layers form, they capture progressively

smaller fibers and other colloidal particles in the stock sus-

pension, making the pore structure gradually finer with the

largest pores on the wire side and the finest on the top side.

Mechanical retention is least efficient in the beginning of

the sheet formation and, although it becomes more effec-

tive as more layers from, it cannot retain a satisfactorily

high proportion of the finest components of the stock.

The losses for newsprint are typically about 50%.

By adding special chemicals, retention aids, to the

stock, the fines and other colloidal components can be

made to flocculate or aggregate into agglomerates too

large to go through the wire. Retention aids may consist

of either one component or two components. They can

act by changing the electrostatic repulsion forces

between colloidal particles or affect the stability of col-

loids by adsorbing on two or more particles causing

them to form larger aggregates.

Although good retention is most likely attained by the

joint action of more than one mechanism and a given

retention aid may act by several mechanisms, it is still

useful to distinguish between some principal types of

aggregation mechanisms.

There are no sharp distinctions between the terms of

coagulation and flocculation, but here coagulation denotes

aggregation by the action of low molecular weight electro-

lytes whereas flocculation means aggregation brought

about by polymers, which can be natural or synthetic.

Filler particles

Long fiber
3000µ × 30 µ

200µ

Length of the
openings

200µ

Ø = 2µ

FIGURE 57.3 Small particles on the wire in the papermaking

process. From Otterstedt and Brandreth [18]. Courtesy Plenum

Press.
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FIGURE 57.2 Dimensions in the wet end of the papermaking

process. From Otterstedt and Brandreth, [18]. Courtesy Plenum

Press.
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In high-speed modern paper machines the floc is sub-

jected to high shear, which may tear the floc apart. The

trend toward reduced water usage in the production of

paper increases the amounts of soluble anionic wood poly-

mers and electrolytes in the stock, which will also affect

the retention on the wire.

The principal types of retention mechanisms are:

1. Charge neutralization: Electrolytes are the sim-

plest kind of coagulants that can be used to

improve retention. They act fully in accord with

the DLVO theory by screening the charges and

compressing the electrolytic double layer of the

negatively charged particles of the stock, thus

allowing attractive forces to come into play and

aggregate the particles. Aggregation by charge

neutralization is a fairly slow process which has

lost some of its importance as the speed of

paper machines has become ever faster.

2. Hetero-coagulation: This mechanism involves

adsorption of oppositely charged particles, e.g.,

complexes of resin acids and aluminum sulfate,

on the surfaces of fibers and filler particles.

Hetero-coagulation is sensitive to soluble anionic

wood polymers and electrolytes, with which

cationic sizing particles, preferentially interact.

3. Patch flocculation-Patching: Patching resembles

charge neutralization, but is different. In this

mechanism cationic polymers are strongly

adsorbed in a flat configuration on the negative

surfaces of the particles, on which they form

cationic patches. Adsorption leads to partial

charge neutralization and electrostatic attraction

between oppositely charged patches on different

particles leads to flocculation. If the cationic

polymer is small and the patches are smaller

in size than the thickness of the electrolytic

double layer-which depends on the concen-

tration of electrolytes-aggregation will take

place by the mechanism of charge neutralization.

A characteristic difference between charge

neutralization and patching is that the rate of

coagulation for the former mechanism increases

with electrolyte concentration. Once an optimal

electrolyte concentration has been attained,

however, the rate of flocculation by patching

will decrease with electrolyte content due to the

fact that the electrolyte cations will force the

polymer from the particle surface.

Relatively short-chained cationic polymers of

average molar mass and high charge density are

suitable for patch flocculation. Modified poly-

ethylene imines, polyamines, and polyamide-

amine-epichlorohydrin resins are in this category.

4. Bridging: In this mechanism flocculation is

accomplished by long-chain, i.e., high molar

mass, polymers forming binding bridges

between particles. For effective bridging to

occur, it is very important that the polymers

adsorbing on the surface of the particles form

loops and tails that protrude into the solution.

To what extent this happens depends on the

type of polymers, contact time, and properties

of the surface of the particles to be flocculated.

Suitable polymers are weakly charged or non-

ionic, that is, high molecular-mass polyacryl-

amide and polyethylene oxide. Flocs made by

bridging are large but fairly easily broken by

shearing, which may tear the bridging polymers

and retard the process of re-flocculation.

5. Complex flocculation: Flocculation by any of the

four mechanisms described above can be accom-

plished by only one flocculant or retention aid.

Much more effective flocculation and retention

can be achieved by using combinations of reten-

tion aids. The most common combinations are

between oppositely charged retention aids,

which can form complexes of varying strength

with each other. It is, however, also possible to

use combinations of nonionic retention aids that

can form complexes by hydrogen bonding.

Some important types of retention aids are the

following natural or synthetic polymers:

Polyethylene imines, PEI, are strongly cationic and

strongly branched polymers with a molar mass

between 100,000 and 1,000,00 (g/mole)

Polyethylene amines, contain secondary amine

groups and are linear, strongly cationic polymers

with a molar mass of about 100,000.

Polyacrylamides, PAM, are nonionic polymers with

a molar mass of about 1,000,000.

Cationic polyacrylamides, CPAM, contain teriary

amine groups which can be quaternized. Molar

mass is about 1,000,000.

Anionic polyacrylamides, A-PAM, can be syn-

thesized by co-polymerizing acrylamide with

acrylic acid. It contains anionic carboxyl groups

and has a molar mass of about 1,000,000.

Polyethylene oxide, PEO, is nonionic and has a

molar mass of about 1,000,000.

Cationic starch is modified natural polymer. Molar

mass about 100,000,000.

DUAL RETENTION AID SYSTEMS

Cationic natural and synthetic polymers have long been

used to improve retention of fines and fillers on the wire
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of paper machines. Such polymers, that is, cationic starch

or cationic polyacrylamide, produce a high degree of floc-

culation in the furnish. This floc, however, is not very

strong and is easily broken and redispersed by hydraulic

shear. Furthermore, when long-chain polymers are used,

chain rupture and rearrangement of the polymer fragments

on the particle surfaces may occur. Nevertheless, single-

component retention aids improve the first-pass retention,

though not to the same degree as dual retention aid

systems.

Such systems have been used in the paper industry for

many years. Component one, a cationic polymer, usually

of the patching type, is first added to the furnish, followed

by the addition of the second component, an anionic

polymer of the bridging type. Figure 57.4 schematically

compares single component and dual retention aid

systems. The application of retention aids has been opti-

mized in the sense that the retention maximum in the

figure corresponds to a zeta potential of value zero, i.e.,

the charges on the positive components in the system

exactly balance the charges on the negative component,

which may be difficult to accomplish in an actual situation.

When an optimal amount of cationic component, in this

case cationic starch, in the single-component system, is

added, the furnish system has no charge and flocculation

and retention are maximized. In the dual system cationic

starch has to be present in the furnish so as to reach

zero-potential after the given amount of the second com-

ponent, an anionic polymer, has been added. Thus, the

maximum in flocculation and retention is not only higher

than for the single component system, but it also occurs

at larger dosages of cationic starch, which is beneficial

since starch is not only a retention aid, but is also an addi-

tive that increases the dry strength of paper.

In the last 10–15 years a special kind of dual retention

aid, a micro particle — containing flocculant system, often

referred to as microparticulate retention/dewatering

aid, was developed. In one of the commonly used commer-

cial systems, the so-called Compozilwsystem, comprise

colloidal silica in combination with cationic starch or cat-

ionic synthetic polymers. Andersson and Larson [19] and

Andersson and Lindgren [20]. In this system, the cationic

polymer is added first and the extensive flocs then formed

are broken down and partially redispersed by high-shear

forces. The anionic microparticles are added just

before the paper is formed and cause final flocculation of

the furnish. A dual retention system, having colloidal

silica as the anionic component has the following charac-

teristics [21]:

. strong, reversible flocculation,

. more effective dewatering in the wire and press

sections,
. formation on the wire yields sheets of higher por-

osity and permeability.

The Compozilw system was recently studied by

Andersson and Lindgren [20]. They used a Britt

Dynamic Drainage Jar to investigate the retention effects

of combinations of various types of anionic colloidal

silica, ACS, with either cationic starch or polyacrylamides

of different charge density. The furnish consisted of a 60/
40 mixture of fully bleached birch and pine sulfate pulps

with 30% (based on total solids) chalk as the filler. The

solids content and pH of the furnish were 0.5% and 8.1,

respectively. The polyacrylamides had charge densities

between 2 and 25% cationicity, corresponding to

between 0.25 and 3.0 meq/g, and a molecular weight of

5�106. The cationic starch had a degree of cationic substi-

tution of 0.4, corresponding to 0.25 meq/g.

The anionic colloidal silica used in this study was

either monodisperse colloidal silica with a particle size

of about 4 nm or so-called structured colloidal silica, con-

sisting of linear aggregates of about 4 nm particles. Struc-

tured colloidal silica is, like monodisperse colloidal silica,

characterized by its specific surface area and charge

density, which decreases with pH but can be maintained

high even at pH as low as 3 and 4 by aluminizing the
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colloidal silica with sodium aluminate, but also by some

other properties. One is the S-value, which is defined as

the percentage of silica in the dispersed phase and can

be obtained from viscosity measurements [22]. A high S-

value indicates well-dispersed, non-aggregated colloidal

particles, whereas a low value suggests that the primary

particles have formed microaggregates, perhaps linear

structures containing up to 7–8 primary particles. Another

one is the average size of the microaggregates, A, as deter-

mined by dynamic light scattering, DLS. Other ones are

the length, L, and the width, W, of the microaggregates

as determined by DLS and viscosity measurements.

From their results, Andersson and Lindgren concluded

that for both the cationic starch-ACS and CPAM-ACS

systems the main flocculation mechanisms were electrostatic

interactions, for example, charge neutralization and bridging.

They also used their data to construct a model for the

system CPAM-ACS, shown in Figure 57.5 for a constant

dosage of CPAM. Each curve shows the predicted reten-

tion for an ACS with a constant S-value. As expected,

maximum retention increases with increasing structure,

or degree of microaggregation, of the ACS.

Greenwood et al. [23] showed that chemical modifi-

cation of ACS, comprising stabilization of structured

colloidal silica by amines instead of by NaOH, which is

the most common method, not only improved the retention

but also the dewatering on the wire of the paper machine,

the best results, followed by tertiary and secondary amines.

COLLOIDAL SILICA IN

LEAD-ACID BATTERIES

Lead-acid batteries are one of the most common type of

batteries. Most lead-acid batteries are flooded, that is,

they have a liquid electrolyte as in standard car batteries,

but a significant and growing number have a solid electro-

lyte. Some of the advantages of a solid electrolyte in lead-

acid batteries are little or no spill or splashing of highly

corrosive sulphuric acid in case of accidents, no leakage

if the battery is placed sideways or even upside-down

and longer life time, because no accumulation of precipi-

tated lead at the bottom of the battery, which may cause

discharge, can occur.

There are two different methods of immobilising the

electrolyte, a solution of lead sulfate, that is, making a

solid electrolyte, in VRLA, that is, valve-regulated lead-

acid batteries. In AGM-VRLA batteries, the electrolyte is

immobilized by being absorbed in absorptive glass-fiber

mats, placed between the electrodes. This type of batteries

can produce high starting currents and be rapidly recharged,

and are used in for example, uninterrupted power supply sys-

tems(UPS). In GEL-VRLA batteries, the electrolyte is

immobilized by being absorbed within the very fine pores

of a silica gel, which can be made from different silica

materials. GEL-VRLA batteries have long life span, good

cycling characteristics and relatively low current, and they

are used in applications such as telecommunication and

solar energy devices and motive power applications, for

example, golf cars, wheel chairs and loading trucks [25].

GEL-VRLA batteries are predicted to be used as a second

battery in cars to supply steady, nonsurging power to the

increasing number of electronic components in modern cars.

Silica gels can be made from different starting

materials, for example, sodium silicate solutions, fumed

silica or silica sols. Judging from the patent literature,

fumed silica appears to be the most common starting

material for making silica gels for GEL-VRLA batteries,

but recently, in the last several years, some very promising

work has been reported on making silica gels for batteries

from colloidal silica in the form of silica sols.

GELLING OF SILICA SOLS

At the ACS National Meeting, in Washington, D.C., 1990,

Paul Yates gave a talk on the “Kinetics of Gel Formation of

Silica Sols” [24]. He described that the gellation of silica

sols is kinetically quite different from that of soluble sili-

cates although the same factors are important, that is

silica concentration, pH, salt content, temperature and

particle size of the sols. Expressions were derived for the

quantitative prediction of the gel times of colloidal silica

dispersions over a wide range of these variables. The

following exposé is a summary of Yates presentation.

Types of Gels

There are three types of silica gels, of which the first

results from neutralizing dilute aqueous solutions of a sili-

cate and is formed by the polymerization of silicic acid.
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The polysilicate ions extend as a three-dimensional cross-

linked network throughout the solution.

The second type results from the collision of pre-

formed colloidal silica particles to form three-dimensional

chains of such particles, bonded at their junction points

with siloxane bonds; see Figure 57.6.

The third type is a hybrid of the first two with poly-

silicic acid chains joining preformed colloidal silica

particles. Hybrid gels are formed by neutralization of

mixtures of silicates and colloidal silica sols.

Common Features in Gel Formation

Although the quantitative kinetic expressions for each of

the three types of gel are different, they respond qualita-

tively in a similar way to most important variables. For

all types or gels, gel times become shorter at higher

temperatures, at higher concentrations, and in the presence

of increasing concentrations of neutral salts.

The effect of pH is complex. Starting with strongly acid

(low pH) systems, gel times initially decrease rapidly as the

OH2 concentration is increased, then pass through a

minimum and finally increase rapidly as the pH continues

to increase. For all types of gels, the effect salts in decreasing

gel times is much more pronounced on the basic side than on

the acid side, and the location of the minimum in the gel time

versus pH curve is a very sensitive function of the neutral salt

content and even of the specific salt employed.

The Central Mechanism in Gel Formation

The similarities described exist because the central

polymerization mechanism is essentially the same for all

types of gels. This mechanism also shows the key role

played by the hydroxyl ion.

The First Role of Hydroxyl
Ions — As a Catalyst

A silicon atom in silicic acid or at a surface normally has a

coordination number of 4. The coordination number can

be momentarily expanded by adosorption of a hydroxyl

ion simultaneously with adsorption of a sixth group such

as a silanol group belonging to another silicic acid mol-

ecule or colloidal particle. This transition complex is

unstable and water condenses out between the two

silanol groups to form a permanent siloxane bond. The

coordination number drops back to four and the hydroxyl

ion is desorbed, regenerating it to continue its catalytic

role elsewhere in the solution.

The Second Role of Hydroxyl
Ions — Charge Repulsion

If the only role played by hydroxyl ions were a catalytic

one, gel times would continuously decrease as the pH

increased. The observed minimums in gel times and

their rapid increase at high pH shows that the hydroxyl

ion plays a dual role in the mechanism of formation of

silica gels.

Silicic acid and silanol groups on the surface of

colloidal silica particles are weak acids, and lose protons

in basic solutions, thereby acquiring a negative electro-

static charge. This charge repels other negatively

charged groups which attempt to approach. The charge

increases rapidly as the pH increases.

For polysilicic acid, charge repulsion interferes

with polymerization when the charged groups on the

polysilicic acid polymer repel the negatively charged

hydroxyl ion catalyst, which must be adsorbed on the

already negatively charged polymer to perform its

function.

In the collision of colloidal silica to form gels, the

dominant charge repulsion is between the two negatively

charged silica particles, which must collide before silox-

ane bonds can be formed at their surfaces.

The charge repulsion term will not be mathematically

same for these different types of polymerization, but the

effect on all three types of gels is that charge repulsion

opposes the favorable catalytic effect of the hydroxyl

ions, and at a sufficiently high pH, counterbalances it to

lead to a minimum in the gel time.

The Role of Neutral Salts — Screening
of Charge Repulsion

The reason why gel times are always decreased by the

addition of a neutral salt is that when negatively charged

groups of polysilicic acid, or surface groups on the col-

loidal particles, can be screened by a swarm of positively

charged cations from neutral salts, their repulsion of

approaching negatively charged species is substantially

decreased. Higher the concentration of neutral salts,

higher will be the probability of a number positive ions

being located in screening positions around a negatively

charged group.

FIGURE 57.6 Structure of collision gel. From Yates [24].
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Specific Salt Effects — Effect of Cations

The specific effects of salts come from differences in their

screening ability. The larger size of the hydrated positively

charged cation in the neutral salt, the more efficiently it can

screen and the more rapid the gel time. The effect is

particularly pronounced with large organic cations such

as guanidine, tetramethylammonium, and tetraethanol-

ammonium ions.

Effect of Anions

Even the anion of a neutral salt shows some specific salt

effects. It probably does this through an indirect

mechanism.

If the cations of a neutral salt are to be preferentially

adsorbed as a double layer in the vicinity of the negatively

charged groups of colloidal silica particles or polysilicic

acid molecules, they will have to be recruited from the

otherwise homogeneous mixture of anions and cations of

the salt in the solution. This can only take place by remov-

ing them from the charge field of their own anions. The

higher this charge field is, the less likely are they to

concentrate around the polymer or colloid, and the less

effective the salt will be in screening.

Neutral salts containing highly charged anions such as

sulfate are not as effective screening agents as those con-

taining monovalent anions such as chloride. Acetate salts

are better screening agents than sodium chloride.

The Salt Effect Is Proportional to the pH

From the explanation just given, it is obvious that the salt

effect will not be very strong on the acid side, since silicic

acid polymers or colloidal silica surfaces do not have a

high charge at low pH. It becomes more and more pro-

nounced as the pH increases, since as the charge increases,

the importance of screening will also increase.

The Effect of Temperature

The effect of temperature was not specifically studied this

work, but previous work in the literature shows that the

activation energy for the central polymerization mechan-

ism is about 80,000 J/mole. This means that the tempera-

ture coefficient will be about a factor of two in the gel time

for every 108C. change in the temperature. Activation

energies will probably be different on the acid and the

basic side, since the temperature coefficient for the

charge repulsion effect will enter into the total activation

energy in basic solution.

Differences between the Polymerization
and Collision Mechanisms of Gel Formation

Although many of the features are common to both mech-

anisms they will not be mathematically the same. In the

case of the formation of gels by means of collision of

colloidal silica particles, the important charge repulsion

is that between two colloidal silica particles, whereas

in silicic acid polymerization the charge repulsion is

between the charged groups on the silicic acid polymer

and the hydroxyl ion. Screening effects of neutral salts

will also be quantitatively different.

Collision gels are extremely sensitive to the surface

chemistry and surface composition of the colloidal par-

ticles. Small amounts of aluminum, for example, can

greatly change the rates of collision. This is because

such changes in surface chemistry strongly influence

the charge on the colloidal silica particles, and thus the

repulsion to be expected between two of them at any

particular pH.

The basic structural units, which are doing the

polymerization, are different in the two cases also, and

the relationship of the concentration of silica to the

polymerization rate will not be the same.

Kinetics of Collision Gels

Gels formed by the collision of colloidal silica particles in

solutions containing only traces of silicate ions have

entirely different kinetics than the other two types of

gels. Under comparable conditions, gel times are 100 to

several thousand times as long. The quantitative response

to variables such concentration, salt content, pH, and the

surface area silica is also quite different.

The equation derived by Yates [24] for gels prepared

from deionized “Ludox HS” mixtures of varying concen-

trations, pH values, and salt contents is given below as

Equation (57.1).

log t ¼ 5:85-pH- log (F=(1� 2:58F))

þ (1:333� 1:482F)(0:032� 0:1183 log c)

� ( pH� 2:34)2: ð57:1Þ

Where t ¼ gel time in minutes; F ¼ volume fraction of

silica; c ¼ salt concentration.

This equation reproduced the gel times of 39 gels from

solutions containing 10, 20, 30 and 40 wt.% SiO2, at pH

values of 3.5, 5.0, 6.0, 7.0, and 8.5, and salt concentrations

of .01, .03, 0.1, and 0.3 N, with an average error of 0.11

units in the log gel time value. This is within the probable

experimental reproducibility of this data.

duce gel times at a constant (0.1 N) salt concentration over

a range of pH and silica concentrations. The solid lines

were calculated from Equation (57.1).

It might be appropriate to review the physical meaning

of each term in Equation (57.1). This will be done to

indicate qualitatively how each of the variables affect

this type of gel formation.
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The first term is a constant which includes the specific

reaction rate constant for siloxane bond formation, the ion-

ization product constant for water, the viscosity of water,

and other miscellaneous numerical constants.

The second term, (2pH) expresses the catalytic effect

of the hydroxyl ion in decreasing gel time.

The third term, which involves F (the volume fraction

of silica), expresses the effect of increasing the silica

concentration in decreasing the gel time. The expression

F/(1 2 KF) is used instead of F itself as a concentration

variable, since the particles will physically touch one

another long before the silica volume fraction becomes

one (corresponding to a 100% concentration). The constant

in the denominator of this expression, which has the value

of 2.58 for the particular sample of deionized “Ludox” used

in these gelling experiments, is identical to the constant,

which appears in the Einstein–Mooney equation for the

viscosity of spherical colloidal particles. This will vary

with the degree of hydration and aggregation, or the %

solids in the dispersed phase, of the silica particles.

The last and most complicated term in Equation (57.1)

is the electrical repulsion term. As can be seen, for a fixed

surface area (or particle size) of the colloidal silica, the

charge repulsion is a function of the pH, the volume

fraction, and the concentration of neutral salt.

The term (pH-2.34)2 occurs because the electrical

potential of the silica surface is proportional to the

amount of (OH–) adsorbed, and therefore is inversely pro-

portional to the (Hþ) ion concentration. The number 2.34

represents the zero point of charge for this particular col-

loidal silica, or the pH at which substantially no hydroxyl

ions are adsorbed. If some other sol were used, which had a

different concentration of aluminum or other impurity

atoms at the surface, this zero point of charge might

occur at a different pH. This is the case, for example,

with aluminum-modified “Ludox”, which probably has a

zero point of charge somewhere around a pH of 1.00 or

lower. This term in the pH is squared because we are

dealing with a charge repulsion between charged particles

which are essentially identical to each other.

The term (0.032–0.1183 log c) accounts for the

screening effect at the salt in decreasing charge repulsion.

It will be noted that screening increases only with the log-

arithm of salt concentration, indicating much less sensi-

tivity to variation in salt content than for the previous

type of gels where the slope of the electrical repulsion

term was proportional to the reciprocal of the salt

concentration.

The constant .032 in the expression in proportional to

the slope the charge repulsion term would have in a one

molar salt solution when log c would equal 0.

The number 0.1183 in front of log c determines how

rapidly the slope of the repulsion term changes for a

given change in salt concentration. This will probably

vary with both the chemical nature and the valence type

of the neutral salt as was observed for the other types of

gels.

The last term (1.333–1.482F) expresses how the

charge repulsion or the electrical work of bringing the par-

ticles together will vary with the volume fraction of par-

ticles. It is perhaps not immediately obvious why the

work of repulsion should depend on the volume fraction.

is a schematic plot of the charge repulsion as a function

of the distance between the particles. The difference

between the bottom of the curve in Figure 57.8 and the

top shows the electrical work which must be performed

to bring widely separated particles into the gel configur-

ation where the maximum repulsion will exist when the

particles are in actual physical contact at tangent points

between them. The difference between the top and other

marks corresponding to silica sol concentrations rep-

resents the electrical work of repulsion involved in

bringing the sol particles, each from their equilibrium

distances apart, into a gel structure. It is obvious that the

electrical work is less if a more concentrated sol is

used. To put it simply, a significant part of the work of

electrical repulsion to bring the particles into a gelling

configuration has already been done in the process of

concentrating the sol.

The constant 1.333 in this expression represents the

maximum electrical work which might be found if sols

were used which were so dilute that their electrical fields

did not overlap. The slope 1.482 is proportional to the

rate at which the electrical work changes per unit change

in the volume fraction of particles.
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The slope of the repulsive energy term will also be a

function of the particle size or surface area of the sol,

since the repulsion between particles depends on size as

well as on distance apart, charge, and salt content. This

did not appear explicitly in Equation (57.1), since all of

the data for evaluation of this equation came from sols

of the same surface area.

Equation (57.1), and analogous equations for poly-

merisation and hybrid gels but not shown here, is very

useful for predicting the gelling behavior of silica sols

above the point of zero charge of silica. Silica gels for bat-

teries, however, are made at pH well below 0. Thus,

Lambert et al. [25] reported that they prepared a gel of

this kind by mixing a silica sol, with a particle diameter

of 12 nm and a silica concentration of 40% by weight,

with concentrated sulfuric acid, 98% by weight. The

concentration of sulfuric acid was more than 10 molar

and the pH ,21. Using a pH value of 21 and electrolyte,

SO4
22, concentration of 1 m, Equation (57.1) predicts

that the gelling time would be less than a minute (the

higher the anion concentration the shorter the gelling

time), when it in an actual experiment was .12 h.

Obviously, Equation (57.1) is at best only heuristically

useful at very acidic condition. At these conditions, the

various terms in the equation will be the same, but

the actual values of the constants would have to be

recalculated in order to make the equation fit experimental

data more closely.

Wang [26] claimed that a solid electrolyte, in the form

of a gel containing about 20% by weight of silica and made

by mixing a de-ionized silica sol, adjusted to pH between 8

and 14, with sulphuric acid, compared with a conventional

fluid electrolyte consisting primarily of sulfuric acid,

increased the capacity of lead-acid storage batteries by

more than 30%.

Sielemann et al. [27] compares solid electrolytes, con-

sisting of collision gels made from either silica sols with a

specific surface area between 100 to 500 m2g21 or from

fumed silica, in lead-acid batteries. The solid electrolyte

made from the silica sol was prepared directly in the

battery container, whereas the one made from fumed

silica had to be made in separate step. The fumed silica,

in the form of very light, fluffy powder, was mixed with

the sulfuric acid and the other components of the solid

electrolyte in a special vessel. The slow-gelling mixture

was then poured into the battery container where it even-

tually solidified. The performances of lead-acid batteries

containing the two different types of solid electrolyte

were very similar, perhaps with a slight edge for the

silica sol battery since it had a somewhat higher 20�10

discharge current.

Lambert et al. [25] have made a comparative study of

solid electrolytes made from silica sol and fumed silica

and claim the following advantages for electrolytes made

with silica sol:

. Simplified handling and mixing of the electrolyte

. No liquid separates from the gel after solidification

. High silica concentration in gelling additive

. Increased residual gel strength

. Controlled gel time

. Less impurities (e.g. iron and chloride)

. Lower cost (�USD 2.60–3.50/kg pure silica from

silica sol versus �USD 9.00–18.00/kg fumed

silica)

COLLOIDAL SILICA IN COATINGS

The coating process modifies the surface of a material,

providing a gradual difference in composition or property

between the surface and the bulk.

Iler [3] gives 36 references to how colloidal silica can

be used in coatings on various substrates. Organic coating

compositions with improved adhesion, hardness and dura-

bility can be obtained by adding colloidal silica in the form

of silica sols to organic polymer dispersions. Inorganic

coatings may use silica as the main component or as a

binder in the coating composition.

Here we will highlight some very recent applications

of colloidal silica in coating compositions.

SHOP PRIMERS FOR STEEL SUBSTRATES

Steel used in the shipbuilding industry and for other large-

scale structures such as oil production platforms is often

exposed to the weather during storage before construction

and during construction, and it is generally protected
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against corrosion by a coating called “shop primer” or

“preconstruction coating”. Although the main purpose of

the shop coating is to provide temporary corrosion protec-

tion during construction it is preferred that the primer can

remain on the steel surface during and after fabrication.

Thus, steel coated with shop primer must be weldable

and compatible with and have good adhesion to the differ-

ent types of anticorrosive coatings used on ships and other

steel constructions.

Many modern shop primers are solvent borne and

based on prehydrolyzed tetraethyl orthosilicate binders

and zinc powders. They contain substantial amounts of

volatile organic solvents, typically about 650 g per liter,

to stabilize the paint binder and allow the primer to be

applied as a thin film, about 20mm thick. Obviously, the

use of such primers will give rise to environmental

concerns.

Much effort has therefore been expended to develop

water-based shop primers with the advantages but

without the disadvantages of organic solvent-based

primers. In one approach, alkali silicate binders, e.g.

aqueous solution of 3.3 ratio sodium silicate, were used.

However, such binders contain relative large amounts of

alkali metal cations, which remain in the coating after it

has dried and after subsequent coatings have been

applied to the steel surface. Exposure to water, for instance

seawater, may cause blistering, that is, local delamination,

due to the presence of too much alkali metal ions in the

primer.

In a series of patent applications [28–31] Davies et al.

show that the problems caused by high amounts of alkali

metal ions could be overcome by using silica sols as the

water-based binder instead of solutions of alkali silicates.

The preferred sols had a particle size between 5 and 10 nm

and a SiO2/Na2O mole ratio of about 50:1. They also

found that they could increase the pot life of the shop

primer by using aluminum-modified silica sols.

INORGANIC PAINTS

Silicate coatings are used in construction to provide pro-

tective and decorative coatings on concrete and mortal.

Such coatings may be completely inorganic in nature but

may also contain up to 5% by weight of organic material,

for example, in the form of a polymer latex. The binder,

often a solution 3.3 molar ration sodium silicate, is

mixed with pigments and fillers of different kinds. In the

case of completely inorganic paints there is a problem

with stability toward gelling and such paints are sold as

two-component systems, one component consisting of

the silicate binder solution and the other consisting of a

dry powder of the other components of the paint. The

two components are mixed prior to use and the resulting

paint has a pot life of a few days.

An important property of inorganic paints is their

resistance to water. A silicate based paint based on e.g.

3.3 molar ratio sodium silicate will have poor water resist-

ance immediately and some time after the application of

the paint, although it will improve with time, as alkali

gradually becomes neutralized by the carbon dioxide in

the atmosphere, that is, the SiO2/Na2O molar ratio of

the silicate binder slowly increases. The silicates in a sili-

cate-based coating can also react with Ca2þ in a cementi-

tious substrate and form insoluble calcium silicates, which

also contributes to improved water resistance. In theory,

the molar ratio of a silicate solution may be increased by

mixing it with a silica sol. However, if an 3.3 ratio

sodium silicate solution is mixed with an alkali-stabilized

silica sol coagulation and gelling occurs, but Iler [32]

reports that this does not happen if potassium silicate is

used. Stable mixtures of colloidal silica and potassium

silicate can be prepared with a silica concentration of

15–30 wt.% and with SiO2/K2O molar ratios of 11:1 to

24:1. Greenwood and Otterstedt [33] studied such mix-

tures of silica sols and solutions of potassium silicate as

binders in silicate paints and found that the pot life of

the paint could be increased to about two months, but

that it gelled after that time.

Heiberger and Schläffer [34] claim an inorganic paint

with excellent water resistance and a pot life of at least 6

months. In a typical preparation they mix a potassium sili-

cate solution, with a solids content of 30 wt.%, a silica sol,

having a particle size of 9 nm and containing 20 wt.%

SiO2, in such proportions that the SiO2/K2O molar ratio

is 10:1, and an aqueous solution of N,N0-Di(2-hydroxy-

propyl)-N,N0-tetramethylhexylenediamin. Next, they stir

into this mixture pigment, filler and a butylacrylate-

methylmetacrylate copolymer. The high water resistance

of this paint is most likely due to the high SiO2/K2O

molar ratio of the silicate binder.

HARD, SCRATCH-RESISTANT THIN COATINGS

Many substrates, for example, many wood products, are

provided with protective and decorative coatings of

organic polymers, for example, radiation- or heat-curable

polyacrylates, polyacrylate copolymers, polycarbonates

or terephthalic resins, so as to improve gloss, dryness

(no tack), and abrasion resistance and scratch resistance.

In many applications, the inherent properties of

coating polymers are not adequate to meet very demanding

specifications on for example, surface hardness, transpar-

ancy and scratch resistance. Much work has therefore

been expended to develop high-quality surface coatings

an improvements of surface properties have been achieved

by incorporating colloidal silica and silanes in the coating

formulation.

In one particularly interesting development Jacquinot

and Eranian [35] and Wilhelm et al. [36] prepare an
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organosol of silica particles with a particle size between 10

and 50 nm in a reactive organic solvent also containing a

photo-initiator and a vinylsilane, about .01 to 0.1 millimole

of silane per m2 of silica surface, as a coupling agent. The

reactive solvent may be an acrylic monomer such as tripro-

pylene glycol diacrylate or ethoxylated trimethylolpropane

triacrylate. The preparation of the organosol is for instance

described in patent example 1 [36]. 122 g of a silica sol,

containing 40 wt.% SiO2 with an average particle size of

50 nm, which has been de-cationized to pH of 2 with an

ion exchange resin in the acid form, is mixed with

396.4 g isopropanol, 26 g vinyltrimethoxysilane (corre-

sponding to 0.53 g silane per m2 of silica surface) and

125 g ethoxylated trimethylolpropane triacrylate. The

mixture is vacuum distilled at a pressure between 50 and

110 mbar and a temperature of 358C for about 4 hours.

After filtration the organosol is a slightly yellow, transpar-

ent liquid containing 30 wt.% SiO2 and 0.3 wt.% water

and having a viscosity of 304 mPa.s at 208C.

In patent example 5 [36] it is described how a coating

formulation is prepared by mixing 50 parts by weight of

the organosol of patent example 1 with 50 parts by

weight of urethane-acrylate oligomer and 5 parts by

weight of a photo-initiator. A polycarbonate support is

coated with 50 g m2 of the formulation and the coating

is cured by exposure to ultraviolet radiation. Abrasion

and scratch resistance were measured and compared with

those of a reference sample of polycarbonate coated with

the formulation from which the silica organosol had

been excluded. Optical transmission was 100% after

abrasion in a Taber abrasion test as compared to only

70% for the reference. Scratch resistance was measured

according to the pencil hardness test and was found to

be 7 H versus 4 H for the reference.

COLLOIDAL SILICA IN POLYMER LATICES

In DuPont’s brochure on Ludoxw Colloidal Silica it is

described that incorporation of silica particles in the

form of a silica sol in polymer lateces will improve

abrasion resistance and modulus of polymer coatings.

Greenwood and Otterstedt [37] studied the effect of

mixing silica sols of different particle sizes with various

water-based wood lacquers. The modulus of films made

from lateces of copolymers of urethane-acrylates contain-

ing up to 50 wt.% SiO2, based on the polymer weight,

could be increased by several hundred percent. As

expected, the reinforcing effect increased with decreasing

particle size and increasing concentration of silica.

However, the stability of the latex-silica sol mixture

toward gelling decreases with decreasing particle size.

Moreover, the stability towards gelling is very sensitive

to the particular surfactant system used to make the latex

and there are systems that do not form stable mixtures

with silica sols of any particle size. From the point of

view of stability and also of ensuring a uniform distri-

bution of silica particles in the coating, it would obviously

be advantageous if the silica sol was present during the

polymerisation of the latex particles, each one of which

would then be a nano-composite consisting of nano-

sized silica particles distributed in a polymer matrix.

Actually, one of the first nanocomposites of this kind,

although the purpose was not to improve the mechanical

properties of polymers, was prepared by Kirkland, and

Iler and McQueston, [38] when they synthesized

polymer-silica composites with average diameters

ranging from 500 nm to 20 mm by copolymerisation of

either melamine or urea with formaldehyde in the presence

of a silica sol. Calcination yielded microporous silica

spheres, which were used as chromatographic column

packing under the trade name Zorbexw.

Percy and coworkers [39,40] synthesized colloidal dis-

persions of polymer-silica nanocomposite particles by

homopolymerizing 4-vinylpyridine or copolymerizing

4-vinylpyridine with either methyl methacrylate, styrene,

n-butyl acrylate or n-butyl methacrylate in the presence

of fine-particle silica sols using a free-radical in aqueous

media at 608C. No surfactants were used and a strong

acid-based interaction was assumed to be a prerequisite

for nanocomposite formation. The nanocomposite par-

ticles had comparatively narrow size distributions with

mean particle diameters of 150–250 nm and silica con-

tents between 8 and 54 wt.%. The colloidal dispersions

were stable at solids contents above 20 wt.%.

Percy and Armes [41] showed that poly(methyl metha-

crylate)-silica nanocomposite particles can be readily pre-

pared in aqueous alcoholic media at around ambient

temperature without using either auxiliary comonomers

such as 4-vinylpyridine or surfactants. In this work the

silica sol was an organosol of 20 nm silica particles in iso-

propyl alcohol with a solids content of 30 wt.%.

COLLOIDAL SILICA AND INK JET

Imaging devices such as ink jet printers are well known

methods for printing various information on different sub-

strates or receptors, which can be transparent (e.g. polymer

films) or opaque (e.g. sheets of paper and paper board).

Imaging with either ink jet printers or pen plotters involves

depositing ink on the surface of the receptors. Many types

of ink consist of an organic dye dissolved in a mixture of

water with a water miscible organic liquid having a boiling

point of at least 1508C. There are also inks available, in

which pigments instead of dyes are used as the coloring

agent. Imaging devices normally utilize inks that can be

exposed to air for long time without drying. It is therefore

desirable that the surface of the receptors be dry and non-

tacky to the touch, even after absorption of significant

amounts of ink, soon after imaging. Receptors must thus

have a rapid absorption rate of ink to give uniform
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print, free from coalescence and banding. This can be

accomplished, if the receptor is nonporous or not porous

enough, by providing the surface of the receptor with a

thin, porous coating.

In the last 20 years, there has been an intensive devel-

opment of coating formulations for ink jet receptors, and

colloidal silica plays a very significant role in this develop-

ment work. Thus, a patent search, covering the period from

1971 to 2002 and using the search words “Ink Jet and

Colloidal Silica,” gave 1382 hits.

We have selected six patents or patent applications

between 2000 and 2002, which demonstrate the use of

colloidal silica in coatings for ink jet applications, and

compiled the relevant information in Table 57.8, and one

patent application describing the use of silica sols in

pigmented inks.

Aluminum-modified silica sol with a particle size of

12 nm in a pigmented ink-jet ink formulation gave a

print with improved optical density and superior rub

resistance compared with a reference ink [48].

COLLOIDAL SILICA AS POLISHING

AGENT FOR ELECTRONIC PRODUCTS

The advancement of high technology products, including

computers, has been remarkable in recent years, and

parts to be used in such products have been developed

for ever higher integration and speed. Paralleling this pro-

gress, the design rules for semiconductor devices have

been increasingly refined. The depth of focus in a

process tends to be shallow and the requirements for the

planarization of the pattern-forming surface are becoming

increasingly severe.

Electronic devices made on silicon chips must be con-

nected to each other by means of interconnecting metallic

tracks to constitute the desired electronic circuit. Intercon-

nected metallic levels are electrically insulated from each

other by being encapsulated in a dielectric layer. The inter-

connecting metallic tracks are often made by a metal reac-

tive ionic etching procedure. Sputtering is used to deposit

an aluminium or aluminum alloy film, approximately

10–12 mm thick. The design is transferred onto the film

by photolithography and the metallic tracks are created

using reactive ionic etching. The tracks are next covered

with a dielectric layer of silica, about 2 mm, obtained by

decomposition of tetraethylorthosilicate in the vapor

phase. Chemical-mechanical planarization is used to

planarize the dielectric layer.

Chemical-mechanical planarization, “CMP”, pro-

cesses are widely used to remove material from the

surface of a substrate in the production of a wide variety

of microelectronics. In a typical CMP process, the

TABLE 57.8
Colloidal Silica in Coatings for Ink Jet Applications

Reference Coating system Silica sol Comments

[42] Silica solþ polymeric

binderþ silane coupling

agentþ high boiling solvent

Elongated(structured) or

spherical particles. Average

particle size: up to 200 nm

Polymeric binder: e.g.,

PU-dispersion

Advantage: quick drying of

ink, low haze, reduced image

bleeding, improved shelf-life

[43] Silica solþ PVA 100 parts SiO2 to 25

parts PVA on dry bases

Agglomerated particles.

Agglomerated surface area:

100–400 m2/g

Highly transparent porous coating

[44] Fumed silicaþ silica solþ PVA Particle size: 22, 35 and 50 nm

SiO2 from sol (on dry bases):

about 20 wt.%

Glossy coating, high liquid

absorption capacity, crack

resistant, non-brittle

surface

[45] Silica solþwater-soluble resin,

e.g.PVA. 15 parts PVA to 100

parts SiO2 (on dry bases)

Particle size: ,200 nm

Particle charge: anionic and

cationic

High gloss, high ink absorption,

excellent water resistance,

“photo quality coating”

[46] Silica solþ polymeric

binderþ silane coupling

agent ¼ image recording Layer

Particle size: 22 nm

Ammonium stabilized

Porous solvent absorbing

polyolefin layerþ image

recording layer:

Improved color retention

Higher optical density

[47] 2 layers of “chain”-silica

solþ ink-receiving layer

Primary particle size: 3–40 nm

“chain” length: 40–200 nm

Excellent ink absorption

High color density

Good color reproducibility
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surface to be polished is pressed against a polishing pad in

the presence of a slurry under controlled conditions of

chemistry, pressure temperature and velocity. The slurry

generally contains small particles that abrade the surface,

and chemicals that etch and/or oxidize the newly

formed surface. The polishing pad is usually a planar

pad made of a polymeric material, for example, poly-

urethane. As the pad and substrate move relative to each

other, material is removed from the surface mechanically

by the abrasive particles and chemically by the etchants

and/or oxidants in the slurry.

Just like in the case of coating formulations for jet ink

receptors, intensive efforts have been made in the last 15

to 20 years to develop polishing formulations for micro-

electronic products containing colloidal particles of

different compositions. The final step in most polishing

processes usually employs colloidal particles of silica.

We have summarized information on colloidal silica as

polishing agent from an number of recent patents in a

table, Table 57.9.
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Abstract—Small silica particles uniformly coated by a shell of titania, were produced by wet chemical
methods. The pigments were dispersed in polymeric binders and were applied as paints to glass substrates.
Total reflectance and transmittance were determined by integrating sphere measurements. Luminous and solar
reflectance of paints containing the novel pigments were comparable with paints containing commercial titania.
The spectral transmittance and reflectance of the paints were modelled by a four-flux radiative transfer theory.
Theory and experiment could be brought into good agreement, if it was assumed that the particles were slightly
porous. The studied pigments may find applications in sunscreens or in foils for daylighting and radiative
cooling.  2000 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION Multiple light scattering from pigment particles
dispersed in paints, paper, polymer foils or elec-

Light scattering is of importance in various
trolytes can be described by radiative transfer

energy related applications, such as sunscreens,
theory (Chandrasekhar, 1950; Ishimaru, 1978; van

pigmented polymer foils for radiative cooling
de Hulst, 1980; Reiss, 1988). Rigorous solutions

(Nilsson and Niklasson, 1995) and daylighting,
often require numerical implementation (van de

infrared energy barriers (Berdahl, 1995), as well
Hulst, 1980; Stamnes et al., 1988). Approximate

as thermotropic materials (Wilson and Eck, 1993;
approaches are based on the concept of radiation

Wilson et al., 1994). Solar cell design may also
exchange between different directions or flux

benefit from a thorough understanding of the light
channels in the coating (Mudgett and Richards,

scattering occuring, for example, in photo-electro-
1971, 1972; Whitney, 1974). Radiative transfer

chemical cells with nanostructured electrodes
models characterized by a low number of chan-

(Usami, 1997; Ferber and Luther, 1998). Foils
nels are simple and surprisingly accurate methods

containing white pigments can be used to mini-
for describing the optical properties of light

mize the solar absorption of a material. Currently
scattering and absorbing materials (Kubelka and

titanium dioxide is the most used commercial
Munk, 1931; Reichman, 1973; Maheu et al.,

white pigment. For environmental reasons it is
1984). Diffusion models are appropriate when

desirable to minimize the amount of titania used
considering optically thick materials in which

in the pigment (Hsu et al., 1993), for example by
multiple scattering effects lead to isotropic dis-

using inexpensive cores coated with titania.
tributions of the scattered radiation (Yoo et al.,

Another advantage is the very good control of
1990). We have recently provided a theoretical

particle size and size distribution possible with
framework for various approximative analytical

chemical coating methods. This makes optimi-
methods and have derived generalizations of two-

zation of the optical properties easier. A good
flux and four-flux theories (Vargas and Niklasson,

understanding of multiple light scattering in pig-
1997b,c; Vargas, 1998). In these models the

mented materials is a necessary prerequisite for
anisotropic diffuse radiation is characterized by

optimization and design of coatings for the above-
effective average pathlength parameters (APP), j.

mentioned applications.
The fraction of energy that a particle scatters into
the forward hemisphere is given in terms of

† forward scattering ratios (FSR): s for an imping-cAuthor to whom correspondence should be addressed. Tel.:
ing collimated flux, and s for an impinging146-18-4713-101; fax: 146-18-500-131; e-mail: d

gunnar.niklasson@angstrom.uu.se anisotropic diffuse radiation flux. We have devised
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methods to calculate these parameters (Vargas and titania pigments was about 0.3 mm. The diameters
Niklasson, 1997d,e). of the composite particles were between 0.35 and

In this paper we focus on the visible and near 0.65 mm with very narrow size distributions. X-
infrared optical properties of pigmented polymer ray diffraction showed that the titania in the
coatings. They were composed of SiO (silica) or composite particles consisted of the anatase phase.2

commercial TiO (rutile titania) pigments hosted It is not possible to obtain a rutile coating with2

in a polymeric matrix. The solar and luminous this or a similar method, as far as we are aware.
reflectance were compared to that of films con- For the composite pigment sols, light scattering
taining TiO (anatase titania) coated SiO pig- measurements with a particle size analyser2 2

ments. We have also compared the experimental (Brookhaven BI-90 particle sizer) were carried
data with a four flux theory using one APP, and out. Comparisons of the obtained hydrodynamic
one FSR each for the collimated and diffuse parts. diameters with the electron microscopy results
Hence the direction dependence of these parame- showed that the particles were well dispersed with
ters is neglected. By the extended Hartel approxi- very little aggregation. The density of the silica

3mation (Vargas and Niklasson, 1997b,e), we was measured as 2.0–2.2 g/cm , i.e. somewhat
evaluate j and s and take into account their lower than in the bulk. The anatase titania values,d

dependence on wavelength, particle relative re- although more uncertain, were close to bulk
fractive index, particle size, and film thickness. values. Further details of the preparation and
Here we present the first comparisons of this characterization are given by Greenwood (1998).
model with experimental data. Good agreement Optical measurements were carried out for
between measured and computed reflectances and wavelengths in the solar spectral range (from 0.3
transmittances is displayed when pigment porosity to 2.5 mm). Total reflectance and transmittance
is taken into account. spectra of the pigmented coatings were measured

by a Beckman Acta 5240 spectrophotometer
equipped with an integrating sphere and using

2. EXPERIMENTS
barium sulphate as the reflectance reference. In

Pure TiO (rutile) pigments were obtained from such measurements losses of scattered radiation2

commercial sources; namely: Flexonyl White R through the open edges of the glass substrate can
100 VP supplied by the Hoechst company, and occur and lead to serious errors (Nitz et al.,

¨W6206K from Nordsjo (Akzo-Nobel Inc.). Colloi- 1998). For strongly backscattering samples such
dal suspensions of silica particles were produced as ours the errors should mainly affect the trans-

¨ ¨by the Stober synthesis (Stober et al., 1968). The mittance. In our case the difference in transmitt-
reaction temperature was varied to obtain differ- ance for light incident onto the coating and light
ent diameters between 0.3 and 0.5 mm. After incident onto the backside of the substrate could
introduction of aluminosilicate sites on the par- be as much as five percent of the signal. If edge
ticle surfaces, charge reversal and a heat treat- losses are significant, an artificially high absorp-
ment, a solution of titanium tetrachloride was tion would be measured. This is to be compared

2added at a rate of 0.2 mmol /m of core surface to the weak absorption of the binder, that is
per hour. Uniform TiO coated SiO particles clearly significant for the coating thicknesses that2 2

were obtained, with the content of titania per we consider. Indeed, we do not consistently
particle given by the deposition time. The par- observe higher measured absorption than pre-
ticles were given a stabilising negative charge to dicted theoretically from the known properties of
prevent agglomeration. Then the sols were mixed the binder. For characterizing the optical prop-
with a binder, a copolymer latex of ethylene erties of the pigmented coatings it is necessary to

¨vinylic acetate (Bindoplast, from Nordsjo, Akzo- know the spectral dependence of the refractive
Nobel Inc.) and coatings were prepared on 2 mm index of the binder in which the particles are
thick glass plates by using a doctors blade with a hosted, and of the glass substrate on which the
clearance of 200 mm. Coatings with thicknesses coatings are deposited. We obtained this infor-
between 25 and 80 mm and particle weight mation from measured near-normal reflectance
fractions from 0.05 to 0.50 were obtained. Film and transmittance of an uncoated glass substrate
thicknesses were measured by using a Tencor- and of a pure binder film supported on a glass
Alpha-Step 200 surface profiling instrument. A substrate. The bulk refractive indices of the silica
JEOL JSM-5200 scanning electron microscope (Malitson, 1965), rutile (Ribarsky, 1985) and
was used to determine the size distribution of the anatase (Demyriont, 1985) were taken from litera-
pigments. The mean diameter of the commercial ture, and used to estimate the refractive indices of
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the pigments. The bulk mass densities of silica dJc3 3¯ ¯ ][r 5 2.30 g/cm ], rutile [r 5 4.245 g/cm ], and 5 (a 1 b )J , (1b)cdz3¯anatase [r 5 3.90 g/cm ] were also used.
dId
]5 2 jbI 2 j(1 2 s )aI 1 j(1 2 s )aJd d d d ddz

3. THEORY 1 s aI 1 (1 2 s )aJ , (1c)c c c c

In order to treat the effects of multiple scatter- dJd
]ing, boundary internal reflections inside the film, 5 1 jbJ 1 j(1 2 s )aJ 2 j(1 2 s )aId d d d ddz

substrate properties, as well as absorption by the
2 s aJ 2 (1 2 s )aI . (1d)c c c cparticles, we have extended the four flux model

developed by Maheu et al. (1984) and Maheu and Here z is a linear coordinate, measured from the
Gouesbet (1986). In this radiative transfer model, illuminated side and perpendicular to the inter-
the radiation field inside the film is considered to face, a(b ) is the scattering (absorption) coeffi-
consist of four contributions: two collimated cient per unit length which, within the indepen-
intensities (I and J ) and two diffuse radiationc c dent scattering approximation, is evaluated as the
intensities (I and J ), as indicated in Fig. 1.d d particle volume fraction ( f ) times the volumetric
Perpendicular illumination is assumed, and the scattering (absorption) cross section of the particle
film is characterized by smooth interfaces with air [C /V (C /V ) where V is the particle volume].sca aband a substrate. The intensities of the collimated The forward and backward diffuse radiation arises
beams decay due to scattering and absorption by from multiple scattering processes and their path
the particles. The intensity of the diffuse beam Id through the coating is on the average longer than
is decreased by absorption, and scattering into the for the collimated radiation. This difference is
backward hemisphere (relative to the direction of characterized by the average path-length parame-
the impinging radiation); and it is increased by ter (APP), j : the average pathlength travelled by
scattering of the I , J and J contributions intoc c d the diffuse beams as compared to the collimated
the forward hemisphere. The same analysis can be ones. The fractions of energy that each particle
done for the other diffuse beam J . Consequently,d scatters into the forward hemisphere are given by
the differential equations for the intensities are the forward scattering ratios (FSR), for collimated

and (anisotropic or isotropic) diffuse incidentdIc
]5 2 (a 1 b )I , (1a) radiation, s and s , respectively. By means ofc c ddz

Fig. 1. Electromagnetic radiation fluxes inside an inhomogeneous film of thickness h, which is normally illuminated.
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the APP and s the anisotropy of the propagating where t 5(a 1b )h is the optical thickness of thed

diffuse radiation was taken into account. coating, and m 5cos u (m95cos u 9), u(u 9) being
By applying boundary conditions at the inter- a polar angle measured from the normal to the

faces of the film, in terms of reflection coefficients film interfaces.
and intensities of the fluxes, the solutions for the It is well known that optical constants of thin
system of differential equations lead to explicit films depend on their internal structure (Pulker et
expressions for the collimated and diffuse com- al., 1976; Harris et al., 1979; Laux and Richter,
ponents of the reflectance and transmittance. The 1996). The Lorentz–Lorenz or Clausius–Mossotti
expressions for these quantities are readily avail- relation has been used to describe the effect of
able in Vargas and Niklasson (1997a) and will not thin film porosity on the optical constants (Pulker,
be repeated here. We now shortly describe the 1979), and it has also been used in connection to
evaluation of all parameters entering into the four optical constants of pigments or powders

¨flux theory. Volumetric scattering and absorption (Bottcher, 1945). Porous particles are character-
cross sections of the pigments, C /V and C /V ized by decreased scattering, a mass density andsca abs

with V as the particle volume, as well as the complex refractive index (r and m ) lower thanp p

¯ ¯forward scattering ratio for collimated incident the corresponding bulk values (r and m ). Theb b

radiation, were evaluated from the Lorenz–Mie optical constants of the particles depend on the
theory (Bohren and Huffman, 1983). The APP porosity, which was obtained from a fit to the
and the FSR for diffuse incident radiation were experimental spectra. We used the particle relative

¯evaluated from an extension of the Hartel theory mass density ( p5r /r ) as a fitting parameter top b

(Hartel, 1940). We take into account the depen- minimize the function
dences j 5 j(l ,x,m,h) and s 5s (l ,x,m,h) No d d o

2where l is the free space wavelength of the G( p) 5O huR (l ) 2 R (l , p)u 1 uT (l )o exp i calc i exp i
i51impinging radiation, x52pr /l is the size param-o

2eter with r as the particle radius, m is the particle 2 T (l , p)u j , (3)calc i
relative refractive index, and h is the film thick-

where N is the number of measurements carriedness. Our approach to obtain explicit expressions
out to obtain the reflectance and transmittancefor j and s is based on expansions of thed (R and T ) at different wavelengths, R (l,exp exp calcsingle-particle phase function, p(m,m9), and the
p) and T (l, p) are the corresponding theoret-calcdiffuse intensity, I(t,m9), in terms of Legendre
ical values calculated from a four-flux model bypolynomials. The coefficients involved in the
varying the particle refractive index according toexpansions of p(m,m9) are obtained from the
the Clausius–Mossotti equation. The details areLorenz–Mie theory (Chu and Churchill, 1955).
given by Vargas and Niklasson (1997a).The coefficients specifying the expansion of the

It should be realized that close approachesdiffuse intensity are obtained by the analytic
between particles may result from the depositionsolution of a system of differential equations
procedure, even if the sol is well-dispersed.obtained from an order-of-scattering expansion.
Particles with separations less than a third of theThe details of the extended Hartel theory have
wavelength give rise to dependent scatteringbeen published previously (Vargas and Niklasson,
(Reiss, 1988). In this case the scattering efficiency1997b,e). The evaluation of the APP and the FSR
decreases just as for porous pigment particles.are finally carried out from

1
4. COMPARISON OF THEORY ANDE I(t, m) dm EXPERIMENTS

0
]]]]j(t) 5 , Fig. 2 depicts reflectance and transmittance1

spectra for coatings containing rutile titania (Flex-E mI(t, m) dm onyl) pigments with different particle weight
0 fractions. The particle volume fraction, f, is

1 1 related to the particle weight fraction, F, byE dm9 E I(t, m9)p(m, m9) dm
1

]]]]]0 0 f 5 , (4)r]]]]]]]]s (t) 5 (2) 1 2 Fpd 1 1
] ]]S D1 1
r FbE dm9 E I(t, m9)p(m, m9) dm

0 21 where r (r ) is the mass density of the particlep b
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Fig. 2. Comparisons between measured total reflectance (circles) and transmittance (dots) with the corresponding predicted
values obtained from four-flux calculations (solid lines), for pigmented films containing 300 nm TiO (rutile) particles in a2

polymer binder. The particle weight fractions, F, and film thicknesses, h, were (a) F50.05, h563 mm, (b) F50.20, h533 mm
(c) F50.40, h562 mm and (d) F50.50, h540 mm. The fitted values of pigment porosity were 0.91, 0.94, 0.92 and 0.83,
respectively.

(binder). It is seen that rutile titanium dioxide ance values due to the weak scattering from these
pigmented films have high reflectance values in particles. The best fit to theory was obtained for
the visible wavelength range where the scattering p(SiO )50.84 which gives a pigment mass den-2

3cross section of the particles reaches the highest sity of 1.93 g/cm . This value is between
3values. The reflectance decreases and the trans- 1.80 g/cm , the one characterizing silica particles

¨mittance increases towards longer wavelengths. produced by Stober synthesis (Coenen and Kruif,
The strong absorption in the near ultraviolet is 1988) and our experimental values for heat
due to indirect allowed transitions (Grant, 1959) treated samples.
at about 3.02 eV. The samples containing the Fig. 3 depicts reflectance and transmittance
W6206K pigments had somewhat lower reflect- spectra for coatings containing composite pig-
ance values than the samples in Fig. 2. This may ments consisting of a silica core coated with a
be due to a higher degree of particle aggregation titania (anatase) shell. The spectra are qualita-
leading to dependent scattering effects. The weak tively similar to those of the titania pigmented
absorption band around 2.2 mm is caused by the coatings in Fig. 2. The coatings are characterized
binder. In contrast, the spectra of films containing by the ratio between titania and silica mass per
silica particles are characterized by low reflect- particle, m(TiO ) /m(SiO ), as well as the diam-2 2
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Fig. 3. Comparison of computed reflectance and transmittance spectra (solid lines), with measured ones (dots and circles) from
polymer coatings containing anatase titania coated silica pigments. The particle weight fractions, F, and film thicknesses, h, were
(a) F50.05, h546 mm, (b) F50.40, h533 mm (c) F50.10, h547 mm and (d) F50.40, h538 mm. Mass ratios of titania to
silica in the particles were (a,b) 1.50 and (c,d) 1.38. The diameters of the silica cores were (a,b) 300 nm and (c,d) 500 nm. The
particle diameters were (a,b) 370 nm and (c,d) 630 nm. The fitted values of pigment porosity were 0.84, 0.83, 0.73 and 0.73,
respectively.

eter of the silica core, d , obtained from SEM and hence are less scattering than rutile ones. Ito

measurements. The particle diameter was evalu- was found that the reflectance increases with the
ated from amount of titania per particle, as expected.

In Figs. 2 and 3 we also present fits to the
1 / 3r(SiO ) m(TiO ) experimental data by use of the theory described2 2

]]]]]]d 5 d 1 1 , (5)F G0 r(TiO ) m(SiO ) in Section 3. In general the agreement between2 2

theory and experiment is good, although minor
taking into account pigment porosity. The anatase quantitative discrepancies remain. It can be seen
phase of titanium dioxide is characterized by an that a fairly good agreement between computed
absorption edge, at about 3.5 eV, due to direct results and measurements can be obtained even in
allowed transitions (Krishna et al., 1993). Mea- the case of coatings with high particle concen-
sured reflectances of films containing TiO (anat- trations. Titania pigmented films (Fig. 2) are2

ase) coated SiO pigments are smaller than those characterized by large values of the diffuse radia-2

obtained from films containing rutile pigments tion intensity, especially in the mid-visible. Our
with similar sizes. This is mainly due to that calculations show that, at the absorption edge, the
anatase pigments have a lower refractive index diffuse radiation intensity is small with a peaked
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forward anisotropic distribution (j(1 and experiments (Vargas and Niklasson, 1998). Using
s (1). Beyond the absorption edge, in the a theory with different APP and FSR in forwardd

visible wavelength range, both j and s display a and backward directions (Vargas and Niklasson,d

structure because of the excitation of low multipo- 1997d,e) leads to pronounced spectral structures
lar orders. In the near infrared the diffuse radia- not seen in the experimental data.
tion pattern becomes nearly isotropic with j

increasing towards 2 and s ¯0.5. The best fits tod

experiments were obtained for slightly porous SOLAR AND LUMINOUS REFLECTANCES
particles with p(rutile) between 0.9 and 1. The

Finally we consider the performance of the
values were often even lower for samples with the

coatings as white, solar reflecting surfaces. From
highest weight fraction, F50.5. We do not regard

the spectrophotometric measurements we have3the fitted pigment density (3.960.3 g/cm ) to be
calculated solar [R ] and luminous [R ] reflect-sol lumsignificantly different from the bulk value. Rather,
ances of films containing commercial rutile titania

the sample-to-sample variation in p(rutile) is
pigments, and the novel anatase titania coated

probably due to different particle aggregation in
silica ones, at different concentrations. The solar

the samples, leading to decreased scattering ef-
spectrum AM1.5 has been used (Bird et al.,

ficiency. Such dependent scattering effects should
1983). Fig. 4 depicts the results as a function of

also be more pronounced at large weight frac-
Fh, where F is the pigment weight fraction and h

tions.
denotes the film thickness. It is seen that the

The quality of the fit to the optical properties of
reflectance increases steeply at low values of Fh,

films containing composite pigments (Fig. 3) is
and approaches a constant for Fh.15 mm. Films

similar, but the interpretation is more problematic.
containing commercial rutile titania pigments

In most of the spectral range there is a rather good
display larger values of solar and luminous re-

agreement between measurements and computed
flectance than films pigmented with composite

results. Around 0.50 mm, just after the absorption
particles. The effect becomes small at large Fh.

edge, there is a discrepancy because the ripple
The refractive index of anatase is lower than that

structure characterizing the scattering parameters
of rutile, hence films containing composite pig-

of the single particles is missing in the experimen-
ments are less scattering, which leads to a lower

tal spectra. The reason for this is a fine roughness
diffuse reflectance. As expected, by increasing the

on the surface of the composite pigments, seen in
amount of titania per particle in the composite

SEM measurements. In order to estimate the
pigments, the diffuse reflectance increases, as

relative mass density of the anatase shell, p(anat-
seen from Fig. 4c,d. The best solar reflectances

ase), we assumed that the relative mass density of
were close to 0.7 for the coatings with composite

the silica core is p(SiO )50.84. Then p(anatase)2 pigments and between 0.75 and 0.8 for coatings
was used as a fitting parameter to minimize the

with commercial rutile pigments.
function G( p) given in Eq. (3). The particle
volume fraction, f, was evaluated from Eq. (4),
where r now becomes the average mass densityp CONCLUSIONS
of the particle. The p(anatase)-values are scattered
between 0.7 and 0.9, but values close to unity Optical properties of polymeric films contain-
were sometimes obtained for samples with F 50.5. ing novel anatase titania coated silica pigments
The average mass density of the anatase shell have been compared to films pigmented with
estimated from the majority of the results is much commercial titania particles. The novel pigments
lower than, and inconsistent with, the experimen- are less scattering than homogeneous rutile titania
tal determinations of the density. The reason for ones, but the difference is not very large. A
this is not clear. The contributions of particle four-flux model has been used to predict the
aggregation, particle surface roughness and the optical properties of the particulate polymeric
surface roughness of the coating need to be films and good agreement was achieved by as-
carefully evaluated. Edge losses may be a prob- suming the particles to be slightly porous. How-
lem as noted above, but the measured absorption ever the porosity obtained from the fits was
(Fig. 3) appears to be roughly on the same level unreasonably large in the case of coatings con-
as the computed one. taining composite pigments. Further analyses

It should be noted that preliminary computa- taking into account aggregation and surface
tions with a more general theory than in the roughness effects are needed in order to obtain a
present paper displayed worse agreement with the better agreement between theory and experiment.
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Fig. 4. Solar and luminous reflectance of particulate coatings containing commercial titania pigments (a and b) where the particle
diameter is around 300 nm, and novel titania coated silica particles (c and d) where the diameter of the silica core is around 300 nm.
The mass ratios of titania to silica are given in (c) and (d).
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Surface Modifications and Applications 
of Aqueous Silica Sols
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The aim with this work was to develop 
methods of modifying the surface of colloidal 
silica, to develop new applications, as well as 
to improve some existing applications. 
Aqueous silica sols have been used in a variety
of applications over the years and there are an 
increasing number of applications for these 
kinds of materials, many of them 
environmentally driven. To give some 
examples; the development of waterborne low 
VOC coatings has lead to the need of silane 
modified colloidal silica that can enhance
coating properties, being used as pigments 
dispersants and also fulfil the demands on 
shelf-life of such coating formulations. Lead-
acid batteries with solid electrolyte are gaining 
new markets with the development of 
telecommunication and solar energy where 
such batteries are used as power 
sources/storage. The handling and working 
environment are significantly improved by 
using silica sols instead of fumed silica as a 
gelling agent for the acid.

Another example where the “green drive” has given opportunities for colloidal silica dispersions 
is in the construction field. The recycling of old concrete, increasing amounts of e.g., limestone 
fillers in concrete, and also the use of the cement kilns as incinerators for waste are producing 
cements of poorer quality, paving the way for concretes which are susceptible for bleeding,
segregation and slow strength development. Addition of colloidal silica may remedy these 
shortcomings.
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Epoxy silane-modified colloidal silica particle. The particle size of the silica core is 7 nm. 
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